]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
btrfs: don't allocate anonymous block device for user invisible roots
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
55e20bd1 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
92d32170 33#include <asm/unaligned.h>
602cbe91 34#include "misc.h"
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
467dc47e 52#include "space-info.h"
39279cc3
CM
53
54struct btrfs_iget_args {
0202e83f 55 u64 ino;
39279cc3
CM
56 struct btrfs_root *root;
57};
58
f28a4928 59struct btrfs_dio_data {
f28a4928 60 u64 reserve;
55e20bd1
DS
61 u64 unsubmitted_oe_range_start;
62 u64 unsubmitted_oe_range_end;
63 int overwrite;
f28a4928
FM
64};
65
6e1d5dcc
AD
66static const struct inode_operations btrfs_dir_inode_operations;
67static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 83static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
4b67c11d
NB
87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
b672b5c1 93static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260 106 */
64e1db56 107static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
64e1db56 119 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
64e1db56 137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
9ddc959e
JB
246 /*
247 * We align size to sectorsize for inline extents just for simplicity
248 * sake.
249 */
250 size = ALIGN(size, root->fs_info->sectorsize);
251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
252 if (ret)
253 goto fail;
254
c2167754
YZ
255 /*
256 * we're an inline extent, so nobody can
257 * extend the file past i_size without locking
258 * a page we already have locked.
259 *
260 * We must do any isize and inode updates
261 * before we unlock the pages. Otherwise we
262 * could end up racing with unlink.
263 */
c8b97818 264 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 265 ret = btrfs_update_inode(trans, root, inode);
c2167754 266
c8b97818 267fail:
79b4f4c6 268 return ret;
c8b97818
CM
269}
270
271
272/*
273 * conditionally insert an inline extent into the file. This
274 * does the checks required to make sure the data is small enough
275 * to fit as an inline extent.
276 */
a0349401 277static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
278 u64 end, size_t compressed_size,
279 int compress_type,
280 struct page **compressed_pages)
c8b97818 281{
a0349401 282 struct btrfs_root *root = inode->root;
0b246afa 283 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 284 struct btrfs_trans_handle *trans;
a0349401 285 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
286 u64 actual_end = min(end + 1, isize);
287 u64 inline_len = actual_end - start;
0b246afa 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
289 u64 data_len = inline_len;
290 int ret;
1acae57b
FDBM
291 struct btrfs_path *path;
292 int extent_inserted = 0;
293 u32 extent_item_size;
c8b97818
CM
294
295 if (compressed_size)
296 data_len = compressed_size;
297
298 if (start > 0 ||
0b246afa
JM
299 actual_end > fs_info->sectorsize ||
300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 301 (!compressed_size &&
0b246afa 302 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 303 end + 1 < isize ||
0b246afa 304 data_len > fs_info->max_inline) {
c8b97818
CM
305 return 1;
306 }
307
1acae57b
FDBM
308 path = btrfs_alloc_path();
309 if (!path)
310 return -ENOMEM;
311
00361589 312 trans = btrfs_join_transaction(root);
1acae57b
FDBM
313 if (IS_ERR(trans)) {
314 btrfs_free_path(path);
00361589 315 return PTR_ERR(trans);
1acae57b 316 }
a0349401 317 trans->block_rsv = &inode->block_rsv;
00361589 318
1acae57b
FDBM
319 if (compressed_size && compressed_pages)
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 compressed_size);
322 else
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 inline_len);
325
a0349401
NB
326 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
327 NULL, 1, 1, extent_item_size,
328 &extent_inserted);
00361589 329 if (ret) {
66642832 330 btrfs_abort_transaction(trans, ret);
00361589
JB
331 goto out;
332 }
c8b97818
CM
333
334 if (isize > actual_end)
335 inline_len = min_t(u64, isize, actual_end);
1acae57b 336 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 337 root, &inode->vfs_inode, start,
c8b97818 338 inline_len, compressed_size,
fe3f566c 339 compress_type, compressed_pages);
2adcac1a 340 if (ret && ret != -ENOSPC) {
66642832 341 btrfs_abort_transaction(trans, ret);
00361589 342 goto out;
2adcac1a 343 } else if (ret == -ENOSPC) {
00361589
JB
344 ret = 1;
345 goto out;
79787eaa 346 }
2adcac1a 347
a0349401
NB
348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
349 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 350out:
94ed938a
QW
351 /*
352 * Don't forget to free the reserved space, as for inlined extent
353 * it won't count as data extent, free them directly here.
354 * And at reserve time, it's always aligned to page size, so
355 * just free one page here.
356 */
a0349401 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 358 btrfs_free_path(path);
3a45bb20 359 btrfs_end_transaction(trans);
00361589 360 return ret;
c8b97818
CM
361}
362
771ed689
CM
363struct async_extent {
364 u64 start;
365 u64 ram_size;
366 u64 compressed_size;
367 struct page **pages;
368 unsigned long nr_pages;
261507a0 369 int compress_type;
771ed689
CM
370 struct list_head list;
371};
372
97db1204 373struct async_chunk {
771ed689 374 struct inode *inode;
771ed689
CM
375 struct page *locked_page;
376 u64 start;
377 u64 end;
f82b7359 378 unsigned int write_flags;
771ed689 379 struct list_head extents;
ec39f769 380 struct cgroup_subsys_state *blkcg_css;
771ed689 381 struct btrfs_work work;
97db1204 382 atomic_t *pending;
771ed689
CM
383};
384
97db1204
NB
385struct async_cow {
386 /* Number of chunks in flight; must be first in the structure */
387 atomic_t num_chunks;
388 struct async_chunk chunks[];
771ed689
CM
389};
390
97db1204 391static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
392 u64 start, u64 ram_size,
393 u64 compressed_size,
394 struct page **pages,
261507a0
LZ
395 unsigned long nr_pages,
396 int compress_type)
771ed689
CM
397{
398 struct async_extent *async_extent;
399
400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 401 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
402 async_extent->start = start;
403 async_extent->ram_size = ram_size;
404 async_extent->compressed_size = compressed_size;
405 async_extent->pages = pages;
406 async_extent->nr_pages = nr_pages;
261507a0 407 async_extent->compress_type = compress_type;
771ed689
CM
408 list_add_tail(&async_extent->list, &cow->extents);
409 return 0;
410}
411
42c16da6
QW
412/*
413 * Check if the inode has flags compatible with compression
414 */
99c88dc7 415static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 416{
99c88dc7
NB
417 if (inode->flags & BTRFS_INODE_NODATACOW ||
418 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
419 return false;
420 return true;
421}
422
423/*
424 * Check if the inode needs to be submitted to compression, based on mount
425 * options, defragmentation, properties or heuristics.
426 */
808a1292
NB
427static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
428 u64 end)
f79707b0 429{
808a1292 430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 431
808a1292 432 if (!inode_can_compress(inode)) {
42c16da6
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 435 btrfs_ino(inode));
42c16da6
QW
436 return 0;
437 }
f79707b0 438 /* force compress */
0b246afa 439 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 440 return 1;
eec63c65 441 /* defrag ioctl */
808a1292 442 if (inode->defrag_compress)
eec63c65 443 return 1;
f79707b0 444 /* bad compression ratios */
808a1292 445 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 446 return 0;
0b246afa 447 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
448 inode->flags & BTRFS_INODE_COMPRESS ||
449 inode->prop_compress)
450 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
451 return 0;
452}
453
6158e1ce 454static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
455 u64 start, u64 end, u64 num_bytes, u64 small_write)
456{
457 /* If this is a small write inside eof, kick off a defrag */
458 if (num_bytes < small_write &&
6158e1ce 459 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
460 btrfs_add_inode_defrag(NULL, inode);
461}
462
d352ac68 463/*
771ed689
CM
464 * we create compressed extents in two phases. The first
465 * phase compresses a range of pages that have already been
466 * locked (both pages and state bits are locked).
c8b97818 467 *
771ed689
CM
468 * This is done inside an ordered work queue, and the compression
469 * is spread across many cpus. The actual IO submission is step
470 * two, and the ordered work queue takes care of making sure that
471 * happens in the same order things were put onto the queue by
472 * writepages and friends.
c8b97818 473 *
771ed689
CM
474 * If this code finds it can't get good compression, it puts an
475 * entry onto the work queue to write the uncompressed bytes. This
476 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
477 * are written in the same order that the flusher thread sent them
478 * down.
d352ac68 479 */
ac3e9933 480static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 481{
1368c6da 482 struct inode *inode = async_chunk->inode;
0b246afa 483 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 484 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
485 u64 start = async_chunk->start;
486 u64 end = async_chunk->end;
c8b97818 487 u64 actual_end;
d98da499 488 u64 i_size;
e6dcd2dc 489 int ret = 0;
c8b97818
CM
490 struct page **pages = NULL;
491 unsigned long nr_pages;
c8b97818
CM
492 unsigned long total_compressed = 0;
493 unsigned long total_in = 0;
c8b97818
CM
494 int i;
495 int will_compress;
0b246afa 496 int compress_type = fs_info->compress_type;
ac3e9933 497 int compressed_extents = 0;
4adaa611 498 int redirty = 0;
b888db2b 499
6158e1ce
NB
500 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
501 SZ_16K);
4cb5300b 502
d98da499
JB
503 /*
504 * We need to save i_size before now because it could change in between
505 * us evaluating the size and assigning it. This is because we lock and
506 * unlock the page in truncate and fallocate, and then modify the i_size
507 * later on.
508 *
509 * The barriers are to emulate READ_ONCE, remove that once i_size_read
510 * does that for us.
511 */
512 barrier();
513 i_size = i_size_read(inode);
514 barrier();
515 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
516again:
517 will_compress = 0;
09cbfeaf 518 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
519 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
520 nr_pages = min_t(unsigned long, nr_pages,
521 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 522
f03d9301
CM
523 /*
524 * we don't want to send crud past the end of i_size through
525 * compression, that's just a waste of CPU time. So, if the
526 * end of the file is before the start of our current
527 * requested range of bytes, we bail out to the uncompressed
528 * cleanup code that can deal with all of this.
529 *
530 * It isn't really the fastest way to fix things, but this is a
531 * very uncommon corner.
532 */
533 if (actual_end <= start)
534 goto cleanup_and_bail_uncompressed;
535
c8b97818
CM
536 total_compressed = actual_end - start;
537
4bcbb332
SW
538 /*
539 * skip compression for a small file range(<=blocksize) that
01327610 540 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
541 */
542 if (total_compressed <= blocksize &&
543 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
544 goto cleanup_and_bail_uncompressed;
545
069eac78
DS
546 total_compressed = min_t(unsigned long, total_compressed,
547 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
548 total_in = 0;
549 ret = 0;
db94535d 550
771ed689
CM
551 /*
552 * we do compression for mount -o compress and when the
553 * inode has not been flagged as nocompress. This flag can
554 * change at any time if we discover bad compression ratios.
c8b97818 555 */
808a1292 556 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 557 WARN_ON(pages);
31e818fe 558 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
559 if (!pages) {
560 /* just bail out to the uncompressed code */
3527a018 561 nr_pages = 0;
560f7d75
LZ
562 goto cont;
563 }
c8b97818 564
eec63c65
DS
565 if (BTRFS_I(inode)->defrag_compress)
566 compress_type = BTRFS_I(inode)->defrag_compress;
567 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 568 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 569
4adaa611
CM
570 /*
571 * we need to call clear_page_dirty_for_io on each
572 * page in the range. Otherwise applications with the file
573 * mmap'd can wander in and change the page contents while
574 * we are compressing them.
575 *
576 * If the compression fails for any reason, we set the pages
577 * dirty again later on.
e9679de3
TT
578 *
579 * Note that the remaining part is redirtied, the start pointer
580 * has moved, the end is the original one.
4adaa611 581 */
e9679de3
TT
582 if (!redirty) {
583 extent_range_clear_dirty_for_io(inode, start, end);
584 redirty = 1;
585 }
f51d2b59
DS
586
587 /* Compression level is applied here and only here */
588 ret = btrfs_compress_pages(
589 compress_type | (fs_info->compress_level << 4),
261507a0 590 inode->i_mapping, start,
38c31464 591 pages,
4d3a800e 592 &nr_pages,
261507a0 593 &total_in,
e5d74902 594 &total_compressed);
c8b97818
CM
595
596 if (!ret) {
7073017a 597 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 598 struct page *page = pages[nr_pages - 1];
c8b97818
CM
599 char *kaddr;
600
601 /* zero the tail end of the last page, we might be
602 * sending it down to disk
603 */
604 if (offset) {
7ac687d9 605 kaddr = kmap_atomic(page);
c8b97818 606 memset(kaddr + offset, 0,
09cbfeaf 607 PAGE_SIZE - offset);
7ac687d9 608 kunmap_atomic(kaddr);
c8b97818
CM
609 }
610 will_compress = 1;
611 }
612 }
560f7d75 613cont:
c8b97818
CM
614 if (start == 0) {
615 /* lets try to make an inline extent */
6018ba0a 616 if (ret || total_in < actual_end) {
c8b97818 617 /* we didn't compress the entire range, try
771ed689 618 * to make an uncompressed inline extent.
c8b97818 619 */
a0349401
NB
620 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
621 0, BTRFS_COMPRESS_NONE,
622 NULL);
c8b97818 623 } else {
771ed689 624 /* try making a compressed inline extent */
a0349401 625 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
626 total_compressed,
627 compress_type, pages);
c8b97818 628 }
79787eaa 629 if (ret <= 0) {
151a41bc 630 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
631 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
632 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
633 unsigned long page_error_op;
634
e6eb4314 635 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 636
771ed689 637 /*
79787eaa
JM
638 * inline extent creation worked or returned error,
639 * we don't need to create any more async work items.
640 * Unlock and free up our temp pages.
8b62f87b
JB
641 *
642 * We use DO_ACCOUNTING here because we need the
643 * delalloc_release_metadata to be done _after_ we drop
644 * our outstanding extent for clearing delalloc for this
645 * range.
771ed689 646 */
ad7ff17b
NB
647 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
648 NULL,
74e9194a 649 clear_flags,
ba8b04c1 650 PAGE_UNLOCK |
c2790a2e
JB
651 PAGE_CLEAR_DIRTY |
652 PAGE_SET_WRITEBACK |
e6eb4314 653 page_error_op |
c2790a2e 654 PAGE_END_WRITEBACK);
cecc8d90
NB
655
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661
662 return 0;
c8b97818
CM
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
fda2832f 672 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
673
674 /*
675 * one last check to make sure the compression is really a
170607eb
TT
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
c8b97818 678 */
09cbfeaf 679 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 680 if (total_compressed + blocksize <= total_in) {
ac3e9933 681 compressed_extents++;
c8bb0c8b
AS
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
b5326271 688 add_async_extent(async_chunk, start, total_in,
4d3a800e 689 total_compressed, pages, nr_pages,
c8bb0c8b
AS
690 compress_type);
691
1170862d
TT
692 if (start + total_in < end) {
693 start += total_in;
c8bb0c8b
AS
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
ac3e9933 698 return compressed_extents;
c8b97818
CM
699 }
700 }
c8bb0c8b 701 if (pages) {
c8b97818
CM
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
4d3a800e 706 for (i = 0; i < nr_pages; i++) {
70b99e69 707 WARN_ON(pages[i]->mapping);
09cbfeaf 708 put_page(pages[i]);
c8b97818
CM
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
4d3a800e 713 nr_pages = 0;
c8b97818
CM
714
715 /* flag the file so we don't compress in the future */
0b246afa 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 717 !(BTRFS_I(inode)->prop_compress)) {
a555f810 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 719 }
c8b97818 720 }
f03d9301 721cleanup_and_bail_uncompressed:
c8bb0c8b
AS
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
1d53c9e6
CM
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 731 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 732 /* unlocked later on in the async handlers */
1d53c9e6 733 }
c8bb0c8b
AS
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
b5326271 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 738 BTRFS_COMPRESS_NONE);
ac3e9933 739 compressed_extents++;
3b951516 740
ac3e9933 741 return compressed_extents;
771ed689 742}
771ed689 743
40ae837b
FM
744static void free_async_extent_pages(struct async_extent *async_extent)
745{
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 753 put_page(async_extent->pages[i]);
40ae837b
FM
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
771ed689
CM
758}
759
760/*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
b5326271 766static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 767{
a0ff10dc
NB
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
a0ff10dc
NB
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 776 int ret = 0;
771ed689 777
3e04e7f1 778again:
b5326271
NB
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
781 struct async_extent, list);
782 list_del(&async_extent->list);
c8b97818 783
f5a84ee3 784retry:
7447555f
NB
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
771ed689 792 /* allocate blocks */
a0ff10dc 793 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
330a5827 797 &page_started, &nr_written, 0);
771ed689 798
79787eaa
JM
799 /* JDM XXX */
800
771ed689
CM
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
f5a84ee3 807 if (!page_started && !ret)
a0ff10dc 808 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 809 async_extent->start,
d397712b 810 async_extent->start +
771ed689 811 async_extent->ram_size - 1,
771ed689 812 WB_SYNC_ALL);
1d53c9e6 813 else if (ret && async_chunk->locked_page)
b5326271 814 unlock_page(async_chunk->locked_page);
771ed689
CM
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
18513091 820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
821 async_extent->compressed_size,
822 async_extent->compressed_size,
e570fd27 823 0, alloc_hint, &ins, 1, 1);
f5a84ee3 824 if (ret) {
40ae837b 825 free_async_extent_pages(async_extent);
3e04e7f1 826
fdf8e2ea
JB
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
ce62003f
LB
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
a0ff10dc 838 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
79787eaa 843 goto retry;
fdf8e2ea 844 }
3e04e7f1 845 goto out_free;
f5a84ee3 846 }
c2167754
YZ
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
a0ff10dc 851 em = create_io_em(inode, async_extent->start,
6f9994db
LB
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
3e04e7f1 862 goto out_free_reserve;
6f9994db 863 free_extent_map(em);
3e04e7f1 864
a0ff10dc 865 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
d9f85963 872 if (ret) {
a0ff10dc 873 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
3e04e7f1 876 goto out_free_reserve;
d9f85963 877 }
0b246afa 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 879
771ed689
CM
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
a0ff10dc 883 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
884 async_extent->start +
885 async_extent->ram_size - 1,
151a41bc
JB
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 888 PAGE_SET_WRITEBACK);
a0ff10dc 889 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
f82b7359 893 async_extent->nr_pages,
ec39f769
CM
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
fce2a4e6
FM
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
a0ff10dc 900 p->mapping = inode->vfs_inode.i_mapping;
c629732d 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 902
fce2a4e6 903 p->mapping = NULL;
a0ff10dc 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
40ae837b 907 free_async_extent_pages(async_extent);
fce2a4e6 908 }
771ed689
CM
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
dec8f175 913 return;
3e04e7f1 914out_free_reserve:
0b246afa 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 917out_free:
a0ff10dc 918 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
919 async_extent->start +
920 async_extent->ram_size - 1,
c2790a2e 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 922 EXTENT_DELALLOC_NEW |
151a41bc
JB
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
40ae837b 927 free_async_extent_pages(async_extent);
79787eaa 928 kfree(async_extent);
3e04e7f1 929 goto again;
771ed689
CM
930}
931
43c69849 932static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
933 u64 num_bytes)
934{
43c69849 935 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962}
963
771ed689
CM
964/*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
6e26c442 977static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 978 struct page *locked_page,
74e9194a 979 u64 start, u64 end, int *page_started,
330a5827 980 unsigned long *nr_written, int unlock)
771ed689 981{
6e26c442
NB
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
a315e68f 987 u64 cur_alloc_size = 0;
432cd2a1 988 u64 min_alloc_size;
0b246afa 989 u64 blocksize = fs_info->sectorsize;
771ed689
CM
990 struct btrfs_key ins;
991 struct extent_map *em;
a315e68f
FM
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
771ed689
CM
995 int ret = 0;
996
6e26c442 997 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 998 WARN_ON_ONCE(1);
29bce2f3
JB
999 ret = -EINVAL;
1000 goto out_unlock;
02ecd2c2 1001 }
771ed689 1002
fda2832f 1003 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1004 num_bytes = max(blocksize, num_bytes);
566b1760 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1006
6e26c442 1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1008
771ed689
CM
1009 if (start == 0) {
1010 /* lets try to make an inline extent */
6e26c442 1011 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1012 BTRFS_COMPRESS_NONE, NULL);
771ed689 1013 if (ret == 0) {
8b62f87b
JB
1014 /*
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1018 * range.
1019 */
6e26c442 1020 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1021 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
771ed689 1026 *nr_written = *nr_written +
09cbfeaf 1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1028 *page_started = 1;
771ed689 1029 goto out;
79787eaa 1030 } else if (ret < 0) {
79787eaa 1031 goto out_unlock;
771ed689
CM
1032 }
1033 }
1034
6e26c442
NB
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1037
432cd2a1
FM
1038 /*
1039 * Relocation relies on the relocated extents to have exactly the same
1040 * size as the original extents. Normally writeback for relocation data
1041 * extents follows a NOCOW path because relocation preallocates the
1042 * extents. However, due to an operation such as scrub turning a block
1043 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 * an extent allocated during COW has exactly the requested size and can
1045 * not be split into smaller extents, otherwise relocation breaks and
1046 * fails during the stage where it updates the bytenr of file extent
1047 * items.
1048 */
1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 min_alloc_size = num_bytes;
1051 else
1052 min_alloc_size = fs_info->sectorsize;
1053
3752d22f
AJ
1054 while (num_bytes > 0) {
1055 cur_alloc_size = num_bytes;
18513091 1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1057 min_alloc_size, 0, alloc_hint,
e570fd27 1058 &ins, 1, 1);
00361589 1059 if (ret < 0)
79787eaa 1060 goto out_unlock;
a315e68f
FM
1061 cur_alloc_size = ins.offset;
1062 extent_reserved = true;
d397712b 1063
771ed689 1064 ram_size = ins.offset;
6e26c442 1065 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1066 start, /* orig_start */
1067 ins.objectid, /* block_start */
1068 ins.offset, /* block_len */
1069 ins.offset, /* orig_block_len */
1070 ram_size, /* ram_bytes */
1071 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1072 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1073 if (IS_ERR(em)) {
1074 ret = PTR_ERR(em);
ace68bac 1075 goto out_reserve;
090a127a 1076 }
6f9994db 1077 free_extent_map(em);
e6dcd2dc 1078
6e26c442
NB
1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 ram_size, cur_alloc_size, 0);
ace68bac 1081 if (ret)
d9f85963 1082 goto out_drop_extent_cache;
c8b97818 1083
17d217fe
YZ
1084 if (root->root_key.objectid ==
1085 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1086 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1087 cur_alloc_size);
4dbd80fb
QW
1088 /*
1089 * Only drop cache here, and process as normal.
1090 *
1091 * We must not allow extent_clear_unlock_delalloc()
1092 * at out_unlock label to free meta of this ordered
1093 * extent, as its meta should be freed by
1094 * btrfs_finish_ordered_io().
1095 *
1096 * So we must continue until @start is increased to
1097 * skip current ordered extent.
1098 */
00361589 1099 if (ret)
6e26c442 1100 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1101 start + ram_size - 1, 0);
17d217fe
YZ
1102 }
1103
0b246afa 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1105
c8b97818
CM
1106 /* we're not doing compressed IO, don't unlock the first
1107 * page (which the caller expects to stay locked), don't
1108 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1109 *
1110 * Do set the Private2 bit so we know this page was properly
1111 * setup for writepage
c8b97818 1112 */
a315e68f
FM
1113 page_ops = unlock ? PAGE_UNLOCK : 0;
1114 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1115
6e26c442 1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1117 locked_page,
c2790a2e 1118 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1119 page_ops);
3752d22f
AJ
1120 if (num_bytes < cur_alloc_size)
1121 num_bytes = 0;
4dbd80fb 1122 else
3752d22f 1123 num_bytes -= cur_alloc_size;
c59f8951
CM
1124 alloc_hint = ins.objectid + ins.offset;
1125 start += cur_alloc_size;
a315e68f 1126 extent_reserved = false;
4dbd80fb
QW
1127
1128 /*
1129 * btrfs_reloc_clone_csums() error, since start is increased
1130 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 * free metadata of current ordered extent, we're OK to exit.
1132 */
1133 if (ret)
1134 goto out_unlock;
b888db2b 1135 }
79787eaa 1136out:
be20aa9d 1137 return ret;
b7d5b0a8 1138
d9f85963 1139out_drop_extent_cache:
6e26c442 1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1141out_reserve:
0b246afa 1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1144out_unlock:
a7e3b975
FM
1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 PAGE_END_WRITEBACK;
1149 /*
1150 * If we reserved an extent for our delalloc range (or a subrange) and
1151 * failed to create the respective ordered extent, then it means that
1152 * when we reserved the extent we decremented the extent's size from
1153 * the data space_info's bytes_may_use counter and incremented the
1154 * space_info's bytes_reserved counter by the same amount. We must make
1155 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 */
1159 if (extent_reserved) {
6e26c442 1160 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1161 start + cur_alloc_size - 1,
a315e68f
FM
1162 locked_page,
1163 clear_bits,
1164 page_ops);
1165 start += cur_alloc_size;
1166 if (start >= end)
1167 goto out;
1168 }
6e26c442 1169 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1170 clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 page_ops);
79787eaa 1172 goto out;
771ed689 1173}
c8b97818 1174
771ed689
CM
1175/*
1176 * work queue call back to started compression on a file and pages
1177 */
1178static noinline void async_cow_start(struct btrfs_work *work)
1179{
b5326271 1180 struct async_chunk *async_chunk;
ac3e9933 1181 int compressed_extents;
771ed689 1182
b5326271 1183 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1184
ac3e9933
NB
1185 compressed_extents = compress_file_range(async_chunk);
1186 if (compressed_extents == 0) {
b5326271
NB
1187 btrfs_add_delayed_iput(async_chunk->inode);
1188 async_chunk->inode = NULL;
8180ef88 1189 }
771ed689
CM
1190}
1191
1192/*
1193 * work queue call back to submit previously compressed pages
1194 */
1195static noinline void async_cow_submit(struct btrfs_work *work)
1196{
c5a68aec
NB
1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 work);
1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1200 unsigned long nr_pages;
1201
b5326271 1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1203 PAGE_SHIFT;
771ed689 1204
093258e6 1205 /* atomic_sub_return implies a barrier */
0b246afa 1206 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1207 5 * SZ_1M)
1208 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1209
4546d178 1210 /*
b5326271 1211 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1212 * in which case we don't have anything to submit, yet we need to
1213 * always adjust ->async_delalloc_pages as its paired with the init
1214 * happening in cow_file_range_async
1215 */
b5326271
NB
1216 if (async_chunk->inode)
1217 submit_compressed_extents(async_chunk);
771ed689 1218}
c8b97818 1219
771ed689
CM
1220static noinline void async_cow_free(struct btrfs_work *work)
1221{
b5326271 1222 struct async_chunk *async_chunk;
97db1204 1223
b5326271
NB
1224 async_chunk = container_of(work, struct async_chunk, work);
1225 if (async_chunk->inode)
1226 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1227 if (async_chunk->blkcg_css)
1228 css_put(async_chunk->blkcg_css);
97db1204
NB
1229 /*
1230 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1231 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1232 */
b5326271 1233 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1234 kvfree(async_chunk->pending);
771ed689
CM
1235}
1236
751b6431 1237static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1238 struct writeback_control *wbc,
1239 struct page *locked_page,
771ed689 1240 u64 start, u64 end, int *page_started,
fac07d2b 1241 unsigned long *nr_written)
771ed689 1242{
751b6431 1243 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1245 struct async_cow *ctx;
1246 struct async_chunk *async_chunk;
771ed689
CM
1247 unsigned long nr_pages;
1248 u64 cur_end;
97db1204
NB
1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 int i;
1251 bool should_compress;
b1c16ac9 1252 unsigned nofs_flag;
fac07d2b 1253 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1254
751b6431 1255 unlock_extent(&inode->io_tree, start, end);
97db1204 1256
751b6431 1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 num_chunks = 1;
1260 should_compress = false;
1261 } else {
1262 should_compress = true;
1263 }
1264
b1c16ac9
NB
1265 nofs_flag = memalloc_nofs_save();
1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 memalloc_nofs_restore(nofs_flag);
1268
97db1204
NB
1269 if (!ctx) {
1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 EXTENT_DO_ACCOUNTING;
1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 PAGE_SET_ERROR;
1276
751b6431
NB
1277 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 clear_bits, page_ops);
97db1204
NB
1279 return -ENOMEM;
1280 }
1281
1282 async_chunk = ctx->chunks;
1283 atomic_set(&ctx->num_chunks, num_chunks);
1284
1285 for (i = 0; i < num_chunks; i++) {
1286 if (should_compress)
1287 cur_end = min(end, start + SZ_512K - 1);
1288 else
1289 cur_end = end;
771ed689 1290
bd4691a0
NB
1291 /*
1292 * igrab is called higher up in the call chain, take only the
1293 * lightweight reference for the callback lifetime
1294 */
751b6431 1295 ihold(&inode->vfs_inode);
97db1204 1296 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1297 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1298 async_chunk[i].start = start;
1299 async_chunk[i].end = cur_end;
97db1204
NB
1300 async_chunk[i].write_flags = write_flags;
1301 INIT_LIST_HEAD(&async_chunk[i].extents);
1302
1d53c9e6
CM
1303 /*
1304 * The locked_page comes all the way from writepage and its
1305 * the original page we were actually given. As we spread
1306 * this large delalloc region across multiple async_chunk
1307 * structs, only the first struct needs a pointer to locked_page
1308 *
1309 * This way we don't need racey decisions about who is supposed
1310 * to unlock it.
1311 */
1312 if (locked_page) {
ec39f769
CM
1313 /*
1314 * Depending on the compressibility, the pages might or
1315 * might not go through async. We want all of them to
1316 * be accounted against wbc once. Let's do it here
1317 * before the paths diverge. wbc accounting is used
1318 * only for foreign writeback detection and doesn't
1319 * need full accuracy. Just account the whole thing
1320 * against the first page.
1321 */
1322 wbc_account_cgroup_owner(wbc, locked_page,
1323 cur_end - start);
1d53c9e6
CM
1324 async_chunk[i].locked_page = locked_page;
1325 locked_page = NULL;
1326 } else {
1327 async_chunk[i].locked_page = NULL;
1328 }
1329
ec39f769
CM
1330 if (blkcg_css != blkcg_root_css) {
1331 css_get(blkcg_css);
1332 async_chunk[i].blkcg_css = blkcg_css;
1333 } else {
1334 async_chunk[i].blkcg_css = NULL;
1335 }
1336
a0cac0ec
OS
1337 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 async_cow_submit, async_cow_free);
771ed689 1339
97db1204 1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1342
97db1204 1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1344
771ed689
CM
1345 *nr_written += nr_pages;
1346 start = cur_end + 1;
1347 }
1348 *page_started = 1;
1349 return 0;
be20aa9d
CM
1350}
1351
2ff7e61e 1352static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1353 u64 bytenr, u64 num_bytes)
1354{
1355 int ret;
1356 struct btrfs_ordered_sum *sums;
1357 LIST_HEAD(list);
1358
0b246afa 1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1360 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1361 if (ret == 0 && list_empty(&list))
1362 return 0;
1363
1364 while (!list_empty(&list)) {
1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 list_del(&sums->list);
1367 kfree(sums);
1368 }
58113753
LB
1369 if (ret < 0)
1370 return ret;
17d217fe
YZ
1371 return 1;
1372}
1373
8ba96f3d 1374static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1375 const u64 start, const u64 end,
1376 int *page_started, unsigned long *nr_written)
1377{
8ba96f3d
NB
1378 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1380 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1381 const u64 range_bytes = end + 1 - start;
8ba96f3d 1382 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1383 u64 range_start = start;
1384 u64 count;
1385
1386 /*
1387 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 * made we had not enough available data space and therefore we did not
1389 * reserve data space for it, since we though we could do NOCOW for the
1390 * respective file range (either there is prealloc extent or the inode
1391 * has the NOCOW bit set).
1392 *
1393 * However when we need to fallback to COW mode (because for example the
1394 * block group for the corresponding extent was turned to RO mode by a
1395 * scrub or relocation) we need to do the following:
1396 *
1397 * 1) We increment the bytes_may_use counter of the data space info.
1398 * If COW succeeds, it allocates a new data extent and after doing
1399 * that it decrements the space info's bytes_may_use counter and
1400 * increments its bytes_reserved counter by the same amount (we do
1401 * this at btrfs_add_reserved_bytes()). So we need to increment the
1402 * bytes_may_use counter to compensate (when space is reserved at
1403 * buffered write time, the bytes_may_use counter is incremented);
1404 *
1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 * that if the COW path fails for any reason, it decrements (through
1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 * data space info, which we incremented in the step above.
2166e5ed
FM
1409 *
1410 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1411 * space cache inode or an inode of the data relocation tree, we must
1412 * also increment bytes_may_use of the data space_info for the same
1413 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1414 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1415 * group that contains that extent to RO mode and therefore force COW
1416 * when starting writeback.
467dc47e 1417 */
2166e5ed 1418 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1419 EXTENT_NORESERVE, 0);
6bd335b4
FM
1420 if (count > 0 || is_space_ino || is_reloc_ino) {
1421 u64 bytes = count;
8ba96f3d 1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424
6bd335b4
FM
1425 if (is_space_ino || is_reloc_ino)
1426 bytes = range_bytes;
1427
467dc47e 1428 spin_lock(&sinfo->lock);
2166e5ed 1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1430 spin_unlock(&sinfo->lock);
1431
2166e5ed
FM
1432 if (count > 0)
1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 0, 0, NULL);
467dc47e
FM
1435 }
1436
8ba96f3d
NB
1437 return cow_file_range(inode, locked_page, start, end, page_started,
1438 nr_written, 1);
467dc47e
FM
1439}
1440
d352ac68
CM
1441/*
1442 * when nowcow writeback call back. This checks for snapshots or COW copies
1443 * of the extents that exist in the file, and COWs the file as required.
1444 *
1445 * If no cow copies or snapshots exist, we write directly to the existing
1446 * blocks on disk
1447 */
968322c8 1448static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1449 struct page *locked_page,
3e024846
NB
1450 const u64 start, const u64 end,
1451 int *page_started, int force,
1452 unsigned long *nr_written)
be20aa9d 1453{
968322c8
NB
1454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 struct btrfs_root *root = inode->root;
be20aa9d 1456 struct btrfs_path *path;
3e024846
NB
1457 u64 cow_start = (u64)-1;
1458 u64 cur_offset = start;
8ecebf4d 1459 int ret;
3e024846 1460 bool check_prev = true;
968322c8
NB
1461 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 u64 ino = btrfs_ino(inode);
762bf098
NB
1463 bool nocow = false;
1464 u64 disk_bytenr = 0;
be20aa9d
CM
1465
1466 path = btrfs_alloc_path();
17ca04af 1467 if (!path) {
968322c8 1468 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1469 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1470 EXTENT_DO_ACCOUNTING |
1471 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1472 PAGE_CLEAR_DIRTY |
1473 PAGE_SET_WRITEBACK |
1474 PAGE_END_WRITEBACK);
d8926bb3 1475 return -ENOMEM;
17ca04af 1476 }
82d5902d 1477
80ff3856 1478 while (1) {
3e024846
NB
1479 struct btrfs_key found_key;
1480 struct btrfs_file_extent_item *fi;
1481 struct extent_buffer *leaf;
1482 u64 extent_end;
1483 u64 extent_offset;
3e024846
NB
1484 u64 num_bytes = 0;
1485 u64 disk_num_bytes;
3e024846
NB
1486 u64 ram_bytes;
1487 int extent_type;
762bf098
NB
1488
1489 nocow = false;
3e024846 1490
e4c3b2dc 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1492 cur_offset, 0);
d788a349 1493 if (ret < 0)
79787eaa 1494 goto error;
a6bd9cd1
NB
1495
1496 /*
1497 * If there is no extent for our range when doing the initial
1498 * search, then go back to the previous slot as it will be the
1499 * one containing the search offset
1500 */
80ff3856
YZ
1501 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 leaf = path->nodes[0];
1503 btrfs_item_key_to_cpu(leaf, &found_key,
1504 path->slots[0] - 1);
33345d01 1505 if (found_key.objectid == ino &&
80ff3856
YZ
1506 found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 path->slots[0]--;
1508 }
3e024846 1509 check_prev = false;
80ff3856 1510next_slot:
a6bd9cd1 1511 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1512 leaf = path->nodes[0];
1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 ret = btrfs_next_leaf(root, path);
e8916699
LB
1515 if (ret < 0) {
1516 if (cow_start != (u64)-1)
1517 cur_offset = cow_start;
79787eaa 1518 goto error;
e8916699 1519 }
80ff3856
YZ
1520 if (ret > 0)
1521 break;
1522 leaf = path->nodes[0];
1523 }
be20aa9d 1524
80ff3856
YZ
1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526
a6bd9cd1 1527 /* Didn't find anything for our INO */
1d512cb7
FM
1528 if (found_key.objectid > ino)
1529 break;
a6bd9cd1
NB
1530 /*
1531 * Keep searching until we find an EXTENT_ITEM or there are no
1532 * more extents for this inode
1533 */
1d512cb7
FM
1534 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 path->slots[0]++;
1537 goto next_slot;
1538 }
a6bd9cd1
NB
1539
1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1542 found_key.offset > end)
1543 break;
1544
a6bd9cd1
NB
1545 /*
1546 * If the found extent starts after requested offset, then
1547 * adjust extent_end to be right before this extent begins
1548 */
80ff3856
YZ
1549 if (found_key.offset > cur_offset) {
1550 extent_end = found_key.offset;
e9061e21 1551 extent_type = 0;
80ff3856
YZ
1552 goto out_check;
1553 }
1554
a6bd9cd1
NB
1555 /*
1556 * Found extent which begins before our range and potentially
1557 * intersect it
1558 */
80ff3856
YZ
1559 fi = btrfs_item_ptr(leaf, path->slots[0],
1560 struct btrfs_file_extent_item);
1561 extent_type = btrfs_file_extent_type(leaf, fi);
1562
cc95bef6 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1564 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1567 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1568 extent_end = found_key.offset +
1569 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1570 disk_num_bytes =
1571 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1572 /*
de7999af
FM
1573 * If the extent we got ends before our current offset,
1574 * skip to the next extent.
a6bd9cd1 1575 */
de7999af 1576 if (extent_end <= cur_offset) {
80ff3856
YZ
1577 path->slots[0]++;
1578 goto next_slot;
1579 }
a6bd9cd1 1580 /* Skip holes */
17d217fe
YZ
1581 if (disk_bytenr == 0)
1582 goto out_check;
a6bd9cd1 1583 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1584 if (btrfs_file_extent_compression(leaf, fi) ||
1585 btrfs_file_extent_encryption(leaf, fi) ||
1586 btrfs_file_extent_other_encoding(leaf, fi))
1587 goto out_check;
78d4295b 1588 /*
a6bd9cd1
NB
1589 * If extent is created before the last volume's snapshot
1590 * this implies the extent is shared, hence we can't do
1591 * nocow. This is the same check as in
1592 * btrfs_cross_ref_exist but without calling
1593 * btrfs_search_slot.
78d4295b 1594 */
3e024846 1595 if (!freespace_inode &&
27a7ff55 1596 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1597 btrfs_root_last_snapshot(&root->root_item))
1598 goto out_check;
d899e052
YZ
1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 goto out_check;
a6bd9cd1 1601 /* If extent is RO, we must COW it */
2ff7e61e 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1603 goto out_check;
58113753
LB
1604 ret = btrfs_cross_ref_exist(root, ino,
1605 found_key.offset -
1606 extent_offset, disk_bytenr);
1607 if (ret) {
1608 /*
1609 * ret could be -EIO if the above fails to read
1610 * metadata.
1611 */
1612 if (ret < 0) {
1613 if (cow_start != (u64)-1)
1614 cur_offset = cow_start;
1615 goto error;
1616 }
1617
3e024846 1618 WARN_ON_ONCE(freespace_inode);
17d217fe 1619 goto out_check;
58113753 1620 }
5d4f98a2 1621 disk_bytenr += extent_offset;
17d217fe
YZ
1622 disk_bytenr += cur_offset - found_key.offset;
1623 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1624 /*
a6bd9cd1
NB
1625 * If there are pending snapshots for this root, we
1626 * fall into common COW way
e9894fd3 1627 */
3e024846 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1629 goto out_check;
17d217fe
YZ
1630 /*
1631 * force cow if csum exists in the range.
