]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
btrfs: stop passing root argument to btrfs_add_delalloc_inodes()
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
348332e0 9#include <linux/blk-cgroup.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
f85781fb 34#include <linux/iomap.h>
92d32170 35#include <asm/unaligned.h>
14605409 36#include <linux/fsverity.h>
602cbe91 37#include "misc.h"
39279cc3
CM
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
e6dcd2dc 42#include "ordered-data.h"
95819c05 43#include "xattr.h"
e02119d5 44#include "tree-log.h"
103c1972 45#include "bio.h"
c8b97818 46#include "compression.h"
b4ce94de 47#include "locking.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
467dc47e 52#include "space-info.h"
d8e3fb10 53#include "zoned.h"
b945a463 54#include "subpage.h"
26c2c454 55#include "inode-item.h"
c7f13d42 56#include "fs.h"
ad1ac501 57#include "accessors.h"
a0231804 58#include "extent-tree.h"
45c40c8f 59#include "root-tree.h"
59b818e0 60#include "defrag.h"
f2b39277 61#include "dir-item.h"
7c8ede16 62#include "file-item.h"
c7a03b52 63#include "uuid-tree.h"
7572dec8 64#include "ioctl.h"
af142b6f 65#include "file.h"
33cf97a7 66#include "acl.h"
67707479 67#include "relocation.h"
5c11adcc 68#include "verity.h"
7f0add25 69#include "super.h"
aa5d3003 70#include "orphan.h"
b9a9a850 71#include "backref.h"
02c372e1 72#include "raid-stripe-tree.h"
39279cc3
CM
73
74struct btrfs_iget_args {
0202e83f 75 u64 ino;
39279cc3
CM
76 struct btrfs_root *root;
77};
78
f28a4928 79struct btrfs_dio_data {
f85781fb
GR
80 ssize_t submitted;
81 struct extent_changeset *data_reserved;
53f2c206 82 struct btrfs_ordered_extent *ordered;
f5585f4f
FM
83 bool data_space_reserved;
84 bool nocow_done;
f28a4928
FM
85};
86
a3e171a0 87struct btrfs_dio_private {
67d66982 88 /* Range of I/O */
a3e171a0 89 u64 file_offset;
a3e171a0
CH
90 u32 bytes;
91
642c5d34 92 /* This must be last */
67d66982 93 struct btrfs_bio bbio;
a3e171a0
CH
94};
95
642c5d34
CH
96static struct bio_set btrfs_dio_bioset;
97
88d2beec
FM
98struct btrfs_rename_ctx {
99 /* Output field. Stores the index number of the old directory entry. */
100 u64 index;
101};
102
b9a9a850
QW
103/*
104 * Used by data_reloc_print_warning_inode() to pass needed info for filename
105 * resolution and output of error message.
106 */
107struct data_reloc_warn {
108 struct btrfs_path path;
109 struct btrfs_fs_info *fs_info;
110 u64 extent_item_size;
111 u64 logical;
112 int mirror_num;
113};
114
516095cd
DS
115/*
116 * For the file_extent_tree, we want to hold the inode lock when we lookup and
117 * update the disk_i_size, but lockdep will complain because our io_tree we hold
118 * the tree lock and get the inode lock when setting delalloc. These two things
119 * are unrelated, so make a class for the file_extent_tree so we don't get the
120 * two locking patterns mixed up.
121 */
122static struct lock_class_key file_extent_tree_class;
123
6e1d5dcc
AD
124static const struct inode_operations btrfs_dir_inode_operations;
125static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
126static const struct inode_operations btrfs_special_inode_operations;
127static const struct inode_operations btrfs_file_inode_operations;
7f09410b 128static const struct address_space_operations btrfs_aops;
828c0950 129static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
130
131static struct kmem_cache *btrfs_inode_cachep;
39279cc3 132
3972f260 133static int btrfs_setsize(struct inode *inode, struct iattr *attr);
d9dcae67 134static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
ba9145ad 135
256b0cf9
CH
136static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 struct page *locked_page, u64 start,
138 u64 end, struct writeback_control *wbc,
139 bool pages_dirty);
4b67c11d
NB
140static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
142 u64 block_len, u64 orig_block_len,
143 u64 ram_bytes, int compress_type,
144 int type);
7b128766 145
b9a9a850
QW
146static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 u64 root, void *warn_ctx)
148{
149 struct data_reloc_warn *warn = warn_ctx;
150 struct btrfs_fs_info *fs_info = warn->fs_info;
151 struct extent_buffer *eb;
152 struct btrfs_inode_item *inode_item;
153 struct inode_fs_paths *ipath = NULL;
154 struct btrfs_root *local_root;
155 struct btrfs_key key;
156 unsigned int nofs_flag;
157 u32 nlink;
158 int ret;
159
160 local_root = btrfs_get_fs_root(fs_info, root, true);
161 if (IS_ERR(local_root)) {
162 ret = PTR_ERR(local_root);
163 goto err;
164 }
165
166 /* This makes the path point to (inum INODE_ITEM ioff). */
167 key.objectid = inum;
168 key.type = BTRFS_INODE_ITEM_KEY;
169 key.offset = 0;
170
171 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
172 if (ret) {
173 btrfs_put_root(local_root);
174 btrfs_release_path(&warn->path);
175 goto err;
176 }
177
178 eb = warn->path.nodes[0];
179 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 nlink = btrfs_inode_nlink(eb, inode_item);
181 btrfs_release_path(&warn->path);
182
183 nofs_flag = memalloc_nofs_save();
184 ipath = init_ipath(4096, local_root, &warn->path);
185 memalloc_nofs_restore(nofs_flag);
186 if (IS_ERR(ipath)) {
187 btrfs_put_root(local_root);
188 ret = PTR_ERR(ipath);
189 ipath = NULL;
190 /*
191 * -ENOMEM, not a critical error, just output an generic error
192 * without filename.
193 */
194 btrfs_warn(fs_info,
195"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 warn->logical, warn->mirror_num, root, inum, offset);
197 return ret;
198 }
199 ret = paths_from_inode(inum, ipath);
200 if (ret < 0)
201 goto err;
202
203 /*
204 * We deliberately ignore the bit ipath might have been too small to
205 * hold all of the paths here
206 */
207 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
208 btrfs_warn(fs_info,
209"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 warn->logical, warn->mirror_num, root, inum, offset,
211 fs_info->sectorsize, nlink,
212 (char *)(unsigned long)ipath->fspath->val[i]);
213 }
214
215 btrfs_put_root(local_root);
216 free_ipath(ipath);
217 return 0;
218
219err:
220 btrfs_warn(fs_info,
221"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 warn->logical, warn->mirror_num, root, inum, offset, ret);
223
224 free_ipath(ipath);
225 return ret;
226}
227
228/*
229 * Do extra user-friendly error output (e.g. lookup all the affected files).
230 *
231 * Return true if we succeeded doing the backref lookup.
232 * Return false if such lookup failed, and has to fallback to the old error message.
233 */
234static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 const u8 *csum, const u8 *csum_expected,
236 int mirror_num)
237{
238 struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 struct btrfs_path path = { 0 };
240 struct btrfs_key found_key = { 0 };
241 struct extent_buffer *eb;
242 struct btrfs_extent_item *ei;
243 const u32 csum_size = fs_info->csum_size;
244 u64 logical;
245 u64 flags;
246 u32 item_size;
247 int ret;
248
249 mutex_lock(&fs_info->reloc_mutex);
250 logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 mutex_unlock(&fs_info->reloc_mutex);
252
253 if (logical == U64_MAX) {
254 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 btrfs_warn_rl(fs_info,
256"csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
258 CSUM_FMT_VALUE(csum_size, csum),
259 CSUM_FMT_VALUE(csum_size, csum_expected),
260 mirror_num);
261 return;
262 }
263
264 logical += file_off;
265 btrfs_warn_rl(fs_info,
266"csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 inode->root->root_key.objectid,
268 btrfs_ino(inode), file_off, logical,
269 CSUM_FMT_VALUE(csum_size, csum),
270 CSUM_FMT_VALUE(csum_size, csum_expected),
271 mirror_num);
272
273 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
274 if (ret < 0) {
275 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
276 logical, ret);
277 return;
278 }
279 eb = path.nodes[0];
280 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 item_size = btrfs_item_size(eb, path.slots[0]);
282 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 unsigned long ptr = 0;
284 u64 ref_root;
285 u8 ref_level;
286
b7f9945a 287 while (true) {
b9a9a850
QW
288 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
289 item_size, &ref_root,
290 &ref_level);
b7f9945a
QW
291 if (ret < 0) {
292 btrfs_warn_rl(fs_info,
293 "failed to resolve tree backref for logical %llu: %d",
294 logical, ret);
295 break;
296 }
297 if (ret > 0)
298 break;
299
b9a9a850
QW
300 btrfs_warn_rl(fs_info,
301"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
302 logical, mirror_num,
303 (ref_level ? "node" : "leaf"),
b7f9945a
QW
304 ref_level, ref_root);
305 }
b9a9a850
QW
306 btrfs_release_path(&path);
307 } else {
308 struct btrfs_backref_walk_ctx ctx = { 0 };
309 struct data_reloc_warn reloc_warn = { 0 };
310
311 btrfs_release_path(&path);
312
313 ctx.bytenr = found_key.objectid;
314 ctx.extent_item_pos = logical - found_key.objectid;
315 ctx.fs_info = fs_info;
316
317 reloc_warn.logical = logical;
318 reloc_warn.extent_item_size = found_key.offset;
319 reloc_warn.mirror_num = mirror_num;
320 reloc_warn.fs_info = fs_info;
321
322 iterate_extent_inodes(&ctx, true,
323 data_reloc_print_warning_inode, &reloc_warn);
324 }
325}
326
f60acad3
JB
327static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
329{
330 struct btrfs_root *root = inode->root;
331 const u32 csum_size = root->fs_info->csum_size;
332
b9a9a850
QW
333 /* For data reloc tree, it's better to do a backref lookup instead. */
334 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 return print_data_reloc_error(inode, logical_start, csum,
336 csum_expected, mirror_num);
337
f60acad3
JB
338 /* Output without objectid, which is more meaningful */
339 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
340 btrfs_warn_rl(root->fs_info,
341"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
343 logical_start,
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
346 mirror_num);
347 } else {
348 btrfs_warn_rl(root->fs_info,
349"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 root->root_key.objectid, btrfs_ino(inode),
351 logical_start,
352 CSUM_FMT_VALUE(csum_size, csum),
353 CSUM_FMT_VALUE(csum_size, csum_expected),
354 mirror_num);
355 }
356}
357
a14b78ad 358/*
9580503b 359 * Lock inode i_rwsem based on arguments passed.
a14b78ad
GR
360 *
361 * ilock_flags can have the following bit set:
362 *
363 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
365 * return -EAGAIN
8318ba79 366 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
a14b78ad 367 */
29b6352b 368int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad
GR
369{
370 if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 372 if (!inode_trylock_shared(&inode->vfs_inode))
a14b78ad
GR
373 return -EAGAIN;
374 else
375 return 0;
376 }
29b6352b 377 inode_lock_shared(&inode->vfs_inode);
a14b78ad
GR
378 } else {
379 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 380 if (!inode_trylock(&inode->vfs_inode))
a14b78ad
GR
381 return -EAGAIN;
382 else
383 return 0;
384 }
29b6352b 385 inode_lock(&inode->vfs_inode);
a14b78ad 386 }
8318ba79 387 if (ilock_flags & BTRFS_ILOCK_MMAP)
29b6352b 388 down_write(&inode->i_mmap_lock);
a14b78ad
GR
389 return 0;
390}
391
392/*
9580503b 393 * Unock inode i_rwsem.
a14b78ad
GR
394 *
395 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396 * to decide whether the lock acquired is shared or exclusive.
397 */
e5d4d75b 398void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad 399{
8318ba79 400 if (ilock_flags & BTRFS_ILOCK_MMAP)
e5d4d75b 401 up_write(&inode->i_mmap_lock);
a14b78ad 402 if (ilock_flags & BTRFS_ILOCK_SHARED)
e5d4d75b 403 inode_unlock_shared(&inode->vfs_inode);
a14b78ad 404 else
e5d4d75b 405 inode_unlock(&inode->vfs_inode);
a14b78ad
GR
406}
407
52427260
QW
408/*
409 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 410 * from the btrfs_run_delalloc_range() callback.
52427260
QW
411 *
412 * NOTE: caller must ensure that when an error happens, it can not call
413 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415 * to be released, which we want to happen only when finishing the ordered
d1051d6e 416 * extent (btrfs_finish_ordered_io()).
52427260 417 */
64e1db56 418static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
419 struct page *locked_page,
420 u64 offset, u64 bytes)
52427260 421{
63d71450
NA
422 unsigned long index = offset >> PAGE_SHIFT;
423 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
0e47b25c 424 u64 page_start = 0, page_end = 0;
63d71450
NA
425 struct page *page;
426
99826e4c
NA
427 if (locked_page) {
428 page_start = page_offset(locked_page);
429 page_end = page_start + PAGE_SIZE - 1;
430 }
431
63d71450 432 while (index <= end_index) {
968f2566 433 /*
9783e4de
CH
434 * For locked page, we will call btrfs_mark_ordered_io_finished
435 * through btrfs_mark_ordered_io_finished() on it
436 * in run_delalloc_range() for the error handling, which will
437 * clear page Ordered and run the ordered extent accounting.
968f2566
QW
438 *
439 * Here we can't just clear the Ordered bit, or
440 * btrfs_mark_ordered_io_finished() would skip the accounting
441 * for the page range, and the ordered extent will never finish.
442 */
99826e4c 443 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
968f2566
QW
444 index++;
445 continue;
446 }
64e1db56 447 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
448 index++;
449 if (!page)
450 continue;
968f2566
QW
451
452 /*
453 * Here we just clear all Ordered bits for every page in the
711f447b 454 * range, then btrfs_mark_ordered_io_finished() will handle
968f2566
QW
455 * the ordered extent accounting for the range.
456 */
55151ea9
QW
457 btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
458 page_folio(page), offset, bytes);
63d71450
NA
459 put_page(page);
460 }
d1051d6e 461
99826e4c
NA
462 if (locked_page) {
463 /* The locked page covers the full range, nothing needs to be done */
464 if (bytes + offset <= page_start + PAGE_SIZE)
465 return;
466 /*
467 * In case this page belongs to the delalloc range being
468 * instantiated then skip it, since the first page of a range is
469 * going to be properly cleaned up by the caller of
470 * run_delalloc_range
471 */
472 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
474 offset = page_offset(locked_page) + PAGE_SIZE;
475 }
d1051d6e
NB
476 }
477
711f447b 478 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
52427260
QW
479}
480
7152b425 481static int btrfs_dirty_inode(struct btrfs_inode *inode);
7b128766 482
f34f57a3 483static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
3538d68d 484 struct btrfs_new_inode_args *args)
0279b4cd
JO
485{
486 int err;
487
3538d68d
OS
488 if (args->default_acl) {
489 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
490 ACL_TYPE_DEFAULT);
491 if (err)
492 return err;
493 }
494 if (args->acl) {
495 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
496 if (err)
497 return err;
498 }
499 if (!args->default_acl && !args->acl)
500 cache_no_acl(args->inode);
501 return btrfs_xattr_security_init(trans, args->inode, args->dir,
502 &args->dentry->d_name);
0279b4cd
JO
503}
504
c8b97818
CM
505/*
506 * this does all the hard work for inserting an inline extent into
507 * the btree. The caller should have done a btrfs_drop_extents so that
508 * no overlapping inline items exist in the btree
509 */
40f76580 510static int insert_inline_extent(struct btrfs_trans_handle *trans,
8dd9872d
OS
511 struct btrfs_path *path,
512 struct btrfs_inode *inode, bool extent_inserted,
513 size_t size, size_t compressed_size,
fe3f566c 514 int compress_type,
d9496e8a
OS
515 struct page **compressed_pages,
516 bool update_i_size)
c8b97818 517{
8dd9872d 518 struct btrfs_root *root = inode->root;
c8b97818
CM
519 struct extent_buffer *leaf;
520 struct page *page = NULL;
521 char *kaddr;
522 unsigned long ptr;
523 struct btrfs_file_extent_item *ei;
c8b97818
CM
524 int ret;
525 size_t cur_size = size;
d9496e8a 526 u64 i_size;
c8b97818 527
982f1f5d
JJB
528 ASSERT((compressed_size > 0 && compressed_pages) ||
529 (compressed_size == 0 && !compressed_pages));
530
fe3f566c 531 if (compressed_size && compressed_pages)
c8b97818 532 cur_size = compressed_size;
c8b97818 533
1acae57b
FDBM
534 if (!extent_inserted) {
535 struct btrfs_key key;
536 size_t datasize;
c8b97818 537
8dd9872d
OS
538 key.objectid = btrfs_ino(inode);
539 key.offset = 0;
962a298f 540 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 541
1acae57b 542 datasize = btrfs_file_extent_calc_inline_size(cur_size);
1acae57b
FDBM
543 ret = btrfs_insert_empty_item(trans, root, path, &key,
544 datasize);
79b4f4c6 545 if (ret)
1acae57b 546 goto fail;
c8b97818
CM
547 }
548 leaf = path->nodes[0];
549 ei = btrfs_item_ptr(leaf, path->slots[0],
550 struct btrfs_file_extent_item);
551 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
552 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
553 btrfs_set_file_extent_encryption(leaf, ei, 0);
554 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
555 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
556 ptr = btrfs_file_extent_inline_start(ei);
557
261507a0 558 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
559 struct page *cpage;
560 int i = 0;
d397712b 561 while (compressed_size > 0) {
c8b97818 562 cpage = compressed_pages[i];
5b050f04 563 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 564 PAGE_SIZE);
c8b97818 565
4cb2e5e8 566 kaddr = kmap_local_page(cpage);
c8b97818 567 write_extent_buffer(leaf, kaddr, ptr, cur_size);
4cb2e5e8 568 kunmap_local(kaddr);
c8b97818
CM
569
570 i++;
571 ptr += cur_size;
572 compressed_size -= cur_size;
573 }
574 btrfs_set_file_extent_compression(leaf, ei,
261507a0 575 compress_type);
c8b97818 576 } else {
8dd9872d 577 page = find_get_page(inode->vfs_inode.i_mapping, 0);
c8b97818 578 btrfs_set_file_extent_compression(leaf, ei, 0);
4cb2e5e8 579 kaddr = kmap_local_page(page);
8dd9872d 580 write_extent_buffer(leaf, kaddr, ptr, size);
4cb2e5e8 581 kunmap_local(kaddr);
09cbfeaf 582 put_page(page);
c8b97818 583 }
50564b65 584 btrfs_mark_buffer_dirty(trans, leaf);
1acae57b 585 btrfs_release_path(path);
c8b97818 586
9ddc959e
JB
587 /*
588 * We align size to sectorsize for inline extents just for simplicity
589 * sake.
590 */
8dd9872d
OS
591 ret = btrfs_inode_set_file_extent_range(inode, 0,
592 ALIGN(size, root->fs_info->sectorsize));
9ddc959e
JB
593 if (ret)
594 goto fail;
595
c2167754 596 /*
d9496e8a
OS
597 * We're an inline extent, so nobody can extend the file past i_size
598 * without locking a page we already have locked.
c2167754 599 *
d9496e8a
OS
600 * We must do any i_size and inode updates before we unlock the pages.
601 * Otherwise we could end up racing with unlink.
c2167754 602 */
d9496e8a
OS
603 i_size = i_size_read(&inode->vfs_inode);
604 if (update_i_size && size > i_size) {
605 i_size_write(&inode->vfs_inode, size);
606 i_size = size;
607 }
608 inode->disk_i_size = i_size;
8dd9872d 609
c8b97818 610fail:
79b4f4c6 611 return ret;
c8b97818
CM
612}
613
614
615/*
616 * conditionally insert an inline extent into the file. This
617 * does the checks required to make sure the data is small enough
618 * to fit as an inline extent.
619 */
8dd9872d
OS
620static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
621 size_t compressed_size,
00361589 622 int compress_type,
d9496e8a
OS
623 struct page **compressed_pages,
624 bool update_i_size)
c8b97818 625{
5893dfb9 626 struct btrfs_drop_extents_args drop_args = { 0 };
a0349401 627 struct btrfs_root *root = inode->root;
0b246afa 628 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 629 struct btrfs_trans_handle *trans;
8dd9872d 630 u64 data_len = (compressed_size ?: size);
c8b97818 631 int ret;
1acae57b 632 struct btrfs_path *path;
c8b97818 633
8dd9872d
OS
634 /*
635 * We can create an inline extent if it ends at or beyond the current
636 * i_size, is no larger than a sector (decompressed), and the (possibly
637 * compressed) data fits in a leaf and the configured maximum inline
638 * size.
639 */
640 if (size < i_size_read(&inode->vfs_inode) ||
641 size > fs_info->sectorsize ||
0b246afa 642 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8dd9872d 643 data_len > fs_info->max_inline)
c8b97818 644 return 1;
c8b97818 645
1acae57b
FDBM
646 path = btrfs_alloc_path();
647 if (!path)
648 return -ENOMEM;
649
00361589 650 trans = btrfs_join_transaction(root);
1acae57b
FDBM
651 if (IS_ERR(trans)) {
652 btrfs_free_path(path);
00361589 653 return PTR_ERR(trans);
1acae57b 654 }
a0349401 655 trans->block_rsv = &inode->block_rsv;
00361589 656
5893dfb9 657 drop_args.path = path;
8dd9872d
OS
658 drop_args.start = 0;
659 drop_args.end = fs_info->sectorsize;
5893dfb9
FM
660 drop_args.drop_cache = true;
661 drop_args.replace_extent = true;
8dd9872d 662 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
5893dfb9 663 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
00361589 664 if (ret) {
66642832 665 btrfs_abort_transaction(trans, ret);
00361589
JB
666 goto out;
667 }
c8b97818 668
8dd9872d
OS
669 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
670 size, compressed_size, compress_type,
d9496e8a 671 compressed_pages, update_i_size);
2adcac1a 672 if (ret && ret != -ENOSPC) {
66642832 673 btrfs_abort_transaction(trans, ret);
00361589 674 goto out;
2adcac1a 675 } else if (ret == -ENOSPC) {
00361589
JB
676 ret = 1;
677 goto out;
79787eaa 678 }
2adcac1a 679
8dd9872d 680 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
8b9d0322 681 ret = btrfs_update_inode(trans, inode);
2766ff61
FM
682 if (ret && ret != -ENOSPC) {
683 btrfs_abort_transaction(trans, ret);
684 goto out;
685 } else if (ret == -ENOSPC) {
686 ret = 1;
687 goto out;
688 }
689
23e3337f 690 btrfs_set_inode_full_sync(inode);
00361589 691out:
94ed938a
QW
692 /*
693 * Don't forget to free the reserved space, as for inlined extent
694 * it won't count as data extent, free them directly here.
695 * And at reserve time, it's always aligned to page size, so
696 * just free one page here.
697 */
9e65bfca 698 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
1acae57b 699 btrfs_free_path(path);
3a45bb20 700 btrfs_end_transaction(trans);
00361589 701 return ret;
c8b97818
CM
702}
703
771ed689
CM
704struct async_extent {
705 u64 start;
706 u64 ram_size;
707 u64 compressed_size;
708 struct page **pages;
709 unsigned long nr_pages;
261507a0 710 int compress_type;
771ed689
CM
711 struct list_head list;
712};
713
97db1204 714struct async_chunk {
99a81a44 715 struct btrfs_inode *inode;
771ed689
CM
716 struct page *locked_page;
717 u64 start;
718 u64 end;
bf9486d6 719 blk_opf_t write_flags;
771ed689 720 struct list_head extents;
ec39f769 721 struct cgroup_subsys_state *blkcg_css;
771ed689 722 struct btrfs_work work;
9e895a8f 723 struct async_cow *async_cow;
771ed689
CM
724};
725
97db1204 726struct async_cow {
97db1204
NB
727 atomic_t num_chunks;
728 struct async_chunk chunks[];
771ed689
CM
729};
730
97db1204 731static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
732 u64 start, u64 ram_size,
733 u64 compressed_size,
734 struct page **pages,
261507a0
LZ
735 unsigned long nr_pages,
736 int compress_type)
771ed689
CM
737{
738 struct async_extent *async_extent;
739
740 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 741 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
742 async_extent->start = start;
743 async_extent->ram_size = ram_size;
744 async_extent->compressed_size = compressed_size;
745 async_extent->pages = pages;
746 async_extent->nr_pages = nr_pages;
261507a0 747 async_extent->compress_type = compress_type;
771ed689
CM
748 list_add_tail(&async_extent->list, &cow->extents);
749 return 0;
750}
751
42c16da6
QW
752/*
753 * Check if the inode needs to be submitted to compression, based on mount
754 * options, defragmentation, properties or heuristics.
755 */
808a1292
NB
756static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
757 u64 end)
f79707b0 758{
808a1292 759 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 760
e6f9d696 761 if (!btrfs_inode_can_compress(inode)) {
42c16da6
QW
762 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
763 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 764 btrfs_ino(inode));
42c16da6
QW
765 return 0;
766 }
0cf9b244
QW
767 /*
768 * Special check for subpage.
769 *
770 * We lock the full page then run each delalloc range in the page, thus
771 * for the following case, we will hit some subpage specific corner case:
772 *
773 * 0 32K 64K
774 * | |///////| |///////|
775 * \- A \- B
776 *
777 * In above case, both range A and range B will try to unlock the full
778 * page [0, 64K), causing the one finished later will have page
779 * unlocked already, triggering various page lock requirement BUG_ON()s.
780 *
781 * So here we add an artificial limit that subpage compression can only
782 * if the range is fully page aligned.
783 *
784 * In theory we only need to ensure the first page is fully covered, but
785 * the tailing partial page will be locked until the full compression
786 * finishes, delaying the write of other range.
787 *
788 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
789 * first to prevent any submitted async extent to unlock the full page.
790 * By this, we can ensure for subpage case that only the last async_cow
791 * will unlock the full page.
792 */
793 if (fs_info->sectorsize < PAGE_SIZE) {
1280d2d1
FK
794 if (!PAGE_ALIGNED(start) ||
795 !PAGE_ALIGNED(end + 1))
0cf9b244
QW
796 return 0;
797 }
798
f79707b0 799 /* force compress */
0b246afa 800 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 801 return 1;
eec63c65 802 /* defrag ioctl */
808a1292 803 if (inode->defrag_compress)
eec63c65 804 return 1;
f79707b0 805 /* bad compression ratios */
808a1292 806 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 807 return 0;
0b246afa 808 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
809 inode->flags & BTRFS_INODE_COMPRESS ||
810 inode->prop_compress)
811 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
812 return 0;
813}
814
6158e1ce 815static inline void inode_should_defrag(struct btrfs_inode *inode,
558732df 816 u64 start, u64 end, u64 num_bytes, u32 small_write)
26d30f85
AJ
817{
818 /* If this is a small write inside eof, kick off a defrag */
819 if (num_bytes < small_write &&
6158e1ce 820 (start > 0 || end + 1 < inode->disk_i_size))
558732df 821 btrfs_add_inode_defrag(NULL, inode, small_write);
26d30f85
AJ
822}
823
d352ac68 824/*
c15d8cf2 825 * Work queue call back to started compression on a file and pages.
c8b97818 826 *
c15d8cf2
CH
827 * This is done inside an ordered work queue, and the compression is spread
828 * across many cpus. The actual IO submission is step two, and the ordered work
829 * queue takes care of making sure that happens in the same order things were
830 * put onto the queue by writepages and friends.
c8b97818 831 *
c15d8cf2
CH
832 * If this code finds it can't get good compression, it puts an entry onto the
833 * work queue to write the uncompressed bytes. This makes sure that both
834 * compressed inodes and uncompressed inodes are written in the same order that
835 * the flusher thread sent them down.
d352ac68 836 */
c15d8cf2 837static void compress_file_range(struct btrfs_work *work)
b888db2b 838{
c15d8cf2
CH
839 struct async_chunk *async_chunk =
840 container_of(work, struct async_chunk, work);
99a01bd6
DS
841 struct btrfs_inode *inode = async_chunk->inode;
842 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a994310a 843 struct address_space *mapping = inode->vfs_inode.i_mapping;
0b246afa 844 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
845 u64 start = async_chunk->start;
846 u64 end = async_chunk->end;
c8b97818 847 u64 actual_end;
d98da499 848 u64 i_size;
e6dcd2dc 849 int ret = 0;
e94e54e8 850 struct page **pages;
c8b97818 851 unsigned long nr_pages;
c8b97818
CM
852 unsigned long total_compressed = 0;
853 unsigned long total_in = 0;
e94e54e8 854 unsigned int poff;
c8b97818 855 int i;
0b246afa 856 int compress_type = fs_info->compress_type;
b888db2b 857
99a01bd6 858 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
4cb5300b 859
44962ca3
CH
860 /*
861 * We need to call clear_page_dirty_for_io on each page in the range.
862 * Otherwise applications with the file mmap'd can wander in and change
863 * the page contents while we are compressing them.
864 */
865 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
866
d98da499
JB
867 /*
868 * We need to save i_size before now because it could change in between
869 * us evaluating the size and assigning it. This is because we lock and
870 * unlock the page in truncate and fallocate, and then modify the i_size
871 * later on.
872 *
873 * The barriers are to emulate READ_ONCE, remove that once i_size_read
874 * does that for us.
875 */
876 barrier();
99a01bd6 877 i_size = i_size_read(&inode->vfs_inode);
d98da499
JB
878 barrier();
879 actual_end = min_t(u64, i_size, end + 1);
c8b97818 880again:
e94e54e8 881 pages = NULL;
09cbfeaf 882 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
544fe4a9 883 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
be20aa9d 884
f03d9301
CM
885 /*
886 * we don't want to send crud past the end of i_size through
887 * compression, that's just a waste of CPU time. So, if the
888 * end of the file is before the start of our current
889 * requested range of bytes, we bail out to the uncompressed
890 * cleanup code that can deal with all of this.
891 *
892 * It isn't really the fastest way to fix things, but this is a
893 * very uncommon corner.
894 */
895 if (actual_end <= start)
896 goto cleanup_and_bail_uncompressed;
897
c8b97818
CM
898 total_compressed = actual_end - start;
899
4bcbb332 900 /*
0cf9b244 901 * Skip compression for a small file range(<=blocksize) that
01327610 902 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
903 */
904 if (total_compressed <= blocksize &&
99a01bd6 905 (start > 0 || end + 1 < inode->disk_i_size))
4bcbb332
SW
906 goto cleanup_and_bail_uncompressed;
907
0cf9b244
QW
908 /*
909 * For subpage case, we require full page alignment for the sector
910 * aligned range.
911 * Thus we must also check against @actual_end, not just @end.
912 */
913 if (blocksize < PAGE_SIZE) {
1280d2d1
FK
914 if (!PAGE_ALIGNED(start) ||
915 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
0cf9b244
QW
916 goto cleanup_and_bail_uncompressed;
917 }
918
069eac78
DS
919 total_compressed = min_t(unsigned long, total_compressed,
920 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
921 total_in = 0;
922 ret = 0;
db94535d 923
771ed689 924 /*
e94e54e8
CH
925 * We do compression for mount -o compress and when the inode has not
926 * been flagged as NOCOMPRESS. This flag can change at any time if we
927 * discover bad compression ratios.
c8b97818 928 */
e94e54e8 929 if (!inode_need_compress(inode, start, end))
6a7167bf 930 goto cleanup_and_bail_uncompressed;
261507a0 931
e94e54e8
CH
932 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
933 if (!pages) {
4adaa611 934 /*
e94e54e8
CH
935 * Memory allocation failure is not a fatal error, we can fall
936 * back to uncompressed code.
4adaa611 937 */
6a7167bf 938 goto cleanup_and_bail_uncompressed;
e94e54e8 939 }
f51d2b59 940
e94e54e8
CH
941 if (inode->defrag_compress)
942 compress_type = inode->defrag_compress;
943 else if (inode->prop_compress)
944 compress_type = inode->prop_compress;
945
e94e54e8
CH
946 /* Compression level is applied here. */
947 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
948 mapping, start, pages, &nr_pages, &total_in,
949 &total_compressed);
950 if (ret)
184aa1ff 951 goto mark_incompressible;
c8b97818 952
e94e54e8
CH
953 /*
954 * Zero the tail end of the last page, as we might be sending it down
955 * to disk.
956 */
957 poff = offset_in_page(total_compressed);
958 if (poff)
959 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
c8b97818 960
7367253a 961 /*
6a7167bf
CH
962 * Try to create an inline extent.
963 *
964 * If we didn't compress the entire range, try to create an uncompressed
965 * inline extent, else a compressed one.
966 *
7367253a 967 * Check cow_file_range() for why we don't even try to create inline
e94e54e8 968 * extent for the subpage case.
7367253a
QW
969 */
970 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
6a7167bf
CH
971 if (total_in < actual_end) {
972 ret = cow_file_range_inline(inode, actual_end, 0,
973 BTRFS_COMPRESS_NONE, NULL,
974 false);
c8b97818 975 } else {
99a01bd6 976 ret = cow_file_range_inline(inode, actual_end,
fe3f566c 977 total_compressed,
d9496e8a
OS
978 compress_type, pages,
979 false);
c8b97818 980 }
79787eaa 981 if (ret <= 0) {
151a41bc 982 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
983 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
984 EXTENT_DO_ACCOUNTING;
e6eb4314 985
a994310a
CH
986 if (ret < 0)
987 mapping_set_error(mapping, -EIO);
151a41bc 988
771ed689 989 /*
79787eaa
JM
990 * inline extent creation worked or returned error,
991 * we don't need to create any more async work items.
992 * Unlock and free up our temp pages.
8b62f87b
JB
993 *
994 * We use DO_ACCOUNTING here because we need the
995 * delalloc_release_metadata to be done _after_ we drop
996 * our outstanding extent for clearing delalloc for this
997 * range.
771ed689 998 */
99a01bd6 999 extent_clear_unlock_delalloc(inode, start, end,
ad7ff17b 1000 NULL,
74e9194a 1001 clear_flags,
ba8b04c1 1002 PAGE_UNLOCK |
6869b0a8 1003 PAGE_START_WRITEBACK |
c2790a2e 1004 PAGE_END_WRITEBACK);
f778b6b8 1005 goto free_pages;
c8b97818
CM
1006 }
1007 }
1008
e94e54e8
CH
1009 /*
1010 * We aren't doing an inline extent. Round the compressed size up to a
1011 * block size boundary so the allocator does sane things.
1012 */
1013 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818 1014
e94e54e8
CH
1015 /*
1016 * One last check to make sure the compression is really a win, compare
1017 * the page count read with the blocks on disk, compression must free at
1018 * least one sector.
1019 */
1020 total_in = round_up(total_in, fs_info->sectorsize);
1021 if (total_compressed + blocksize > total_in)
184aa1ff 1022 goto mark_incompressible;
c8bb0c8b 1023
e94e54e8
CH
1024 /*
1025 * The async work queues will take care of doing actual allocation on
1026 * disk for these compressed pages, and will submit the bios.
1027 */
1028 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1029 nr_pages, compress_type);
1030 if (start + total_in < end) {
1031 start += total_in;
1032 cond_resched();
1033 goto again;
c8b97818 1034 }
e94e54e8
CH
1035 return;
1036
184aa1ff
CH
1037mark_incompressible:
1038 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1039 inode->flags |= BTRFS_INODE_NOCOMPRESS;
e94e54e8 1040cleanup_and_bail_uncompressed:
b5326271 1041 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 1042 BTRFS_COMPRESS_NONE);
f778b6b8 1043free_pages:
c8bb0c8b 1044 if (pages) {
4d3a800e 1045 for (i = 0; i < nr_pages; i++) {
70b99e69 1046 WARN_ON(pages[i]->mapping);
9ba965dc 1047 btrfs_free_compr_page(pages[i]);
c8b97818
CM
1048 }
1049 kfree(pages);
c8b97818 1050 }
771ed689 1051}
771ed689 1052
40ae837b
FM
1053static void free_async_extent_pages(struct async_extent *async_extent)
1054{
1055 int i;
1056
1057 if (!async_extent->pages)
1058 return;
1059
1060 for (i = 0; i < async_extent->nr_pages; i++) {
1061 WARN_ON(async_extent->pages[i]->mapping);
9ba965dc 1062 btrfs_free_compr_page(async_extent->pages[i]);
40ae837b
FM
1063 }
1064 kfree(async_extent->pages);
1065 async_extent->nr_pages = 0;
1066 async_extent->pages = NULL;
771ed689
CM
1067}
1068
ff20d6a4
CH
1069static void submit_uncompressed_range(struct btrfs_inode *inode,
1070 struct async_extent *async_extent,
1071 struct page *locked_page)
771ed689 1072{
2b83a0ee
QW
1073 u64 start = async_extent->start;
1074 u64 end = async_extent->start + async_extent->ram_size - 1;
2b83a0ee 1075 int ret;
7027f871
CH
1076 struct writeback_control wbc = {
1077 .sync_mode = WB_SYNC_ALL,
1078 .range_start = start,
1079 .range_end = end,
1080 .no_cgroup_owner = 1,
1081 };
771ed689 1082
256b0cf9
CH
1083 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1084 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1085 wbc_detach_inode(&wbc);
2b83a0ee 1086 if (ret < 0) {
71aa147b
NA
1087 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1088 if (locked_page) {
1089 const u64 page_start = page_offset(locked_page);
71aa147b 1090
71aa147b
NA
1091 set_page_writeback(locked_page);
1092 end_page_writeback(locked_page);
9783e4de
CH
1093 btrfs_mark_ordered_io_finished(inode, locked_page,
1094 page_start, PAGE_SIZE,
1095 !ret);
9783e4de 1096 mapping_set_error(locked_page->mapping, ret);
2b83a0ee 1097 unlock_page(locked_page);
71aa147b 1098 }
2b83a0ee 1099 }
2b83a0ee 1100}
79787eaa 1101
84f262f0
CH
1102static void submit_one_async_extent(struct async_chunk *async_chunk,
1103 struct async_extent *async_extent,
1104 u64 *alloc_hint)
771ed689 1105{
84f262f0 1106 struct btrfs_inode *inode = async_chunk->inode;
b4ccace8
QW
1107 struct extent_io_tree *io_tree = &inode->io_tree;
1108 struct btrfs_root *root = inode->root;
1109 struct btrfs_fs_info *fs_info = root->fs_info;
d611935b 1110 struct btrfs_ordered_extent *ordered;
771ed689 1111 struct btrfs_key ins;
2b83a0ee 1112 struct page *locked_page = NULL;
771ed689 1113 struct extent_map *em;
f5a84ee3 1114 int ret = 0;
b4ccace8
QW
1115 u64 start = async_extent->start;
1116 u64 end = async_extent->start + async_extent->ram_size - 1;
771ed689 1117
896d7c1a
CH
1118 if (async_chunk->blkcg_css)
1119 kthread_associate_blkcg(async_chunk->blkcg_css);
1120
2b83a0ee
QW
1121 /*
1122 * If async_chunk->locked_page is in the async_extent range, we need to
1123 * handle it.
1124 */
1125 if (async_chunk->locked_page) {
1126 u64 locked_page_start = page_offset(async_chunk->locked_page);
1127 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
3e04e7f1 1128
2b83a0ee
QW
1129 if (!(start >= locked_page_end || end <= locked_page_start))
1130 locked_page = async_chunk->locked_page;
b4ccace8 1131 }
570eb97b 1132 lock_extent(io_tree, start, end, NULL);
ce62003f 1133
67583468 1134 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
ff20d6a4 1135 submit_uncompressed_range(inode, async_extent, locked_page);
e43a6210
CH
1136 goto done;
1137 }
ce62003f 1138
b4ccace8
QW
1139 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1140 async_extent->compressed_size,
1141 async_extent->compressed_size,
1142 0, *alloc_hint, &ins, 1, 1);
1143 if (ret) {
c2167754 1144 /*
b4ccace8
QW
1145 * Here we used to try again by going back to non-compressed
1146 * path for ENOSPC. But we can't reserve space even for
1147 * compressed size, how could it work for uncompressed size
1148 * which requires larger size? So here we directly go error
1149 * path.
c2167754 1150 */
b4ccace8
QW
1151 goto out_free;
1152 }
1153
1154 /* Here we're doing allocation and writeback of the compressed pages */
1155 em = create_io_em(inode, start,
1156 async_extent->ram_size, /* len */
1157 start, /* orig_start */
1158 ins.objectid, /* block_start */
1159 ins.offset, /* block_len */
1160 ins.offset, /* orig_block_len */
1161 async_extent->ram_size, /* ram_bytes */
1162 async_extent->compress_type,
1163 BTRFS_ORDERED_COMPRESSED);
1164 if (IS_ERR(em)) {
1165 ret = PTR_ERR(em);
1166 goto out_free_reserve;
1167 }
1168 free_extent_map(em);
771ed689 1169
d611935b 1170 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
cb36a9bb
OS
1171 async_extent->ram_size, /* num_bytes */
1172 async_extent->ram_size, /* ram_bytes */
1173 ins.objectid, /* disk_bytenr */
1174 ins.offset, /* disk_num_bytes */
1175 0, /* offset */
1176 1 << BTRFS_ORDERED_COMPRESSED,
1177 async_extent->compress_type);
d611935b 1178 if (IS_ERR(ordered)) {
4c0c8cfc 1179 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 1180 ret = PTR_ERR(ordered);
b4ccace8 1181 goto out_free_reserve;
771ed689 1182 }
b4ccace8
QW
1183 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1184
1185 /* Clear dirty, set writeback and unlock the pages. */
1186 extent_clear_unlock_delalloc(inode, start, end,
1187 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1188 PAGE_UNLOCK | PAGE_START_WRITEBACK);
d611935b 1189 btrfs_submit_compressed_write(ordered,
b4ccace8
QW
1190 async_extent->pages, /* compressed_pages */
1191 async_extent->nr_pages,
05d06a5c 1192 async_chunk->write_flags, true);
b4ccace8 1193 *alloc_hint = ins.objectid + ins.offset;
e43a6210 1194done:
896d7c1a
CH
1195 if (async_chunk->blkcg_css)
1196 kthread_associate_blkcg(NULL);
b4ccace8 1197 kfree(async_extent);
84f262f0 1198 return;
b4ccace8 1199
3e04e7f1 1200out_free_reserve:
0b246afa 1201 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1202 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1203out_free:
a994310a 1204 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
b4ccace8 1205 extent_clear_unlock_delalloc(inode, start, end,
c2790a2e 1206 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 1207 EXTENT_DELALLOC_NEW |
151a41bc 1208 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
6869b0a8 1209 PAGE_UNLOCK | PAGE_START_WRITEBACK |
a994310a 1210 PAGE_END_WRITEBACK);
40ae837b 1211 free_async_extent_pages(async_extent);
84f262f0
CH
1212 if (async_chunk->blkcg_css)
1213 kthread_associate_blkcg(NULL);
1214 btrfs_debug(fs_info,
b4ccace8 1215"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
84f262f0
CH
1216 root->root_key.objectid, btrfs_ino(inode), start,
1217 async_extent->ram_size, ret);
1218 kfree(async_extent);
771ed689
CM
1219}
1220
43c69849 1221static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
1222 u64 num_bytes)
1223{
43c69849 1224 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
1225 struct extent_map *em;
1226 u64 alloc_hint = 0;
1227
1228 read_lock(&em_tree->lock);
1229 em = search_extent_mapping(em_tree, start, num_bytes);
1230 if (em) {
1231 /*
1232 * if block start isn't an actual block number then find the
1233 * first block in this inode and use that as a hint. If that
1234 * block is also bogus then just don't worry about it.