1632 * this ensure that csum for a given extent are
1633 * either valid or do not exist.
1634 */
58113753
LB
1635 ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 num_bytes);
1637 if (ret) {
58113753
LB
1638 /*
1639 * ret could be -EIO if the above fails to read
1640 * metadata.
1641 */
1642 if (ret < 0) {
1643 if (cow_start != (u64)-1)
1644 cur_offset = cow_start;
1645 goto error;
1646 }
3e024846 1647 WARN_ON_ONCE(freespace_inode);
17d217fe 1648 goto out_check;
91e1f56a 1649 }
8ecebf4d 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1651 goto out_check;
3e024846 1652 nocow = true;
80ff3856 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1654 extent_end = found_key.offset + ram_bytes;
1655 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1656 /* Skip extents outside of our requested range */
1657 if (extent_end <= start) {
1658 path->slots[0]++;
1659 goto next_slot;
1660 }
80ff3856 1661 } else {
e8e21007 1662 /* If this triggers then we have a memory corruption */
290342f6 1663 BUG();
80ff3856
YZ
1664 }
1665out_check:
a6bd9cd1
NB
1666 /*
1667 * If nocow is false then record the beginning of the range
1668 * that needs to be COWed
1669 */
80ff3856
YZ
1670 if (!nocow) {
1671 if (cow_start == (u64)-1)
1672 cow_start = cur_offset;
1673 cur_offset = extent_end;
1674 if (cur_offset > end)
1675 break;
1676 path->slots[0]++;
1677 goto next_slot;
7ea394f1
YZ
1678 }
1679
b3b4aa74 1680 btrfs_release_path(path);
a6bd9cd1
NB
1681
1682 /*
1683 * COW range from cow_start to found_key.offset - 1. As the key
1684 * will contain the beginning of the first extent that can be
1685 * NOCOW, following one which needs to be COW'ed
1686 */
80ff3856 1687 if (cow_start != (u64)-1) {
968322c8 1688 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1689 cow_start, found_key.offset - 1,
467dc47e 1690 page_started, nr_written);
230ed397 1691 if (ret)
79787eaa 1692 goto error;
80ff3856 1693 cow_start = (u64)-1;
7ea394f1 1694 }
80ff3856 1695
d899e052 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1697 u64 orig_start = found_key.offset - extent_offset;
3e024846 1698 struct extent_map *em;
6f9994db 1699
968322c8 1700 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1701 orig_start,
1702 disk_bytenr, /* block_start */
1703 num_bytes, /* block_len */
1704 disk_num_bytes, /* orig_block_len */
1705 ram_bytes, BTRFS_COMPRESS_NONE,
1706 BTRFS_ORDERED_PREALLOC);
1707 if (IS_ERR(em)) {
6f9994db
LB
1708 ret = PTR_ERR(em);
1709 goto error;
d899e052 1710 }
6f9994db 1711 free_extent_map(em);
968322c8 1712 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1713 disk_bytenr, num_bytes,
1714 num_bytes,
1715 BTRFS_ORDERED_PREALLOC);
762bf098 1716 if (ret) {
968322c8 1717 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1718 cur_offset + num_bytes - 1,
1719 0);
1720 goto error;
1721 }
d899e052 1722 } else {
968322c8 1723 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1724 disk_bytenr, num_bytes,
1725 num_bytes,
1726 BTRFS_ORDERED_NOCOW);
762bf098
NB
1727 if (ret)
1728 goto error;
d899e052 1729 }
80ff3856 1730
f78c436c 1731 if (nocow)
0b246afa 1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1733 nocow = false;
771ed689 1734
efa56464 1735 if (root->root_key.objectid ==
4dbd80fb
QW
1736 BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 /*
1738 * Error handled later, as we must prevent
1739 * extent_clear_unlock_delalloc() in error handler
1740 * from freeing metadata of created ordered extent.
1741 */
968322c8 1742 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1743 num_bytes);
efa56464 1744
968322c8 1745 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1746 cur_offset + num_bytes - 1,
c2790a2e 1747 locked_page, EXTENT_LOCKED |
18513091
WX
1748 EXTENT_DELALLOC |
1749 EXTENT_CLEAR_DATA_RESV,
1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751
80ff3856 1752 cur_offset = extent_end;
4dbd80fb
QW
1753
1754 /*
1755 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 * handler, as metadata for created ordered extent will only
1757 * be freed by btrfs_finish_ordered_io().
1758 */
1759 if (ret)
1760 goto error;
80ff3856
YZ
1761 if (cur_offset > end)
1762 break;
be20aa9d 1763 }
b3b4aa74 1764 btrfs_release_path(path);
80ff3856 1765
506481b2 1766 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1767 cow_start = cur_offset;
17ca04af 1768
80ff3856 1769 if (cow_start != (u64)-1) {
506481b2 1770 cur_offset = end;
968322c8
NB
1771 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 page_started, nr_written);
d788a349 1773 if (ret)
79787eaa 1774 goto error;
80ff3856
YZ
1775 }
1776
79787eaa 1777error:
762bf098
NB
1778 if (nocow)
1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780
17ca04af 1781 if (ret && cur_offset < end)
968322c8 1782 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1783 locked_page, EXTENT_LOCKED |
151a41bc
JB
1784 EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1787 PAGE_SET_WRITEBACK |
1788 PAGE_END_WRITEBACK);
7ea394f1 1789 btrfs_free_path(path);
79787eaa 1790 return ret;
be20aa9d
CM
1791}
1792
0c494225 1793static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1794{
1795
0c494225
NB
1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1798 return 0;
1799
1800 /*
1801 * @defrag_bytes is a hint value, no spinlock held here,
1802 * if is not zero, it means the file is defragging.
1803 * Force cow if given extent needs to be defragged.
1804 */
0c494225
NB
1805 if (inode->defrag_bytes &&
1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1807 return 1;
1808
1809 return 0;
1810}
1811
d352ac68 1812/*
5eaad97a
NB
1813 * Function to process delayed allocation (create CoW) for ranges which are
1814 * being touched for the first time.
d352ac68 1815 */
98456b9c 1816int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1817 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 struct writeback_control *wbc)
be20aa9d 1819{
be20aa9d 1820 int ret;
98456b9c 1821 int force_cow = need_force_cow(inode, start, end);
a2135011 1822
98456b9c
NB
1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1825 page_started, 1, nr_written);
98456b9c
NB
1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1828 page_started, 0, nr_written);
98456b9c
NB
1829 } else if (!inode_can_compress(inode) ||
1830 !inode_need_compress(inode, start, end)) {
1831 ret = cow_file_range(inode, locked_page, start, end,
1832 page_started, nr_written, 1);
7ddf5a42 1833 } else {
98456b9c
NB
1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1836 page_started, nr_written);
7ddf5a42 1837 }
52427260 1838 if (ret)
98456b9c 1839 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1840 end - start + 1);
b888db2b
CM
1841 return ret;
1842}
1843
abbb55f4
NB
1844void btrfs_split_delalloc_extent(struct inode *inode,
1845 struct extent_state *orig, u64 split)
9ed74f2d 1846{
dcab6a3b
JB
1847 u64 size;
1848
0ca1f7ce 1849 /* not delalloc, ignore it */
9ed74f2d 1850 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1851 return;
9ed74f2d 1852
dcab6a3b
JB
1853 size = orig->end - orig->start + 1;
1854 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1855 u32 num_extents;
dcab6a3b
JB
1856 u64 new_size;
1857
1858 /*
5c848198 1859 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1860 * applies here, just in reverse.
dcab6a3b
JB
1861 */
1862 new_size = orig->end - split + 1;
823bb20a 1863 num_extents = count_max_extents(new_size);
ba117213 1864 new_size = split - orig->start;
823bb20a
DS
1865 num_extents += count_max_extents(new_size);
1866 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1867 return;
1868 }
1869
9e0baf60 1870 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1872 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1873}
1874
1875/*
5c848198
NB
1876 * Handle merged delayed allocation extents so we can keep track of new extents
1877 * that are just merged onto old extents, such as when we are doing sequential
1878 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1879 */
5c848198
NB
1880void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 struct extent_state *other)
9ed74f2d 1882{
dcab6a3b 1883 u64 new_size, old_size;
823bb20a 1884 u32 num_extents;
dcab6a3b 1885
9ed74f2d
JB
1886 /* not delalloc, ignore it */
1887 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1888 return;
9ed74f2d 1889
8461a3de
JB
1890 if (new->start > other->start)
1891 new_size = new->end - other->start + 1;
1892 else
1893 new_size = other->end - new->start + 1;
dcab6a3b
JB
1894
1895 /* we're not bigger than the max, unreserve the space and go */
1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1899 spin_unlock(&BTRFS_I(inode)->lock);
1900 return;
1901 }
1902
1903 /*
ba117213
JB
1904 * We have to add up either side to figure out how many extents were
1905 * accounted for before we merged into one big extent. If the number of
1906 * extents we accounted for is <= the amount we need for the new range
1907 * then we can return, otherwise drop. Think of it like this
1908 *
1909 * [ 4k][MAX_SIZE]
1910 *
1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 * need 2 outstanding extents, on one side we have 1 and the other side
1913 * we have 1 so they are == and we can return. But in this case
1914 *
1915 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 *
1917 * Each range on their own accounts for 2 extents, but merged together
1918 * they are only 3 extents worth of accounting, so we need to drop in
1919 * this case.
dcab6a3b 1920 */
ba117213 1921 old_size = other->end - other->start + 1;
823bb20a 1922 num_extents = count_max_extents(old_size);
ba117213 1923 old_size = new->end - new->start + 1;
823bb20a
DS
1924 num_extents += count_max_extents(old_size);
1925 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1926 return;
1927
9e0baf60 1928 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1930 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1931}
1932
eb73c1b7
MX
1933static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 struct inode *inode)
1935{
0b246afa
JM
1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937
eb73c1b7
MX
1938 spin_lock(&root->delalloc_lock);
1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 &root->delalloc_inodes);
1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 &BTRFS_I(inode)->runtime_flags);
1944 root->nr_delalloc_inodes++;
1945 if (root->nr_delalloc_inodes == 1) {
0b246afa 1946 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1947 BUG_ON(!list_empty(&root->delalloc_root));
1948 list_add_tail(&root->delalloc_root,
0b246afa
JM
1949 &fs_info->delalloc_roots);
1950 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1951 }
1952 }
1953 spin_unlock(&root->delalloc_lock);
1954}
1955
2b877331
NB
1956
1957void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
eb73c1b7 1959{
3ffbd68c 1960 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1961
9e3e97f4
NB
1962 if (!list_empty(&inode->delalloc_inodes)) {
1963 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1965 &inode->runtime_flags);
eb73c1b7
MX
1966 root->nr_delalloc_inodes--;
1967 if (!root->nr_delalloc_inodes) {
7c8a0d36 1968 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1969 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1970 BUG_ON(list_empty(&root->delalloc_root));
1971 list_del_init(&root->delalloc_root);
0b246afa 1972 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1973 }
1974 }
2b877331
NB
1975}
1976
1977static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 struct btrfs_inode *inode)
1979{
1980 spin_lock(&root->delalloc_lock);
1981 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1982 spin_unlock(&root->delalloc_lock);
1983}
1984
d352ac68 1985/*
e06a1fc9
NB
1986 * Properly track delayed allocation bytes in the inode and to maintain the
1987 * list of inodes that have pending delalloc work to be done.
d352ac68 1988 */
e06a1fc9
NB
1989void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 unsigned *bits)
291d673e 1991{
0b246afa
JM
1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993
47059d93
WS
1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 WARN_ON(1);
75eff68e
CM
1996 /*
1997 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1998 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1999 * bit, which is only set or cleared with irqs on
2000 */
0ca1f7ce 2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2002 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2003 u64 len = state->end + 1 - state->start;
8b62f87b 2004 u32 num_extents = count_max_extents(len);
70ddc553 2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2006
8b62f87b
JB
2007 spin_lock(&BTRFS_I(inode)->lock);
2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2010
6a3891c5 2011 /* For sanity tests */
0b246afa 2012 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2013 return;
2014
104b4e51
NB
2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 fs_info->delalloc_batch);
df0af1a5 2017 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2018 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2019 if (*bits & EXTENT_DEFRAG)
2020 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2022 &BTRFS_I(inode)->runtime_flags))
2023 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2024 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2025 }
a7e3b975
FM
2026
2027 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 (*bits & EXTENT_DELALLOC_NEW)) {
2029 spin_lock(&BTRFS_I(inode)->lock);
2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 state->start;
2032 spin_unlock(&BTRFS_I(inode)->lock);
2033 }
291d673e
CM
2034}
2035
d352ac68 2036/*
a36bb5f9
NB
2037 * Once a range is no longer delalloc this function ensures that proper
2038 * accounting happens.
d352ac68 2039 */
a36bb5f9
NB
2040void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 struct extent_state *state, unsigned *bits)
291d673e 2042{
a36bb5f9
NB
2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2045 u64 len = state->end + 1 - state->start;
823bb20a 2046 u32 num_extents = count_max_extents(len);
47059d93 2047
4a4b964f
FM
2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 spin_lock(&inode->lock);
6fc0ef68 2050 inode->defrag_bytes -= len;
4a4b964f
FM
2051 spin_unlock(&inode->lock);
2052 }
47059d93 2053
75eff68e
CM
2054 /*
2055 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2056 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2057 * bit, which is only set or cleared with irqs on
2058 */
0ca1f7ce 2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2060 struct btrfs_root *root = inode->root;
83eea1f1 2061 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2062
8b62f87b
JB
2063 spin_lock(&inode->lock);
2064 btrfs_mod_outstanding_extents(inode, -num_extents);
2065 spin_unlock(&inode->lock);
0ca1f7ce 2066
b6d08f06
JB
2067 /*
2068 * We don't reserve metadata space for space cache inodes so we
52042d8e 2069 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2070 * error.
2071 */
a315e68f 2072 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2073 root != fs_info->tree_root)
43b18595 2074 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2075
6a3891c5 2076 /* For sanity tests. */
0b246afa 2077 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2078 return;
2079
a315e68f
FM
2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 do_list && !(state->state & EXTENT_NORESERVE) &&
2082 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2083 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2084
104b4e51
NB
2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 fs_info->delalloc_batch);
6fc0ef68
NB
2087 spin_lock(&inode->lock);
2088 inode->delalloc_bytes -= len;
2089 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2091 &inode->runtime_flags))
eb73c1b7 2092 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2093 spin_unlock(&inode->lock);
291d673e 2094 }
a7e3b975
FM
2095
2096 if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 (*bits & EXTENT_DELALLOC_NEW)) {
2098 spin_lock(&inode->lock);
2099 ASSERT(inode->new_delalloc_bytes >= len);
2100 inode->new_delalloc_bytes -= len;
2101 spin_unlock(&inode->lock);
2102 }
291d673e
CM
2103}
2104
d352ac68 2105/*
da12fe54
NB
2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107 * in a chunk's stripe. This function ensures that bios do not span a
2108 * stripe/chunk
6f034ece 2109 *
da12fe54
NB
2110 * @page - The page we are about to add to the bio
2111 * @size - size we want to add to the bio
2112 * @bio - bio we want to ensure is smaller than a stripe
2113 * @bio_flags - flags of the bio
2114 *
2115 * return 1 if page cannot be added to the bio
2116 * return 0 if page can be added to the bio
6f034ece 2117 * return error otherwise
d352ac68 2118 */
da12fe54
NB
2119int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 unsigned long bio_flags)
239b14b3 2121{
0b246afa
JM
2122 struct inode *inode = page->mapping->host;
2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2125 u64 length = 0;
2126 u64 map_length;
239b14b3 2127 int ret;
89b798ad 2128 struct btrfs_io_geometry geom;
239b14b3 2129
771ed689
CM
2130 if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 return 0;
2132
4f024f37 2133 length = bio->bi_iter.bi_size;
239b14b3 2134 map_length = length;
89b798ad
NB
2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 &geom);
6f034ece
LB
2137 if (ret < 0)
2138 return ret;
89b798ad
NB
2139
2140 if (geom.len < length + size)
239b14b3 2141 return 1;
3444a972 2142 return 0;
239b14b3
CM
2143}
2144
d352ac68
CM
2145/*
2146 * in order to insert checksums into the metadata in large chunks,
2147 * we wait until bio submission time. All the pages in the bio are
2148 * checksummed and sums are attached onto the ordered extent record.
2149 *
2150 * At IO completion time the cums attached on the ordered extent record
2151 * are inserted into the btree
2152 */
d0ee3934 2153static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2154 u64 bio_offset)
065631f6 2155{
c6100a4b 2156 struct inode *inode = private_data;
4e4cbee9 2157 blk_status_t ret = 0;
e015640f 2158
bd242a08 2159 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
79787eaa 2160 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2161 return 0;
2162}
e015640f 2163
d352ac68 2164/*
cad321ad 2165 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2166 * on write, or reading the csums from the tree before a read.
2167 *
2168 * Rules about async/sync submit,
2169 * a) read: sync submit
2170 *
2171 * b) write without checksum: sync submit
2172 *
2173 * c) write with checksum:
2174 * c-1) if bio is issued by fsync: sync submit
2175 * (sync_writers != 0)
2176 *
2177 * c-2) if root is reloc root: sync submit
2178 * (only in case of buffered IO)
2179 *
2180 * c-3) otherwise: async submit
d352ac68 2181 */
a56b1c7b 2182static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2183 int mirror_num,
2184 unsigned long bio_flags)
2185
44b8bd7e 2186{
0b246afa 2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2188 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2189 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2190 blk_status_t ret = 0;
19b9bdb0 2191 int skip_sum;
b812ce28 2192 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2193
6cbff00f 2194 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2195
70ddc553 2196 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2197 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2198
37226b21 2199 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2200 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2201 if (ret)
61891923 2202 goto out;
5fd02043 2203
d20f7043 2204 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2205 ret = btrfs_submit_compressed_read(inode, bio,
2206 mirror_num,
2207 bio_flags);
2208 goto out;
c2db1073 2209 } else if (!skip_sum) {
db72e47f 2210 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2211 if (ret)
61891923 2212 goto out;
c2db1073 2213 }
4d1b5fb4 2214 goto mapit;
b812ce28 2215 } else if (async && !skip_sum) {
17d217fe
YZ
2216 /* csum items have already been cloned */
2217 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2218 goto mapit;
19b9bdb0 2219 /* we're doing a write, do the async checksumming */
c6100a4b 2220 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2221 0, inode, btrfs_submit_bio_start);
61891923 2222 goto out;
b812ce28 2223 } else if (!skip_sum) {
bd242a08 2224 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2225 if (ret)
2226 goto out;
19b9bdb0
CM
2227 }
2228
0b86a832 2229mapit:
08635bae 2230 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2231
2232out:
4e4cbee9
CH
2233 if (ret) {
2234 bio->bi_status = ret;
4246a0b6
CH
2235 bio_endio(bio);
2236 }
61891923 2237 return ret;
065631f6 2238}
6885f308 2239
d352ac68
CM
2240/*
2241 * given a list of ordered sums record them in the inode. This happens
2242 * at IO completion time based on sums calculated at bio submission time.
2243 */
ba1da2f4 2244static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2245 struct inode *inode, struct list_head *list)
e6dcd2dc 2246{
e6dcd2dc 2247 struct btrfs_ordered_sum *sum;
ac01f26a 2248 int ret;
e6dcd2dc 2249
c6e30871 2250 list_for_each_entry(sum, list, list) {
7c2871a2 2251 trans->adding_csums = true;
ac01f26a 2252 ret = btrfs_csum_file_blocks(trans,
d20f7043 2253 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2254 trans->adding_csums = false;
ac01f26a
NB
2255 if (ret)
2256 return ret;
e6dcd2dc
CM
2257 }
2258 return 0;
2259}
2260
c2566f22 2261int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2262 unsigned int extra_bits,
330a5827 2263 struct extent_state **cached_state)
ea8c2819 2264{
fdb1e121 2265 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2266 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2267 cached_state);
ea8c2819
CM
2268}
2269
d352ac68 2270/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2271struct btrfs_writepage_fixup {
2272 struct page *page;
f4b1363c 2273 struct inode *inode;
247e743c
CM
2274 struct btrfs_work work;
2275};
2276
b2950863 2277static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2278{
2279 struct btrfs_writepage_fixup *fixup;
2280 struct btrfs_ordered_extent *ordered;
2ac55d41 2281 struct extent_state *cached_state = NULL;
364ecf36 2282 struct extent_changeset *data_reserved = NULL;
247e743c 2283 struct page *page;
65d87f79 2284 struct btrfs_inode *inode;
247e743c
CM
2285 u64 page_start;
2286 u64 page_end;
25f3c502 2287 int ret = 0;
f4b1363c 2288 bool free_delalloc_space = true;
247e743c
CM
2289
2290 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2291 page = fixup->page;
65d87f79 2292 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2293 page_start = page_offset(page);
2294 page_end = page_offset(page) + PAGE_SIZE - 1;
2295
2296 /*
2297 * This is similar to page_mkwrite, we need to reserve the space before
2298 * we take the page lock.
2299 */
65d87f79
NB
2300 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2301 PAGE_SIZE);
4a096752 2302again:
247e743c 2303 lock_page(page);
25f3c502
CM
2304
2305 /*
2306 * Before we queued this fixup, we took a reference on the page.
2307 * page->mapping may go NULL, but it shouldn't be moved to a different
2308 * address space.
2309 */
f4b1363c
JB
2310 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2311 /*
2312 * Unfortunately this is a little tricky, either
2313 *
2314 * 1) We got here and our page had already been dealt with and
2315 * we reserved our space, thus ret == 0, so we need to just
2316 * drop our space reservation and bail. This can happen the
2317 * first time we come into the fixup worker, or could happen
2318 * while waiting for the ordered extent.
2319 * 2) Our page was already dealt with, but we happened to get an
2320 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2321 * this case we obviously don't have anything to release, but
2322 * because the page was already dealt with we don't want to
2323 * mark the page with an error, so make sure we're resetting
2324 * ret to 0. This is why we have this check _before_ the ret
2325 * check, because we do not want to have a surprise ENOSPC
2326 * when the page was already properly dealt with.
2327 */
2328 if (!ret) {
65d87f79
NB
2329 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2330 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2331 page_start, PAGE_SIZE,
2332 true);
2333 }
2334 ret = 0;
247e743c 2335 goto out_page;
f4b1363c 2336 }
247e743c 2337
25f3c502 2338 /*
f4b1363c
JB
2339 * We can't mess with the page state unless it is locked, so now that
2340 * it is locked bail if we failed to make our space reservation.
25f3c502 2341 */
f4b1363c
JB
2342 if (ret)
2343 goto out_page;
247e743c 2344
65d87f79 2345 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2346
2347 /* already ordered? We're done */
8b62b72b 2348 if (PagePrivate2(page))
f4b1363c 2349 goto out_reserved;
4a096752 2350
65d87f79 2351 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2352 if (ordered) {
65d87f79
NB
2353 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2354 &cached_state);
4a096752 2355 unlock_page(page);
65d87f79 2356 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
87826df0 2357 btrfs_put_ordered_extent(ordered);
4a096752
CM
2358 goto again;
2359 }
247e743c 2360
65d87f79 2361 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2362 &cached_state);
25f3c502 2363 if (ret)
53687007 2364 goto out_reserved;
f3038ee3 2365
25f3c502
CM
2366 /*
2367 * Everything went as planned, we're now the owner of a dirty page with
2368 * delayed allocation bits set and space reserved for our COW
2369 * destination.
2370 *
2371 * The page was dirty when we started, nothing should have cleaned it.
2372 */
2373 BUG_ON(!PageDirty(page));
f4b1363c 2374 free_delalloc_space = false;
53687007 2375out_reserved:
65d87f79 2376 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2377 if (free_delalloc_space)
65d87f79
NB
2378 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2379 PAGE_SIZE, true);
2380 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2381 &cached_state);
247e743c 2382out_page:
25f3c502
CM
2383 if (ret) {
2384 /*
2385 * We hit ENOSPC or other errors. Update the mapping and page
2386 * to reflect the errors and clean the page.
2387 */
2388 mapping_set_error(page->mapping, ret);
2389 end_extent_writepage(page, ret, page_start, page_end);
2390 clear_page_dirty_for_io(page);
2391 SetPageError(page);
2392 }
2393 ClearPageChecked(page);
247e743c 2394 unlock_page(page);
09cbfeaf 2395 put_page(page);
b897abec 2396 kfree(fixup);
364ecf36 2397 extent_changeset_free(data_reserved);
f4b1363c
JB
2398 /*
2399 * As a precaution, do a delayed iput in case it would be the last iput
2400 * that could need flushing space. Recursing back to fixup worker would
2401 * deadlock.
2402 */
65d87f79 2403 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2404}
2405
2406/*
2407 * There are a few paths in the higher layers of the kernel that directly
2408 * set the page dirty bit without asking the filesystem if it is a
2409 * good idea. This causes problems because we want to make sure COW
2410 * properly happens and the data=ordered rules are followed.
2411 *
c8b97818 2412 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2413 * hasn't been properly setup for IO. We kick off an async process
2414 * to fix it up. The async helper will wait for ordered extents, set
2415 * the delalloc bit and make it safe to write the page.
2416 */
d75855b4 2417int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2418{
2419 struct inode *inode = page->mapping->host;
0b246afa 2420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2421 struct btrfs_writepage_fixup *fixup;
247e743c 2422
8b62b72b
CM
2423 /* this page is properly in the ordered list */
2424 if (TestClearPagePrivate2(page))
247e743c
CM
2425 return 0;
2426
25f3c502
CM
2427 /*
2428 * PageChecked is set below when we create a fixup worker for this page,
2429 * don't try to create another one if we're already PageChecked()
2430 *
2431 * The extent_io writepage code will redirty the page if we send back
2432 * EAGAIN.
2433 */
247e743c
CM
2434 if (PageChecked(page))
2435 return -EAGAIN;
2436
2437 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2438 if (!fixup)
2439 return -EAGAIN;
f421950f 2440
f4b1363c
JB
2441 /*
2442 * We are already holding a reference to this inode from
2443 * write_cache_pages. We need to hold it because the space reservation
2444 * takes place outside of the page lock, and we can't trust
2445 * page->mapping outside of the page lock.
2446 */
2447 ihold(inode);
247e743c 2448 SetPageChecked(page);
09cbfeaf 2449 get_page(page);
a0cac0ec 2450 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2451 fixup->page = page;
f4b1363c 2452 fixup->inode = inode;
0b246afa 2453 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2454
2455 return -EAGAIN;
247e743c
CM
2456}
2457
d899e052 2458static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2459 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2460 struct btrfs_file_extent_item *stack_fi,
2461 u64 qgroup_reserved)
d899e052 2462{
c553f94d 2463 struct btrfs_root *root = inode->root;
d899e052
YZ
2464 struct btrfs_path *path;
2465 struct extent_buffer *leaf;
2466 struct btrfs_key ins;
203f44c5
QW
2467 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2468 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2469 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2470 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2471 int extent_inserted = 0;
d899e052
YZ
2472 int ret;
2473
2474 path = btrfs_alloc_path();
d8926bb3
MF
2475 if (!path)
2476 return -ENOMEM;
d899e052 2477
a1ed835e
CM
2478 /*
2479 * we may be replacing one extent in the tree with another.
2480 * The new extent is pinned in the extent map, and we don't want
2481 * to drop it from the cache until it is completely in the btree.
2482 *
2483 * So, tell btrfs_drop_extents to leave this extent in the cache.
2484 * the caller is expected to unpin it and allow it to be merged
2485 * with the others.
2486 */
c553f94d 2487 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2488 file_pos + num_bytes, NULL, 0,
203f44c5 2489 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2490 if (ret)
2491 goto out;
d899e052 2492
1acae57b 2493 if (!extent_inserted) {
c553f94d 2494 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2495 ins.offset = file_pos;
2496 ins.type = BTRFS_EXTENT_DATA_KEY;
2497
2498 path->leave_spinning = 1;
2499 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2500 sizeof(*stack_fi));
1acae57b
FDBM
2501 if (ret)
2502 goto out;
2503 }
d899e052 2504 leaf = path->nodes[0];
203f44c5
QW
2505 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2506 write_extent_buffer(leaf, stack_fi,
2507 btrfs_item_ptr_offset(leaf, path->slots[0]),
2508 sizeof(struct btrfs_file_extent_item));
b9473439 2509
d899e052 2510 btrfs_mark_buffer_dirty(leaf);
ce195332 2511 btrfs_release_path(path);
d899e052 2512
c553f94d 2513 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2514
2515 ins.objectid = disk_bytenr;
2516 ins.offset = disk_num_bytes;
2517 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2518
c553f94d 2519 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2520 if (ret)
2521 goto out;
2522
c553f94d 2523 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2524 file_pos, qgroup_reserved, &ins);
79787eaa 2525out:
d899e052 2526 btrfs_free_path(path);
b9473439 2527
79787eaa 2528 return ret;
d899e052
YZ
2529}
2530
2ff7e61e 2531static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2532 u64 start, u64 len)
2533{
32da5386 2534 struct btrfs_block_group *cache;
e570fd27 2535
0b246afa 2536 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2537 ASSERT(cache);
2538
2539 spin_lock(&cache->lock);
2540 cache->delalloc_bytes -= len;
2541 spin_unlock(&cache->lock);
2542
2543 btrfs_put_block_group(cache);
2544}
2545
203f44c5
QW
2546static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2547 struct inode *inode,
2548 struct btrfs_ordered_extent *oe)
2549{
2550 struct btrfs_file_extent_item stack_fi;
2551 u64 logical_len;
2552
2553 memset(&stack_fi, 0, sizeof(stack_fi));
2554 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2555 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2556 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2557 oe->disk_num_bytes);
2558 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2559 logical_len = oe->truncated_len;
2560 else
2561 logical_len = oe->num_bytes;
2562 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2563 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2564 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2565 /* Encryption and other encoding is reserved and all 0 */
2566
c553f94d 2567 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
7dbeaad0 2568 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2569}
2570
2571/*
2572 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2573 * an ordered extent if the range of bytes in the file it covers are
2574 * fully written.
2575 */
5fd02043 2576static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2577{
5fd02043 2578 struct inode *inode = ordered_extent->inode;
0b246afa 2579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2580 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2581 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2582 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2583 struct extent_state *cached_state = NULL;
bffe633e 2584 u64 start, end;
261507a0 2585 int compress_type = 0;
77cef2ec 2586 int ret = 0;
bffe633e 2587 u64 logical_len = ordered_extent->num_bytes;
8d510121 2588 bool freespace_inode;
77cef2ec 2589 bool truncated = false;
a7e3b975
FM
2590 bool range_locked = false;
2591 bool clear_new_delalloc_bytes = false;
49940bdd 2592 bool clear_reserved_extent = true;
313facc5 2593 unsigned int clear_bits;
a7e3b975 2594
bffe633e
OS
2595 start = ordered_extent->file_offset;
2596 end = start + ordered_extent->num_bytes - 1;
2597
a7e3b975
FM
2598 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2599 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2600 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2601 clear_new_delalloc_bytes = true;
e6dcd2dc 2602
8d510121 2603 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2604
5fd02043
JB
2605 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2606 ret = -EIO;
2607 goto out;
2608 }
2609
bffe633e 2610 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2611
77cef2ec
JB
2612 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2613 truncated = true;
2614 logical_len = ordered_extent->truncated_len;
2615 /* Truncated the entire extent, don't bother adding */
2616 if (!logical_len)
2617 goto out;
2618 }
2619
c2167754 2620 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2621 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2622
d923afe9 2623 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2624 if (freespace_inode)
2625 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2626 else
2627 trans = btrfs_join_transaction(root);
2628 if (IS_ERR(trans)) {
2629 ret = PTR_ERR(trans);
2630 trans = NULL;
2631 goto out;
c2167754 2632 }
69fe2d75 2633 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2634 ret = btrfs_update_inode_fallback(trans, root, inode);
2635 if (ret) /* -ENOMEM or corruption */
66642832 2636 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2637 goto out;
2638 }
e6dcd2dc 2639
a7e3b975 2640 range_locked = true;
bffe633e 2641 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2642
8d510121
NB
2643 if (freespace_inode)
2644 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2645 else
7a7eaa40 2646 trans = btrfs_join_transaction(root);
79787eaa
JM
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 trans = NULL;
a7e3b975 2650 goto out;
79787eaa 2651 }
a79b7d4b 2652
69fe2d75 2653 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2654
c8b97818 2655 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2656 compress_type = ordered_extent->compress_type;
d899e052 2657 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2658 BUG_ON(compress_type);
7a6d7067 2659 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2660 ordered_extent->file_offset,
2661 ordered_extent->file_offset +
77cef2ec 2662 logical_len);
d899e052 2663 } else {
0b246afa 2664 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2665 ret = insert_ordered_extent_file_extent(trans, inode,
2666 ordered_extent);
49940bdd
JB
2667 if (!ret) {
2668 clear_reserved_extent = false;
2ff7e61e 2669 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2670 ordered_extent->disk_bytenr,
2671 ordered_extent->disk_num_bytes);
49940bdd 2672 }
d899e052 2673 }
5dc562c5 2674 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2675 ordered_extent->file_offset,
2676 ordered_extent->num_bytes, trans->transid);
79787eaa 2677 if (ret < 0) {
66642832 2678 btrfs_abort_transaction(trans, ret);
a7e3b975 2679 goto out;
79787eaa 2680 }
2ac55d41 2681
ac01f26a
NB
2682 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2683 if (ret) {
2684 btrfs_abort_transaction(trans, ret);
2685 goto out;
2686 }
e6dcd2dc 2687
d923afe9 2688 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2689 ret = btrfs_update_inode_fallback(trans, root, inode);
2690 if (ret) { /* -ENOMEM or corruption */
66642832 2691 btrfs_abort_transaction(trans, ret);
a7e3b975 2692 goto out;
1ef30be1
JB
2693 }
2694 ret = 0;
c2167754 2695out:
313facc5
OS
2696 clear_bits = EXTENT_DEFRAG;
2697 if (range_locked)
2698 clear_bits |= EXTENT_LOCKED;
2699 if (clear_new_delalloc_bytes)
2700 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2701 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2702 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2703 &cached_state);
a7e3b975 2704
a698d075 2705 if (trans)
3a45bb20 2706 btrfs_end_transaction(trans);
0cb59c99 2707
77cef2ec 2708 if (ret || truncated) {
bffe633e 2709 u64 unwritten_start = start;
77cef2ec
JB
2710
2711 if (truncated)
bffe633e
OS
2712 unwritten_start += logical_len;
2713 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2714
2715 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2716 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2717
0bec9ef5
JB
2718 /*
2719 * If the ordered extent had an IOERR or something else went
2720 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2721 * back to the allocator. We only free the extent in the
2722 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2723 *
2724 * If we made it past insert_reserved_file_extent before we
2725 * errored out then we don't need to do this as the accounting
2726 * has already been done.
0bec9ef5 2727 */
77cef2ec 2728 if ((ret || !logical_len) &&
49940bdd 2729 clear_reserved_extent &&
77cef2ec 2730 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2731 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2732 /*
2733 * Discard the range before returning it back to the
2734 * free space pool
2735 */
46b27f50 2736 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2737 btrfs_discard_extent(fs_info,
bffe633e
OS
2738 ordered_extent->disk_bytenr,
2739 ordered_extent->disk_num_bytes,
2740 NULL);
2ff7e61e 2741 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2742 ordered_extent->disk_bytenr,
2743 ordered_extent->disk_num_bytes, 1);
4eaaec24 2744 }
0bec9ef5
JB
2745 }
2746
5fd02043 2747 /*
8bad3c02
LB
2748 * This needs to be done to make sure anybody waiting knows we are done
2749 * updating everything for this ordered extent.
5fd02043
JB
2750 */
2751 btrfs_remove_ordered_extent(inode, ordered_extent);
2752
e6dcd2dc
CM
2753 /* once for us */
2754 btrfs_put_ordered_extent(ordered_extent);
2755 /* once for the tree */
2756 btrfs_put_ordered_extent(ordered_extent);
2757
5fd02043
JB
2758 return ret;
2759}
2760
2761static void finish_ordered_fn(struct btrfs_work *work)
2762{
2763 struct btrfs_ordered_extent *ordered_extent;
2764 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2765 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2766}
2767
c629732d
NB
2768void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2769 u64 end, int uptodate)
211f90e6 2770{
5fd02043 2771 struct inode *inode = page->mapping->host;
0b246afa 2772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2773 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2774 struct btrfs_workqueue *wq;
5fd02043 2775
1abe9b8a 2776 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2777
8b62b72b 2778 ClearPagePrivate2(page);
5fd02043
JB
2779 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2780 end - start + 1, uptodate))
c3988d63 2781 return;
5fd02043 2782
a0cac0ec 2783 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 2784 wq = fs_info->endio_freespace_worker;
a0cac0ec 2785 else
0b246afa 2786 wq = fs_info->endio_write_workers;
5fd02043 2787
a0cac0ec 2788 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2789 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2790}
2791
47df7765
OS
2792static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2793 int icsum, struct page *page, int pgoff, u64 start,
2794 size_t len)
dc380aea 2795{
d5178578
JT
2796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2797 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2798 char *kaddr;
d5178578
JT
2799 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2800 u8 *csum_expected;
2801 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2802
d5178578 2803 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2804
2805 kaddr = kmap_atomic(page);
d5178578
JT
2806 shash->tfm = fs_info->csum_shash;
2807
fd08001f 2808 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2809
2810 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2811 goto zeroit;
2812
2813 kunmap_atomic(kaddr);
2814 return 0;
2815zeroit:
ea41d6b2
JT
2816 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2817 io_bio->mirror_num);
dc380aea
MX
2818 memset(kaddr + pgoff, 1, len);
2819 flush_dcache_page(page);
2820 kunmap_atomic(kaddr);
dc380aea
MX
2821 return -EIO;
2822}
2823
d352ac68
CM
2824/*
2825 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2826 * if there's a match, we allow the bio to finish. If not, the code in
2827 * extent_io.c will try to find good copies for us.
d352ac68 2828 */
facc8a22
MX
2829static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2830 u64 phy_offset, struct page *page,
2831 u64 start, u64 end, int mirror)
07157aac 2832{
4eee4fa4 2833 size_t offset = start - page_offset(page);
07157aac 2834 struct inode *inode = page->mapping->host;
d1310b2e 2835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2836 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2837
d20f7043
CM
2838 if (PageChecked(page)) {
2839 ClearPageChecked(page);
dc380aea 2840 return 0;
d20f7043 2841 }
6cbff00f
CH
2842
2843 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2844 return 0;
17d217fe
YZ
2845
2846 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2847 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2848 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2849 return 0;
17d217fe 2850 }
d20f7043 2851
facc8a22 2852 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2853 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2854 (size_t)(end - start + 1));
07157aac 2855}
b888db2b 2856
c1c3fac2
NB
2857/*
2858 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2859 *
2860 * @inode: The inode we want to perform iput on
2861 *
2862 * This function uses the generic vfs_inode::i_count to track whether we should
2863 * just decrement it (in case it's > 1) or if this is the last iput then link
2864 * the inode to the delayed iput machinery. Delayed iputs are processed at
2865 * transaction commit time/superblock commit/cleaner kthread.
2866 */
24bbcf04
YZ
2867void btrfs_add_delayed_iput(struct inode *inode)
2868{
0b246afa 2869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2870 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2871
2872 if (atomic_add_unless(&inode->i_count, -1, 1))
2873 return;
2874
034f784d 2875 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2876 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2877 ASSERT(list_empty(&binode->delayed_iput));
2878 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2879 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2880 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2881 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2882}
2883
63611e73
JB
2884static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2885 struct btrfs_inode *inode)
2886{
2887 list_del_init(&inode->delayed_iput);
2888 spin_unlock(&fs_info->delayed_iput_lock);
2889 iput(&inode->vfs_inode);
2890 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2891 wake_up(&fs_info->delayed_iputs_wait);
2892 spin_lock(&fs_info->delayed_iput_lock);
2893}
2894
2895static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2896 struct btrfs_inode *inode)
2897{
2898 if (!list_empty(&inode->delayed_iput)) {
2899 spin_lock(&fs_info->delayed_iput_lock);
2900 if (!list_empty(&inode->delayed_iput))
2901 run_delayed_iput_locked(fs_info, inode);
2902 spin_unlock(&fs_info->delayed_iput_lock);
2903 }
2904}
2905
2ff7e61e 2906void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2907{
24bbcf04 2908
24bbcf04 2909 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2910 while (!list_empty(&fs_info->delayed_iputs)) {
2911 struct btrfs_inode *inode;
2912
2913 inode = list_first_entry(&fs_info->delayed_iputs,
2914 struct btrfs_inode, delayed_iput);
63611e73 2915 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2916 }
8089fe62 2917 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2918}
2919
034f784d
JB
2920/**
2921 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2922 * @fs_info - the fs_info for this fs
2923 * @return - EINTR if we were killed, 0 if nothing's pending
2924 *
2925 * This will wait on any delayed iputs that are currently running with KILLABLE
2926 * set. Once they are all done running we will return, unless we are killed in
2927 * which case we return EINTR. This helps in user operations like fallocate etc
2928 * that might get blocked on the iputs.