1235 */
1236 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1237 free_extent_map(em);
1238 em = search_extent_mapping(em_tree, 0, 0);
1239 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1240 alloc_hint = em->block_start;
1241 if (em)
1242 free_extent_map(em);
1243 } else {
1244 alloc_hint = em->block_start;
1245 free_extent_map(em);
1246 }
1247 }
1248 read_unlock(&em_tree->lock);
1249
1250 return alloc_hint;
1251}
1252
771ed689
CM
1253/*
1254 * when extent_io.c finds a delayed allocation range in the file,
1255 * the call backs end up in this code. The basic idea is to
1256 * allocate extents on disk for the range, and create ordered data structs
1257 * in ram to track those extents.
1258 *
1259 * locked_page is the page that writepage had locked already. We use
1260 * it to make sure we don't do extra locks or unlocks.
1261 *
ba9145ad 1262 * When this function fails, it unlocks all pages except @locked_page.
9ce7466f 1263 *
c56cbe90
CH
1264 * When this function successfully creates an inline extent, it returns 1 and
1265 * unlocks all pages including locked_page and starts I/O on them.
ba9145ad
CH
1266 * (In reality inline extents are limited to a single page, so locked_page is
1267 * the only page handled anyway).
9ce7466f 1268 *
ba9145ad
CH
1269 * When this function succeed and creates a normal extent, the page locking
1270 * status depends on the passed in flags:
9ce7466f 1271 *
ba9145ad
CH
1272 * - If @keep_locked is set, all pages are kept locked.
1273 * - Else all pages except for @locked_page are unlocked.
9ce7466f
NA
1274 *
1275 * When a failure happens in the second or later iteration of the
1276 * while-loop, the ordered extents created in previous iterations are kept
1277 * intact. So, the caller must clean them up by calling
1278 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1279 * example.
771ed689 1280 */
6e26c442 1281static noinline int cow_file_range(struct btrfs_inode *inode,
c56cbe90
CH
1282 struct page *locked_page, u64 start, u64 end,
1283 u64 *done_offset,
53ffb30a 1284 bool keep_locked, bool no_inline)
771ed689 1285{
6e26c442
NB
1286 struct btrfs_root *root = inode->root;
1287 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 1288 u64 alloc_hint = 0;
9ce7466f 1289 u64 orig_start = start;
771ed689
CM
1290 u64 num_bytes;
1291 unsigned long ram_size;
a315e68f 1292 u64 cur_alloc_size = 0;
432cd2a1 1293 u64 min_alloc_size;
0b246afa 1294 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1295 struct btrfs_key ins;
1296 struct extent_map *em;
a315e68f
FM
1297 unsigned clear_bits;
1298 unsigned long page_ops;
1299 bool extent_reserved = false;
771ed689
CM
1300 int ret = 0;
1301
6e26c442 1302 if (btrfs_is_free_space_inode(inode)) {
29bce2f3
JB
1303 ret = -EINVAL;
1304 goto out_unlock;
02ecd2c2 1305 }
771ed689 1306
fda2832f 1307 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1308 num_bytes = max(blocksize, num_bytes);
566b1760 1309 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1310
6e26c442 1311 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1312
7367253a
QW
1313 /*
1314 * Due to the page size limit, for subpage we can only trigger the
1315 * writeback for the dirty sectors of page, that means data writeback
1316 * is doing more writeback than what we want.
1317 *
1318 * This is especially unexpected for some call sites like fallocate,
1319 * where we only increase i_size after everything is done.
1320 * This means we can trigger inline extent even if we didn't want to.
1321 * So here we skip inline extent creation completely.
1322 */
53ffb30a 1323 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
8dd9872d
OS
1324 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1325 end + 1);
1326
771ed689 1327 /* lets try to make an inline extent */
8dd9872d 1328 ret = cow_file_range_inline(inode, actual_end, 0,
d9496e8a 1329 BTRFS_COMPRESS_NONE, NULL, false);
771ed689 1330 if (ret == 0) {
8b62f87b
JB
1331 /*
1332 * We use DO_ACCOUNTING here because we need the
1333 * delalloc_release_metadata to be run _after_ we drop
1334 * our outstanding extent for clearing delalloc for this
1335 * range.
1336 */
4750af3b
QW
1337 extent_clear_unlock_delalloc(inode, start, end,
1338 locked_page,
c2790a2e 1339 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1340 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1341 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1342 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
4750af3b
QW
1343 /*
1344 * locked_page is locked by the caller of
1345 * writepage_delalloc(), not locked by
1346 * __process_pages_contig().
1347 *
1348 * We can't let __process_pages_contig() to unlock it,
1349 * as it doesn't have any subpage::writers recorded.
1350 *
1351 * Here we manually unlock the page, since the caller
c56cbe90
CH
1352 * can't determine if it's an inline extent or a
1353 * compressed extent.
4750af3b
QW
1354 */
1355 unlock_page(locked_page);
6e144bf1
CH
1356 ret = 1;
1357 goto done;
79787eaa 1358 } else if (ret < 0) {
79787eaa 1359 goto out_unlock;
771ed689
CM
1360 }
1361 }
1362
6e26c442 1363 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689 1364
432cd2a1
FM
1365 /*
1366 * Relocation relies on the relocated extents to have exactly the same
1367 * size as the original extents. Normally writeback for relocation data
1368 * extents follows a NOCOW path because relocation preallocates the
1369 * extents. However, due to an operation such as scrub turning a block
1370 * group to RO mode, it may fallback to COW mode, so we must make sure
1371 * an extent allocated during COW has exactly the requested size and can
1372 * not be split into smaller extents, otherwise relocation breaks and
1373 * fails during the stage where it updates the bytenr of file extent
1374 * items.
1375 */
37f00a6d 1376 if (btrfs_is_data_reloc_root(root))
432cd2a1
FM
1377 min_alloc_size = num_bytes;
1378 else
1379 min_alloc_size = fs_info->sectorsize;
1380
3752d22f 1381 while (num_bytes > 0) {
34bfaf15
CH
1382 struct btrfs_ordered_extent *ordered;
1383
3752d22f 1384 cur_alloc_size = num_bytes;
18513091 1385 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1386 min_alloc_size, 0, alloc_hint,
e570fd27 1387 &ins, 1, 1);
6e144bf1
CH
1388 if (ret == -EAGAIN) {
1389 /*
1390 * btrfs_reserve_extent only returns -EAGAIN for zoned
1391 * file systems, which is an indication that there are
1392 * no active zones to allocate from at the moment.
1393 *
1394 * If this is the first loop iteration, wait for at
1395 * least one zone to finish before retrying the
1396 * allocation. Otherwise ask the caller to write out
1397 * the already allocated blocks before coming back to
1398 * us, or return -ENOSPC if it can't handle retries.
1399 */
1400 ASSERT(btrfs_is_zoned(fs_info));
1401 if (start == orig_start) {
1402 wait_on_bit_io(&inode->root->fs_info->flags,
1403 BTRFS_FS_NEED_ZONE_FINISH,
1404 TASK_UNINTERRUPTIBLE);
1405 continue;
1406 }
1407 if (done_offset) {
1408 *done_offset = start - 1;
1409 return 0;
1410 }
1411 ret = -ENOSPC;
1412 }
00361589 1413 if (ret < 0)
79787eaa 1414 goto out_unlock;
a315e68f
FM
1415 cur_alloc_size = ins.offset;
1416 extent_reserved = true;
d397712b 1417
771ed689 1418 ram_size = ins.offset;
6e26c442 1419 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1420 start, /* orig_start */
1421 ins.objectid, /* block_start */
1422 ins.offset, /* block_len */
1423 ins.offset, /* orig_block_len */
1424 ram_size, /* ram_bytes */
1425 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1426 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1427 if (IS_ERR(em)) {
1428 ret = PTR_ERR(em);
ace68bac 1429 goto out_reserve;
090a127a 1430 }
6f9994db 1431 free_extent_map(em);
e6dcd2dc 1432
34bfaf15
CH
1433 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1434 ram_size, ins.objectid, cur_alloc_size,
1435 0, 1 << BTRFS_ORDERED_REGULAR,
1436 BTRFS_COMPRESS_NONE);
1437 if (IS_ERR(ordered)) {
1438 ret = PTR_ERR(ordered);
d9f85963 1439 goto out_drop_extent_cache;
34bfaf15 1440 }
c8b97818 1441
37f00a6d 1442 if (btrfs_is_data_reloc_root(root)) {
34bfaf15
CH
1443 ret = btrfs_reloc_clone_csums(ordered);
1444
4dbd80fb
QW
1445 /*
1446 * Only drop cache here, and process as normal.
1447 *
1448 * We must not allow extent_clear_unlock_delalloc()
1449 * at out_unlock label to free meta of this ordered
1450 * extent, as its meta should be freed by
1451 * btrfs_finish_ordered_io().
1452 *
1453 * So we must continue until @start is increased to
1454 * skip current ordered extent.
1455 */
00361589 1456 if (ret)
4c0c8cfc
FM
1457 btrfs_drop_extent_map_range(inode, start,
1458 start + ram_size - 1,
1459 false);
17d217fe 1460 }
34bfaf15 1461 btrfs_put_ordered_extent(ordered);
17d217fe 1462
0b246afa 1463 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1464
f57ad937
QW
1465 /*
1466 * We're not doing compressed IO, don't unlock the first page
1467 * (which the caller expects to stay locked), don't clear any
1468 * dirty bits and don't set any writeback bits
8b62b72b 1469 *
f57ad937
QW
1470 * Do set the Ordered (Private2) bit so we know this page was
1471 * properly setup for writepage.
c8b97818 1472 */
ba9145ad 1473 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
f57ad937 1474 page_ops |= PAGE_SET_ORDERED;
a791e35e 1475
6e26c442 1476 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1477 locked_page,
c2790a2e 1478 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1479 page_ops);
3752d22f
AJ
1480 if (num_bytes < cur_alloc_size)
1481 num_bytes = 0;
4dbd80fb 1482 else
3752d22f 1483 num_bytes -= cur_alloc_size;
c59f8951
CM
1484 alloc_hint = ins.objectid + ins.offset;
1485 start += cur_alloc_size;
a315e68f 1486 extent_reserved = false;
4dbd80fb
QW
1487
1488 /*
1489 * btrfs_reloc_clone_csums() error, since start is increased
1490 * extent_clear_unlock_delalloc() at out_unlock label won't
1491 * free metadata of current ordered extent, we're OK to exit.
1492 */
1493 if (ret)
1494 goto out_unlock;
b888db2b 1495 }
6e144bf1
CH
1496done:
1497 if (done_offset)
1498 *done_offset = end;
be20aa9d 1499 return ret;
b7d5b0a8 1500
d9f85963 1501out_drop_extent_cache:
4c0c8cfc 1502 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
ace68bac 1503out_reserve:
0b246afa 1504 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1505 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1506out_unlock:
9ce7466f
NA
1507 /*
1508 * Now, we have three regions to clean up:
1509 *
1510 * |-------(1)----|---(2)---|-------------(3)----------|
1511 * `- orig_start `- start `- start + cur_alloc_size `- end
1512 *
1513 * We process each region below.
1514 */
1515
a7e3b975
FM
1516 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1517 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
6869b0a8 1518 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
9ce7466f 1519
a315e68f 1520 /*
9ce7466f
NA
1521 * For the range (1). We have already instantiated the ordered extents
1522 * for this region. They are cleaned up by
1523 * btrfs_cleanup_ordered_extents() in e.g,
1524 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1525 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1526 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1527 * function.
1528 *
ba9145ad 1529 * However, in case of @keep_locked, we still need to unlock the pages
9ce7466f
NA
1530 * (except @locked_page) to ensure all the pages are unlocked.
1531 */
ba9145ad 1532 if (keep_locked && orig_start < start) {
71aa147b
NA
1533 if (!locked_page)
1534 mapping_set_error(inode->vfs_inode.i_mapping, ret);
9ce7466f
NA
1535 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1536 locked_page, 0, page_ops);
71aa147b 1537 }
9ce7466f 1538
a315e68f 1539 /*
9ce7466f
NA
1540 * For the range (2). If we reserved an extent for our delalloc range
1541 * (or a subrange) and failed to create the respective ordered extent,
1542 * then it means that when we reserved the extent we decremented the
1543 * extent's size from the data space_info's bytes_may_use counter and
1544 * incremented the space_info's bytes_reserved counter by the same
1545 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1546 * to decrement again the data space_info's bytes_may_use counter,
1547 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
a315e68f
FM
1548 */
1549 if (extent_reserved) {
6e26c442 1550 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1551 start + cur_alloc_size - 1,
a315e68f
FM
1552 locked_page,
1553 clear_bits,
1554 page_ops);
1555 start += cur_alloc_size;
a315e68f 1556 }
9ce7466f
NA
1557
1558 /*
1559 * For the range (3). We never touched the region. In addition to the
1560 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1561 * space_info's bytes_may_use counter, reserved in
1562 * btrfs_check_data_free_space().
1563 */
12b2d64e
CH
1564 if (start < end) {
1565 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1566 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1567 clear_bits, page_ops);
1568 }
aaafa1eb 1569 return ret;
771ed689 1570}
c8b97818 1571
771ed689 1572/*
c15d8cf2
CH
1573 * Phase two of compressed writeback. This is the ordered portion of the code,
1574 * which only gets called in the order the work was queued. We walk all the
1575 * async extents created by compress_file_range and send them down to the disk.
078b8b90
DS
1576 *
1577 * If called with @do_free == true then it'll try to finish the work and free
1578 * the work struct eventually.
771ed689 1579 */
078b8b90 1580static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
771ed689 1581{
c5a68aec
NB
1582 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1583 work);
1584 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
00d31d17 1585 struct async_extent *async_extent;
771ed689 1586 unsigned long nr_pages;
00d31d17 1587 u64 alloc_hint = 0;
771ed689 1588
078b8b90
DS
1589 if (do_free) {
1590 struct async_chunk *async_chunk;
1591 struct async_cow *async_cow;
1592
1593 async_chunk = container_of(work, struct async_chunk, work);
1594 btrfs_add_delayed_iput(async_chunk->inode);
1595 if (async_chunk->blkcg_css)
1596 css_put(async_chunk->blkcg_css);
1597
1598 async_cow = async_chunk->async_cow;
1599 if (atomic_dec_and_test(&async_cow->num_chunks))
1600 kvfree(async_cow);
1601 return;
1602 }
1603
b5326271 1604 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1605 PAGE_SHIFT;
771ed689 1606
00d31d17
CH
1607 while (!list_empty(&async_chunk->extents)) {
1608 async_extent = list_entry(async_chunk->extents.next,
1609 struct async_extent, list);
1610 list_del(&async_extent->list);
1611 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1612 }
ac98141d
JB
1613
1614 /* atomic_sub_return implies a barrier */
1615 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1616 5 * SZ_1M)
1617 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1618}
c8b97818 1619
bb7b05fe 1620static bool run_delalloc_compressed(struct btrfs_inode *inode,
c56cbe90
CH
1621 struct page *locked_page, u64 start,
1622 u64 end, struct writeback_control *wbc)
771ed689 1623{
751b6431 1624 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1625 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1626 struct async_cow *ctx;
1627 struct async_chunk *async_chunk;
771ed689 1628 unsigned long nr_pages;
97db1204
NB
1629 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1630 int i;
b1c16ac9 1631 unsigned nofs_flag;
bf9486d6 1632 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
771ed689 1633
b1c16ac9
NB
1634 nofs_flag = memalloc_nofs_save();
1635 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1636 memalloc_nofs_restore(nofs_flag);
973fb26e
CH
1637 if (!ctx)
1638 return false;
b1c16ac9 1639
973fb26e
CH
1640 unlock_extent(&inode->io_tree, start, end, NULL);
1641 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
97db1204
NB
1642
1643 async_chunk = ctx->chunks;
1644 atomic_set(&ctx->num_chunks, num_chunks);
1645
1646 for (i = 0; i < num_chunks; i++) {
973fb26e 1647 u64 cur_end = min(end, start + SZ_512K - 1);
771ed689 1648
bd4691a0
NB
1649 /*
1650 * igrab is called higher up in the call chain, take only the
1651 * lightweight reference for the callback lifetime
1652 */
751b6431 1653 ihold(&inode->vfs_inode);
9e895a8f 1654 async_chunk[i].async_cow = ctx;
99a81a44 1655 async_chunk[i].inode = inode;
97db1204
NB
1656 async_chunk[i].start = start;
1657 async_chunk[i].end = cur_end;
97db1204
NB
1658 async_chunk[i].write_flags = write_flags;
1659 INIT_LIST_HEAD(&async_chunk[i].extents);
1660
1d53c9e6
CM
1661 /*
1662 * The locked_page comes all the way from writepage and its
1663 * the original page we were actually given. As we spread
1664 * this large delalloc region across multiple async_chunk
1665 * structs, only the first struct needs a pointer to locked_page
1666 *
1667 * This way we don't need racey decisions about who is supposed
1668 * to unlock it.
1669 */
1670 if (locked_page) {
ec39f769
CM
1671 /*
1672 * Depending on the compressibility, the pages might or
1673 * might not go through async. We want all of them to
1674 * be accounted against wbc once. Let's do it here
1675 * before the paths diverge. wbc accounting is used
1676 * only for foreign writeback detection and doesn't
1677 * need full accuracy. Just account the whole thing
1678 * against the first page.
1679 */
1680 wbc_account_cgroup_owner(wbc, locked_page,
1681 cur_end - start);
1d53c9e6
CM
1682 async_chunk[i].locked_page = locked_page;
1683 locked_page = NULL;
1684 } else {
1685 async_chunk[i].locked_page = NULL;
1686 }
1687
ec39f769
CM
1688 if (blkcg_css != blkcg_root_css) {
1689 css_get(blkcg_css);
1690 async_chunk[i].blkcg_css = blkcg_css;
3480373e 1691 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
ec39f769
CM
1692 } else {
1693 async_chunk[i].blkcg_css = NULL;
1694 }
1695
c15d8cf2 1696 btrfs_init_work(&async_chunk[i].work, compress_file_range,
078b8b90 1697 submit_compressed_extents);
771ed689 1698
97db1204 1699 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1700 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1701
97db1204 1702 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1703
771ed689
CM
1704 start = cur_end + 1;
1705 }
973fb26e 1706 return true;
be20aa9d
CM
1707}
1708
256b0cf9
CH
1709/*
1710 * Run the delalloc range from start to end, and write back any dirty pages
1711 * covered by the range.
1712 */
1713static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1714 struct page *locked_page, u64 start,
1715 u64 end, struct writeback_control *wbc,
1716 bool pages_dirty)
42c01100 1717{
898793d9 1718 u64 done_offset = end;
42c01100
NA
1719 int ret;
1720
898793d9 1721 while (start <= end) {
c56cbe90
CH
1722 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1723 true, false);
6e144bf1 1724 if (ret)
898793d9 1725 return ret;
778b8785 1726 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
256b0cf9 1727 done_offset, wbc, pages_dirty);
898793d9
NA
1728 start = done_offset + 1;
1729 }
42c01100 1730
c56cbe90 1731 return 1;
42c01100
NA
1732}
1733
2ff7e61e 1734static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
26ce9114 1735 u64 bytenr, u64 num_bytes, bool nowait)
17d217fe 1736{
fc28b25e 1737 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
17d217fe 1738 struct btrfs_ordered_sum *sums;
fc28b25e 1739 int ret;
17d217fe
YZ
1740 LIST_HEAD(list);
1741
97e38239
QW
1742 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1743 &list, 0, nowait);
17d217fe
YZ
1744 if (ret == 0 && list_empty(&list))
1745 return 0;
1746
1747 while (!list_empty(&list)) {
1748 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1749 list_del(&sums->list);
1750 kfree(sums);
1751 }
58113753
LB
1752 if (ret < 0)
1753 return ret;
17d217fe
YZ
1754 return 1;
1755}
1756
8ba96f3d 1757static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
53ffb30a 1758 const u64 start, const u64 end)
467dc47e 1759{
8ba96f3d 1760 const bool is_space_ino = btrfs_is_free_space_inode(inode);
37f00a6d 1761 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
2166e5ed 1762 const u64 range_bytes = end + 1 - start;
8ba96f3d 1763 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1764 u64 range_start = start;
1765 u64 count;
53ffb30a 1766 int ret;
467dc47e
FM
1767
1768 /*
1769 * If EXTENT_NORESERVE is set it means that when the buffered write was
1770 * made we had not enough available data space and therefore we did not
1771 * reserve data space for it, since we though we could do NOCOW for the
1772 * respective file range (either there is prealloc extent or the inode
1773 * has the NOCOW bit set).
1774 *
1775 * However when we need to fallback to COW mode (because for example the
1776 * block group for the corresponding extent was turned to RO mode by a
1777 * scrub or relocation) we need to do the following:
1778 *
1779 * 1) We increment the bytes_may_use counter of the data space info.
1780 * If COW succeeds, it allocates a new data extent and after doing
1781 * that it decrements the space info's bytes_may_use counter and
1782 * increments its bytes_reserved counter by the same amount (we do
1783 * this at btrfs_add_reserved_bytes()). So we need to increment the
1784 * bytes_may_use counter to compensate (when space is reserved at
1785 * buffered write time, the bytes_may_use counter is incremented);
1786 *
1787 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1788 * that if the COW path fails for any reason, it decrements (through
1789 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1790 * data space info, which we incremented in the step above.
2166e5ed
FM
1791 *
1792 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1793 * space cache inode or an inode of the data relocation tree, we must
1794 * also increment bytes_may_use of the data space_info for the same
1795 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1796 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1797 * group that contains that extent to RO mode and therefore force COW
1798 * when starting writeback.
467dc47e 1799 */
2166e5ed 1800 count = count_range_bits(io_tree, &range_start, end, range_bytes,
8c6e53a7 1801 EXTENT_NORESERVE, 0, NULL);
6bd335b4
FM
1802 if (count > 0 || is_space_ino || is_reloc_ino) {
1803 u64 bytes = count;
8ba96f3d 1804 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1805 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1806
6bd335b4
FM
1807 if (is_space_ino || is_reloc_ino)
1808 bytes = range_bytes;
1809
467dc47e 1810 spin_lock(&sinfo->lock);
2166e5ed 1811 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1812 spin_unlock(&sinfo->lock);
1813
2166e5ed
FM
1814 if (count > 0)
1815 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
bd015294 1816 NULL);
467dc47e
FM
1817 }
1818
53ffb30a
CH
1819 /*
1820 * Don't try to create inline extents, as a mix of inline extent that
1821 * is written out and unlocked directly and a normal NOCOW extent
1822 * doesn't work.
1823 */
c56cbe90
CH
1824 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1825 ASSERT(ret != 1);
53ffb30a 1826 return ret;
467dc47e
FM
1827}
1828
619104ba
FM
1829struct can_nocow_file_extent_args {
1830 /* Input fields. */
1831
1832 /* Start file offset of the range we want to NOCOW. */
1833 u64 start;
1834 /* End file offset (inclusive) of the range we want to NOCOW. */
1835 u64 end;
1836 bool writeback_path;
1837 bool strict;
1838 /*
1839 * Free the path passed to can_nocow_file_extent() once it's not needed
1840 * anymore.
1841 */
1842 bool free_path;
1843
1844 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1845
1846 u64 disk_bytenr;
1847 u64 disk_num_bytes;
1848 u64 extent_offset;
1849 /* Number of bytes that can be written to in NOCOW mode. */
1850 u64 num_bytes;
1851};
1852
1853/*
1854 * Check if we can NOCOW the file extent that the path points to.
1855 * This function may return with the path released, so the caller should check
1856 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1857 *
1858 * Returns: < 0 on error
1859 * 0 if we can not NOCOW
1860 * 1 if we can NOCOW
1861 */
1862static int can_nocow_file_extent(struct btrfs_path *path,
1863 struct btrfs_key *key,
1864 struct btrfs_inode *inode,
1865 struct can_nocow_file_extent_args *args)
1866{
1867 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1868 struct extent_buffer *leaf = path->nodes[0];
1869 struct btrfs_root *root = inode->root;
1870 struct btrfs_file_extent_item *fi;
1871 u64 extent_end;
1872 u8 extent_type;
1873 int can_nocow = 0;
1874 int ret = 0;
26ce9114 1875 bool nowait = path->nowait;
619104ba
FM
1876
1877 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1878 extent_type = btrfs_file_extent_type(leaf, fi);
1879
1880 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1881 goto out;
1882
1883 /* Can't access these fields unless we know it's not an inline extent. */
1884 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1885 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1886 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1887
1888 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1889 extent_type == BTRFS_FILE_EXTENT_REG)
1890 goto out;
1891
1892 /*
1893 * If the extent was created before the generation where the last snapshot
1894 * for its subvolume was created, then this implies the extent is shared,
1895 * hence we must COW.
1896 */
a7bb6bd4 1897 if (!args->strict &&
619104ba
FM
1898 btrfs_file_extent_generation(leaf, fi) <=
1899 btrfs_root_last_snapshot(&root->root_item))
1900 goto out;
1901
1902 /* An explicit hole, must COW. */
1903 if (args->disk_bytenr == 0)
1904 goto out;
1905
1906 /* Compressed/encrypted/encoded extents must be COWed. */
1907 if (btrfs_file_extent_compression(leaf, fi) ||
1908 btrfs_file_extent_encryption(leaf, fi) ||
1909 btrfs_file_extent_other_encoding(leaf, fi))
1910 goto out;
1911
1912 extent_end = btrfs_file_extent_end(path);
1913
1914 /*
1915 * The following checks can be expensive, as they need to take other
1916 * locks and do btree or rbtree searches, so release the path to avoid
1917 * blocking other tasks for too long.
1918 */
1919 btrfs_release_path(path);
1920
1921 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1922 key->offset - args->extent_offset,
deccae40 1923 args->disk_bytenr, args->strict, path);
619104ba
FM
1924 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1925 if (ret != 0)
1926 goto out;
1927
1928 if (args->free_path) {
1929 /*
1930 * We don't need the path anymore, plus through the
1931 * csum_exist_in_range() call below we will end up allocating
1932 * another path. So free the path to avoid unnecessary extra
1933 * memory usage.
1934 */
1935 btrfs_free_path(path);
1936 path = NULL;
1937 }
1938
1939 /* If there are pending snapshots for this root, we must COW. */
1940 if (args->writeback_path && !is_freespace_inode &&
1941 atomic_read(&root->snapshot_force_cow))
1942 goto out;
1943
1944 args->disk_bytenr += args->extent_offset;
1945 args->disk_bytenr += args->start - key->offset;
1946 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1947
1948 /*
1949 * Force COW if csums exist in the range. This ensures that csums for a
1950 * given extent are either valid or do not exist.
1951 */
26ce9114
JB
1952 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1953 nowait);
619104ba
FM
1954 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1955 if (ret != 0)
1956 goto out;
1957
1958 can_nocow = 1;
1959 out:
1960 if (args->free_path && path)
1961 btrfs_free_path(path);
1962
1963 return ret < 0 ? ret : can_nocow;
1964}
1965
d352ac68
CM
1966/*
1967 * when nowcow writeback call back. This checks for snapshots or COW copies
1968 * of the extents that exist in the file, and COWs the file as required.
1969 *
1970 * If no cow copies or snapshots exist, we write directly to the existing
1971 * blocks on disk
1972 */
968322c8 1973static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1974 struct page *locked_page,
53ffb30a 1975 const u64 start, const u64 end)
be20aa9d 1976{
968322c8
NB
1977 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1978 struct btrfs_root *root = inode->root;
be20aa9d 1979 struct btrfs_path *path;
3e024846
NB
1980 u64 cow_start = (u64)-1;
1981 u64 cur_offset = start;
8ecebf4d 1982 int ret;
3e024846 1983 bool check_prev = true;
968322c8 1984 u64 ino = btrfs_ino(inode);
619104ba 1985 struct can_nocow_file_extent_args nocow_args = { 0 };
be20aa9d 1986
76c5126e
CH
1987 /*
1988 * Normally on a zoned device we're only doing COW writes, but in case
1989 * of relocation on a zoned filesystem serializes I/O so that we're only
1990 * writing sequentially and can end up here as well.
1991 */
1992 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1993
be20aa9d 1994 path = btrfs_alloc_path();
17ca04af 1995 if (!path) {
38dc8889
CH
1996 ret = -ENOMEM;
1997 goto error;
17ca04af 1998 }
82d5902d 1999
619104ba
FM
2000 nocow_args.end = end;
2001 nocow_args.writeback_path = true;
2002
80ff3856 2003 while (1) {
18f62b86 2004 struct btrfs_block_group *nocow_bg = NULL;
34bfaf15 2005 struct btrfs_ordered_extent *ordered;
3e024846
NB
2006 struct btrfs_key found_key;
2007 struct btrfs_file_extent_item *fi;
2008 struct extent_buffer *leaf;
2009 u64 extent_end;
3e024846 2010 u64 ram_bytes;
619104ba 2011 u64 nocow_end;
3e024846 2012 int extent_type;
3daea5fd 2013 bool is_prealloc;
762bf098 2014
e4c3b2dc 2015 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 2016 cur_offset, 0);
d788a349 2017 if (ret < 0)
79787eaa 2018 goto error;
a6bd9cd1
NB
2019
2020 /*
2021 * If there is no extent for our range when doing the initial
2022 * search, then go back to the previous slot as it will be the
2023 * one containing the search offset
2024 */
80ff3856
YZ
2025 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2026 leaf = path->nodes[0];
2027 btrfs_item_key_to_cpu(leaf, &found_key,
2028 path->slots[0] - 1);
33345d01 2029 if (found_key.objectid == ino &&
80ff3856
YZ
2030 found_key.type == BTRFS_EXTENT_DATA_KEY)
2031 path->slots[0]--;
2032 }
3e024846 2033 check_prev = false;
80ff3856 2034next_slot:
a6bd9cd1 2035 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
2036 leaf = path->nodes[0];
2037 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2038 ret = btrfs_next_leaf(root, path);
953fa5ce 2039 if (ret < 0)
79787eaa 2040 goto error;
80ff3856
YZ
2041 if (ret > 0)
2042 break;
2043 leaf = path->nodes[0];
2044 }
be20aa9d 2045
80ff3856
YZ
2046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2047
a6bd9cd1 2048 /* Didn't find anything for our INO */
1d512cb7
FM
2049 if (found_key.objectid > ino)
2050 break;
a6bd9cd1
NB
2051 /*
2052 * Keep searching until we find an EXTENT_ITEM or there are no
2053 * more extents for this inode
2054 */
1d512cb7
FM
2055 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2056 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2057 path->slots[0]++;
2058 goto next_slot;
2059 }
a6bd9cd1
NB
2060
2061 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 2062 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
2063 found_key.offset > end)
2064 break;
2065
a6bd9cd1
NB
2066 /*
2067 * If the found extent starts after requested offset, then
2068 * adjust extent_end to be right before this extent begins
2069 */
80ff3856
YZ
2070 if (found_key.offset > cur_offset) {
2071 extent_end = found_key.offset;
e9061e21 2072 extent_type = 0;
18f62b86 2073 goto must_cow;
80ff3856
YZ
2074 }
2075
a6bd9cd1
NB
2076 /*
2077 * Found extent which begins before our range and potentially
2078 * intersect it
2079 */
80ff3856
YZ
2080 fi = btrfs_item_ptr(leaf, path->slots[0],
2081 struct btrfs_file_extent_item);
2082 extent_type = btrfs_file_extent_type(leaf, fi);
619104ba
FM
2083 /* If this is triggered then we have a memory corruption. */
2084 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2085 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2086 ret = -EUCLEAN;
2087 goto error;
2088 }
cc95bef6 2089 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
619104ba 2090 extent_end = btrfs_file_extent_end(path);
c65ca98f 2091
619104ba
FM
2092 /*
2093 * If the extent we got ends before our current offset, skip to
2094 * the next extent.
2095 */
2096 if (extent_end <= cur_offset) {
2097 path->slots[0]++;
2098 goto next_slot;
2099 }
c65ca98f 2100
619104ba
FM
2101 nocow_args.start = cur_offset;
2102 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
953fa5ce 2103 if (ret < 0)
619104ba 2104 goto error;
953fa5ce 2105 if (ret == 0)
18f62b86 2106 goto must_cow;
58113753 2107
619104ba 2108 ret = 0;
18f62b86
CH
2109 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2110 if (!nocow_bg) {
2111must_cow:
2112 /*
2113 * If we can't perform NOCOW writeback for the range,
2114 * then record the beginning of the range that needs to
2115 * be COWed. It will be written out before the next
2116 * NOCOW range if we find one, or when exiting this
2117 * loop.
2118 */
80ff3856
YZ
2119 if (cow_start == (u64)-1)
2120 cow_start = cur_offset;
2121 cur_offset = extent_end;
2122 if (cur_offset > end)
2123 break;
c65ca98f
FM
2124 if (!path->nodes[0])
2125 continue;
80ff3856
YZ
2126 path->slots[0]++;
2127 goto next_slot;
7ea394f1
YZ
2128 }
2129
a6bd9cd1
NB
2130 /*
2131 * COW range from cow_start to found_key.offset - 1. As the key
2132 * will contain the beginning of the first extent that can be
2133 * NOCOW, following one which needs to be COW'ed
2134 */
80ff3856 2135 if (cow_start != (u64)-1) {
968322c8 2136 ret = fallback_to_cow(inode, locked_page,
53ffb30a 2137 cow_start, found_key.offset - 1);
80ff3856 2138 cow_start = (u64)-1;
18f62b86
CH
2139 if (ret) {
2140 btrfs_dec_nocow_writers(nocow_bg);
79787eaa 2141 goto error;
18f62b86 2142 }
7ea394f1 2143 }
80ff3856 2144
619104ba 2145 nocow_end = cur_offset + nocow_args.num_bytes - 1;
3daea5fd
CH
2146 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2147 if (is_prealloc) {
619104ba 2148 u64 orig_start = found_key.offset - nocow_args.extent_offset;
3e024846 2149 struct extent_map *em;
6f9994db 2150
619104ba 2151 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
6f9994db 2152 orig_start,
619104ba
FM
2153 nocow_args.disk_bytenr, /* block_start */
2154 nocow_args.num_bytes, /* block_len */
2155 nocow_args.disk_num_bytes, /* orig_block_len */
6f9994db
LB
2156 ram_bytes, BTRFS_COMPRESS_NONE,
2157 BTRFS_ORDERED_PREALLOC);
2158 if (IS_ERR(em)) {
18f62b86 2159 btrfs_dec_nocow_writers(nocow_bg);
6f9994db
LB
2160 ret = PTR_ERR(em);
2161 goto error;
d899e052 2162 }
6f9994db 2163 free_extent_map(em);
3daea5fd
CH
2164 }
2165
34bfaf15 2166 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
3daea5fd
CH
2167 nocow_args.num_bytes, nocow_args.num_bytes,
2168 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2169 is_prealloc
2170 ? (1 << BTRFS_ORDERED_PREALLOC)
2171 : (1 << BTRFS_ORDERED_NOCOW),
2172 BTRFS_COMPRESS_NONE);
18f62b86 2173 btrfs_dec_nocow_writers(nocow_bg);
34bfaf15 2174 if (IS_ERR(ordered)) {
3daea5fd 2175 if (is_prealloc) {
4c0c8cfc
FM
2176 btrfs_drop_extent_map_range(inode, cur_offset,
2177 nocow_end, false);
762bf098 2178 }
34bfaf15 2179 ret = PTR_ERR(ordered);
3daea5fd 2180 goto error;
d899e052 2181 }
80ff3856 2182
37f00a6d 2183 if (btrfs_is_data_reloc_root(root))
4dbd80fb
QW
2184 /*
2185 * Error handled later, as we must prevent
2186 * extent_clear_unlock_delalloc() in error handler
2187 * from freeing metadata of created ordered extent.
2188 */
34bfaf15
CH
2189 ret = btrfs_reloc_clone_csums(ordered);
2190 btrfs_put_ordered_extent(ordered);
efa56464 2191
619104ba 2192 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
c2790a2e 2193 locked_page, EXTENT_LOCKED |
18513091
WX
2194 EXTENT_DELALLOC |
2195 EXTENT_CLEAR_DATA_RESV,
f57ad937 2196 PAGE_UNLOCK | PAGE_SET_ORDERED);
18513091 2197
80ff3856 2198 cur_offset = extent_end;
4dbd80fb
QW
2199
2200 /*
2201 * btrfs_reloc_clone_csums() error, now we're OK to call error
2202 * handler, as metadata for created ordered extent will only
2203 * be freed by btrfs_finish_ordered_io().
2204 */
2205 if (ret)
2206 goto error;
80ff3856
YZ
2207 if (cur_offset > end)
2208 break;
be20aa9d 2209 }
b3b4aa74 2210 btrfs_release_path(path);
80ff3856 2211
506481b2 2212 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 2213 cow_start = cur_offset;
17ca04af 2214
80ff3856 2215 if (cow_start != (u64)-1) {
506481b2 2216 cur_offset = end;
53ffb30a 2217 ret = fallback_to_cow(inode, locked_page, cow_start, end);
953fa5ce 2218 cow_start = (u64)-1;
d788a349 2219 if (ret)
79787eaa 2220 goto error;
80ff3856
YZ
2221 }
2222
18f62b86
CH
2223 btrfs_free_path(path);
2224 return 0;
762bf098 2225
18f62b86 2226error:
953fa5ce
CH
2227 /*
2228 * If an error happened while a COW region is outstanding, cur_offset
2229 * needs to be reset to cow_start to ensure the COW region is unlocked
2230 * as well.
2231 */
2232 if (cow_start != (u64)-1)
2233 cur_offset = cow_start;
18f62b86 2234 if (cur_offset < end)
968322c8 2235 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 2236 locked_page, EXTENT_LOCKED |
151a41bc
JB
2237 EXTENT_DELALLOC | EXTENT_DEFRAG |
2238 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 2239 PAGE_START_WRITEBACK |
c2790a2e 2240 PAGE_END_WRITEBACK);
7ea394f1 2241 btrfs_free_path(path);
79787eaa 2242 return ret;
be20aa9d
CM
2243}
2244
6e65ae76 2245static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93 2246{
6e65ae76
GR
2247 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2248 if (inode->defrag_bytes &&
99be1a66 2249 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
6e65ae76
GR
2250 return false;
2251 return true;
2252 }
2253 return false;
47059d93
WS
2254}
2255
d352ac68 2256/*
5eaad97a
NB
2257 * Function to process delayed allocation (create CoW) for ranges which are
2258 * being touched for the first time.
d352ac68 2259 */
98456b9c 2260int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
c56cbe90 2261 u64 start, u64 end, struct writeback_control *wbc)
be20aa9d 2262{
42c01100 2263 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
c56cbe90 2264 int ret;
a2135011 2265
2749f7ef 2266 /*
c56cbe90
CH
2267 * The range must cover part of the @locked_page, or a return of 1
2268 * can confuse the caller.
2749f7ef
QW
2269 */
2270 ASSERT(!(end <= page_offset(locked_page) ||
2271 start >= page_offset(locked_page) + PAGE_SIZE));
2272
6e65ae76 2273 if (should_nocow(inode, start, end)) {
53ffb30a 2274 ret = run_delalloc_nocow(inode, locked_page, start, end);
973fb26e 2275 goto out;
7ddf5a42 2276 }
973fb26e
CH
2277
2278 if (btrfs_inode_can_compress(inode) &&
2279 inode_need_compress(inode, start, end) &&
c56cbe90
CH
2280 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2281 return 1;
973fb26e
CH
2282
2283 if (zoned)
256b0cf9
CH
2284 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2285 true);
973fb26e 2286 else
c56cbe90
CH
2287 ret = cow_file_range(inode, locked_page, start, end, NULL,
2288 false, false);
973fb26e
CH
2289
2290out:
c56cbe90 2291 if (ret < 0)
98456b9c 2292 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 2293 end - start + 1);
b888db2b
CM
2294 return ret;
2295}
2296
62798a49 2297void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
abbb55f4 2298 struct extent_state *orig, u64 split)
9ed74f2d 2299{
62798a49 2300 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b
JB
2301 u64 size;
2302
0ca1f7ce 2303 /* not delalloc, ignore it */
9ed74f2d 2304 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 2305 return;
9ed74f2d 2306
dcab6a3b 2307 size = orig->end - orig->start + 1;
f7b12a62 2308 if (size > fs_info->max_extent_size) {
823bb20a 2309 u32 num_extents;
dcab6a3b
JB
2310 u64 new_size;
2311
2312 /*
5c848198 2313 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 2314 * applies here, just in reverse.
dcab6a3b
JB
2315 */
2316 new_size = orig->end - split + 1;
7d7672bc 2317 num_extents = count_max_extents(fs_info, new_size);
ba117213 2318 new_size = split - orig->start;
7d7672bc
NA
2319 num_extents += count_max_extents(fs_info, new_size);
2320 if (count_max_extents(fs_info, size) >= num_extents)
dcab6a3b
JB
2321 return;
2322 }
2323
62798a49
DS
2324 spin_lock(&inode->lock);
2325 btrfs_mod_outstanding_extents(inode, 1);
2326 spin_unlock(&inode->lock);
9ed74f2d
JB
2327}
2328
2329/*
5c848198
NB
2330 * Handle merged delayed allocation extents so we can keep track of new extents
2331 * that are just merged onto old extents, such as when we are doing sequential
2332 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 2333 */
2454151c 2334void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
5c848198 2335 struct extent_state *other)
9ed74f2d 2336{
2454151c 2337 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b 2338 u64 new_size, old_size;
823bb20a 2339 u32 num_extents;
dcab6a3b 2340
9ed74f2d
JB
2341 /* not delalloc, ignore it */
2342 if (!(other->state & EXTENT_DELALLOC))
1bf85046 2343 return;
9ed74f2d 2344
8461a3de
JB
2345 if (new->start > other->start)
2346 new_size = new->end - other->start + 1;
2347 else
2348 new_size = other->end - new->start + 1;
dcab6a3b
JB
2349
2350 /* we're not bigger than the max, unreserve the space and go */
f7b12a62 2351 if (new_size <= fs_info->max_extent_size) {
2454151c
DS
2352 spin_lock(&inode->lock);
2353 btrfs_mod_outstanding_extents(inode, -1);
2354 spin_unlock(&inode->lock);
dcab6a3b
JB
2355 return;
2356 }
2357
2358 /*
ba117213
JB
2359 * We have to add up either side to figure out how many extents were
2360 * accounted for before we merged into one big extent. If the number of
2361 * extents we accounted for is <= the amount we need for the new range
2362 * then we can return, otherwise drop. Think of it like this
2363 *
2364 * [ 4k][MAX_SIZE]
2365 *
2366 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2367 * need 2 outstanding extents, on one side we have 1 and the other side
2368 * we have 1 so they are == and we can return. But in this case
2369 *
2370 * [MAX_SIZE+4k][MAX_SIZE+4k]
2371 *
2372 * Each range on their own accounts for 2 extents, but merged together
2373 * they are only 3 extents worth of accounting, so we need to drop in
2374 * this case.
dcab6a3b 2375 */
ba117213 2376 old_size = other->end - other->start + 1;
7d7672bc 2377 num_extents = count_max_extents(fs_info, old_size);
ba117213 2378 old_size = new->end - new->start + 1;
7d7672bc
NA
2379 num_extents += count_max_extents(fs_info, old_size);
2380 if (count_max_extents(fs_info, new_size) >= num_extents)
dcab6a3b
JB
2381 return;
2382
2454151c
DS
2383 spin_lock(&inode->lock);
2384 btrfs_mod_outstanding_extents(inode, -1);
2385 spin_unlock(&inode->lock);
9ed74f2d
JB
2386}
2387
8a46e55a 2388static void btrfs_add_delalloc_inodes(struct btrfs_inode *inode)
eb73c1b7 2389{
8a46e55a
FM
2390 struct btrfs_root *root = inode->root;
2391 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2392
eb73c1b7 2393 spin_lock(&root->delalloc_lock);
82ca5a04
DS
2394 if (list_empty(&inode->delalloc_inodes)) {
2395 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2396 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
eb73c1b7
MX
2397 root->nr_delalloc_inodes++;
2398 if (root->nr_delalloc_inodes == 1) {
0b246afa 2399 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2400 BUG_ON(!list_empty(&root->delalloc_root));
2401 list_add_tail(&root->delalloc_root,
0b246afa
JM
2402 &fs_info->delalloc_roots);
2403 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2404 }
2405 }
2406 spin_unlock(&root->delalloc_lock);
2407}
2408
2b877331
NB
2409void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2410 struct btrfs_inode *inode)
eb73c1b7 2411{
3ffbd68c 2412 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2413
9e3e97f4
NB
2414 if (!list_empty(&inode->delalloc_inodes)) {
2415 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2416 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2417 &inode->runtime_flags);
eb73c1b7
MX
2418 root->nr_delalloc_inodes--;
2419 if (!root->nr_delalloc_inodes) {
7c8a0d36 2420 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2421 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2422 BUG_ON(list_empty(&root->delalloc_root));
2423 list_del_init(&root->delalloc_root);
0b246afa 2424 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2425 }
2426 }
2b877331
NB
2427}
2428
2429static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2430 struct btrfs_inode *inode)
2431{
2432 spin_lock(&root->delalloc_lock);
2433 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2434 spin_unlock(&root->delalloc_lock);
2435}
2436
d352ac68 2437/*
e06a1fc9
NB
2438 * Properly track delayed allocation bytes in the inode and to maintain the
2439 * list of inodes that have pending delalloc work to be done.
d352ac68 2440 */
4c5d166f 2441void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
6d92b304 2442 u32 bits)
291d673e 2443{
4c5d166f 2444 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0b246afa 2445
6d92b304 2446 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
47059d93 2447 WARN_ON(1);
75eff68e
CM
2448 /*
2449 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2450 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2451 * bit, which is only set or cleared with irqs on
2452 */
6d92b304 2453 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
0ca1f7ce 2454 u64 len = state->end + 1 - state->start;
7d7672bc 2455 u32 num_extents = count_max_extents(fs_info, len);
4c5d166f 2456 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 2457
4c5d166f
DS
2458 spin_lock(&inode->lock);
2459 btrfs_mod_outstanding_extents(inode, num_extents);
2460 spin_unlock(&inode->lock);
287a0ab9 2461
6a3891c5 2462 /* For sanity tests */
0b246afa 2463 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2464 return;
2465
104b4e51
NB
2466 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2467 fs_info->delalloc_batch);
4c5d166f
DS
2468 spin_lock(&inode->lock);
2469 inode->delalloc_bytes += len;
6d92b304 2470 if (bits & EXTENT_DEFRAG)
4c5d166f 2471 inode->defrag_bytes += len;
df0af1a5 2472 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4c5d166f 2473 &inode->runtime_flags))
8a46e55a 2474 btrfs_add_delalloc_inodes(inode);
4c5d166f 2475 spin_unlock(&inode->lock);
291d673e 2476 }
a7e3b975
FM
2477
2478 if (!(state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2479 (bits & EXTENT_DELALLOC_NEW)) {
4c5d166f
DS
2480 spin_lock(&inode->lock);
2481 inode->new_delalloc_bytes += state->end + 1 - state->start;
2482 spin_unlock(&inode->lock);
a7e3b975 2483 }
291d673e
CM
2484}
2485
d352ac68 2486/*
a36bb5f9
NB
2487 * Once a range is no longer delalloc this function ensures that proper
2488 * accounting happens.
d352ac68 2489 */
bd54766e 2490void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
6d92b304 2491 struct extent_state *state, u32 bits)
291d673e 2492{
bd54766e 2493 struct btrfs_fs_info *fs_info = inode->root->fs_info;
47059d93 2494 u64 len = state->end + 1 - state->start;
7d7672bc 2495 u32 num_extents = count_max_extents(fs_info, len);
47059d93 2496
6d92b304 2497 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
4a4b964f 2498 spin_lock(&inode->lock);
6fc0ef68 2499 inode->defrag_bytes -= len;
4a4b964f
FM
2500 spin_unlock(&inode->lock);
2501 }
47059d93 2502
75eff68e
CM
2503 /*
2504 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2505 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2506 * bit, which is only set or cleared with irqs on
2507 */
6d92b304 2508 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
6fc0ef68 2509 struct btrfs_root *root = inode->root;
83eea1f1 2510 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2511
8b62f87b
JB
2512 spin_lock(&inode->lock);
2513 btrfs_mod_outstanding_extents(inode, -num_extents);
2514 spin_unlock(&inode->lock);
0ca1f7ce 2515
b6d08f06
JB
2516 /*
2517 * We don't reserve metadata space for space cache inodes so we
52042d8e 2518 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2519 * error.
2520 */
6d92b304 2521 if (bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2522 root != fs_info->tree_root)
43b18595 2523 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2524
6a3891c5 2525 /* For sanity tests. */
0b246afa 2526 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2527 return;
2528
37f00a6d 2529 if (!btrfs_is_data_reloc_root(root) &&
a315e68f 2530 do_list && !(state->state & EXTENT_NORESERVE) &&
6d92b304 2531 (bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2532 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2533
104b4e51
NB
2534 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2535 fs_info->delalloc_batch);
6fc0ef68
NB
2536 spin_lock(&inode->lock);
2537 inode->delalloc_bytes -= len;
2538 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2539 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2540 &inode->runtime_flags))
eb73c1b7 2541 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2542 spin_unlock(&inode->lock);
291d673e 2543 }
a7e3b975
FM
2544
2545 if ((state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2546 (bits & EXTENT_DELALLOC_NEW)) {
a7e3b975
FM
2547 spin_lock(&inode->lock);
2548 ASSERT(inode->new_delalloc_bytes >= len);
2549 inode->new_delalloc_bytes -= len;
6d92b304 2550 if (bits & EXTENT_ADD_INODE_BYTES)
2766ff61 2551 inode_add_bytes(&inode->vfs_inode, len);
a7e3b975
FM
2552 spin_unlock(&inode->lock);
2553 }
291d673e
CM
2554}
2555
71df088c
CH
2556static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2557 struct btrfs_ordered_extent *ordered)
d22002fd 2558{
69ccf3f4
CH
2559 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2560 u64 len = bbio->bio.bi_iter.bi_size;
b0307e28 2561 struct btrfs_ordered_extent *new;
ebdb44a0 2562 int ret;
d22002fd 2563
11d33ab6 2564 /* Must always be called for the beginning of an ordered extent. */
7edd339c
CH
2565 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2566 return -EINVAL;
d22002fd 2567
11d33ab6 2568 /* No need to split if the ordered extent covers the entire bio. */
ec63b84d
CH
2569 if (ordered->disk_num_bytes == len) {
2570 refcount_inc(&ordered->refs);
2571 bbio->ordered = ordered;
7edd339c 2572 return 0;
ec63b84d 2573 }
d22002fd 2574
f0f5329a
BB
2575 /*
2576 * Don't split the extent_map for NOCOW extents, as we're writing into
2577 * a pre-existing one.
2578 */
ebdb44a0
CH
2579 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2580 ret = split_extent_map(bbio->inode, bbio->file_offset,
f000bc6f
CH
2581 ordered->num_bytes, len,
2582 ordered->disk_bytenr);
ebdb44a0
CH
2583 if (ret)
2584 return ret;
2585 }
f0f5329a 2586
b0307e28
CH
2587 new = btrfs_split_ordered_extent(ordered, len);
2588 if (IS_ERR(new))
2589 return PTR_ERR(new);
ec63b84d 2590 bbio->ordered = new;
b0307e28 2591 return 0;
d22002fd
NA
2592}
2593
d352ac68
CM
2594/*
2595 * given a list of ordered sums record them in the inode. This happens
2596 * at IO completion time based on sums calculated at bio submission time.
2597 */
510f85ed
NB
2598static int add_pending_csums(struct btrfs_trans_handle *trans,
2599 struct list_head *list)
e6dcd2dc 2600{
e6dcd2dc 2601 struct btrfs_ordered_sum *sum;
fc28b25e 2602 struct btrfs_root *csum_root = NULL;
ac01f26a 2603 int ret;
e6dcd2dc 2604
c6e30871 2605 list_for_each_entry(sum, list, list) {
7c2871a2 2606 trans->adding_csums = true;
fc28b25e
JB
2607 if (!csum_root)
2608 csum_root = btrfs_csum_root(trans->fs_info,
5cfe76f8 2609 sum->logical);
fc28b25e 2610 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
7c2871a2 2611 trans->adding_csums = false;
ac01f26a
NB
2612 if (ret)
2613 return ret;
e6dcd2dc
CM
2614 }
2615 return 0;
2616}
2617
c3347309
FM
2618static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2619 const u64 start,
2620 const u64 len,
2621 struct extent_state **cached_state)
2622{
2623 u64 search_start = start;
2624 const u64 end = start + len - 1;
2625
2626 while (search_start < end) {
2627 const u64 search_len = end - search_start + 1;
2628 struct extent_map *em;
2629 u64 em_len;
2630 int ret = 0;
2631
8bab0a30 2632 em = btrfs_get_extent(inode, NULL, search_start, search_len);
c3347309
FM
2633 if (IS_ERR(em))
2634 return PTR_ERR(em);
2635
2636 if (em->block_start != EXTENT_MAP_HOLE)
2637 goto next;
2638
2639 em_len = em->len;
2640 if (em->start < search_start)
2641 em_len -= search_start - em->start;
2642 if (em_len > search_len)
2643 em_len = search_len;
2644
2645 ret = set_extent_bit(&inode->io_tree, search_start,
2646 search_start + em_len - 1,
1d126800 2647 EXTENT_DELALLOC_NEW, cached_state);
c3347309
FM
2648next:
2649 search_start = extent_map_end(em);
2650 free_extent_map(em);
2651 if (ret)
2652 return ret;
2653 }
2654 return 0;
2655}
2656
c2566f22 2657int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2658 unsigned int extra_bits,
330a5827 2659 struct extent_state **cached_state)
ea8c2819 2660{
fdb1e121 2661 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2662
2663 if (start >= i_size_read(&inode->vfs_inode) &&
2664 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2665 /*
2666 * There can't be any extents following eof in this case so just
2667 * set the delalloc new bit for the range directly.
2668 */
2669 extra_bits |= EXTENT_DELALLOC_NEW;
2670 } else {
2671 int ret;
2672
2673 ret = btrfs_find_new_delalloc_bytes(inode, start,
2674 end + 1 - start,
2675 cached_state);
2676 if (ret)
2677 return ret;
2678 }
2679
66240ab1 2680 return set_extent_bit(&inode->io_tree, start, end,
1d126800 2681 EXTENT_DELALLOC | extra_bits, cached_state);
ea8c2819
CM
2682}
2683
d352ac68 2684/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2685struct btrfs_writepage_fixup {
2686 struct page *page;
36eeaef5 2687 struct btrfs_inode *inode;
247e743c
CM
2688 struct btrfs_work work;
2689};
2690
b2950863 2691static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c 2692{
9783e4de
CH
2693 struct btrfs_writepage_fixup *fixup =
2694 container_of(work, struct btrfs_writepage_fixup, work);
247e743c 2695 struct btrfs_ordered_extent *ordered;
2ac55d41 2696 struct extent_state *cached_state = NULL;
364ecf36 2697 struct extent_changeset *data_reserved = NULL;
9783e4de
CH
2698 struct page *page = fixup->page;
2699 struct btrfs_inode *inode = fixup->inode;
2700 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2701 u64 page_start = page_offset(page);
2702 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
25f3c502 2703 int ret = 0;
f4b1363c 2704 bool free_delalloc_space = true;
247e743c 2705
f4b1363c
JB
2706 /*
2707 * This is similar to page_mkwrite, we need to reserve the space before
2708 * we take the page lock.
2709 */
65d87f79
NB
2710 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2711 PAGE_SIZE);
4a096752 2712again:
247e743c 2713 lock_page(page);
25f3c502
CM
2714
2715 /*
2716 * Before we queued this fixup, we took a reference on the page.
2717 * page->mapping may go NULL, but it shouldn't be moved to a different
2718 * address space.
2719 */
f4b1363c
JB
2720 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2721 /*
2722 * Unfortunately this is a little tricky, either
2723 *
2724 * 1) We got here and our page had already been dealt with and
2725 * we reserved our space, thus ret == 0, so we need to just
2726 * drop our space reservation and bail. This can happen the
2727 * first time we come into the fixup worker, or could happen
2728 * while waiting for the ordered extent.
2729 * 2) Our page was already dealt with, but we happened to get an
2730 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2731 * this case we obviously don't have anything to release, but
2732 * because the page was already dealt with we don't want to
2733 * mark the page with an error, so make sure we're resetting
2734 * ret to 0. This is why we have this check _before_ the ret
2735 * check, because we do not want to have a surprise ENOSPC
2736 * when the page was already properly dealt with.
2737 */
2738 if (!ret) {
65d87f79
NB
2739 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2740 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2741 page_start, PAGE_SIZE,
2742 true);
2743 }
2744 ret = 0;
247e743c 2745 goto out_page;
f4b1363c 2746 }
247e743c 2747
25f3c502 2748 /*
f4b1363c
JB
2749 * We can't mess with the page state unless it is locked, so now that
2750 * it is locked bail if we failed to make our space reservation.
25f3c502 2751 */
f4b1363c
JB
2752 if (ret)
2753 goto out_page;
247e743c 2754
570eb97b 2755 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2756
2757 /* already ordered? We're done */
f57ad937 2758 if (PageOrdered(page))
f4b1363c 2759 goto out_reserved;
4a096752 2760
65d87f79 2761 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2762 if (ordered) {
570eb97b
JB
2763 unlock_extent(&inode->io_tree, page_start, page_end,
2764 &cached_state);
4a096752 2765 unlock_page(page);
36d45567 2766 btrfs_start_ordered_extent(ordered);
87826df0 2767 btrfs_put_ordered_extent(ordered);
4a096752
CM
2768 goto again;
2769 }
247e743c 2770
65d87f79 2771 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2772 &cached_state);
25f3c502 2773 if (ret)
53687007 2774 goto out_reserved;
f3038ee3 2775
25f3c502
CM
2776 /*
2777 * Everything went as planned, we're now the owner of a dirty page with
2778 * delayed allocation bits set and space reserved for our COW
2779 * destination.
2780 *
2781 * The page was dirty when we started, nothing should have cleaned it.
2782 */
2783 BUG_ON(!PageDirty(page));
f4b1363c 2784 free_delalloc_space = false;
53687007 2785out_reserved:
65d87f79 2786 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2787 if (free_delalloc_space)
65d87f79
NB
2788 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2789 PAGE_SIZE, true);
570eb97b 2790 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
247e743c 2791out_page:
25f3c502
CM
2792 if (ret) {
2793 /*
2794 * We hit ENOSPC or other errors. Update the mapping and page
2795 * to reflect the errors and clean the page.
2796 */
2797 mapping_set_error(page->mapping, ret);
9783e4de
CH
2798 btrfs_mark_ordered_io_finished(inode, page, page_start,
2799 PAGE_SIZE, !ret);
25f3c502 2800 clear_page_dirty_for_io(page);
25f3c502 2801 }
55151ea9 2802 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
247e743c 2803 unlock_page(page);
09cbfeaf 2804 put_page(page);
b897abec 2805 kfree(fixup);
364ecf36 2806 extent_changeset_free(data_reserved);
f4b1363c
JB
2807 /*
2808 * As a precaution, do a delayed iput in case it would be the last iput
2809 * that could need flushing space. Recursing back to fixup worker would
2810 * deadlock.
2811 */
e55cf7ca 2812 btrfs_add_delayed_iput(inode);
247e743c
CM
2813}
2814
2815/*
2816 * There are a few paths in the higher layers of the kernel that directly
2817 * set the page dirty bit without asking the filesystem if it is a
2818 * good idea. This causes problems because we want to make sure COW
2819 * properly happens and the data=ordered rules are followed.
2820 *
c8b97818 2821 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2822 * hasn't been properly setup for IO. We kick off an async process
2823 * to fix it up. The async helper will wait for ordered extents, set
2824 * the delalloc bit and make it safe to write the page.
2825 */
a129ffb8 2826int btrfs_writepage_cow_fixup(struct page *page)
247e743c
CM
2827{
2828 struct inode *inode = page->mapping->host;
41044b41 2829 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
247e743c 2830 struct btrfs_writepage_fixup *fixup;
247e743c 2831
f57ad937
QW
2832 /* This page has ordered extent covering it already */
2833 if (PageOrdered(page))
247e743c
CM
2834 return 0;
2835
25f3c502
CM
2836 /*
2837 * PageChecked is set below when we create a fixup worker for this page,
2838 * don't try to create another one if we're already PageChecked()
2839 *
2840 * The extent_io writepage code will redirty the page if we send back
2841 * EAGAIN.
2842 */
247e743c
CM
2843 if (PageChecked(page))
2844 return -EAGAIN;
2845
2846 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2847 if (!fixup)
2848 return -EAGAIN;
f421950f 2849
f4b1363c
JB
2850 /*
2851 * We are already holding a reference to this inode from
2852 * write_cache_pages. We need to hold it because the space reservation
2853 * takes place outside of the page lock, and we can't trust
2854 * page->mapping outside of the page lock.
2855 */
2856 ihold(inode);
55151ea9 2857 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
09cbfeaf 2858 get_page(page);
078b8b90 2859 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
247e743c 2860 fixup->page = page;
36eeaef5 2861 fixup->inode = BTRFS_I(inode);
0b246afa 2862 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2863
2864 return -EAGAIN;
247e743c
CM
2865}
2866
d899e052 2867static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2868 struct btrfs_inode *inode, u64 file_pos,
9729f10a 2869 struct btrfs_file_extent_item *stack_fi,
2766ff61 2870 const bool update_inode_bytes,
9729f10a 2871 u64 qgroup_reserved)
d899e052 2872{
c553f94d 2873 struct btrfs_root *root = inode->root;
2766ff61 2874 const u64 sectorsize = root->fs_info->sectorsize;
d899e052
YZ
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_key ins;
203f44c5
QW
2878 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2879 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
cb36a9bb 2880 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
203f44c5
QW
2881 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2882 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
5893dfb9 2883 struct btrfs_drop_extents_args drop_args = { 0 };
d899e052
YZ
2884 int ret;
2885
2886 path = btrfs_alloc_path();
d8926bb3
MF
2887 if (!path)
2888 return -ENOMEM;
d899e052 2889
a1ed835e
CM
2890 /*
2891 * we may be replacing one extent in the tree with another.
2892 * The new extent is pinned in the extent map, and we don't want
2893 * to drop it from the cache until it is completely in the btree.
2894 *
2895 * So, tell btrfs_drop_extents to leave this extent in the cache.
2896 * the caller is expected to unpin it and allow it to be merged
2897 * with the others.
2898 */
5893dfb9
FM
2899 drop_args.path = path;
2900 drop_args.start = file_pos;
2901 drop_args.end = file_pos + num_bytes;
2902 drop_args.replace_extent = true;
2903 drop_args.extent_item_size = sizeof(*stack_fi);
2904 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
79787eaa
JM
2905 if (ret)
2906 goto out;
d899e052 2907
5893dfb9 2908 if (!drop_args.extent_inserted) {
c553f94d 2909 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2910 ins.offset = file_pos;
2911 ins.type = BTRFS_EXTENT_DATA_KEY;
2912
1acae57b 2913 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2914 sizeof(*stack_fi));
1acae57b
FDBM
2915 if (ret)
2916 goto out;
2917 }
d899e052 2918 leaf = path->nodes[0];
203f44c5
QW
2919 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2920 write_extent_buffer(leaf, stack_fi,
2921 btrfs_item_ptr_offset(leaf, path->slots[0]),
2922 sizeof(struct btrfs_file_extent_item));
b9473439 2923
50564b65 2924 btrfs_mark_buffer_dirty(trans, leaf);
ce195332 2925 btrfs_release_path(path);
d899e052 2926
2766ff61
FM
2927 /*
2928 * If we dropped an inline extent here, we know the range where it is
2929 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
1a9fd417 2930 * number of bytes only for that range containing the inline extent.
2766ff61
FM
2931 * The remaining of the range will be processed when clearning the
2932 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2933 */
2934 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2935 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2936
2937 inline_size = drop_args.bytes_found - inline_size;
2938 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2939 drop_args.bytes_found -= inline_size;
2940 num_bytes -= sectorsize;
2941 }
2942
2943 if (update_inode_bytes)
2944 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
d899e052
YZ
2945
2946 ins.objectid = disk_bytenr;
2947 ins.offset = disk_num_bytes;
2948 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2949
c553f94d 2950 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2951 if (ret)
2952 goto out;
2953
c553f94d 2954 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
cb36a9bb
OS
2955 file_pos - offset,
2956 qgroup_reserved, &ins);
79787eaa 2957out:
d899e052 2958 btrfs_free_path(path);
b9473439 2959
79787eaa 2960 return ret;
d899e052
YZ
2961}
2962
2ff7e61e 2963static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2964 u64 start, u64 len)
2965{
32da5386 2966 struct btrfs_block_group *cache;
e570fd27 2967
0b246afa 2968 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2969 ASSERT(cache);
2970
2971 spin_lock(&cache->lock);
2972 cache->delalloc_bytes -= len;
2973 spin_unlock(&cache->lock);
2974
2975 btrfs_put_block_group(cache);
2976}
2977
203f44c5 2978static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2979 struct btrfs_ordered_extent *oe)
2980{
2981 struct btrfs_file_extent_item stack_fi;
2766ff61 2982 bool update_inode_bytes;
cb36a9bb
OS
2983 u64 num_bytes = oe->num_bytes;
2984 u64 ram_bytes = oe->ram_bytes;
203f44c5
QW
2985
2986 memset(&stack_fi, 0, sizeof(stack_fi));
2987 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2988 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2989 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2990 oe->disk_num_bytes);
cb36a9bb 2991 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
c1867eb3
DS
2992 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2993 num_bytes = oe->truncated_len;
2994 ram_bytes = num_bytes;
2995 }
cb36a9bb
OS
2996 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2997 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
203f44c5
QW
2998 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2999 /* Encryption and other encoding is reserved and all 0 */
3000
2766ff61
FM
3001 /*
3002 * For delalloc, when completing an ordered extent we update the inode's
3003 * bytes when clearing the range in the inode's io tree, so pass false
3004 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3005 * except if the ordered extent was truncated.
3006 */
3007 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
7c0c7269 3008 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
2766ff61
FM
3009 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3010
3c38c877
NB
3011 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3012 oe->file_offset, &stack_fi,
2766ff61 3013 update_inode_bytes, oe->qgroup_rsv);
203f44c5
QW
3014}
3015
3016/*
3017 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
3018 * an ordered extent if the range of bytes in the file it covers are
3019 * fully written.
3020 */
71df088c 3021int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3022{
72e7e6ed
NB
3023 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3024 struct btrfs_root *root = inode->root;
3025 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 3026 struct btrfs_trans_handle *trans = NULL;
72e7e6ed 3027 struct extent_io_tree *io_tree = &inode->io_tree;
2ac55d41 3028 struct extent_state *cached_state = NULL;
bffe633e 3029 u64 start, end;
261507a0 3030 int compress_type = 0;
77cef2ec 3031 int ret = 0;
bffe633e 3032 u64 logical_len = ordered_extent->num_bytes;
8d510121 3033 bool freespace_inode;
77cef2ec 3034 bool truncated = false;
49940bdd 3035 bool clear_reserved_extent = true;
2766ff61 3036 unsigned int clear_bits = EXTENT_DEFRAG;
a7e3b975 3037
bffe633e
OS
3038 start = ordered_extent->file_offset;
3039 end = start + ordered_extent->num_bytes - 1;
3040
a7e3b975
FM
3041 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3042 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
7c0c7269
OS
3043 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3044 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
2766ff61 3045 clear_bits |= EXTENT_DELALLOC_NEW;
e6dcd2dc 3046
72e7e6ed 3047 freespace_inode = btrfs_is_free_space_inode(inode);
5f4403e1
IA
3048 if (!freespace_inode)
3049 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
0cb59c99 3050
5fd02043
JB
3051 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3052 ret = -EIO;
3053 goto out;
3054 }
3055
71df088c 3056 if (btrfs_is_zoned(fs_info))
be1a1d7a
NA
3057 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3058 ordered_extent->disk_num_bytes);
d8e3fb10 3059
77cef2ec
JB
3060 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3061 truncated = true;
3062 logical_len = ordered_extent->truncated_len;
3063 /* Truncated the entire extent, don't bother adding */
3064 if (!logical_len)
3065 goto out;
3066 }
3067
c2167754 3068 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3069 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 3070
72e7e6ed 3071 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
3072 if (freespace_inode)
3073 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3074 else
3075 trans = btrfs_join_transaction(root);
3076 if (IS_ERR(trans)) {
3077 ret = PTR_ERR(trans);
3078 trans = NULL;
3079 goto out;
c2167754 3080 }
72e7e6ed 3081 trans->block_rsv = &inode->block_rsv;
0a5d0dc5 3082 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3083 if (ret) /* -ENOMEM or corruption */
66642832 3084 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3085 goto out;
3086 }
e6dcd2dc 3087
2766ff61 3088 clear_bits |= EXTENT_LOCKED;
570eb97b 3089 lock_extent(io_tree, start, end, &cached_state);
e6dcd2dc 3090
8d510121
NB
3091 if (freespace_inode)
3092 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3093 else
7a7eaa40 3094 trans = btrfs_join_transaction(root);
79787eaa
JM
3095 if (IS_ERR(trans)) {
3096 ret = PTR_ERR(trans);
3097 trans = NULL;
a7e3b975 3098 goto out;
79787eaa 3099 }
a79b7d4b 3100
72e7e6ed 3101 trans->block_rsv = &inode->block_rsv;
c2167754 3102
02c372e1
JT
3103 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3104 if (ret)
3105 goto out;
3106
c8b97818 3107 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3108 compress_type = ordered_extent->compress_type;
d899e052 3109 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3110 BUG_ON(compress_type);
72e7e6ed 3111 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
3112 ordered_extent->file_offset,
3113 ordered_extent->file_offset +
77cef2ec 3114 logical_len);
343d8a30
NA
3115 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3116 ordered_extent->disk_num_bytes);
d899e052 3117 } else {
0b246afa 3118 BUG_ON(root == fs_info->tree_root);
3c38c877 3119 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
3120 if (!ret) {
3121 clear_reserved_extent = false;
2ff7e61e 3122 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
3123 ordered_extent->disk_bytenr,
3124 ordered_extent->disk_num_bytes);
49940bdd 3125 }
d899e052 3126 }
c03c89f8
DS
3127 if (ret < 0) {
3128 btrfs_abort_transaction(trans, ret);
3129 goto out;
3130 }
3131
3132 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3133 ordered_extent->num_bytes, trans->transid);
79787eaa 3134 if (ret < 0) {
66642832 3135 btrfs_abort_transaction(trans, ret);
a7e3b975 3136 goto out;
79787eaa 3137 }
2ac55d41 3138
510f85ed 3139 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
3140 if (ret) {
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
e6dcd2dc 3144
2766ff61
FM
3145 /*
3146 * If this is a new delalloc range, clear its new delalloc flag to
3147 * update the inode's number of bytes. This needs to be done first
3148 * before updating the inode item.
3149 */
3150 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3151 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
72e7e6ed 3152 clear_extent_bit(&inode->io_tree, start, end,
2766ff61 3153 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
bd015294 3154 &cached_state);
2766ff61 3155
72e7e6ed 3156 btrfs_inode_safe_disk_i_size_write(inode, 0);
0a5d0dc5 3157 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3158 if (ret) { /* -ENOMEM or corruption */
66642832 3159 btrfs_abort_transaction(trans, ret);
a7e3b975 3160 goto out;
1ef30be1
JB
3161 }
3162 ret = 0;
c2167754 3163out:
bd015294 3164 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
313facc5 3165 &cached_state);
a7e3b975 3166
a698d075 3167 if (trans)
3a45bb20 3168 btrfs_end_transaction(trans);
0cb59c99 3169
77cef2ec 3170 if (ret || truncated) {
bffe633e 3171 u64 unwritten_start = start;
77cef2ec 3172
d61bec08
JB
3173 /*
3174 * If we failed to finish this ordered extent for any reason we
3175 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3176 * extent, and mark the inode with the error if it wasn't
3177 * already set. Any error during writeback would have already
3178 * set the mapping error, so we need to set it if we're the ones
3179 * marking this ordered extent as failed.
3180 */
3181 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3182 &ordered_extent->flags))
3183 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3184
77cef2ec 3185 if (truncated)
bffe633e
OS
3186 unwritten_start += logical_len;
3187 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec 3188
5571e41e
JB
3189 /*
3190 * Drop extent maps for the part of the extent we didn't write.
3191 *
3192 * We have an exception here for the free_space_inode, this is
3193 * because when we do btrfs_get_extent() on the free space inode
3194 * we will search the commit root. If this is a new block group
3195 * we won't find anything, and we will trip over the assert in
3196 * writepage where we do ASSERT(em->block_start !=
3197 * EXTENT_MAP_HOLE).
3198 *
3199 * Theoretically we could also skip this for any NOCOW extent as
3200 * we don't mess with the extent map tree in the NOCOW case, but
3201 * for now simply skip this if we are the free space inode.
3202 */
3203 if (!btrfs_is_free_space_inode(inode))
3204 btrfs_drop_extent_map_range(inode, unwritten_start,
3205 end, false);
5fd02043 3206
0bec9ef5
JB
3207 /*
3208 * If the ordered extent had an IOERR or something else went
3209 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3210 * back to the allocator. We only free the extent in the
3211 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3212 *
3213 * If we made it past insert_reserved_file_extent before we
3214 * errored out then we don't need to do this as the accounting
3215 * has already been done.
0bec9ef5 3216 */
77cef2ec 3217 if ((ret || !logical_len) &&
49940bdd 3218 clear_reserved_extent &&
77cef2ec 3219 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
3220 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3221 /*
3222 * Discard the range before returning it back to the
3223 * free space pool
3224 */
46b27f50 3225 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 3226 btrfs_discard_extent(fs_info,
bffe633e
OS
3227 ordered_extent->disk_bytenr,
3228 ordered_extent->disk_num_bytes,
3229 NULL);
2ff7e61e 3230 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
3231 ordered_extent->disk_bytenr,
3232 ordered_extent->disk_num_bytes, 1);
e28b0211
BB
3233 /*
3234 * Actually free the qgroup rsv which was released when
3235 * the ordered extent was created.
3236 */
3237 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3238 ordered_extent->qgroup_rsv,
3239 BTRFS_QGROUP_RSV_DATA);
4eaaec24 3240 }
0bec9ef5
JB
3241 }
3242
5fd02043 3243 /*
8bad3c02
LB
3244 * This needs to be done to make sure anybody waiting knows we are done
3245 * updating everything for this ordered extent.
5fd02043 3246 */
72e7e6ed 3247 btrfs_remove_ordered_extent(inode, ordered_extent);
5fd02043 3248
e6dcd2dc
CM
3249 /* once for us */
3250 btrfs_put_ordered_extent(ordered_extent);
3251 /* once for the tree */
3252 btrfs_put_ordered_extent(ordered_extent);
3253
5fd02043
JB
3254 return ret;
3255}
3256
71df088c
CH
3257int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3258{
41044b41 3259 if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
02c372e1
JT
3260 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3261 list_empty(&ordered->bioc_list))
71df088c
CH
3262 btrfs_finish_ordered_zoned(ordered);
3263 return btrfs_finish_one_ordered(ordered);
3264}
3265
ae643a74
QW
3266/*
3267 * Verify the checksum for a single sector without any extra action that depend
3268 * on the type of I/O.
3269 */
3270int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3271 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3272{
3273 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3274 char *kaddr;
3275
3276 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3277
3278 shash->tfm = fs_info->csum_shash;
3279
3280 kaddr = kmap_local_page(page) + pgoff;
3281 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3282 kunmap_local(kaddr);
3283
3284 if (memcmp(csum, csum_expected, fs_info->csum_size))
3285 return -EIO;
3286 return 0;
211f90e6
CM
3287}
3288
265d4ac0 3289/*
e5219044
CH
3290 * Verify the checksum of a single data sector.
3291 *
3292 * @bbio: btrfs_io_bio which contains the csum
3293 * @dev: device the sector is on
7ffd27e3 3294 * @bio_offset: offset to the beginning of the bio (in bytes)
e5219044 3295 * @bv: bio_vec to check
265d4ac0 3296 *
e5219044
CH
3297 * Check if the checksum on a data block is valid. When a checksum mismatch is
3298 * detected, report the error and fill the corrupted range with zero.
ae643a74 3299 *
e5219044 3300 * Return %true if the sector is ok or had no checksum to start with, else %false.
265d4ac0 3301 */
e5219044
CH
3302bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3303 u32 bio_offset, struct bio_vec *bv)
dc380aea 3304{
e5219044 3305 struct btrfs_inode *inode = bbio->inode;
621af94a 3306 struct btrfs_fs_info *fs_info = inode->root->fs_info;
e5219044
CH
3307 u64 file_offset = bbio->file_offset + bio_offset;
3308 u64 end = file_offset + bv->bv_len - 1;
d5178578
JT
3309 u8 *csum_expected;
3310 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3311
3d49d0d3 3312 ASSERT(bv->bv_len == fs_info->sectorsize);
265d4ac0 3313
e5219044
CH
3314 if (!bbio->csum)
3315 return true;
d5178578 3316
e5219044
CH
3317 if (btrfs_is_data_reloc_root(inode->root) &&
3318 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
893fe243 3319 NULL)) {
e5219044
CH
3320 /* Skip the range without csum for data reloc inode */
3321 clear_extent_bits(&inode->io_tree, file_offset, end,
3322 EXTENT_NODATASUM);
3323 return true;
3324 }
3325
fa13661c
JT
3326 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3327 fs_info->csum_size;
3d49d0d3
CH
3328 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3329 csum_expected))
dc380aea 3330 goto zeroit;
e5219044 3331 return true;
ae643a74 3332
dc380aea 3333zeroit:
3d49d0d3
CH
3334 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3335 bbio->mirror_num);
3336 if (dev)
3337 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3338 memzero_bvec(bv);
3339 return false;
07157aac 3340}
b888db2b 3341
c1c3fac2 3342/*
9580503b 3343 * Perform a delayed iput on @inode.
c1c3fac2
NB
3344 *
3345 * @inode: The inode we want to perform iput on
3346 *
3347 * This function uses the generic vfs_inode::i_count to track whether we should
3348 * just decrement it (in case it's > 1) or if this is the last iput then link
3349 * the inode to the delayed iput machinery. Delayed iputs are processed at
3350 * transaction commit time/superblock commit/cleaner kthread.
3351 */
e55cf7ca 3352void btrfs_add_delayed_iput(struct btrfs_inode *inode)
24bbcf04 3353{
e55cf7ca 3354 struct btrfs_fs_info *fs_info = inode->root->fs_info;
866e98a4 3355 unsigned long flags;
24bbcf04 3356
e55cf7ca 3357 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
24bbcf04
YZ
3358 return;
3359
034f784d 3360 atomic_inc(&fs_info->nr_delayed_iputs);
866e98a4
FM
3361 /*
3362 * Need to be irq safe here because we can be called from either an irq
3363 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3364 * context.
3365 */
3366 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
e55cf7ca
DS
3367 ASSERT(list_empty(&inode->delayed_iput));
3368 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
866e98a4 3369 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
fd340d0f
JB
3370 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3371 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3372}
3373
63611e73
JB
3374static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3375 struct btrfs_inode *inode)
3376{
3377 list_del_init(&inode->delayed_iput);
866e98a4 3378 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3379 iput(&inode->vfs_inode);
3380 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3381 wake_up(&fs_info->delayed_iputs_wait);
866e98a4 3382 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3383}
3384
3385static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3386 struct btrfs_inode *inode)
3387{
3388 if (!list_empty(&inode->delayed_iput)) {
866e98a4 3389 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3390 if (!list_empty(&inode->delayed_iput))
3391 run_delayed_iput_locked(fs_info, inode);
866e98a4 3392 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3393 }
3394}
3395
2ff7e61e 3396void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3397{
866e98a4
FM
3398 /*
3399 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3400 * calls btrfs_add_delayed_iput() and that needs to lock
3401 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3402 * prevent a deadlock.
3403 */
3404 spin_lock_irq(&fs_info->delayed_iput_lock);
8089fe62
DS
3405 while (!list_empty(&fs_info->delayed_iputs)) {
3406 struct btrfs_inode *inode;
3407
3408 inode = list_first_entry(&fs_info->delayed_iputs,
3409 struct btrfs_inode, delayed_iput);
63611e73 3410 run_delayed_iput_locked(fs_info, inode);
866e98a4
FM
3411 if (need_resched()) {
3412 spin_unlock_irq(&fs_info->delayed_iput_lock);
3413 cond_resched();
3414 spin_lock_irq(&fs_info->delayed_iput_lock);
3415 }
24bbcf04 3416 }
866e98a4 3417 spin_unlock_irq(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3418}
3419
e43eec81 3420/*
2639631d
NB
3421 * Wait for flushing all delayed iputs
3422 *
3423 * @fs_info: the filesystem
034f784d
JB
3424 *
3425 * This will wait on any delayed iputs that are currently running with KILLABLE
3426 * set. Once they are all done running we will return, unless we are killed in
3427 * which case we return EINTR. This helps in user operations like fallocate etc
3428 * that might get blocked on the iputs.
2639631d
NB
3429 *
3430 * Return EINTR if we were killed, 0 if nothing's pending
034f784d
JB
3431 */
3432int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3433{
3434 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3435 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3436 if (ret)
3437 return -EINTR;
3438 return 0;
3439}
3440
7b128766 3441/*
f7e9e8fc
OS
3442 * This creates an orphan entry for the given inode in case something goes wrong
3443 * in the middle of an unlink.
7b128766 3444 */
73f2e545 3445int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3446 struct btrfs_inode *inode)
7b128766 3447{
d68fc57b 3448 int ret;
7b128766 3449
27919067
OS
3450 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3451 if (ret && ret != -EEXIST) {
3452 btrfs_abort_transaction(trans, ret);
3453 return ret;
d68fc57b
YZ
3454 }
3455
d68fc57b 3456 return 0;
7b128766
JB
3457}
3458
3459/*
f7e9e8fc
OS
3460 * We have done the delete so we can go ahead and remove the orphan item for
3461 * this particular inode.
7b128766 3462 */
48a3b636 3463static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3464 struct btrfs_inode *inode)
7b128766 3465{
27919067 3466 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3467}
3468
3469/*
3470 * this cleans up any orphans that may be left on the list from the last use
3471 * of this root.
3472 */
66b4ffd1 3473int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3474{
0b246afa 3475 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3476 struct btrfs_path *path;
3477 struct extent_buffer *leaf;
7b128766
JB
3478 struct btrfs_key key, found_key;
3479 struct btrfs_trans_handle *trans;
3480 struct inode *inode;
8f6d7f4f 3481 u64 last_objectid = 0;
f7e9e8fc 3482 int ret = 0, nr_unlink = 0;
7b128766 3483
54230013 3484 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
66b4ffd1 3485 return 0;
c71bf099
YZ
3486
3487 path = btrfs_alloc_path();
66b4ffd1
JB
3488 if (!path) {
3489 ret = -ENOMEM;
3490 goto out;
3491 }
e4058b54 3492 path->reada = READA_BACK;
7b128766
JB
3493
3494 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3495 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3496 key.offset = (u64)-1;
3497
7b128766
JB
3498 while (1) {
3499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3500 if (ret < 0)
3501 goto out;
7b128766
JB
3502
3503 /*
3504 * if ret == 0 means we found what we were searching for, which
25985edc 3505 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3506 * find the key and see if we have stuff that matches
3507 */
3508 if (ret > 0) {
66b4ffd1 3509 ret = 0;
7b128766
JB
3510 if (path->slots[0] == 0)
3511 break;
3512 path->slots[0]--;
3513 }
3514
3515 /* pull out the item */
3516 leaf = path->nodes[0];
7b128766
JB
3517 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3518
3519 /* make sure the item matches what we want */
3520 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3521 break;
962a298f 3522 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3523 break;
3524
3525 /* release the path since we're done with it */
b3b4aa74 3526 btrfs_release_path(path);
7b128766
JB
3527
3528 /*
3529 * this is where we are basically btrfs_lookup, without the
3530 * crossing root thing. we store the inode number in the
3531 * offset of the orphan item.