2929 */
2930int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2931{
2932 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2933 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2934 if (ret)
2935 return -EINTR;
2936 return 0;
2937}
2938
7b128766 2939/*
f7e9e8fc
OS
2940 * This creates an orphan entry for the given inode in case something goes wrong
2941 * in the middle of an unlink.
7b128766 2942 */
73f2e545 2943int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2944 struct btrfs_inode *inode)
7b128766 2945{
d68fc57b 2946 int ret;
7b128766 2947
27919067
OS
2948 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2949 if (ret && ret != -EEXIST) {
2950 btrfs_abort_transaction(trans, ret);
2951 return ret;
d68fc57b
YZ
2952 }
2953
d68fc57b 2954 return 0;
7b128766
JB
2955}
2956
2957/*
f7e9e8fc
OS
2958 * We have done the delete so we can go ahead and remove the orphan item for
2959 * this particular inode.
7b128766 2960 */
48a3b636 2961static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2962 struct btrfs_inode *inode)
7b128766 2963{
27919067 2964 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2965}
2966
2967/*
2968 * this cleans up any orphans that may be left on the list from the last use
2969 * of this root.
2970 */
66b4ffd1 2971int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2972{
0b246afa 2973 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2974 struct btrfs_path *path;
2975 struct extent_buffer *leaf;
7b128766
JB
2976 struct btrfs_key key, found_key;
2977 struct btrfs_trans_handle *trans;
2978 struct inode *inode;
8f6d7f4f 2979 u64 last_objectid = 0;
f7e9e8fc 2980 int ret = 0, nr_unlink = 0;
7b128766 2981
d68fc57b 2982 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2983 return 0;
c71bf099
YZ
2984
2985 path = btrfs_alloc_path();
66b4ffd1
JB
2986 if (!path) {
2987 ret = -ENOMEM;
2988 goto out;
2989 }
e4058b54 2990 path->reada = READA_BACK;
7b128766
JB
2991
2992 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 2993 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
2994 key.offset = (u64)-1;
2995
7b128766
JB
2996 while (1) {
2997 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2998 if (ret < 0)
2999 goto out;
7b128766
JB
3000
3001 /*
3002 * if ret == 0 means we found what we were searching for, which
25985edc 3003 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3004 * find the key and see if we have stuff that matches
3005 */
3006 if (ret > 0) {
66b4ffd1 3007 ret = 0;
7b128766
JB
3008 if (path->slots[0] == 0)
3009 break;
3010 path->slots[0]--;
3011 }
3012
3013 /* pull out the item */
3014 leaf = path->nodes[0];
7b128766
JB
3015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3016
3017 /* make sure the item matches what we want */
3018 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3019 break;
962a298f 3020 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3021 break;
3022
3023 /* release the path since we're done with it */
b3b4aa74 3024 btrfs_release_path(path);
7b128766
JB
3025
3026 /*
3027 * this is where we are basically btrfs_lookup, without the
3028 * crossing root thing. we store the inode number in the
3029 * offset of the orphan item.
3030 */
8f6d7f4f
JB
3031
3032 if (found_key.offset == last_objectid) {
0b246afa
JM
3033 btrfs_err(fs_info,
3034 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3035 ret = -EINVAL;
3036 goto out;
3037 }
3038
3039 last_objectid = found_key.offset;
3040
5d4f98a2
YZ
3041 found_key.objectid = found_key.offset;
3042 found_key.type = BTRFS_INODE_ITEM_KEY;
3043 found_key.offset = 0;
0202e83f 3044 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3045 ret = PTR_ERR_OR_ZERO(inode);
67710892 3046 if (ret && ret != -ENOENT)
66b4ffd1 3047 goto out;
7b128766 3048
0b246afa 3049 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3050 struct btrfs_root *dead_root;
3051 struct btrfs_fs_info *fs_info = root->fs_info;
3052 int is_dead_root = 0;
3053
3054 /*
3055 * this is an orphan in the tree root. Currently these
3056 * could come from 2 sources:
3057 * a) a snapshot deletion in progress
3058 * b) a free space cache inode
3059 * We need to distinguish those two, as the snapshot
3060 * orphan must not get deleted.
3061 * find_dead_roots already ran before us, so if this
3062 * is a snapshot deletion, we should find the root
a619b3c7 3063 * in the fs_roots radix tree.
f8e9e0b0 3064 */
a619b3c7
RK
3065
3066 spin_lock(&fs_info->fs_roots_radix_lock);
3067 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3068 (unsigned long)found_key.objectid);
3069 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3070 is_dead_root = 1;
3071 spin_unlock(&fs_info->fs_roots_radix_lock);
3072
f8e9e0b0
AJ
3073 if (is_dead_root) {
3074 /* prevent this orphan from being found again */
3075 key.offset = found_key.objectid - 1;
3076 continue;
3077 }
f7e9e8fc 3078
f8e9e0b0 3079 }
f7e9e8fc 3080
7b128766 3081 /*
f7e9e8fc
OS
3082 * If we have an inode with links, there are a couple of
3083 * possibilities. Old kernels (before v3.12) used to create an
3084 * orphan item for truncate indicating that there were possibly
3085 * extent items past i_size that needed to be deleted. In v3.12,
3086 * truncate was changed to update i_size in sync with the extent
3087 * items, but the (useless) orphan item was still created. Since
3088 * v4.18, we don't create the orphan item for truncate at all.
3089 *
3090 * So, this item could mean that we need to do a truncate, but
3091 * only if this filesystem was last used on a pre-v3.12 kernel
3092 * and was not cleanly unmounted. The odds of that are quite
3093 * slim, and it's a pain to do the truncate now, so just delete
3094 * the orphan item.
3095 *
3096 * It's also possible that this orphan item was supposed to be
3097 * deleted but wasn't. The inode number may have been reused,
3098 * but either way, we can delete the orphan item.
7b128766 3099 */
f7e9e8fc
OS
3100 if (ret == -ENOENT || inode->i_nlink) {
3101 if (!ret)
3102 iput(inode);
a8c9e576 3103 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3104 if (IS_ERR(trans)) {
3105 ret = PTR_ERR(trans);
3106 goto out;
3107 }
0b246afa
JM
3108 btrfs_debug(fs_info, "auto deleting %Lu",
3109 found_key.objectid);
a8c9e576
JB
3110 ret = btrfs_del_orphan_item(trans, root,
3111 found_key.objectid);
3a45bb20 3112 btrfs_end_transaction(trans);
4ef31a45
JB
3113 if (ret)
3114 goto out;
7b128766
JB
3115 continue;
3116 }
3117
f7e9e8fc 3118 nr_unlink++;
7b128766
JB
3119
3120 /* this will do delete_inode and everything for us */
3121 iput(inode);
3122 }
3254c876
MX
3123 /* release the path since we're done with it */
3124 btrfs_release_path(path);
3125
d68fc57b
YZ
3126 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3127
a575ceeb 3128 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3129 trans = btrfs_join_transaction(root);
66b4ffd1 3130 if (!IS_ERR(trans))
3a45bb20 3131 btrfs_end_transaction(trans);
d68fc57b 3132 }
7b128766
JB
3133
3134 if (nr_unlink)
0b246afa 3135 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3136
3137out:
3138 if (ret)
0b246afa 3139 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3140 btrfs_free_path(path);
3141 return ret;
7b128766
JB
3142}
3143
46a53cca
CM
3144/*
3145 * very simple check to peek ahead in the leaf looking for xattrs. If we
3146 * don't find any xattrs, we know there can't be any acls.
3147 *
3148 * slot is the slot the inode is in, objectid is the objectid of the inode
3149 */
3150static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3151 int slot, u64 objectid,
3152 int *first_xattr_slot)
46a53cca
CM
3153{
3154 u32 nritems = btrfs_header_nritems(leaf);
3155 struct btrfs_key found_key;
f23b5a59
JB
3156 static u64 xattr_access = 0;
3157 static u64 xattr_default = 0;
46a53cca
CM
3158 int scanned = 0;
3159
f23b5a59 3160 if (!xattr_access) {
97d79299
AG
3161 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3162 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3163 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3164 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3165 }
3166
46a53cca 3167 slot++;
63541927 3168 *first_xattr_slot = -1;
46a53cca
CM
3169 while (slot < nritems) {
3170 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3171
3172 /* we found a different objectid, there must not be acls */
3173 if (found_key.objectid != objectid)
3174 return 0;
3175
3176 /* we found an xattr, assume we've got an acl */
f23b5a59 3177 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3178 if (*first_xattr_slot == -1)
3179 *first_xattr_slot = slot;
f23b5a59
JB
3180 if (found_key.offset == xattr_access ||
3181 found_key.offset == xattr_default)
3182 return 1;
3183 }
46a53cca
CM
3184
3185 /*
3186 * we found a key greater than an xattr key, there can't
3187 * be any acls later on
3188 */
3189 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3190 return 0;
3191
3192 slot++;
3193 scanned++;
3194
3195 /*
3196 * it goes inode, inode backrefs, xattrs, extents,
3197 * so if there are a ton of hard links to an inode there can
3198 * be a lot of backrefs. Don't waste time searching too hard,
3199 * this is just an optimization
3200 */
3201 if (scanned >= 8)
3202 break;
3203 }
3204 /* we hit the end of the leaf before we found an xattr or
3205 * something larger than an xattr. We have to assume the inode
3206 * has acls
3207 */
63541927
FDBM
3208 if (*first_xattr_slot == -1)
3209 *first_xattr_slot = slot;
46a53cca
CM
3210 return 1;
3211}
3212
d352ac68
CM
3213/*
3214 * read an inode from the btree into the in-memory inode
3215 */
4222ea71
FM
3216static int btrfs_read_locked_inode(struct inode *inode,
3217 struct btrfs_path *in_path)
39279cc3 3218{
0b246afa 3219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3220 struct btrfs_path *path = in_path;
5f39d397 3221 struct extent_buffer *leaf;
39279cc3
CM
3222 struct btrfs_inode_item *inode_item;
3223 struct btrfs_root *root = BTRFS_I(inode)->root;
3224 struct btrfs_key location;
67de1176 3225 unsigned long ptr;
46a53cca 3226 int maybe_acls;
618e21d5 3227 u32 rdev;
39279cc3 3228 int ret;
2f7e33d4 3229 bool filled = false;
63541927 3230 int first_xattr_slot;
2f7e33d4
MX
3231
3232 ret = btrfs_fill_inode(inode, &rdev);
3233 if (!ret)
3234 filled = true;
39279cc3 3235
4222ea71
FM
3236 if (!path) {
3237 path = btrfs_alloc_path();
3238 if (!path)
3239 return -ENOMEM;
3240 }
1748f843 3241
39279cc3 3242 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3243
39279cc3 3244 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3245 if (ret) {
4222ea71
FM
3246 if (path != in_path)
3247 btrfs_free_path(path);
f5b3a417 3248 return ret;
67710892 3249 }
39279cc3 3250
5f39d397 3251 leaf = path->nodes[0];
2f7e33d4
MX
3252
3253 if (filled)
67de1176 3254 goto cache_index;
2f7e33d4 3255
5f39d397
CM
3256 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3257 struct btrfs_inode_item);
5f39d397 3258 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3259 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3260 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3261 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3262 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3263 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3264 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3265
a937b979
DS
3266 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3267 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3268
a937b979
DS
3269 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3270 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3271
a937b979
DS
3272 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3273 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3274
9cc97d64 3275 BTRFS_I(inode)->i_otime.tv_sec =
3276 btrfs_timespec_sec(leaf, &inode_item->otime);
3277 BTRFS_I(inode)->i_otime.tv_nsec =
3278 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3279
a76a3cd4 3280 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3281 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3282 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3283
c7f88c4e
JL
3284 inode_set_iversion_queried(inode,
3285 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3286 inode->i_generation = BTRFS_I(inode)->generation;
3287 inode->i_rdev = 0;
3288 rdev = btrfs_inode_rdev(leaf, inode_item);
3289
3290 BTRFS_I(inode)->index_cnt = (u64)-1;
3291 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3292
3293cache_index:
5dc562c5
JB
3294 /*
3295 * If we were modified in the current generation and evicted from memory
3296 * and then re-read we need to do a full sync since we don't have any
3297 * idea about which extents were modified before we were evicted from
3298 * cache.
6e17d30b
YD
3299 *
3300 * This is required for both inode re-read from disk and delayed inode
3301 * in delayed_nodes_tree.
5dc562c5 3302 */
0b246afa 3303 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3304 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3305 &BTRFS_I(inode)->runtime_flags);
3306
bde6c242
FM
3307 /*
3308 * We don't persist the id of the transaction where an unlink operation
3309 * against the inode was last made. So here we assume the inode might
3310 * have been evicted, and therefore the exact value of last_unlink_trans
3311 * lost, and set it to last_trans to avoid metadata inconsistencies
3312 * between the inode and its parent if the inode is fsync'ed and the log
3313 * replayed. For example, in the scenario:
3314 *
3315 * touch mydir/foo
3316 * ln mydir/foo mydir/bar
3317 * sync
3318 * unlink mydir/bar
3319 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3320 * xfs_io -c fsync mydir/foo
3321 * <power failure>
3322 * mount fs, triggers fsync log replay
3323 *
3324 * We must make sure that when we fsync our inode foo we also log its
3325 * parent inode, otherwise after log replay the parent still has the
3326 * dentry with the "bar" name but our inode foo has a link count of 1
3327 * and doesn't have an inode ref with the name "bar" anymore.
3328 *
3329 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3330 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3331 * transaction commits on fsync if our inode is a directory, or if our
3332 * inode is not a directory, logging its parent unnecessarily.
3333 */
3334 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3335
67de1176
MX
3336 path->slots[0]++;
3337 if (inode->i_nlink != 1 ||
3338 path->slots[0] >= btrfs_header_nritems(leaf))
3339 goto cache_acl;
3340
3341 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3342 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3343 goto cache_acl;
3344
3345 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3346 if (location.type == BTRFS_INODE_REF_KEY) {
3347 struct btrfs_inode_ref *ref;
3348
3349 ref = (struct btrfs_inode_ref *)ptr;
3350 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3351 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3352 struct btrfs_inode_extref *extref;
3353
3354 extref = (struct btrfs_inode_extref *)ptr;
3355 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3356 extref);
3357 }
2f7e33d4 3358cache_acl:
46a53cca
CM
3359 /*
3360 * try to precache a NULL acl entry for files that don't have
3361 * any xattrs or acls
3362 */
33345d01 3363 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3364 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3365 if (first_xattr_slot != -1) {
3366 path->slots[0] = first_xattr_slot;
3367 ret = btrfs_load_inode_props(inode, path);
3368 if (ret)
0b246afa 3369 btrfs_err(fs_info,
351fd353 3370 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3371 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3372 root->root_key.objectid, ret);
3373 }
4222ea71
FM
3374 if (path != in_path)
3375 btrfs_free_path(path);
63541927 3376
72c04902
AV
3377 if (!maybe_acls)
3378 cache_no_acl(inode);
46a53cca 3379
39279cc3 3380 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3381 case S_IFREG:
3382 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3383 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3384 inode->i_fop = &btrfs_file_operations;
3385 inode->i_op = &btrfs_file_inode_operations;
3386 break;
3387 case S_IFDIR:
3388 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3389 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3390 break;
3391 case S_IFLNK:
3392 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3393 inode_nohighmem(inode);
4779cc04 3394 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3395 break;
618e21d5 3396 default:
0279b4cd 3397 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3398 init_special_inode(inode, inode->i_mode, rdev);
3399 break;
39279cc3 3400 }
6cbff00f 3401
7b6a221e 3402 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3403 return 0;
39279cc3
CM
3404}
3405
d352ac68
CM
3406/*
3407 * given a leaf and an inode, copy the inode fields into the leaf
3408 */
e02119d5
CM
3409static void fill_inode_item(struct btrfs_trans_handle *trans,
3410 struct extent_buffer *leaf,
5f39d397 3411 struct btrfs_inode_item *item,
39279cc3
CM
3412 struct inode *inode)
3413{
51fab693
LB
3414 struct btrfs_map_token token;
3415
c82f823c 3416 btrfs_init_map_token(&token, leaf);
5f39d397 3417
cc4c13d5
DS
3418 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3419 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3420 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3421 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3422 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3423
3424 btrfs_set_token_timespec_sec(&token, &item->atime,
3425 inode->i_atime.tv_sec);
3426 btrfs_set_token_timespec_nsec(&token, &item->atime,
3427 inode->i_atime.tv_nsec);
3428
3429 btrfs_set_token_timespec_sec(&token, &item->mtime,
3430 inode->i_mtime.tv_sec);
3431 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3432 inode->i_mtime.tv_nsec);
3433
3434 btrfs_set_token_timespec_sec(&token, &item->ctime,
3435 inode->i_ctime.tv_sec);
3436 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3437 inode->i_ctime.tv_nsec);
3438
3439 btrfs_set_token_timespec_sec(&token, &item->otime,
3440 BTRFS_I(inode)->i_otime.tv_sec);
3441 btrfs_set_token_timespec_nsec(&token, &item->otime,
3442 BTRFS_I(inode)->i_otime.tv_nsec);
3443
3444 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3445 btrfs_set_token_inode_generation(&token, item,
3446 BTRFS_I(inode)->generation);
3447 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3448 btrfs_set_token_inode_transid(&token, item, trans->transid);
3449 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3450 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3451 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3452}
3453
d352ac68
CM
3454/*
3455 * copy everything in the in-memory inode into the btree.
3456 */
2115133f 3457static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3458 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3459{
3460 struct btrfs_inode_item *inode_item;
3461 struct btrfs_path *path;
5f39d397 3462 struct extent_buffer *leaf;
39279cc3
CM
3463 int ret;
3464
3465 path = btrfs_alloc_path();
16cdcec7
MX
3466 if (!path)
3467 return -ENOMEM;
3468
b9473439 3469 path->leave_spinning = 1;
16cdcec7
MX
3470 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3471 1);
39279cc3
CM
3472 if (ret) {
3473 if (ret > 0)
3474 ret = -ENOENT;
3475 goto failed;
3476 }
3477
5f39d397
CM
3478 leaf = path->nodes[0];
3479 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3480 struct btrfs_inode_item);
39279cc3 3481
e02119d5 3482 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3483 btrfs_mark_buffer_dirty(leaf);
d9094414 3484 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3485 ret = 0;
3486failed:
39279cc3
CM
3487 btrfs_free_path(path);
3488 return ret;
3489}
3490
2115133f
CM
3491/*
3492 * copy everything in the in-memory inode into the btree.
3493 */
3494noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3495 struct btrfs_root *root, struct inode *inode)
3496{
0b246afa 3497 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3498 int ret;
3499
3500 /*
3501 * If the inode is a free space inode, we can deadlock during commit
3502 * if we put it into the delayed code.
3503 *
3504 * The data relocation inode should also be directly updated
3505 * without delay
3506 */
70ddc553 3507 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3508 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3509 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3510 btrfs_update_root_times(trans, root);
3511
2115133f
CM
3512 ret = btrfs_delayed_update_inode(trans, root, inode);
3513 if (!ret)
d9094414 3514 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3515 return ret;
3516 }
3517
3518 return btrfs_update_inode_item(trans, root, inode);
3519}
3520
be6aef60
JB
3521noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3522 struct btrfs_root *root,
3523 struct inode *inode)
2115133f
CM
3524{
3525 int ret;
3526
3527 ret = btrfs_update_inode(trans, root, inode);
3528 if (ret == -ENOSPC)
3529 return btrfs_update_inode_item(trans, root, inode);
3530 return ret;
3531}
3532
d352ac68
CM
3533/*
3534 * unlink helper that gets used here in inode.c and in the tree logging
3535 * recovery code. It remove a link in a directory with a given name, and
3536 * also drops the back refs in the inode to the directory
3537 */
92986796
AV
3538static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3539 struct btrfs_root *root,
4ec5934e
NB
3540 struct btrfs_inode *dir,
3541 struct btrfs_inode *inode,
92986796 3542 const char *name, int name_len)
39279cc3 3543{
0b246afa 3544 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3545 struct btrfs_path *path;
39279cc3 3546 int ret = 0;
39279cc3 3547 struct btrfs_dir_item *di;
aec7477b 3548 u64 index;
33345d01
LZ
3549 u64 ino = btrfs_ino(inode);
3550 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3551
3552 path = btrfs_alloc_path();
54aa1f4d
CM
3553 if (!path) {
3554 ret = -ENOMEM;
554233a6 3555 goto out;
54aa1f4d
CM
3556 }
3557
b9473439 3558 path->leave_spinning = 1;
33345d01 3559 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3560 name, name_len, -1);
3cf5068f
LB
3561 if (IS_ERR_OR_NULL(di)) {
3562 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3563 goto err;
3564 }
39279cc3 3565 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3566 if (ret)
3567 goto err;
b3b4aa74 3568 btrfs_release_path(path);
39279cc3 3569
67de1176
MX
3570 /*
3571 * If we don't have dir index, we have to get it by looking up
3572 * the inode ref, since we get the inode ref, remove it directly,
3573 * it is unnecessary to do delayed deletion.
3574 *
3575 * But if we have dir index, needn't search inode ref to get it.
3576 * Since the inode ref is close to the inode item, it is better
3577 * that we delay to delete it, and just do this deletion when
3578 * we update the inode item.
3579 */
4ec5934e 3580 if (inode->dir_index) {
67de1176
MX
3581 ret = btrfs_delayed_delete_inode_ref(inode);
3582 if (!ret) {
4ec5934e 3583 index = inode->dir_index;
67de1176
MX
3584 goto skip_backref;
3585 }
3586 }
3587
33345d01
LZ
3588 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3589 dir_ino, &index);
aec7477b 3590 if (ret) {
0b246afa 3591 btrfs_info(fs_info,
c2cf52eb 3592 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3593 name_len, name, ino, dir_ino);
66642832 3594 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3595 goto err;
3596 }
67de1176 3597skip_backref:
9add2945 3598 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3599 if (ret) {
66642832 3600 btrfs_abort_transaction(trans, ret);
39279cc3 3601 goto err;
79787eaa 3602 }
39279cc3 3603
4ec5934e
NB
3604 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3605 dir_ino);
79787eaa 3606 if (ret != 0 && ret != -ENOENT) {
66642832 3607 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3608 goto err;
3609 }
e02119d5 3610
4ec5934e
NB
3611 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3612 index);
6418c961
CM
3613 if (ret == -ENOENT)
3614 ret = 0;
d4e3991b 3615 else if (ret)
66642832 3616 btrfs_abort_transaction(trans, ret);
63611e73
JB
3617
3618 /*
3619 * If we have a pending delayed iput we could end up with the final iput
3620 * being run in btrfs-cleaner context. If we have enough of these built
3621 * up we can end up burning a lot of time in btrfs-cleaner without any
3622 * way to throttle the unlinks. Since we're currently holding a ref on
3623 * the inode we can run the delayed iput here without any issues as the
3624 * final iput won't be done until after we drop the ref we're currently
3625 * holding.
3626 */
3627 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3628err:
3629 btrfs_free_path(path);
e02119d5
CM
3630 if (ret)
3631 goto out;
3632
6ef06d27 3633 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3634 inode_inc_iversion(&inode->vfs_inode);
3635 inode_inc_iversion(&dir->vfs_inode);
3636 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3637 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3638 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3639out:
39279cc3
CM
3640 return ret;
3641}
3642
92986796
AV
3643int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root,
4ec5934e 3645 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3646 const char *name, int name_len)
3647{
3648 int ret;
3649 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650 if (!ret) {
4ec5934e
NB
3651 drop_nlink(&inode->vfs_inode);
3652 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3653 }
3654 return ret;
3655}
39279cc3 3656
a22285a6
YZ
3657/*
3658 * helper to start transaction for unlink and rmdir.
3659 *
d52be818
JB
3660 * unlink and rmdir are special in btrfs, they do not always free space, so
3661 * if we cannot make our reservations the normal way try and see if there is
3662 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3663 * allow the unlink to occur.
a22285a6 3664 */
d52be818 3665static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3666{
a22285a6 3667 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3668
e70bea5f
JB
3669 /*
3670 * 1 for the possible orphan item
3671 * 1 for the dir item
3672 * 1 for the dir index
3673 * 1 for the inode ref
e70bea5f
JB
3674 * 1 for the inode
3675 */
7f9fe614 3676 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3677}
3678
3679static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3680{
3681 struct btrfs_root *root = BTRFS_I(dir)->root;
3682 struct btrfs_trans_handle *trans;
2b0143b5 3683 struct inode *inode = d_inode(dentry);
a22285a6 3684 int ret;
a22285a6 3685
d52be818 3686 trans = __unlink_start_trans(dir);
a22285a6
YZ
3687 if (IS_ERR(trans))
3688 return PTR_ERR(trans);
5f39d397 3689
4ec5934e
NB
3690 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3691 0);
12fcfd22 3692
4ec5934e
NB
3693 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3694 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3695 dentry->d_name.len);
b532402e
TI
3696 if (ret)
3697 goto out;
7b128766 3698
a22285a6 3699 if (inode->i_nlink == 0) {
73f2e545 3700 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3701 if (ret)
3702 goto out;
a22285a6 3703 }
7b128766 3704
b532402e 3705out:
3a45bb20 3706 btrfs_end_transaction(trans);
2ff7e61e 3707 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3708 return ret;
3709}
3710
f60a2364 3711static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3712 struct inode *dir, struct dentry *dentry)
4df27c4d 3713{
401b3b19 3714 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3715 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3716 struct btrfs_path *path;
3717 struct extent_buffer *leaf;
3718 struct btrfs_dir_item *di;
3719 struct btrfs_key key;
045d3967
JB
3720 const char *name = dentry->d_name.name;
3721 int name_len = dentry->d_name.len;
4df27c4d
YZ
3722 u64 index;
3723 int ret;
045d3967 3724 u64 objectid;
4a0cc7ca 3725 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3726
045d3967
JB
3727 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3728 objectid = inode->root->root_key.objectid;
3729 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3730 objectid = inode->location.objectid;
3731 } else {
3732 WARN_ON(1);
3733 return -EINVAL;
3734 }
3735
4df27c4d
YZ
3736 path = btrfs_alloc_path();
3737 if (!path)
3738 return -ENOMEM;
3739
33345d01 3740 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3741 name, name_len, -1);
79787eaa 3742 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3743 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3744 goto out;
3745 }
4df27c4d
YZ
3746
3747 leaf = path->nodes[0];
3748 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3749 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3750 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3751 if (ret) {
66642832 3752 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3753 goto out;
3754 }
b3b4aa74 3755 btrfs_release_path(path);
4df27c4d 3756
d49d3287
JB
3757 /*
3758 * This is a placeholder inode for a subvolume we didn't have a
3759 * reference to at the time of the snapshot creation. In the meantime
3760 * we could have renamed the real subvol link into our snapshot, so
3761 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3762 * Instead simply lookup the dir_index_item for this entry so we can
3763 * remove it. Otherwise we know we have a ref to the root and we can
3764 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3765 */
3766 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3767 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3768 name, name_len);
79787eaa
JM
3769 if (IS_ERR_OR_NULL(di)) {
3770 if (!di)
3771 ret = -ENOENT;
3772 else
3773 ret = PTR_ERR(di);
66642832 3774 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3775 goto out;
3776 }
4df27c4d
YZ
3777
3778 leaf = path->nodes[0];
3779 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3780 index = key.offset;
d49d3287
JB
3781 btrfs_release_path(path);
3782 } else {
3783 ret = btrfs_del_root_ref(trans, objectid,
3784 root->root_key.objectid, dir_ino,
3785 &index, name, name_len);
3786 if (ret) {
3787 btrfs_abort_transaction(trans, ret);
3788 goto out;
3789 }
4df27c4d
YZ
3790 }
3791
9add2945 3792 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3793 if (ret) {
66642832 3794 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3795 goto out;
3796 }
4df27c4d 3797
6ef06d27 3798 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3799 inode_inc_iversion(dir);
c2050a45 3800 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3801 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3802 if (ret)
66642832 3803 btrfs_abort_transaction(trans, ret);
79787eaa 3804out:
71d7aed0 3805 btrfs_free_path(path);
79787eaa 3806 return ret;
4df27c4d
YZ
3807}
3808
ec42f167
MT
3809/*
3810 * Helper to check if the subvolume references other subvolumes or if it's
3811 * default.
3812 */
f60a2364 3813static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3814{
3815 struct btrfs_fs_info *fs_info = root->fs_info;
3816 struct btrfs_path *path;
3817 struct btrfs_dir_item *di;
3818 struct btrfs_key key;
3819 u64 dir_id;
3820 int ret;
3821
3822 path = btrfs_alloc_path();
3823 if (!path)
3824 return -ENOMEM;
3825
3826 /* Make sure this root isn't set as the default subvol */
3827 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3828 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3829 dir_id, "default", 7, 0);
3830 if (di && !IS_ERR(di)) {
3831 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3832 if (key.objectid == root->root_key.objectid) {
3833 ret = -EPERM;
3834 btrfs_err(fs_info,
3835 "deleting default subvolume %llu is not allowed",
3836 key.objectid);
3837 goto out;
3838 }
3839 btrfs_release_path(path);
3840 }
3841
3842 key.objectid = root->root_key.objectid;
3843 key.type = BTRFS_ROOT_REF_KEY;
3844 key.offset = (u64)-1;
3845
3846 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3847 if (ret < 0)
3848 goto out;
3849 BUG_ON(ret == 0);
3850
3851 ret = 0;
3852 if (path->slots[0] > 0) {
3853 path->slots[0]--;
3854 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3855 if (key.objectid == root->root_key.objectid &&
3856 key.type == BTRFS_ROOT_REF_KEY)
3857 ret = -ENOTEMPTY;
3858 }
3859out:
3860 btrfs_free_path(path);
3861 return ret;
3862}
3863
20a68004
NB
3864/* Delete all dentries for inodes belonging to the root */
3865static void btrfs_prune_dentries(struct btrfs_root *root)
3866{
3867 struct btrfs_fs_info *fs_info = root->fs_info;
3868 struct rb_node *node;
3869 struct rb_node *prev;
3870 struct btrfs_inode *entry;
3871 struct inode *inode;
3872 u64 objectid = 0;
3873
3874 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3875 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3876
3877 spin_lock(&root->inode_lock);
3878again:
3879 node = root->inode_tree.rb_node;
3880 prev = NULL;
3881 while (node) {
3882 prev = node;
3883 entry = rb_entry(node, struct btrfs_inode, rb_node);
3884
37508515 3885 if (objectid < btrfs_ino(entry))
20a68004 3886 node = node->rb_left;
37508515 3887 else if (objectid > btrfs_ino(entry))
20a68004
NB
3888 node = node->rb_right;
3889 else
3890 break;
3891 }
3892 if (!node) {
3893 while (prev) {
3894 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3895 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3896 node = prev;
3897 break;
3898 }
3899 prev = rb_next(prev);
3900 }
3901 }
3902 while (node) {
3903 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3904 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3905 inode = igrab(&entry->vfs_inode);
3906 if (inode) {
3907 spin_unlock(&root->inode_lock);
3908 if (atomic_read(&inode->i_count) > 1)
3909 d_prune_aliases(inode);
3910 /*
3911 * btrfs_drop_inode will have it removed from the inode
3912 * cache when its usage count hits zero.
3913 */
3914 iput(inode);
3915 cond_resched();
3916 spin_lock(&root->inode_lock);
3917 goto again;
3918 }
3919
3920 if (cond_resched_lock(&root->inode_lock))
3921 goto again;
3922
3923 node = rb_next(node);
3924 }
3925 spin_unlock(&root->inode_lock);
3926}
3927
f60a2364
MT
3928int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3929{
3930 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3931 struct btrfs_root *root = BTRFS_I(dir)->root;
3932 struct inode *inode = d_inode(dentry);
3933 struct btrfs_root *dest = BTRFS_I(inode)->root;
3934 struct btrfs_trans_handle *trans;
3935 struct btrfs_block_rsv block_rsv;
3936 u64 root_flags;
f60a2364
MT
3937 int ret;
3938 int err;
3939
3940 /*
3941 * Don't allow to delete a subvolume with send in progress. This is
3942 * inside the inode lock so the error handling that has to drop the bit
3943 * again is not run concurrently.
3944 */
3945 spin_lock(&dest->root_item_lock);
a7176f74 3946 if (dest->send_in_progress) {
f60a2364
MT
3947 spin_unlock(&dest->root_item_lock);
3948 btrfs_warn(fs_info,
3949 "attempt to delete subvolume %llu during send",
3950 dest->root_key.objectid);
3951 return -EPERM;
3952 }
a7176f74
LF
3953 root_flags = btrfs_root_flags(&dest->root_item);
3954 btrfs_set_root_flags(&dest->root_item,
3955 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3956 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3957
3958 down_write(&fs_info->subvol_sem);
3959
3960 err = may_destroy_subvol(dest);
3961 if (err)
3962 goto out_up_write;
3963
3964 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3965 /*
3966 * One for dir inode,
3967 * two for dir entries,
3968 * two for root ref/backref.
3969 */
c4c129db 3970 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3971 if (err)
3972 goto out_up_write;
3973
3974 trans = btrfs_start_transaction(root, 0);
3975 if (IS_ERR(trans)) {
3976 err = PTR_ERR(trans);
3977 goto out_release;
3978 }
3979 trans->block_rsv = &block_rsv;
3980 trans->bytes_reserved = block_rsv.size;
3981
3982 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3983
045d3967 3984 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
3985 if (ret) {
3986 err = ret;
3987 btrfs_abort_transaction(trans, ret);
3988 goto out_end_trans;
3989 }
3990
3991 btrfs_record_root_in_trans(trans, dest);
3992
3993 memset(&dest->root_item.drop_progress, 0,
3994 sizeof(dest->root_item.drop_progress));
3995 dest->root_item.drop_level = 0;
3996 btrfs_set_root_refs(&dest->root_item, 0);
3997
3998 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
3999 ret = btrfs_insert_orphan_item(trans,
4000 fs_info->tree_root,
4001 dest->root_key.objectid);
4002 if (ret) {
4003 btrfs_abort_transaction(trans, ret);
4004 err = ret;
4005 goto out_end_trans;
4006 }
4007 }
4008
d1957791 4009 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4010 BTRFS_UUID_KEY_SUBVOL,
4011 dest->root_key.objectid);
4012 if (ret && ret != -ENOENT) {
4013 btrfs_abort_transaction(trans, ret);
4014 err = ret;
4015 goto out_end_trans;
4016 }
4017 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4018 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4019 dest->root_item.received_uuid,
4020 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4021 dest->root_key.objectid);
4022 if (ret && ret != -ENOENT) {
4023 btrfs_abort_transaction(trans, ret);
4024 err = ret;
4025 goto out_end_trans;
4026 }
4027 }
4028
4029out_end_trans:
4030 trans->block_rsv = NULL;
4031 trans->bytes_reserved = 0;
4032 ret = btrfs_end_transaction(trans);
4033 if (ret && !err)
4034 err = ret;
4035 inode->i_flags |= S_DEAD;
4036out_release:
4037 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4038out_up_write:
4039 up_write(&fs_info->subvol_sem);
4040 if (err) {
4041 spin_lock(&dest->root_item_lock);
4042 root_flags = btrfs_root_flags(&dest->root_item);
4043 btrfs_set_root_flags(&dest->root_item,
4044 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4045 spin_unlock(&dest->root_item_lock);
4046 } else {
4047 d_invalidate(dentry);
20a68004 4048 btrfs_prune_dentries(dest);
f60a2364
MT
4049 ASSERT(dest->send_in_progress == 0);
4050
4051 /* the last ref */
4052 if (dest->ino_cache_inode) {
4053 iput(dest->ino_cache_inode);
4054 dest->ino_cache_inode = NULL;
4055 }
4056 }
4057
4058 return err;
4059}
4060
39279cc3
CM
4061static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4062{
2b0143b5 4063 struct inode *inode = d_inode(dentry);
1832a6d5 4064 int err = 0;
39279cc3 4065 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4066 struct btrfs_trans_handle *trans;
44f714da 4067 u64 last_unlink_trans;
39279cc3 4068
b3ae244e 4069 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4070 return -ENOTEMPTY;
4a0cc7ca 4071 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4072 return btrfs_delete_subvolume(dir, dentry);
134d4512 4073
d52be818 4074 trans = __unlink_start_trans(dir);
a22285a6 4075 if (IS_ERR(trans))
5df6a9f6 4076 return PTR_ERR(trans);
5df6a9f6 4077
4a0cc7ca 4078 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4079 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4080 goto out;
4081 }
4082
73f2e545 4083 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4084 if (err)
4df27c4d 4085 goto out;
7b128766 4086
44f714da
FM
4087 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4088
39279cc3 4089 /* now the directory is empty */
4ec5934e
NB
4090 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4091 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4092 dentry->d_name.len);
44f714da 4093 if (!err) {
6ef06d27 4094 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4095 /*
4096 * Propagate the last_unlink_trans value of the deleted dir to
4097 * its parent directory. This is to prevent an unrecoverable
4098 * log tree in the case we do something like this:
4099 * 1) create dir foo
4100 * 2) create snapshot under dir foo
4101 * 3) delete the snapshot
4102 * 4) rmdir foo
4103 * 5) mkdir foo
4104 * 6) fsync foo or some file inside foo
4105 */
4106 if (last_unlink_trans >= trans->transid)
4107 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4108 }
4df27c4d 4109out:
3a45bb20 4110 btrfs_end_transaction(trans);
2ff7e61e 4111 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4112
39279cc3
CM
4113 return err;
4114}
4115
ddfae63c
JB
4116/*
4117 * Return this if we need to call truncate_block for the last bit of the
4118 * truncate.
4119 */
4120#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4121
39279cc3
CM
4122/*
4123 * this can truncate away extent items, csum items and directory items.
4124 * It starts at a high offset and removes keys until it can't find
d352ac68 4125 * any higher than new_size
39279cc3
CM
4126 *
4127 * csum items that cross the new i_size are truncated to the new size
4128 * as well.
7b128766
JB
4129 *
4130 * min_type is the minimum key type to truncate down to. If set to 0, this
4131 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4132 */
8082510e
YZ
4133int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4134 struct btrfs_root *root,
4135 struct inode *inode,
4136 u64 new_size, u32 min_type)
39279cc3 4137{
0b246afa 4138 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4139 struct btrfs_path *path;
5f39d397 4140 struct extent_buffer *leaf;
39279cc3 4141 struct btrfs_file_extent_item *fi;
8082510e
YZ
4142 struct btrfs_key key;
4143 struct btrfs_key found_key;
39279cc3 4144 u64 extent_start = 0;
db94535d 4145 u64 extent_num_bytes = 0;
5d4f98a2 4146 u64 extent_offset = 0;
39279cc3 4147 u64 item_end = 0;
c1aa4575 4148 u64 last_size = new_size;
8082510e 4149 u32 found_type = (u8)-1;
39279cc3
CM
4150 int found_extent;
4151 int del_item;
85e21bac
CM
4152 int pending_del_nr = 0;
4153 int pending_del_slot = 0;
179e29e4 4154 int extent_type = -1;
8082510e 4155 int ret;
4a0cc7ca 4156 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4157 u64 bytes_deleted = 0;
897ca819
TM
4158 bool be_nice = false;
4159 bool should_throttle = false;
28553fa9
FM
4160 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4161 struct extent_state *cached_state = NULL;
8082510e
YZ
4162
4163 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4164
28ed1345 4165 /*
92a7cc42
QW
4166 * For non-free space inodes and non-shareable roots, we want to back
4167 * off from time to time. This means all inodes in subvolume roots,
4168 * reloc roots, and data reloc roots.
28ed1345 4169 */
70ddc553 4170 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4171 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4172 be_nice = true;
28ed1345 4173
0eb0e19c
MF
4174 path = btrfs_alloc_path();
4175 if (!path)
4176 return -ENOMEM;
e4058b54 4177 path->reada = READA_BACK;
0eb0e19c 4178
82028e0a 4179 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4180 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4181 &cached_state);
28553fa9 4182
82028e0a
QW
4183 /*
4184 * We want to drop from the next block forward in case this
4185 * new size is not block aligned since we will be keeping the
4186 * last block of the extent just the way it is.
4187 */
dcdbc059 4188 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4189 fs_info->sectorsize),
da17066c 4190 (u64)-1, 0);
82028e0a 4191 }
8082510e 4192
16cdcec7
MX
4193 /*
4194 * This function is also used to drop the items in the log tree before
4195 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4196 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4197 * items.
4198 */
4199 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4200 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4201
33345d01 4202 key.objectid = ino;
39279cc3 4203 key.offset = (u64)-1;
5f39d397
CM
4204 key.type = (u8)-1;
4205
85e21bac 4206search_again:
28ed1345
CM
4207 /*
4208 * with a 16K leaf size and 128MB extents, you can actually queue
4209 * up a huge file in a single leaf. Most of the time that
4210 * bytes_deleted is > 0, it will be huge by the time we get here
4211 */
fd86a3a3
OS
4212 if (be_nice && bytes_deleted > SZ_32M &&
4213 btrfs_should_end_transaction(trans)) {
4214 ret = -EAGAIN;
4215 goto out;
28ed1345
CM
4216 }
4217
85e21bac 4218 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4219 if (ret < 0)
8082510e 4220 goto out;
d397712b 4221
85e21bac 4222 if (ret > 0) {
fd86a3a3 4223 ret = 0;
e02119d5
CM
4224 /* there are no items in the tree for us to truncate, we're
4225 * done
4226 */
8082510e
YZ
4227 if (path->slots[0] == 0)
4228 goto out;
85e21bac
CM
4229 path->slots[0]--;
4230 }
4231
d397712b 4232 while (1) {
9ddc959e
JB
4233 u64 clear_start = 0, clear_len = 0;
4234
39279cc3 4235 fi = NULL;
5f39d397
CM
4236 leaf = path->nodes[0];
4237 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4238 found_type = found_key.type;
39279cc3 4239
33345d01 4240 if (found_key.objectid != ino)
39279cc3 4241 break;
5f39d397 4242
85e21bac 4243 if (found_type < min_type)
39279cc3
CM
4244 break;
4245
5f39d397 4246 item_end = found_key.offset;
39279cc3 4247 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4248 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4249 struct btrfs_file_extent_item);
179e29e4
CM
4250 extent_type = btrfs_file_extent_type(leaf, fi);
4251 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4252 item_end +=
db94535d 4253 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4254
4255 trace_btrfs_truncate_show_fi_regular(
4256 BTRFS_I(inode), leaf, fi,
4257 found_key.offset);
179e29e4 4258 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4259 item_end += btrfs_file_extent_ram_bytes(leaf,
4260 fi);
09ed2f16
LB
4261
4262 trace_btrfs_truncate_show_fi_inline(
4263 BTRFS_I(inode), leaf, fi, path->slots[0],
4264 found_key.offset);
39279cc3 4265 }
008630c1 4266 item_end--;
39279cc3 4267 }
8082510e
YZ
4268 if (found_type > min_type) {
4269 del_item = 1;
4270 } else {
76b42abb 4271 if (item_end < new_size)
b888db2b 4272 break;
8082510e
YZ
4273 if (found_key.offset >= new_size)
4274 del_item = 1;
4275 else
4276 del_item = 0;
39279cc3 4277 }
39279cc3 4278 found_extent = 0;
39279cc3 4279 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4280 if (found_type != BTRFS_EXTENT_DATA_KEY)
4281 goto delete;
4282
4283 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4284 u64 num_dec;
9ddc959e
JB
4285
4286 clear_start = found_key.offset;
db94535d 4287 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4288 if (!del_item) {
db94535d
CM
4289 u64 orig_num_bytes =
4290 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4291 extent_num_bytes = ALIGN(new_size -
4292 found_key.offset,
0b246afa 4293 fs_info->sectorsize);
9ddc959e 4294 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4295 btrfs_set_file_extent_num_bytes(leaf, fi,
4296 extent_num_bytes);
4297 num_dec = (orig_num_bytes -
9069218d 4298 extent_num_bytes);
92a7cc42 4299 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4300 &root->state) &&
4301 extent_start != 0)
a76a3cd4 4302 inode_sub_bytes(inode, num_dec);
5f39d397 4303 btrfs_mark_buffer_dirty(leaf);
39279cc3 4304 } else {
db94535d
CM
4305 extent_num_bytes =
4306 btrfs_file_extent_disk_num_bytes(leaf,
4307 fi);
5d4f98a2
YZ
4308 extent_offset = found_key.offset -
4309 btrfs_file_extent_offset(leaf, fi);
4310
39279cc3 4311 /* FIXME blocksize != 4096 */
9069218d 4312 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4313 if (extent_start != 0) {
4314 found_extent = 1;
92a7cc42 4315 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4316 &root->state))
a76a3cd4 4317 inode_sub_bytes(inode, num_dec);
e02119d5 4318 }
39279cc3 4319 }
9ddc959e 4320 clear_len = num_dec;
9069218d 4321 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4322 /*
4323 * we can't truncate inline items that have had
4324 * special encodings
4325 */
4326 if (!del_item &&
c8b97818 4327 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4328 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4329 btrfs_file_extent_compression(leaf, fi) == 0) {
4330 u32 size = (u32)(new_size - found_key.offset);
4331
4332 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4333 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4334 btrfs_truncate_item(path, size, 1);
ddfae63c 4335 } else if (!del_item) {
514ac8ad 4336 /*
ddfae63c
JB
4337 * We have to bail so the last_size is set to
4338 * just before this extent.
514ac8ad 4339 */
fd86a3a3 4340 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4341 break;
9ddc959e
JB
4342 } else {
4343 /*
4344 * Inline extents are special, we just treat
4345 * them as a full sector worth in the file
4346 * extent tree just for simplicity sake.
4347 */
4348 clear_len = fs_info->sectorsize;
ddfae63c 4349 }
0305cd5f 4350
92a7cc42 4351 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4352 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4353 }
179e29e4 4354delete:
9ddc959e
JB
4355 /*
4356 * We use btrfs_truncate_inode_items() to clean up log trees for
4357 * multiple fsyncs, and in this case we don't want to clear the
4358 * file extent range because it's just the log.
4359 */
4360 if (root == BTRFS_I(inode)->root) {
4361 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4362 clear_start, clear_len);
4363 if (ret) {
4364 btrfs_abort_transaction(trans, ret);
4365 break;
4366 }
4367 }
4368
ddfae63c
JB
4369 if (del_item)
4370 last_size = found_key.offset;
4371 else
4372 last_size = new_size;
39279cc3 4373 if (del_item) {
85e21bac
CM
4374 if (!pending_del_nr) {
4375 /* no pending yet, add ourselves */
4376 pending_del_slot = path->slots[0];
4377 pending_del_nr = 1;
4378 } else if (pending_del_nr &&
4379 path->slots[0] + 1 == pending_del_slot) {
4380 /* hop on the pending chunk */
4381 pending_del_nr++;
4382 pending_del_slot = path->slots[0];
4383 } else {
d397712b 4384 BUG();
85e21bac 4385 }
39279cc3
CM
4386 } else {
4387 break;
4388 }
897ca819 4389 should_throttle = false;
28f75a0e 4390
27cdeb70 4391 if (found_extent &&
82028e0a 4392 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4393 struct btrfs_ref ref = { 0 };
4394
28ed1345 4395 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4396
4397 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4398 extent_start, extent_num_bytes, 0);
4399 ref.real_root = root->root_key.objectid;
4400 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4401 ino, extent_offset);
4402 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4403 if (ret) {
4404 btrfs_abort_transaction(trans, ret);
4405 break;
4406 }
28f75a0e 4407 if (be_nice) {
7c861627 4408 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4409 should_throttle = true;
28f75a0e 4410 }
39279cc3 4411 }
85e21bac 4412
8082510e
YZ
4413 if (found_type == BTRFS_INODE_ITEM_KEY)
4414 break;
4415
4416 if (path->slots[0] == 0 ||
1262133b 4417 path->slots[0] != pending_del_slot ||
28bad212 4418 should_throttle) {
8082510e
YZ
4419 if (pending_del_nr) {
4420 ret = btrfs_del_items(trans, root, path,
4421 pending_del_slot,
4422 pending_del_nr);
79787eaa 4423 if (ret) {
66642832 4424 btrfs_abort_transaction(trans, ret);
fd86a3a3 4425 break;
79787eaa 4426 }
8082510e
YZ
4427 pending_del_nr = 0;
4428 }
b3b4aa74 4429 btrfs_release_path(path);
28bad212 4430
28f75a0e 4431 /*
28bad212
JB
4432 * We can generate a lot of delayed refs, so we need to
4433 * throttle every once and a while and make sure we're
4434 * adding enough space to keep up with the work we are
4435 * generating. Since we hold a transaction here we
4436 * can't flush, and we don't want to FLUSH_LIMIT because
4437 * we could have generated too many delayed refs to
4438 * actually allocate, so just bail if we're short and
4439 * let the normal reservation dance happen higher up.
28f75a0e 4440 */
28bad212
JB
4441 if (should_throttle) {
4442 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4443 BTRFS_RESERVE_NO_FLUSH);
4444 if (ret) {
4445 ret = -EAGAIN;
4446 break;
4447 }
28f75a0e 4448 }
85e21bac 4449 goto search_again;
8082510e
YZ
4450 } else {
4451 path->slots[0]--;
85e21bac 4452 }
39279cc3 4453 }
8082510e 4454out:
fd86a3a3
OS
4455 if (ret >= 0 && pending_del_nr) {
4456 int err;
4457
4458 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4459 pending_del_nr);
fd86a3a3
OS
4460 if (err) {
4461 btrfs_abort_transaction(trans, err);
4462 ret = err;
4463 }
85e21bac 4464 }
76b42abb
FM
4465 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4466 ASSERT(last_size >= new_size);
fd86a3a3 4467 if (!ret && last_size > new_size)
76b42abb 4468 last_size = new_size;
d923afe9 4469 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4471 (u64)-1, &cached_state);
76b42abb 4472 }
28ed1345 4473
39279cc3 4474 btrfs_free_path(path);
fd86a3a3 4475 return ret;
39279cc3
CM
4476}
4477
4478/*
9703fefe 4479 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4480 * @inode - inode that we're zeroing
4481 * @from - the offset to start zeroing
4482 * @len - the length to zero, 0 to zero the entire range respective to the
4483 * offset
4484 * @front - zero up to the offset instead of from the offset on
4485 *
9703fefe 4486 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4487 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4488 */
9703fefe 4489int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4490 int front)
39279cc3 4491{
0b246afa 4492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4493 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4494 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4495 struct btrfs_ordered_extent *ordered;
2ac55d41 4496 struct extent_state *cached_state = NULL;
364ecf36 4497 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4498 char *kaddr;
6d4572a9 4499 bool only_release_metadata = false;
0b246afa 4500 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4501 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4502 unsigned offset = from & (blocksize - 1);
39279cc3 4503 struct page *page;
3b16a4e3 4504 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4505 size_t write_bytes = blocksize;
39279cc3 4506 int ret = 0;
9703fefe
CR
4507 u64 block_start;
4508 u64 block_end;
39279cc3 4509
b03ebd99
NB
4510 if (IS_ALIGNED(offset, blocksize) &&
4511 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4512 goto out;
9703fefe 4513
8b62f87b
JB
4514 block_start = round_down(from, blocksize);
4515 block_end = block_start + blocksize - 1;
4516
36ea6f3e
NB
4517 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4518 block_start, blocksize);
6d4572a9 4519 if (ret < 0) {
38d37aa9
QW
4520 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4521 &write_bytes) > 0) {
6d4572a9
QW
4522 /* For nocow case, no need to reserve data space */
4523 only_release_metadata = true;
4524 } else {
4525 goto out;
4526 }
4527 }
4528 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4529 if (ret < 0) {
4530 if (!only_release_metadata)
25ce28ca
NB
4531 btrfs_free_reserved_data_space(BTRFS_I(inode),
4532 data_reserved, block_start, blocksize);
6d4572a9
QW
4533 goto out;
4534 }
211c17f5 4535again:
3b16a4e3 4536 page = find_or_create_page(mapping, index, mask);
5d5e103a 4537 if (!page) {
86d52921 4538 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4539 block_start, blocksize, true);
8702ba93 4540 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4541 ret = -ENOMEM;
39279cc3 4542 goto out;
5d5e103a 4543 }
e6dcd2dc 4544
39279cc3 4545 if (!PageUptodate(page)) {
9ebefb18 4546 ret = btrfs_readpage(NULL, page);
39279cc3 4547 lock_page(page);
211c17f5
CM
4548 if (page->mapping != mapping) {
4549 unlock_page(page);
09cbfeaf 4550 put_page(page);
211c17f5
CM
4551 goto again;
4552 }
39279cc3
CM
4553 if (!PageUptodate(page)) {
4554 ret = -EIO;
89642229 4555 goto out_unlock;
39279cc3
CM
4556 }
4557 }
211c17f5 4558 wait_on_page_writeback(page);
e6dcd2dc 4559
9703fefe 4560 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4561 set_page_extent_mapped(page);
4562
c3504372 4563 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4564 if (ordered) {
9703fefe 4565 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4566 &cached_state);
e6dcd2dc 4567 unlock_page(page);
09cbfeaf 4568 put_page(page);
eb84ae03 4569 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4570 btrfs_put_ordered_extent(ordered);
4571 goto again;
4572 }
4573
9703fefe 4574 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4575 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4576 0, 0, &cached_state);
5d5e103a 4577
c2566f22 4578 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4579 &cached_state);
9ed74f2d 4580 if (ret) {
9703fefe 4581 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4582 &cached_state);
9ed74f2d
JB
4583 goto out_unlock;
4584 }
4585
9703fefe 4586 if (offset != blocksize) {
2aaa6655 4587 if (!len)
9703fefe 4588 len = blocksize - offset;
e6dcd2dc 4589 kaddr = kmap(page);
2aaa6655 4590 if (front)
9703fefe
CR
4591 memset(kaddr + (block_start - page_offset(page)),
4592 0, offset);
2aaa6655 4593 else
9703fefe
CR
4594 memset(kaddr + (block_start - page_offset(page)) + offset,
4595 0, len);
e6dcd2dc
CM
4596 flush_dcache_page(page);
4597 kunmap(page);
4598 }
247e743c 4599 ClearPageChecked(page);
e6dcd2dc 4600 set_page_dirty(page);
e43bbe5e 4601 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4602
6d4572a9
QW
4603 if (only_release_metadata)
4604 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4605 block_end, EXTENT_NORESERVE, NULL, NULL,
4606 GFP_NOFS);
4607
89642229 4608out_unlock:
6d4572a9
QW
4609 if (ret) {
4610 if (only_release_metadata)
4611 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4612 blocksize, true);
4613 else
86d52921 4614 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4615 block_start, blocksize, true);
4616 }
8702ba93 4617 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4618 unlock_page(page);
09cbfeaf 4619 put_page(page);
39279cc3 4620out:
6d4572a9 4621 if (only_release_metadata)
38d37aa9 4622 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4623 extent_changeset_free(data_reserved);
39279cc3
CM
4624 return ret;
4625}
4626
16e7549f
JB
4627static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4628 u64 offset, u64 len)
4629{
0b246afa 4630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4631 struct btrfs_trans_handle *trans;
4632 int ret;
4633
4634 /*
4635 * Still need to make sure the inode looks like it's been updated so
4636 * that any holes get logged if we fsync.
4637 */
0b246afa
JM
4638 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4639 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4640 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4641 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4642 return 0;
4643 }
4644
4645 /*
4646 * 1 - for the one we're dropping
4647 * 1 - for the one we're adding
4648 * 1 - for updating the inode.
4649 */
4650 trans = btrfs_start_transaction(root, 3);
4651 if (IS_ERR(trans))
4652 return PTR_ERR(trans);
4653
4654 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4655 if (ret) {
66642832 4656 btrfs_abort_transaction(trans, ret);
3a45bb20 4657 btrfs_end_transaction(trans);
16e7549f
JB
4658 return ret;
4659 }
4660
f85b7379
DS
4661 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4662 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4663 if (ret)
66642832 4664 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4665 else
4666 btrfs_update_inode(trans, root, inode);
3a45bb20 4667 btrfs_end_transaction(trans);
16e7549f
JB
4668 return ret;
4669}
4670
695a0d0d
JB
4671/*
4672 * This function puts in dummy file extents for the area we're creating a hole
4673 * for. So if we are truncating this file to a larger size we need to insert
4674 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4675 * the range between oldsize and size
4676 */
a41ad394 4677int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4678{
0b246afa 4679 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4680 struct btrfs_root *root = BTRFS_I(inode)->root;
4681 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4682 struct extent_map *em = NULL;
2ac55d41 4683 struct extent_state *cached_state = NULL;
5dc562c5 4684 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4685 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4686 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4687 u64 last_byte;
4688 u64 cur_offset;
4689 u64 hole_size;
9ed74f2d 4690 int err = 0;
39279cc3 4691
a71754fc 4692 /*
9703fefe
CR
4693 * If our size started in the middle of a block we need to zero out the
4694 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4695 * expose stale data.
4696 */
9703fefe 4697 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4698 if (err)
4699 return err;
4700
9036c102
YZ
4701 if (size <= hole_start)
4702 return 0;
4703
b272ae22 4704 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4705 block_end - 1, &cached_state);
9036c102
YZ
4706 cur_offset = hole_start;
4707 while (1) {
fc4f21b1 4708 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4709 block_end - cur_offset);
79787eaa
JM
4710 if (IS_ERR(em)) {
4711 err = PTR_ERR(em);
f2767956 4712 em = NULL;
79787eaa
JM
4713 break;
4714 }
9036c102 4715 last_byte = min(extent_map_end(em), block_end);
0b246afa 4716 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4717 hole_size = last_byte - cur_offset;
4718
8082510e 4719 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4720 struct extent_map *hole_em;
9ed74f2d 4721
16e7549f
JB
4722 err = maybe_insert_hole(root, inode, cur_offset,
4723 hole_size);
4724 if (err)
3893e33b 4725 break;
9ddc959e
JB
4726
4727 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4728 cur_offset, hole_size);
4729 if (err)
4730 break;
4731
dcdbc059 4732 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4733 cur_offset + hole_size - 1, 0);
4734 hole_em = alloc_extent_map();
4735 if (!hole_em) {
4736 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4737 &BTRFS_I(inode)->runtime_flags);
4738 goto next;
4739 }
4740 hole_em->start = cur_offset;
4741 hole_em->len = hole_size;
4742 hole_em->orig_start = cur_offset;
8082510e 4743
5dc562c5
JB
4744 hole_em->block_start = EXTENT_MAP_HOLE;
4745 hole_em->block_len = 0;
b4939680 4746 hole_em->orig_block_len = 0;
cc95bef6 4747 hole_em->ram_bytes = hole_size;
5dc562c5 4748 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4749 hole_em->generation = fs_info->generation;
8082510e 4750
5dc562c5
JB
4751 while (1) {
4752 write_lock(&em_tree->lock);
09a2a8f9 4753 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4754 write_unlock(&em_tree->lock);
4755 if (err != -EEXIST)
4756 break;
dcdbc059
NB
4757 btrfs_drop_extent_cache(BTRFS_I(inode),
4758 cur_offset,
5dc562c5
JB
4759 cur_offset +
4760 hole_size - 1, 0);
4761 }
4762 free_extent_map(hole_em);
9ddc959e
JB
4763 } else {
4764 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4765 cur_offset, hole_size);
4766 if (err)
4767 break;
9036c102 4768 }
16e7549f 4769next:
9036c102 4770 free_extent_map(em);
a22285a6 4771 em = NULL;
9036c102 4772 cur_offset = last_byte;
8082510e 4773 if (cur_offset >= block_end)
9036c102
YZ
4774 break;
4775 }
a22285a6 4776 free_extent_map(em);
e43bbe5e 4777 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4778 return err;
4779}
39279cc3 4780
3972f260 4781static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4782{
f4a2f4c5
MX
4783 struct btrfs_root *root = BTRFS_I(inode)->root;
4784 struct btrfs_trans_handle *trans;
a41ad394 4785 loff_t oldsize = i_size_read(inode);
3972f260
ES
4786 loff_t newsize = attr->ia_size;
4787 int mask = attr->ia_valid;
8082510e
YZ
4788 int ret;
4789
3972f260
ES
4790 /*
4791 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4792 * special case where we need to update the times despite not having
4793 * these flags set. For all other operations the VFS set these flags
4794 * explicitly if it wants a timestamp update.
4795 */
dff6efc3
CH
4796 if (newsize != oldsize) {
4797 inode_inc_iversion(inode);
4798 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4799 inode->i_ctime = inode->i_mtime =
c2050a45 4800 current_time(inode);
dff6efc3 4801 }
3972f260 4802
a41ad394 4803 if (newsize > oldsize) {
9ea24bbe 4804 /*
ea14b57f 4805 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4806 * This is to ensure the snapshot captures a fully consistent
4807 * state of this file - if the snapshot captures this expanding
4808 * truncation, it must capture all writes that happened before
4809 * this truncation.
4810 */
dcc3eb96 4811 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4812 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4813 if (ret) {
dcc3eb96 4814 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4815 return ret;
9ea24bbe 4816 }
8082510e 4817
f4a2f4c5 4818 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4819 if (IS_ERR(trans)) {
dcc3eb96 4820 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4821 return PTR_ERR(trans);
9ea24bbe 4822 }
f4a2f4c5
MX
4823
4824 i_size_write(inode, newsize);
d923afe9 4825 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4826 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4827 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4828 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4829 btrfs_end_transaction(trans);
a41ad394 4830 } else {
8082510e 4831
a41ad394
JB
4832 /*
4833 * We're truncating a file that used to have good data down to
4834 * zero. Make sure it gets into the ordered flush list so that
4835 * any new writes get down to disk quickly.
4836 */
4837 if (newsize == 0)
72ac3c0d
JB
4838 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4839 &BTRFS_I(inode)->runtime_flags);
8082510e 4840
a41ad394 4841 truncate_setsize(inode, newsize);
2e60a51e 4842
8e0fa5d7
DS
4843 /* Disable nonlocked read DIO to avoid the endless truncate */
4844 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4845 inode_dio_wait(inode);
8e0fa5d7 4846 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4847
213e8c55 4848 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4849 if (ret && inode->i_nlink) {
4850 int err;
4851
4852 /*
f7e9e8fc
OS
4853 * Truncate failed, so fix up the in-memory size. We
4854 * adjusted disk_i_size down as we removed extents, so
4855 * wait for disk_i_size to be stable and then update the
4856 * in-memory size to match.
7f4f6e0a 4857 */
f7e9e8fc 4858 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4859 if (err)
f7e9e8fc
OS
4860 return err;
4861 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4862 }
8082510e
YZ
4863 }
4864
a41ad394 4865 return ret;
8082510e
YZ
4866}
4867
9036c102
YZ
4868static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4869{
2b0143b5 4870 struct inode *inode = d_inode(dentry);
b83cc969 4871 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4872 int err;
39279cc3 4873
b83cc969
LZ
4874 if (btrfs_root_readonly(root))
4875 return -EROFS;
4876
31051c85 4877 err = setattr_prepare(dentry, attr);
9036c102
YZ
4878 if (err)
4879 return err;
2bf5a725 4880
5a3f23d5 4881 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4882 err = btrfs_setsize(inode, attr);
8082510e
YZ
4883 if (err)
4884 return err;
39279cc3 4885 }
9036c102 4886
1025774c
CH
4887 if (attr->ia_valid) {
4888 setattr_copy(inode, attr);
0c4d2d95 4889 inode_inc_iversion(inode);
22c44fe6 4890 err = btrfs_dirty_inode(inode);
1025774c 4891
22c44fe6 4892 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4893 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4894 }
33268eaf 4895
39279cc3
CM
4896 return err;
4897}
61295eb8 4898
131e404a
FDBM
4899/*
4900 * While truncating the inode pages during eviction, we get the VFS calling
4901 * btrfs_invalidatepage() against each page of the inode. This is slow because
4902 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4903 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4904 * extent_state structures over and over, wasting lots of time.
4905 *
4906 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4907 * those expensive operations on a per page basis and do only the ordered io
4908 * finishing, while we release here the extent_map and extent_state structures,
4909 * without the excessive merging and splitting.
4910 */
4911static void evict_inode_truncate_pages(struct inode *inode)
4912{
4913 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4914 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4915 struct rb_node *node;
4916
4917 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4918 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4919
4920 write_lock(&map_tree->lock);
07e1ce09 4921 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4922 struct extent_map *em;
4923
07e1ce09 4924 node = rb_first_cached(&map_tree->map);
131e404a 4925 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4926 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4927 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4928 remove_extent_mapping(map_tree, em);
4929 free_extent_map(em);
7064dd5c
FM
4930 if (need_resched()) {
4931 write_unlock(&map_tree->lock);
4932 cond_resched();
4933 write_lock(&map_tree->lock);
4934 }
131e404a
FDBM
4935 }
4936 write_unlock(&map_tree->lock);
4937
6ca07097
FM
4938 /*
4939 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4940 * We can have ongoing bios started by readahead that have
4941 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4942 * still in progress (unlocked the pages in the bio but did not yet
4943 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4944 * ranges can still be locked and eviction started because before
4945 * submitting those bios, which are executed by a separate task (work
4946 * queue kthread), inode references (inode->i_count) were not taken
4947 * (which would be dropped in the end io callback of each bio).
4948 * Therefore here we effectively end up waiting for those bios and
4949 * anyone else holding locked ranges without having bumped the inode's
4950 * reference count - if we don't do it, when they access the inode's
4951 * io_tree to unlock a range it may be too late, leading to an
4952 * use-after-free issue.
4953 */
131e404a
FDBM
4954 spin_lock(&io_tree->lock);
4955 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4956 struct extent_state *state;
4957 struct extent_state *cached_state = NULL;
6ca07097
FM
4958 u64 start;
4959 u64 end;
421f0922 4960 unsigned state_flags;
131e404a
FDBM
4961
4962 node = rb_first(&io_tree->state);
4963 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4964 start = state->start;
4965 end = state->end;
421f0922 4966 state_flags = state->state;
131e404a
FDBM
4967 spin_unlock(&io_tree->lock);
4968
ff13db41 4969 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4970
4971 /*
4972 * If still has DELALLOC flag, the extent didn't reach disk,
4973 * and its reserved space won't be freed by delayed_ref.
4974 * So we need to free its reserved space here.
4975 * (Refer to comment in btrfs_invalidatepage, case 2)
4976 *
4977 * Note, end is the bytenr of last byte, so we need + 1 here.
4978 */
421f0922 4979 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4980 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4981 end - start + 1);
b9d0b389 4982
6ca07097 4983 clear_extent_bit(io_tree, start, end,
e182163d
OS
4984 EXTENT_LOCKED | EXTENT_DELALLOC |
4985 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4986 &cached_state);
131e404a 4987
7064dd5c 4988 cond_resched();
131e404a
FDBM
4989 spin_lock(&io_tree->lock);
4990 }
4991 spin_unlock(&io_tree->lock);
4992}
4993
4b9d7b59 4994static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 4995 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
4996{
4997 struct btrfs_fs_info *fs_info = root->fs_info;
4998 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 4999 struct btrfs_trans_handle *trans;
2bd36e7b 5000 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5001 int ret;
4b9d7b59 5002
d3984c90
JB
5003 /*
5004 * Eviction should be taking place at some place safe because of our
5005 * delayed iputs. However the normal flushing code will run delayed
5006 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5007 *
5008 * We reserve the delayed_refs_extra here again because we can't use
5009 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5010 * above. We reserve our extra bit here because we generate a ton of
5011 * delayed refs activity by truncating.
5012 *
5013 * If we cannot make our reservation we'll attempt to steal from the
5014 * global reserve, because we really want to be able to free up space.
5015 */
5016 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5017 BTRFS_RESERVE_FLUSH_EVICT);
5018 if (ret) {
4b9d7b59
OS
5019 /*
5020 * Try to steal from the global reserve if there is space for
5021 * it.
5022 */
d3984c90
JB
5023 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5024 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5025 btrfs_warn(fs_info,
5026 "could not allocate space for delete; will truncate on mount");
5027 return ERR_PTR(-ENOSPC);
5028 }
5029 delayed_refs_extra = 0;
5030 }
4b9d7b59 5031
d3984c90
JB
5032 trans = btrfs_join_transaction(root);
5033 if (IS_ERR(trans))
5034 return trans;
5035
5036 if (delayed_refs_extra) {
5037 trans->block_rsv = &fs_info->trans_block_rsv;
5038 trans->bytes_reserved = delayed_refs_extra;
5039 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5040 delayed_refs_extra, 1);
4b9d7b59 5041 }
d3984c90 5042 return trans;
4b9d7b59
OS
5043}
5044
bd555975 5045void btrfs_evict_inode(struct inode *inode)
39279cc3 5046{
0b246afa 5047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5048 struct btrfs_trans_handle *trans;
5049 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5050 struct btrfs_block_rsv *rsv;
39279cc3
CM
5051 int ret;
5052
1abe9b8a 5053 trace_btrfs_inode_evict(inode);
5054
3d48d981 5055 if (!root) {
e8f1bc14 5056 clear_inode(inode);
3d48d981
NB
5057 return;
5058 }
5059
131e404a
FDBM
5060 evict_inode_truncate_pages(inode);
5061
69e9c6c6
SB
5062 if (inode->i_nlink &&
5063 ((btrfs_root_refs(&root->root_item) != 0 &&
5064 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5065 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5066 goto no_delete;
5067
27919067 5068 if (is_bad_inode(inode))
39279cc3 5069 goto no_delete;
5f39d397 5070
7ab7956e 5071 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5072
7b40b695 5073 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5074 goto no_delete;
c71bf099 5075
76dda93c 5076 if (inode->i_nlink > 0) {
69e9c6c6
SB
5077 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5078 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5079 goto no_delete;
5080 }
5081
aa79021f 5082 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5083 if (ret)
0e8c36a9 5084 goto no_delete;
0e8c36a9 5085
2ff7e61e 5086 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5087 if (!rsv)
4289a667 5088 goto no_delete;
2bd36e7b 5089 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5090 rsv->failfast = 1;
4289a667 5091
6ef06d27 5092 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5093
8082510e 5094 while (1) {
ad80cf50 5095 trans = evict_refill_and_join(root, rsv);
27919067
OS
5096 if (IS_ERR(trans))
5097 goto free_rsv;
7b128766 5098
4289a667
JB
5099 trans->block_rsv = rsv;
5100
d68fc57b 5101 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5102 trans->block_rsv = &fs_info->trans_block_rsv;
5103 btrfs_end_transaction(trans);
5104 btrfs_btree_balance_dirty(fs_info);
5105 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5106 goto free_rsv;
5107 else if (!ret)
8082510e 5108 break;
8082510e 5109 }
5f39d397 5110
4ef31a45 5111 /*
27919067
OS
5112 * Errors here aren't a big deal, it just means we leave orphan items in
5113 * the tree. They will be cleaned up on the next mount. If the inode
5114 * number gets reused, cleanup deletes the orphan item without doing
5115 * anything, and unlink reuses the existing orphan item.
5116 *
5117 * If it turns out that we are dropping too many of these, we might want
5118 * to add a mechanism for retrying these after a commit.
4ef31a45 5119 */
ad80cf50 5120 trans = evict_refill_and_join(root, rsv);
27919067
OS
5121 if (!IS_ERR(trans)) {
5122 trans->block_rsv = rsv;
5123 btrfs_orphan_del(trans, BTRFS_I(inode));
5124 trans->block_rsv = &fs_info->trans_block_rsv;
5125 btrfs_end_transaction(trans);
5126 }
54aa1f4d 5127
0b246afa 5128 if (!(root == fs_info->tree_root ||
581bb050 5129 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5130 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5131
27919067
OS
5132free_rsv:
5133 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5134no_delete:
27919067
OS
5135 /*
5136 * If we didn't successfully delete, the orphan item will still be in
5137 * the tree and we'll retry on the next mount. Again, we might also want
5138 * to retry these periodically in the future.
5139 */
f48d1cf5 5140 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5141 clear_inode(inode);
39279cc3
CM
5142}
5143
5144/*
6bf9e4bd
QW
5145 * Return the key found in the dir entry in the location pointer, fill @type
5146 * with BTRFS_FT_*, and return 0.
5147 *
005d6712
SY
5148 * If no dir entries were found, returns -ENOENT.
5149 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5150 */
5151static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5152 struct btrfs_key *location, u8 *type)
39279cc3
CM
5153{
5154 const char *name = dentry->d_name.name;
5155 int namelen = dentry->d_name.len;
5156 struct btrfs_dir_item *di;
5157 struct btrfs_path *path;
5158 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5159 int ret = 0;
39279cc3
CM
5160
5161 path = btrfs_alloc_path();
d8926bb3
MF
5162 if (!path)
5163 return -ENOMEM;
3954401f 5164
f85b7379
DS
5165 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5166 name, namelen, 0);
3cf5068f
LB
5167 if (IS_ERR_OR_NULL(di)) {
5168 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5169 goto out;
5170 }
d397712b 5171
5f39d397 5172 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5173 if (location->type != BTRFS_INODE_ITEM_KEY &&
5174 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5175 ret = -EUCLEAN;
56a0e706
LB
5176 btrfs_warn(root->fs_info,
5177"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5178 __func__, name, btrfs_ino(BTRFS_I(dir)),
5179 location->objectid, location->type, location->offset);
56a0e706 5180 }
6bf9e4bd
QW
5181 if (!ret)
5182 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5183out:
39279cc3
CM
5184 btrfs_free_path(path);
5185 return ret;
5186}
5187
5188/*
5189 * when we hit a tree root in a directory, the btrfs part of the inode
5190 * needs to be changed to reflect the root directory of the tree root. This
5191 * is kind of like crossing a mount point.
5192 */
2ff7e61e 5193static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5194 struct inode *dir,
5195 struct dentry *dentry,
5196 struct btrfs_key *location,
5197 struct btrfs_root **sub_root)
39279cc3 5198{
4df27c4d
YZ
5199 struct btrfs_path *path;
5200 struct btrfs_root *new_root;
5201 struct btrfs_root_ref *ref;
5202 struct extent_buffer *leaf;
1d4c08e0 5203 struct btrfs_key key;
4df27c4d
YZ
5204 int ret;
5205 int err = 0;
39279cc3 5206
4df27c4d
YZ
5207 path = btrfs_alloc_path();
5208 if (!path) {
5209 err = -ENOMEM;
5210 goto out;
5211 }
39279cc3 5212
4df27c4d 5213 err = -ENOENT;
1d4c08e0
DS
5214 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5215 key.type = BTRFS_ROOT_REF_KEY;
5216 key.offset = location->objectid;
5217
0b246afa 5218 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5219 if (ret) {
5220 if (ret < 0)
5221 err = ret;
5222 goto out;
5223 }
39279cc3 5224
4df27c4d
YZ
5225 leaf = path->nodes[0];
5226 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5227 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5228 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5229 goto out;
39279cc3 5230
4df27c4d
YZ
5231 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5232 (unsigned long)(ref + 1),
5233 dentry->d_name.len);
5234 if (ret)
5235 goto out;
5236
b3b4aa74 5237 btrfs_release_path(path);
4df27c4d 5238
56e9357a 5239 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5240 if (IS_ERR(new_root)) {
5241 err = PTR_ERR(new_root);
5242 goto out;
5243 }
5244
4df27c4d
YZ
5245 *sub_root = new_root;
5246 location->objectid = btrfs_root_dirid(&new_root->root_item);
5247 location->type = BTRFS_INODE_ITEM_KEY;
5248 location->offset = 0;
5249 err = 0;
5250out:
5251 btrfs_free_path(path);
5252 return err;
39279cc3
CM
5253}
5254
5d4f98a2
YZ
5255static void inode_tree_add(struct inode *inode)
5256{
5257 struct btrfs_root *root = BTRFS_I(inode)->root;
5258 struct btrfs_inode *entry;
03e860bd
NP
5259 struct rb_node **p;
5260 struct rb_node *parent;
cef21937 5261 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5262 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5263
1d3382cb 5264 if (inode_unhashed(inode))
76dda93c 5265 return;
e1409cef 5266 parent = NULL;
5d4f98a2 5267 spin_lock(&root->inode_lock);
e1409cef 5268 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5269 while (*p) {
5270 parent = *p;
5271 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5272
37508515 5273 if (ino < btrfs_ino(entry))
03e860bd 5274 p = &parent->rb_left;
37508515 5275 else if (ino > btrfs_ino(entry))
03e860bd 5276 p = &parent->rb_right;
5d4f98a2
YZ
5277 else {
5278 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5279 (I_WILL_FREE | I_FREEING)));
cef21937 5280 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5281 RB_CLEAR_NODE(parent);
5282 spin_unlock(&root->inode_lock);
cef21937 5283 return;
5d4f98a2
YZ
5284 }
5285 }
cef21937
FDBM
5286 rb_link_node(new, parent, p);
5287 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5288 spin_unlock(&root->inode_lock);
5289}
5290
5291static void inode_tree_del(struct inode *inode)
5292{
5293 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5294 int empty = 0;
5d4f98a2 5295
03e860bd 5296 spin_lock(&root->inode_lock);
5d4f98a2 5297 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5298 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5299 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5300 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5301 }
03e860bd 5302 spin_unlock(&root->inode_lock);
76dda93c 5303
69e9c6c6 5304 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5305 spin_lock(&root->inode_lock);
5306 empty = RB_EMPTY_ROOT(&root->inode_tree);
5307 spin_unlock(&root->inode_lock);
5308 if (empty)
5309 btrfs_add_dead_root(root);
5310 }
5311}
5312
5d4f98a2 5313
e02119d5
CM
5314static int btrfs_init_locked_inode(struct inode *inode, void *p)
5315{
5316 struct btrfs_iget_args *args = p;
0202e83f
DS
5317
5318 inode->i_ino = args->ino;
5319 BTRFS_I(inode)->location.objectid = args->ino;
5320 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5321 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5322 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5323 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5324 return 0;
5325}
5326
5327static int btrfs_find_actor(struct inode *inode, void *opaque)
5328{
5329 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5330
5331 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5332 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5333}
5334
0202e83f 5335static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5336 struct btrfs_root *root)
39279cc3
CM
5337{
5338 struct inode *inode;
5339 struct btrfs_iget_args args;
0202e83f 5340 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5341
0202e83f 5342 args.ino = ino;
39279cc3
CM
5343 args.root = root;
5344
778ba82b 5345 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5346 btrfs_init_locked_inode,
5347 (void *)&args);
5348 return inode;
5349}
5350
4c66e0d4 5351/*
0202e83f 5352 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5353 * Path can be preallocated to prevent recursing back to iget through
5354 * allocator. NULL is also valid but may require an additional allocation
5355 * later.
1a54ef8c 5356 */
0202e83f 5357struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5358 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5359{
5360 struct inode *inode;
5361
0202e83f 5362 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5363 if (!inode)
5d4f98a2 5364 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5365
5366 if (inode->i_state & I_NEW) {
67710892
FM
5367 int ret;
5368
4222ea71 5369 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5370 if (!ret) {
1748f843
MF
5371 inode_tree_add(inode);
5372 unlock_new_inode(inode);
1748f843 5373 } else {
f5b3a417
AV
5374 iget_failed(inode);
5375 /*
5376 * ret > 0 can come from btrfs_search_slot called by
5377 * btrfs_read_locked_inode, this means the inode item
5378 * was not found.