3532 */
8f6d7f4f
JB
3533
3534 if (found_key.offset == last_objectid) {
a7f8de50
FM
3535 /*
3536 * We found the same inode as before. This means we were
3537 * not able to remove its items via eviction triggered
3538 * by an iput(). A transaction abort may have happened,
3539 * due to -ENOSPC for example, so try to grab the error
3540 * that lead to a transaction abort, if any.
3541 */
0b246afa
JM
3542 btrfs_err(fs_info,
3543 "Error removing orphan entry, stopping orphan cleanup");
a7f8de50 3544 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
8f6d7f4f
JB
3545 goto out;
3546 }
3547
3548 last_objectid = found_key.offset;
3549
5d4f98a2
YZ
3550 found_key.objectid = found_key.offset;
3551 found_key.type = BTRFS_INODE_ITEM_KEY;
3552 found_key.offset = 0;
0202e83f 3553 inode = btrfs_iget(fs_info->sb, last_objectid, root);
cbaee87f
FM
3554 if (IS_ERR(inode)) {
3555 ret = PTR_ERR(inode);
3556 inode = NULL;
3557 if (ret != -ENOENT)
3558 goto out;
3559 }
7b128766 3560
cbaee87f 3561 if (!inode && root == fs_info->tree_root) {
f8e9e0b0 3562 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3563 int is_dead_root = 0;
3564
3565 /*
0c0218e9 3566 * This is an orphan in the tree root. Currently these
f8e9e0b0 3567 * could come from 2 sources:
0c0218e9 3568 * a) a root (snapshot/subvolume) deletion in progress
f8e9e0b0 3569 * b) a free space cache inode
0c0218e9
FM
3570 * We need to distinguish those two, as the orphan item
3571 * for a root must not get deleted before the deletion
3572 * of the snapshot/subvolume's tree completes.
3573 *
3574 * btrfs_find_orphan_roots() ran before us, which has
3575 * found all deleted roots and loaded them into
fc7cbcd4 3576 * fs_info->fs_roots_radix. So here we can find if an
0c0218e9 3577 * orphan item corresponds to a deleted root by looking
fc7cbcd4 3578 * up the root from that radix tree.
f8e9e0b0 3579 */
a619b3c7 3580
fc7cbcd4
DS
3581 spin_lock(&fs_info->fs_roots_radix_lock);
3582 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3583 (unsigned long)found_key.objectid);
a619b3c7
RK
3584 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3585 is_dead_root = 1;
fc7cbcd4 3586 spin_unlock(&fs_info->fs_roots_radix_lock);
a619b3c7 3587
f8e9e0b0
AJ
3588 if (is_dead_root) {
3589 /* prevent this orphan from being found again */
3590 key.offset = found_key.objectid - 1;
3591 continue;
3592 }
f7e9e8fc 3593
f8e9e0b0 3594 }
f7e9e8fc 3595
7b128766 3596 /*
f7e9e8fc 3597 * If we have an inode with links, there are a couple of
70524253
BB
3598 * possibilities:
3599 *
3600 * 1. We were halfway through creating fsverity metadata for the
3601 * file. In that case, the orphan item represents incomplete
3602 * fsverity metadata which must be cleaned up with
3603 * btrfs_drop_verity_items and deleting the orphan item.
3604
3605 * 2. Old kernels (before v3.12) used to create an
f7e9e8fc
OS
3606 * orphan item for truncate indicating that there were possibly
3607 * extent items past i_size that needed to be deleted. In v3.12,
3608 * truncate was changed to update i_size in sync with the extent
3609 * items, but the (useless) orphan item was still created. Since
3610 * v4.18, we don't create the orphan item for truncate at all.
3611 *
3612 * So, this item could mean that we need to do a truncate, but
3613 * only if this filesystem was last used on a pre-v3.12 kernel
3614 * and was not cleanly unmounted. The odds of that are quite
3615 * slim, and it's a pain to do the truncate now, so just delete
3616 * the orphan item.
3617 *
3618 * It's also possible that this orphan item was supposed to be
3619 * deleted but wasn't. The inode number may have been reused,
3620 * but either way, we can delete the orphan item.
7b128766 3621 */
cbaee87f
FM
3622 if (!inode || inode->i_nlink) {
3623 if (inode) {
70524253 3624 ret = btrfs_drop_verity_items(BTRFS_I(inode));
f7e9e8fc 3625 iput(inode);
b777d279 3626 inode = NULL;
70524253
BB
3627 if (ret)
3628 goto out;
3629 }
a8c9e576 3630 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3631 if (IS_ERR(trans)) {
3632 ret = PTR_ERR(trans);
3633 goto out;
3634 }
0b246afa
JM
3635 btrfs_debug(fs_info, "auto deleting %Lu",
3636 found_key.objectid);
a8c9e576
JB
3637 ret = btrfs_del_orphan_item(trans, root,
3638 found_key.objectid);
3a45bb20 3639 btrfs_end_transaction(trans);
cbaee87f 3640 if (ret)
4ef31a45 3641 goto out;
7b128766
JB
3642 continue;
3643 }
3644
f7e9e8fc 3645 nr_unlink++;
7b128766
JB
3646
3647 /* this will do delete_inode and everything for us */
3648 iput(inode);
3649 }
3254c876
MX
3650 /* release the path since we're done with it */
3651 btrfs_release_path(path);
3652
a575ceeb 3653 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3654 trans = btrfs_join_transaction(root);
66b4ffd1 3655 if (!IS_ERR(trans))
3a45bb20 3656 btrfs_end_transaction(trans);
d68fc57b 3657 }
7b128766
JB
3658
3659 if (nr_unlink)
0b246afa 3660 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3661
3662out:
3663 if (ret)
0b246afa 3664 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3665 btrfs_free_path(path);
3666 return ret;
7b128766
JB
3667}
3668
46a53cca
CM
3669/*
3670 * very simple check to peek ahead in the leaf looking for xattrs. If we
3671 * don't find any xattrs, we know there can't be any acls.
3672 *
3673 * slot is the slot the inode is in, objectid is the objectid of the inode
3674 */
3675static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3676 int slot, u64 objectid,
3677 int *first_xattr_slot)
46a53cca
CM
3678{
3679 u32 nritems = btrfs_header_nritems(leaf);
3680 struct btrfs_key found_key;
f23b5a59
JB
3681 static u64 xattr_access = 0;
3682 static u64 xattr_default = 0;
46a53cca
CM
3683 int scanned = 0;
3684
f23b5a59 3685 if (!xattr_access) {
97d79299
AG
3686 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3687 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3688 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3689 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3690 }
3691
46a53cca 3692 slot++;
63541927 3693 *first_xattr_slot = -1;
46a53cca
CM
3694 while (slot < nritems) {
3695 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3696
3697 /* we found a different objectid, there must not be acls */
3698 if (found_key.objectid != objectid)
3699 return 0;
3700
3701 /* we found an xattr, assume we've got an acl */
f23b5a59 3702 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3703 if (*first_xattr_slot == -1)
3704 *first_xattr_slot = slot;
f23b5a59
JB
3705 if (found_key.offset == xattr_access ||
3706 found_key.offset == xattr_default)
3707 return 1;
3708 }
46a53cca
CM
3709
3710 /*
3711 * we found a key greater than an xattr key, there can't
3712 * be any acls later on
3713 */
3714 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3715 return 0;
3716
3717 slot++;
3718 scanned++;
3719
3720 /*
3721 * it goes inode, inode backrefs, xattrs, extents,
3722 * so if there are a ton of hard links to an inode there can
3723 * be a lot of backrefs. Don't waste time searching too hard,
3724 * this is just an optimization
3725 */
3726 if (scanned >= 8)
3727 break;
3728 }
3729 /* we hit the end of the leaf before we found an xattr or
3730 * something larger than an xattr. We have to assume the inode
3731 * has acls
3732 */
63541927
FDBM
3733 if (*first_xattr_slot == -1)
3734 *first_xattr_slot = slot;
46a53cca
CM
3735 return 1;
3736}
3737
d352ac68
CM
3738/*
3739 * read an inode from the btree into the in-memory inode
3740 */
4222ea71
FM
3741static int btrfs_read_locked_inode(struct inode *inode,
3742 struct btrfs_path *in_path)
39279cc3 3743{
41044b41 3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4222ea71 3745 struct btrfs_path *path = in_path;
5f39d397 3746 struct extent_buffer *leaf;
39279cc3
CM
3747 struct btrfs_inode_item *inode_item;
3748 struct btrfs_root *root = BTRFS_I(inode)->root;
3749 struct btrfs_key location;
67de1176 3750 unsigned long ptr;
46a53cca 3751 int maybe_acls;
618e21d5 3752 u32 rdev;
39279cc3 3753 int ret;
2f7e33d4 3754 bool filled = false;
63541927 3755 int first_xattr_slot;
2f7e33d4
MX
3756
3757 ret = btrfs_fill_inode(inode, &rdev);
3758 if (!ret)
3759 filled = true;
39279cc3 3760
4222ea71
FM
3761 if (!path) {
3762 path = btrfs_alloc_path();
3763 if (!path)
3764 return -ENOMEM;
3765 }
1748f843 3766
39279cc3 3767 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3768
39279cc3 3769 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3770 if (ret) {
4222ea71
FM
3771 if (path != in_path)
3772 btrfs_free_path(path);
f5b3a417 3773 return ret;
67710892 3774 }
39279cc3 3775
5f39d397 3776 leaf = path->nodes[0];
2f7e33d4
MX
3777
3778 if (filled)
67de1176 3779 goto cache_index;
2f7e33d4 3780
5f39d397
CM
3781 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3782 struct btrfs_inode_item);
5f39d397 3783 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3784 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3785 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3786 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3787 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3788 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3789 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3790
b1c38a13
JL
3791 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3792 btrfs_timespec_nsec(leaf, &inode_item->atime));
5f39d397 3793
b1c38a13
JL
3794 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3795 btrfs_timespec_nsec(leaf, &inode_item->mtime));
5f39d397 3796
2a9462de
JL
3797 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3798 btrfs_timespec_nsec(leaf, &inode_item->ctime));
5f39d397 3799
c6e8f898
DS
3800 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3801 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3802
a76a3cd4 3803 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3804 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3805 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3806
c7f88c4e
JL
3807 inode_set_iversion_queried(inode,
3808 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3809 inode->i_generation = BTRFS_I(inode)->generation;
3810 inode->i_rdev = 0;
3811 rdev = btrfs_inode_rdev(leaf, inode_item);
3812
3813 BTRFS_I(inode)->index_cnt = (u64)-1;
77eea05e
BB
3814 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3815 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
6e17d30b
YD
3816
3817cache_index:
5dc562c5
JB
3818 /*
3819 * If we were modified in the current generation and evicted from memory
3820 * and then re-read we need to do a full sync since we don't have any
3821 * idea about which extents were modified before we were evicted from
3822 * cache.
6e17d30b
YD
3823 *
3824 * This is required for both inode re-read from disk and delayed inode
6140ba8a 3825 * in the delayed_nodes xarray.
5dc562c5 3826 */
4a4f8fe2 3827 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
5dc562c5
JB
3828 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3829 &BTRFS_I(inode)->runtime_flags);
3830
bde6c242
FM
3831 /*
3832 * We don't persist the id of the transaction where an unlink operation
3833 * against the inode was last made. So here we assume the inode might
3834 * have been evicted, and therefore the exact value of last_unlink_trans
3835 * lost, and set it to last_trans to avoid metadata inconsistencies
3836 * between the inode and its parent if the inode is fsync'ed and the log
3837 * replayed. For example, in the scenario:
3838 *
3839 * touch mydir/foo
3840 * ln mydir/foo mydir/bar
3841 * sync
3842 * unlink mydir/bar
3843 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3844 * xfs_io -c fsync mydir/foo
3845 * <power failure>
3846 * mount fs, triggers fsync log replay
3847 *
3848 * We must make sure that when we fsync our inode foo we also log its
3849 * parent inode, otherwise after log replay the parent still has the
3850 * dentry with the "bar" name but our inode foo has a link count of 1
3851 * and doesn't have an inode ref with the name "bar" anymore.
3852 *
3853 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3854 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3855 * transaction commits on fsync if our inode is a directory, or if our
3856 * inode is not a directory, logging its parent unnecessarily.
3857 */
3858 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3859
3ebac17c
FM
3860 /*
3861 * Same logic as for last_unlink_trans. We don't persist the generation
3862 * of the last transaction where this inode was used for a reflink
3863 * operation, so after eviction and reloading the inode we must be
3864 * pessimistic and assume the last transaction that modified the inode.
3865 */
3866 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3867
67de1176
MX
3868 path->slots[0]++;
3869 if (inode->i_nlink != 1 ||
3870 path->slots[0] >= btrfs_header_nritems(leaf))
3871 goto cache_acl;
3872
3873 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3874 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3875 goto cache_acl;
3876
3877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3878 if (location.type == BTRFS_INODE_REF_KEY) {
3879 struct btrfs_inode_ref *ref;
3880
3881 ref = (struct btrfs_inode_ref *)ptr;
3882 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3883 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3884 struct btrfs_inode_extref *extref;
3885
3886 extref = (struct btrfs_inode_extref *)ptr;
3887 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3888 extref);
3889 }
2f7e33d4 3890cache_acl:
46a53cca
CM
3891 /*
3892 * try to precache a NULL acl entry for files that don't have
3893 * any xattrs or acls
3894 */
33345d01 3895 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3896 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3897 if (first_xattr_slot != -1) {
3898 path->slots[0] = first_xattr_slot;
3899 ret = btrfs_load_inode_props(inode, path);
3900 if (ret)
0b246afa 3901 btrfs_err(fs_info,
351fd353 3902 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3903 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3904 root->root_key.objectid, ret);
3905 }
4222ea71
FM
3906 if (path != in_path)
3907 btrfs_free_path(path);
63541927 3908
72c04902
AV
3909 if (!maybe_acls)
3910 cache_no_acl(inode);
46a53cca 3911
39279cc3 3912 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3913 case S_IFREG:
3914 inode->i_mapping->a_ops = &btrfs_aops;
3915 inode->i_fop = &btrfs_file_operations;
3916 inode->i_op = &btrfs_file_inode_operations;
3917 break;
3918 case S_IFDIR:
3919 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3920 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3921 break;
3922 case S_IFLNK:
3923 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3924 inode_nohighmem(inode);
4779cc04 3925 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3926 break;
618e21d5 3927 default:
0279b4cd 3928 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3929 init_special_inode(inode, inode->i_mode, rdev);
3930 break;
39279cc3 3931 }
6cbff00f 3932
7b6a221e 3933 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3934 return 0;
39279cc3
CM
3935}
3936
d352ac68
CM
3937/*
3938 * given a leaf and an inode, copy the inode fields into the leaf
3939 */
e02119d5
CM
3940static void fill_inode_item(struct btrfs_trans_handle *trans,
3941 struct extent_buffer *leaf,
5f39d397 3942 struct btrfs_inode_item *item,
39279cc3
CM
3943 struct inode *inode)
3944{
51fab693 3945 struct btrfs_map_token token;
77eea05e 3946 u64 flags;
51fab693 3947
c82f823c 3948 btrfs_init_map_token(&token, leaf);
5f39d397 3949
cc4c13d5
DS
3950 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3951 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3952 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3953 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3954 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3955
3956 btrfs_set_token_timespec_sec(&token, &item->atime,
b1c38a13 3957 inode_get_atime_sec(inode));
cc4c13d5 3958 btrfs_set_token_timespec_nsec(&token, &item->atime,
b1c38a13 3959 inode_get_atime_nsec(inode));
cc4c13d5
DS
3960
3961 btrfs_set_token_timespec_sec(&token, &item->mtime,
b1c38a13 3962 inode_get_mtime_sec(inode));
cc4c13d5 3963 btrfs_set_token_timespec_nsec(&token, &item->mtime,
b1c38a13 3964 inode_get_mtime_nsec(inode));
cc4c13d5
DS
3965
3966 btrfs_set_token_timespec_sec(&token, &item->ctime,
b1c38a13 3967 inode_get_ctime_sec(inode));
cc4c13d5 3968 btrfs_set_token_timespec_nsec(&token, &item->ctime,
b1c38a13 3969 inode_get_ctime_nsec(inode));
cc4c13d5 3970
c6e8f898
DS
3971 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3972 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
cc4c13d5
DS
3973
3974 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3975 btrfs_set_token_inode_generation(&token, item,
3976 BTRFS_I(inode)->generation);
3977 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3978 btrfs_set_token_inode_transid(&token, item, trans->transid);
3979 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
3980 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3981 BTRFS_I(inode)->ro_flags);
3982 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 3983 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3984}
3985
d352ac68
CM
3986/*
3987 * copy everything in the in-memory inode into the btree.
3988 */
2115133f 3989static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
07a274a8 3990 struct btrfs_inode *inode)
39279cc3
CM
3991{
3992 struct btrfs_inode_item *inode_item;
3993 struct btrfs_path *path;
5f39d397 3994 struct extent_buffer *leaf;
39279cc3
CM
3995 int ret;
3996
3997 path = btrfs_alloc_path();
16cdcec7
MX
3998 if (!path)
3999 return -ENOMEM;
4000
07a274a8 4001 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
39279cc3
CM
4002 if (ret) {
4003 if (ret > 0)
4004 ret = -ENOENT;
4005 goto failed;
4006 }
4007
5f39d397
CM
4008 leaf = path->nodes[0];
4009 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4010 struct btrfs_inode_item);
39279cc3 4011
dfeb9e7c 4012 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
50564b65 4013 btrfs_mark_buffer_dirty(trans, leaf);
dfeb9e7c 4014 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4015 ret = 0;
4016failed:
39279cc3
CM
4017 btrfs_free_path(path);
4018 return ret;
4019}
4020
2115133f
CM
4021/*
4022 * copy everything in the in-memory inode into the btree.
4023 */
cddaaacc 4024int btrfs_update_inode(struct btrfs_trans_handle *trans,
cddaaacc 4025 struct btrfs_inode *inode)
2115133f 4026{
8b9d0322 4027 struct btrfs_root *root = inode->root;
0b246afa 4028 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4029 int ret;
4030
4031 /*
4032 * If the inode is a free space inode, we can deadlock during commit
4033 * if we put it into the delayed code.
4034 *
4035 * The data relocation inode should also be directly updated
4036 * without delay
4037 */
9a56fcd1 4038 if (!btrfs_is_free_space_inode(inode)
37f00a6d 4039 && !btrfs_is_data_reloc_root(root)
0b246afa 4040 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4041 btrfs_update_root_times(trans, root);
4042
04bd8e94 4043 ret = btrfs_delayed_update_inode(trans, inode);
2115133f 4044 if (!ret)
9a56fcd1 4045 btrfs_set_inode_last_trans(trans, inode);
2115133f
CM
4046 return ret;
4047 }
4048
07a274a8 4049 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4050}
4051
729f7961 4052int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
0a5d0dc5 4053 struct btrfs_inode *inode)
2115133f
CM
4054{
4055 int ret;
4056
8b9d0322 4057 ret = btrfs_update_inode(trans, inode);
2115133f 4058 if (ret == -ENOSPC)
07a274a8 4059 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4060 return ret;
4061}
4062
d352ac68
CM
4063/*
4064 * unlink helper that gets used here in inode.c and in the tree logging
4065 * recovery code. It remove a link in a directory with a given name, and
4066 * also drops the back refs in the inode to the directory
4067 */
92986796 4068static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e
NB
4069 struct btrfs_inode *dir,
4070 struct btrfs_inode *inode,
6db75318 4071 const struct fscrypt_str *name,
88d2beec 4072 struct btrfs_rename_ctx *rename_ctx)
39279cc3 4073{
4467af88 4074 struct btrfs_root *root = dir->root;
0b246afa 4075 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4076 struct btrfs_path *path;
39279cc3 4077 int ret = 0;
39279cc3 4078 struct btrfs_dir_item *di;
aec7477b 4079 u64 index;
33345d01
LZ
4080 u64 ino = btrfs_ino(inode);
4081 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4082
4083 path = btrfs_alloc_path();
54aa1f4d
CM
4084 if (!path) {
4085 ret = -ENOMEM;
554233a6 4086 goto out;
54aa1f4d
CM
4087 }
4088
e43eec81 4089 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
3cf5068f
LB
4090 if (IS_ERR_OR_NULL(di)) {
4091 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4092 goto err;
4093 }
39279cc3 4094 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4095 if (ret)
4096 goto err;
b3b4aa74 4097 btrfs_release_path(path);
39279cc3 4098
67de1176
MX
4099 /*
4100 * If we don't have dir index, we have to get it by looking up
4101 * the inode ref, since we get the inode ref, remove it directly,
4102 * it is unnecessary to do delayed deletion.
4103 *
4104 * But if we have dir index, needn't search inode ref to get it.
4105 * Since the inode ref is close to the inode item, it is better
4106 * that we delay to delete it, and just do this deletion when
4107 * we update the inode item.
4108 */
4ec5934e 4109 if (inode->dir_index) {
67de1176
MX
4110 ret = btrfs_delayed_delete_inode_ref(inode);
4111 if (!ret) {
4ec5934e 4112 index = inode->dir_index;
67de1176
MX
4113 goto skip_backref;
4114 }
4115 }
4116
e43eec81 4117 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
aec7477b 4118 if (ret) {
0b246afa 4119 btrfs_info(fs_info,
c2cf52eb 4120 "failed to delete reference to %.*s, inode %llu parent %llu",
e43eec81 4121 name->len, name->name, ino, dir_ino);
66642832 4122 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4123 goto err;
4124 }
67de1176 4125skip_backref:
88d2beec
FM
4126 if (rename_ctx)
4127 rename_ctx->index = index;
4128
9add2945 4129 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4130 if (ret) {
66642832 4131 btrfs_abort_transaction(trans, ret);
39279cc3 4132 goto err;
79787eaa 4133 }
39279cc3 4134
259c4b96
FM
4135 /*
4136 * If we are in a rename context, we don't need to update anything in the
4137 * log. That will be done later during the rename by btrfs_log_new_name().
143823cf 4138 * Besides that, doing it here would only cause extra unnecessary btree
259c4b96
FM
4139 * operations on the log tree, increasing latency for applications.
4140 */
4141 if (!rename_ctx) {
e43eec81
STD
4142 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4143 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
259c4b96 4144 }
63611e73
JB
4145
4146 /*
4147 * If we have a pending delayed iput we could end up with the final iput
4148 * being run in btrfs-cleaner context. If we have enough of these built
4149 * up we can end up burning a lot of time in btrfs-cleaner without any
4150 * way to throttle the unlinks. Since we're currently holding a ref on
4151 * the inode we can run the delayed iput here without any issues as the
4152 * final iput won't be done until after we drop the ref we're currently
4153 * holding.
4154 */
4155 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4156err:
4157 btrfs_free_path(path);
e02119d5
CM
4158 if (ret)
4159 goto out;
4160
e43eec81 4161 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4ec5934e
NB
4162 inode_inc_iversion(&inode->vfs_inode);
4163 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4164 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
8b9d0322 4165 ret = btrfs_update_inode(trans, dir);
e02119d5 4166out:
39279cc3
CM
4167 return ret;
4168}
4169
92986796 4170int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e 4171 struct btrfs_inode *dir, struct btrfs_inode *inode,
6db75318 4172 const struct fscrypt_str *name)
92986796
AV
4173{
4174 int ret;
e43eec81
STD
4175
4176 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
92986796 4177 if (!ret) {
4ec5934e 4178 drop_nlink(&inode->vfs_inode);
8b9d0322 4179 ret = btrfs_update_inode(trans, inode);
92986796
AV
4180 }
4181 return ret;
4182}
39279cc3 4183
a22285a6
YZ
4184/*
4185 * helper to start transaction for unlink and rmdir.
4186 *
d52be818
JB
4187 * unlink and rmdir are special in btrfs, they do not always free space, so
4188 * if we cannot make our reservations the normal way try and see if there is
4189 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4190 * allow the unlink to occur.
a22285a6 4191 */
e569b1d5 4192static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4df27c4d 4193{
e569b1d5 4194 struct btrfs_root *root = dir->root;
4df27c4d 4195
5630e2bc
FM
4196 return btrfs_start_transaction_fallback_global_rsv(root,
4197 BTRFS_UNLINK_METADATA_UNITS);
a22285a6
YZ
4198}
4199
4200static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4201{
a22285a6 4202 struct btrfs_trans_handle *trans;
2b0143b5 4203 struct inode *inode = d_inode(dentry);
a22285a6 4204 int ret;
ab3c5c18 4205 struct fscrypt_name fname;
a22285a6 4206
ab3c5c18
STD
4207 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4208 if (ret)
4209 return ret;
ab3c5c18
STD
4210
4211 /* This needs to handle no-key deletions later on */
a22285a6 4212
e569b1d5 4213 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4214 if (IS_ERR(trans)) {
4215 ret = PTR_ERR(trans);
4216 goto fscrypt_free;
4217 }
5f39d397 4218
4ec5934e 4219 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
59fcf388 4220 false);
12fcfd22 4221
e43eec81 4222 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4223 &fname.disk_name);
b532402e 4224 if (ret)
ab3c5c18 4225 goto end_trans;
7b128766 4226
a22285a6 4227 if (inode->i_nlink == 0) {
73f2e545 4228 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e 4229 if (ret)
ab3c5c18 4230 goto end_trans;
a22285a6 4231 }
7b128766 4232
ab3c5c18 4233end_trans:
3a45bb20 4234 btrfs_end_transaction(trans);
4467af88 4235 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
ab3c5c18
STD
4236fscrypt_free:
4237 fscrypt_free_filename(&fname);
39279cc3
CM
4238 return ret;
4239}
4240
f60a2364 4241static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
5b7544cb 4242 struct btrfs_inode *dir, struct dentry *dentry)
4df27c4d 4243{
5b7544cb 4244 struct btrfs_root *root = dir->root;
045d3967 4245 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
4246 struct btrfs_path *path;
4247 struct extent_buffer *leaf;
4248 struct btrfs_dir_item *di;
4249 struct btrfs_key key;
4250 u64 index;
4251 int ret;
045d3967 4252 u64 objectid;
5b7544cb 4253 u64 dir_ino = btrfs_ino(dir);
ab3c5c18
STD
4254 struct fscrypt_name fname;
4255
5b7544cb 4256 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
ab3c5c18
STD
4257 if (ret)
4258 return ret;
ab3c5c18
STD
4259
4260 /* This needs to handle no-key deletions later on */
4df27c4d 4261
045d3967
JB
4262 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4263 objectid = inode->root->root_key.objectid;
4264 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4265 objectid = inode->location.objectid;
4266 } else {
4267 WARN_ON(1);
ab3c5c18 4268 fscrypt_free_filename(&fname);
045d3967
JB
4269 return -EINVAL;
4270 }
4271
4df27c4d 4272 path = btrfs_alloc_path();
ab3c5c18
STD
4273 if (!path) {
4274 ret = -ENOMEM;
4275 goto out;
4276 }
4df27c4d 4277
33345d01 4278 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
6db75318 4279 &fname.disk_name, -1);
79787eaa 4280 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4281 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4282 goto out;
4283 }
4df27c4d
YZ
4284
4285 leaf = path->nodes[0];
4286 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4287 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4288 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4289 if (ret) {
66642832 4290 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4291 goto out;
4292 }
b3b4aa74 4293 btrfs_release_path(path);
4df27c4d 4294
d49d3287
JB
4295 /*
4296 * This is a placeholder inode for a subvolume we didn't have a
4297 * reference to at the time of the snapshot creation. In the meantime
4298 * we could have renamed the real subvol link into our snapshot, so
1a9fd417 4299 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
d49d3287
JB
4300 * Instead simply lookup the dir_index_item for this entry so we can
4301 * remove it. Otherwise we know we have a ref to the root and we can
4302 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4303 */
4304 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
6db75318 4305 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
79787eaa
JM
4306 if (IS_ERR_OR_NULL(di)) {
4307 if (!di)
4308 ret = -ENOENT;
4309 else
4310 ret = PTR_ERR(di);
66642832 4311 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4312 goto out;
4313 }
4df27c4d
YZ
4314
4315 leaf = path->nodes[0];
4316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 4317 index = key.offset;
d49d3287
JB
4318 btrfs_release_path(path);
4319 } else {
4320 ret = btrfs_del_root_ref(trans, objectid,
4321 root->root_key.objectid, dir_ino,
6db75318 4322 &index, &fname.disk_name);
d49d3287
JB
4323 if (ret) {
4324 btrfs_abort_transaction(trans, ret);
4325 goto out;
4326 }
4df27c4d
YZ
4327 }
4328
5b7544cb 4329 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4330 if (ret) {
66642832 4331 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4332 goto out;
4333 }
4df27c4d 4334
5b7544cb
DS
4335 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4336 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4337 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
0a5d0dc5 4338 ret = btrfs_update_inode_fallback(trans, dir);
79787eaa 4339 if (ret)
66642832 4340 btrfs_abort_transaction(trans, ret);
79787eaa 4341out:
71d7aed0 4342 btrfs_free_path(path);
ab3c5c18 4343 fscrypt_free_filename(&fname);
79787eaa 4344 return ret;
4df27c4d
YZ
4345}
4346
ec42f167
MT
4347/*
4348 * Helper to check if the subvolume references other subvolumes or if it's
4349 * default.
4350 */
f60a2364 4351static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4352{
4353 struct btrfs_fs_info *fs_info = root->fs_info;
4354 struct btrfs_path *path;
4355 struct btrfs_dir_item *di;
4356 struct btrfs_key key;
6db75318 4357 struct fscrypt_str name = FSTR_INIT("default", 7);
ec42f167
MT
4358 u64 dir_id;
4359 int ret;
4360
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364
4365 /* Make sure this root isn't set as the default subvol */
4366 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4367 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
e43eec81 4368 dir_id, &name, 0);
ec42f167
MT
4369 if (di && !IS_ERR(di)) {
4370 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4371 if (key.objectid == root->root_key.objectid) {
4372 ret = -EPERM;
4373 btrfs_err(fs_info,
4374 "deleting default subvolume %llu is not allowed",
4375 key.objectid);
4376 goto out;
4377 }
4378 btrfs_release_path(path);
4379 }
4380
4381 key.objectid = root->root_key.objectid;
4382 key.type = BTRFS_ROOT_REF_KEY;
4383 key.offset = (u64)-1;
4384
4385 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4386 if (ret < 0)
4387 goto out;
4388 BUG_ON(ret == 0);
4389
4390 ret = 0;
4391 if (path->slots[0] > 0) {
4392 path->slots[0]--;
4393 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4394 if (key.objectid == root->root_key.objectid &&
4395 key.type == BTRFS_ROOT_REF_KEY)
4396 ret = -ENOTEMPTY;
4397 }
4398out:
4399 btrfs_free_path(path);
4400 return ret;
4401}
4402
20a68004
NB
4403/* Delete all dentries for inodes belonging to the root */
4404static void btrfs_prune_dentries(struct btrfs_root *root)
4405{
4406 struct btrfs_fs_info *fs_info = root->fs_info;
4407 struct rb_node *node;
4408 struct rb_node *prev;
4409 struct btrfs_inode *entry;
4410 struct inode *inode;
4411 u64 objectid = 0;
4412
84961539 4413 if (!BTRFS_FS_ERROR(fs_info))
20a68004
NB
4414 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4415
4416 spin_lock(&root->inode_lock);
4417again:
4418 node = root->inode_tree.rb_node;
4419 prev = NULL;
4420 while (node) {
4421 prev = node;
4422 entry = rb_entry(node, struct btrfs_inode, rb_node);
4423
37508515 4424 if (objectid < btrfs_ino(entry))
20a68004 4425 node = node->rb_left;
37508515 4426 else if (objectid > btrfs_ino(entry))
20a68004
NB
4427 node = node->rb_right;
4428 else
4429 break;
4430 }
4431 if (!node) {
4432 while (prev) {
4433 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4434 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4435 node = prev;
4436 break;
4437 }
4438 prev = rb_next(prev);
4439 }
4440 }
4441 while (node) {
4442 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4443 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4444 inode = igrab(&entry->vfs_inode);
4445 if (inode) {
4446 spin_unlock(&root->inode_lock);
4447 if (atomic_read(&inode->i_count) > 1)
4448 d_prune_aliases(inode);
4449 /*
4450 * btrfs_drop_inode will have it removed from the inode
4451 * cache when its usage count hits zero.
4452 */
4453 iput(inode);
4454 cond_resched();
4455 spin_lock(&root->inode_lock);
4456 goto again;
4457 }
4458
4459 if (cond_resched_lock(&root->inode_lock))
4460 goto again;
4461
4462 node = rb_next(node);
4463 }
4464 spin_unlock(&root->inode_lock);
4465}
4466
3c4f91e2 4467int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
f60a2364 4468{
3c4f91e2 4469 struct btrfs_root *root = dir->root;
41044b41 4470 struct btrfs_fs_info *fs_info = root->fs_info;
f60a2364
MT
4471 struct inode *inode = d_inode(dentry);
4472 struct btrfs_root *dest = BTRFS_I(inode)->root;
4473 struct btrfs_trans_handle *trans;
4474 struct btrfs_block_rsv block_rsv;
4475 u64 root_flags;
f60a2364 4476 int ret;
f60a2364 4477
3324d054
OS
4478 down_write(&fs_info->subvol_sem);
4479
f60a2364
MT
4480 /*
4481 * Don't allow to delete a subvolume with send in progress. This is
4482 * inside the inode lock so the error handling that has to drop the bit
4483 * again is not run concurrently.
4484 */
4485 spin_lock(&dest->root_item_lock);
a7176f74 4486 if (dest->send_in_progress) {
f60a2364
MT
4487 spin_unlock(&dest->root_item_lock);
4488 btrfs_warn(fs_info,
4489 "attempt to delete subvolume %llu during send",
4490 dest->root_key.objectid);
3324d054
OS
4491 ret = -EPERM;
4492 goto out_up_write;
f60a2364 4493 }
60021bd7
KH
4494 if (atomic_read(&dest->nr_swapfiles)) {
4495 spin_unlock(&dest->root_item_lock);
4496 btrfs_warn(fs_info,
4497 "attempt to delete subvolume %llu with active swapfile",
4498 root->root_key.objectid);
3324d054
OS
4499 ret = -EPERM;
4500 goto out_up_write;
60021bd7 4501 }
a7176f74
LF
4502 root_flags = btrfs_root_flags(&dest->root_item);
4503 btrfs_set_root_flags(&dest->root_item,
4504 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4505 spin_unlock(&dest->root_item_lock);
f60a2364 4506
ee0d904f
NB
4507 ret = may_destroy_subvol(dest);
4508 if (ret)
3324d054 4509 goto out_undead;
f60a2364
MT
4510
4511 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4512 /*
4513 * One for dir inode,
4514 * two for dir entries,
4515 * two for root ref/backref.
4516 */
ee0d904f
NB
4517 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4518 if (ret)
3324d054 4519 goto out_undead;
f60a2364
MT
4520
4521 trans = btrfs_start_transaction(root, 0);
4522 if (IS_ERR(trans)) {
ee0d904f 4523 ret = PTR_ERR(trans);
f60a2364
MT
4524 goto out_release;
4525 }
4526 trans->block_rsv = &block_rsv;
4527 trans->bytes_reserved = block_rsv.size;
4528
3c4f91e2 4529 btrfs_record_snapshot_destroy(trans, dir);
f60a2364 4530
045d3967 4531 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364 4532 if (ret) {
f60a2364
MT
4533 btrfs_abort_transaction(trans, ret);
4534 goto out_end_trans;
4535 }
4536
2731f518
JB
4537 ret = btrfs_record_root_in_trans(trans, dest);
4538 if (ret) {
4539 btrfs_abort_transaction(trans, ret);
4540 goto out_end_trans;
4541 }
f60a2364
MT
4542
4543 memset(&dest->root_item.drop_progress, 0,
4544 sizeof(dest->root_item.drop_progress));
c8422684 4545 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4546 btrfs_set_root_refs(&dest->root_item, 0);
4547
4548 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4549 ret = btrfs_insert_orphan_item(trans,
4550 fs_info->tree_root,
4551 dest->root_key.objectid);
4552 if (ret) {
4553 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4554 goto out_end_trans;
4555 }
4556 }
4557
d1957791 4558 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4559 BTRFS_UUID_KEY_SUBVOL,
4560 dest->root_key.objectid);
4561 if (ret && ret != -ENOENT) {
4562 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4563 goto out_end_trans;
4564 }
4565 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4566 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4567 dest->root_item.received_uuid,
4568 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4569 dest->root_key.objectid);
4570 if (ret && ret != -ENOENT) {
4571 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4572 goto out_end_trans;
4573 }
4574 }
4575
082b6c97
QW
4576 free_anon_bdev(dest->anon_dev);
4577 dest->anon_dev = 0;
f60a2364
MT
4578out_end_trans:
4579 trans->block_rsv = NULL;
4580 trans->bytes_reserved = 0;
4581 ret = btrfs_end_transaction(trans);
f60a2364
MT
4582 inode->i_flags |= S_DEAD;
4583out_release:
e85fde51 4584 btrfs_subvolume_release_metadata(root, &block_rsv);
3324d054 4585out_undead:
ee0d904f 4586 if (ret) {
f60a2364
MT
4587 spin_lock(&dest->root_item_lock);
4588 root_flags = btrfs_root_flags(&dest->root_item);
4589 btrfs_set_root_flags(&dest->root_item,
4590 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4591 spin_unlock(&dest->root_item_lock);
3324d054
OS
4592 }
4593out_up_write:
4594 up_write(&fs_info->subvol_sem);
4595 if (!ret) {
f60a2364 4596 d_invalidate(dentry);
20a68004 4597 btrfs_prune_dentries(dest);
f60a2364 4598 ASSERT(dest->send_in_progress == 0);
f60a2364
MT
4599 }
4600
ee0d904f 4601 return ret;
f60a2364
MT
4602}
4603
39279cc3
CM
4604static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4605{
2b0143b5 4606 struct inode *inode = d_inode(dentry);
813febdb 4607 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1832a6d5 4608 int err = 0;
39279cc3 4609 struct btrfs_trans_handle *trans;
44f714da 4610 u64 last_unlink_trans;
ab3c5c18 4611 struct fscrypt_name fname;
39279cc3 4612
b3ae244e 4613 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4614 return -ENOTEMPTY;
813febdb
JB
4615 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4616 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4617 btrfs_err(fs_info,
4618 "extent tree v2 doesn't support snapshot deletion yet");
4619 return -EOPNOTSUPP;
4620 }
3c4f91e2 4621 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
813febdb 4622 }
134d4512 4623
ab3c5c18
STD
4624 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4625 if (err)
4626 return err;
ab3c5c18
STD
4627
4628 /* This needs to handle no-key deletions later on */
4629
e569b1d5 4630 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4631 if (IS_ERR(trans)) {
4632 err = PTR_ERR(trans);
4633 goto out_notrans;
4634 }
5df6a9f6 4635
4a0cc7ca 4636 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 4637 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4df27c4d
YZ
4638 goto out;
4639 }
4640
73f2e545 4641 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4642 if (err)
4df27c4d 4643 goto out;
7b128766 4644
44f714da
FM
4645 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4646
39279cc3 4647 /* now the directory is empty */
e43eec81 4648 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4649 &fname.disk_name);
44f714da 4650 if (!err) {
6ef06d27 4651 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4652 /*
4653 * Propagate the last_unlink_trans value of the deleted dir to
4654 * its parent directory. This is to prevent an unrecoverable
4655 * log tree in the case we do something like this:
4656 * 1) create dir foo
4657 * 2) create snapshot under dir foo
4658 * 3) delete the snapshot
4659 * 4) rmdir foo
4660 * 5) mkdir foo
4661 * 6) fsync foo or some file inside foo
4662 */
4663 if (last_unlink_trans >= trans->transid)
4664 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4665 }
4df27c4d 4666out:
3a45bb20 4667 btrfs_end_transaction(trans);
ab3c5c18 4668out_notrans:
813febdb 4669 btrfs_btree_balance_dirty(fs_info);
ab3c5c18 4670 fscrypt_free_filename(&fname);
3954401f 4671
39279cc3
CM
4672 return err;
4673}
4674
39279cc3 4675/*
9580503b
DS
4676 * Read, zero a chunk and write a block.