5379 */
5380 if (ret > 0)
5381 ret = -ENOENT;
5382 inode = ERR_PTR(ret);
1748f843
MF
5383 }
5384 }
5385
1a54ef8c
BR
5386 return inode;
5387}
5388
0202e83f 5389struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5390{
0202e83f 5391 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5392}
5393
4df27c4d
YZ
5394static struct inode *new_simple_dir(struct super_block *s,
5395 struct btrfs_key *key,
5396 struct btrfs_root *root)
5397{
5398 struct inode *inode = new_inode(s);
5399
5400 if (!inode)
5401 return ERR_PTR(-ENOMEM);
5402
5c8fd99f 5403 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5404 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5405 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5406
5407 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5408 /*
5409 * We only need lookup, the rest is read-only and there's no inode
5410 * associated with the dentry
5411 */
5412 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5413 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5414 inode->i_fop = &simple_dir_operations;
5415 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5416 inode->i_mtime = current_time(inode);
9cc97d64 5417 inode->i_atime = inode->i_mtime;
5418 inode->i_ctime = inode->i_mtime;
d3c6be6f 5419 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5420
5421 return inode;
5422}
5423
6bf9e4bd
QW
5424static inline u8 btrfs_inode_type(struct inode *inode)
5425{
5426 /*
5427 * Compile-time asserts that generic FT_* types still match
5428 * BTRFS_FT_* types
5429 */
5430 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5431 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5432 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5433 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5434 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5435 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5436 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5437 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5438
5439 return fs_umode_to_ftype(inode->i_mode);
5440}
5441
3de4586c 5442struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5443{
0b246afa 5444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5445 struct inode *inode;
4df27c4d 5446 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5447 struct btrfs_root *sub_root = root;
5448 struct btrfs_key location;
6bf9e4bd 5449 u8 di_type = 0;
b4aff1f8 5450 int ret = 0;
39279cc3
CM
5451
5452 if (dentry->d_name.len > BTRFS_NAME_LEN)
5453 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5454
6bf9e4bd 5455 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5456 if (ret < 0)
5457 return ERR_PTR(ret);
5f39d397 5458
4df27c4d 5459 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5460 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5461 if (IS_ERR(inode))
5462 return inode;
5463
5464 /* Do extra check against inode mode with di_type */
5465 if (btrfs_inode_type(inode) != di_type) {
5466 btrfs_crit(fs_info,
5467"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5468 inode->i_mode, btrfs_inode_type(inode),
5469 di_type);
5470 iput(inode);
5471 return ERR_PTR(-EUCLEAN);
5472 }
4df27c4d
YZ
5473 return inode;
5474 }
5475
2ff7e61e 5476 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5477 &location, &sub_root);
5478 if (ret < 0) {
5479 if (ret != -ENOENT)
5480 inode = ERR_PTR(ret);
5481 else
5482 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5483 } else {
0202e83f 5484 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5485 }
8727002f 5486 if (root != sub_root)
00246528 5487 btrfs_put_root(sub_root);
76dda93c 5488
34d19bad 5489 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5490 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5491 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5492 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5493 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5494 if (ret) {
5495 iput(inode);
66b4ffd1 5496 inode = ERR_PTR(ret);
01cd3367 5497 }
c71bf099
YZ
5498 }
5499
3de4586c
CM
5500 return inode;
5501}
5502
fe15ce44 5503static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5504{
5505 struct btrfs_root *root;
2b0143b5 5506 struct inode *inode = d_inode(dentry);
76dda93c 5507
848cce0d 5508 if (!inode && !IS_ROOT(dentry))
2b0143b5 5509 inode = d_inode(dentry->d_parent);
76dda93c 5510
848cce0d
LZ
5511 if (inode) {
5512 root = BTRFS_I(inode)->root;
efefb143
YZ
5513 if (btrfs_root_refs(&root->root_item) == 0)
5514 return 1;
848cce0d 5515
4a0cc7ca 5516 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5517 return 1;
efefb143 5518 }
76dda93c
YZ
5519 return 0;
5520}
5521
3de4586c 5522static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5523 unsigned int flags)
3de4586c 5524{
3837d208 5525 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5526
3837d208
AV
5527 if (inode == ERR_PTR(-ENOENT))
5528 inode = NULL;
41d28bca 5529 return d_splice_alias(inode, dentry);
39279cc3
CM
5530}
5531
23b5ec74
JB
5532/*
5533 * All this infrastructure exists because dir_emit can fault, and we are holding
5534 * the tree lock when doing readdir. For now just allocate a buffer and copy
5535 * our information into that, and then dir_emit from the buffer. This is
5536 * similar to what NFS does, only we don't keep the buffer around in pagecache
5537 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5538 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5539 * tree lock.
5540 */
5541static int btrfs_opendir(struct inode *inode, struct file *file)
5542{
5543 struct btrfs_file_private *private;
5544
5545 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5546 if (!private)
5547 return -ENOMEM;
5548 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5549 if (!private->filldir_buf) {
5550 kfree(private);
5551 return -ENOMEM;
5552 }
5553 file->private_data = private;
5554 return 0;
5555}
5556
5557struct dir_entry {
5558 u64 ino;
5559 u64 offset;
5560 unsigned type;
5561 int name_len;
5562};
5563
5564static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5565{
5566 while (entries--) {
5567 struct dir_entry *entry = addr;
5568 char *name = (char *)(entry + 1);
5569
92d32170
DS
5570 ctx->pos = get_unaligned(&entry->offset);
5571 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5572 get_unaligned(&entry->ino),
5573 get_unaligned(&entry->type)))
23b5ec74 5574 return 1;
92d32170
DS
5575 addr += sizeof(struct dir_entry) +
5576 get_unaligned(&entry->name_len);
23b5ec74
JB
5577 ctx->pos++;
5578 }
5579 return 0;
5580}
5581
9cdda8d3 5582static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5583{
9cdda8d3 5584 struct inode *inode = file_inode(file);
39279cc3 5585 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5586 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5587 struct btrfs_dir_item *di;
5588 struct btrfs_key key;
5f39d397 5589 struct btrfs_key found_key;
39279cc3 5590 struct btrfs_path *path;
23b5ec74 5591 void *addr;
16cdcec7
MX
5592 struct list_head ins_list;
5593 struct list_head del_list;
39279cc3 5594 int ret;
5f39d397 5595 struct extent_buffer *leaf;
39279cc3 5596 int slot;
5f39d397
CM
5597 char *name_ptr;
5598 int name_len;
23b5ec74
JB
5599 int entries = 0;
5600 int total_len = 0;
02dbfc99 5601 bool put = false;
c2951f32 5602 struct btrfs_key location;
5f39d397 5603
9cdda8d3
AV
5604 if (!dir_emit_dots(file, ctx))
5605 return 0;
5606
49593bfa 5607 path = btrfs_alloc_path();
16cdcec7
MX
5608 if (!path)
5609 return -ENOMEM;
ff5714cc 5610
23b5ec74 5611 addr = private->filldir_buf;
e4058b54 5612 path->reada = READA_FORWARD;
49593bfa 5613
c2951f32
JM
5614 INIT_LIST_HEAD(&ins_list);
5615 INIT_LIST_HEAD(&del_list);
5616 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5617
23b5ec74 5618again:
c2951f32 5619 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5620 key.offset = ctx->pos;
4a0cc7ca 5621 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5622
39279cc3
CM
5623 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5624 if (ret < 0)
5625 goto err;
49593bfa
DW
5626
5627 while (1) {
23b5ec74
JB
5628 struct dir_entry *entry;
5629
5f39d397 5630 leaf = path->nodes[0];
39279cc3 5631 slot = path->slots[0];
b9e03af0
LZ
5632 if (slot >= btrfs_header_nritems(leaf)) {
5633 ret = btrfs_next_leaf(root, path);
5634 if (ret < 0)
5635 goto err;
5636 else if (ret > 0)
5637 break;
5638 continue;
39279cc3 5639 }
3de4586c 5640
5f39d397
CM
5641 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5642
5643 if (found_key.objectid != key.objectid)
39279cc3 5644 break;
c2951f32 5645 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5646 break;
9cdda8d3 5647 if (found_key.offset < ctx->pos)
b9e03af0 5648 goto next;
c2951f32 5649 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5650 goto next;
39279cc3 5651 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5652 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5653 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5654 PAGE_SIZE) {
5655 btrfs_release_path(path);
5656 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5657 if (ret)
5658 goto nopos;
5659 addr = private->filldir_buf;
5660 entries = 0;
5661 total_len = 0;
5662 goto again;
c2951f32 5663 }
23b5ec74
JB
5664
5665 entry = addr;
92d32170 5666 put_unaligned(name_len, &entry->name_len);
23b5ec74 5667 name_ptr = (char *)(entry + 1);
c2951f32
JM
5668 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5669 name_len);
7d157c3d 5670 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5671 &entry->type);
c2951f32 5672 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5673 put_unaligned(location.objectid, &entry->ino);
5674 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5675 entries++;
5676 addr += sizeof(struct dir_entry) + name_len;
5677 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5678next:
5679 path->slots[0]++;
39279cc3 5680 }
23b5ec74
JB
5681 btrfs_release_path(path);
5682
5683 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5684 if (ret)
5685 goto nopos;
49593bfa 5686
d2fbb2b5 5687 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5688 if (ret)
bc4ef759
DS
5689 goto nopos;
5690
db62efbb
ZB
5691 /*
5692 * Stop new entries from being returned after we return the last
5693 * entry.
5694 *
5695 * New directory entries are assigned a strictly increasing
5696 * offset. This means that new entries created during readdir
5697 * are *guaranteed* to be seen in the future by that readdir.
5698 * This has broken buggy programs which operate on names as
5699 * they're returned by readdir. Until we re-use freed offsets
5700 * we have this hack to stop new entries from being returned
5701 * under the assumption that they'll never reach this huge
5702 * offset.
5703 *
5704 * This is being careful not to overflow 32bit loff_t unless the
5705 * last entry requires it because doing so has broken 32bit apps
5706 * in the past.
5707 */
c2951f32
JM
5708 if (ctx->pos >= INT_MAX)
5709 ctx->pos = LLONG_MAX;
5710 else
5711 ctx->pos = INT_MAX;
39279cc3
CM
5712nopos:
5713 ret = 0;
5714err:
02dbfc99
OS
5715 if (put)
5716 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5717 btrfs_free_path(path);
39279cc3
CM
5718 return ret;
5719}
5720
39279cc3 5721/*
54aa1f4d 5722 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5723 * inode changes. But, it is most likely to find the inode in cache.
5724 * FIXME, needs more benchmarking...there are no reasons other than performance
5725 * to keep or drop this code.
5726 */
48a3b636 5727static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5728{
2ff7e61e 5729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5730 struct btrfs_root *root = BTRFS_I(inode)->root;
5731 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5732 int ret;
5733
72ac3c0d 5734 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5735 return 0;
39279cc3 5736
7a7eaa40 5737 trans = btrfs_join_transaction(root);
22c44fe6
JB
5738 if (IS_ERR(trans))
5739 return PTR_ERR(trans);
8929ecfa
YZ
5740
5741 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5742 if (ret && ret == -ENOSPC) {
5743 /* whoops, lets try again with the full transaction */
3a45bb20 5744 btrfs_end_transaction(trans);
94b60442 5745 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5746 if (IS_ERR(trans))
5747 return PTR_ERR(trans);
8929ecfa 5748
94b60442 5749 ret = btrfs_update_inode(trans, root, inode);
94b60442 5750 }
3a45bb20 5751 btrfs_end_transaction(trans);
16cdcec7 5752 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5753 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5754
5755 return ret;
5756}
5757
5758/*
5759 * This is a copy of file_update_time. We need this so we can return error on
5760 * ENOSPC for updating the inode in the case of file write and mmap writes.
5761 */
95582b00 5762static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5763 int flags)
22c44fe6 5764{
2bc55652 5765 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5766 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5767
5768 if (btrfs_root_readonly(root))
5769 return -EROFS;
5770
e41f941a 5771 if (flags & S_VERSION)
3a8c7231 5772 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5773 if (flags & S_CTIME)
5774 inode->i_ctime = *now;
5775 if (flags & S_MTIME)
5776 inode->i_mtime = *now;
5777 if (flags & S_ATIME)
5778 inode->i_atime = *now;
3a8c7231 5779 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5780}
5781
d352ac68
CM
5782/*
5783 * find the highest existing sequence number in a directory
5784 * and then set the in-memory index_cnt variable to reflect
5785 * free sequence numbers
5786 */
4c570655 5787static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5788{
4c570655 5789 struct btrfs_root *root = inode->root;
aec7477b
JB
5790 struct btrfs_key key, found_key;
5791 struct btrfs_path *path;
5792 struct extent_buffer *leaf;
5793 int ret;
5794
4c570655 5795 key.objectid = btrfs_ino(inode);
962a298f 5796 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5797 key.offset = (u64)-1;
5798
5799 path = btrfs_alloc_path();
5800 if (!path)
5801 return -ENOMEM;
5802
5803 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5804 if (ret < 0)
5805 goto out;
5806 /* FIXME: we should be able to handle this */
5807 if (ret == 0)
5808 goto out;
5809 ret = 0;
5810
5811 /*
5812 * MAGIC NUMBER EXPLANATION:
5813 * since we search a directory based on f_pos we have to start at 2
5814 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5815 * else has to start at 2
5816 */
5817 if (path->slots[0] == 0) {
4c570655 5818 inode->index_cnt = 2;
aec7477b
JB
5819 goto out;
5820 }
5821
5822 path->slots[0]--;
5823
5824 leaf = path->nodes[0];
5825 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5826
4c570655 5827 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5828 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5829 inode->index_cnt = 2;
aec7477b
JB
5830 goto out;
5831 }
5832
4c570655 5833 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5834out:
5835 btrfs_free_path(path);
5836 return ret;
5837}
5838
d352ac68
CM
5839/*
5840 * helper to find a free sequence number in a given directory. This current
5841 * code is very simple, later versions will do smarter things in the btree
5842 */
877574e2 5843int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5844{
5845 int ret = 0;
5846
877574e2
NB
5847 if (dir->index_cnt == (u64)-1) {
5848 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5849 if (ret) {
5850 ret = btrfs_set_inode_index_count(dir);
5851 if (ret)
5852 return ret;
5853 }
aec7477b
JB
5854 }
5855
877574e2
NB
5856 *index = dir->index_cnt;
5857 dir->index_cnt++;
aec7477b
JB
5858
5859 return ret;
5860}
5861
b0d5d10f
CM
5862static int btrfs_insert_inode_locked(struct inode *inode)
5863{
5864 struct btrfs_iget_args args;
0202e83f
DS
5865
5866 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5867 args.root = BTRFS_I(inode)->root;
5868
5869 return insert_inode_locked4(inode,
5870 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5871 btrfs_find_actor, &args);
5872}
5873
19aee8de
AJ
5874/*
5875 * Inherit flags from the parent inode.
5876 *
5877 * Currently only the compression flags and the cow flags are inherited.
5878 */
5879static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5880{
5881 unsigned int flags;
5882
5883 if (!dir)
5884 return;
5885
5886 flags = BTRFS_I(dir)->flags;
5887
5888 if (flags & BTRFS_INODE_NOCOMPRESS) {
5889 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5890 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5891 } else if (flags & BTRFS_INODE_COMPRESS) {
5892 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5893 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5894 }
5895
5896 if (flags & BTRFS_INODE_NODATACOW) {
5897 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5898 if (S_ISREG(inode->i_mode))
5899 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5900 }
5901
7b6a221e 5902 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5903}
5904
39279cc3
CM
5905static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5906 struct btrfs_root *root,
aec7477b 5907 struct inode *dir,
9c58309d 5908 const char *name, int name_len,
175a4eb7
AV
5909 u64 ref_objectid, u64 objectid,
5910 umode_t mode, u64 *index)
39279cc3 5911{
0b246afa 5912 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5913 struct inode *inode;
5f39d397 5914 struct btrfs_inode_item *inode_item;
39279cc3 5915 struct btrfs_key *location;
5f39d397 5916 struct btrfs_path *path;
9c58309d
CM
5917 struct btrfs_inode_ref *ref;
5918 struct btrfs_key key[2];
5919 u32 sizes[2];
ef3b9af5 5920 int nitems = name ? 2 : 1;
9c58309d 5921 unsigned long ptr;
11a19a90 5922 unsigned int nofs_flag;
39279cc3 5923 int ret;
39279cc3 5924
5f39d397 5925 path = btrfs_alloc_path();
d8926bb3
MF
5926 if (!path)
5927 return ERR_PTR(-ENOMEM);
5f39d397 5928
11a19a90 5929 nofs_flag = memalloc_nofs_save();
0b246afa 5930 inode = new_inode(fs_info->sb);
11a19a90 5931 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5932 if (!inode) {
5933 btrfs_free_path(path);
39279cc3 5934 return ERR_PTR(-ENOMEM);
8fb27640 5935 }
39279cc3 5936
5762b5c9
FM
5937 /*
5938 * O_TMPFILE, set link count to 0, so that after this point,
5939 * we fill in an inode item with the correct link count.
5940 */
5941 if (!name)
5942 set_nlink(inode, 0);
5943
581bb050
LZ
5944 /*
5945 * we have to initialize this early, so we can reclaim the inode
5946 * number if we fail afterwards in this function.
5947 */
5948 inode->i_ino = objectid;
5949
ef3b9af5 5950 if (dir && name) {
1abe9b8a 5951 trace_btrfs_inode_request(dir);
5952
877574e2 5953 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5954 if (ret) {
8fb27640 5955 btrfs_free_path(path);
09771430 5956 iput(inode);
aec7477b 5957 return ERR_PTR(ret);
09771430 5958 }
ef3b9af5
FM
5959 } else if (dir) {
5960 *index = 0;
aec7477b
JB
5961 }
5962 /*
5963 * index_cnt is ignored for everything but a dir,
df6703e1 5964 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5965 * number
5966 */
5967 BTRFS_I(inode)->index_cnt = 2;
67de1176 5968 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5969 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5970 BTRFS_I(inode)->generation = trans->transid;
76195853 5971 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5972
5dc562c5
JB
5973 /*
5974 * We could have gotten an inode number from somebody who was fsynced
5975 * and then removed in this same transaction, so let's just set full
5976 * sync since it will be a full sync anyway and this will blow away the
5977 * old info in the log.
5978 */
5979 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5980
9c58309d 5981 key[0].objectid = objectid;
962a298f 5982 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5983 key[0].offset = 0;
5984
9c58309d 5985 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5986
5987 if (name) {
5988 /*
5989 * Start new inodes with an inode_ref. This is slightly more
5990 * efficient for small numbers of hard links since they will
5991 * be packed into one item. Extended refs will kick in if we
5992 * add more hard links than can fit in the ref item.
5993 */
5994 key[1].objectid = objectid;
962a298f 5995 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5996 key[1].offset = ref_objectid;
5997
5998 sizes[1] = name_len + sizeof(*ref);
5999 }
9c58309d 6000
b0d5d10f
CM
6001 location = &BTRFS_I(inode)->location;
6002 location->objectid = objectid;
6003 location->offset = 0;
962a298f 6004 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6005
6006 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6007 if (ret < 0) {
6008 iput(inode);
b0d5d10f 6009 goto fail;
32955c54 6010 }
b0d5d10f 6011
b9473439 6012 path->leave_spinning = 1;
ef3b9af5 6013 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6014 if (ret != 0)
b0d5d10f 6015 goto fail_unlock;
5f39d397 6016
ecc11fab 6017 inode_init_owner(inode, dir, mode);
a76a3cd4 6018 inode_set_bytes(inode, 0);
9cc97d64 6019
c2050a45 6020 inode->i_mtime = current_time(inode);
9cc97d64 6021 inode->i_atime = inode->i_mtime;
6022 inode->i_ctime = inode->i_mtime;
d3c6be6f 6023 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6024
5f39d397
CM
6025 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6026 struct btrfs_inode_item);
b159fa28 6027 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6028 sizeof(*inode_item));
e02119d5 6029 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6030
ef3b9af5
FM
6031 if (name) {
6032 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6033 struct btrfs_inode_ref);
6034 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6035 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6036 ptr = (unsigned long)(ref + 1);
6037 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6038 }
9c58309d 6039
5f39d397
CM
6040 btrfs_mark_buffer_dirty(path->nodes[0]);
6041 btrfs_free_path(path);
6042
6cbff00f
CH
6043 btrfs_inherit_iflags(inode, dir);
6044
569254b0 6045 if (S_ISREG(mode)) {
0b246afa 6046 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6047 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6048 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6049 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6050 BTRFS_INODE_NODATASUM;
94272164
CM
6051 }
6052
5d4f98a2 6053 inode_tree_add(inode);
1abe9b8a 6054
6055 trace_btrfs_inode_new(inode);
d9094414 6056 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6057
8ea05e3a
AB
6058 btrfs_update_root_times(trans, root);
6059
63541927
FDBM
6060 ret = btrfs_inode_inherit_props(trans, inode, dir);
6061 if (ret)
0b246afa 6062 btrfs_err(fs_info,
63541927 6063 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6064 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6065
39279cc3 6066 return inode;
b0d5d10f
CM
6067
6068fail_unlock:
32955c54 6069 discard_new_inode(inode);
5f39d397 6070fail:
ef3b9af5 6071 if (dir && name)
aec7477b 6072 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6073 btrfs_free_path(path);
6074 return ERR_PTR(ret);
39279cc3
CM
6075}
6076
d352ac68
CM
6077/*
6078 * utility function to add 'inode' into 'parent_inode' with
6079 * a give name and a given sequence number.
6080 * if 'add_backref' is true, also insert a backref from the
6081 * inode to the parent directory.
6082 */
e02119d5 6083int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6084 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6085 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6086{
4df27c4d 6087 int ret = 0;
39279cc3 6088 struct btrfs_key key;
db0a669f
NB
6089 struct btrfs_root *root = parent_inode->root;
6090 u64 ino = btrfs_ino(inode);
6091 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6092
33345d01 6093 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6094 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6095 } else {
33345d01 6096 key.objectid = ino;
962a298f 6097 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6098 key.offset = 0;
6099 }
6100
33345d01 6101 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6102 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6103 root->root_key.objectid, parent_ino,
6104 index, name, name_len);
4df27c4d 6105 } else if (add_backref) {
33345d01
LZ
6106 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6107 parent_ino, index);
4df27c4d 6108 }
39279cc3 6109
79787eaa
JM
6110 /* Nothing to clean up yet */
6111 if (ret)
6112 return ret;
4df27c4d 6113
684572df 6114 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6115 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6116 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6117 goto fail_dir_item;
6118 else if (ret) {
66642832 6119 btrfs_abort_transaction(trans, ret);
79787eaa 6120 return ret;
39279cc3 6121 }
79787eaa 6122
db0a669f 6123 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6124 name_len * 2);
db0a669f 6125 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6126 /*
6127 * If we are replaying a log tree, we do not want to update the mtime
6128 * and ctime of the parent directory with the current time, since the
6129 * log replay procedure is responsible for setting them to their correct
6130 * values (the ones it had when the fsync was done).
6131 */
6132 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6133 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6134
6135 parent_inode->vfs_inode.i_mtime = now;
6136 parent_inode->vfs_inode.i_ctime = now;
6137 }
db0a669f 6138 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6139 if (ret)
66642832 6140 btrfs_abort_transaction(trans, ret);
39279cc3 6141 return ret;
fe66a05a
CM
6142
6143fail_dir_item:
6144 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6145 u64 local_index;
6146 int err;
3ee1c553 6147 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6148 root->root_key.objectid, parent_ino,
6149 &local_index, name, name_len);
1690dd41
JT
6150 if (err)
6151 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6152 } else if (add_backref) {
6153 u64 local_index;
6154 int err;
6155
6156 err = btrfs_del_inode_ref(trans, root, name, name_len,
6157 ino, parent_ino, &local_index);
1690dd41
JT
6158 if (err)
6159 btrfs_abort_transaction(trans, err);
fe66a05a 6160 }
1690dd41
JT
6161
6162 /* Return the original error code */
fe66a05a 6163 return ret;
39279cc3
CM
6164}
6165
6166static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6167 struct btrfs_inode *dir, struct dentry *dentry,
6168 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6169{
a1b075d2
JB
6170 int err = btrfs_add_link(trans, dir, inode,
6171 dentry->d_name.name, dentry->d_name.len,
6172 backref, index);
39279cc3
CM
6173 if (err > 0)
6174 err = -EEXIST;
6175 return err;
6176}
6177
618e21d5 6178static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6179 umode_t mode, dev_t rdev)
618e21d5 6180{
2ff7e61e 6181 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6182 struct btrfs_trans_handle *trans;
6183 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6184 struct inode *inode = NULL;
618e21d5 6185 int err;
618e21d5 6186 u64 objectid;
00e4e6b3 6187 u64 index = 0;
618e21d5 6188
9ed74f2d
JB
6189 /*
6190 * 2 for inode item and ref
6191 * 2 for dir items
6192 * 1 for xattr if selinux is on
6193 */
a22285a6
YZ
6194 trans = btrfs_start_transaction(root, 5);
6195 if (IS_ERR(trans))
6196 return PTR_ERR(trans);
1832a6d5 6197
581bb050
LZ
6198 err = btrfs_find_free_ino(root, &objectid);
6199 if (err)
6200 goto out_unlock;
6201
aec7477b 6202 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6203 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6204 mode, &index);
7cf96da3
TI
6205 if (IS_ERR(inode)) {
6206 err = PTR_ERR(inode);
32955c54 6207 inode = NULL;
618e21d5 6208 goto out_unlock;
7cf96da3 6209 }
618e21d5 6210
ad19db71
CS
6211 /*
6212 * If the active LSM wants to access the inode during
6213 * d_instantiate it needs these. Smack checks to see
6214 * if the filesystem supports xattrs by looking at the
6215 * ops vector.
6216 */
ad19db71 6217 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6218 init_special_inode(inode, inode->i_mode, rdev);
6219
6220 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6221 if (err)
32955c54 6222 goto out_unlock;
b0d5d10f 6223
cef415af
NB
6224 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6225 0, index);
32955c54
AV
6226 if (err)
6227 goto out_unlock;
6228
6229 btrfs_update_inode(trans, root, inode);
6230 d_instantiate_new(dentry, inode);
b0d5d10f 6231
618e21d5 6232out_unlock:
3a45bb20 6233 btrfs_end_transaction(trans);
2ff7e61e 6234 btrfs_btree_balance_dirty(fs_info);
32955c54 6235 if (err && inode) {
618e21d5 6236 inode_dec_link_count(inode);
32955c54 6237 discard_new_inode(inode);
618e21d5 6238 }
618e21d5
JB
6239 return err;
6240}
6241
39279cc3 6242static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6243 umode_t mode, bool excl)
39279cc3 6244{
2ff7e61e 6245 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6246 struct btrfs_trans_handle *trans;
6247 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6248 struct inode *inode = NULL;
a22285a6 6249 int err;
39279cc3 6250 u64 objectid;
00e4e6b3 6251 u64 index = 0;
39279cc3 6252
9ed74f2d
JB
6253 /*
6254 * 2 for inode item and ref
6255 * 2 for dir items
6256 * 1 for xattr if selinux is on
6257 */
a22285a6
YZ
6258 trans = btrfs_start_transaction(root, 5);
6259 if (IS_ERR(trans))
6260 return PTR_ERR(trans);
9ed74f2d 6261
581bb050
LZ
6262 err = btrfs_find_free_ino(root, &objectid);
6263 if (err)
6264 goto out_unlock;
6265
aec7477b 6266 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6267 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6268 mode, &index);
7cf96da3
TI
6269 if (IS_ERR(inode)) {
6270 err = PTR_ERR(inode);
32955c54 6271 inode = NULL;
39279cc3 6272 goto out_unlock;
7cf96da3 6273 }
ad19db71
CS
6274 /*
6275 * If the active LSM wants to access the inode during
6276 * d_instantiate it needs these. Smack checks to see
6277 * if the filesystem supports xattrs by looking at the
6278 * ops vector.
6279 */
6280 inode->i_fop = &btrfs_file_operations;
6281 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6282 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6283
6284 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6285 if (err)
32955c54 6286 goto out_unlock;
b0d5d10f
CM
6287
6288 err = btrfs_update_inode(trans, root, inode);
6289 if (err)
32955c54 6290 goto out_unlock;
ad19db71 6291
cef415af
NB
6292 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6293 0, index);
39279cc3 6294 if (err)
32955c54 6295 goto out_unlock;
43baa579 6296
43baa579 6297 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6298 d_instantiate_new(dentry, inode);
43baa579 6299
39279cc3 6300out_unlock:
3a45bb20 6301 btrfs_end_transaction(trans);
32955c54 6302 if (err && inode) {
39279cc3 6303 inode_dec_link_count(inode);
32955c54 6304 discard_new_inode(inode);
39279cc3 6305 }
2ff7e61e 6306 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6307 return err;
6308}
6309
6310static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6311 struct dentry *dentry)
6312{
271dba45 6313 struct btrfs_trans_handle *trans = NULL;
39279cc3 6314 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6315 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6317 u64 index;
39279cc3
CM
6318 int err;
6319 int drop_inode = 0;
6320
4a8be425 6321 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6322 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6323 return -EXDEV;
4a8be425 6324
f186373f 6325 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6326 return -EMLINK;
4a8be425 6327
877574e2 6328 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6329 if (err)
6330 goto fail;
6331
a22285a6 6332 /*
7e6b6465 6333 * 2 items for inode and inode ref
a22285a6 6334 * 2 items for dir items
7e6b6465 6335 * 1 item for parent inode
399b0bbf 6336 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6337 */
399b0bbf 6338 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6339 if (IS_ERR(trans)) {
6340 err = PTR_ERR(trans);
271dba45 6341 trans = NULL;
a22285a6
YZ
6342 goto fail;
6343 }
5f39d397 6344
67de1176
MX
6345 /* There are several dir indexes for this inode, clear the cache. */
6346 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6347 inc_nlink(inode);
0c4d2d95 6348 inode_inc_iversion(inode);
c2050a45 6349 inode->i_ctime = current_time(inode);
7de9c6ee 6350 ihold(inode);
e9976151 6351 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6352
cef415af
NB
6353 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6354 1, index);
5f39d397 6355
a5719521 6356 if (err) {
54aa1f4d 6357 drop_inode = 1;
a5719521 6358 } else {
10d9f309 6359 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6360 int ret;
6361
a5719521 6362 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6363 if (err)
6364 goto fail;
ef3b9af5
FM
6365 if (inode->i_nlink == 1) {
6366 /*
6367 * If new hard link count is 1, it's a file created
6368 * with open(2) O_TMPFILE flag.
6369 */
3d6ae7bb 6370 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6371 if (err)
6372 goto fail;
6373 }
08c422c2 6374 d_instantiate(dentry, inode);
d4682ba0
FM
6375 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6376 true, NULL);
6377 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6378 err = btrfs_commit_transaction(trans);
6379 trans = NULL;
6380 }
a5719521 6381 }
39279cc3 6382
1832a6d5 6383fail:
271dba45 6384 if (trans)
3a45bb20 6385 btrfs_end_transaction(trans);
39279cc3
CM
6386 if (drop_inode) {
6387 inode_dec_link_count(inode);
6388 iput(inode);
6389 }
2ff7e61e 6390 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6391 return err;
6392}
6393
18bb1db3 6394static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6395{
2ff7e61e 6396 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6397 struct inode *inode = NULL;
39279cc3
CM
6398 struct btrfs_trans_handle *trans;
6399 struct btrfs_root *root = BTRFS_I(dir)->root;
6400 int err = 0;
b9d86667 6401 u64 objectid = 0;
00e4e6b3 6402 u64 index = 0;
39279cc3 6403
9ed74f2d
JB
6404 /*
6405 * 2 items for inode and ref
6406 * 2 items for dir items
6407 * 1 for xattr if selinux is on
6408 */
a22285a6
YZ
6409 trans = btrfs_start_transaction(root, 5);
6410 if (IS_ERR(trans))
6411 return PTR_ERR(trans);
39279cc3 6412
581bb050
LZ
6413 err = btrfs_find_free_ino(root, &objectid);
6414 if (err)
6415 goto out_fail;
6416
aec7477b 6417 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6418 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6419 S_IFDIR | mode, &index);
39279cc3
CM
6420 if (IS_ERR(inode)) {
6421 err = PTR_ERR(inode);
32955c54 6422 inode = NULL;
39279cc3
CM
6423 goto out_fail;
6424 }
5f39d397 6425
b0d5d10f
CM
6426 /* these must be set before we unlock the inode */
6427 inode->i_op = &btrfs_dir_inode_operations;
6428 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6429
2a7dba39 6430 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6431 if (err)
32955c54 6432 goto out_fail;
39279cc3 6433
6ef06d27 6434 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6435 err = btrfs_update_inode(trans, root, inode);
6436 if (err)
32955c54 6437 goto out_fail;
5f39d397 6438
db0a669f
NB
6439 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6440 dentry->d_name.name,
6441 dentry->d_name.len, 0, index);
39279cc3 6442 if (err)
32955c54 6443 goto out_fail;
5f39d397 6444
1e2e547a 6445 d_instantiate_new(dentry, inode);
39279cc3
CM
6446
6447out_fail:
3a45bb20 6448 btrfs_end_transaction(trans);
32955c54 6449 if (err && inode) {
c7cfb8a5 6450 inode_dec_link_count(inode);
32955c54 6451 discard_new_inode(inode);
c7cfb8a5 6452 }
2ff7e61e 6453 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6454 return err;
6455}
6456
c8b97818 6457static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6458 struct page *page,
c8b97818
CM
6459 size_t pg_offset, u64 extent_offset,
6460 struct btrfs_file_extent_item *item)
6461{
6462 int ret;
6463 struct extent_buffer *leaf = path->nodes[0];
6464 char *tmp;
6465 size_t max_size;
6466 unsigned long inline_size;
6467 unsigned long ptr;
261507a0 6468 int compress_type;
c8b97818
CM
6469
6470 WARN_ON(pg_offset != 0);
261507a0 6471 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6472 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6473 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6474 btrfs_item_nr(path->slots[0]));
c8b97818 6475 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6476 if (!tmp)
6477 return -ENOMEM;
c8b97818
CM
6478 ptr = btrfs_file_extent_inline_start(item);
6479
6480 read_extent_buffer(leaf, tmp, ptr, inline_size);
6481
09cbfeaf 6482 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6483 ret = btrfs_decompress(compress_type, tmp, page,
6484 extent_offset, inline_size, max_size);
e1699d2d
ZB
6485
6486 /*
6487 * decompression code contains a memset to fill in any space between the end
6488 * of the uncompressed data and the end of max_size in case the decompressed
6489 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6490 * the end of an inline extent and the beginning of the next block, so we
6491 * cover that region here.
6492 */
6493
6494 if (max_size + pg_offset < PAGE_SIZE) {
6495 char *map = kmap(page);
6496 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6497 kunmap(page);
6498 }
c8b97818 6499 kfree(tmp);
166ae5a4 6500 return ret;
c8b97818
CM
6501}
6502
39b07b5d
OS
6503/**
6504 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6505 * @inode: file to search in
6506 * @page: page to read extent data into if the extent is inline
6507 * @pg_offset: offset into @page to copy to
6508 * @start: file offset
6509 * @len: length of range starting at @start
6510 *
6511 * This returns the first &struct extent_map which overlaps with the given
6512 * range, reading it from the B-tree and caching it if necessary. Note that
6513 * there may be more extents which overlap the given range after the returned
6514 * extent_map.
d352ac68 6515 *
39b07b5d
OS
6516 * If @page is not NULL and the extent is inline, this also reads the extent
6517 * data directly into the page and marks the extent up to date in the io_tree.
6518 *
6519 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6520 */
fc4f21b1 6521struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6522 struct page *page, size_t pg_offset,
6523 u64 start, u64 len)
a52d9a80 6524{
3ffbd68c 6525 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6526 int ret;
6527 int err = 0;
a52d9a80
CM
6528 u64 extent_start = 0;
6529 u64 extent_end = 0;
fc4f21b1 6530 u64 objectid = btrfs_ino(inode);
7e74e235 6531 int extent_type = -1;
f421950f 6532 struct btrfs_path *path = NULL;
fc4f21b1 6533 struct btrfs_root *root = inode->root;
a52d9a80 6534 struct btrfs_file_extent_item *item;
5f39d397
CM
6535 struct extent_buffer *leaf;
6536 struct btrfs_key found_key;
a52d9a80 6537 struct extent_map *em = NULL;
fc4f21b1
NB
6538 struct extent_map_tree *em_tree = &inode->extent_tree;
6539 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6540
890871be 6541 read_lock(&em_tree->lock);
d1310b2e 6542 em = lookup_extent_mapping(em_tree, start, len);
890871be 6543 read_unlock(&em_tree->lock);
d1310b2e 6544
a52d9a80 6545 if (em) {
e1c4b745
CM
6546 if (em->start > start || em->start + em->len <= start)
6547 free_extent_map(em);
6548 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6549 free_extent_map(em);
6550 else
6551 goto out;
a52d9a80 6552 }
172ddd60 6553 em = alloc_extent_map();
a52d9a80 6554 if (!em) {
d1310b2e
CM
6555 err = -ENOMEM;
6556 goto out;
a52d9a80 6557 }
d1310b2e 6558 em->start = EXTENT_MAP_HOLE;
445a6944 6559 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6560 em->len = (u64)-1;
c8b97818 6561 em->block_len = (u64)-1;
f421950f 6562
bee6ec82 6563 path = btrfs_alloc_path();
f421950f 6564 if (!path) {
bee6ec82
LB
6565 err = -ENOMEM;
6566 goto out;
f421950f
CM
6567 }
6568
bee6ec82
LB
6569 /* Chances are we'll be called again, so go ahead and do readahead */
6570 path->reada = READA_FORWARD;
6571
e49aabd9
LB
6572 /*
6573 * Unless we're going to uncompress the inline extent, no sleep would
6574 * happen.
6575 */
6576 path->leave_spinning = 1;
6577
5c9a702e 6578 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6579 if (ret < 0) {
6580 err = ret;
6581 goto out;
b8eeab7f 6582 } else if (ret > 0) {
a52d9a80
CM
6583 if (path->slots[0] == 0)
6584 goto not_found;
6585 path->slots[0]--;
6586 }
6587
5f39d397
CM
6588 leaf = path->nodes[0];
6589 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6590 struct btrfs_file_extent_item);
5f39d397 6591 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6592 if (found_key.objectid != objectid ||
694c12ed 6593 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6594 /*
6595 * If we backup past the first extent we want to move forward
6596 * and see if there is an extent in front of us, otherwise we'll
6597 * say there is a hole for our whole search range which can
6598 * cause problems.
6599 */
6600 extent_end = start;
6601 goto next;
a52d9a80
CM
6602 }
6603
694c12ed 6604 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6605 extent_start = found_key.offset;
a5eeb3d1 6606 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6607 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6608 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6609 /* Only regular file could have regular/prealloc extent */
6610 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6611 ret = -EUCLEAN;
6612 btrfs_crit(fs_info,
6613 "regular/prealloc extent found for non-regular inode %llu",
6614 btrfs_ino(inode));
6615 goto out;
6616 }
09ed2f16
LB
6617 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6618 extent_start);
694c12ed 6619 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6620 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6621 path->slots[0],
6622 extent_start);
9036c102 6623 }
25a50341 6624next:
9036c102
YZ
6625 if (start >= extent_end) {
6626 path->slots[0]++;
6627 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6628 ret = btrfs_next_leaf(root, path);
6629 if (ret < 0) {
6630 err = ret;
6631 goto out;
b8eeab7f 6632 } else if (ret > 0) {
9036c102 6633 goto not_found;
b8eeab7f 6634 }
9036c102 6635 leaf = path->nodes[0];
a52d9a80 6636 }
9036c102
YZ
6637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6638 if (found_key.objectid != objectid ||
6639 found_key.type != BTRFS_EXTENT_DATA_KEY)
6640 goto not_found;
6641 if (start + len <= found_key.offset)
6642 goto not_found;
e2eca69d
WS
6643 if (start > found_key.offset)
6644 goto next;
02a033df
NB
6645
6646 /* New extent overlaps with existing one */
9036c102 6647 em->start = start;
70c8a91c 6648 em->orig_start = start;
9036c102 6649 em->len = found_key.offset - start;
02a033df
NB
6650 em->block_start = EXTENT_MAP_HOLE;
6651 goto insert;
9036c102
YZ
6652 }
6653
39b07b5d 6654 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6655
694c12ed
NB
6656 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6657 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6658 goto insert;
694c12ed 6659 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6660 unsigned long ptr;
a52d9a80 6661 char *map;
3326d1b0
CM
6662 size_t size;
6663 size_t extent_offset;
6664 size_t copy_size;
a52d9a80 6665
39b07b5d 6666 if (!page)
689f9346 6667 goto out;
5f39d397 6668
e41ca589 6669 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6670 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6671 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6672 size - extent_offset);
3326d1b0 6673 em->start = extent_start + extent_offset;
0b246afa 6674 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6675 em->orig_block_len = em->len;
70c8a91c 6676 em->orig_start = em->start;
689f9346 6677 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6678
6679 btrfs_set_path_blocking(path);
bf46f52d 6680 if (!PageUptodate(page)) {
261507a0
LZ
6681 if (btrfs_file_extent_compression(leaf, item) !=
6682 BTRFS_COMPRESS_NONE) {
e40da0e5 6683 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6684 extent_offset, item);
166ae5a4
ZB
6685 if (ret) {
6686 err = ret;
6687 goto out;
6688 }
c8b97818
CM
6689 } else {
6690 map = kmap(page);
6691 read_extent_buffer(leaf, map + pg_offset, ptr,
6692 copy_size);
09cbfeaf 6693 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6694 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6695 PAGE_SIZE - pg_offset -
93c82d57
CM
6696 copy_size);
6697 }
c8b97818
CM
6698 kunmap(page);
6699 }
179e29e4 6700 flush_dcache_page(page);
a52d9a80 6701 }
d1310b2e 6702 set_extent_uptodate(io_tree, em->start,
507903b8 6703 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6704 goto insert;
a52d9a80
CM
6705 }
6706not_found:
6707 em->start = start;
70c8a91c 6708 em->orig_start = start;
d1310b2e 6709 em->len = len;
5f39d397 6710 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6711insert:
b3b4aa74 6712 btrfs_release_path(path);
d1310b2e 6713 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6714 btrfs_err(fs_info,
5d163e0e
JM
6715 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6716 em->start, em->len, start, len);
a52d9a80
CM
6717 err = -EIO;
6718 goto out;
6719 }
d1310b2e
CM
6720
6721 err = 0;
890871be 6722 write_lock(&em_tree->lock);
f46b24c9 6723 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6724 write_unlock(&em_tree->lock);
a52d9a80 6725out:
c6414280 6726 btrfs_free_path(path);
1abe9b8a 6727
fc4f21b1 6728 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6729
a52d9a80
CM
6730 if (err) {
6731 free_extent_map(em);
a52d9a80
CM
6732 return ERR_PTR(err);
6733 }
79787eaa 6734 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6735 return em;
6736}
6737
fc4f21b1 6738struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6739 u64 start, u64 len)
ec29ed5b
CM
6740{
6741 struct extent_map *em;
6742 struct extent_map *hole_em = NULL;
f3714ef4 6743 u64 delalloc_start = start;
ec29ed5b 6744 u64 end;
f3714ef4
NB
6745 u64 delalloc_len;
6746 u64 delalloc_end;
ec29ed5b
CM
6747 int err = 0;
6748
39b07b5d 6749 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6750 if (IS_ERR(em))
6751 return em;
9986277e
DC
6752 /*
6753 * If our em maps to:
6754 * - a hole or
6755 * - a pre-alloc extent,
6756 * there might actually be delalloc bytes behind it.
6757 */
6758 if (em->block_start != EXTENT_MAP_HOLE &&
6759 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6760 return em;
6761 else
6762 hole_em = em;
ec29ed5b
CM
6763
6764 /* check to see if we've wrapped (len == -1 or similar) */
6765 end = start + len;
6766 if (end < start)
6767 end = (u64)-1;
6768 else
6769 end -= 1;
6770
6771 em = NULL;
6772
6773 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6774 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6775 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6776 delalloc_end = delalloc_start + delalloc_len;
6777 if (delalloc_end < delalloc_start)
6778 delalloc_end = (u64)-1;
ec29ed5b
CM
6779
6780 /*
f3714ef4
NB
6781 * We didn't find anything useful, return the original results from
6782 * get_extent()
ec29ed5b 6783 */
f3714ef4 6784 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6785 em = hole_em;
6786 hole_em = NULL;
6787 goto out;
6788 }
6789
f3714ef4
NB
6790 /*
6791 * Adjust the delalloc_start to make sure it doesn't go backwards from
6792 * the start they passed in
ec29ed5b 6793 */
f3714ef4
NB
6794 delalloc_start = max(start, delalloc_start);
6795 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6796
f3714ef4
NB
6797 if (delalloc_len > 0) {
6798 u64 hole_start;
02950af4 6799 u64 hole_len;
f3714ef4 6800 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6801
172ddd60 6802 em = alloc_extent_map();
ec29ed5b
CM
6803 if (!em) {
6804 err = -ENOMEM;
6805 goto out;
6806 }
f3714ef4
NB
6807
6808 ASSERT(hole_em);
ec29ed5b 6809 /*
f3714ef4
NB
6810 * When btrfs_get_extent can't find anything it returns one
6811 * huge hole
ec29ed5b 6812 *
f3714ef4
NB
6813 * Make sure what it found really fits our range, and adjust to
6814 * make sure it is based on the start from the caller
ec29ed5b 6815 */
f3714ef4
NB
6816 if (hole_end <= start || hole_em->start > end) {
6817 free_extent_map(hole_em);
6818 hole_em = NULL;
6819 } else {
6820 hole_start = max(hole_em->start, start);
6821 hole_len = hole_end - hole_start;
ec29ed5b 6822 }
f3714ef4
NB
6823
6824 if (hole_em && delalloc_start > hole_start) {
6825 /*
6826 * Our hole starts before our delalloc, so we have to
6827 * return just the parts of the hole that go until the
6828 * delalloc starts
ec29ed5b 6829 */
f3714ef4 6830 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6831 em->start = hole_start;
6832 em->orig_start = hole_start;
6833 /*
f3714ef4
NB
6834 * Don't adjust block start at all, it is fixed at
6835 * EXTENT_MAP_HOLE
ec29ed5b
CM
6836 */
6837 em->block_start = hole_em->block_start;
6838 em->block_len = hole_len;
f9e4fb53
LB
6839 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6840 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6841 } else {
f3714ef4
NB
6842 /*
6843 * Hole is out of passed range or it starts after
6844 * delalloc range
6845 */
6846 em->start = delalloc_start;
6847 em->len = delalloc_len;
6848 em->orig_start = delalloc_start;
ec29ed5b 6849 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6850 em->block_len = delalloc_len;
ec29ed5b 6851 }
bf8d32b9 6852 } else {
ec29ed5b
CM
6853 return hole_em;
6854 }
6855out:
6856
6857 free_extent_map(hole_em);
6858 if (err) {
6859 free_extent_map(em);
6860 return ERR_PTR(err);
6861 }
6862 return em;
6863}
6864
64f54188 6865static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6866 const u64 start,
6867 const u64 len,
6868 const u64 orig_start,
6869 const u64 block_start,
6870 const u64 block_len,
6871 const u64 orig_block_len,
6872 const u64 ram_bytes,
6873 const int type)
6874{
6875 struct extent_map *em = NULL;
6876 int ret;
6877
5f9a8a51 6878 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6879 em = create_io_em(inode, start, len, orig_start, block_start,
6880 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6881 BTRFS_COMPRESS_NONE, /* compress_type */
6882 type);
5f9a8a51
FM
6883 if (IS_ERR(em))
6884 goto out;
6885 }
64f54188
NB
6886 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6887 block_len, type);
5f9a8a51
FM
6888 if (ret) {
6889 if (em) {
6890 free_extent_map(em);
64f54188 6891 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6892 }
6893 em = ERR_PTR(ret);
6894 }
6895 out:
5f9a8a51
FM
6896
6897 return em;
6898}
6899
9fc6f911 6900static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6901 u64 start, u64 len)
6902{
9fc6f911
NB
6903 struct btrfs_root *root = inode->root;
6904 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6905 struct extent_map *em;
4b46fce2
JB
6906 struct btrfs_key ins;
6907 u64 alloc_hint;
6908 int ret;
4b46fce2 6909
9fc6f911 6910 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6911 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6912 0, alloc_hint, &ins, 1, 1);
00361589
JB
6913 if (ret)
6914 return ERR_PTR(ret);
4b46fce2 6915
9fc6f911 6916 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6917 ins.objectid, ins.offset, ins.offset,
6288d6ea 6918 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6919 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6920 if (IS_ERR(em))
9fc6f911
NB
6921 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6922 1);
de0ee0ed 6923
4b46fce2
JB
6924 return em;
6925}
6926
46bfbb5c 6927/*
e4ecaf90
QW
6928 * Check if we can do nocow write into the range [@offset, @offset + @len)
6929 *
6930 * @offset: File offset
6931 * @len: The length to write, will be updated to the nocow writeable
6932 * range
6933 * @orig_start: (optional) Return the original file offset of the file extent
6934 * @orig_len: (optional) Return the original on-disk length of the file extent
6935 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6936 *
6937 * This function will flush ordered extents in the range to ensure proper
6938 * nocow checks for (nowait == false) case.
6939 *
6940 * Return:
6941 * >0 and update @len if we can do nocow write
6942 * 0 if we can't do nocow write
6943 * <0 if error happened
6944 *
6945 * NOTE: This only checks the file extents, caller is responsible to wait for
6946 * any ordered extents.
46bfbb5c 6947 */
00361589 6948noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6949 u64 *orig_start, u64 *orig_block_len,
6950 u64 *ram_bytes)
46bfbb5c 6951{
2ff7e61e 6952 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6953 struct btrfs_path *path;
6954 int ret;
6955 struct extent_buffer *leaf;
6956 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6957 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6958 struct btrfs_file_extent_item *fi;
6959 struct btrfs_key key;
6960 u64 disk_bytenr;
6961 u64 backref_offset;
6962 u64 extent_end;
6963 u64 num_bytes;
6964 int slot;
6965 int found_type;
7ee9e440 6966 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6967
46bfbb5c
CM
6968 path = btrfs_alloc_path();
6969 if (!path)
6970 return -ENOMEM;
6971
f85b7379
DS
6972 ret = btrfs_lookup_file_extent(NULL, root, path,
6973 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6974 if (ret < 0)
6975 goto out;
6976
6977 slot = path->slots[0];
6978 if (ret == 1) {
6979 if (slot == 0) {
6980 /* can't find the item, must cow */
6981 ret = 0;
6982 goto out;
6983 }
6984 slot--;
6985 }
6986 ret = 0;
6987 leaf = path->nodes[0];
6988 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 6989 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
6990 key.type != BTRFS_EXTENT_DATA_KEY) {
6991 /* not our file or wrong item type, must cow */
6992 goto out;
6993 }
6994
6995 if (key.offset > offset) {
6996 /* Wrong offset, must cow */
6997 goto out;
6998 }
6999
7000 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7001 found_type = btrfs_file_extent_type(leaf, fi);
7002 if (found_type != BTRFS_FILE_EXTENT_REG &&
7003 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7004 /* not a regular extent, must cow */
7005 goto out;
7006 }
7ee9e440
JB
7007
7008 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7009 goto out;
7010
e77751aa
MX
7011 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7012 if (extent_end <= offset)
7013 goto out;
7014
46bfbb5c 7015 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7016 if (disk_bytenr == 0)
7017 goto out;
7018
7019 if (btrfs_file_extent_compression(leaf, fi) ||
7020 btrfs_file_extent_encryption(leaf, fi) ||
7021 btrfs_file_extent_other_encoding(leaf, fi))
7022 goto out;
7023
78d4295b
EL
7024 /*
7025 * Do the same check as in btrfs_cross_ref_exist but without the
7026 * unnecessary search.
7027 */
7028 if (btrfs_file_extent_generation(leaf, fi) <=
7029 btrfs_root_last_snapshot(&root->root_item))
7030 goto out;
7031
46bfbb5c
CM
7032 backref_offset = btrfs_file_extent_offset(leaf, fi);
7033
7ee9e440
JB
7034 if (orig_start) {
7035 *orig_start = key.offset - backref_offset;
7036 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7037 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7038 }
eb384b55 7039
2ff7e61e 7040 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7041 goto out;
7b2b7085
MX
7042
7043 num_bytes = min(offset + *len, extent_end) - offset;
7044 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7045 u64 range_end;
7046
da17066c
JM
7047 range_end = round_up(offset + num_bytes,
7048 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7049 ret = test_range_bit(io_tree, offset, range_end,
7050 EXTENT_DELALLOC, 0, NULL);
7051 if (ret) {
7052 ret = -EAGAIN;
7053 goto out;
7054 }
7055 }
7056
1bda19eb 7057 btrfs_release_path(path);
46bfbb5c
CM
7058
7059 /*
7060 * look for other files referencing this extent, if we
7061 * find any we must cow
7062 */
00361589 7063
e4c3b2dc 7064 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7065 key.offset - backref_offset, disk_bytenr);
00361589
JB
7066 if (ret) {
7067 ret = 0;
7068 goto out;
7069 }
46bfbb5c
CM
7070
7071 /*
7072 * adjust disk_bytenr and num_bytes to cover just the bytes
7073 * in this extent we are about to write. If there
7074 * are any csums in that range we have to cow in order
7075 * to keep the csums correct
7076 */
7077 disk_bytenr += backref_offset;
7078 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7079 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7080 goto out;
46bfbb5c
CM
7081 /*
7082 * all of the above have passed, it is safe to overwrite this extent
7083 * without cow
7084 */
eb384b55 7085 *len = num_bytes;
46bfbb5c
CM
7086 ret = 1;
7087out:
7088 btrfs_free_path(path);
7089 return ret;
7090}
7091
eb838e73 7092static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
55e20bd1 7093 struct extent_state **cached_state, int writing)
eb838e73
JB
7094{
7095 struct btrfs_ordered_extent *ordered;
7096 int ret = 0;
7097
7098 while (1) {
7099 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7100 cached_state);
eb838e73
JB
7101 /*
7102 * We're concerned with the entire range that we're going to be
01327610 7103 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7104 * extents in this range.
7105 */
a776c6fa 7106 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7107 lockend - lockstart + 1);
7108
7109 /*
7110 * We need to make sure there are no buffered pages in this
7111 * range either, we could have raced between the invalidate in
7112 * generic_file_direct_write and locking the extent. The
7113 * invalidate needs to happen so that reads after a write do not
7114 * get stale data.
7115 */
fc4adbff 7116 if (!ordered &&
051c98eb
DS
7117 (!writing || !filemap_range_has_page(inode->i_mapping,
7118 lockstart, lockend)))
eb838e73
JB
7119 break;
7120
7121 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7122 cached_state);
eb838e73
JB
7123
7124 if (ordered) {
ade77029
FM
7125 /*
7126 * If we are doing a DIO read and the ordered extent we
7127 * found is for a buffered write, we can not wait for it
7128 * to complete and retry, because if we do so we can
7129 * deadlock with concurrent buffered writes on page
7130 * locks. This happens only if our DIO read covers more
7131 * than one extent map, if at this point has already
7132 * created an ordered extent for a previous extent map
7133 * and locked its range in the inode's io tree, and a
7134 * concurrent write against that previous extent map's
7135 * range and this range started (we unlock the ranges
7136 * in the io tree only when the bios complete and
7137 * buffered writes always lock pages before attempting
7138 * to lock range in the io tree).
7139 */
7140 if (writing ||
7141 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7142 btrfs_start_ordered_extent(inode, ordered, 1);
7143 else
7144 ret = -ENOTBLK;
eb838e73
JB
7145 btrfs_put_ordered_extent(ordered);
7146 } else {
eb838e73 7147 /*
b850ae14
FM
7148 * We could trigger writeback for this range (and wait
7149 * for it to complete) and then invalidate the pages for
7150 * this range (through invalidate_inode_pages2_range()),
7151 * but that can lead us to a deadlock with a concurrent
ba206a02 7152 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7153 * triggered a readahead) on a page lock due to an
7154 * ordered dio extent we created before but did not have
7155 * yet a corresponding bio submitted (whence it can not
ba206a02 7156 * complete), which makes readahead wait for that
b850ae14
FM
7157 * ordered extent to complete while holding a lock on
7158 * that page.
eb838e73 7159 */
b850ae14 7160 ret = -ENOTBLK;
eb838e73
JB
7161 }
7162
ade77029
FM
7163 if (ret)
7164 break;
7165
eb838e73
JB
7166 cond_resched();
7167 }
7168
7169 return ret;
7170}
7171
6f9994db 7172/* The callers of this must take lock_extent() */
4b67c11d
NB
7173static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7174 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7175 u64 block_len, u64 orig_block_len,
7176 u64 ram_bytes, int compress_type,
7177 int type)
69ffb543
JB
7178{
7179 struct extent_map_tree *em_tree;
7180 struct extent_map *em;
69ffb543
JB
7181 int ret;
7182
6f9994db
LB
7183 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7184 type == BTRFS_ORDERED_COMPRESSED ||
7185 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7186 type == BTRFS_ORDERED_REGULAR);
6f9994db 7187
4b67c11d 7188 em_tree = &inode->extent_tree;
69ffb543
JB
7189 em = alloc_extent_map();
7190 if (!em)
7191 return ERR_PTR(-ENOMEM);
7192
7193 em->start = start;
7194 em->orig_start = orig_start;
7195 em->len = len;
7196 em->block_len = block_len;
7197 em->block_start = block_start;
b4939680 7198 em->orig_block_len = orig_block_len;
cc95bef6 7199 em->ram_bytes = ram_bytes;
70c8a91c 7200 em->generation = -1;
69ffb543 7201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7202 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7203 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7204 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7205 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7206 em->compress_type = compress_type;
7207 }
69ffb543
JB
7208
7209 do {
4b67c11d
NB
7210 btrfs_drop_extent_cache(inode, em->start,
7211 em->start + em->len - 1, 0);
69ffb543 7212 write_lock(&em_tree->lock);
09a2a8f9 7213 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7214 write_unlock(&em_tree->lock);
6f9994db
LB
7215 /*
7216 * The caller has taken lock_extent(), who could race with us
7217 * to add em?
7218 */
69ffb543
JB
7219 } while (ret == -EEXIST);
7220
7221 if (ret) {
7222 free_extent_map(em);
7223 return ERR_PTR(ret);
7224 }
7225
6f9994db 7226 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7227 return em;
7228}
7229
1c8d0175 7230
55e20bd1
DS
7231static int btrfs_get_blocks_direct_read(struct extent_map *em,
7232 struct buffer_head *bh_result,
7233 struct inode *inode,
7234 u64 start, u64 len)
7235{
7236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7237
7238 if (em->block_start == EXTENT_MAP_HOLE ||
7239 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7240 return -ENOENT;
7241
7242 len = min(len, em->len - (start - em->start));
7243
7244 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7245 inode->i_blkbits;
7246 bh_result->b_size = len;
7247 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7248 set_buffer_mapped(bh_result);
7249
7250 return 0;
7251}
7252
c5794e51 7253static int btrfs_get_blocks_direct_write(struct extent_map **map,
55e20bd1 7254 struct buffer_head *bh_result,
c5794e51
NB
7255 struct inode *inode,
7256 struct btrfs_dio_data *dio_data,
7257 u64 start, u64 len)
7258{
7259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7260 struct extent_map *em = *map;
7261 int ret = 0;
7262
7263 /*
7264 * We don't allocate a new extent in the following cases
7265 *
7266 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7267 * existing extent.
7268 * 2) The extent is marked as PREALLOC. We're good to go here and can
7269 * just use the extent.
7270 *
7271 */
7272 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7273 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7274 em->block_start != EXTENT_MAP_HOLE)) {
7275 int type;
7276 u64 block_start, orig_start, orig_block_len, ram_bytes;
7277
7278 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7279 type = BTRFS_ORDERED_PREALLOC;
7280 else
7281 type = BTRFS_ORDERED_NOCOW;
7282 len = min(len, em->len - (start - em->start));
7283 block_start = em->block_start + (start - em->start);
7284
7285 if (can_nocow_extent(inode, start, &len, &orig_start,
7286 &orig_block_len, &ram_bytes) == 1 &&
7287 btrfs_inc_nocow_writers(fs_info, block_start)) {
7288 struct extent_map *em2;
7289
64f54188 7290 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7291 orig_start, block_start,
7292 len, orig_block_len,
7293 ram_bytes, type);
7294 btrfs_dec_nocow_writers(fs_info, block_start);
7295 if (type == BTRFS_ORDERED_PREALLOC) {
7296 free_extent_map(em);
7297 *map = em = em2;
7298 }
7299
7300 if (em2 && IS_ERR(em2)) {
7301 ret = PTR_ERR(em2);
7302 goto out;
7303 }
7304 /*
7305 * For inode marked NODATACOW or extent marked PREALLOC,
7306 * use the existing or preallocated extent, so does not
7307 * need to adjust btrfs_space_info's bytes_may_use.
7308 */
9db5d510 7309 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7310 goto skip_cow;
7311 }
7312 }
7313
7314 /* this will cow the extent */
55e20bd1 7315 len = bh_result->b_size;
c5794e51 7316 free_extent_map(em);
9fc6f911 7317 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7318 if (IS_ERR(em)) {
7319 ret = PTR_ERR(em);
7320 goto out;
7321 }
7322
7323 len = min(len, em->len - (start - em->start));
7324
7325skip_cow:
55e20bd1
DS
7326 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7327 inode->i_blkbits;
7328 bh_result->b_size = len;
7329 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7330 set_buffer_mapped(bh_result);
7331
7332 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7333 set_buffer_new(bh_result);
7334
c5794e51
NB
7335 /*
7336 * Need to update the i_size under the extent lock so buffered
7337 * readers will get the updated i_size when we unlock.
7338 */
55e20bd1 7339 if (!dio_data->overwrite && start + len > i_size_read(inode))
c5794e51
NB
7340 i_size_write(inode, start + len);
7341
55e20bd1 7342 WARN_ON(dio_data->reserve < len);
c5794e51 7343 dio_data->reserve -= len;
55e20bd1
DS
7344 dio_data->unsubmitted_oe_range_end = start + len;
7345 current->journal_info = dio_data;
c5794e51
NB
7346out:
7347 return ret;
7348}
7349
55e20bd1
DS
7350static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7351 struct buffer_head *bh_result, int create)
4b46fce2 7352{
0b246afa 7353 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7354 struct extent_map *em;
eb838e73 7355 struct extent_state *cached_state = NULL;
50745b0a 7356 struct btrfs_dio_data *dio_data = NULL;
55e20bd1 7357 u64 start = iblock << inode->i_blkbits;
eb838e73 7358 u64 lockstart, lockend;
55e20bd1 7359 u64 len = bh_result->b_size;
0934856d 7360 int ret = 0;
eb838e73 7361
55e20bd1 7362 if (!create)
0b246afa 7363 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7364
c329861d
JB
7365 lockstart = start;
7366 lockend = start + len - 1;
7367
55e20bd1
DS
7368 if (current->journal_info) {
7369 /*
7370 * Need to pull our outstanding extents and set journal_info to NULL so
7371 * that anything that needs to check if there's a transaction doesn't get
7372 * confused.
7373 */
7374 dio_data = current->journal_info;
7375 current->journal_info = NULL;
e1cbbfa5
JB
7376 }
7377
eb838e73
JB
7378 /*
7379 * If this errors out it's because we couldn't invalidate pagecache for
7380 * this range and we need to fallback to buffered.
7381 */
55e20bd1
DS
7382 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7383 create)) {
9c9464cc
FM
7384 ret = -ENOTBLK;
7385 goto err;
7386 }
eb838e73 7387
39b07b5d 7388 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7389 if (IS_ERR(em)) {
7390 ret = PTR_ERR(em);
7391 goto unlock_err;
7392 }
4b46fce2
JB
7393
7394 /*
7395 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7396 * io. INLINE is special, and we could probably kludge it in here, but
7397 * it's still buffered so for safety lets just fall back to the generic
7398 * buffered path.
7399 *
7400 * For COMPRESSED we _have_ to read the entire extent in so we can
7401 * decompress it, so there will be buffering required no matter what we
7402 * do, so go ahead and fallback to buffered.
7403 *
01327610 7404 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7405 * to buffered IO. Don't blame me, this is the price we pay for using
7406 * the generic code.
7407 */
7408 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7409 em->block_start == EXTENT_MAP_INLINE) {
7410 free_extent_map(em);
eb838e73
JB
7411 ret = -ENOTBLK;
7412 goto unlock_err;
4b46fce2
JB
7413 }
7414
55e20bd1
DS
7415 if (create) {
7416 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7417 dio_data, start, len);
c5794e51
NB
7418 if (ret < 0)
7419 goto unlock_err;
55e20bd1
DS
7420
7421 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7422 lockend, &cached_state);
c5794e51 7423 } else {
55e20bd1
DS
7424 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7425 start, len);
7426 /* Can be negative only if we read from a hole */
7427 if (ret < 0) {
7428 ret = 0;
7429 free_extent_map(em);
7430 goto unlock_err;
7431 }
1c8d0175
NB
7432 /*
7433 * We need to unlock only the end area that we aren't using.
7434 * The rest is going to be unlocked by the endio routine.
7435 */
55e20bd1
DS
7436 lockstart = start + bh_result->b_size;
7437 if (lockstart < lockend) {
7438 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7439 lockstart, lockend, &cached_state);
7440 } else {
7441 free_extent_state(cached_state);
7442 }
a43a67a2 7443 }
a43a67a2 7444
4b46fce2
JB
7445 free_extent_map(em);
7446
7447 return 0;
eb838e73
JB
7448
7449unlock_err:
e182163d
OS
7450 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7451 &cached_state);
9c9464cc 7452err:
55e20bd1
DS
7453 if (dio_data)
7454 current->journal_info = dio_data;
8b110e39
MX
7455 return ret;
7456}
7457
769b4f24 7458static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7459{
769b4f24
OS
7460 /*
7461 * This implies a barrier so that stores to dio_bio->bi_status before
7462 * this and loads of dio_bio->bi_status after this are fully ordered.
7463 */
7464 if (!refcount_dec_and_test(&dip->refs))
7465 return;
8b110e39 7466
769b4f24 7467 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7468 __endio_write_update_ordered(BTRFS_I(dip->inode),
7469 dip->logical_offset,
769b4f24
OS
7470 dip->bytes,
7471 !dip->dio_bio->bi_status);
7472 } else {
7473 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7474 dip->logical_offset,
7475 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7476 }
7477
55e20bd1 7478 dio_end_io(dip->dio_bio);
769b4f24 7479 kfree(dip);
8b110e39
MX
7480}
7481
77d5d689
OS
7482static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7483 int mirror_num,
7484 unsigned long bio_flags)
8b110e39 7485{
77d5d689 7486 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7487 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7488 blk_status_t ret;
8b110e39 7489
37226b21 7490 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7491
5c047a69 7492 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7493 if (ret)
ea057f6d 7494 return ret;
8b110e39 7495
77d5d689 7496 refcount_inc(&dip->refs);
08635bae 7497 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7498 if (ret)
fd9d6670 7499 refcount_dec(&dip->refs);
77d5d689 7500 return ret;
8b110e39
MX
7501}
7502
fd9d6670
OS
7503static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7504 struct btrfs_io_bio *io_bio,
7505 const bool uptodate)
4b46fce2 7506{
fd9d6670
OS
7507 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7508 const u32 sectorsize = fs_info->sectorsize;
7509 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7510 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7511 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7512 struct bio_vec bvec;
7513 struct bvec_iter iter;
fd9d6670
OS
7514 u64 start = io_bio->logical;
7515 int icsum = 0;
58efbc9f 7516 blk_status_t err = BLK_STS_OK;
4b46fce2 7517
fd9d6670
OS
7518 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7519 unsigned int i, nr_sectors, pgoff;
8b110e39 7520
17347cec
LB
7521 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7522 pgoff = bvec.bv_offset;
fd9d6670 7523 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7524 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7525 if (uptodate &&
7526 (!csum || !check_data_csum(inode, io_bio, icsum,
7527 bvec.bv_page, pgoff,
7528 start, sectorsize))) {
7529 clean_io_failure(fs_info, failure_tree, io_tree,
7530 start, bvec.bv_page,
7531 btrfs_ino(BTRFS_I(inode)),
7532 pgoff);
7533 } else {
7534 blk_status_t status;
7535
77d5d689
OS
7536 status = btrfs_submit_read_repair(inode,
7537 &io_bio->bio,
7538 start - io_bio->logical,
fd9d6670
OS
7539 bvec.bv_page, pgoff,
7540 start,
7541 start + sectorsize - 1,
77d5d689
OS
7542 io_bio->mirror_num,
7543 submit_dio_repair_bio);
fd9d6670
OS
7544 if (status)
7545 err = status;
7546 }
7547 start += sectorsize;
7548 icsum++;
2dabb324 7549 pgoff += sectorsize;
2dabb324 7550 }
2c30c71b 7551 }
c1dc0896
MX
7552 return err;
7553}
7554
b672b5c1 7555static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7556 const u64 offset, const u64 bytes,
7557 const bool uptodate)
4b46fce2 7558{
b672b5c1 7559 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7560 struct btrfs_ordered_extent *ordered = NULL;
52427260 7561 struct btrfs_workqueue *wq;
14543774
FM
7562 u64 ordered_offset = offset;
7563 u64 ordered_bytes = bytes;
67c003f9 7564 u64 last_offset;
4b46fce2 7565
b672b5c1 7566 if (btrfs_is_free_space_inode(inode))
52427260 7567 wq = fs_info->endio_freespace_worker;
a0cac0ec 7568 else
52427260 7569 wq = fs_info->endio_write_workers;
52427260 7570
b25f0d00
NB
7571 while (ordered_offset < offset + bytes) {
7572 last_offset = ordered_offset;
b672b5c1 7573 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7574 &ordered_offset,
7575 ordered_bytes,
7576 uptodate)) {
a0cac0ec
OS
7577 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7578 NULL);
b25f0d00
NB
7579 btrfs_queue_work(wq, &ordered->work);
7580 }
7581 /*
7582 * If btrfs_dec_test_ordered_pending does not find any ordered
7583 * extent in the range, we can exit.
7584 */
7585 if (ordered_offset == last_offset)
7586 return;
7587 /*
7588 * Our bio might span multiple ordered extents. In this case
52042d8e 7589 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7590 */
7591 if (ordered_offset < offset + bytes) {
7592 ordered_bytes = offset + bytes - ordered_offset;
7593 ordered = NULL;
7594 }
163cf09c 7595 }
14543774
FM
7596}
7597
d0ee3934 7598static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7599 struct bio *bio, u64 offset)
eaf25d93 7600{
c6100a4b 7601 struct inode *inode = private_data;
4e4cbee9 7602 blk_status_t ret;
bd242a08 7603 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
79787eaa 7604 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7605 return 0;
7606}
7607
4246a0b6 7608static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7609{
7610 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7611 blk_status_t err = bio->bi_status;
e65e1535 7612
8b110e39
MX
7613 if (err)
7614 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7615 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7616 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7617 bio->bi_opf,
8b110e39
MX
7618 (unsigned long long)bio->bi_iter.bi_sector,
7619 bio->bi_iter.bi_size, err);
7620
769b4f24
OS
7621 if (bio_op(bio) == REQ_OP_READ) {
7622 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7623 !err);
e65e1535
MX
7624 }
7625
769b4f24
OS
7626 if (err)
7627 dip->dio_bio->bi_status = err;
e65e1535 7628
e65e1535 7629 bio_put(bio);
769b4f24 7630 btrfs_dio_private_put(dip);
c1dc0896
MX
7631}
7632
d0ee3934
DS
7633static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7634 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7635{
0b246afa 7636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7637 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7638 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7639 blk_status_t ret;
e65e1535 7640
4c274bc6 7641 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7642 if (async_submit)
7643 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7644
5fd02043 7645 if (!write) {
0b246afa 7646 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7647 if (ret)
7648 goto err;
7649 }
e65e1535 7650
e6961cac 7651 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7652 goto map;
7653
7654 if (write && async_submit) {
c6100a4b
JB
7655 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7656 file_offset, inode,
e288c080 7657 btrfs_submit_bio_start_direct_io);
e65e1535 7658 goto err;
1ae39938
JB
7659 } else if (write) {
7660 /*
7661 * If we aren't doing async submit, calculate the csum of the
7662 * bio now.
7663 */
bd242a08 7664 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7665 if (ret)
7666 goto err;
23ea8e5a 7667 } else {
85879573
OS
7668 u64 csum_offset;
7669
7670 csum_offset = file_offset - dip->logical_offset;
7671 csum_offset >>= inode->i_sb->s_blocksize_bits;
7672 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7673 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7674 }
1ae39938 7675map:
08635bae 7676 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7677err:
e65e1535
MX
7678 return ret;
7679}
7680
c36cac28
OS
7681/*
7682 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7683 * or ordered extents whether or not we submit any bios.
7684 */
7685static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7686 struct inode *inode,
7687 loff_t file_offset)
e65e1535 7688{
c36cac28 7689 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7690 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7691 size_t dip_size;
c36cac28 7692 struct btrfs_dio_private *dip;
c36cac28 7693
85879573
OS
7694 dip_size = sizeof(*dip);
7695 if (!write && csum) {
7696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7697 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7698 size_t nblocks;
7699
7700 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7701 dip_size += csum_size * nblocks;
7702 }
7703
7704 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7705 if (!dip)
7706 return NULL;
7707
c36cac28
OS
7708 dip->inode = inode;
7709 dip->logical_offset = file_offset;
7710 dip->bytes = dio_bio->bi_iter.bi_size;
7711 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7712 dip->dio_bio = dio_bio;
e3b318d1 7713 refcount_set(&dip->refs, 1);
55e20bd1
DS
7714
7715 if (write) {
7716 struct btrfs_dio_data *dio_data = current->journal_info;
7717
7718 /*
7719 * Setting range start and end to the same value means that
7720 * no cleanup will happen in btrfs_direct_IO
7721 */
7722 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7723 dip->bytes;
7724 dio_data->unsubmitted_oe_range_start =
7725 dio_data->unsubmitted_oe_range_end;
7726 }
c36cac28
OS
7727 return dip;
7728}
7729
55e20bd1
DS
7730static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7731 loff_t file_offset)
c36cac28
OS
7732{
7733 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7734 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7735 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7736 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7737 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7738 struct btrfs_dio_private *dip;
e65e1535 7739 struct bio *bio;
c36cac28 7740 u64 start_sector;
1ae39938 7741 int async_submit = 0;
725130ba
LB
7742 u64 submit_len;
7743 int clone_offset = 0;
7744 int clone_len;
5f4dc8fc 7745 int ret;
58efbc9f 7746 blk_status_t status;
89b798ad 7747 struct btrfs_io_geometry geom;
e65e1535 7748
c36cac28
OS
7749 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7750 if (!dip) {
7751 if (!write) {
7752 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7753 file_offset + dio_bio->bi_iter.bi_size - 1);
7754 }
7755 dio_bio->bi_status = BLK_STS_RESOURCE;
55e20bd1
DS
7756 dio_end_io(dio_bio);
7757 return;
c36cac28 7758 }
facc8a22 7759
85879573
OS
7760 if (!write && csum) {
7761 /*
7762 * Load the csums up front to reduce csum tree searches and
7763 * contention when submitting bios.
7764 */
7765 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7766 dip->csums);
7767 if (status != BLK_STS_OK)
7768 goto out_err;
02f57c7a
JB
7769 }
7770
769b4f24
OS
7771 start_sector = dio_bio->bi_iter.bi_sector;
7772 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7773
3c91ee69 7774 do {
769b4f24
OS
7775 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7776 start_sector << 9, submit_len,
7777 &geom);
7778 if (ret) {
7779 status = errno_to_blk_status(ret);
7780 goto out_err;
7781 }
7782 ASSERT(geom.len <= INT_MAX);
7783
89b798ad 7784 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7785
725130ba
LB
7786 /*
7787 * This will never fail as it's passing GPF_NOFS and
7788 * the allocation is backed by btrfs_bioset.
7789 */
769b4f24 7790 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7791 bio->bi_private = dip;
7792 bio->bi_end_io = btrfs_end_dio_bio;
7793 btrfs_io_bio(bio)->logical = file_offset;
7794
7795 ASSERT(submit_len >= clone_len);
7796 submit_len -= clone_len;
e65e1535 7797
725130ba
LB
7798 /*
7799 * Increase the count before we submit the bio so we know
7800 * the end IO handler won't happen before we increase the
7801 * count. Otherwise, the dip might get freed before we're
7802 * done setting it up.
769b4f24
OS
7803 *
7804 * We transfer the initial reference to the last bio, so we
7805 * don't need to increment the reference count for the last one.
725130ba 7806 */
769b4f24
OS
7807 if (submit_len > 0) {
7808 refcount_inc(&dip->refs);
7809 /*
7810 * If we are submitting more than one bio, submit them
7811 * all asynchronously. The exception is RAID 5 or 6, as
7812 * asynchronous checksums make it difficult to collect
7813 * full stripe writes.
7814 */
7815 if (!raid56)
7816 async_submit = 1;
7817 }
e65e1535 7818
d0ee3934 7819 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7820 async_submit);
7821 if (status) {
725130ba 7822 bio_put(bio);
769b4f24
OS
7823 if (submit_len > 0)
7824 refcount_dec(&dip->refs);
725130ba
LB
7825 goto out_err;
7826 }
e65e1535 7827
725130ba
LB
7828 clone_offset += clone_len;
7829 start_sector += clone_len >> 9;
7830 file_offset += clone_len;
3c91ee69 7831 } while (submit_len > 0);
55e20bd1 7832 return;
e65e1535 7833
e65e1535 7834out_err:
769b4f24
OS
7835 dip->dio_bio->bi_status = status;
7836 btrfs_dio_private_put(dip);
4b46fce2
JB
7837}
7838
f4c48b44
DS
7839static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7840 const struct iov_iter *iter, loff_t offset)
7841{
7842 int seg;
7843 int i;
7844 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7845 ssize_t retval = -EINVAL;
0934856d 7846
f4c48b44
DS
7847 if (offset & blocksize_mask)
7848 goto out;
7849
7850 if (iov_iter_alignment(iter) & blocksize_mask)
7851 goto out;
7852
7853 /* If this is a write we don't need to check anymore */
7854 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7855 return 0;
7856 /*
7857 * Check to make sure we don't have duplicate iov_base's in this
7858 * iovec, if so return EINVAL, otherwise we'll get csum errors
7859 * when reading back.
7860 */
7861 for (seg = 0; seg < iter->nr_segs; seg++) {
7862 for (i = seg + 1; i < iter->nr_segs; i++) {
7863 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7864 goto out;
7865 }
7866 }
7867 retval = 0;
7868out:
7869 return retval;
7870}
7871
55e20bd1 7872static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7873{
7874 struct file *file = iocb->ki_filp;
7875 struct inode *inode = file->f_mapping->host;
7876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
55e20bd1 7877 struct btrfs_dio_data dio_data = { 0 };
f4c48b44
DS
7878 struct extent_changeset *data_reserved = NULL;
7879 loff_t offset = iocb->ki_pos;
7880 size_t count = 0;
55e20bd1
DS
7881 int flags = 0;
7882 bool wakeup = true;
f4c48b44
DS
7883 bool relock = false;
7884 ssize_t ret;
7885
7886 if (check_direct_IO(fs_info, iter, offset))
7887 return 0;
7888
55e20bd1
DS
7889 inode_dio_begin(inode);
7890
7891 /*
7892 * The generic stuff only does filemap_write_and_wait_range, which
7893 * isn't enough if we've written compressed pages to this area, so
7894 * we need to flush the dirty pages again to make absolutely sure
7895 * that any outstanding dirty pages are on disk.
7896 */
f4c48b44 7897 count = iov_iter_count(iter);
55e20bd1
DS
7898 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7899 &BTRFS_I(inode)->runtime_flags))
7900 filemap_fdatawrite_range(inode->i_mapping, offset,
7901 offset + count - 1);
7902
f4c48b44
DS
7903 if (iov_iter_rw(iter) == WRITE) {
7904 /*
7905 * If the write DIO is beyond the EOF, we need update
7906 * the isize, but it is protected by i_mutex. So we can
7907 * not unlock the i_mutex at this case.