4677 *
2aaa6655
JB
4678 * @inode - inode that we're zeroing
4679 * @from - the offset to start zeroing
4680 * @len - the length to zero, 0 to zero the entire range respective to the
4681 * offset
4682 * @front - zero up to the offset instead of from the offset on
4683 *
9703fefe 4684 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4685 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4686 */
217f42eb
NB
4687int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4688 int front)
39279cc3 4689{
217f42eb
NB
4690 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4691 struct address_space *mapping = inode->vfs_inode.i_mapping;
4692 struct extent_io_tree *io_tree = &inode->io_tree;
e6dcd2dc 4693 struct btrfs_ordered_extent *ordered;
2ac55d41 4694 struct extent_state *cached_state = NULL;
364ecf36 4695 struct extent_changeset *data_reserved = NULL;
6d4572a9 4696 bool only_release_metadata = false;
0b246afa 4697 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4698 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4699 unsigned offset = from & (blocksize - 1);
df055afe 4700 struct folio *folio;
3b16a4e3 4701 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4702 size_t write_bytes = blocksize;
39279cc3 4703 int ret = 0;
9703fefe
CR
4704 u64 block_start;
4705 u64 block_end;
39279cc3 4706
b03ebd99
NB
4707 if (IS_ALIGNED(offset, blocksize) &&
4708 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4709 goto out;
9703fefe 4710
8b62f87b
JB
4711 block_start = round_down(from, blocksize);
4712 block_end = block_start + blocksize - 1;
4713
217f42eb 4714 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
1daedb1d 4715 blocksize, false);
6d4572a9 4716 if (ret < 0) {
80f9d241 4717 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
6d4572a9
QW
4718 /* For nocow case, no need to reserve data space */
4719 only_release_metadata = true;
4720 } else {
4721 goto out;
4722 }
4723 }
d4135134 4724 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
6d4572a9
QW
4725 if (ret < 0) {
4726 if (!only_release_metadata)
217f42eb
NB
4727 btrfs_free_reserved_data_space(inode, data_reserved,
4728 block_start, blocksize);
6d4572a9
QW
4729 goto out;
4730 }
211c17f5 4731again:
df055afe
GR
4732 folio = __filemap_get_folio(mapping, index,
4733 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4734 if (IS_ERR(folio)) {
217f42eb
NB
4735 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4736 blocksize, true);
4737 btrfs_delalloc_release_extents(inode, blocksize);
ac6a2b36 4738 ret = -ENOMEM;
39279cc3 4739 goto out;
5d5e103a 4740 }
e6dcd2dc 4741
df055afe
GR
4742 if (!folio_test_uptodate(folio)) {
4743 ret = btrfs_read_folio(NULL, folio);
4744 folio_lock(folio);
4745 if (folio->mapping != mapping) {
4746 folio_unlock(folio);
4747 folio_put(folio);
211c17f5
CM
4748 goto again;
4749 }
df055afe 4750 if (!folio_test_uptodate(folio)) {
39279cc3 4751 ret = -EIO;
89642229 4752 goto out_unlock;
39279cc3
CM
4753 }
4754 }
17b17fcd
JB
4755
4756 /*
4757 * We unlock the page after the io is completed and then re-lock it
4758 * above. release_folio() could have come in between that and cleared
cfbf07e2 4759 * folio private, but left the page in the mapping. Set the page mapped
17b17fcd
JB
4760 * here to make sure it's properly set for the subpage stuff.
4761 */
df055afe 4762 ret = set_folio_extent_mapped(folio);
17b17fcd
JB
4763 if (ret < 0)
4764 goto out_unlock;
4765
df055afe 4766 folio_wait_writeback(folio);
e6dcd2dc 4767
570eb97b 4768 lock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4769
217f42eb 4770 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4771 if (ordered) {
570eb97b 4772 unlock_extent(io_tree, block_start, block_end, &cached_state);
df055afe
GR
4773 folio_unlock(folio);
4774 folio_put(folio);
36d45567 4775 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
4776 btrfs_put_ordered_extent(ordered);
4777 goto again;
4778 }
4779
217f42eb 4780 clear_extent_bit(&inode->io_tree, block_start, block_end,
e182163d 4781 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 4782 &cached_state);
5d5e103a 4783
217f42eb 4784 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 4785 &cached_state);
9ed74f2d 4786 if (ret) {
570eb97b 4787 unlock_extent(io_tree, block_start, block_end, &cached_state);
9ed74f2d
JB
4788 goto out_unlock;
4789 }
4790
9703fefe 4791 if (offset != blocksize) {
2aaa6655 4792 if (!len)
9703fefe 4793 len = blocksize - offset;
2aaa6655 4794 if (front)
df055afe
GR
4795 folio_zero_range(folio, block_start - folio_pos(folio),
4796 offset);
2aaa6655 4797 else
df055afe
GR
4798 folio_zero_range(folio,
4799 (block_start - folio_pos(folio)) + offset,
4800 len);
e6dcd2dc 4801 }
df055afe 4802 btrfs_folio_clear_checked(fs_info, folio, block_start,
55151ea9 4803 block_end + 1 - block_start);
df055afe 4804 btrfs_folio_set_dirty(fs_info, folio, block_start,
55151ea9 4805 block_end + 1 - block_start);
570eb97b 4806 unlock_extent(io_tree, block_start, block_end, &cached_state);
39279cc3 4807
6d4572a9 4808 if (only_release_metadata)
217f42eb 4809 set_extent_bit(&inode->io_tree, block_start, block_end,
1d126800 4810 EXTENT_NORESERVE, NULL);
6d4572a9 4811
89642229 4812out_unlock:
6d4572a9
QW
4813 if (ret) {
4814 if (only_release_metadata)
217f42eb 4815 btrfs_delalloc_release_metadata(inode, blocksize, true);
6d4572a9 4816 else
217f42eb 4817 btrfs_delalloc_release_space(inode, data_reserved,
6d4572a9
QW
4818 block_start, blocksize, true);
4819 }
217f42eb 4820 btrfs_delalloc_release_extents(inode, blocksize);
df055afe
GR
4821 folio_unlock(folio);
4822 folio_put(folio);
39279cc3 4823out:
6d4572a9 4824 if (only_release_metadata)
217f42eb 4825 btrfs_check_nocow_unlock(inode);
364ecf36 4826 extent_changeset_free(data_reserved);
39279cc3
CM
4827 return ret;
4828}
4829
0a325e62 4830static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
16e7549f 4831{
0a325e62 4832 struct btrfs_root *root = inode->root;
a4ba6cc0 4833 struct btrfs_fs_info *fs_info = root->fs_info;
16e7549f 4834 struct btrfs_trans_handle *trans;
5893dfb9 4835 struct btrfs_drop_extents_args drop_args = { 0 };
16e7549f
JB
4836 int ret;
4837
4838 /*
cceaa89f
FM
4839 * If NO_HOLES is enabled, we don't need to do anything.
4840 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4841 * or btrfs_update_inode() will be called, which guarantee that the next
4842 * fsync will know this inode was changed and needs to be logged.
16e7549f 4843 */
cceaa89f 4844 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f 4845 return 0;
16e7549f
JB
4846
4847 /*
4848 * 1 - for the one we're dropping
4849 * 1 - for the one we're adding
4850 * 1 - for updating the inode.
4851 */
4852 trans = btrfs_start_transaction(root, 3);
4853 if (IS_ERR(trans))
4854 return PTR_ERR(trans);
4855
5893dfb9
FM
4856 drop_args.start = offset;
4857 drop_args.end = offset + len;
4858 drop_args.drop_cache = true;
4859
a4ba6cc0 4860 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
16e7549f 4861 if (ret) {
66642832 4862 btrfs_abort_transaction(trans, ret);
3a45bb20 4863 btrfs_end_transaction(trans);
16e7549f
JB
4864 return ret;
4865 }
4866
d1f68ba0 4867 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
2766ff61 4868 if (ret) {
66642832 4869 btrfs_abort_transaction(trans, ret);
2766ff61 4870 } else {
a4ba6cc0 4871 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
8b9d0322 4872 btrfs_update_inode(trans, inode);
2766ff61 4873 }
3a45bb20 4874 btrfs_end_transaction(trans);
16e7549f
JB
4875 return ret;
4876}
4877
695a0d0d
JB
4878/*
4879 * This function puts in dummy file extents for the area we're creating a hole
4880 * for. So if we are truncating this file to a larger size we need to insert
4881 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4882 * the range between oldsize and size
4883 */
b06359a3 4884int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
39279cc3 4885{
b06359a3
NB
4886 struct btrfs_root *root = inode->root;
4887 struct btrfs_fs_info *fs_info = root->fs_info;
4888 struct extent_io_tree *io_tree = &inode->io_tree;
a22285a6 4889 struct extent_map *em = NULL;
2ac55d41 4890 struct extent_state *cached_state = NULL;
0b246afa
JM
4891 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4892 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4893 u64 last_byte;
4894 u64 cur_offset;
4895 u64 hole_size;
9ed74f2d 4896 int err = 0;
39279cc3 4897
a71754fc 4898 /*
9703fefe
CR
4899 * If our size started in the middle of a block we need to zero out the
4900 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4901 * expose stale data.
4902 */
b06359a3 4903 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4904 if (err)
4905 return err;
4906
9036c102
YZ
4907 if (size <= hole_start)
4908 return 0;
4909
b06359a3
NB
4910 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4911 &cached_state);
9036c102
YZ
4912 cur_offset = hole_start;
4913 while (1) {
8bab0a30 4914 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
79787eaa
JM
4915 if (IS_ERR(em)) {
4916 err = PTR_ERR(em);
f2767956 4917 em = NULL;
79787eaa
JM
4918 break;
4919 }
9036c102 4920 last_byte = min(extent_map_end(em), block_end);
0b246afa 4921 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4922 hole_size = last_byte - cur_offset;
4923
f86f7a75 4924 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5dc562c5 4925 struct extent_map *hole_em;
9ed74f2d 4926
0a325e62 4927 err = maybe_insert_hole(inode, cur_offset, hole_size);
16e7549f 4928 if (err)
3893e33b 4929 break;
9ddc959e 4930
b06359a3 4931 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4932 cur_offset, hole_size);
4933 if (err)
4934 break;
4935
5dc562c5
JB
4936 hole_em = alloc_extent_map();
4937 if (!hole_em) {
a1ba4c08
FM
4938 btrfs_drop_extent_map_range(inode, cur_offset,
4939 cur_offset + hole_size - 1,
4940 false);
23e3337f 4941 btrfs_set_inode_full_sync(inode);
5dc562c5
JB
4942 goto next;
4943 }
4944 hole_em->start = cur_offset;
4945 hole_em->len = hole_size;
4946 hole_em->orig_start = cur_offset;
8082510e 4947
5dc562c5
JB
4948 hole_em->block_start = EXTENT_MAP_HOLE;
4949 hole_em->block_len = 0;
b4939680 4950 hole_em->orig_block_len = 0;
cc95bef6 4951 hole_em->ram_bytes = hole_size;
4a4f8fe2 4952 hole_em->generation = btrfs_get_fs_generation(fs_info);
8082510e 4953
a1ba4c08 4954 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5dc562c5 4955 free_extent_map(hole_em);
9ddc959e 4956 } else {
b06359a3 4957 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4958 cur_offset, hole_size);
4959 if (err)
4960 break;
9036c102 4961 }
16e7549f 4962next:
9036c102 4963 free_extent_map(em);
a22285a6 4964 em = NULL;
9036c102 4965 cur_offset = last_byte;
8082510e 4966 if (cur_offset >= block_end)
9036c102
YZ
4967 break;
4968 }
a22285a6 4969 free_extent_map(em);
570eb97b 4970 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4971 return err;
4972}
39279cc3 4973
3972f260 4974static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4975{
f4a2f4c5
MX
4976 struct btrfs_root *root = BTRFS_I(inode)->root;
4977 struct btrfs_trans_handle *trans;
a41ad394 4978 loff_t oldsize = i_size_read(inode);
3972f260
ES
4979 loff_t newsize = attr->ia_size;
4980 int mask = attr->ia_valid;
8082510e
YZ
4981 int ret;
4982
3972f260
ES
4983 /*
4984 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4985 * special case where we need to update the times despite not having
4986 * these flags set. For all other operations the VFS set these flags
4987 * explicitly if it wants a timestamp update.
4988 */
dff6efc3
CH
4989 if (newsize != oldsize) {
4990 inode_inc_iversion(inode);
c1867eb3 4991 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
b1c38a13
JL
4992 inode_set_mtime_to_ts(inode,
4993 inode_set_ctime_current(inode));
c1867eb3 4994 }
dff6efc3 4995 }
3972f260 4996
a41ad394 4997 if (newsize > oldsize) {
9ea24bbe 4998 /*
ea14b57f 4999 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5000 * This is to ensure the snapshot captures a fully consistent
5001 * state of this file - if the snapshot captures this expanding
5002 * truncation, it must capture all writes that happened before
5003 * this truncation.
5004 */
dcc3eb96 5005 btrfs_drew_write_lock(&root->snapshot_lock);
b06359a3 5006 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
9ea24bbe 5007 if (ret) {
dcc3eb96 5008 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 5009 return ret;
9ea24bbe 5010 }
8082510e 5011
f4a2f4c5 5012 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5013 if (IS_ERR(trans)) {
dcc3eb96 5014 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 5015 return PTR_ERR(trans);
9ea24bbe 5016 }
f4a2f4c5
MX
5017
5018 i_size_write(inode, newsize);
76aea537 5019 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
27772b68 5020 pagecache_isize_extended(inode, oldsize, newsize);
8b9d0322 5021 ret = btrfs_update_inode(trans, BTRFS_I(inode));
dcc3eb96 5022 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 5023 btrfs_end_transaction(trans);
a41ad394 5024 } else {
41044b41 5025 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
24c0a722
NA
5026
5027 if (btrfs_is_zoned(fs_info)) {
5028 ret = btrfs_wait_ordered_range(inode,
5029 ALIGN(newsize, fs_info->sectorsize),
5030 (u64)-1);
5031 if (ret)
5032 return ret;
5033 }
8082510e 5034
a41ad394
JB
5035 /*
5036 * We're truncating a file that used to have good data down to
1fd4033d
NB
5037 * zero. Make sure any new writes to the file get on disk
5038 * on close.
a41ad394
JB
5039 */
5040 if (newsize == 0)
1fd4033d 5041 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 5042 &BTRFS_I(inode)->runtime_flags);
8082510e 5043
a41ad394 5044 truncate_setsize(inode, newsize);
2e60a51e 5045
2e60a51e 5046 inode_dio_wait(inode);
2e60a51e 5047
d9dcae67 5048 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
7f4f6e0a
JB
5049 if (ret && inode->i_nlink) {
5050 int err;
5051
5052 /*
f7e9e8fc
OS
5053 * Truncate failed, so fix up the in-memory size. We
5054 * adjusted disk_i_size down as we removed extents, so
5055 * wait for disk_i_size to be stable and then update the
5056 * in-memory size to match.
7f4f6e0a 5057 */
f7e9e8fc 5058 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5059 if (err)
f7e9e8fc
OS
5060 return err;
5061 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5062 }
8082510e
YZ
5063 }
5064
a41ad394 5065 return ret;
8082510e
YZ
5066}
5067
c1632a0f 5068static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
549c7297 5069 struct iattr *attr)
9036c102 5070{
2b0143b5 5071 struct inode *inode = d_inode(dentry);
b83cc969 5072 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5073 int err;
39279cc3 5074
b83cc969
LZ
5075 if (btrfs_root_readonly(root))
5076 return -EROFS;
5077
c1632a0f 5078 err = setattr_prepare(idmap, dentry, attr);
9036c102
YZ
5079 if (err)
5080 return err;
2bf5a725 5081
5a3f23d5 5082 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5083 err = btrfs_setsize(inode, attr);
8082510e
YZ
5084 if (err)
5085 return err;
39279cc3 5086 }
9036c102 5087
1025774c 5088 if (attr->ia_valid) {
c1632a0f 5089 setattr_copy(idmap, inode, attr);
0c4d2d95 5090 inode_inc_iversion(inode);
7152b425 5091 err = btrfs_dirty_inode(BTRFS_I(inode));
1025774c 5092
22c44fe6 5093 if (!err && attr->ia_valid & ATTR_MODE)
13e83a49 5094 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
1025774c 5095 }
33268eaf 5096
39279cc3
CM
5097 return err;
5098}
61295eb8 5099
131e404a 5100/*
895586eb
MWO
5101 * While truncating the inode pages during eviction, we get the VFS
5102 * calling btrfs_invalidate_folio() against each folio of the inode. This
5103 * is slow because the calls to btrfs_invalidate_folio() result in a
570eb97b 5104 * huge amount of calls to lock_extent() and clear_extent_bit(),
895586eb
MWO
5105 * which keep merging and splitting extent_state structures over and over,
5106 * wasting lots of time.
131e404a 5107 *
895586eb
MWO
5108 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5109 * skip all those expensive operations on a per folio basis and do only
5110 * the ordered io finishing, while we release here the extent_map and
5111 * extent_state structures, without the excessive merging and splitting.
131e404a
FDBM
5112 */
5113static void evict_inode_truncate_pages(struct inode *inode)
5114{
5115 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
131e404a
FDBM
5116 struct rb_node *node;
5117
5118 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5119 truncate_inode_pages_final(&inode->i_data);
131e404a 5120
9c9d1b4f 5121 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
131e404a 5122
6ca07097
FM
5123 /*
5124 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5125 * We can have ongoing bios started by readahead that have
5126 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5127 * still in progress (unlocked the pages in the bio but did not yet
5128 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5129 * ranges can still be locked and eviction started because before
5130 * submitting those bios, which are executed by a separate task (work
5131 * queue kthread), inode references (inode->i_count) were not taken
5132 * (which would be dropped in the end io callback of each bio).
5133 * Therefore here we effectively end up waiting for those bios and
5134 * anyone else holding locked ranges without having bumped the inode's
5135 * reference count - if we don't do it, when they access the inode's
5136 * io_tree to unlock a range it may be too late, leading to an
5137 * use-after-free issue.
5138 */
131e404a
FDBM
5139 spin_lock(&io_tree->lock);
5140 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5141 struct extent_state *state;
5142 struct extent_state *cached_state = NULL;
6ca07097
FM
5143 u64 start;
5144 u64 end;
421f0922 5145 unsigned state_flags;
131e404a
FDBM
5146
5147 node = rb_first(&io_tree->state);
5148 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5149 start = state->start;
5150 end = state->end;
421f0922 5151 state_flags = state->state;
131e404a
FDBM
5152 spin_unlock(&io_tree->lock);
5153
570eb97b 5154 lock_extent(io_tree, start, end, &cached_state);
b9d0b389
QW
5155
5156 /*
5157 * If still has DELALLOC flag, the extent didn't reach disk,
5158 * and its reserved space won't be freed by delayed_ref.
5159 * So we need to free its reserved space here.
895586eb 5160 * (Refer to comment in btrfs_invalidate_folio, case 2)
b9d0b389
QW
5161 *
5162 * Note, end is the bytenr of last byte, so we need + 1 here.
5163 */
421f0922 5164 if (state_flags & EXTENT_DELALLOC)
8b8a979f 5165 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
9e65bfca 5166 end - start + 1, NULL);
b9d0b389 5167
6ca07097 5168 clear_extent_bit(io_tree, start, end,
bd015294 5169 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
e182163d 5170 &cached_state);
131e404a 5171
7064dd5c 5172 cond_resched();
131e404a
FDBM
5173 spin_lock(&io_tree->lock);
5174 }
5175 spin_unlock(&io_tree->lock);
5176}
5177
4b9d7b59 5178static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5179 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5180{
5181 struct btrfs_fs_info *fs_info = root->fs_info;
d3984c90 5182 struct btrfs_trans_handle *trans;
b13d57db 5183 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
d3984c90 5184 int ret;
4b9d7b59 5185
d3984c90
JB
5186 /*
5187 * Eviction should be taking place at some place safe because of our
5188 * delayed iputs. However the normal flushing code will run delayed
5189 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5190 *
5191 * We reserve the delayed_refs_extra here again because we can't use
5192 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5193 * above. We reserve our extra bit here because we generate a ton of
5194 * delayed refs activity by truncating.
5195 *
ee6adbfd
JB
5196 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5197 * if we fail to make this reservation we can re-try without the
5198 * delayed_refs_extra so we can make some forward progress.
d3984c90 5199 */
9270501c 5200 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
d3984c90
JB
5201 BTRFS_RESERVE_FLUSH_EVICT);
5202 if (ret) {
9270501c 5203 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
ee6adbfd
JB
5204 BTRFS_RESERVE_FLUSH_EVICT);
5205 if (ret) {
d3984c90
JB
5206 btrfs_warn(fs_info,
5207 "could not allocate space for delete; will truncate on mount");
5208 return ERR_PTR(-ENOSPC);
5209 }
5210 delayed_refs_extra = 0;
5211 }
4b9d7b59 5212
d3984c90
JB
5213 trans = btrfs_join_transaction(root);
5214 if (IS_ERR(trans))
5215 return trans;
5216
5217 if (delayed_refs_extra) {
5218 trans->block_rsv = &fs_info->trans_block_rsv;
5219 trans->bytes_reserved = delayed_refs_extra;
5220 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
4e0527de 5221 delayed_refs_extra, true);
4b9d7b59 5222 }
d3984c90 5223 return trans;
4b9d7b59
OS
5224}
5225
bd555975 5226void btrfs_evict_inode(struct inode *inode)
39279cc3 5227{
41044b41 5228 struct btrfs_fs_info *fs_info;
39279cc3
CM
5229 struct btrfs_trans_handle *trans;
5230 struct btrfs_root *root = BTRFS_I(inode)->root;
b7b1167c 5231 struct btrfs_block_rsv *rsv = NULL;
39279cc3
CM
5232 int ret;
5233
1abe9b8a 5234 trace_btrfs_inode_evict(inode);
5235
3d48d981 5236 if (!root) {
14605409 5237 fsverity_cleanup_inode(inode);
e8f1bc14 5238 clear_inode(inode);
3d48d981
NB
5239 return;
5240 }
5241
41044b41 5242 fs_info = inode_to_fs_info(inode);
131e404a
FDBM
5243 evict_inode_truncate_pages(inode);
5244
69e9c6c6
SB
5245 if (inode->i_nlink &&
5246 ((btrfs_root_refs(&root->root_item) != 0 &&
5247 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5248 btrfs_is_free_space_inode(BTRFS_I(inode))))
b7b1167c 5249 goto out;
bd555975 5250
27919067 5251 if (is_bad_inode(inode))
b7b1167c 5252 goto out;
5f39d397 5253
7b40b695 5254 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
b7b1167c 5255 goto out;
c71bf099 5256
76dda93c 5257 if (inode->i_nlink > 0) {
69e9c6c6
SB
5258 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5259 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
b7b1167c 5260 goto out;
76dda93c
YZ
5261 }
5262
2adc75d6
JB
5263 /*
5264 * This makes sure the inode item in tree is uptodate and the space for
5265 * the inode update is released.
5266 */
aa79021f 5267 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5268 if (ret)
b7b1167c 5269 goto out;
0e8c36a9 5270
2adc75d6
JB
5271 /*
5272 * This drops any pending insert or delete operations we have for this
5273 * inode. We could have a delayed dir index deletion queued up, but
5274 * we're removing the inode completely so that'll be taken care of in
5275 * the truncate.
5276 */
5277 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5278
2ff7e61e 5279 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5280 if (!rsv)
b7b1167c 5281 goto out;
2bd36e7b 5282 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
710d5921 5283 rsv->failfast = true;
4289a667 5284
6ef06d27 5285 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5286
8082510e 5287 while (1) {
d9ac19c3 5288 struct btrfs_truncate_control control = {
71d18b53 5289 .inode = BTRFS_I(inode),
487e81d2 5290 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3
JB
5291 .new_size = 0,
5292 .min_type = 0,
5293 };
5294
ad80cf50 5295 trans = evict_refill_and_join(root, rsv);
27919067 5296 if (IS_ERR(trans))
b7b1167c 5297 goto out;
7b128766 5298
4289a667
JB
5299 trans->block_rsv = rsv;
5300
71d18b53 5301 ret = btrfs_truncate_inode_items(trans, root, &control);
27919067
OS
5302 trans->block_rsv = &fs_info->trans_block_rsv;
5303 btrfs_end_transaction(trans);
afa4b0af
FM
5304 /*
5305 * We have not added new delayed items for our inode after we
5306 * have flushed its delayed items, so no need to throttle on
5307 * delayed items. However we have modified extent buffers.
5308 */
5309 btrfs_btree_balance_dirty_nodelay(fs_info);
27919067 5310 if (ret && ret != -ENOSPC && ret != -EAGAIN)
b7b1167c 5311 goto out;
27919067 5312 else if (!ret)
8082510e 5313 break;
8082510e 5314 }
5f39d397 5315
4ef31a45 5316 /*
27919067
OS
5317 * Errors here aren't a big deal, it just means we leave orphan items in
5318 * the tree. They will be cleaned up on the next mount. If the inode
5319 * number gets reused, cleanup deletes the orphan item without doing
5320 * anything, and unlink reuses the existing orphan item.
5321 *
5322 * If it turns out that we are dropping too many of these, we might want
5323 * to add a mechanism for retrying these after a commit.
4ef31a45 5324 */
ad80cf50 5325 trans = evict_refill_and_join(root, rsv);
27919067
OS
5326 if (!IS_ERR(trans)) {
5327 trans->block_rsv = rsv;
5328 btrfs_orphan_del(trans, BTRFS_I(inode));
5329 trans->block_rsv = &fs_info->trans_block_rsv;
5330 btrfs_end_transaction(trans);
5331 }
54aa1f4d 5332
b7b1167c 5333out:
27919067 5334 btrfs_free_block_rsv(fs_info, rsv);
27919067
OS
5335 /*
5336 * If we didn't successfully delete, the orphan item will still be in
5337 * the tree and we'll retry on the next mount. Again, we might also want
5338 * to retry these periodically in the future.
5339 */
f48d1cf5 5340 btrfs_remove_delayed_node(BTRFS_I(inode));
14605409 5341 fsverity_cleanup_inode(inode);
dbd5768f 5342 clear_inode(inode);
39279cc3
CM
5343}
5344
5345/*
6bf9e4bd
QW
5346 * Return the key found in the dir entry in the location pointer, fill @type
5347 * with BTRFS_FT_*, and return 0.
5348 *
005d6712
SY
5349 * If no dir entries were found, returns -ENOENT.
5350 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3 5351 */
d1de429b 5352static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
6bf9e4bd 5353 struct btrfs_key *location, u8 *type)
39279cc3 5354{
39279cc3
CM
5355 struct btrfs_dir_item *di;
5356 struct btrfs_path *path;
d1de429b 5357 struct btrfs_root *root = dir->root;
0d9f7f3e 5358 int ret = 0;
ab3c5c18 5359 struct fscrypt_name fname;
39279cc3
CM
5360
5361 path = btrfs_alloc_path();
d8926bb3
MF
5362 if (!path)
5363 return -ENOMEM;
3954401f 5364
d1de429b 5365 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
10a8857a 5366 if (ret < 0)
ab3c5c18 5367 goto out;
10a8857a
STD
5368 /*
5369 * fscrypt_setup_filename() should never return a positive value, but
5370 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5371 */
5372 ASSERT(ret == 0);
ab3c5c18 5373
ab3c5c18
STD
5374 /* This needs to handle no-key deletions later on */
5375
d1de429b 5376 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
6db75318 5377 &fname.disk_name, 0);
3cf5068f
LB
5378 if (IS_ERR_OR_NULL(di)) {
5379 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5380 goto out;
5381 }
d397712b 5382
5f39d397 5383 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5384 if (location->type != BTRFS_INODE_ITEM_KEY &&
5385 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5386 ret = -EUCLEAN;
56a0e706
LB
5387 btrfs_warn(root->fs_info,
5388"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
d1de429b 5389 __func__, fname.disk_name.name, btrfs_ino(dir),
56a0e706 5390 location->objectid, location->type, location->offset);
56a0e706 5391 }
6bf9e4bd 5392 if (!ret)
94a48aef 5393 *type = btrfs_dir_ftype(path->nodes[0], di);
39279cc3 5394out:
ab3c5c18 5395 fscrypt_free_filename(&fname);
39279cc3
CM
5396 btrfs_free_path(path);
5397 return ret;
5398}
5399
5400/*
5401 * when we hit a tree root in a directory, the btrfs part of the inode
5402 * needs to be changed to reflect the root directory of the tree root. This
5403 * is kind of like crossing a mount point.
5404 */
2ff7e61e 5405static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
3c1b1c4c 5406 struct btrfs_inode *dir,
4df27c4d
YZ
5407 struct dentry *dentry,
5408 struct btrfs_key *location,
5409 struct btrfs_root **sub_root)
39279cc3 5410{
4df27c4d
YZ
5411 struct btrfs_path *path;
5412 struct btrfs_root *new_root;
5413 struct btrfs_root_ref *ref;
5414 struct extent_buffer *leaf;
1d4c08e0 5415 struct btrfs_key key;
4df27c4d
YZ
5416 int ret;
5417 int err = 0;
ab3c5c18 5418 struct fscrypt_name fname;
ab3c5c18 5419
3c1b1c4c 5420 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
ab3c5c18
STD
5421 if (ret)
5422 return ret;
39279cc3 5423
4df27c4d
YZ
5424 path = btrfs_alloc_path();
5425 if (!path) {
5426 err = -ENOMEM;
5427 goto out;
5428 }
39279cc3 5429
4df27c4d 5430 err = -ENOENT;
3c1b1c4c 5431 key.objectid = dir->root->root_key.objectid;
1d4c08e0
DS
5432 key.type = BTRFS_ROOT_REF_KEY;
5433 key.offset = location->objectid;
5434
0b246afa 5435 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5436 if (ret) {
5437 if (ret < 0)
5438 err = ret;
5439 goto out;
5440 }
39279cc3 5441
4df27c4d
YZ
5442 leaf = path->nodes[0];
5443 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3c1b1c4c 5444 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
6db75318 5445 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
4df27c4d 5446 goto out;
39279cc3 5447
6db75318
STD
5448 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5449 (unsigned long)(ref + 1), fname.disk_name.len);
4df27c4d
YZ
5450 if (ret)
5451 goto out;
5452
b3b4aa74 5453 btrfs_release_path(path);
4df27c4d 5454
56e9357a 5455 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5456 if (IS_ERR(new_root)) {
5457 err = PTR_ERR(new_root);
5458 goto out;
5459 }
5460
4df27c4d
YZ
5461 *sub_root = new_root;
5462 location->objectid = btrfs_root_dirid(&new_root->root_item);
5463 location->type = BTRFS_INODE_ITEM_KEY;
5464 location->offset = 0;
5465 err = 0;
5466out:
5467 btrfs_free_path(path);
ab3c5c18 5468 fscrypt_free_filename(&fname);
4df27c4d 5469 return err;
39279cc3
CM
5470}
5471
4c45a4f4 5472static void inode_tree_add(struct btrfs_inode *inode)
5d4f98a2 5473{
4c45a4f4 5474 struct btrfs_root *root = inode->root;
5d4f98a2 5475 struct btrfs_inode *entry;
03e860bd
NP
5476 struct rb_node **p;
5477 struct rb_node *parent;
4c45a4f4
DS
5478 struct rb_node *new = &inode->rb_node;
5479 u64 ino = btrfs_ino(inode);
5d4f98a2 5480
4c45a4f4 5481 if (inode_unhashed(&inode->vfs_inode))
76dda93c 5482 return;
e1409cef 5483 parent = NULL;
5d4f98a2 5484 spin_lock(&root->inode_lock);
e1409cef 5485 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5486 while (*p) {
5487 parent = *p;
5488 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5489
37508515 5490 if (ino < btrfs_ino(entry))
03e860bd 5491 p = &parent->rb_left;
37508515 5492 else if (ino > btrfs_ino(entry))
03e860bd 5493 p = &parent->rb_right;
5d4f98a2
YZ
5494 else {
5495 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5496 (I_WILL_FREE | I_FREEING)));
cef21937 5497 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5498 RB_CLEAR_NODE(parent);
5499 spin_unlock(&root->inode_lock);
cef21937 5500 return;
5d4f98a2
YZ
5501 }
5502 }
cef21937
FDBM
5503 rb_link_node(new, parent, p);
5504 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5505 spin_unlock(&root->inode_lock);
5506}
5507
b79b7249 5508static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5509{
b79b7249 5510 struct btrfs_root *root = inode->root;
76dda93c 5511 int empty = 0;
5d4f98a2 5512
03e860bd 5513 spin_lock(&root->inode_lock);
b79b7249
NB
5514 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5515 rb_erase(&inode->rb_node, &root->inode_tree);
5516 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5517 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5518 }
03e860bd 5519 spin_unlock(&root->inode_lock);
76dda93c 5520
69e9c6c6 5521 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5522 spin_lock(&root->inode_lock);
5523 empty = RB_EMPTY_ROOT(&root->inode_tree);
5524 spin_unlock(&root->inode_lock);
5525 if (empty)
5526 btrfs_add_dead_root(root);
5527 }
5528}
5529
5d4f98a2 5530
e02119d5
CM
5531static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532{
5533 struct btrfs_iget_args *args = p;
0202e83f
DS
5534
5535 inode->i_ino = args->ino;
5536 BTRFS_I(inode)->location.objectid = args->ino;
5537 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5538 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5539 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5540 BUG_ON(args->root && !BTRFS_I(inode)->root);
9b9b8854
JB
5541
5542 if (args->root && args->root == args->root->fs_info->tree_root &&
5543 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5544 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5545 &BTRFS_I(inode)->runtime_flags);
39279cc3
CM
5546 return 0;
5547}
5548
5549static int btrfs_find_actor(struct inode *inode, void *opaque)
5550{
5551 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5552
5553 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5554 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5555}
5556
0202e83f 5557static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5558 struct btrfs_root *root)
39279cc3
CM
5559{
5560 struct inode *inode;
5561 struct btrfs_iget_args args;
0202e83f 5562 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5563
0202e83f 5564 args.ino = ino;
39279cc3
CM
5565 args.root = root;
5566
778ba82b 5567 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5568 btrfs_init_locked_inode,
5569 (void *)&args);
5570 return inode;
5571}
5572
4c66e0d4 5573/*
0202e83f 5574 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5575 * Path can be preallocated to prevent recursing back to iget through
5576 * allocator. NULL is also valid but may require an additional allocation
5577 * later.
1a54ef8c 5578 */
0202e83f 5579struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5580 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5581{
5582 struct inode *inode;
5583
0202e83f 5584 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5585 if (!inode)
5d4f98a2 5586 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5587
5588 if (inode->i_state & I_NEW) {
67710892
FM
5589 int ret;
5590
4222ea71 5591 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5592 if (!ret) {
4c45a4f4 5593 inode_tree_add(BTRFS_I(inode));
1748f843 5594 unlock_new_inode(inode);
1748f843 5595 } else {
f5b3a417
AV
5596 iget_failed(inode);
5597 /*
5598 * ret > 0 can come from btrfs_search_slot called by
5599 * btrfs_read_locked_inode, this means the inode item
5600 * was not found.
5601 */
5602 if (ret > 0)
5603 ret = -ENOENT;
5604 inode = ERR_PTR(ret);
1748f843
MF
5605 }
5606 }
5607
1a54ef8c
BR
5608 return inode;
5609}
5610
0202e83f 5611struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5612{
0202e83f 5613 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5614}
5615
94628ad9 5616static struct inode *new_simple_dir(struct inode *dir,
4df27c4d
YZ
5617 struct btrfs_key *key,
5618 struct btrfs_root *root)
5619{
d5acbc60 5620 struct timespec64 ts;
94628ad9 5621 struct inode *inode = new_inode(dir->i_sb);
4df27c4d
YZ
5622
5623 if (!inode)
5624 return ERR_PTR(-ENOMEM);
5625
5c8fd99f 5626 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5627 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5628 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5629
5630 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5631 /*
5632 * We only need lookup, the rest is read-only and there's no inode
5633 * associated with the dentry
5634 */
5635 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5636 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5637 inode->i_fop = &simple_dir_operations;
5638 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
d5acbc60
LT
5639
5640 ts = inode_set_ctime_current(inode);
5641 inode_set_mtime_to_ts(inode, ts);
b1c38a13 5642 inode_set_atime_to_ts(inode, inode_get_atime(dir));
d5acbc60
LT
5643 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5644 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5645
94628ad9
LT
5646 inode->i_uid = dir->i_uid;
5647 inode->i_gid = dir->i_gid;
4df27c4d
YZ
5648
5649 return inode;
5650}
5651
a55e65b8
DS
5652static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5653static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5654static_assert(BTRFS_FT_DIR == FT_DIR);
5655static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5656static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5657static_assert(BTRFS_FT_FIFO == FT_FIFO);
5658static_assert(BTRFS_FT_SOCK == FT_SOCK);
5659static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5660
6bf9e4bd
QW
5661static inline u8 btrfs_inode_type(struct inode *inode)
5662{
6bf9e4bd
QW
5663 return fs_umode_to_ftype(inode->i_mode);
5664}
5665
3de4586c 5666struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5667{
41044b41 5668 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
d397712b 5669 struct inode *inode;
4df27c4d 5670 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5671 struct btrfs_root *sub_root = root;
5672 struct btrfs_key location;
6bf9e4bd 5673 u8 di_type = 0;
b4aff1f8 5674 int ret = 0;
39279cc3
CM
5675
5676 if (dentry->d_name.len > BTRFS_NAME_LEN)
5677 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5678
d1de429b 5679 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
39279cc3
CM
5680 if (ret < 0)
5681 return ERR_PTR(ret);
5f39d397 5682
4df27c4d 5683 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5684 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5685 if (IS_ERR(inode))
5686 return inode;
5687
5688 /* Do extra check against inode mode with di_type */
5689 if (btrfs_inode_type(inode) != di_type) {
5690 btrfs_crit(fs_info,
5691"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5692 inode->i_mode, btrfs_inode_type(inode),
5693 di_type);
5694 iput(inode);
5695 return ERR_PTR(-EUCLEAN);
5696 }
4df27c4d
YZ
5697 return inode;
5698 }
5699
3c1b1c4c 5700 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
4df27c4d
YZ
5701 &location, &sub_root);
5702 if (ret < 0) {
5703 if (ret != -ENOENT)
5704 inode = ERR_PTR(ret);
5705 else
94628ad9 5706 inode = new_simple_dir(dir, &location, root);
4df27c4d 5707 } else {
0202e83f 5708 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
00246528 5709 btrfs_put_root(sub_root);
76dda93c 5710
fc8b235f
NB
5711 if (IS_ERR(inode))
5712 return inode;
5713
0b246afa 5714 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5715 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5716 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5717 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5718 if (ret) {
5719 iput(inode);
66b4ffd1 5720 inode = ERR_PTR(ret);
01cd3367 5721 }
c71bf099
YZ
5722 }
5723
3de4586c
CM
5724 return inode;
5725}
5726
fe15ce44 5727static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5728{
5729 struct btrfs_root *root;
2b0143b5 5730 struct inode *inode = d_inode(dentry);
76dda93c 5731
848cce0d 5732 if (!inode && !IS_ROOT(dentry))
2b0143b5 5733 inode = d_inode(dentry->d_parent);
76dda93c 5734
848cce0d
LZ
5735 if (inode) {
5736 root = BTRFS_I(inode)->root;
efefb143
YZ
5737 if (btrfs_root_refs(&root->root_item) == 0)
5738 return 1;
848cce0d 5739
4a0cc7ca 5740 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5741 return 1;
efefb143 5742 }
76dda93c
YZ
5743 return 0;
5744}
5745
3de4586c 5746static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5747 unsigned int flags)
3de4586c 5748{
3837d208 5749 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5750
3837d208
AV
5751 if (inode == ERR_PTR(-ENOENT))
5752 inode = NULL;
41d28bca 5753 return d_splice_alias(inode, dentry);
39279cc3
CM
5754}
5755
9b378f6a
FM
5756/*
5757 * Find the highest existing sequence number in a directory and then set the
5758 * in-memory index_cnt variable to the first free sequence number.
5759 */
5760static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5761{
5762 struct btrfs_root *root = inode->root;
5763 struct btrfs_key key, found_key;
5764 struct btrfs_path *path;
5765 struct extent_buffer *leaf;
5766 int ret;
5767
5768 key.objectid = btrfs_ino(inode);
5769 key.type = BTRFS_DIR_INDEX_KEY;
5770 key.offset = (u64)-1;
5771
5772 path = btrfs_alloc_path();
5773 if (!path)
5774 return -ENOMEM;
5775
5776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5777 if (ret < 0)
5778 goto out;
5779 /* FIXME: we should be able to handle this */
5780 if (ret == 0)
5781 goto out;
5782 ret = 0;
5783
5784 if (path->slots[0] == 0) {
5785 inode->index_cnt = BTRFS_DIR_START_INDEX;
5786 goto out;
5787 }
5788
5789 path->slots[0]--;
5790
5791 leaf = path->nodes[0];
5792 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5793
5794 if (found_key.objectid != btrfs_ino(inode) ||
5795 found_key.type != BTRFS_DIR_INDEX_KEY) {
5796 inode->index_cnt = BTRFS_DIR_START_INDEX;
5797 goto out;
5798 }
5799
5800 inode->index_cnt = found_key.offset + 1;
5801out:
5802 btrfs_free_path(path);
5803 return ret;
5804}
5805
5806static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5807{
8e7f82de 5808 int ret = 0;
9b378f6a 5809
8e7f82de
FM
5810 btrfs_inode_lock(dir, 0);
5811 if (dir->index_cnt == (u64)-1) {
9b378f6a
FM
5812 ret = btrfs_inode_delayed_dir_index_count(dir);
5813 if (ret) {
5814 ret = btrfs_set_inode_index_count(dir);
5815 if (ret)
8e7f82de 5816 goto out;
9b378f6a
FM
5817 }
5818 }
5819
35795036
FM
5820 /* index_cnt is the index number of next new entry, so decrement it. */
5821 *index = dir->index_cnt - 1;
8e7f82de
FM
5822out:
5823 btrfs_inode_unlock(dir, 0);
9b378f6a 5824
8e7f82de 5825 return ret;
9b378f6a
FM
5826}
5827
23b5ec74
JB
5828/*
5829 * All this infrastructure exists because dir_emit can fault, and we are holding
5830 * the tree lock when doing readdir. For now just allocate a buffer and copy
5831 * our information into that, and then dir_emit from the buffer. This is
5832 * similar to what NFS does, only we don't keep the buffer around in pagecache
5833 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5834 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5835 * tree lock.