7908 */
7909 if (offset + count <= inode->i_size) {
55e20bd1 7910 dio_data.overwrite = 1;
f4c48b44
DS
7911 inode_unlock(inode);
7912 relock = true;
f4c48b44 7913 }
e5b7231e 7914 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
55e20bd1
DS
7915 offset, count);
7916 if (ret)
7917 goto out;
7918
7919 /*
7920 * We need to know how many extents we reserved so that we can
7921 * do the accounting properly if we go over the number we
7922 * originally calculated. Abuse current->journal_info for this.
7923 */
7924 dio_data.reserve = round_up(count,
7925 fs_info->sectorsize);
7926 dio_data.unsubmitted_oe_range_start = (u64)offset;
7927 dio_data.unsubmitted_oe_range_end = (u64)offset;
7928 current->journal_info = &dio_data;
f4c48b44 7929 down_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7930 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7931 &BTRFS_I(inode)->runtime_flags)) {
7932 inode_dio_end(inode);
7933 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7934 wakeup = false;
f4c48b44
DS
7935 }
7936
55e20bd1
DS
7937 ret = __blockdev_direct_IO(iocb, inode,
7938 fs_info->fs_devices->latest_bdev,
7939 iter, btrfs_get_blocks_direct, NULL,
7940 btrfs_submit_direct, flags);
f4c48b44
DS
7941 if (iov_iter_rw(iter) == WRITE) {
7942 up_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7943 current->journal_info = NULL;
7944 if (ret < 0 && ret != -EIOCBQUEUED) {
7945 if (dio_data.reserve)
86d52921
NB
7946 btrfs_delalloc_release_space(BTRFS_I(inode),
7947 data_reserved, offset, dio_data.reserve,
7948 true);
55e20bd1
DS
7949 /*
7950 * On error we might have left some ordered extents
7951 * without submitting corresponding bios for them, so
7952 * cleanup them up to avoid other tasks getting them
7953 * and waiting for them to complete forever.
7954 */
7955 if (dio_data.unsubmitted_oe_range_start <
7956 dio_data.unsubmitted_oe_range_end)
b672b5c1 7957 __endio_write_update_ordered(BTRFS_I(inode),
55e20bd1
DS
7958 dio_data.unsubmitted_oe_range_start,
7959 dio_data.unsubmitted_oe_range_end -
7960 dio_data.unsubmitted_oe_range_start,
7961 false);
7962 } else if (ret >= 0 && (size_t)ret < count)
86d52921 7963 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
55e20bd1
DS
7964 offset, count - (size_t)ret, true);
7965 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
f4c48b44
DS
7966 }
7967out:
55e20bd1
DS
7968 if (wakeup)
7969 inode_dio_end(inode);
f4c48b44
DS
7970 if (relock)
7971 inode_lock(inode);
55e20bd1 7972
f4c48b44
DS
7973 extent_changeset_free(data_reserved);
7974 return ret;
7975}
16432985 7976
1506fcc8 7977static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7978 u64 start, u64 len)
1506fcc8 7979{
05dadc09
TI
7980 int ret;
7981
45dd052e 7982 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7983 if (ret)
7984 return ret;
7985
2135fb9b 7986 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
7987}
7988
a52d9a80 7989int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7990{
71ad38b4 7991 return extent_read_full_page(page, btrfs_get_extent, 0);
9ebefb18 7992}
1832a6d5 7993
a52d9a80 7994static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7995{
be7bd730
JB
7996 struct inode *inode = page->mapping->host;
7997 int ret;
b888db2b
CM
7998
7999 if (current->flags & PF_MEMALLOC) {
8000 redirty_page_for_writepage(wbc, page);
8001 unlock_page(page);
8002 return 0;
8003 }
be7bd730
JB
8004
8005 /*
8006 * If we are under memory pressure we will call this directly from the
8007 * VM, we need to make sure we have the inode referenced for the ordered
8008 * extent. If not just return like we didn't do anything.
8009 */
8010 if (!igrab(inode)) {
8011 redirty_page_for_writepage(wbc, page);
8012 return AOP_WRITEPAGE_ACTIVATE;
8013 }
0a9b0e53 8014 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8015 btrfs_add_delayed_iput(inode);
8016 return ret;
9ebefb18
CM
8017}
8018
48a3b636
ES
8019static int btrfs_writepages(struct address_space *mapping,
8020 struct writeback_control *wbc)
b293f02e 8021{
8ae225a8 8022 return extent_writepages(mapping, wbc);
b293f02e
CM
8023}
8024
ba206a02 8025static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8026{
ba206a02 8027 extent_readahead(rac);
3ab2fb5a 8028}
2a3ff0ad 8029
e6dcd2dc 8030static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8031{
477a30ba 8032 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8033 if (ret == 1)
8034 detach_page_private(page);
a52d9a80 8035 return ret;
39279cc3
CM
8036}
8037
e6dcd2dc
CM
8038static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8039{
98509cfc
CM
8040 if (PageWriteback(page) || PageDirty(page))
8041 return 0;
3ba7ab22 8042 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8043}
8044
f8e66081
RG
8045#ifdef CONFIG_MIGRATION
8046static int btrfs_migratepage(struct address_space *mapping,
8047 struct page *newpage, struct page *page,
8048 enum migrate_mode mode)
8049{
8050 int ret;
8051
8052 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8053 if (ret != MIGRATEPAGE_SUCCESS)
8054 return ret;
8055
d1b89bc0
GJ
8056 if (page_has_private(page))
8057 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8058
8059 if (PagePrivate2(page)) {
8060 ClearPagePrivate2(page);
8061 SetPagePrivate2(newpage);
8062 }
8063
8064 if (mode != MIGRATE_SYNC_NO_COPY)
8065 migrate_page_copy(newpage, page);
8066 else
8067 migrate_page_states(newpage, page);
8068 return MIGRATEPAGE_SUCCESS;
8069}
8070#endif
8071
d47992f8
LC
8072static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8073 unsigned int length)
39279cc3 8074{
5fd02043 8075 struct inode *inode = page->mapping->host;
d1310b2e 8076 struct extent_io_tree *tree;
e6dcd2dc 8077 struct btrfs_ordered_extent *ordered;
2ac55d41 8078 struct extent_state *cached_state = NULL;
e6dcd2dc 8079 u64 page_start = page_offset(page);
09cbfeaf 8080 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8081 u64 start;
8082 u64 end;
131e404a 8083 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8084
8b62b72b
CM
8085 /*
8086 * we have the page locked, so new writeback can't start,
8087 * and the dirty bit won't be cleared while we are here.
8088 *
8089 * Wait for IO on this page so that we can safely clear
8090 * the PagePrivate2 bit and do ordered accounting
8091 */
e6dcd2dc 8092 wait_on_page_writeback(page);
8b62b72b 8093
5fd02043 8094 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8095 if (offset) {
8096 btrfs_releasepage(page, GFP_NOFS);
8097 return;
8098 }
131e404a
FDBM
8099
8100 if (!inode_evicting)
ff13db41 8101 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8102again:
8103 start = page_start;
a776c6fa 8104 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8105 page_end - start + 1);
e6dcd2dc 8106 if (ordered) {
bffe633e
OS
8107 end = min(page_end,
8108 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8109 /*
8110 * IO on this page will never be started, so we need
8111 * to account for any ordered extents now
8112 */
131e404a 8113 if (!inode_evicting)
dbfdb6d1 8114 clear_extent_bit(tree, start, end,
e182163d 8115 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8116 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8117 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8118 /*
8119 * whoever cleared the private bit is responsible
8120 * for the finish_ordered_io
8121 */
77cef2ec
JB
8122 if (TestClearPagePrivate2(page)) {
8123 struct btrfs_ordered_inode_tree *tree;
8124 u64 new_len;
8125
8126 tree = &BTRFS_I(inode)->ordered_tree;
8127
8128 spin_lock_irq(&tree->lock);
8129 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8130 new_len = start - ordered->file_offset;
77cef2ec
JB
8131 if (new_len < ordered->truncated_len)
8132 ordered->truncated_len = new_len;
8133 spin_unlock_irq(&tree->lock);
8134
8135 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8136 start,
8137 end - start + 1, 1))
77cef2ec 8138 btrfs_finish_ordered_io(ordered);
8b62b72b 8139 }
e6dcd2dc 8140 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8141 if (!inode_evicting) {
8142 cached_state = NULL;
dbfdb6d1 8143 lock_extent_bits(tree, start, end,
131e404a
FDBM
8144 &cached_state);
8145 }
dbfdb6d1
CR
8146
8147 start = end + 1;
8148 if (start < page_end)
8149 goto again;
131e404a
FDBM
8150 }
8151
b9d0b389
QW
8152 /*
8153 * Qgroup reserved space handler
8154 * Page here will be either
fa91e4aa
QW
8155 * 1) Already written to disk or ordered extent already submitted
8156 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8157 * Qgroup will be handled by its qgroup_record then.
8158 * btrfs_qgroup_free_data() call will do nothing here.
8159 *
8160 * 2) Not written to disk yet
8161 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8162 * bit of its io_tree, and free the qgroup reserved data space.
8163 * Since the IO will never happen for this page.
b9d0b389 8164 */
8b8a979f 8165 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
131e404a 8166 if (!inode_evicting) {
e182163d 8167 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8168 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8169 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8170 &cached_state);
131e404a
FDBM
8171
8172 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8173 }
e6dcd2dc 8174
4a096752 8175 ClearPageChecked(page);
d1b89bc0 8176 detach_page_private(page);
39279cc3
CM
8177}
8178
9ebefb18
CM
8179/*
8180 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8181 * called from a page fault handler when a page is first dirtied. Hence we must
8182 * be careful to check for EOF conditions here. We set the page up correctly
8183 * for a written page which means we get ENOSPC checking when writing into
8184 * holes and correct delalloc and unwritten extent mapping on filesystems that
8185 * support these features.
8186 *
8187 * We are not allowed to take the i_mutex here so we have to play games to
8188 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8189 * truncate_setsize() writes the inode size before removing pages, once we have
8190 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8191 * beyond EOF, then the page is guaranteed safe against truncation until we
8192 * unlock the page.
8193 */
a528a241 8194vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8195{
c2ec175c 8196 struct page *page = vmf->page;
11bac800 8197 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8199 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8200 struct btrfs_ordered_extent *ordered;
2ac55d41 8201 struct extent_state *cached_state = NULL;
364ecf36 8202 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8203 char *kaddr;
8204 unsigned long zero_start;
9ebefb18 8205 loff_t size;
a528a241
SJ
8206 vm_fault_t ret;
8207 int ret2;
9998eb70 8208 int reserved = 0;
d0b7da88 8209 u64 reserved_space;
a52d9a80 8210 u64 page_start;
e6dcd2dc 8211 u64 page_end;
d0b7da88
CR
8212 u64 end;
8213
09cbfeaf 8214 reserved_space = PAGE_SIZE;
9ebefb18 8215
b2b5ef5c 8216 sb_start_pagefault(inode->i_sb);
df480633 8217 page_start = page_offset(page);
09cbfeaf 8218 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8219 end = page_end;
df480633 8220
d0b7da88
CR
8221 /*
8222 * Reserving delalloc space after obtaining the page lock can lead to
8223 * deadlock. For example, if a dirty page is locked by this function
8224 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8225 * dirty page write out, then the btrfs_writepage() function could
8226 * end up waiting indefinitely to get a lock on the page currently
8227 * being processed by btrfs_page_mkwrite() function.
8228 */
e5b7231e
NB
8229 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8230 page_start, reserved_space);
a528a241
SJ
8231 if (!ret2) {
8232 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8233 reserved = 1;
8234 }
a528a241
SJ
8235 if (ret2) {
8236 ret = vmf_error(ret2);
9998eb70
CM
8237 if (reserved)
8238 goto out;
8239 goto out_noreserve;
56a76f82 8240 }
1832a6d5 8241
56a76f82 8242 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8243again:
9ebefb18 8244 lock_page(page);
9ebefb18 8245 size = i_size_read(inode);
a52d9a80 8246
9ebefb18 8247 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8248 (page_start >= size)) {
9ebefb18
CM
8249 /* page got truncated out from underneath us */
8250 goto out_unlock;
8251 }
e6dcd2dc
CM
8252 wait_on_page_writeback(page);
8253
ff13db41 8254 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8255 set_page_extent_mapped(page);
8256
eb84ae03
CM
8257 /*
8258 * we can't set the delalloc bits if there are pending ordered
8259 * extents. Drop our locks and wait for them to finish
8260 */
a776c6fa
NB
8261 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8262 PAGE_SIZE);
e6dcd2dc 8263 if (ordered) {
2ac55d41 8264 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8265 &cached_state);
e6dcd2dc 8266 unlock_page(page);
eb84ae03 8267 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8268 btrfs_put_ordered_extent(ordered);
8269 goto again;
8270 }
8271
09cbfeaf 8272 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8273 reserved_space = round_up(size - page_start,
0b246afa 8274 fs_info->sectorsize);
09cbfeaf 8275 if (reserved_space < PAGE_SIZE) {
d0b7da88 8276 end = page_start + reserved_space - 1;
86d52921
NB
8277 btrfs_delalloc_release_space(BTRFS_I(inode),
8278 data_reserved, page_start,
8279 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8280 }
8281 }
8282
fbf19087 8283 /*
5416034f
LB
8284 * page_mkwrite gets called when the page is firstly dirtied after it's
8285 * faulted in, but write(2) could also dirty a page and set delalloc
8286 * bits, thus in this case for space account reason, we still need to
8287 * clear any delalloc bits within this page range since we have to
8288 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8289 */
d0b7da88 8290 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8291 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8292 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8293
c2566f22 8294 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8295 &cached_state);
a528a241 8296 if (ret2) {
2ac55d41 8297 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8298 &cached_state);
9ed74f2d
JB
8299 ret = VM_FAULT_SIGBUS;
8300 goto out_unlock;
8301 }
9ebefb18
CM
8302
8303 /* page is wholly or partially inside EOF */
09cbfeaf 8304 if (page_start + PAGE_SIZE > size)
7073017a 8305 zero_start = offset_in_page(size);
9ebefb18 8306 else
09cbfeaf 8307 zero_start = PAGE_SIZE;
9ebefb18 8308
09cbfeaf 8309 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8310 kaddr = kmap(page);
09cbfeaf 8311 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8312 flush_dcache_page(page);
8313 kunmap(page);
8314 }
247e743c 8315 ClearPageChecked(page);
e6dcd2dc 8316 set_page_dirty(page);
50a9b214 8317 SetPageUptodate(page);
5a3f23d5 8318
0b246afa 8319 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8320 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8321 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8322
e43bbe5e 8323 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8324
76de60ed
YY
8325 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8326 sb_end_pagefault(inode->i_sb);
8327 extent_changeset_free(data_reserved);
8328 return VM_FAULT_LOCKED;
717beb96
CM
8329
8330out_unlock:
9ebefb18 8331 unlock_page(page);
1832a6d5 8332out:
8702ba93 8333 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8334 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8335 reserved_space, (ret != 0));
9998eb70 8336out_noreserve:
b2b5ef5c 8337 sb_end_pagefault(inode->i_sb);
364ecf36 8338 extent_changeset_free(data_reserved);
9ebefb18
CM
8339 return ret;
8340}
8341
213e8c55 8342static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8343{
0b246afa 8344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8345 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8346 struct btrfs_block_rsv *rsv;
ad7e1a74 8347 int ret;
39279cc3 8348 struct btrfs_trans_handle *trans;
0b246afa 8349 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8350 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8351
213e8c55
FM
8352 if (!skip_writeback) {
8353 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8354 (u64)-1);
8355 if (ret)
8356 return ret;
8357 }
39279cc3 8358
fcb80c2a 8359 /*
f7e9e8fc
OS
8360 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8361 * things going on here:
fcb80c2a 8362 *
f7e9e8fc 8363 * 1) We need to reserve space to update our inode.
fcb80c2a 8364 *
f7e9e8fc 8365 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8366 * be free'd up by the truncate operation, but also have some slack
8367 * space reserved in case it uses space during the truncate (thank you
8368 * very much snapshotting).
8369 *
f7e9e8fc 8370 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8371 * space doing the truncate, and we have no earthly idea how much space
01327610 8372 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8373 * doesn't end up using space reserved for updating the inode. We also
8374 * need to be able to stop the transaction and start a new one, which
8375 * means we need to be able to update the inode several times, and we
8376 * have no idea of knowing how many times that will be, so we can't just
8377 * reserve 1 item for the entirety of the operation, so that has to be
8378 * done separately as well.
fcb80c2a
JB
8379 *
8380 * So that leaves us with
8381 *
f7e9e8fc 8382 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8383 * transaction reservation.
f7e9e8fc 8384 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8385 * updating the inode.
8386 */
2ff7e61e 8387 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8388 if (!rsv)
8389 return -ENOMEM;
4a338542 8390 rsv->size = min_size;
ca7e70f5 8391 rsv->failfast = 1;
f0cd846e 8392
907cbceb 8393 /*
07127184 8394 * 1 for the truncate slack space
907cbceb
JB
8395 * 1 for updating the inode.
8396 */
f3fe820c 8397 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8398 if (IS_ERR(trans)) {
ad7e1a74 8399 ret = PTR_ERR(trans);
fcb80c2a
JB
8400 goto out;
8401 }
f0cd846e 8402
907cbceb 8403 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8404 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8405 min_size, false);
fcb80c2a 8406 BUG_ON(ret);
f0cd846e 8407
5dc562c5
JB
8408 /*
8409 * So if we truncate and then write and fsync we normally would just
8410 * write the extents that changed, which is a problem if we need to
8411 * first truncate that entire inode. So set this flag so we write out
8412 * all of the extents in the inode to the sync log so we're completely
8413 * safe.
8414 */
8415 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8416 trans->block_rsv = rsv;
907cbceb 8417
8082510e
YZ
8418 while (1) {
8419 ret = btrfs_truncate_inode_items(trans, root, inode,
8420 inode->i_size,
8421 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8422 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8423 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8424 break;
39279cc3 8425
8082510e 8426 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8427 if (ret)
3893e33b 8428 break;
ca7e70f5 8429
3a45bb20 8430 btrfs_end_transaction(trans);
2ff7e61e 8431 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8432
8433 trans = btrfs_start_transaction(root, 2);
8434 if (IS_ERR(trans)) {
ad7e1a74 8435 ret = PTR_ERR(trans);
ca7e70f5
JB
8436 trans = NULL;
8437 break;
8438 }
8439
63f018be 8440 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8441 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8442 rsv, min_size, false);
ca7e70f5
JB
8443 BUG_ON(ret); /* shouldn't happen */
8444 trans->block_rsv = rsv;
8082510e
YZ
8445 }
8446
ddfae63c
JB
8447 /*
8448 * We can't call btrfs_truncate_block inside a trans handle as we could
8449 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8450 * we've truncated everything except the last little bit, and can do
8451 * btrfs_truncate_block and then update the disk_i_size.
8452 */
8453 if (ret == NEED_TRUNCATE_BLOCK) {
8454 btrfs_end_transaction(trans);
8455 btrfs_btree_balance_dirty(fs_info);
8456
8457 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8458 if (ret)
8459 goto out;
8460 trans = btrfs_start_transaction(root, 1);
8461 if (IS_ERR(trans)) {
8462 ret = PTR_ERR(trans);
8463 goto out;
8464 }
d923afe9 8465 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8466 }
8467
917c16b2 8468 if (trans) {
ad7e1a74
OS
8469 int ret2;
8470
0b246afa 8471 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8472 ret2 = btrfs_update_inode(trans, root, inode);
8473 if (ret2 && !ret)
8474 ret = ret2;
7b128766 8475
ad7e1a74
OS
8476 ret2 = btrfs_end_transaction(trans);
8477 if (ret2 && !ret)
8478 ret = ret2;
2ff7e61e 8479 btrfs_btree_balance_dirty(fs_info);
917c16b2 8480 }
fcb80c2a 8481out:
2ff7e61e 8482 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8483
ad7e1a74 8484 return ret;
39279cc3
CM
8485}
8486
d352ac68
CM
8487/*
8488 * create a new subvolume directory/inode (helper for the ioctl).
8489 */
d2fb3437 8490int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8491 struct btrfs_root *new_root,
8492 struct btrfs_root *parent_root,
8493 u64 new_dirid)
39279cc3 8494{
39279cc3 8495 struct inode *inode;
76dda93c 8496 int err;
00e4e6b3 8497 u64 index = 0;
39279cc3 8498
12fc9d09
FA
8499 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8500 new_dirid, new_dirid,
8501 S_IFDIR | (~current_umask() & S_IRWXUGO),
8502 &index);
54aa1f4d 8503 if (IS_ERR(inode))
f46b5a66 8504 return PTR_ERR(inode);
39279cc3
CM
8505 inode->i_op = &btrfs_dir_inode_operations;
8506 inode->i_fop = &btrfs_dir_file_operations;
8507
bfe86848 8508 set_nlink(inode, 1);
6ef06d27 8509 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8510 unlock_new_inode(inode);
3b96362c 8511
63541927
FDBM
8512 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8513 if (err)
8514 btrfs_err(new_root->fs_info,
351fd353 8515 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8516 new_root->root_key.objectid, err);
8517
76dda93c 8518 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8519
76dda93c 8520 iput(inode);
ce598979 8521 return err;
39279cc3
CM
8522}
8523
39279cc3
CM
8524struct inode *btrfs_alloc_inode(struct super_block *sb)
8525{
69fe2d75 8526 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8527 struct btrfs_inode *ei;
2ead6ae7 8528 struct inode *inode;
39279cc3 8529
712e36c5 8530 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8531 if (!ei)
8532 return NULL;
2ead6ae7
YZ
8533
8534 ei->root = NULL;
2ead6ae7 8535 ei->generation = 0;
15ee9bc7 8536 ei->last_trans = 0;
257c62e1 8537 ei->last_sub_trans = 0;
e02119d5 8538 ei->logged_trans = 0;
2ead6ae7 8539 ei->delalloc_bytes = 0;
a7e3b975 8540 ei->new_delalloc_bytes = 0;
47059d93 8541 ei->defrag_bytes = 0;
2ead6ae7
YZ
8542 ei->disk_i_size = 0;
8543 ei->flags = 0;
7709cde3 8544 ei->csum_bytes = 0;
2ead6ae7 8545 ei->index_cnt = (u64)-1;
67de1176 8546 ei->dir_index = 0;
2ead6ae7 8547 ei->last_unlink_trans = 0;
46d8bc34 8548 ei->last_log_commit = 0;
2ead6ae7 8549
9e0baf60
JB
8550 spin_lock_init(&ei->lock);
8551 ei->outstanding_extents = 0;
69fe2d75
JB
8552 if (sb->s_magic != BTRFS_TEST_MAGIC)
8553 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8554 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8555 ei->runtime_flags = 0;
b52aa8c9 8556 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8557 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8558
16cdcec7
MX
8559 ei->delayed_node = NULL;
8560
9cc97d64 8561 ei->i_otime.tv_sec = 0;
8562 ei->i_otime.tv_nsec = 0;
8563
2ead6ae7 8564 inode = &ei->vfs_inode;
a8067e02 8565 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8566 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8567 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8568 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8569 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8570 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8571 ei->io_tree.track_uptodate = true;
8572 ei->io_failure_tree.track_uptodate = true;
b812ce28 8573 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8574 mutex_init(&ei->log_mutex);
e6dcd2dc 8575 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8576 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8577 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8578 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8579 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8580
8581 return inode;
39279cc3
CM
8582}
8583
aaedb55b
JB
8584#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8585void btrfs_test_destroy_inode(struct inode *inode)
8586{
dcdbc059 8587 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8588 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8589}
8590#endif
8591
26602cab 8592void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8593{
fa0d7e3d
NP
8594 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8595}
8596
39279cc3
CM
8597void btrfs_destroy_inode(struct inode *inode)
8598{
0b246afa 8599 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 8600 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8601 struct btrfs_root *root = BTRFS_I(inode)->root;
8602
b3d9b7a3 8603 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8604 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
8605 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8606 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 8607 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 8608 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 8609 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 8610 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8611 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8612
a6dbd429
JB
8613 /*
8614 * This can happen where we create an inode, but somebody else also
8615 * created the same inode and we need to destroy the one we already
8616 * created.
8617 */
8618 if (!root)
26602cab 8619 return;
a6dbd429 8620
d397712b 8621 while (1) {
e6dcd2dc
CM
8622 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8623 if (!ordered)
8624 break;
8625 else {
0b246afa 8626 btrfs_err(fs_info,
5d163e0e 8627 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8628 ordered->file_offset, ordered->num_bytes);
e6dcd2dc
CM
8629 btrfs_remove_ordered_extent(inode, ordered);
8630 btrfs_put_ordered_extent(ordered);
8631 btrfs_put_ordered_extent(ordered);
8632 }
8633 }
cfdd4592 8634 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
5d4f98a2 8635 inode_tree_del(inode);
dcdbc059 8636 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
41a2ee75 8637 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
5c8fd99f 8638 btrfs_put_root(BTRFS_I(inode)->root);
39279cc3
CM
8639}
8640
45321ac5 8641int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8642{
8643 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8644
6379ef9f
NA
8645 if (root == NULL)
8646 return 1;
8647
fa6ac876 8648 /* the snap/subvol tree is on deleting */
69e9c6c6 8649 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8650 return 1;
76dda93c 8651 else
45321ac5 8652 return generic_drop_inode(inode);
76dda93c
YZ
8653}
8654
0ee0fda0 8655static void init_once(void *foo)
39279cc3
CM
8656{
8657 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8658
8659 inode_init_once(&ei->vfs_inode);
8660}
8661
e67c718b 8662void __cold btrfs_destroy_cachep(void)
39279cc3 8663{
8c0a8537
KS
8664 /*
8665 * Make sure all delayed rcu free inodes are flushed before we
8666 * destroy cache.
8667 */
8668 rcu_barrier();
5598e900
KM
8669 kmem_cache_destroy(btrfs_inode_cachep);
8670 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8671 kmem_cache_destroy(btrfs_path_cachep);
8672 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8673 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8674}
8675
f5c29bd9 8676int __init btrfs_init_cachep(void)
39279cc3 8677{
837e1972 8678 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8679 sizeof(struct btrfs_inode), 0,
5d097056
VD
8680 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8681 init_once);
39279cc3
CM
8682 if (!btrfs_inode_cachep)
8683 goto fail;
9601e3f6 8684
837e1972 8685 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8686 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8687 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8688 if (!btrfs_trans_handle_cachep)
8689 goto fail;
9601e3f6 8690
837e1972 8691 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8692 sizeof(struct btrfs_path), 0,
fba4b697 8693 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8694 if (!btrfs_path_cachep)
8695 goto fail;
9601e3f6 8696
837e1972 8697 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8698 sizeof(struct btrfs_free_space), 0,
fba4b697 8699 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8700 if (!btrfs_free_space_cachep)
8701 goto fail;
8702
3acd4850
CL
8703 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8704 PAGE_SIZE, PAGE_SIZE,
8705 SLAB_RED_ZONE, NULL);
8706 if (!btrfs_free_space_bitmap_cachep)
8707 goto fail;
8708
39279cc3
CM
8709 return 0;
8710fail:
8711 btrfs_destroy_cachep();
8712 return -ENOMEM;
8713}
8714
a528d35e
DH
8715static int btrfs_getattr(const struct path *path, struct kstat *stat,
8716 u32 request_mask, unsigned int flags)
39279cc3 8717{
df0af1a5 8718 u64 delalloc_bytes;
a528d35e 8719 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8720 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8721 u32 bi_flags = BTRFS_I(inode)->flags;
8722
8723 stat->result_mask |= STATX_BTIME;
8724 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8725 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8726 if (bi_flags & BTRFS_INODE_APPEND)
8727 stat->attributes |= STATX_ATTR_APPEND;
8728 if (bi_flags & BTRFS_INODE_COMPRESS)
8729 stat->attributes |= STATX_ATTR_COMPRESSED;
8730 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8731 stat->attributes |= STATX_ATTR_IMMUTABLE;
8732 if (bi_flags & BTRFS_INODE_NODUMP)
8733 stat->attributes |= STATX_ATTR_NODUMP;
8734
8735 stat->attributes_mask |= (STATX_ATTR_APPEND |
8736 STATX_ATTR_COMPRESSED |
8737 STATX_ATTR_IMMUTABLE |
8738 STATX_ATTR_NODUMP);
fadc0d8b 8739
39279cc3 8740 generic_fillattr(inode, stat);
0ee5dc67 8741 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8742
8743 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8744 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8745 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8746 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8747 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8748 return 0;
8749}
8750
cdd1fedf
DF
8751static int btrfs_rename_exchange(struct inode *old_dir,
8752 struct dentry *old_dentry,
8753 struct inode *new_dir,
8754 struct dentry *new_dentry)
8755{
0b246afa 8756 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8757 struct btrfs_trans_handle *trans;
8758 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8759 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8760 struct inode *new_inode = new_dentry->d_inode;
8761 struct inode *old_inode = old_dentry->d_inode;
95582b00 8762 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 8763 struct dentry *parent;
4a0cc7ca
NB
8764 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8765 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8766 u64 old_idx = 0;
8767 u64 new_idx = 0;
cdd1fedf 8768 int ret;
86e8aa0e
FM
8769 bool root_log_pinned = false;
8770 bool dest_log_pinned = false;
d4682ba0
FM
8771 struct btrfs_log_ctx ctx_root;
8772 struct btrfs_log_ctx ctx_dest;
8773 bool sync_log_root = false;
8774 bool sync_log_dest = false;
8775 bool commit_transaction = false;
cdd1fedf
DF
8776
8777 /* we only allow rename subvolume link between subvolumes */
8778 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8779 return -EXDEV;
8780
d4682ba0
FM
8781 btrfs_init_log_ctx(&ctx_root, old_inode);
8782 btrfs_init_log_ctx(&ctx_dest, new_inode);
8783
cdd1fedf 8784 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8785 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8786 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8787 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8788
8789 /*
8790 * We want to reserve the absolute worst case amount of items. So if
8791 * both inodes are subvols and we need to unlink them then that would
8792 * require 4 item modifications, but if they are both normal inodes it
8793 * would require 5 item modifications, so we'll assume their normal
8794 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8795 * should cover the worst case number of items we'll modify.
8796 */
8797 trans = btrfs_start_transaction(root, 12);
8798 if (IS_ERR(trans)) {
8799 ret = PTR_ERR(trans);
8800 goto out_notrans;
8801 }
8802
3e174099
JB
8803 if (dest != root)
8804 btrfs_record_root_in_trans(trans, dest);
8805
cdd1fedf
DF
8806 /*
8807 * We need to find a free sequence number both in the source and
8808 * in the destination directory for the exchange.
8809 */
877574e2 8810 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8811 if (ret)
8812 goto out_fail;
877574e2 8813 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8814 if (ret)
8815 goto out_fail;
8816
8817 BTRFS_I(old_inode)->dir_index = 0ULL;
8818 BTRFS_I(new_inode)->dir_index = 0ULL;
8819
8820 /* Reference for the source. */
8821 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8822 /* force full log commit if subvolume involved. */
90787766 8823 btrfs_set_log_full_commit(trans);
cdd1fedf 8824 } else {
376e5a57
FM
8825 btrfs_pin_log_trans(root);
8826 root_log_pinned = true;
cdd1fedf
DF
8827 ret = btrfs_insert_inode_ref(trans, dest,
8828 new_dentry->d_name.name,
8829 new_dentry->d_name.len,
8830 old_ino,
f85b7379
DS
8831 btrfs_ino(BTRFS_I(new_dir)),
8832 old_idx);
cdd1fedf
DF
8833 if (ret)
8834 goto out_fail;
cdd1fedf
DF
8835 }
8836
8837 /* And now for the dest. */
8838 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8839 /* force full log commit if subvolume involved. */
90787766 8840 btrfs_set_log_full_commit(trans);
cdd1fedf 8841 } else {
376e5a57
FM
8842 btrfs_pin_log_trans(dest);
8843 dest_log_pinned = true;
cdd1fedf
DF
8844 ret = btrfs_insert_inode_ref(trans, root,
8845 old_dentry->d_name.name,
8846 old_dentry->d_name.len,
8847 new_ino,
f85b7379
DS
8848 btrfs_ino(BTRFS_I(old_dir)),
8849 new_idx);
cdd1fedf
DF
8850 if (ret)
8851 goto out_fail;
cdd1fedf
DF
8852 }
8853
8854 /* Update inode version and ctime/mtime. */
8855 inode_inc_iversion(old_dir);
8856 inode_inc_iversion(new_dir);
8857 inode_inc_iversion(old_inode);
8858 inode_inc_iversion(new_inode);
8859 old_dir->i_ctime = old_dir->i_mtime = ctime;
8860 new_dir->i_ctime = new_dir->i_mtime = ctime;
8861 old_inode->i_ctime = ctime;
8862 new_inode->i_ctime = ctime;
8863
8864 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8865 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8866 BTRFS_I(old_inode), 1);
8867 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8868 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8869 }
8870
8871 /* src is a subvolume */
8872 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8873 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8874 } else { /* src is an inode */
4ec5934e
NB
8875 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8876 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8877 old_dentry->d_name.name,
8878 old_dentry->d_name.len);
8879 if (!ret)
8880 ret = btrfs_update_inode(trans, root, old_inode);
8881 }
8882 if (ret) {
66642832 8883 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8884 goto out_fail;
8885 }
8886
8887 /* dest is a subvolume */
8888 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8889 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8890 } else { /* dest is an inode */
4ec5934e
NB
8891 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8892 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8893 new_dentry->d_name.name,
8894 new_dentry->d_name.len);
8895 if (!ret)
8896 ret = btrfs_update_inode(trans, dest, new_inode);
8897 }
8898 if (ret) {
66642832 8899 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8900 goto out_fail;
8901 }
8902
db0a669f 8903 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8904 new_dentry->d_name.name,
8905 new_dentry->d_name.len, 0, old_idx);
8906 if (ret) {
66642832 8907 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8908 goto out_fail;
8909 }
8910
db0a669f 8911 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8912 old_dentry->d_name.name,
8913 old_dentry->d_name.len, 0, new_idx);
8914 if (ret) {
66642832 8915 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8916 goto out_fail;
8917 }
8918
8919 if (old_inode->i_nlink == 1)
8920 BTRFS_I(old_inode)->dir_index = old_idx;
8921 if (new_inode->i_nlink == 1)
8922 BTRFS_I(new_inode)->dir_index = new_idx;
8923
86e8aa0e 8924 if (root_log_pinned) {
cdd1fedf 8925 parent = new_dentry->d_parent;
d4682ba0
FM
8926 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8927 BTRFS_I(old_dir), parent,
8928 false, &ctx_root);
8929 if (ret == BTRFS_NEED_LOG_SYNC)
8930 sync_log_root = true;
8931 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8932 commit_transaction = true;
8933 ret = 0;
cdd1fedf 8934 btrfs_end_log_trans(root);
86e8aa0e 8935 root_log_pinned = false;
cdd1fedf 8936 }
86e8aa0e 8937 if (dest_log_pinned) {
d4682ba0
FM
8938 if (!commit_transaction) {
8939 parent = old_dentry->d_parent;
8940 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8941 BTRFS_I(new_dir), parent,
8942 false, &ctx_dest);
8943 if (ret == BTRFS_NEED_LOG_SYNC)
8944 sync_log_dest = true;
8945 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8946 commit_transaction = true;
8947 ret = 0;
8948 }
cdd1fedf 8949 btrfs_end_log_trans(dest);
86e8aa0e 8950 dest_log_pinned = false;
cdd1fedf
DF
8951 }
8952out_fail:
86e8aa0e
FM
8953 /*
8954 * If we have pinned a log and an error happened, we unpin tasks
8955 * trying to sync the log and force them to fallback to a transaction
8956 * commit if the log currently contains any of the inodes involved in
8957 * this rename operation (to ensure we do not persist a log with an
8958 * inconsistent state for any of these inodes or leading to any
8959 * inconsistencies when replayed). If the transaction was aborted, the
8960 * abortion reason is propagated to userspace when attempting to commit
8961 * the transaction. If the log does not contain any of these inodes, we
8962 * allow the tasks to sync it.
8963 */
8964 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8965 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8966 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8967 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8968 (new_inode &&
0f8939b8 8969 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8970 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8971
8972 if (root_log_pinned) {
8973 btrfs_end_log_trans(root);
8974 root_log_pinned = false;
8975 }
8976 if (dest_log_pinned) {
8977 btrfs_end_log_trans(dest);
8978 dest_log_pinned = false;
8979 }
8980 }
d4682ba0
FM
8981 if (!ret && sync_log_root && !commit_transaction) {
8982 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
8983 &ctx_root);
8984 if (ret)
8985 commit_transaction = true;
8986 }
8987 if (!ret && sync_log_dest && !commit_transaction) {
8988 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
8989 &ctx_dest);
8990 if (ret)
8991 commit_transaction = true;
8992 }
8993 if (commit_transaction) {
e6c61710
FM
8994 /*
8995 * We may have set commit_transaction when logging the new name
8996 * in the destination root, in which case we left the source
8997 * root context in the list of log contextes. So make sure we
8998 * remove it to avoid invalid memory accesses, since the context
8999 * was allocated in our stack frame.
9000 */
9001 if (sync_log_root) {
9002 mutex_lock(&root->log_mutex);
9003 list_del_init(&ctx_root.list);
9004 mutex_unlock(&root->log_mutex);
9005 }
d4682ba0
FM
9006 ret = btrfs_commit_transaction(trans);
9007 } else {
9008 int ret2;
9009
9010 ret2 = btrfs_end_transaction(trans);
9011 ret = ret ? ret : ret2;
9012 }
cdd1fedf 9013out_notrans:
943eb3bf
JB
9014 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9015 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9016 up_read(&fs_info->subvol_sem);
cdd1fedf 9017
e6c61710
FM
9018 ASSERT(list_empty(&ctx_root.list));
9019 ASSERT(list_empty(&ctx_dest.list));
9020
cdd1fedf
DF
9021 return ret;
9022}
9023
9024static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9025 struct btrfs_root *root,
9026 struct inode *dir,
9027 struct dentry *dentry)
9028{
9029 int ret;
9030 struct inode *inode;
9031 u64 objectid;
9032 u64 index;
9033
9034 ret = btrfs_find_free_ino(root, &objectid);
9035 if (ret)
9036 return ret;
9037
9038 inode = btrfs_new_inode(trans, root, dir,
9039 dentry->d_name.name,
9040 dentry->d_name.len,
4a0cc7ca 9041 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9042 objectid,
9043 S_IFCHR | WHITEOUT_MODE,
9044 &index);
9045
9046 if (IS_ERR(inode)) {
9047 ret = PTR_ERR(inode);
9048 return ret;
9049 }
9050
9051 inode->i_op = &btrfs_special_inode_operations;
9052 init_special_inode(inode, inode->i_mode,
9053 WHITEOUT_DEV);
9054
9055 ret = btrfs_init_inode_security(trans, inode, dir,
9056 &dentry->d_name);
9057 if (ret)
c9901618 9058 goto out;
cdd1fedf 9059
cef415af
NB
9060 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9061 BTRFS_I(inode), 0, index);
cdd1fedf 9062 if (ret)
c9901618 9063 goto out;
cdd1fedf
DF
9064
9065 ret = btrfs_update_inode(trans, root, inode);
c9901618 9066out:
cdd1fedf 9067 unlock_new_inode(inode);
c9901618
FM
9068 if (ret)
9069 inode_dec_link_count(inode);
cdd1fedf
DF
9070 iput(inode);
9071
c9901618 9072 return ret;
cdd1fedf
DF
9073}
9074
d397712b 9075static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9076 struct inode *new_dir, struct dentry *new_dentry,
9077 unsigned int flags)
39279cc3 9078{
0b246afa 9079 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9080 struct btrfs_trans_handle *trans;
5062af35 9081 unsigned int trans_num_items;
39279cc3 9082 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9083 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9084 struct inode *new_inode = d_inode(new_dentry);
9085 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9086 u64 index = 0;
39279cc3 9087 int ret;
4a0cc7ca 9088 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9089 bool log_pinned = false;
d4682ba0
FM
9090 struct btrfs_log_ctx ctx;
9091 bool sync_log = false;
9092 bool commit_transaction = false;
39279cc3 9093
4a0cc7ca 9094 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9095 return -EPERM;
9096
4df27c4d 9097 /* we only allow rename subvolume link between subvolumes */
33345d01 9098 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9099 return -EXDEV;
9100
33345d01 9101 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9102 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9103 return -ENOTEMPTY;
5f39d397 9104
4df27c4d
YZ
9105 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9106 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9107 return -ENOTEMPTY;
9c52057c
CM
9108
9109
9110 /* check for collisions, even if the name isn't there */
4871c158 9111 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9112 new_dentry->d_name.name,
9113 new_dentry->d_name.len);
9114
9115 if (ret) {
9116 if (ret == -EEXIST) {
9117 /* we shouldn't get
9118 * eexist without a new_inode */
fae7f21c 9119 if (WARN_ON(!new_inode)) {
9c52057c
CM
9120 return ret;
9121 }
9122 } else {
9123 /* maybe -EOVERFLOW */
9124 return ret;
9125 }
9126 }
9127 ret = 0;
9128
5a3f23d5 9129 /*
8d875f95
CM
9130 * we're using rename to replace one file with another. Start IO on it
9131 * now so we don't add too much work to the end of the transaction
5a3f23d5 9132 */
8d875f95 9133 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9134 filemap_flush(old_inode->i_mapping);
9135
76dda93c 9136 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9137 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9138 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9139 /*
9140 * We want to reserve the absolute worst case amount of items. So if
9141 * both inodes are subvols and we need to unlink them then that would
9142 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9143 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9144 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9145 * should cover the worst case number of items we'll modify.