5836 */
5837static int btrfs_opendir(struct inode *inode, struct file *file)
5838{
5839 struct btrfs_file_private *private;
9b378f6a
FM
5840 u64 last_index;
5841 int ret;
5842
5843 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5844 if (ret)
5845 return ret;
23b5ec74
JB
5846
5847 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5848 if (!private)
5849 return -ENOMEM;
9b378f6a 5850 private->last_index = last_index;
23b5ec74
JB
5851 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5852 if (!private->filldir_buf) {
5853 kfree(private);
5854 return -ENOMEM;
5855 }
5856 file->private_data = private;
5857 return 0;
5858}
5859
e60aa5da
FM
5860static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5861{
5862 struct btrfs_file_private *private = file->private_data;
5863 int ret;
5864
5865 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5866 &private->last_index);
5867 if (ret)
5868 return ret;
5869
5870 return generic_file_llseek(file, offset, whence);
5871}
5872
23b5ec74
JB
5873struct dir_entry {
5874 u64 ino;
5875 u64 offset;
5876 unsigned type;
5877 int name_len;
5878};
5879
5880static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5881{
5882 while (entries--) {
5883 struct dir_entry *entry = addr;
5884 char *name = (char *)(entry + 1);
5885
92d32170
DS
5886 ctx->pos = get_unaligned(&entry->offset);
5887 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5888 get_unaligned(&entry->ino),
5889 get_unaligned(&entry->type)))
23b5ec74 5890 return 1;
92d32170
DS
5891 addr += sizeof(struct dir_entry) +
5892 get_unaligned(&entry->name_len);
23b5ec74
JB
5893 ctx->pos++;
5894 }
5895 return 0;
5896}
5897
9cdda8d3 5898static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5899{
9cdda8d3 5900 struct inode *inode = file_inode(file);
39279cc3 5901 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5902 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5903 struct btrfs_dir_item *di;
5904 struct btrfs_key key;
5f39d397 5905 struct btrfs_key found_key;
39279cc3 5906 struct btrfs_path *path;
23b5ec74 5907 void *addr;
84af994b
RJ
5908 LIST_HEAD(ins_list);
5909 LIST_HEAD(del_list);
39279cc3 5910 int ret;
5f39d397
CM
5911 char *name_ptr;
5912 int name_len;
23b5ec74
JB
5913 int entries = 0;
5914 int total_len = 0;
02dbfc99 5915 bool put = false;
c2951f32 5916 struct btrfs_key location;
5f39d397 5917
9cdda8d3
AV
5918 if (!dir_emit_dots(file, ctx))
5919 return 0;
5920
49593bfa 5921 path = btrfs_alloc_path();
16cdcec7
MX
5922 if (!path)
5923 return -ENOMEM;
ff5714cc 5924
23b5ec74 5925 addr = private->filldir_buf;
e4058b54 5926 path->reada = READA_FORWARD;
49593bfa 5927
9b378f6a
FM
5928 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5929 &ins_list, &del_list);
16cdcec7 5930
23b5ec74 5931again:
c2951f32 5932 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5933 key.offset = ctx->pos;
4a0cc7ca 5934 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5935
a8ce68fd 5936 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
23b5ec74 5937 struct dir_entry *entry;
a8ce68fd 5938 struct extent_buffer *leaf = path->nodes[0];
94a48aef 5939 u8 ftype;
5f39d397
CM
5940
5941 if (found_key.objectid != key.objectid)
39279cc3 5942 break;
c2951f32 5943 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5944 break;
9cdda8d3 5945 if (found_key.offset < ctx->pos)
a8ce68fd 5946 continue;
9b378f6a
FM
5947 if (found_key.offset > private->last_index)
5948 break;
c2951f32 5949 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
a8ce68fd
GN
5950 continue;
5951 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
c2951f32 5952 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5953 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5954 PAGE_SIZE) {
5955 btrfs_release_path(path);
5956 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5957 if (ret)
5958 goto nopos;
5959 addr = private->filldir_buf;
5960 entries = 0;
5961 total_len = 0;
5962 goto again;
c2951f32 5963 }
23b5ec74 5964
94a48aef 5965 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
23b5ec74 5966 entry = addr;
23b5ec74 5967 name_ptr = (char *)(entry + 1);
94a48aef
OS
5968 read_extent_buffer(leaf, name_ptr,
5969 (unsigned long)(di + 1), name_len);
5970 put_unaligned(name_len, &entry->name_len);
5971 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
c2951f32 5972 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5973 put_unaligned(location.objectid, &entry->ino);
5974 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5975 entries++;
5976 addr += sizeof(struct dir_entry) + name_len;
5977 total_len += sizeof(struct dir_entry) + name_len;
39279cc3 5978 }
a8ce68fd
GN
5979 /* Catch error encountered during iteration */
5980 if (ret < 0)
5981 goto err;
5982
23b5ec74
JB
5983 btrfs_release_path(path);
5984
5985 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5986 if (ret)
5987 goto nopos;
49593bfa 5988
d2fbb2b5 5989 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5990 if (ret)
bc4ef759
DS
5991 goto nopos;
5992
db62efbb
ZB
5993 /*
5994 * Stop new entries from being returned after we return the last
5995 * entry.
5996 *
5997 * New directory entries are assigned a strictly increasing
5998 * offset. This means that new entries created during readdir
5999 * are *guaranteed* to be seen in the future by that readdir.
6000 * This has broken buggy programs which operate on names as
6001 * they're returned by readdir. Until we re-use freed offsets
6002 * we have this hack to stop new entries from being returned
6003 * under the assumption that they'll never reach this huge
6004 * offset.
6005 *
6006 * This is being careful not to overflow 32bit loff_t unless the
6007 * last entry requires it because doing so has broken 32bit apps
6008 * in the past.
6009 */
c2951f32
JM
6010 if (ctx->pos >= INT_MAX)
6011 ctx->pos = LLONG_MAX;
6012 else
6013 ctx->pos = INT_MAX;
39279cc3
CM
6014nopos:
6015 ret = 0;
6016err:
02dbfc99
OS
6017 if (put)
6018 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6019 btrfs_free_path(path);
39279cc3
CM
6020 return ret;
6021}
6022
39279cc3 6023/*
54aa1f4d 6024 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6025 * inode changes. But, it is most likely to find the inode in cache.
6026 * FIXME, needs more benchmarking...there are no reasons other than performance
6027 * to keep or drop this code.
6028 */
7152b425 6029static int btrfs_dirty_inode(struct btrfs_inode *inode)
39279cc3 6030{
7152b425
DS
6031 struct btrfs_root *root = inode->root;
6032 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6033 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6034 int ret;
6035
7152b425 6036 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
22c44fe6 6037 return 0;
39279cc3 6038
7a7eaa40 6039 trans = btrfs_join_transaction(root);
22c44fe6
JB
6040 if (IS_ERR(trans))
6041 return PTR_ERR(trans);
8929ecfa 6042
8b9d0322 6043 ret = btrfs_update_inode(trans, inode);
2199cb0f 6044 if (ret == -ENOSPC || ret == -EDQUOT) {
94b60442 6045 /* whoops, lets try again with the full transaction */
3a45bb20 6046 btrfs_end_transaction(trans);
94b60442 6047 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6048 if (IS_ERR(trans))
6049 return PTR_ERR(trans);
8929ecfa 6050
8b9d0322 6051 ret = btrfs_update_inode(trans, inode);
94b60442 6052 }
3a45bb20 6053 btrfs_end_transaction(trans);
7152b425 6054 if (inode->delayed_node)
2ff7e61e 6055 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6056
6057 return ret;
6058}
6059
6060/*
6061 * This is a copy of file_update_time. We need this so we can return error on
6062 * ENOSPC for updating the inode in the case of file write and mmap writes.
6063 */
913e9928 6064static int btrfs_update_time(struct inode *inode, int flags)
22c44fe6 6065{
2bc55652 6066 struct btrfs_root *root = BTRFS_I(inode)->root;
a666ce9b 6067 bool dirty;
2bc55652
AB
6068
6069 if (btrfs_root_readonly(root))
6070 return -EROFS;
6071
bb7cc0a6 6072 dirty = inode_update_timestamps(inode, flags);
7152b425 6073 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
39279cc3
CM
6074}
6075
d352ac68
CM
6076/*
6077 * helper to find a free sequence number in a given directory. This current
6078 * code is very simple, later versions will do smarter things in the btree
6079 */
877574e2 6080int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6081{
6082 int ret = 0;
6083
877574e2
NB
6084 if (dir->index_cnt == (u64)-1) {
6085 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6086 if (ret) {
6087 ret = btrfs_set_inode_index_count(dir);
6088 if (ret)
6089 return ret;
6090 }
aec7477b
JB
6091 }
6092
877574e2
NB
6093 *index = dir->index_cnt;
6094 dir->index_cnt++;
aec7477b
JB
6095
6096 return ret;
6097}
6098
b0d5d10f
CM
6099static int btrfs_insert_inode_locked(struct inode *inode)
6100{
6101 struct btrfs_iget_args args;
0202e83f
DS
6102
6103 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
6104 args.root = BTRFS_I(inode)->root;
6105
6106 return insert_inode_locked4(inode,
6107 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6108 btrfs_find_actor, &args);
6109}
6110
3538d68d
OS
6111int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6112 unsigned int *trans_num_items)
6113{
6114 struct inode *dir = args->dir;
6115 struct inode *inode = args->inode;
6116 int ret;
6117
ab3c5c18
STD
6118 if (!args->orphan) {
6119 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6120 &args->fname);
6121 if (ret)
6122 return ret;
ab3c5c18
STD
6123 }
6124
3538d68d 6125 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
ab3c5c18
STD
6126 if (ret) {
6127 fscrypt_free_filename(&args->fname);
3538d68d 6128 return ret;
ab3c5c18 6129 }
3538d68d
OS
6130
6131 /* 1 to add inode item */
6132 *trans_num_items = 1;
6133 /* 1 to add compression property */
6134 if (BTRFS_I(dir)->prop_compress)
6135 (*trans_num_items)++;
6136 /* 1 to add default ACL xattr */
6137 if (args->default_acl)
6138 (*trans_num_items)++;
6139 /* 1 to add access ACL xattr */
6140 if (args->acl)
6141 (*trans_num_items)++;
6142#ifdef CONFIG_SECURITY
6143 /* 1 to add LSM xattr */
6144 if (dir->i_security)
6145 (*trans_num_items)++;
6146#endif
6147 if (args->orphan) {
6148 /* 1 to add orphan item */
6149 (*trans_num_items)++;
6150 } else {
6151 /*
3538d68d
OS
6152 * 1 to add dir item
6153 * 1 to add dir index
6154 * 1 to update parent inode item
97bdf1a9
FM
6155 *
6156 * No need for 1 unit for the inode ref item because it is
6157 * inserted in a batch together with the inode item at
6158 * btrfs_create_new_inode().
3538d68d 6159 */
97bdf1a9 6160 *trans_num_items += 3;
3538d68d
OS
6161 }
6162 return 0;
6163}
6164
6165void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6166{
6167 posix_acl_release(args->acl);
6168 posix_acl_release(args->default_acl);
ab3c5c18 6169 fscrypt_free_filename(&args->fname);
3538d68d
OS
6170}
6171
19aee8de
AJ
6172/*
6173 * Inherit flags from the parent inode.
6174 *
6175 * Currently only the compression flags and the cow flags are inherited.
6176 */
7a0443f0 6177static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
19aee8de
AJ
6178{
6179 unsigned int flags;
6180
7a0443f0 6181 flags = dir->flags;
19aee8de
AJ
6182
6183 if (flags & BTRFS_INODE_NOCOMPRESS) {
7a0443f0
DS
6184 inode->flags &= ~BTRFS_INODE_COMPRESS;
6185 inode->flags |= BTRFS_INODE_NOCOMPRESS;
19aee8de 6186 } else if (flags & BTRFS_INODE_COMPRESS) {
7a0443f0
DS
6187 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6188 inode->flags |= BTRFS_INODE_COMPRESS;
19aee8de
AJ
6189 }
6190
6191 if (flags & BTRFS_INODE_NODATACOW) {
7a0443f0
DS
6192 inode->flags |= BTRFS_INODE_NODATACOW;
6193 if (S_ISREG(inode->vfs_inode.i_mode))
6194 inode->flags |= BTRFS_INODE_NODATASUM;
19aee8de
AJ
6195 }
6196
7a0443f0 6197 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
19aee8de
AJ
6198}
6199
3538d68d 6200int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
caae78e0 6201 struct btrfs_new_inode_args *args)
39279cc3 6202{
d5acbc60 6203 struct timespec64 ts;
caae78e0 6204 struct inode *dir = args->dir;
3538d68d 6205 struct inode *inode = args->inode;
6db75318 6206 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
41044b41 6207 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
3538d68d 6208 struct btrfs_root *root;
5f39d397 6209 struct btrfs_inode_item *inode_item;
39279cc3 6210 struct btrfs_key *location;
5f39d397 6211 struct btrfs_path *path;
6437d458 6212 u64 objectid;
9c58309d
CM
6213 struct btrfs_inode_ref *ref;
6214 struct btrfs_key key[2];
6215 u32 sizes[2];
b7ef5f3a 6216 struct btrfs_item_batch batch;
9c58309d 6217 unsigned long ptr;
39279cc3 6218 int ret;
39279cc3 6219
5f39d397 6220 path = btrfs_alloc_path();
d8926bb3 6221 if (!path)
a1fd0c35 6222 return -ENOMEM;
39279cc3 6223
3538d68d
OS
6224 if (!args->subvol)
6225 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6226 root = BTRFS_I(inode)->root;
6227
6437d458 6228 ret = btrfs_get_free_objectid(root, &objectid);
caae78e0
OS
6229 if (ret)
6230 goto out;
581bb050
LZ
6231 inode->i_ino = objectid;
6232
caae78e0
OS
6233 if (args->orphan) {
6234 /*
6235 * O_TMPFILE, set link count to 0, so that after this point, we
6236 * fill in an inode item with the correct link count.
6237 */
6238 set_nlink(inode, 0);
6239 } else {
1abe9b8a 6240 trace_btrfs_inode_request(dir);
6241
caae78e0
OS
6242 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6243 if (ret)
6244 goto out;
aec7477b 6245 }
49024388
FM
6246 /* index_cnt is ignored for everything but a dir. */
6247 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
e02119d5 6248 BTRFS_I(inode)->generation = trans->transid;
76195853 6249 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6250
ed9b50a1
JB
6251 /*
6252 * We don't have any capability xattrs set here yet, shortcut any
6253 * queries for the xattrs here. If we add them later via the inode
6254 * security init path or any other path this flag will be cleared.
6255 */
6256 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6257
caae78e0
OS
6258 /*
6259 * Subvolumes don't inherit flags from their parent directory.
6260 * Originally this was probably by accident, but we probably can't
6261 * change it now without compatibility issues.
6262 */
6263 if (!args->subvol)
7a0443f0 6264 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
305eaac0 6265
a1fd0c35 6266 if (S_ISREG(inode->i_mode)) {
305eaac0
OS
6267 if (btrfs_test_opt(fs_info, NODATASUM))
6268 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6269 if (btrfs_test_opt(fs_info, NODATACOW))
6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6271 BTRFS_INODE_NODATASUM;
6272 }
6273
caae78e0
OS
6274 location = &BTRFS_I(inode)->location;
6275 location->objectid = objectid;
6276 location->offset = 0;
6277 location->type = BTRFS_INODE_ITEM_KEY;
6278
6279 ret = btrfs_insert_inode_locked(inode);
6280 if (ret < 0) {
6281 if (!args->orphan)
6282 BTRFS_I(dir)->index_cnt--;
6283 goto out;
6284 }
6285
5dc562c5
JB
6286 /*
6287 * We could have gotten an inode number from somebody who was fsynced
6288 * and then removed in this same transaction, so let's just set full
6289 * sync since it will be a full sync anyway and this will blow away the
6290 * old info in the log.
6291 */
23e3337f 6292 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5 6293
9c58309d 6294 key[0].objectid = objectid;
962a298f 6295 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6296 key[0].offset = 0;
6297
9c58309d 6298 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5 6299
caae78e0 6300 if (!args->orphan) {
ef3b9af5
FM
6301 /*
6302 * Start new inodes with an inode_ref. This is slightly more
6303 * efficient for small numbers of hard links since they will
6304 * be packed into one item. Extended refs will kick in if we
6305 * add more hard links than can fit in the ref item.
6306 */
6307 key[1].objectid = objectid;
962a298f 6308 key[1].type = BTRFS_INODE_REF_KEY;
caae78e0 6309 if (args->subvol) {
23c24ef8 6310 key[1].offset = objectid;
caae78e0
OS
6311 sizes[1] = 2 + sizeof(*ref);
6312 } else {
6313 key[1].offset = btrfs_ino(BTRFS_I(dir));
e43eec81 6314 sizes[1] = name->len + sizeof(*ref);
caae78e0 6315 }
ef3b9af5 6316 }
9c58309d 6317
b7ef5f3a
FM
6318 batch.keys = &key[0];
6319 batch.data_sizes = &sizes[0];
caae78e0
OS
6320 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6321 batch.nr = args->orphan ? 1 : 2;
b7ef5f3a 6322 ret = btrfs_insert_empty_items(trans, root, path, &batch);
caae78e0
OS
6323 if (ret != 0) {
6324 btrfs_abort_transaction(trans, ret);
6325 goto discard;
6326 }
5f39d397 6327
d5acbc60
LT
6328 ts = simple_inode_init_ts(inode);
6329 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6330 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
9cc97d64 6331
caae78e0
OS
6332 /*
6333 * We're going to fill the inode item now, so at this point the inode
6334 * must be fully initialized.
6335 */
6336
5f39d397
CM
6337 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6338 struct btrfs_inode_item);
b159fa28 6339 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6340 sizeof(*inode_item));
e02119d5 6341 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6342
caae78e0 6343 if (!args->orphan) {
ef3b9af5
FM
6344 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6345 struct btrfs_inode_ref);
ef3b9af5 6346 ptr = (unsigned long)(ref + 1);
caae78e0
OS
6347 if (args->subvol) {
6348 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6349 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6350 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6351 } else {
e43eec81
STD
6352 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6353 name->len);
caae78e0
OS
6354 btrfs_set_inode_ref_index(path->nodes[0], ref,
6355 BTRFS_I(inode)->dir_index);
e43eec81
STD
6356 write_extent_buffer(path->nodes[0], name->name, ptr,
6357 name->len);
caae78e0 6358 }
ef3b9af5 6359 }
9c58309d 6360
50564b65 6361 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
814e7718
FM
6362 /*
6363 * We don't need the path anymore, plus inheriting properties, adding
6364 * ACLs, security xattrs, orphan item or adding the link, will result in
6365 * allocating yet another path. So just free our path.
6366 */
6367 btrfs_free_path(path);
6368 path = NULL;
5f39d397 6369
6c3636eb
STD
6370 if (args->subvol) {
6371 struct inode *parent;
6372
6373 /*
6374 * Subvolumes inherit properties from their parent subvolume,
6375 * not the directory they were created in.
6376 */
6377 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6378 BTRFS_I(dir)->root);
6379 if (IS_ERR(parent)) {
6380 ret = PTR_ERR(parent);
6381 } else {
6382 ret = btrfs_inode_inherit_props(trans, inode, parent);
6383 iput(parent);
6384 }
6385 } else {
6386 ret = btrfs_inode_inherit_props(trans, inode, dir);
6387 }
6388 if (ret) {
6389 btrfs_err(fs_info,
6390 "error inheriting props for ino %llu (root %llu): %d",
6391 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6392 ret);
6393 }
6394
6395 /*
6396 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6397 * probably a bug.
6398 */
6399 if (!args->subvol) {
6400 ret = btrfs_init_inode_security(trans, args);
6401 if (ret) {
6402 btrfs_abort_transaction(trans, ret);
6403 goto discard;
6404 }
6405 }
6406
4c45a4f4 6407 inode_tree_add(BTRFS_I(inode));
1abe9b8a 6408
6409 trace_btrfs_inode_new(inode);
d9094414 6410 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6411
8ea05e3a
AB
6412 btrfs_update_root_times(trans, root);
6413
caae78e0
OS
6414 if (args->orphan) {
6415 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6416 } else {
6417 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 6418 0, BTRFS_I(inode)->dir_index);
caae78e0
OS
6419 }
6420 if (ret) {
6421 btrfs_abort_transaction(trans, ret);
6422 goto discard;
6423 }
63541927 6424
814e7718 6425 return 0;
b0d5d10f 6426
caae78e0 6427discard:
a1fd0c35
OS
6428 /*
6429 * discard_new_inode() calls iput(), but the caller owns the reference
6430 * to the inode.
6431 */
6432 ihold(inode);
32955c54 6433 discard_new_inode(inode);
caae78e0 6434out:
5f39d397 6435 btrfs_free_path(path);
a1fd0c35 6436 return ret;
39279cc3
CM
6437}
6438
d352ac68
CM
6439/*
6440 * utility function to add 'inode' into 'parent_inode' with
6441 * a give name and a given sequence number.
6442 * if 'add_backref' is true, also insert a backref from the
6443 * inode to the parent directory.
6444 */
e02119d5 6445int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6446 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6db75318 6447 const struct fscrypt_str *name, int add_backref, u64 index)
39279cc3 6448{
4df27c4d 6449 int ret = 0;
39279cc3 6450 struct btrfs_key key;
db0a669f
NB
6451 struct btrfs_root *root = parent_inode->root;
6452 u64 ino = btrfs_ino(inode);
6453 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6454
33345d01 6455 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6456 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6457 } else {
33345d01 6458 key.objectid = ino;
962a298f 6459 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6460 key.offset = 0;
6461 }
6462
33345d01 6463 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6464 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa 6465 root->root_key.objectid, parent_ino,
e43eec81 6466 index, name);
4df27c4d 6467 } else if (add_backref) {
e43eec81
STD
6468 ret = btrfs_insert_inode_ref(trans, root, name,
6469 ino, parent_ino, index);
4df27c4d 6470 }
39279cc3 6471
79787eaa
JM
6472 /* Nothing to clean up yet */
6473 if (ret)
6474 return ret;
4df27c4d 6475
e43eec81 6476 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
db0a669f 6477 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6478 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6479 goto fail_dir_item;
6480 else if (ret) {
66642832 6481 btrfs_abort_transaction(trans, ret);
79787eaa 6482 return ret;
39279cc3 6483 }
79787eaa 6484
db0a669f 6485 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
e43eec81 6486 name->len * 2);
db0a669f 6487 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6488 /*
6489 * If we are replaying a log tree, we do not want to update the mtime
6490 * and ctime of the parent directory with the current time, since the
6491 * log replay procedure is responsible for setting them to their correct
6492 * values (the ones it had when the fsync was done).
6493 */
2a9462de 6494 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
b1c38a13
JL
6495 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6496 inode_set_ctime_current(&parent_inode->vfs_inode));
5338e43a 6497
8b9d0322 6498 ret = btrfs_update_inode(trans, parent_inode);
79787eaa 6499 if (ret)
66642832 6500 btrfs_abort_transaction(trans, ret);
39279cc3 6501 return ret;
fe66a05a
CM
6502
6503fail_dir_item:
6504 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6505 u64 local_index;
6506 int err;
3ee1c553 6507 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa 6508 root->root_key.objectid, parent_ino,
e43eec81 6509 &local_index, name);
1690dd41
JT
6510 if (err)
6511 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6512 } else if (add_backref) {
6513 u64 local_index;
6514 int err;
6515
e43eec81
STD
6516 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6517 &local_index);
1690dd41
JT
6518 if (err)
6519 btrfs_abort_transaction(trans, err);
fe66a05a 6520 }
1690dd41
JT
6521
6522 /* Return the original error code */
fe66a05a 6523 return ret;
39279cc3
CM
6524}
6525
5f465bf1
OS
6526static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6527 struct inode *inode)
618e21d5 6528{
41044b41 6529 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
618e21d5 6530 struct btrfs_root *root = BTRFS_I(dir)->root;
3538d68d
OS
6531 struct btrfs_new_inode_args new_inode_args = {
6532 .dir = dir,
6533 .dentry = dentry,
6534 .inode = inode,
6535 };
6536 unsigned int trans_num_items;
5f465bf1 6537 struct btrfs_trans_handle *trans;
618e21d5 6538 int err;
618e21d5 6539
3538d68d 6540 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
6541 if (err)
6542 goto out_inode;
3538d68d
OS
6543
6544 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 6545 if (IS_ERR(trans)) {
3538d68d
OS
6546 err = PTR_ERR(trans);
6547 goto out_new_inode_args;
a1fd0c35 6548 }
1832a6d5 6549
caae78e0
OS
6550 err = btrfs_create_new_inode(trans, &new_inode_args);
6551 if (!err)
6552 d_instantiate_new(dentry, inode);
b0d5d10f 6553
3a45bb20 6554 btrfs_end_transaction(trans);
5f465bf1 6555 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
6556out_new_inode_args:
6557 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
6558out_inode:
6559 if (err)
6560 iput(inode);
618e21d5
JB
6561 return err;
6562}
6563
5ebb29be 6564static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
5f465bf1
OS
6565 struct dentry *dentry, umode_t mode, dev_t rdev)
6566{
6567 struct inode *inode;
6568
6569 inode = new_inode(dir->i_sb);
6570 if (!inode)
6571 return -ENOMEM;
f2d40141 6572 inode_init_owner(idmap, inode, dir, mode);
5f465bf1
OS
6573 inode->i_op = &btrfs_special_inode_operations;
6574 init_special_inode(inode, inode->i_mode, rdev);
6575 return btrfs_create_common(dir, dentry, inode);
6576}
6577
6c960e68 6578static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6579 struct dentry *dentry, umode_t mode, bool excl)
39279cc3 6580{
a1fd0c35 6581 struct inode *inode;
39279cc3 6582
a1fd0c35
OS
6583 inode = new_inode(dir->i_sb);
6584 if (!inode)
6585 return -ENOMEM;
f2d40141 6586 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
6587 inode->i_fop = &btrfs_file_operations;
6588 inode->i_op = &btrfs_file_inode_operations;
6589 inode->i_mapping->a_ops = &btrfs_aops;
5f465bf1 6590 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6591}
6592
6593static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6594 struct dentry *dentry)
6595{
271dba45 6596 struct btrfs_trans_handle *trans = NULL;
39279cc3 6597 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6598 struct inode *inode = d_inode(old_dentry);
41044b41 6599 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
ab3c5c18 6600 struct fscrypt_name fname;
00e4e6b3 6601 u64 index;
39279cc3
CM
6602 int err;
6603 int drop_inode = 0;
6604
4a8be425 6605 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6606 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6607 return -EXDEV;
4a8be425 6608
f186373f 6609 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6610 return -EMLINK;
4a8be425 6611
ab3c5c18
STD
6612 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6613 if (err)
6614 goto fail;
6615
877574e2 6616 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6617 if (err)
6618 goto fail;
6619
a22285a6 6620 /*
7e6b6465 6621 * 2 items for inode and inode ref
a22285a6 6622 * 2 items for dir items
7e6b6465 6623 * 1 item for parent inode
399b0bbf 6624 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6625 */
399b0bbf 6626 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6627 if (IS_ERR(trans)) {
6628 err = PTR_ERR(trans);
271dba45 6629 trans = NULL;
a22285a6
YZ
6630 goto fail;
6631 }
5f39d397 6632
67de1176
MX
6633 /* There are several dir indexes for this inode, clear the cache. */
6634 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6635 inc_nlink(inode);
0c4d2d95 6636 inode_inc_iversion(inode);
2a9462de 6637 inode_set_ctime_current(inode);
7de9c6ee 6638 ihold(inode);
e9976151 6639 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6640
81512e89 6641 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6db75318 6642 &fname.disk_name, 1, index);
5f39d397 6643
a5719521 6644 if (err) {
54aa1f4d 6645 drop_inode = 1;
a5719521 6646 } else {
10d9f309 6647 struct dentry *parent = dentry->d_parent;
d4682ba0 6648
8b9d0322 6649 err = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
6650 if (err)
6651 goto fail;
ef3b9af5
FM
6652 if (inode->i_nlink == 1) {
6653 /*
6654 * If new hard link count is 1, it's a file created
6655 * with open(2) O_TMPFILE flag.
6656 */
3d6ae7bb 6657 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6658 if (err)
6659 goto fail;
6660 }
08c422c2 6661 d_instantiate(dentry, inode);
88d2beec 6662 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
a5719521 6663 }
39279cc3 6664
1832a6d5 6665fail:
ab3c5c18 6666 fscrypt_free_filename(&fname);
271dba45 6667 if (trans)
3a45bb20 6668 btrfs_end_transaction(trans);
39279cc3
CM
6669 if (drop_inode) {
6670 inode_dec_link_count(inode);
6671 iput(inode);
6672 }
2ff7e61e 6673 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6674 return err;
6675}
6676
c54bd91e 6677static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6678 struct dentry *dentry, umode_t mode)
39279cc3 6679{
a1fd0c35 6680 struct inode *inode;
39279cc3 6681
a1fd0c35
OS
6682 inode = new_inode(dir->i_sb);
6683 if (!inode)
6684 return -ENOMEM;
f2d40141 6685 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
a1fd0c35
OS
6686 inode->i_op = &btrfs_dir_inode_operations;
6687 inode->i_fop = &btrfs_dir_file_operations;
5f465bf1 6688 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6689}
6690
c8b97818 6691static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6692 struct page *page,
c8b97818
CM
6693 struct btrfs_file_extent_item *item)
6694{
6695 int ret;
6696 struct extent_buffer *leaf = path->nodes[0];
6697 char *tmp;
6698 size_t max_size;
6699 unsigned long inline_size;
6700 unsigned long ptr;
261507a0 6701 int compress_type;
c8b97818 6702
261507a0 6703 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818 6704 max_size = btrfs_file_extent_ram_bytes(leaf, item);
437bd07e 6705 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
c8b97818 6706 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6707 if (!tmp)
6708 return -ENOMEM;
c8b97818
CM
6709 ptr = btrfs_file_extent_inline_start(item);
6710
6711 read_extent_buffer(leaf, tmp, ptr, inline_size);
6712
09cbfeaf 6713 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
a982fc82 6714 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
e1699d2d
ZB
6715
6716 /*
6717 * decompression code contains a memset to fill in any space between the end
6718 * of the uncompressed data and the end of max_size in case the decompressed
6719 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6720 * the end of an inline extent and the beginning of the next block, so we
6721 * cover that region here.
6722 */
6723
a982fc82
QW
6724 if (max_size < PAGE_SIZE)
6725 memzero_page(page, max_size, PAGE_SIZE - max_size);
c8b97818 6726 kfree(tmp);
166ae5a4 6727 return ret;
c8b97818
CM
6728}
6729
a982fc82
QW
6730static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6731 struct page *page)
6732{
6733 struct btrfs_file_extent_item *fi;
6734 void *kaddr;
6735 size_t copy_size;
6736
6737 if (!page || PageUptodate(page))
6738 return 0;
6739
6740 ASSERT(page_offset(page) == 0);
6741
6742 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6743 struct btrfs_file_extent_item);
6744 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6745 return uncompress_inline(path, page, fi);
6746
6747 copy_size = min_t(u64, PAGE_SIZE,
6748 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6749 kaddr = kmap_local_page(page);
6750 read_extent_buffer(path->nodes[0], kaddr,
6751 btrfs_file_extent_inline_start(fi), copy_size);
6752 kunmap_local(kaddr);
6753 if (copy_size < PAGE_SIZE)
6754 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6755 return 0;
6756}
6757
43dd529a
DS
6758/*
6759 * Lookup the first extent overlapping a range in a file.
6760 *
39b07b5d
OS
6761 * @inode: file to search in
6762 * @page: page to read extent data into if the extent is inline
39b07b5d
OS
6763 * @start: file offset
6764 * @len: length of range starting at @start
6765 *
43dd529a
DS
6766 * Return the first &struct extent_map which overlaps the given range, reading
6767 * it from the B-tree and caching it if necessary. Note that there may be more
6768 * extents which overlap the given range after the returned extent_map.
d352ac68 6769 *
39b07b5d
OS
6770 * If @page is not NULL and the extent is inline, this also reads the extent
6771 * data directly into the page and marks the extent up to date in the io_tree.
6772 *
6773 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6774 */
fc4f21b1 6775struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
8bab0a30 6776 struct page *page, u64 start, u64 len)
a52d9a80 6777{
3ffbd68c 6778 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6779 int ret = 0;
a52d9a80
CM
6780 u64 extent_start = 0;
6781 u64 extent_end = 0;
fc4f21b1 6782 u64 objectid = btrfs_ino(inode);
7e74e235 6783 int extent_type = -1;
f421950f 6784 struct btrfs_path *path = NULL;
fc4f21b1 6785 struct btrfs_root *root = inode->root;
a52d9a80 6786 struct btrfs_file_extent_item *item;
5f39d397
CM
6787 struct extent_buffer *leaf;
6788 struct btrfs_key found_key;
a52d9a80 6789 struct extent_map *em = NULL;
fc4f21b1 6790 struct extent_map_tree *em_tree = &inode->extent_tree;
a52d9a80 6791
890871be 6792 read_lock(&em_tree->lock);
d1310b2e 6793 em = lookup_extent_mapping(em_tree, start, len);
890871be 6794 read_unlock(&em_tree->lock);
d1310b2e 6795
a52d9a80 6796 if (em) {
e1c4b745
CM
6797 if (em->start > start || em->start + em->len <= start)
6798 free_extent_map(em);
6799 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6800 free_extent_map(em);
6801 else
6802 goto out;
a52d9a80 6803 }
172ddd60 6804 em = alloc_extent_map();
a52d9a80 6805 if (!em) {
1028d1c4 6806 ret = -ENOMEM;
d1310b2e 6807 goto out;
a52d9a80 6808 }
d1310b2e 6809 em->start = EXTENT_MAP_HOLE;
445a6944 6810 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6811 em->len = (u64)-1;
c8b97818 6812 em->block_len = (u64)-1;
f421950f 6813
bee6ec82 6814 path = btrfs_alloc_path();
f421950f 6815 if (!path) {
1028d1c4 6816 ret = -ENOMEM;
bee6ec82 6817 goto out;
f421950f
CM
6818 }
6819
bee6ec82
LB
6820 /* Chances are we'll be called again, so go ahead and do readahead */
6821 path->reada = READA_FORWARD;
4d7240f0
JB
6822
6823 /*
6824 * The same explanation in load_free_space_cache applies here as well,
6825 * we only read when we're loading the free space cache, and at that
6826 * point the commit_root has everything we need.
6827 */
6828 if (btrfs_is_free_space_inode(inode)) {
6829 path->search_commit_root = 1;
6830 path->skip_locking = 1;
6831 }
51899412 6832
5c9a702e 6833 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6834 if (ret < 0) {
a52d9a80 6835 goto out;
b8eeab7f 6836 } else if (ret > 0) {
a52d9a80
CM
6837 if (path->slots[0] == 0)
6838 goto not_found;
6839 path->slots[0]--;
1028d1c4 6840 ret = 0;
a52d9a80
CM
6841 }
6842
5f39d397
CM
6843 leaf = path->nodes[0];
6844 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6845 struct btrfs_file_extent_item);
5f39d397 6846 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6847 if (found_key.objectid != objectid ||
694c12ed 6848 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6849 /*
6850 * If we backup past the first extent we want to move forward
6851 * and see if there is an extent in front of us, otherwise we'll
6852 * say there is a hole for our whole search range which can
6853 * cause problems.
6854 */
6855 extent_end = start;
6856 goto next;
a52d9a80
CM
6857 }
6858
694c12ed 6859 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6860 extent_start = found_key.offset;
a5eeb3d1 6861 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6862 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6863 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6864 /* Only regular file could have regular/prealloc extent */
6865 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6866 ret = -EUCLEAN;
6bf9e4bd
QW
6867 btrfs_crit(fs_info,
6868 "regular/prealloc extent found for non-regular inode %llu",
6869 btrfs_ino(inode));
6870 goto out;
6871 }
09ed2f16
LB
6872 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6873 extent_start);
694c12ed 6874 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6875 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6876 path->slots[0],
6877 extent_start);
9036c102 6878 }
25a50341 6879next:
9036c102
YZ
6880 if (start >= extent_end) {
6881 path->slots[0]++;
6882 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6883 ret = btrfs_next_leaf(root, path);
1028d1c4 6884 if (ret < 0)
9036c102 6885 goto out;
1028d1c4 6886 else if (ret > 0)
9036c102 6887 goto not_found;
1028d1c4 6888
9036c102 6889 leaf = path->nodes[0];
a52d9a80 6890 }
9036c102
YZ
6891 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6892 if (found_key.objectid != objectid ||
6893 found_key.type != BTRFS_EXTENT_DATA_KEY)
6894 goto not_found;
6895 if (start + len <= found_key.offset)
6896 goto not_found;
e2eca69d
WS
6897 if (start > found_key.offset)
6898 goto next;
02a033df
NB
6899
6900 /* New extent overlaps with existing one */
9036c102 6901 em->start = start;
70c8a91c 6902 em->orig_start = start;
9036c102 6903 em->len = found_key.offset - start;
02a033df
NB
6904 em->block_start = EXTENT_MAP_HOLE;
6905 goto insert;
9036c102
YZ
6906 }
6907
280f15cb 6908 btrfs_extent_item_to_extent_map(inode, path, item, em);
7ffbb598 6909
694c12ed
NB
6910 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6911 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6912 goto insert;
694c12ed 6913 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
affc5424
QW
6914 /*
6915 * Inline extent can only exist at file offset 0. This is
6916 * ensured by tree-checker and inline extent creation path.
6917 * Thus all members representing file offsets should be zero.
6918 */
affc5424
QW
6919 ASSERT(extent_start == 0);
6920 ASSERT(em->start == 0);
5f39d397 6921
a196a894
QW
6922 /*
6923 * btrfs_extent_item_to_extent_map() should have properly
6924 * initialized em members already.
6925 *
6926 * Other members are not utilized for inline extents.
6927 */
6928 ASSERT(em->block_start == EXTENT_MAP_INLINE);
946c2923 6929 ASSERT(em->len == fs_info->sectorsize);
e49aabd9 6930
a982fc82
QW
6931 ret = read_inline_extent(inode, path, page);
6932 if (ret < 0)
6933 goto out;
a52d9a80 6934 goto insert;
a52d9a80
CM
6935 }
6936not_found:
6937 em->start = start;
70c8a91c 6938 em->orig_start = start;
d1310b2e 6939 em->len = len;
5f39d397 6940 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6941insert:
1028d1c4 6942 ret = 0;
b3b4aa74 6943 btrfs_release_path(path);
d1310b2e 6944 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6945 btrfs_err(fs_info,
5d163e0e
JM
6946 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6947 em->start, em->len, start, len);
1028d1c4 6948 ret = -EIO;
a52d9a80
CM
6949 goto out;
6950 }
d1310b2e 6951
890871be 6952 write_lock(&em_tree->lock);
1028d1c4 6953 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6954 write_unlock(&em_tree->lock);
a52d9a80 6955out:
c6414280 6956 btrfs_free_path(path);
1abe9b8a 6957
fc4f21b1 6958 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6959
1028d1c4 6960 if (ret) {
a52d9a80 6961 free_extent_map(em);
1028d1c4 6962 return ERR_PTR(ret);
a52d9a80
CM
6963 }
6964 return em;
6965}
6966
64f54188 6967static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
53f2c206 6968 struct btrfs_dio_data *dio_data,
5f9a8a51
FM
6969 const u64 start,
6970 const u64 len,
6971 const u64 orig_start,
6972 const u64 block_start,
6973 const u64 block_len,
6974 const u64 orig_block_len,
6975 const u64 ram_bytes,
6976 const int type)
6977{
6978 struct extent_map *em = NULL;
53f2c206 6979 struct btrfs_ordered_extent *ordered;
5f9a8a51 6980
5f9a8a51 6981 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6982 em = create_io_em(inode, start, len, orig_start, block_start,
6983 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6984 BTRFS_COMPRESS_NONE, /* compress_type */
6985 type);
5f9a8a51
FM
6986 if (IS_ERR(em))
6987 goto out;
6988 }
53f2c206
BB
6989 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6990 block_start, block_len, 0,
6991 (1 << type) |
6992 (1 << BTRFS_ORDERED_DIRECT),
6993 BTRFS_COMPRESS_NONE);
6994 if (IS_ERR(ordered)) {
5f9a8a51
FM
6995 if (em) {
6996 free_extent_map(em);
4c0c8cfc
FM
6997 btrfs_drop_extent_map_range(inode, start,
6998 start + len - 1, false);
5f9a8a51 6999 }
53f2c206
BB
7000 em = ERR_CAST(ordered);
7001 } else {
7002 ASSERT(!dio_data->ordered);
7003 dio_data->ordered = ordered;
5f9a8a51
FM
7004 }
7005 out:
5f9a8a51
FM
7006
7007 return em;
7008}
7009
9fc6f911 7010static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
53f2c206 7011 struct btrfs_dio_data *dio_data,
4b46fce2
JB
7012 u64 start, u64 len)
7013{
9fc6f911
NB
7014 struct btrfs_root *root = inode->root;
7015 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 7016 struct extent_map *em;
4b46fce2
JB
7017 struct btrfs_key ins;
7018 u64 alloc_hint;
7019 int ret;
4b46fce2 7020
9fc6f911 7021 alloc_hint = get_extent_allocation_hint(inode, start, len);
776a838f 7022again:
0b246afa 7023 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7024 0, alloc_hint, &ins, 1, 1);
776a838f
NA
7025 if (ret == -EAGAIN) {
7026 ASSERT(btrfs_is_zoned(fs_info));
7027 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7028 TASK_UNINTERRUPTIBLE);
7029 goto again;
7030 }
00361589
JB
7031 if (ret)
7032 return ERR_PTR(ret);
4b46fce2 7033
53f2c206 7034 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
5f9a8a51 7035 ins.objectid, ins.offset, ins.offset,
6288d6ea 7036 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7037 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7038 if (IS_ERR(em))
9fc6f911
NB
7039 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7040 1);
de0ee0ed 7041
4b46fce2
JB
7042 return em;
7043}
7044
f4639636 7045static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
05947ae1
AJ
7046{
7047 struct btrfs_block_group *block_group;
f4639636 7048 bool readonly = false;
05947ae1
AJ
7049
7050 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7051 if (!block_group || block_group->ro)
f4639636 7052 readonly = true;
05947ae1
AJ
7053 if (block_group)
7054 btrfs_put_block_group(block_group);
7055 return readonly;
7056}
7057
46bfbb5c 7058/*
e4ecaf90
QW
7059 * Check if we can do nocow write into the range [@offset, @offset + @len)
7060 *
7061 * @offset: File offset
7062 * @len: The length to write, will be updated to the nocow writeable
7063 * range
7064 * @orig_start: (optional) Return the original file offset of the file extent
7065 * @orig_len: (optional) Return the original on-disk length of the file extent
7066 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7067 * @strict: if true, omit optimizations that might force us into unnecessary
7068 * cow. e.g., don't trust generation number.
e4ecaf90 7069 *
e4ecaf90
QW
7070 * Return:
7071 * >0 and update @len if we can do nocow write
7072 * 0 if we can't do nocow write
7073 * <0 if error happened
7074 *
7075 * NOTE: This only checks the file extents, caller is responsible to wait for
7076 * any ordered extents.