5062af35
FM
9146 * If our rename has the whiteout flag, we need more 5 units for the
9147 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9148 * when selinux is enabled).
a22285a6 9149 */
5062af35
FM
9150 trans_num_items = 11;
9151 if (flags & RENAME_WHITEOUT)
9152 trans_num_items += 5;
9153 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9154 if (IS_ERR(trans)) {
cdd1fedf
DF
9155 ret = PTR_ERR(trans);
9156 goto out_notrans;
9157 }
76dda93c 9158
4df27c4d
YZ
9159 if (dest != root)
9160 btrfs_record_root_in_trans(trans, dest);
5f39d397 9161
877574e2 9162 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9163 if (ret)
9164 goto out_fail;
5a3f23d5 9165
67de1176 9166 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9167 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9168 /* force full log commit if subvolume involved. */
90787766 9169 btrfs_set_log_full_commit(trans);
4df27c4d 9170 } else {
c4aba954
FM
9171 btrfs_pin_log_trans(root);
9172 log_pinned = true;
a5719521
YZ
9173 ret = btrfs_insert_inode_ref(trans, dest,
9174 new_dentry->d_name.name,
9175 new_dentry->d_name.len,
33345d01 9176 old_ino,
4a0cc7ca 9177 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9178 if (ret)
9179 goto out_fail;
4df27c4d 9180 }
5a3f23d5 9181
0c4d2d95
JB
9182 inode_inc_iversion(old_dir);
9183 inode_inc_iversion(new_dir);
9184 inode_inc_iversion(old_inode);
04b285f3
DD
9185 old_dir->i_ctime = old_dir->i_mtime =
9186 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9187 old_inode->i_ctime = current_time(old_dir);
5f39d397 9188
12fcfd22 9189 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9190 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9191 BTRFS_I(old_inode), 1);
12fcfd22 9192
33345d01 9193 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9194 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9195 } else {
4ec5934e
NB
9196 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9197 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9198 old_dentry->d_name.name,
9199 old_dentry->d_name.len);
9200 if (!ret)
9201 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9202 }
79787eaa 9203 if (ret) {
66642832 9204 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9205 goto out_fail;
9206 }
39279cc3
CM
9207
9208 if (new_inode) {
0c4d2d95 9209 inode_inc_iversion(new_inode);
c2050a45 9210 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9211 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9212 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9213 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9214 BUG_ON(new_inode->i_nlink == 0);
9215 } else {
4ec5934e
NB
9216 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9217 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9218 new_dentry->d_name.name,
9219 new_dentry->d_name.len);
9220 }
4ef31a45 9221 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9222 ret = btrfs_orphan_add(trans,
9223 BTRFS_I(d_inode(new_dentry)));
79787eaa 9224 if (ret) {
66642832 9225 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9226 goto out_fail;
9227 }
39279cc3 9228 }
aec7477b 9229
db0a669f 9230 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9231 new_dentry->d_name.name,
a5719521 9232 new_dentry->d_name.len, 0, index);
79787eaa 9233 if (ret) {
66642832 9234 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9235 goto out_fail;
9236 }
39279cc3 9237
67de1176
MX
9238 if (old_inode->i_nlink == 1)
9239 BTRFS_I(old_inode)->dir_index = index;
9240
3dc9e8f7 9241 if (log_pinned) {
10d9f309 9242 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9243
d4682ba0
FM
9244 btrfs_init_log_ctx(&ctx, old_inode);
9245 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9246 BTRFS_I(old_dir), parent,
9247 false, &ctx);
9248 if (ret == BTRFS_NEED_LOG_SYNC)
9249 sync_log = true;
9250 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9251 commit_transaction = true;
9252 ret = 0;
4df27c4d 9253 btrfs_end_log_trans(root);
3dc9e8f7 9254 log_pinned = false;
4df27c4d 9255 }
cdd1fedf
DF
9256
9257 if (flags & RENAME_WHITEOUT) {
9258 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9259 old_dentry);
9260
9261 if (ret) {
66642832 9262 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9263 goto out_fail;
9264 }
4df27c4d 9265 }
39279cc3 9266out_fail:
3dc9e8f7
FM
9267 /*
9268 * If we have pinned the log and an error happened, we unpin tasks
9269 * trying to sync the log and force them to fallback to a transaction
9270 * commit if the log currently contains any of the inodes involved in
9271 * this rename operation (to ensure we do not persist a log with an
9272 * inconsistent state for any of these inodes or leading to any
9273 * inconsistencies when replayed). If the transaction was aborted, the
9274 * abortion reason is propagated to userspace when attempting to commit
9275 * the transaction. If the log does not contain any of these inodes, we
9276 * allow the tasks to sync it.
9277 */
9278 if (ret && log_pinned) {
0f8939b8
NB
9279 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9280 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9281 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9282 (new_inode &&
0f8939b8 9283 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9284 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9285
9286 btrfs_end_log_trans(root);
9287 log_pinned = false;
9288 }
d4682ba0
FM
9289 if (!ret && sync_log) {
9290 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9291 if (ret)
9292 commit_transaction = true;
236ebc20
FM
9293 } else if (sync_log) {
9294 mutex_lock(&root->log_mutex);
9295 list_del(&ctx.list);
9296 mutex_unlock(&root->log_mutex);
d4682ba0
FM
9297 }
9298 if (commit_transaction) {
9299 ret = btrfs_commit_transaction(trans);
9300 } else {
9301 int ret2;
9302
9303 ret2 = btrfs_end_transaction(trans);
9304 ret = ret ? ret : ret2;
9305 }
b44c59a8 9306out_notrans:
33345d01 9307 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9308 up_read(&fs_info->subvol_sem);
9ed74f2d 9309
39279cc3
CM
9310 return ret;
9311}
9312
80ace85c
MS
9313static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9314 struct inode *new_dir, struct dentry *new_dentry,
9315 unsigned int flags)
9316{
cdd1fedf 9317 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9318 return -EINVAL;
9319
cdd1fedf
DF
9320 if (flags & RENAME_EXCHANGE)
9321 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9322 new_dentry);
9323
9324 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9325}
9326
3a2f8c07
NB
9327struct btrfs_delalloc_work {
9328 struct inode *inode;
9329 struct completion completion;
9330 struct list_head list;
9331 struct btrfs_work work;
9332};
9333
8ccf6f19
MX
9334static void btrfs_run_delalloc_work(struct btrfs_work *work)
9335{
9336 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9337 struct inode *inode;
8ccf6f19
MX
9338
9339 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9340 work);
9f23e289 9341 inode = delalloc_work->inode;
30424601
DS
9342 filemap_flush(inode->i_mapping);
9343 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9344 &BTRFS_I(inode)->runtime_flags))
9f23e289 9345 filemap_flush(inode->i_mapping);
8ccf6f19 9346
076da91c 9347 iput(inode);
8ccf6f19
MX
9348 complete(&delalloc_work->completion);
9349}
9350
3a2f8c07 9351static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9352{
9353 struct btrfs_delalloc_work *work;
9354
100d5702 9355 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9356 if (!work)
9357 return NULL;
9358
9359 init_completion(&work->completion);
9360 INIT_LIST_HEAD(&work->list);
9361 work->inode = inode;
a0cac0ec 9362 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9363
9364 return work;
9365}
9366
d352ac68
CM
9367/*
9368 * some fairly slow code that needs optimization. This walks the list
9369 * of all the inodes with pending delalloc and forces them to disk.
9370 */
3cd24c69 9371static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9372{
ea8c2819 9373 struct btrfs_inode *binode;
5b21f2ed 9374 struct inode *inode;
8ccf6f19
MX
9375 struct btrfs_delalloc_work *work, *next;
9376 struct list_head works;
1eafa6c7 9377 struct list_head splice;
8ccf6f19 9378 int ret = 0;
ea8c2819 9379
8ccf6f19 9380 INIT_LIST_HEAD(&works);
1eafa6c7 9381 INIT_LIST_HEAD(&splice);
63607cc8 9382
573bfb72 9383 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9384 spin_lock(&root->delalloc_lock);
9385 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9386 while (!list_empty(&splice)) {
9387 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9388 delalloc_inodes);
1eafa6c7 9389
eb73c1b7
MX
9390 list_move_tail(&binode->delalloc_inodes,
9391 &root->delalloc_inodes);
5b21f2ed 9392 inode = igrab(&binode->vfs_inode);
df0af1a5 9393 if (!inode) {
eb73c1b7 9394 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9395 continue;
df0af1a5 9396 }
eb73c1b7 9397 spin_unlock(&root->delalloc_lock);
1eafa6c7 9398
3cd24c69
EL
9399 if (snapshot)
9400 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9401 &binode->runtime_flags);
076da91c 9402 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9403 if (!work) {
4fbb5147 9404 iput(inode);
1eafa6c7 9405 ret = -ENOMEM;
a1ecaabb 9406 goto out;
5b21f2ed 9407 }
1eafa6c7 9408 list_add_tail(&work->list, &works);
a44903ab
QW
9409 btrfs_queue_work(root->fs_info->flush_workers,
9410 &work->work);
6c255e67
MX
9411 ret++;
9412 if (nr != -1 && ret >= nr)
a1ecaabb 9413 goto out;
5b21f2ed 9414 cond_resched();
eb73c1b7 9415 spin_lock(&root->delalloc_lock);
ea8c2819 9416 }
eb73c1b7 9417 spin_unlock(&root->delalloc_lock);
8c8bee1d 9418
a1ecaabb 9419out:
eb73c1b7
MX
9420 list_for_each_entry_safe(work, next, &works, list) {
9421 list_del_init(&work->list);
40012f96
NB
9422 wait_for_completion(&work->completion);
9423 kfree(work);
eb73c1b7
MX
9424 }
9425
81f1d390 9426 if (!list_empty(&splice)) {
eb73c1b7
MX
9427 spin_lock(&root->delalloc_lock);
9428 list_splice_tail(&splice, &root->delalloc_inodes);
9429 spin_unlock(&root->delalloc_lock);
9430 }
573bfb72 9431 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9432 return ret;
9433}
1eafa6c7 9434
3cd24c69 9435int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9436{
0b246afa 9437 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9438 int ret;
1eafa6c7 9439
0b246afa 9440 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9441 return -EROFS;
9442
3cd24c69 9443 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
9444 if (ret > 0)
9445 ret = 0;
eb73c1b7
MX
9446 return ret;
9447}
9448
82b3e53b 9449int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
9450{
9451 struct btrfs_root *root;
9452 struct list_head splice;
9453 int ret;
9454
2c21b4d7 9455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9456 return -EROFS;
9457
9458 INIT_LIST_HEAD(&splice);
9459
573bfb72 9460 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9461 spin_lock(&fs_info->delalloc_root_lock);
9462 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9463 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9464 root = list_first_entry(&splice, struct btrfs_root,
9465 delalloc_root);
00246528 9466 root = btrfs_grab_root(root);
eb73c1b7
MX
9467 BUG_ON(!root);
9468 list_move_tail(&root->delalloc_root,
9469 &fs_info->delalloc_roots);
9470 spin_unlock(&fs_info->delalloc_root_lock);
9471
3cd24c69 9472 ret = start_delalloc_inodes(root, nr, false);
00246528 9473 btrfs_put_root(root);
6c255e67 9474 if (ret < 0)
eb73c1b7
MX
9475 goto out;
9476
6c255e67
MX
9477 if (nr != -1) {
9478 nr -= ret;
9479 WARN_ON(nr < 0);
9480 }
eb73c1b7 9481 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9482 }
eb73c1b7 9483 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9484
6c255e67 9485 ret = 0;
eb73c1b7 9486out:
81f1d390 9487 if (!list_empty(&splice)) {
eb73c1b7
MX
9488 spin_lock(&fs_info->delalloc_root_lock);
9489 list_splice_tail(&splice, &fs_info->delalloc_roots);
9490 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9491 }
573bfb72 9492 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9493 return ret;
ea8c2819
CM
9494}
9495
39279cc3
CM
9496static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9497 const char *symname)
9498{
0b246afa 9499 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9500 struct btrfs_trans_handle *trans;
9501 struct btrfs_root *root = BTRFS_I(dir)->root;
9502 struct btrfs_path *path;
9503 struct btrfs_key key;
1832a6d5 9504 struct inode *inode = NULL;
39279cc3 9505 int err;
39279cc3 9506 u64 objectid;
67871254 9507 u64 index = 0;
39279cc3
CM
9508 int name_len;
9509 int datasize;
5f39d397 9510 unsigned long ptr;
39279cc3 9511 struct btrfs_file_extent_item *ei;
5f39d397 9512 struct extent_buffer *leaf;
39279cc3 9513
f06becc4 9514 name_len = strlen(symname);
0b246afa 9515 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9516 return -ENAMETOOLONG;
1832a6d5 9517
9ed74f2d
JB
9518 /*
9519 * 2 items for inode item and ref
9520 * 2 items for dir items
9269d12b
FM
9521 * 1 item for updating parent inode item
9522 * 1 item for the inline extent item
9ed74f2d
JB
9523 * 1 item for xattr if selinux is on
9524 */
9269d12b 9525 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9526 if (IS_ERR(trans))
9527 return PTR_ERR(trans);
1832a6d5 9528
581bb050
LZ
9529 err = btrfs_find_free_ino(root, &objectid);
9530 if (err)
9531 goto out_unlock;
9532
aec7477b 9533 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9534 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9535 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9536 if (IS_ERR(inode)) {
9537 err = PTR_ERR(inode);
32955c54 9538 inode = NULL;
39279cc3 9539 goto out_unlock;
7cf96da3 9540 }
39279cc3 9541
ad19db71
CS
9542 /*
9543 * If the active LSM wants to access the inode during
9544 * d_instantiate it needs these. Smack checks to see
9545 * if the filesystem supports xattrs by looking at the
9546 * ops vector.
9547 */
9548 inode->i_fop = &btrfs_file_operations;
9549 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9550 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9551 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9552
9553 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9554 if (err)
32955c54 9555 goto out_unlock;
ad19db71 9556
39279cc3 9557 path = btrfs_alloc_path();
d8926bb3
MF
9558 if (!path) {
9559 err = -ENOMEM;
32955c54 9560 goto out_unlock;
d8926bb3 9561 }
4a0cc7ca 9562 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9563 key.offset = 0;
962a298f 9564 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9565 datasize = btrfs_file_extent_calc_inline_size(name_len);
9566 err = btrfs_insert_empty_item(trans, root, path, &key,
9567 datasize);
54aa1f4d 9568 if (err) {
b0839166 9569 btrfs_free_path(path);
32955c54 9570 goto out_unlock;
54aa1f4d 9571 }
5f39d397
CM
9572 leaf = path->nodes[0];
9573 ei = btrfs_item_ptr(leaf, path->slots[0],
9574 struct btrfs_file_extent_item);
9575 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9576 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9577 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9578 btrfs_set_file_extent_encryption(leaf, ei, 0);
9579 btrfs_set_file_extent_compression(leaf, ei, 0);
9580 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9581 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9582
39279cc3 9583 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9584 write_extent_buffer(leaf, symname, ptr, name_len);
9585 btrfs_mark_buffer_dirty(leaf);
39279cc3 9586 btrfs_free_path(path);
5f39d397 9587
39279cc3 9588 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9589 inode_nohighmem(inode);
d899e052 9590 inode_set_bytes(inode, name_len);
6ef06d27 9591 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9592 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9593 /*
9594 * Last step, add directory indexes for our symlink inode. This is the
9595 * last step to avoid extra cleanup of these indexes if an error happens
9596 * elsewhere above.
9597 */
9598 if (!err)
cef415af
NB
9599 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9600 BTRFS_I(inode), 0, index);
32955c54
AV
9601 if (err)
9602 goto out_unlock;
b0d5d10f 9603
1e2e547a 9604 d_instantiate_new(dentry, inode);
39279cc3
CM
9605
9606out_unlock:
3a45bb20 9607 btrfs_end_transaction(trans);
32955c54 9608 if (err && inode) {
39279cc3 9609 inode_dec_link_count(inode);
32955c54 9610 discard_new_inode(inode);
39279cc3 9611 }
2ff7e61e 9612 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9613 return err;
9614}
16432985 9615
203f44c5
QW
9616static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9617 struct inode *inode, struct btrfs_key *ins,
9618 u64 file_offset)
9619{
9620 struct btrfs_file_extent_item stack_fi;
9621 u64 start = ins->objectid;
9622 u64 len = ins->offset;
9729f10a 9623 int ret;
203f44c5
QW
9624
9625 memset(&stack_fi, 0, sizeof(stack_fi));
9626
9627 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9628 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9629 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9630 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9631 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9632 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9633 /* Encryption and other encoding is reserved and all 0 */
9634
72b7d15b 9635 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a
QW
9636 if (ret < 0)
9637 return ret;
c553f94d 9638 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9729f10a 9639 &stack_fi, ret);
203f44c5 9640}
0af3d00b
JB
9641static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9642 u64 start, u64 num_bytes, u64 min_size,
9643 loff_t actual_len, u64 *alloc_hint,
9644 struct btrfs_trans_handle *trans)
d899e052 9645{
0b246afa 9646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9647 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9648 struct extent_map *em;
d899e052
YZ
9649 struct btrfs_root *root = BTRFS_I(inode)->root;
9650 struct btrfs_key ins;
d899e052 9651 u64 cur_offset = start;
b778cf96 9652 u64 clear_offset = start;
55a61d1d 9653 u64 i_size;
154ea289 9654 u64 cur_bytes;
0b670dc4 9655 u64 last_alloc = (u64)-1;
d899e052 9656 int ret = 0;
0af3d00b 9657 bool own_trans = true;
18513091 9658 u64 end = start + num_bytes - 1;
d899e052 9659
0af3d00b
JB
9660 if (trans)
9661 own_trans = false;
d899e052 9662 while (num_bytes > 0) {
0af3d00b
JB
9663 if (own_trans) {
9664 trans = btrfs_start_transaction(root, 3);
9665 if (IS_ERR(trans)) {
9666 ret = PTR_ERR(trans);
9667 break;
9668 }
5a303d5d
YZ
9669 }
9670
ee22184b 9671 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9672 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9673 /*
9674 * If we are severely fragmented we could end up with really
9675 * small allocations, so if the allocator is returning small
9676 * chunks lets make its job easier by only searching for those
9677 * sized chunks.
9678 */
9679 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9680 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9681 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 9682 if (ret) {
0af3d00b 9683 if (own_trans)
3a45bb20 9684 btrfs_end_transaction(trans);
a22285a6 9685 break;
d899e052 9686 }
b778cf96
JB
9687
9688 /*
9689 * We've reserved this space, and thus converted it from
9690 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9691 * from here on out we will only need to clear our reservation
9692 * for the remaining unreserved area, so advance our
9693 * clear_offset by our extent size.
9694 */
9695 clear_offset += ins.offset;
0b246afa 9696 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9697
0b670dc4 9698 last_alloc = ins.offset;
c553f94d 9699 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
79787eaa 9700 if (ret) {
2ff7e61e 9701 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9702 ins.offset, 0);
66642832 9703 btrfs_abort_transaction(trans, ret);
79787eaa 9704 if (own_trans)
3a45bb20 9705 btrfs_end_transaction(trans);
79787eaa
JM
9706 break;
9707 }
31193213 9708
dcdbc059 9709 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9710 cur_offset + ins.offset -1, 0);
5a303d5d 9711
5dc562c5
JB
9712 em = alloc_extent_map();
9713 if (!em) {
9714 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9715 &BTRFS_I(inode)->runtime_flags);
9716 goto next;
9717 }
9718
9719 em->start = cur_offset;
9720 em->orig_start = cur_offset;
9721 em->len = ins.offset;
9722 em->block_start = ins.objectid;
9723 em->block_len = ins.offset;
b4939680 9724 em->orig_block_len = ins.offset;
cc95bef6 9725 em->ram_bytes = ins.offset;
5dc562c5
JB
9726 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9727 em->generation = trans->transid;
9728
9729 while (1) {
9730 write_lock(&em_tree->lock);
09a2a8f9 9731 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9732 write_unlock(&em_tree->lock);
9733 if (ret != -EEXIST)
9734 break;
dcdbc059 9735 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9736 cur_offset + ins.offset - 1,
9737 0);
9738 }
9739 free_extent_map(em);
9740next:
d899e052
YZ
9741 num_bytes -= ins.offset;
9742 cur_offset += ins.offset;
efa56464 9743 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9744
0c4d2d95 9745 inode_inc_iversion(inode);
c2050a45 9746 inode->i_ctime = current_time(inode);
6cbff00f 9747 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9748 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9749 (actual_len > inode->i_size) &&
9750 (cur_offset > inode->i_size)) {
d1ea6a61 9751 if (cur_offset > actual_len)
55a61d1d 9752 i_size = actual_len;
d1ea6a61 9753 else
55a61d1d
JB
9754 i_size = cur_offset;
9755 i_size_write(inode, i_size);
d923afe9 9756 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9757 }
9758
d899e052 9759 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9760
9761 if (ret) {
66642832 9762 btrfs_abort_transaction(trans, ret);
79787eaa 9763 if (own_trans)
3a45bb20 9764 btrfs_end_transaction(trans);
79787eaa
JM
9765 break;
9766 }
d899e052 9767
0af3d00b 9768 if (own_trans)
3a45bb20 9769 btrfs_end_transaction(trans);
5a303d5d 9770 }
b778cf96 9771 if (clear_offset < end)
25ce28ca 9772 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9773 end - clear_offset + 1);
d899e052
YZ
9774 return ret;
9775}
9776
0af3d00b
JB
9777int btrfs_prealloc_file_range(struct inode *inode, int mode,
9778 u64 start, u64 num_bytes, u64 min_size,
9779 loff_t actual_len, u64 *alloc_hint)
9780{
9781 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9782 min_size, actual_len, alloc_hint,
9783 NULL);
9784}
9785
9786int btrfs_prealloc_file_range_trans(struct inode *inode,
9787 struct btrfs_trans_handle *trans, int mode,
9788 u64 start, u64 num_bytes, u64 min_size,
9789 loff_t actual_len, u64 *alloc_hint)
9790{
9791 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9792 min_size, actual_len, alloc_hint, trans);
9793}
9794
e6dcd2dc
CM
9795static int btrfs_set_page_dirty(struct page *page)
9796{
e6dcd2dc
CM
9797 return __set_page_dirty_nobuffers(page);
9798}
9799
10556cb2 9800static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9801{
b83cc969 9802 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9803 umode_t mode = inode->i_mode;
b83cc969 9804
cb6db4e5
JM
9805 if (mask & MAY_WRITE &&
9806 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9807 if (btrfs_root_readonly(root))
9808 return -EROFS;
9809 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9810 return -EACCES;
9811 }
2830ba7f 9812 return generic_permission(inode, mask);
fdebe2bd 9813}
39279cc3 9814
ef3b9af5
FM
9815static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9816{
2ff7e61e 9817 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9818 struct btrfs_trans_handle *trans;
9819 struct btrfs_root *root = BTRFS_I(dir)->root;
9820 struct inode *inode = NULL;
9821 u64 objectid;
9822 u64 index;
9823 int ret = 0;
9824
9825 /*
9826 * 5 units required for adding orphan entry
9827 */
9828 trans = btrfs_start_transaction(root, 5);
9829 if (IS_ERR(trans))
9830 return PTR_ERR(trans);
9831
9832 ret = btrfs_find_free_ino(root, &objectid);
9833 if (ret)
9834 goto out;
9835
9836 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9837 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9838 if (IS_ERR(inode)) {
9839 ret = PTR_ERR(inode);
9840 inode = NULL;
9841 goto out;
9842 }
9843
ef3b9af5
FM
9844 inode->i_fop = &btrfs_file_operations;
9845 inode->i_op = &btrfs_file_inode_operations;
9846
9847 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9848 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9849
b0d5d10f
CM
9850 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9851 if (ret)
32955c54 9852 goto out;
b0d5d10f
CM
9853
9854 ret = btrfs_update_inode(trans, root, inode);
9855 if (ret)
32955c54 9856 goto out;
73f2e545 9857 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9858 if (ret)
32955c54 9859 goto out;
ef3b9af5 9860
5762b5c9
FM
9861 /*
9862 * We set number of links to 0 in btrfs_new_inode(), and here we set
9863 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9864 * through:
9865 *
9866 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9867 */
9868 set_nlink(inode, 1);
ef3b9af5 9869 d_tmpfile(dentry, inode);
32955c54 9870 unlock_new_inode(inode);
ef3b9af5 9871 mark_inode_dirty(inode);
ef3b9af5 9872out:
3a45bb20 9873 btrfs_end_transaction(trans);
32955c54
AV
9874 if (ret && inode)
9875 discard_new_inode(inode);
2ff7e61e 9876 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9877 return ret;
9878}
9879
5cdc84bf 9880void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9881{
5cdc84bf 9882 struct inode *inode = tree->private_data;
c6100a4b
JB
9883 unsigned long index = start >> PAGE_SHIFT;
9884 unsigned long end_index = end >> PAGE_SHIFT;
9885 struct page *page;
9886
9887 while (index <= end_index) {
9888 page = find_get_page(inode->i_mapping, index);
9889 ASSERT(page); /* Pages should be in the extent_io_tree */
9890 set_page_writeback(page);
9891 put_page(page);
9892 index++;
9893 }
9894}
9895
ed46ff3d
OS
9896#ifdef CONFIG_SWAP
9897/*
9898 * Add an entry indicating a block group or device which is pinned by a
9899 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9900 * negative errno on failure.
9901 */
9902static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9903 bool is_block_group)
9904{
9905 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9906 struct btrfs_swapfile_pin *sp, *entry;
9907 struct rb_node **p;
9908 struct rb_node *parent = NULL;
9909
9910 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9911 if (!sp)
9912 return -ENOMEM;
9913 sp->ptr = ptr;
9914 sp->inode = inode;
9915 sp->is_block_group = is_block_group;
9916
9917 spin_lock(&fs_info->swapfile_pins_lock);
9918 p = &fs_info->swapfile_pins.rb_node;
9919 while (*p) {
9920 parent = *p;
9921 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9922 if (sp->ptr < entry->ptr ||
9923 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9924 p = &(*p)->rb_left;
9925 } else if (sp->ptr > entry->ptr ||
9926 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9927 p = &(*p)->rb_right;
9928 } else {
9929 spin_unlock(&fs_info->swapfile_pins_lock);
9930 kfree(sp);
9931 return 1;
9932 }
9933 }
9934 rb_link_node(&sp->node, parent, p);
9935 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9936 spin_unlock(&fs_info->swapfile_pins_lock);
9937 return 0;
9938}
9939
9940/* Free all of the entries pinned by this swapfile. */
9941static void btrfs_free_swapfile_pins(struct inode *inode)
9942{
9943 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9944 struct btrfs_swapfile_pin *sp;
9945 struct rb_node *node, *next;
9946
9947 spin_lock(&fs_info->swapfile_pins_lock);
9948 node = rb_first(&fs_info->swapfile_pins);
9949 while (node) {
9950 next = rb_next(node);
9951 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9952 if (sp->inode == inode) {
9953 rb_erase(&sp->node, &fs_info->swapfile_pins);
9954 if (sp->is_block_group)
9955 btrfs_put_block_group(sp->ptr);
9956 kfree(sp);
9957 }
9958 node = next;
9959 }
9960 spin_unlock(&fs_info->swapfile_pins_lock);
9961}
9962
9963struct btrfs_swap_info {
9964 u64 start;
9965 u64 block_start;
9966 u64 block_len;
9967 u64 lowest_ppage;
9968 u64 highest_ppage;
9969 unsigned long nr_pages;
9970 int nr_extents;
9971};
9972
9973static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9974 struct btrfs_swap_info *bsi)
9975{
9976 unsigned long nr_pages;
9977 u64 first_ppage, first_ppage_reported, next_ppage;
9978 int ret;
9979
9980 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9981 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9982 PAGE_SIZE) >> PAGE_SHIFT;
9983
9984 if (first_ppage >= next_ppage)
9985 return 0;
9986 nr_pages = next_ppage - first_ppage;
9987
9988 first_ppage_reported = first_ppage;
9989 if (bsi->start == 0)
9990 first_ppage_reported++;
9991 if (bsi->lowest_ppage > first_ppage_reported)
9992 bsi->lowest_ppage = first_ppage_reported;
9993 if (bsi->highest_ppage < (next_ppage - 1))
9994 bsi->highest_ppage = next_ppage - 1;
9995
9996 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9997 if (ret < 0)
9998 return ret;
9999 bsi->nr_extents += ret;
10000 bsi->nr_pages += nr_pages;
10001 return 0;
10002}
10003
10004static void btrfs_swap_deactivate(struct file *file)
10005{
10006 struct inode *inode = file_inode(file);
10007
10008 btrfs_free_swapfile_pins(inode);
10009 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10010}
10011
10012static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10013 sector_t *span)
10014{
10015 struct inode *inode = file_inode(file);
10016 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10017 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10018 struct extent_state *cached_state = NULL;
10019 struct extent_map *em = NULL;
10020 struct btrfs_device *device = NULL;
10021 struct btrfs_swap_info bsi = {
10022 .lowest_ppage = (sector_t)-1ULL,
10023 };
10024 int ret = 0;
10025 u64 isize;
10026 u64 start;
10027
10028 /*
10029 * If the swap file was just created, make sure delalloc is done. If the
10030 * file changes again after this, the user is doing something stupid and
10031 * we don't really care.
10032 */
10033 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10034 if (ret)
10035 return ret;
10036
10037 /*
10038 * The inode is locked, so these flags won't change after we check them.
10039 */
10040 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10041 btrfs_warn(fs_info, "swapfile must not be compressed");
10042 return -EINVAL;
10043 }
10044 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10045 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10046 return -EINVAL;
10047 }
10048 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10049 btrfs_warn(fs_info, "swapfile must not be checksummed");
10050 return -EINVAL;
10051 }
10052
10053 /*
10054 * Balance or device remove/replace/resize can move stuff around from
10055 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10056 * concurrently while we are mapping the swap extents, and
10057 * fs_info->swapfile_pins prevents them from running while the swap file
10058 * is active and moving the extents. Note that this also prevents a
10059 * concurrent device add which isn't actually necessary, but it's not
10060 * really worth the trouble to allow it.
10061 */
10062 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10063 btrfs_warn(fs_info,
10064 "cannot activate swapfile while exclusive operation is running");
10065 return -EBUSY;
10066 }
10067 /*
10068 * Snapshots can create extents which require COW even if NODATACOW is
10069 * set. We use this counter to prevent snapshots. We must increment it
10070 * before walking the extents because we don't want a concurrent
10071 * snapshot to run after we've already checked the extents.
10072 */
10073 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10074
10075 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10076
10077 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10078 start = 0;
10079 while (start < isize) {
10080 u64 logical_block_start, physical_block_start;
32da5386 10081 struct btrfs_block_group *bg;
ed46ff3d
OS
10082 u64 len = isize - start;
10083
39b07b5d 10084 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10085 if (IS_ERR(em)) {
10086 ret = PTR_ERR(em);
10087 goto out;
10088 }
10089
10090 if (em->block_start == EXTENT_MAP_HOLE) {
10091 btrfs_warn(fs_info, "swapfile must not have holes");
10092 ret = -EINVAL;
10093 goto out;
10094 }
10095 if (em->block_start == EXTENT_MAP_INLINE) {
10096 /*
10097 * It's unlikely we'll ever actually find ourselves
10098 * here, as a file small enough to fit inline won't be
10099 * big enough to store more than the swap header, but in
10100 * case something changes in the future, let's catch it
10101 * here rather than later.
10102 */
10103 btrfs_warn(fs_info, "swapfile must not be inline");
10104 ret = -EINVAL;
10105 goto out;
10106 }
10107 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10108 btrfs_warn(fs_info, "swapfile must not be compressed");
10109 ret = -EINVAL;
10110 goto out;
10111 }
10112
10113 logical_block_start = em->block_start + (start - em->start);
10114 len = min(len, em->len - (start - em->start));
10115 free_extent_map(em);
10116 em = NULL;
10117
10118 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10119 if (ret < 0) {
10120 goto out;
10121 } else if (ret) {
10122 ret = 0;
10123 } else {
10124 btrfs_warn(fs_info,
10125 "swapfile must not be copy-on-write");
10126 ret = -EINVAL;
10127 goto out;
10128 }
10129
10130 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10131 if (IS_ERR(em)) {
10132 ret = PTR_ERR(em);
10133 goto out;
10134 }
10135
10136 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10137 btrfs_warn(fs_info,
10138 "swapfile must have single data profile");
10139 ret = -EINVAL;
10140 goto out;
10141 }
10142
10143 if (device == NULL) {
10144 device = em->map_lookup->stripes[0].dev;
10145 ret = btrfs_add_swapfile_pin(inode, device, false);
10146 if (ret == 1)
10147 ret = 0;
10148 else if (ret)
10149 goto out;
10150 } else if (device != em->map_lookup->stripes[0].dev) {
10151 btrfs_warn(fs_info, "swapfile must be on one device");
10152 ret = -EINVAL;
10153 goto out;
10154 }
10155
10156 physical_block_start = (em->map_lookup->stripes[0].physical +
10157 (logical_block_start - em->start));
10158 len = min(len, em->len - (logical_block_start - em->start));
10159 free_extent_map(em);
10160 em = NULL;
10161
10162 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10163 if (!bg) {
10164 btrfs_warn(fs_info,
10165 "could not find block group containing swapfile");
10166 ret = -EINVAL;
10167 goto out;
10168 }
10169
10170 ret = btrfs_add_swapfile_pin(inode, bg, true);
10171 if (ret) {
10172 btrfs_put_block_group(bg);
10173 if (ret == 1)
10174 ret = 0;
10175 else
10176 goto out;
10177 }
10178
10179 if (bsi.block_len &&
10180 bsi.block_start + bsi.block_len == physical_block_start) {
10181 bsi.block_len += len;
10182 } else {
10183 if (bsi.block_len) {
10184 ret = btrfs_add_swap_extent(sis, &bsi);
10185 if (ret)
10186 goto out;
10187 }
10188 bsi.start = start;
10189 bsi.block_start = physical_block_start;
10190 bsi.block_len = len;
10191 }
10192
10193 start += len;
10194 }
10195
10196 if (bsi.block_len)
10197 ret = btrfs_add_swap_extent(sis, &bsi);
10198
10199out:
10200 if (!IS_ERR_OR_NULL(em))
10201 free_extent_map(em);
10202
10203 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10204
10205 if (ret)
10206 btrfs_swap_deactivate(file);
10207
10208 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10209
10210 if (ret)
10211 return ret;
10212
10213 if (device)
10214 sis->bdev = device->bdev;
10215 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10216 sis->max = bsi.nr_pages;
10217 sis->pages = bsi.nr_pages - 1;
10218 sis->highest_bit = bsi.nr_pages - 1;
10219 return bsi.nr_extents;
10220}
10221#else
10222static void btrfs_swap_deactivate(struct file *file)
10223{
10224}
10225
10226static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10227 sector_t *span)
10228{
10229 return -EOPNOTSUPP;
10230}
10231#endif
10232
6e1d5dcc 10233static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10234 .getattr = btrfs_getattr,
39279cc3
CM
10235 .lookup = btrfs_lookup,
10236 .create = btrfs_create,
10237 .unlink = btrfs_unlink,
10238 .link = btrfs_link,
10239 .mkdir = btrfs_mkdir,
10240 .rmdir = btrfs_rmdir,
2773bf00 10241 .rename = btrfs_rename2,
39279cc3
CM
10242 .symlink = btrfs_symlink,
10243 .setattr = btrfs_setattr,
618e21d5 10244 .mknod = btrfs_mknod,
5103e947 10245 .listxattr = btrfs_listxattr,
fdebe2bd 10246 .permission = btrfs_permission,
4e34e719 10247 .get_acl = btrfs_get_acl,
996a710d 10248 .set_acl = btrfs_set_acl,
93fd63c2 10249 .update_time = btrfs_update_time,
ef3b9af5 10250 .tmpfile = btrfs_tmpfile,
39279cc3 10251};
76dda93c 10252
828c0950 10253static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10254 .llseek = generic_file_llseek,
10255 .read = generic_read_dir,
02dbfc99 10256 .iterate_shared = btrfs_real_readdir,
23b5ec74 10257 .open = btrfs_opendir,
34287aa3 10258 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10259#ifdef CONFIG_COMPAT
4c63c245 10260 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10261#endif
6bf13c0c 10262 .release = btrfs_release_file,
e02119d5 10263 .fsync = btrfs_sync_file,
39279cc3
CM
10264};
10265
20e5506b 10266static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10267 /* mandatory callbacks */
065631f6 10268 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10269 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10270};
10271
35054394
CM
10272/*
10273 * btrfs doesn't support the bmap operation because swapfiles
10274 * use bmap to make a mapping of extents in the file. They assume
10275 * these extents won't change over the life of the file and they
10276 * use the bmap result to do IO directly to the drive.
10277 *
10278 * the btrfs bmap call would return logical addresses that aren't
10279 * suitable for IO and they also will change frequently as COW
10280 * operations happen. So, swapfile + btrfs == corruption.
10281 *
10282 * For now we're avoiding this by dropping bmap.
10283 */
7f09410b 10284static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10285 .readpage = btrfs_readpage,
10286 .writepage = btrfs_writepage,
b293f02e 10287 .writepages = btrfs_writepages,
ba206a02 10288 .readahead = btrfs_readahead,
55e20bd1 10289 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10290 .invalidatepage = btrfs_invalidatepage,
10291 .releasepage = btrfs_releasepage,
f8e66081
RG
10292#ifdef CONFIG_MIGRATION
10293 .migratepage = btrfs_migratepage,
10294#endif
e6dcd2dc 10295 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10296 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10297 .swap_activate = btrfs_swap_activate,
10298 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10299};
10300
6e1d5dcc 10301static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10302 .getattr = btrfs_getattr,
10303 .setattr = btrfs_setattr,
5103e947 10304 .listxattr = btrfs_listxattr,
fdebe2bd 10305 .permission = btrfs_permission,
1506fcc8 10306 .fiemap = btrfs_fiemap,
4e34e719 10307 .get_acl = btrfs_get_acl,
996a710d 10308 .set_acl = btrfs_set_acl,
e41f941a 10309 .update_time = btrfs_update_time,
39279cc3 10310};
6e1d5dcc 10311static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10312 .getattr = btrfs_getattr,
10313 .setattr = btrfs_setattr,
fdebe2bd 10314 .permission = btrfs_permission,
33268eaf 10315 .listxattr = btrfs_listxattr,
4e34e719 10316 .get_acl = btrfs_get_acl,
996a710d 10317 .set_acl = btrfs_set_acl,
e41f941a 10318 .update_time = btrfs_update_time,
618e21d5 10319};
6e1d5dcc 10320static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10321 .get_link = page_get_link,
f209561a 10322 .getattr = btrfs_getattr,
22c44fe6 10323 .setattr = btrfs_setattr,
fdebe2bd 10324 .permission = btrfs_permission,
0279b4cd 10325 .listxattr = btrfs_listxattr,
e41f941a 10326 .update_time = btrfs_update_time,
39279cc3 10327};
76dda93c 10328
82d339d9 10329const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10330 .d_delete = btrfs_dentry_delete,
10331};