46bfbb5c 7077 */
00361589 7078noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7079 u64 *orig_start, u64 *orig_block_len,
26ce9114 7080 u64 *ram_bytes, bool nowait, bool strict)
46bfbb5c 7081{
41044b41 7082 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
619104ba 7083 struct can_nocow_file_extent_args nocow_args = { 0 };
46bfbb5c
CM
7084 struct btrfs_path *path;
7085 int ret;
7086 struct extent_buffer *leaf;
7087 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7088 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7089 struct btrfs_file_extent_item *fi;
7090 struct btrfs_key key;
46bfbb5c 7091 int found_type;
e77751aa 7092
46bfbb5c
CM
7093 path = btrfs_alloc_path();
7094 if (!path)
7095 return -ENOMEM;
26ce9114 7096 path->nowait = nowait;
46bfbb5c 7097
f85b7379
DS
7098 ret = btrfs_lookup_file_extent(NULL, root, path,
7099 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7100 if (ret < 0)
7101 goto out;
7102
46bfbb5c 7103 if (ret == 1) {
619104ba 7104 if (path->slots[0] == 0) {
46bfbb5c
CM
7105 /* can't find the item, must cow */
7106 ret = 0;
7107 goto out;
7108 }
619104ba 7109 path->slots[0]--;
46bfbb5c
CM
7110 }
7111 ret = 0;
7112 leaf = path->nodes[0];
619104ba 7113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4a0cc7ca 7114 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7115 key.type != BTRFS_EXTENT_DATA_KEY) {
7116 /* not our file or wrong item type, must cow */
7117 goto out;
7118 }
7119
7120 if (key.offset > offset) {
7121 /* Wrong offset, must cow */
7122 goto out;
7123 }
7124
619104ba 7125 if (btrfs_file_extent_end(path) <= offset)
7ee9e440
JB
7126 goto out;
7127
619104ba
FM
7128 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7129 found_type = btrfs_file_extent_type(leaf, fi);
7130 if (ram_bytes)
7131 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
e77751aa 7132
619104ba
FM
7133 nocow_args.start = offset;
7134 nocow_args.end = offset + *len - 1;
7135 nocow_args.strict = strict;
7136 nocow_args.free_path = true;
7ee9e440 7137
619104ba
FM
7138 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7139 /* can_nocow_file_extent() has freed the path. */
7140 path = NULL;
7ee9e440 7141
619104ba
FM
7142 if (ret != 1) {
7143 /* Treat errors as not being able to NOCOW. */
7144 ret = 0;
78d4295b 7145 goto out;
7ee9e440 7146 }
eb384b55 7147
619104ba
FM
7148 ret = 0;
7149 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
46bfbb5c 7150 goto out;
7b2b7085 7151
619104ba
FM
7152 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7153 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7b2b7085
MX
7154 u64 range_end;
7155
619104ba 7156 range_end = round_up(offset + nocow_args.num_bytes,
da17066c 7157 root->fs_info->sectorsize) - 1;
99be1a66 7158 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7b2b7085
MX
7159 if (ret) {
7160 ret = -EAGAIN;
7161 goto out;
7162 }
7163 }
7164
619104ba
FM
7165 if (orig_start)
7166 *orig_start = key.offset - nocow_args.extent_offset;
7167 if (orig_block_len)
7168 *orig_block_len = nocow_args.disk_num_bytes;
00361589 7169
619104ba 7170 *len = nocow_args.num_bytes;
46bfbb5c
CM
7171 ret = 1;
7172out:
7173 btrfs_free_path(path);
7174 return ret;
7175}
7176
eb838e73 7177static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
59094403
FM
7178 struct extent_state **cached_state,
7179 unsigned int iomap_flags)
eb838e73 7180{
59094403
FM
7181 const bool writing = (iomap_flags & IOMAP_WRITE);
7182 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7183 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
eb838e73
JB
7184 struct btrfs_ordered_extent *ordered;
7185 int ret = 0;
7186
7187 while (1) {
59094403 7188 if (nowait) {
83ae4133
JB
7189 if (!try_lock_extent(io_tree, lockstart, lockend,
7190 cached_state))
59094403
FM
7191 return -EAGAIN;
7192 } else {
570eb97b 7193 lock_extent(io_tree, lockstart, lockend, cached_state);
59094403 7194 }
eb838e73
JB
7195 /*
7196 * We're concerned with the entire range that we're going to be
01327610 7197 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7198 * extents in this range.
7199 */
a776c6fa 7200 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7201 lockend - lockstart + 1);
7202
7203 /*
7204 * We need to make sure there are no buffered pages in this
7205 * range either, we could have raced between the invalidate in
7206 * generic_file_direct_write and locking the extent. The
7207 * invalidate needs to happen so that reads after a write do not
7208 * get stale data.
7209 */
fc4adbff 7210 if (!ordered &&
051c98eb
DS
7211 (!writing || !filemap_range_has_page(inode->i_mapping,
7212 lockstart, lockend)))
eb838e73
JB
7213 break;
7214
570eb97b 7215 unlock_extent(io_tree, lockstart, lockend, cached_state);
eb838e73
JB
7216
7217 if (ordered) {
59094403
FM
7218 if (nowait) {
7219 btrfs_put_ordered_extent(ordered);
7220 ret = -EAGAIN;
7221 break;
7222 }
ade77029
FM
7223 /*
7224 * If we are doing a DIO read and the ordered extent we
7225 * found is for a buffered write, we can not wait for it
7226 * to complete and retry, because if we do so we can
7227 * deadlock with concurrent buffered writes on page
7228 * locks. This happens only if our DIO read covers more
7229 * than one extent map, if at this point has already
7230 * created an ordered extent for a previous extent map
7231 * and locked its range in the inode's io tree, and a
7232 * concurrent write against that previous extent map's
7233 * range and this range started (we unlock the ranges
7234 * in the io tree only when the bios complete and
7235 * buffered writes always lock pages before attempting
7236 * to lock range in the io tree).
7237 */
7238 if (writing ||
7239 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
36d45567 7240 btrfs_start_ordered_extent(ordered);
ade77029 7241 else
59094403 7242 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7243 btrfs_put_ordered_extent(ordered);
7244 } else {
eb838e73 7245 /*
b850ae14
FM
7246 * We could trigger writeback for this range (and wait
7247 * for it to complete) and then invalidate the pages for
7248 * this range (through invalidate_inode_pages2_range()),
7249 * but that can lead us to a deadlock with a concurrent
ba206a02 7250 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7251 * triggered a readahead) on a page lock due to an
7252 * ordered dio extent we created before but did not have
7253 * yet a corresponding bio submitted (whence it can not
ba206a02 7254 * complete), which makes readahead wait for that
b850ae14
FM
7255 * ordered extent to complete while holding a lock on
7256 * that page.
eb838e73 7257 */
59094403 7258 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7259 }
7260
ade77029
FM
7261 if (ret)
7262 break;
7263
eb838e73
JB
7264 cond_resched();
7265 }
7266
7267 return ret;
7268}
7269
6f9994db 7270/* The callers of this must take lock_extent() */
4b67c11d
NB
7271static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7272 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7273 u64 block_len, u64 orig_block_len,
7274 u64 ram_bytes, int compress_type,
7275 int type)
69ffb543 7276{
69ffb543 7277 struct extent_map *em;
69ffb543
JB
7278 int ret;
7279
6f9994db
LB
7280 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7281 type == BTRFS_ORDERED_COMPRESSED ||
7282 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7283 type == BTRFS_ORDERED_REGULAR);
6f9994db 7284
69ffb543
JB
7285 em = alloc_extent_map();
7286 if (!em)
7287 return ERR_PTR(-ENOMEM);
7288
7289 em->start = start;
7290 em->orig_start = orig_start;
7291 em->len = len;
7292 em->block_len = block_len;
7293 em->block_start = block_start;
b4939680 7294 em->orig_block_len = orig_block_len;
cc95bef6 7295 em->ram_bytes = ram_bytes;
70c8a91c 7296 em->generation = -1;
f86f7a75
FM
7297 em->flags |= EXTENT_FLAG_PINNED;
7298 if (type == BTRFS_ORDERED_PREALLOC)
7299 em->flags |= EXTENT_FLAG_FILLING;
7300 else if (type == BTRFS_ORDERED_COMPRESSED)
7301 extent_map_set_compression(em, compress_type);
69ffb543 7302
a1ba4c08 7303 ret = btrfs_replace_extent_map_range(inode, em, true);
69ffb543
JB
7304 if (ret) {
7305 free_extent_map(em);
7306 return ERR_PTR(ret);
7307 }
7308
6f9994db 7309 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7310 return em;
7311}
7312
1c8d0175 7313
c5794e51 7314static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7315 struct inode *inode,
7316 struct btrfs_dio_data *dio_data,
7833b865 7317 u64 start, u64 *lenp,
d7a8ab4e 7318 unsigned int iomap_flags)
c5794e51 7319{
d4135134 7320 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
41044b41 7321 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
c5794e51 7322 struct extent_map *em = *map;
f0bfa76a
FM
7323 int type;
7324 u64 block_start, orig_start, orig_block_len, ram_bytes;
2306e83e 7325 struct btrfs_block_group *bg;
f0bfa76a
FM
7326 bool can_nocow = false;
7327 bool space_reserved = false;
7833b865 7328 u64 len = *lenp;
6d82ad13 7329 u64 prev_len;
c5794e51
NB
7330 int ret = 0;
7331
7332 /*
7333 * We don't allocate a new extent in the following cases
7334 *
7335 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7336 * existing extent.
7337 * 2) The extent is marked as PREALLOC. We're good to go here and can
7338 * just use the extent.
7339 *
7340 */
f86f7a75 7341 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
c5794e51
NB
7342 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7343 em->block_start != EXTENT_MAP_HOLE)) {
f86f7a75 7344 if (em->flags & EXTENT_FLAG_PREALLOC)
c5794e51
NB
7345 type = BTRFS_ORDERED_PREALLOC;
7346 else
7347 type = BTRFS_ORDERED_NOCOW;
7348 len = min(len, em->len - (start - em->start));
7349 block_start = em->block_start + (start - em->start);
7350
7351 if (can_nocow_extent(inode, start, &len, &orig_start,
26ce9114 7352 &orig_block_len, &ram_bytes, false, false) == 1) {
2306e83e
FM
7353 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7354 if (bg)
7355 can_nocow = true;
7356 }
f0bfa76a 7357 }
c5794e51 7358
6d82ad13 7359 prev_len = len;
f0bfa76a
FM
7360 if (can_nocow) {
7361 struct extent_map *em2;
7362
7363 /* We can NOCOW, so only need to reserve metadata space. */
d4135134
FM
7364 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7365 nowait);
f0bfa76a
FM
7366 if (ret < 0) {
7367 /* Our caller expects us to free the input extent map. */
7368 free_extent_map(em);
7369 *map = NULL;
2306e83e 7370 btrfs_dec_nocow_writers(bg);
d4135134
FM
7371 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7372 ret = -EAGAIN;
f0bfa76a
FM
7373 goto out;
7374 }
7375 space_reserved = true;
7376
53f2c206 7377 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
f0bfa76a
FM
7378 orig_start, block_start,
7379 len, orig_block_len,
7380 ram_bytes, type);
2306e83e 7381 btrfs_dec_nocow_writers(bg);
f0bfa76a
FM
7382 if (type == BTRFS_ORDERED_PREALLOC) {
7383 free_extent_map(em);
c1867eb3
DS
7384 *map = em2;
7385 em = em2;
f0bfa76a 7386 }
c5794e51 7387
f0bfa76a
FM
7388 if (IS_ERR(em2)) {
7389 ret = PTR_ERR(em2);
7390 goto out;
c5794e51 7391 }
f5585f4f
FM
7392
7393 dio_data->nocow_done = true;
f0bfa76a 7394 } else {
f0bfa76a
FM
7395 /* Our caller expects us to free the input extent map. */
7396 free_extent_map(em);
7397 *map = NULL;
7398
7833b865
CH
7399 if (nowait) {
7400 ret = -EAGAIN;
7401 goto out;
7402 }
d7a8ab4e 7403
f5585f4f
FM
7404 /*
7405 * If we could not allocate data space before locking the file
7406 * range and we can't do a NOCOW write, then we have to fail.
7407 */
7833b865
CH
7408 if (!dio_data->data_space_reserved) {
7409 ret = -ENOSPC;
7410 goto out;
7411 }
f5585f4f
FM
7412
7413 /*
7414 * We have to COW and we have already reserved data space before,
7415 * so now we reserve only metadata.
7416 */
7417 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7418 false);
f0bfa76a
FM
7419 if (ret < 0)
7420 goto out;
7421 space_reserved = true;
7422
53f2c206 7423 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
f0bfa76a
FM
7424 if (IS_ERR(em)) {
7425 ret = PTR_ERR(em);
7426 goto out;
7427 }
7428 *map = em;
7429 len = min(len, em->len - (start - em->start));
7430 if (len < prev_len)
f5585f4f
FM
7431 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7432 prev_len - len, true);
c5794e51
NB
7433 }
7434
f0bfa76a
FM
7435 /*
7436 * We have created our ordered extent, so we can now release our reservation
7437 * for an outstanding extent.
7438 */
6d82ad13 7439 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
c5794e51 7440
c5794e51
NB
7441 /*
7442 * Need to update the i_size under the extent lock so buffered
7443 * readers will get the updated i_size when we unlock.
7444 */
f85781fb 7445 if (start + len > i_size_read(inode))
c5794e51 7446 i_size_write(inode, start + len);
c5794e51 7447out:
f0bfa76a
FM
7448 if (ret && space_reserved) {
7449 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
f5585f4f 7450 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
f0bfa76a 7451 }
7833b865 7452 *lenp = len;
c5794e51
NB
7453 return ret;
7454}
7455
f85781fb
GR
7456static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7457 loff_t length, unsigned int flags, struct iomap *iomap,
7458 struct iomap *srcmap)
4b46fce2 7459{
491a6d01 7460 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
41044b41 7461 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4b46fce2 7462 struct extent_map *em;
eb838e73 7463 struct extent_state *cached_state = NULL;
491a6d01 7464 struct btrfs_dio_data *dio_data = iter->private;
eb838e73 7465 u64 lockstart, lockend;
f85781fb 7466 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7467 int ret = 0;
f85781fb 7468 u64 len = length;
f5585f4f 7469 const u64 data_alloc_len = length;
f85781fb 7470 bool unlock_extents = false;
eb838e73 7471
79d3d1d1
JB
7472 /*
7473 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7474 * we're NOWAIT we may submit a bio for a partial range and return
7475 * EIOCBQUEUED, which would result in an errant short read.
7476 *
7477 * The best way to handle this would be to allow for partial completions
7478 * of iocb's, so we could submit the partial bio, return and fault in
7479 * the rest of the pages, and then submit the io for the rest of the
7480 * range. However we don't have that currently, so simply return
7481 * -EAGAIN at this point so that the normal path is used.
7482 */
7483 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7484 return -EAGAIN;
7485
ee5b46a3
CH
7486 /*
7487 * Cap the size of reads to that usually seen in buffered I/O as we need
7488 * to allocate a contiguous array for the checksums.
7489 */
f85781fb 7490 if (!write)
ee5b46a3 7491 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
eb838e73 7492
c329861d
JB
7493 lockstart = start;
7494 lockend = start + len - 1;
7495
f85781fb 7496 /*
b023e675
FM
7497 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7498 * enough if we've written compressed pages to this area, so we need to
7499 * flush the dirty pages again to make absolutely sure that any
7500 * outstanding dirty pages are on disk - the first flush only starts
7501 * compression on the data, while keeping the pages locked, so by the
7502 * time the second flush returns we know bios for the compressed pages
7503 * were submitted and finished, and the pages no longer under writeback.
7504 *
7505 * If we have a NOWAIT request and we have any pages in the range that
7506 * are locked, likely due to compression still in progress, we don't want
7507 * to block on page locks. We also don't want to block on pages marked as
7508 * dirty or under writeback (same as for the non-compression case).
7509 * iomap_dio_rw() did the same check, but after that and before we got
7510 * here, mmap'ed writes may have happened or buffered reads started
7511 * (readpage() and readahead(), which lock pages), as we haven't locked
7512 * the file range yet.
f85781fb
GR
7513 */
7514 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7515 &BTRFS_I(inode)->runtime_flags)) {
b023e675
FM
7516 if (flags & IOMAP_NOWAIT) {
7517 if (filemap_range_needs_writeback(inode->i_mapping,
7518 lockstart, lockend))
7519 return -EAGAIN;
7520 } else {
7521 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7522 start + length - 1);
7523 if (ret)
7524 return ret;
7525 }
f85781fb
GR
7526 }
7527
491a6d01 7528 memset(dio_data, 0, sizeof(*dio_data));
f85781fb 7529
f5585f4f
FM
7530 /*
7531 * We always try to allocate data space and must do it before locking
7532 * the file range, to avoid deadlocks with concurrent writes to the same
7533 * range if the range has several extents and the writes don't expand the
7534 * current i_size (the inode lock is taken in shared mode). If we fail to
7535 * allocate data space here we continue and later, after locking the
7536 * file range, we fail with ENOSPC only if we figure out we can not do a
7537 * NOCOW write.
7538 */
7539 if (write && !(flags & IOMAP_NOWAIT)) {
7540 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7541 &dio_data->data_reserved,
1daedb1d 7542 start, data_alloc_len, false);
f5585f4f
FM
7543 if (!ret)
7544 dio_data->data_space_reserved = true;
7545 else if (ret && !(BTRFS_I(inode)->flags &
7546 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7547 goto err;
7548 }
e1cbbfa5 7549
eb838e73
JB
7550 /*
7551 * If this errors out it's because we couldn't invalidate pagecache for
59094403
FM
7552 * this range and we need to fallback to buffered IO, or we are doing a
7553 * NOWAIT read/write and we need to block.
eb838e73 7554 */
59094403
FM
7555 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7556 if (ret < 0)
9c9464cc 7557 goto err;
eb838e73 7558
8bab0a30 7559 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
eb838e73
JB
7560 if (IS_ERR(em)) {
7561 ret = PTR_ERR(em);
7562 goto unlock_err;
7563 }
4b46fce2
JB
7564
7565 /*
7566 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7567 * io. INLINE is special, and we could probably kludge it in here, but
7568 * it's still buffered so for safety lets just fall back to the generic
7569 * buffered path.
7570 *
7571 * For COMPRESSED we _have_ to read the entire extent in so we can
7572 * decompress it, so there will be buffering required no matter what we
7573 * do, so go ahead and fallback to buffered.
7574 *
01327610 7575 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7576 * to buffered IO. Don't blame me, this is the price we pay for using
7577 * the generic code.
7578 */
f86f7a75 7579 if (extent_map_is_compressed(em) ||
4b46fce2
JB
7580 em->block_start == EXTENT_MAP_INLINE) {
7581 free_extent_map(em);
a4527e18
FM
7582 /*
7583 * If we are in a NOWAIT context, return -EAGAIN in order to
7584 * fallback to buffered IO. This is not only because we can
7585 * block with buffered IO (no support for NOWAIT semantics at
7586 * the moment) but also to avoid returning short reads to user
7587 * space - this happens if we were able to read some data from
7588 * previous non-compressed extents and then when we fallback to
7589 * buffered IO, at btrfs_file_read_iter() by calling
7590 * filemap_read(), we fail to fault in pages for the read buffer,
7591 * in which case filemap_read() returns a short read (the number
7592 * of bytes previously read is > 0, so it does not return -EFAULT).
7593 */
7594 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
eb838e73 7595 goto unlock_err;
4b46fce2
JB
7596 }
7597
f85781fb 7598 len = min(len, em->len - (start - em->start));
ca93e44b
FM
7599
7600 /*
7601 * If we have a NOWAIT request and the range contains multiple extents
7602 * (or a mix of extents and holes), then we return -EAGAIN to make the
7603 * caller fallback to a context where it can do a blocking (without
7604 * NOWAIT) request. This way we avoid doing partial IO and returning
7605 * success to the caller, which is not optimal for writes and for reads
7606 * it can result in unexpected behaviour for an application.
7607 *
7608 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7609 * iomap_dio_rw(), we can end up returning less data then what the caller
7610 * asked for, resulting in an unexpected, and incorrect, short read.
7611 * That is, the caller asked to read N bytes and we return less than that,
7612 * which is wrong unless we are crossing EOF. This happens if we get a
7613 * page fault error when trying to fault in pages for the buffer that is
7614 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7615 * have previously submitted bios for other extents in the range, in
7616 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7617 * those bios have completed by the time we get the page fault error,
7618 * which we return back to our caller - we should only return EIOCBQUEUED
7619 * after we have submitted bios for all the extents in the range.
7620 */
7621 if ((flags & IOMAP_NOWAIT) && len < length) {
7622 free_extent_map(em);
7623 ret = -EAGAIN;
7624 goto unlock_err;
7625 }
7626
f85781fb
GR
7627 if (write) {
7628 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7833b865 7629 start, &len, flags);
c5794e51
NB
7630 if (ret < 0)
7631 goto unlock_err;
f85781fb
GR
7632 unlock_extents = true;
7633 /* Recalc len in case the new em is smaller than requested */
7634 len = min(len, em->len - (start - em->start));
f5585f4f
FM
7635 if (dio_data->data_space_reserved) {
7636 u64 release_offset;
7637 u64 release_len = 0;
7638
7639 if (dio_data->nocow_done) {
7640 release_offset = start;
7641 release_len = data_alloc_len;
7642 } else if (len < data_alloc_len) {
7643 release_offset = start + len;
7644 release_len = data_alloc_len - len;
7645 }
7646
7647 if (release_len > 0)
7648 btrfs_free_reserved_data_space(BTRFS_I(inode),
7649 dio_data->data_reserved,
7650 release_offset,
7651 release_len);
7652 }
c5794e51 7653 } else {
1c8d0175
NB
7654 /*
7655 * We need to unlock only the end area that we aren't using.
7656 * The rest is going to be unlocked by the endio routine.
7657 */
f85781fb
GR
7658 lockstart = start + len;
7659 if (lockstart < lockend)
7660 unlock_extents = true;
7661 }
7662
7663 if (unlock_extents)
570eb97b
JB
7664 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7665 &cached_state);
f85781fb
GR
7666 else
7667 free_extent_state(cached_state);
7668
7669 /*
7670 * Translate extent map information to iomap.
7671 * We trim the extents (and move the addr) even though iomap code does
7672 * that, since we have locked only the parts we are performing I/O in.
7673 */
7674 if ((em->block_start == EXTENT_MAP_HOLE) ||
f86f7a75 7675 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
f85781fb
GR
7676 iomap->addr = IOMAP_NULL_ADDR;
7677 iomap->type = IOMAP_HOLE;
7678 } else {
7679 iomap->addr = em->block_start + (start - em->start);
7680 iomap->type = IOMAP_MAPPED;
a43a67a2 7681 }
f85781fb 7682 iomap->offset = start;
d24fa5c1 7683 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
f85781fb 7684 iomap->length = len;
4b46fce2
JB
7685 free_extent_map(em);
7686
7687 return 0;
eb838e73
JB
7688
7689unlock_err:
570eb97b
JB
7690 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7691 &cached_state);
9c9464cc 7692err:
f5585f4f
FM
7693 if (dio_data->data_space_reserved) {
7694 btrfs_free_reserved_data_space(BTRFS_I(inode),
7695 dio_data->data_reserved,
7696 start, data_alloc_len);
7697 extent_changeset_free(dio_data->data_reserved);
7698 }
7699
f85781fb
GR
7700 return ret;
7701}
7702
7703static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7704 ssize_t written, unsigned int flags, struct iomap *iomap)
7705{
491a6d01
CH
7706 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7707 struct btrfs_dio_data *dio_data = iter->private;
f85781fb
GR
7708 size_t submitted = dio_data->submitted;
7709 const bool write = !!(flags & IOMAP_WRITE);
491a6d01 7710 int ret = 0;
f85781fb
GR
7711
7712 if (!write && (iomap->type == IOMAP_HOLE)) {
7713 /* If reading from a hole, unlock and return */
570eb97b
JB
7714 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7715 NULL);
491a6d01 7716 return 0;
f85781fb
GR
7717 }
7718
7719 if (submitted < length) {
7720 pos += submitted;
7721 length -= submitted;
7722 if (write)
b41b6f69
CH
7723 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7724 pos, length, false);
f85781fb
GR
7725 else
7726 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
570eb97b 7727 pos + length - 1, NULL);
f85781fb
GR
7728 ret = -ENOTBLK;
7729 }
53f2c206
BB
7730 if (write) {
7731 btrfs_put_ordered_extent(dio_data->ordered);
7732 dio_data->ordered = NULL;
7733 }
f85781fb 7734
f0bfa76a 7735 if (write)
f85781fb 7736 extent_changeset_free(dio_data->data_reserved);
8b110e39
MX
7737 return ret;
7738}
7739
67d66982 7740static void btrfs_dio_end_io(struct btrfs_bio *bbio)
8b110e39 7741{
67d66982
CH
7742 struct btrfs_dio_private *dip =
7743 container_of(bbio, struct btrfs_dio_private, bbio);
7744 struct btrfs_inode *inode = bbio->inode;
917f32a2 7745 struct bio *bio = &bbio->bio;
e65e1535 7746
67d66982
CH
7747 if (bio->bi_status) {
7748 btrfs_warn(inode->root->fs_info,
7749 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7750 btrfs_ino(inode), bio->bi_opf,
7751 dip->file_offset, dip->bytes, bio->bi_status);
7609afac 7752 }
1ae39938 7753
b41b6f69
CH
7754 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7755 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7756 dip->file_offset, dip->bytes,
7757 !bio->bi_status);
7758 } else {
67d66982
CH
7759 unlock_extent(&inode->io_tree, dip->file_offset,
7760 dip->file_offset + dip->bytes - 1, NULL);
b41b6f69 7761 }
ea1f0ced 7762
67d66982
CH
7763 bbio->bio.bi_private = bbio->private;
7764 iomap_dio_bio_end_io(bio);
e65e1535
MX
7765}
7766
67d66982
CH
7767static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7768 loff_t file_offset)
c36cac28 7769{
67d66982 7770 struct btrfs_bio *bbio = btrfs_bio(bio);
642c5d34 7771 struct btrfs_dio_private *dip =
67d66982 7772 container_of(bbio, struct btrfs_dio_private, bbio);
491a6d01 7773 struct btrfs_dio_data *dio_data = iter->private;
544d24f9 7774
4317ff00
QW
7775 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7776 btrfs_dio_end_io, bio->bi_private);
7777 bbio->inode = BTRFS_I(iter->inode);
67d66982 7778 bbio->file_offset = file_offset;
e65e1535 7779
67d66982
CH
7780 dip->file_offset = file_offset;
7781 dip->bytes = bio->bi_iter.bi_size;
e65e1535 7782
67d66982 7783 dio_data->submitted += bio->bi_iter.bi_size;
b73a6fd1
BB
7784
7785 /*
7786 * Check if we are doing a partial write. If we are, we need to split
7787 * the ordered extent to match the submitted bio. Hang on to the
7788 * remaining unfinishable ordered_extent in dio_data so that it can be
7789 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7790 * remaining pages is blocked on the outstanding ordered extent.
7791 */
7792 if (iter->flags & IOMAP_WRITE) {
7793 int ret;
7794
7795 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7796 if (ret) {
7cad645e
CH
7797 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7798 file_offset, dip->bytes,
7799 !ret);
7800 bio->bi_status = errno_to_blk_status(ret);
7801 iomap_dio_bio_end_io(bio);
b73a6fd1
BB
7802 return;
7803 }
7804 }
7805
ae42a154 7806 btrfs_submit_bio(bbio, 0);
4b46fce2
JB
7807}
7808
36e8c622 7809static const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
7810 .iomap_begin = btrfs_dio_iomap_begin,
7811 .iomap_end = btrfs_dio_iomap_end,
7812};
7813
36e8c622 7814static const struct iomap_dio_ops btrfs_dio_ops = {
67d66982 7815 .submit_io = btrfs_dio_submit_io,
642c5d34 7816 .bio_set = &btrfs_dio_bioset,
f85781fb
GR
7817};
7818
8184620a 7819ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
36e8c622 7820{
53f2c206 7821 struct btrfs_dio_data data = { 0 };
491a6d01 7822
36e8c622 7823 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8184620a
FM
7824 IOMAP_DIO_PARTIAL, &data, done_before);
7825}
7826
7827struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7828 size_t done_before)
7829{
53f2c206 7830 struct btrfs_dio_data data = { 0 };
8184620a
FM
7831
7832 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7833 IOMAP_DIO_PARTIAL, &data, done_before);
36e8c622
CH
7834}
7835
1506fcc8 7836static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7837 u64 start, u64 len)
1506fcc8 7838{
418b0902 7839 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
05dadc09
TI
7840 int ret;
7841
45dd052e 7842 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7843 if (ret)
7844 return ret;
7845
33a86cfa
FM
7846 /*
7847 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7848 * file range (0 to LLONG_MAX), but that is not enough if we have
7849 * compression enabled. The first filemap_fdatawrite_range() only kicks
7850 * in the compression of data (in an async thread) and will return
7851 * before the compression is done and writeback is started. A second
7852 * filemap_fdatawrite_range() is needed to wait for the compression to
ac3c0d36
FM
7853 * complete and writeback to start. We also need to wait for ordered
7854 * extents to complete, because our fiemap implementation uses mainly
7855 * file extent items to list the extents, searching for extent maps
7856 * only for file ranges with holes or prealloc extents to figure out
7857 * if we have delalloc in those ranges.
33a86cfa
FM
7858 */
7859 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
ac3c0d36 7860 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
33a86cfa
FM
7861 if (ret)
7862 return ret;
7863 }
7864
418b0902
FM
7865 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7866
7867 /*
7868 * We did an initial flush to avoid holding the inode's lock while
7869 * triggering writeback and waiting for the completion of IO and ordered
7870 * extents. Now after we locked the inode we do it again, because it's
7871 * possible a new write may have happened in between those two steps.
7872 */
7873 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7874 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7875 if (ret) {
7876 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7877 return ret;
7878 }
7879 }
7880
7881 ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7882 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7883
7884 return ret;
1506fcc8
YS
7885}
7886
48a3b636
ES
7887static int btrfs_writepages(struct address_space *mapping,
7888 struct writeback_control *wbc)
b293f02e 7889{
8ae225a8 7890 return extent_writepages(mapping, wbc);
b293f02e
CM
7891}
7892
ba206a02 7893static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 7894{
ba206a02 7895 extent_readahead(rac);
3ab2fb5a 7896}
2a3ff0ad 7897
7c11d0ae 7898/*
f913cff3 7899 * For release_folio() and invalidate_folio() we have a race window where
895586eb 7900 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7c11d0ae
QW
7901 * If we continue to release/invalidate the page, we could cause use-after-free
7902 * for subpage spinlock. So this function is to spin and wait for subpage
7903 * spinlock.
7904 */
7905static void wait_subpage_spinlock(struct page *page)
7906{
b33d2e53 7907 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
cfbf07e2 7908 struct folio *folio = page_folio(page);
7c11d0ae
QW
7909 struct btrfs_subpage *subpage;
7910
13df3775 7911 if (!btrfs_is_subpage(fs_info, page->mapping))
7c11d0ae
QW
7912 return;
7913
cfbf07e2
QW
7914 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7915 subpage = folio_get_private(folio);
7c11d0ae
QW
7916
7917 /*
7918 * This may look insane as we just acquire the spinlock and release it,
7919 * without doing anything. But we just want to make sure no one is
7920 * still holding the subpage spinlock.
7921 * And since the page is not dirty nor writeback, and we have page
7922 * locked, the only possible way to hold a spinlock is from the endio
7923 * function to clear page writeback.
7924 *
7925 * Here we just acquire the spinlock so that all existing callers
7926 * should exit and we're safe to release/invalidate the page.
7927 */
7928 spin_lock_irq(&subpage->lock);
7929 spin_unlock_irq(&subpage->lock);
7930}
7931
f913cff3 7932static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
9ebefb18 7933{
f913cff3 7934 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7c11d0ae
QW
7935
7936 if (ret == 1) {
f913cff3
MWO
7937 wait_subpage_spinlock(&folio->page);
7938 clear_page_extent_mapped(&folio->page);
7c11d0ae 7939 }
a52d9a80 7940 return ret;
39279cc3
CM
7941}
7942
f913cff3 7943static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
e6dcd2dc 7944{
f913cff3
MWO
7945 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7946 return false;
7947 return __btrfs_release_folio(folio, gfp_flags);
e6dcd2dc
CM
7948}
7949
f8e66081 7950#ifdef CONFIG_MIGRATION
e7a60a17
MWO
7951static int btrfs_migrate_folio(struct address_space *mapping,
7952 struct folio *dst, struct folio *src,
f8e66081
RG
7953 enum migrate_mode mode)
7954{
e7a60a17 7955 int ret = filemap_migrate_folio(mapping, dst, src, mode);
f8e66081 7956
f8e66081
RG
7957 if (ret != MIGRATEPAGE_SUCCESS)
7958 return ret;
7959
e7a60a17
MWO
7960 if (folio_test_ordered(src)) {
7961 folio_clear_ordered(src);
7962 folio_set_ordered(dst);
f8e66081
RG
7963 }
7964
f8e66081
RG
7965 return MIGRATEPAGE_SUCCESS;
7966}
e7a60a17
MWO
7967#else
7968#define btrfs_migrate_folio NULL
f8e66081
RG
7969#endif
7970
895586eb
MWO
7971static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7972 size_t length)
39279cc3 7973{
c8293894 7974 struct btrfs_inode *inode = folio_to_inode(folio);
b945a463 7975 struct btrfs_fs_info *fs_info = inode->root->fs_info;
53ac7ead 7976 struct extent_io_tree *tree = &inode->io_tree;
2ac55d41 7977 struct extent_state *cached_state = NULL;
895586eb
MWO
7978 u64 page_start = folio_pos(folio);
7979 u64 page_end = page_start + folio_size(folio) - 1;
3b835840 7980 u64 cur;
53ac7ead 7981 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 7982
8b62b72b 7983 /*
895586eb
MWO
7984 * We have folio locked so no new ordered extent can be created on this
7985 * page, nor bio can be submitted for this folio.
8b62b72b 7986 *
895586eb
MWO
7987 * But already submitted bio can still be finished on this folio.
7988 * Furthermore, endio function won't skip folio which has Ordered
f57ad937 7989 * (Private2) already cleared, so it's possible for endio and
895586eb
MWO
7990 * invalidate_folio to do the same ordered extent accounting twice
7991 * on one folio.
266a2586
QW
7992 *
7993 * So here we wait for any submitted bios to finish, so that we won't
895586eb 7994 * do double ordered extent accounting on the same folio.
8b62b72b 7995 */
895586eb
MWO
7996 folio_wait_writeback(folio);
7997 wait_subpage_spinlock(&folio->page);
8b62b72b 7998
bcd77455
QW
7999 /*
8000 * For subpage case, we have call sites like
8001 * btrfs_punch_hole_lock_range() which passes range not aligned to
8002 * sectorsize.
895586eb
MWO
8003 * If the range doesn't cover the full folio, we don't need to and
8004 * shouldn't clear page extent mapped, as folio->private can still
bcd77455
QW
8005 * record subpage dirty bits for other part of the range.
8006 *
895586eb
MWO
8007 * For cases that invalidate the full folio even the range doesn't
8008 * cover the full folio, like invalidating the last folio, we're
bcd77455
QW
8009 * still safe to wait for ordered extent to finish.
8010 */
5a60542c 8011 if (!(offset == 0 && length == folio_size(folio))) {
f913cff3 8012 btrfs_release_folio(folio, GFP_NOFS);
e6dcd2dc
CM
8013 return;
8014 }
131e404a
FDBM
8015
8016 if (!inode_evicting)
570eb97b 8017 lock_extent(tree, page_start, page_end, &cached_state);
951c80f8 8018
3b835840
QW
8019 cur = page_start;
8020 while (cur < page_end) {
8021 struct btrfs_ordered_extent *ordered;
3b835840 8022 u64 range_end;
b945a463 8023 u32 range_len;
bd015294 8024 u32 extra_flags = 0;
3b835840
QW
8025
8026 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8027 page_end + 1 - cur);
8028 if (!ordered) {
8029 range_end = page_end;
8030 /*
8031 * No ordered extent covering this range, we are safe
8032 * to delete all extent states in the range.
8033 */
bd015294 8034 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8035 goto next;
8036 }
8037 if (ordered->file_offset > cur) {
8038 /*
8039 * There is a range between [cur, oe->file_offset) not
8040 * covered by any ordered extent.
8041 * We are safe to delete all extent states, and handle
8042 * the ordered extent in the next iteration.
8043 */
8044 range_end = ordered->file_offset - 1;
bd015294 8045 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8046 goto next;
8047 }
8048
8049 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8050 page_end);
b945a463
QW
8051 ASSERT(range_end + 1 - cur < U32_MAX);
8052 range_len = range_end + 1 - cur;
55151ea9 8053 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
3b835840 8054 /*
f57ad937
QW
8055 * If Ordered (Private2) is cleared, it means endio has
8056 * already been executed for the range.
3b835840
QW
8057 * We can't delete the extent states as
8058 * btrfs_finish_ordered_io() may still use some of them.
8059 */
3b835840
QW
8060 goto next;
8061 }
55151ea9 8062 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
3b835840 8063
eb84ae03 8064 /*
2766ff61
FM
8065 * IO on this page will never be started, so we need to account
8066 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8067 * here, must leave that up for the ordered extent completion.
3b835840
QW
8068 *
8069 * This will also unlock the range for incoming
8070 * btrfs_finish_ordered_io().
eb84ae03 8071 */
131e404a 8072 if (!inode_evicting)
3b835840 8073 clear_extent_bit(tree, cur, range_end,
2766ff61 8074 EXTENT_DELALLOC |
131e404a 8075 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
bd015294 8076 EXTENT_DEFRAG, &cached_state);
3b835840 8077
54c65371 8078 spin_lock_irq(&inode->ordered_tree_lock);
3b835840
QW
8079 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8080 ordered->truncated_len = min(ordered->truncated_len,
8081 cur - ordered->file_offset);
54c65371 8082 spin_unlock_irq(&inode->ordered_tree_lock);
3b835840 8083
bd015294
JB
8084 /*
8085 * If the ordered extent has finished, we're safe to delete all
8086 * the extent states of the range, otherwise
8087 * btrfs_finish_ordered_io() will get executed by endio for
8088 * other pages, so we can't delete extent states.
8089 */
3b835840 8090 if (btrfs_dec_test_ordered_pending(inode, &ordered,
f41b6ba9 8091 cur, range_end + 1 - cur)) {
3b835840
QW
8092 btrfs_finish_ordered_io(ordered);
8093 /*
8094 * The ordered extent has finished, now we're again
8095 * safe to delete all extent states of the range.
8096 */
bd015294 8097 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8098 }
8099next:
8100 if (ordered)
8101 btrfs_put_ordered_extent(ordered);
8b62b72b 8102 /*
3b835840
QW
8103 * Qgroup reserved space handler
8104 * Sector(s) here will be either:
266a2586 8105 *
3b835840
QW
8106 * 1) Already written to disk or bio already finished
8107 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8108 * Qgroup will be handled by its qgroup_record then.
8109 * btrfs_qgroup_free_data() call will do nothing here.
8110 *
8111 * 2) Not written to disk yet
8112 * Then btrfs_qgroup_free_data() call will clear the
8113 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8114 * reserved data space.
8115 * Since the IO will never happen for this page.
8b62b72b 8116 */
9e65bfca 8117 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
131e404a 8118 if (!inode_evicting) {
3b835840
QW
8119 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8120 EXTENT_DELALLOC | EXTENT_UPTODATE |
bd015294
JB
8121 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8122 extra_flags, &cached_state);
131e404a 8123 }
3b835840 8124 cur = range_end + 1;
131e404a 8125 }
b9d0b389 8126 /*
3b835840 8127 * We have iterated through all ordered extents of the page, the page
f57ad937
QW
8128 * should not have Ordered (Private2) anymore, or the above iteration
8129 * did something wrong.
b9d0b389 8130 */
895586eb 8131 ASSERT(!folio_test_ordered(folio));
55151ea9 8132 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
3b835840 8133 if (!inode_evicting)
f913cff3 8134 __btrfs_release_folio(folio, GFP_NOFS);
895586eb 8135 clear_page_extent_mapped(&folio->page);
39279cc3
CM
8136}
8137
9ebefb18
CM
8138/*
8139 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8140 * called from a page fault handler when a page is first dirtied. Hence we must
8141 * be careful to check for EOF conditions here. We set the page up correctly
8142 * for a written page which means we get ENOSPC checking when writing into
8143 * holes and correct delalloc and unwritten extent mapping on filesystems that
8144 * support these features.
8145 *
8146 * We are not allowed to take the i_mutex here so we have to play games to
8147 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8148 * truncate_setsize() writes the inode size before removing pages, once we have
8149 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8150 * beyond EOF, then the page is guaranteed safe against truncation until we
8151 * unlock the page.
8152 */
a528a241 8153vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8154{
c2ec175c 8155 struct page *page = vmf->page;
55151ea9 8156 struct folio *folio = page_folio(page);
11bac800 8157 struct inode *inode = file_inode(vmf->vma->vm_file);
41044b41 8158 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
e6dcd2dc
CM
8159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8160 struct btrfs_ordered_extent *ordered;
2ac55d41 8161 struct extent_state *cached_state = NULL;
364ecf36 8162 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 8163 unsigned long zero_start;
9ebefb18 8164 loff_t size;
a528a241
SJ
8165 vm_fault_t ret;
8166 int ret2;
9998eb70 8167 int reserved = 0;
d0b7da88 8168 u64 reserved_space;
a52d9a80 8169 u64 page_start;
e6dcd2dc 8170 u64 page_end;
d0b7da88
CR
8171 u64 end;
8172
55151ea9
QW
8173 ASSERT(folio_order(folio) == 0);
8174
09cbfeaf 8175 reserved_space = PAGE_SIZE;
9ebefb18 8176
b2b5ef5c 8177 sb_start_pagefault(inode->i_sb);
df480633 8178 page_start = page_offset(page);
09cbfeaf 8179 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8180 end = page_end;
df480633 8181
d0b7da88
CR
8182 /*
8183 * Reserving delalloc space after obtaining the page lock can lead to
8184 * deadlock. For example, if a dirty page is locked by this function
8185 * and the call to btrfs_delalloc_reserve_space() ends up triggering
f3e90c1c 8186 * dirty page write out, then the btrfs_writepages() function could
d0b7da88
CR
8187 * end up waiting indefinitely to get a lock on the page currently
8188 * being processed by btrfs_page_mkwrite() function.
8189 */
e5b7231e
NB
8190 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8191 page_start, reserved_space);
a528a241
SJ
8192 if (!ret2) {
8193 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8194 reserved = 1;
8195 }
a528a241
SJ
8196 if (ret2) {
8197 ret = vmf_error(ret2);
9998eb70
CM
8198 if (reserved)
8199 goto out;
8200 goto out_noreserve;
56a76f82 8201 }
1832a6d5 8202
56a76f82 8203 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8204again:
8318ba79 8205 down_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8206 lock_page(page);
9ebefb18 8207 size = i_size_read(inode);
a52d9a80 8208
9ebefb18 8209 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8210 (page_start >= size)) {
9ebefb18
CM
8211 /* page got truncated out from underneath us */
8212 goto out_unlock;
8213 }
e6dcd2dc
CM
8214 wait_on_page_writeback(page);
8215
570eb97b 8216 lock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8217 ret2 = set_page_extent_mapped(page);
8218 if (ret2 < 0) {
8219 ret = vmf_error(ret2);
570eb97b 8220 unlock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8221 goto out_unlock;
8222 }
e6dcd2dc 8223
eb84ae03
CM
8224 /*
8225 * we can't set the delalloc bits if there are pending ordered
8226 * extents. Drop our locks and wait for them to finish
8227 */
a776c6fa
NB
8228 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8229 PAGE_SIZE);
e6dcd2dc 8230 if (ordered) {
570eb97b 8231 unlock_extent(io_tree, page_start, page_end, &cached_state);
e6dcd2dc 8232 unlock_page(page);
8318ba79 8233 up_read(&BTRFS_I(inode)->i_mmap_lock);
36d45567 8234 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
8235 btrfs_put_ordered_extent(ordered);
8236 goto again;
8237 }
8238
09cbfeaf 8239 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8240 reserved_space = round_up(size - page_start,
0b246afa 8241 fs_info->sectorsize);
09cbfeaf 8242 if (reserved_space < PAGE_SIZE) {
d0b7da88 8243 end = page_start + reserved_space - 1;
86d52921
NB
8244 btrfs_delalloc_release_space(BTRFS_I(inode),
8245 data_reserved, page_start,
8246 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8247 }
8248 }
8249
fbf19087 8250 /*
5416034f
LB
8251 * page_mkwrite gets called when the page is firstly dirtied after it's
8252 * faulted in, but write(2) could also dirty a page and set delalloc
8253 * bits, thus in this case for space account reason, we still need to
8254 * clear any delalloc bits within this page range since we have to
8255 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8256 */
d0b7da88 8257 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d 8258 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
bd015294 8259 EXTENT_DEFRAG, &cached_state);
fbf19087 8260
c2566f22 8261 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8262 &cached_state);
a528a241 8263 if (ret2) {
570eb97b 8264 unlock_extent(io_tree, page_start, page_end, &cached_state);
9ed74f2d
JB
8265 ret = VM_FAULT_SIGBUS;
8266 goto out_unlock;
8267 }
9ebefb18
CM
8268
8269 /* page is wholly or partially inside EOF */
09cbfeaf 8270 if (page_start + PAGE_SIZE > size)
7073017a 8271 zero_start = offset_in_page(size);
9ebefb18 8272 else
09cbfeaf 8273 zero_start = PAGE_SIZE;
9ebefb18 8274
21a8935e 8275 if (zero_start != PAGE_SIZE)
d048b9c2 8276 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
21a8935e 8277
55151ea9
QW
8278 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8279 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8280 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
5a3f23d5 8281
bc0939fc 8282 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
257c62e1 8283
570eb97b 8284 unlock_extent(io_tree, page_start, page_end, &cached_state);
8318ba79 8285 up_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8286
76de60ed
YY
8287 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8288 sb_end_pagefault(inode->i_sb);
8289 extent_changeset_free(data_reserved);
8290 return VM_FAULT_LOCKED;
717beb96
CM
8291
8292out_unlock:
9ebefb18 8293 unlock_page(page);
8318ba79 8294 up_read(&BTRFS_I(inode)->i_mmap_lock);
1832a6d5 8295out:
8702ba93 8296 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8297 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8298 reserved_space, (ret != 0));
9998eb70 8299out_noreserve:
b2b5ef5c 8300 sb_end_pagefault(inode->i_sb);
364ecf36 8301 extent_changeset_free(data_reserved);
9ebefb18
CM
8302 return ret;
8303}
8304
d9dcae67 8305static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
39279cc3 8306{
d9ac19c3 8307 struct btrfs_truncate_control control = {
d9dcae67
DS
8308 .inode = inode,
8309 .ino = btrfs_ino(inode),
d9ac19c3 8310 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 8311 .clear_extent_range = true,
d9ac19c3 8312 };
d9dcae67
DS
8313 struct btrfs_root *root = inode->root;
8314 struct btrfs_fs_info *fs_info = root->fs_info;
fcb80c2a 8315 struct btrfs_block_rsv *rsv;
ad7e1a74 8316 int ret;
39279cc3 8317 struct btrfs_trans_handle *trans;
0b246afa 8318 u64 mask = fs_info->sectorsize - 1;
6822b3f7 8319 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8320
213e8c55 8321 if (!skip_writeback) {
d9dcae67
DS
8322 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8323 inode->vfs_inode.i_size & (~mask),
213e8c55
FM
8324 (u64)-1);
8325 if (ret)
8326 return ret;
8327 }
39279cc3 8328
fcb80c2a 8329 /*
f7e9e8fc
OS
8330 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8331 * things going on here:
fcb80c2a 8332 *
f7e9e8fc 8333 * 1) We need to reserve space to update our inode.
fcb80c2a 8334 *
f7e9e8fc 8335 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8336 * be free'd up by the truncate operation, but also have some slack
8337 * space reserved in case it uses space during the truncate (thank you
8338 * very much snapshotting).
8339 *
f7e9e8fc 8340 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8341 * space doing the truncate, and we have no earthly idea how much space
01327610 8342 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8343 * doesn't end up using space reserved for updating the inode. We also
8344 * need to be able to stop the transaction and start a new one, which
8345 * means we need to be able to update the inode several times, and we
8346 * have no idea of knowing how many times that will be, so we can't just
8347 * reserve 1 item for the entirety of the operation, so that has to be
8348 * done separately as well.
fcb80c2a
JB
8349 *
8350 * So that leaves us with
8351 *
f7e9e8fc 8352 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8353 * transaction reservation.
f7e9e8fc 8354 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8355 * updating the inode.
8356 */
2ff7e61e 8357 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8358 if (!rsv)
8359 return -ENOMEM;
4a338542 8360 rsv->size = min_size;
710d5921 8361 rsv->failfast = true;
f0cd846e 8362
907cbceb 8363 /*
07127184 8364 * 1 for the truncate slack space
907cbceb
JB
8365 * 1 for updating the inode.
8366 */
f3fe820c 8367 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8368 if (IS_ERR(trans)) {
ad7e1a74 8369 ret = PTR_ERR(trans);
fcb80c2a
JB
8370 goto out;
8371 }
f0cd846e 8372
907cbceb 8373 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8374 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8375 min_size, false);
6822b3f7
FM
8376 /*
8377 * We have reserved 2 metadata units when we started the transaction and
8378 * min_size matches 1 unit, so this should never fail, but if it does,
8379 * it's not critical we just fail truncation.
8380 */
8381 if (WARN_ON(ret)) {
8382 btrfs_end_transaction(trans);
8383 goto out;
8384 }
f0cd846e 8385
ca7e70f5 8386 trans->block_rsv = rsv;
907cbceb 8387
8082510e 8388 while (1) {
9a4a1429 8389 struct extent_state *cached_state = NULL;
d9dcae67 8390 const u64 new_size = inode->vfs_inode.i_size;
9a4a1429
JB
8391 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8392
d9ac19c3 8393 control.new_size = new_size;
d9dcae67 8394 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429
JB
8395 /*
8396 * We want to drop from the next block forward in case this new
8397 * size is not block aligned since we will be keeping the last
8398 * block of the extent just the way it is.
8399 */
d9dcae67 8400 btrfs_drop_extent_map_range(inode,
4c0c8cfc
FM
8401 ALIGN(new_size, fs_info->sectorsize),
8402 (u64)-1, false);
9a4a1429 8403
71d18b53 8404 ret = btrfs_truncate_inode_items(trans, root, &control);
c2ddb612 8405
d9dcae67
DS
8406 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8407 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
c2ddb612 8408
d9dcae67 8409 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429 8410
ddfae63c 8411 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8412 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8413 break;
39279cc3 8414
8b9d0322 8415 ret = btrfs_update_inode(trans, inode);
ad7e1a74 8416 if (ret)
3893e33b 8417 break;
ca7e70f5 8418
3a45bb20 8419 btrfs_end_transaction(trans);
2ff7e61e 8420 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8421
8422 trans = btrfs_start_transaction(root, 2);
8423 if (IS_ERR(trans)) {
ad7e1a74 8424 ret = PTR_ERR(trans);
ca7e70f5
JB
8425 trans = NULL;
8426 break;
8427 }
8428
63f018be 8429 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8430 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8431 rsv, min_size, false);
6822b3f7
FM
8432 /*
8433 * We have reserved 2 metadata units when we started the
8434 * transaction and min_size matches 1 unit, so this should never
8435 * fail, but if it does, it's not critical we just fail truncation.
8436 */
8437 if (WARN_ON(ret))
8438 break;
8439
ca7e70f5 8440 trans->block_rsv = rsv;
8082510e
YZ
8441 }
8442
ddfae63c
JB
8443 /*
8444 * We can't call btrfs_truncate_block inside a trans handle as we could
54f03ab1
JB
8445 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8446 * know we've truncated everything except the last little bit, and can
8447 * do btrfs_truncate_block and then update the disk_i_size.
ddfae63c 8448 */
54f03ab1 8449 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
ddfae63c
JB
8450 btrfs_end_transaction(trans);
8451 btrfs_btree_balance_dirty(fs_info);
8452
d9dcae67 8453 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
ddfae63c
JB
8454 if (ret)
8455 goto out;
8456 trans = btrfs_start_transaction(root, 1);
8457 if (IS_ERR(trans)) {
8458 ret = PTR_ERR(trans);
8459 goto out;
8460 }
d9dcae67 8461 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8462 }
8463
917c16b2 8464 if (trans) {
ad7e1a74
OS
8465 int ret2;
8466
0b246afa 8467 trans->block_rsv = &fs_info->trans_block_rsv;
8b9d0322 8468 ret2 = btrfs_update_inode(trans, inode);
ad7e1a74
OS
8469 if (ret2 && !ret)
8470 ret = ret2;
7b128766 8471
ad7e1a74
OS
8472 ret2 = btrfs_end_transaction(trans);
8473 if (ret2 && !ret)
8474 ret = ret2;
2ff7e61e 8475 btrfs_btree_balance_dirty(fs_info);
917c16b2 8476 }
fcb80c2a 8477out:
2ff7e61e 8478 btrfs_free_block_rsv(fs_info, rsv);
0d7d3165
FM
8479 /*
8480 * So if we truncate and then write and fsync we normally would just
8481 * write the extents that changed, which is a problem if we need to
8482 * first truncate that entire inode. So set this flag so we write out
8483 * all of the extents in the inode to the sync log so we're completely
8484 * safe.
8485 *
8486 * If no extents were dropped or trimmed we don't need to force the next
8487 * fsync to truncate all the inode's items from the log and re-log them
8488 * all. This means the truncate operation did not change the file size,
8489 * or changed it to a smaller size but there was only an implicit hole
8490 * between the old i_size and the new i_size, and there were no prealloc
8491 * extents beyond i_size to drop.
8492 */
d9ac19c3 8493 if (control.extents_found > 0)
d9dcae67 8494 btrfs_set_inode_full_sync(inode);
fcb80c2a 8495
ad7e1a74 8496 return ret;
39279cc3
CM
8497}
8498
f2d40141 8499struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
8500 struct inode *dir)
8501{
8502 struct inode *inode;
8503
8504 inode = new_inode(dir->i_sb);
8505 if (inode) {
8506 /*
8507 * Subvolumes don't inherit the sgid bit or the parent's gid if
8508 * the parent's sgid bit is set. This is probably a bug.
8509 */
f2d40141 8510 inode_init_owner(idmap, inode, NULL,
a1fd0c35
OS
8511 S_IFDIR | (~current_umask() & S_IRWXUGO));
8512 inode->i_op = &btrfs_dir_inode_operations;
8513 inode->i_fop = &btrfs_dir_file_operations;
8514 }
8515 return inode;
8516}
8517
39279cc3
CM
8518struct inode *btrfs_alloc_inode(struct super_block *sb)
8519{
69fe2d75 8520 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8521 struct btrfs_inode *ei;
2ead6ae7 8522 struct inode *inode;
637e6e0f
DS
8523 struct extent_io_tree *file_extent_tree = NULL;
8524
8525 /* Self tests may pass a NULL fs_info. */
8526 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8527 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8528 if (!file_extent_tree)
8529 return NULL;
8530 }
39279cc3 8531
fd60b288 8532 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
637e6e0f
DS
8533 if (!ei) {
8534 kfree(file_extent_tree);
39279cc3 8535 return NULL;
637e6e0f 8536 }
2ead6ae7
YZ
8537
8538 ei->root = NULL;
2ead6ae7 8539 ei->generation = 0;
15ee9bc7 8540 ei->last_trans = 0;
257c62e1 8541 ei->last_sub_trans = 0;
e02119d5 8542 ei->logged_trans = 0;
2ead6ae7 8543 ei->delalloc_bytes = 0;
a7e3b975 8544 ei->new_delalloc_bytes = 0;
47059d93 8545 ei->defrag_bytes = 0;
2ead6ae7
YZ
8546 ei->disk_i_size = 0;
8547 ei->flags = 0;
77eea05e 8548 ei->ro_flags = 0;
7709cde3 8549 ei->csum_bytes = 0;
2ead6ae7 8550 ei->index_cnt = (u64)-1;
67de1176 8551 ei->dir_index = 0;
2ead6ae7 8552 ei->last_unlink_trans = 0;
3ebac17c 8553 ei->last_reflink_trans = 0;
46d8bc34 8554 ei->last_log_commit = 0;
2ead6ae7 8555
9e0baf60
JB
8556 spin_lock_init(&ei->lock);
8557 ei->outstanding_extents = 0;
69fe2d75
JB
8558 if (sb->s_magic != BTRFS_TEST_MAGIC)
8559 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8560 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8561 ei->runtime_flags = 0;
b52aa8c9 8562 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8563 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8564
16cdcec7
MX
8565 ei->delayed_node = NULL;
8566
c6e8f898
DS
8567 ei->i_otime_sec = 0;
8568 ei->i_otime_nsec = 0;
9cc97d64 8569
2ead6ae7 8570 inode = &ei->vfs_inode;
a8067e02 8571 extent_map_tree_init(&ei->extent_tree);
738290c0
DS
8572
8573 /* This io tree sets the valid inode. */
35da5a7e 8574 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
0988fc7b 8575 ei->io_tree.inode = ei;
738290c0 8576
637e6e0f
DS
8577 ei->file_extent_tree = file_extent_tree;
8578 if (file_extent_tree) {
8579 extent_io_tree_init(fs_info, ei->file_extent_tree,
8580 IO_TREE_INODE_FILE_EXTENT);
8581 /* Lockdep class is set only for the file extent tree. */
8582 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8583 }
2ead6ae7 8584 mutex_init(&ei->log_mutex);
54c65371
DS
8585 spin_lock_init(&ei->ordered_tree_lock);
8586 ei->ordered_tree = RB_ROOT;
8587 ei->ordered_tree_last = NULL;
2ead6ae7 8588 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8589 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8590 RB_CLEAR_NODE(&ei->rb_node);
8318ba79 8591 init_rwsem(&ei->i_mmap_lock);
2ead6ae7
YZ
8592
8593 return inode;
39279cc3
CM
8594}
8595
aaedb55b
JB
8596#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8597void btrfs_test_destroy_inode(struct inode *inode)
8598{
4c0c8cfc 8599 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
637e6e0f 8600 kfree(BTRFS_I(inode)->file_extent_tree);
aaedb55b
JB
8601 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8602}
8603#endif
8604
26602cab 8605void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8606{
637e6e0f 8607 kfree(BTRFS_I(inode)->file_extent_tree);
fa0d7e3d
NP
8608 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8609}
8610
633cc816 8611void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8612{
e6dcd2dc 8613 struct btrfs_ordered_extent *ordered;
633cc816
NB
8614 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8615 struct btrfs_root *root = inode->root;
5f4403e1 8616 bool freespace_inode;
5a3f23d5 8617
633cc816
NB
8618 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8619 WARN_ON(vfs_inode->i_data.nrpages);
8620 WARN_ON(inode->block_rsv.reserved);
8621 WARN_ON(inode->block_rsv.size);
8622 WARN_ON(inode->outstanding_extents);
dc287224
FM
8623 if (!S_ISDIR(vfs_inode->i_mode)) {
8624 WARN_ON(inode->delalloc_bytes);
8625 WARN_ON(inode->new_delalloc_bytes);
8626 }
633cc816
NB
8627 WARN_ON(inode->csum_bytes);
8628 WARN_ON(inode->defrag_bytes);
39279cc3 8629
a6dbd429
JB
8630 /*
8631 * This can happen where we create an inode, but somebody else also
8632 * created the same inode and we need to destroy the one we already
8633 * created.
8634 */
8635 if (!root)
26602cab 8636 return;
a6dbd429 8637
5f4403e1
IA
8638 /*
8639 * If this is a free space inode do not take the ordered extents lockdep
8640 * map.
8641 */
8642 freespace_inode = btrfs_is_free_space_inode(inode);
8643
d397712b 8644 while (1) {
633cc816 8645 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8646 if (!ordered)
8647 break;
8648 else {
633cc816 8649 btrfs_err(root->fs_info,
5d163e0e 8650 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8651 ordered->file_offset, ordered->num_bytes);
5f4403e1
IA
8652
8653 if (!freespace_inode)
8654 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8655
71fe0a55 8656 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8657 btrfs_put_ordered_extent(ordered);
8658 btrfs_put_ordered_extent(ordered);
8659 }
8660 }
633cc816
NB
8661 btrfs_qgroup_check_reserved_leak(inode);
8662 inode_tree_del(inode);
4c0c8cfc 8663 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
633cc816
NB
8664 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8665 btrfs_put_root(inode->root);
39279cc3
CM
8666}
8667
45321ac5 8668int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8669{
8670 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8671
6379ef9f
NA
8672 if (root == NULL)
8673 return 1;
8674
fa6ac876 8675 /* the snap/subvol tree is on deleting */
69e9c6c6 8676 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8677 return 1;
76dda93c 8678 else
45321ac5 8679 return generic_drop_inode(inode);
76dda93c
YZ
8680}
8681
0ee0fda0 8682static void init_once(void *foo)
39279cc3 8683{
0d031dc4 8684 struct btrfs_inode *ei = foo;
39279cc3
CM
8685
8686 inode_init_once(&ei->vfs_inode);
8687}
8688
e67c718b 8689void __cold btrfs_destroy_cachep(void)
39279cc3 8690{
8c0a8537
KS
8691 /*
8692 * Make sure all delayed rcu free inodes are flushed before we
8693 * destroy cache.
8694 */
8695 rcu_barrier();
642c5d34 8696 bioset_exit(&btrfs_dio_bioset);
5598e900 8697 kmem_cache_destroy(btrfs_inode_cachep);
39279cc3
CM
8698}
8699
f5c29bd9 8700int __init btrfs_init_cachep(void)
39279cc3 8701{
837e1972 8702 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8703 sizeof(struct btrfs_inode), 0,
5d097056
VD
8704 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8705 init_once);
39279cc3
CM
8706 if (!btrfs_inode_cachep)
8707 goto fail;
9601e3f6 8708
642c5d34 8709 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
67d66982 8710 offsetof(struct btrfs_dio_private, bbio.bio),
642c5d34
CH
8711 BIOSET_NEED_BVECS))
8712 goto fail;
8713
39279cc3
CM
8714 return 0;
8715fail:
8716 btrfs_destroy_cachep();
8717 return -ENOMEM;
8718}
8719
b74d24f7 8720static int btrfs_getattr(struct mnt_idmap *idmap,
549c7297 8721 const struct path *path, struct kstat *stat,
a528d35e 8722 u32 request_mask, unsigned int flags)
39279cc3 8723{
df0af1a5 8724 u64 delalloc_bytes;
2766ff61 8725 u64 inode_bytes;
a528d35e 8726 struct inode *inode = d_inode(path->dentry);
4e00422e 8727 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
04a87e34 8728 u32 bi_flags = BTRFS_I(inode)->flags;
14605409 8729 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
04a87e34
YS
8730
8731 stat->result_mask |= STATX_BTIME;
c6e8f898
DS
8732 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8733 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
04a87e34
YS
8734 if (bi_flags & BTRFS_INODE_APPEND)
8735 stat->attributes |= STATX_ATTR_APPEND;
8736 if (bi_flags & BTRFS_INODE_COMPRESS)
8737 stat->attributes |= STATX_ATTR_COMPRESSED;
8738 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8739 stat->attributes |= STATX_ATTR_IMMUTABLE;
8740 if (bi_flags & BTRFS_INODE_NODUMP)
8741 stat->attributes |= STATX_ATTR_NODUMP;
14605409
BB
8742 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8743 stat->attributes |= STATX_ATTR_VERITY;
04a87e34
YS
8744
8745 stat->attributes_mask |= (STATX_ATTR_APPEND |
8746 STATX_ATTR_COMPRESSED |
8747 STATX_ATTR_IMMUTABLE |
8748 STATX_ATTR_NODUMP);
fadc0d8b 8749
0d72b928 8750 generic_fillattr(idmap, request_mask, inode, stat);
0ee5dc67 8751 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8752
8753 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8754 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
2766ff61 8755 inode_bytes = inode_get_bytes(inode);
df0af1a5 8756 spin_unlock(&BTRFS_I(inode)->lock);
2766ff61 8757 stat->blocks = (ALIGN(inode_bytes, blocksize) +
29e70be2 8758 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
39279cc3
CM
8759 return 0;
8760}
8761
cdd1fedf
DF
8762static int btrfs_rename_exchange(struct inode *old_dir,
8763 struct dentry *old_dentry,
8764 struct inode *new_dir,
8765 struct dentry *new_dentry)
8766{
41044b41 8767 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
cdd1fedf 8768 struct btrfs_trans_handle *trans;
c1621871 8769 unsigned int trans_num_items;
cdd1fedf
DF
8770 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8771 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8772 struct inode *new_inode = new_dentry->d_inode;
8773 struct inode *old_inode = old_dentry->d_inode;
88d2beec
FM
8774 struct btrfs_rename_ctx old_rename_ctx;
8775 struct btrfs_rename_ctx new_rename_ctx;
4a0cc7ca
NB
8776 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8777 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8778 u64 old_idx = 0;
8779 u64 new_idx = 0;
cdd1fedf 8780 int ret;
75b463d2 8781 int ret2;
dc09ef35 8782 bool need_abort = false;
ab3c5c18 8783 struct fscrypt_name old_fname, new_fname;
6db75318 8784 struct fscrypt_str *old_name, *new_name;
cdd1fedf 8785
3f79f6f6
N
8786 /*
8787 * For non-subvolumes allow exchange only within one subvolume, in the
8788 * same inode namespace. Two subvolumes (represented as directory) can
8789 * be exchanged as they're a logical link and have a fixed inode number.
8790 */
8791 if (root != dest &&
8792 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8793 new_ino != BTRFS_FIRST_FREE_OBJECTID))
cdd1fedf
DF
8794 return -EXDEV;
8795
ab3c5c18
STD
8796 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8797 if (ret)
8798 return ret;
8799
8800 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8801 if (ret) {
8802 fscrypt_free_filename(&old_fname);
8803 return ret;
8804 }
8805
6db75318
STD
8806 old_name = &old_fname.disk_name;
8807 new_name = &new_fname.disk_name;
ab3c5c18 8808
cdd1fedf 8809 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8810 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8811 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8812 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8813
8814 /*
c1621871
OS
8815 * For each inode:
8816 * 1 to remove old dir item
8817 * 1 to remove old dir index
8818 * 1 to add new dir item
8819 * 1 to add new dir index
8820 * 1 to update parent inode
8821 *
8822 * If the parents are the same, we only need to account for one
cdd1fedf 8823 */
c1621871
OS
8824 trans_num_items = (old_dir == new_dir ? 9 : 10);
8825 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8826 /*
8827 * 1 to remove old root ref
8828 * 1 to remove old root backref
8829 * 1 to add new root ref
8830 * 1 to add new root backref
8831 */
8832 trans_num_items += 4;
8833 } else {
8834 /*
8835 * 1 to update inode item
8836 * 1 to remove old inode ref
8837 * 1 to add new inode ref
8838 */
8839 trans_num_items += 3;
8840 }
8841 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8842 trans_num_items += 4;
8843 else
8844 trans_num_items += 3;
8845 trans = btrfs_start_transaction(root, trans_num_items);
cdd1fedf
DF
8846 if (IS_ERR(trans)) {
8847 ret = PTR_ERR(trans);
8848 goto out_notrans;
8849 }
8850
00aa8e87
JB
8851 if (dest != root) {
8852 ret = btrfs_record_root_in_trans(trans, dest);
8853 if (ret)
8854 goto out_fail;
8855 }
3e174099 8856
cdd1fedf
DF
8857 /*
8858 * We need to find a free sequence number both in the source and
8859 * in the destination directory for the exchange.
8860 */
877574e2 8861 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8862 if (ret)
8863 goto out_fail;
877574e2 8864 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8865 if (ret)
8866 goto out_fail;
8867
8868 BTRFS_I(old_inode)->dir_index = 0ULL;
8869 BTRFS_I(new_inode)->dir_index = 0ULL;
8870
8871 /* Reference for the source. */
8872 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8873 /* force full log commit if subvolume involved. */
90787766 8874 btrfs_set_log_full_commit(trans);
cdd1fedf 8875 } else {
6db75318 8876 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
f85b7379
DS
8877 btrfs_ino(BTRFS_I(new_dir)),
8878 old_idx);
cdd1fedf
DF
8879 if (ret)
8880 goto out_fail;
dc09ef35 8881 need_abort = true;
cdd1fedf
DF
8882 }
8883
8884 /* And now for the dest. */
8885 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8886 /* force full log commit if subvolume involved. */
90787766 8887 btrfs_set_log_full_commit(trans);
cdd1fedf 8888 } else {
6db75318 8889 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
f85b7379
DS
8890 btrfs_ino(BTRFS_I(old_dir)),
8891 new_idx);
dc09ef35
JB
8892 if (ret) {
8893 if (need_abort)
8894 btrfs_abort_transaction(trans, ret);
cdd1fedf 8895 goto out_fail;
dc09ef35 8896 }
cdd1fedf
DF
8897 }
8898
8899 /* Update inode version and ctime/mtime. */
8900 inode_inc_iversion(old_dir);
8901 inode_inc_iversion(new_dir);
8902 inode_inc_iversion(old_inode);
8903 inode_inc_iversion(new_inode);
130f1eca 8904 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
cdd1fedf
DF
8905
8906 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379 8907 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 8908 BTRFS_I(old_inode), true);
f85b7379 8909 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
59fcf388 8910 BTRFS_I(new_inode), true);
cdd1fedf
DF
8911 }
8912
8913 /* src is a subvolume */
8914 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8915 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
cdd1fedf 8916 } else { /* src is an inode */
4467af88 8917 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 8918 BTRFS_I(old_dentry->d_inode),
6db75318 8919 old_name, &old_rename_ctx);
cdd1fedf 8920 if (!ret)
8b9d0322 8921 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
cdd1fedf
DF
8922 }
8923 if (ret) {
66642832 8924 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8925 goto out_fail;
8926 }
8927
8928 /* dest is a subvolume */
8929 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8930 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
cdd1fedf 8931 } else { /* dest is an inode */
4467af88 8932 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 8933 BTRFS_I(new_dentry->d_inode),
6db75318 8934 new_name, &new_rename_ctx);
cdd1fedf 8935 if (!ret)
8b9d0322 8936 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
cdd1fedf
DF
8937 }
8938 if (ret) {
66642832 8939 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8940 goto out_fail;
8941 }
8942
db0a669f 8943 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 8944 new_name, 0, old_idx);
cdd1fedf 8945 if (ret) {
66642832 8946 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8947 goto out_fail;
8948 }
8949
db0a669f 8950 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
6db75318 8951 old_name, 0, new_idx);
cdd1fedf 8952 if (ret) {
66642832 8953 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8954 goto out_fail;
8955 }
8956
8957 if (old_inode->i_nlink == 1)
8958 BTRFS_I(old_inode)->dir_index = old_idx;
8959 if (new_inode->i_nlink == 1)
8960 BTRFS_I(new_inode)->dir_index = new_idx;
8961
259c4b96
FM
8962 /*
8963 * Now pin the logs of the roots. We do it to ensure that no other task
8964 * can sync the logs while we are in progress with the rename, because
8965 * that could result in an inconsistency in case any of the inodes that
8966 * are part of this rename operation were logged before.
8967 */
8968 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8969 btrfs_pin_log_trans(root);
8970 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8971 btrfs_pin_log_trans(dest);
8972
8973 /* Do the log updates for all inodes. */
8974 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8975 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 8976 old_rename_ctx.index, new_dentry->d_parent);
259c4b96 8977 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8978 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
88d2beec 8979 new_rename_ctx.index, old_dentry->d_parent);
259c4b96
FM
8980
8981 /* Now unpin the logs. */
8982 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8983 btrfs_end_log_trans(root);
8984 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
cdd1fedf 8985 btrfs_end_log_trans(dest);
cdd1fedf 8986out_fail:
75b463d2
FM
8987 ret2 = btrfs_end_transaction(trans);
8988 ret = ret ? ret : ret2;
cdd1fedf 8989out_notrans:
943eb3bf
JB
8990 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8991 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8992 up_read(&fs_info->subvol_sem);
cdd1fedf 8993
ab3c5c18
STD
8994 fscrypt_free_filename(&new_fname);
8995 fscrypt_free_filename(&old_fname);
cdd1fedf
DF
8996 return ret;
8997}
8998
f2d40141 8999static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
9000 struct inode *dir)
9001{
9002 struct inode *inode;
9003
9004 inode = new_inode(dir->i_sb);
9005 if (inode) {
f2d40141 9006 inode_init_owner(idmap, inode, dir,
a1fd0c35
OS
9007 S_IFCHR | WHITEOUT_MODE);
9008 inode->i_op = &btrfs_special_inode_operations;
9009 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9010 }
9011 return inode;
9012}
9013
f2d40141 9014static int btrfs_rename(struct mnt_idmap *idmap,
ca07274c
CB
9015 struct inode *old_dir, struct dentry *old_dentry,
9016 struct inode *new_dir, struct dentry *new_dentry,
9017 unsigned int flags)
39279cc3 9018{
41044b41 9019 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
3538d68d
OS
9020 struct btrfs_new_inode_args whiteout_args = {
9021 .dir = old_dir,
9022 .dentry = old_dentry,
9023 };
39279cc3 9024 struct btrfs_trans_handle *trans;
5062af35 9025 unsigned int trans_num_items;
39279cc3 9026 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9027 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9028 struct inode *new_inode = d_inode(new_dentry);
9029 struct inode *old_inode = d_inode(old_dentry);
88d2beec 9030 struct btrfs_rename_ctx rename_ctx;
00e4e6b3 9031 u64 index = 0;
39279cc3 9032 int ret;
75b463d2 9033 int ret2;
4a0cc7ca 9034 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
ab3c5c18 9035 struct fscrypt_name old_fname, new_fname;
39279cc3 9036
4a0cc7ca 9037 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9038 return -EPERM;
9039
4df27c4d 9040 /* we only allow rename subvolume link between subvolumes */
33345d01 9041 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9042 return -EXDEV;
9043
33345d01 9044 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9045 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9046 return -ENOTEMPTY;
5f39d397 9047
4df27c4d
YZ
9048 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9049 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9050 return -ENOTEMPTY;
9c52057c 9051
ab3c5c18
STD
9052 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9053 if (ret)
9054 return ret;
9c52057c 9055
ab3c5c18
STD
9056 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9057 if (ret) {
9058 fscrypt_free_filename(&old_fname);
9059 return ret;
9060 }
9c52057c 9061
9c52057c 9062 /* check for collisions, even if the name isn't there */
6db75318 9063 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9c52057c
CM
9064 if (ret) {
9065 if (ret == -EEXIST) {
9066 /* we shouldn't get
9067 * eexist without a new_inode */
fae7f21c 9068 if (WARN_ON(!new_inode)) {
ab3c5c18 9069 goto out_fscrypt_names;
9c52057c
CM
9070 }
9071 } else {
9072 /* maybe -EOVERFLOW */
ab3c5c18 9073 goto out_fscrypt_names;
9c52057c
CM
9074 }
9075 }
9076 ret = 0;
9077
5a3f23d5 9078 /*
8d875f95
CM
9079 * we're using rename to replace one file with another. Start IO on it
9080 * now so we don't add too much work to the end of the transaction
5a3f23d5 9081 */
8d875f95 9082 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9083 filemap_flush(old_inode->i_mapping);
9084
a1fd0c35 9085 if (flags & RENAME_WHITEOUT) {
f2d40141 9086 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
abe3bf74
CJ
9087 if (!whiteout_args.inode) {
9088 ret = -ENOMEM;
9089 goto out_fscrypt_names;
9090 }
3538d68d
OS
9091 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9092 if (ret)
9093 goto out_whiteout_inode;
9094 } else {
9095 /* 1 to update the old parent inode. */
9096 trans_num_items = 1;
a1fd0c35
OS
9097 }
9098
c1621871
OS
9099 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9100 /* Close the race window with snapshot create/destroy ioctl */
0b246afa 9101 down_read(&fs_info->subvol_sem);
c1621871
OS
9102 /*
9103 * 1 to remove old root ref
9104 * 1 to remove old root backref
9105 * 1 to add new root ref
9106 * 1 to add new root backref
9107 */
3538d68d 9108 trans_num_items += 4;
c1621871
OS
9109 } else {
9110 /*
9111 * 1 to update inode
9112 * 1 to remove old inode ref
9113 * 1 to add new inode ref
9114 */
3538d68d 9115 trans_num_items += 3;
c1621871 9116 }
a22285a6 9117 /*
c1621871
OS
9118 * 1 to remove old dir item
9119 * 1 to remove old dir index
c1621871
OS
9120 * 1 to add new dir item
9121 * 1 to add new dir index
a22285a6 9122 */
3538d68d
OS
9123 trans_num_items += 4;
9124 /* 1 to update new parent inode if it's not the same as the old parent */
c1621871
OS
9125 if (new_dir != old_dir)
9126 trans_num_items++;
9127 if (new_inode) {
9128 /*
9129 * 1 to update inode
9130 * 1 to remove inode ref
9131 * 1 to remove dir item
9132 * 1 to remove dir index
9133 * 1 to possibly add orphan item
9134 */
9135 trans_num_items += 5;
9136 }
5062af35 9137 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9138 if (IS_ERR(trans)) {
cdd1fedf
DF
9139 ret = PTR_ERR(trans);
9140 goto out_notrans;
9141 }
76dda93c 9142
b0fec6fd
JB
9143 if (dest != root) {
9144 ret = btrfs_record_root_in_trans(trans, dest);
9145 if (ret)
9146 goto out_fail;
9147 }
5f39d397 9148
877574e2 9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9150 if (ret)
9151 goto out_fail;
5a3f23d5 9152
67de1176 9153 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9154 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9155 /* force full log commit if subvolume involved. */
90787766 9156 btrfs_set_log_full_commit(trans);
4df27c4d 9157 } else {
6db75318
STD
9158 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9159 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9160 index);
a5719521
YZ
9161 if (ret)
9162 goto out_fail;
4df27c4d 9163 }
5a3f23d5 9164
0c4d2d95
JB
9165 inode_inc_iversion(old_dir);
9166 inode_inc_iversion(new_dir);
9167 inode_inc_iversion(old_inode);
130f1eca 9168 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
5f39d397 9169
12fcfd22 9170 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379 9171 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 9172 BTRFS_I(old_inode), true);
12fcfd22 9173
33345d01 9174 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5b7544cb 9175 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
4df27c4d 9176 } else {
4467af88 9177 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
e43eec81 9178 BTRFS_I(d_inode(old_dentry)),
6db75318 9179 &old_fname.disk_name, &rename_ctx);
92986796 9180 if (!ret)
8b9d0322 9181 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
4df27c4d 9182 }
79787eaa 9183 if (ret) {
66642832 9184 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9185 goto out_fail;
9186 }
39279cc3
CM
9187
9188 if (new_inode) {
0c4d2d95 9189 inode_inc_iversion(new_inode);
4a0cc7ca 9190 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9191 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 9192 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
4df27c4d
YZ
9193 BUG_ON(new_inode->i_nlink == 0);
9194 } else {
4467af88 9195 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9196 BTRFS_I(d_inode(new_dentry)),
6db75318 9197 &new_fname.disk_name);
4df27c4d 9198 }
4ef31a45 9199 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9200 ret = btrfs_orphan_add(trans,
9201 BTRFS_I(d_inode(new_dentry)));
79787eaa 9202 if (ret) {
66642832 9203 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9204 goto out_fail;
9205 }
39279cc3 9206 }
aec7477b 9207
db0a669f 9208 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 9209 &new_fname.disk_name, 0, index);
79787eaa 9210 if (ret) {
66642832 9211 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9212 goto out_fail;
9213 }
39279cc3 9214
67de1176
MX
9215 if (old_inode->i_nlink == 1)
9216 BTRFS_I(old_inode)->dir_index = index;
9217
259c4b96 9218 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9219 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 9220 rename_ctx.index, new_dentry->d_parent);
cdd1fedf
DF
9221
9222 if (flags & RENAME_WHITEOUT) {
caae78e0 9223 ret = btrfs_create_new_inode(trans, &whiteout_args);
cdd1fedf 9224 if (ret) {
66642832 9225 btrfs_abort_transaction(trans, ret);
cdd1fedf 9226 goto out_fail;
caae78e0
OS
9227 } else {
9228 unlock_new_inode(whiteout_args.inode);
9229 iput(whiteout_args.inode);
9230 whiteout_args.inode = NULL;
cdd1fedf 9231 }
4df27c4d 9232 }
39279cc3 9233out_fail:
75b463d2
FM
9234 ret2 = btrfs_end_transaction(trans);
9235 ret = ret ? ret : ret2;
b44c59a8 9236out_notrans:
33345d01 9237 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9238 up_read(&fs_info->subvol_sem);
a1fd0c35 9239 if (flags & RENAME_WHITEOUT)
3538d68d
OS
9240 btrfs_new_inode_args_destroy(&whiteout_args);
9241out_whiteout_inode:
9242 if (flags & RENAME_WHITEOUT)
9243 iput(whiteout_args.inode);
ab3c5c18
STD
9244out_fscrypt_names:
9245 fscrypt_free_filename(&old_fname);
9246 fscrypt_free_filename(&new_fname);
39279cc3
CM
9247 return ret;
9248}
9249
e18275ae 9250static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
549c7297
CB
9251 struct dentry *old_dentry, struct inode *new_dir,
9252 struct dentry *new_dentry, unsigned int flags)
80ace85c 9253{
ca6dee6b
FM
9254 int ret;
9255
cdd1fedf 9256 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9257 return -EINVAL;
9258
cdd1fedf 9259 if (flags & RENAME_EXCHANGE)
ca6dee6b
FM
9260 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9261 new_dentry);
9262 else
f2d40141 9263 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
ca6dee6b 9264 new_dentry, flags);
cdd1fedf 9265
ca6dee6b
FM
9266 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9267
9268 return ret;
80ace85c
MS
9269}
9270
3a2f8c07
NB
9271struct btrfs_delalloc_work {
9272 struct inode *inode;
9273 struct completion completion;
9274 struct list_head list;
9275 struct btrfs_work work;
9276};
9277
8ccf6f19
MX
9278static void btrfs_run_delalloc_work(struct btrfs_work *work)
9279{
9280 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9281 struct inode *inode;
8ccf6f19
MX
9282
9283 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9284 work);
9f23e289 9285 inode = delalloc_work->inode;
30424601
DS
9286 filemap_flush(inode->i_mapping);
9287 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9288 &BTRFS_I(inode)->runtime_flags))
9f23e289 9289 filemap_flush(inode->i_mapping);
8ccf6f19 9290
076da91c 9291 iput(inode);
8ccf6f19
MX
9292 complete(&delalloc_work->completion);
9293}
9294
3a2f8c07 9295static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9296{
9297 struct btrfs_delalloc_work *work;
9298
100d5702 9299 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9300 if (!work)
9301 return NULL;
9302
9303 init_completion(&work->completion);
9304 INIT_LIST_HEAD(&work->list);
9305 work->inode = inode;
078b8b90 9306 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8ccf6f19
MX
9307
9308 return work;
9309}
9310
d352ac68
CM
9311/*
9312 * some fairly slow code that needs optimization. This walks the list
9313 * of all the inodes with pending delalloc and forces them to disk.
9314 */
e076ab2a
JB
9315static int start_delalloc_inodes(struct btrfs_root *root,
9316 struct writeback_control *wbc, bool snapshot,
3d45f221 9317 bool in_reclaim_context)
ea8c2819 9318{
ea8c2819 9319 struct btrfs_inode *binode;
5b21f2ed 9320 struct inode *inode;
8ccf6f19 9321 struct btrfs_delalloc_work *work, *next;
84af994b
RJ
9322 LIST_HEAD(works);
9323 LIST_HEAD(splice);
8ccf6f19 9324 int ret = 0;
e076ab2a 9325 bool full_flush = wbc->nr_to_write == LONG_MAX;
ea8c2819 9326
573bfb72 9327 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9328 spin_lock(&root->delalloc_lock);
9329 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9330 while (!list_empty(&splice)) {
9331 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9332 delalloc_inodes);
1eafa6c7 9333
eb73c1b7
MX
9334 list_move_tail(&binode->delalloc_inodes,
9335 &root->delalloc_inodes);
3d45f221
FM
9336
9337 if (in_reclaim_context &&
9338 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9339 continue;
9340
5b21f2ed 9341 inode = igrab(&binode->vfs_inode);
df0af1a5 9342 if (!inode) {
eb73c1b7 9343 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9344 continue;
df0af1a5 9345 }
eb73c1b7 9346 spin_unlock(&root->delalloc_lock);
1eafa6c7 9347
3cd24c69
EL
9348 if (snapshot)
9349 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9350 &binode->runtime_flags);
e076ab2a
JB
9351 if (full_flush) {
9352 work = btrfs_alloc_delalloc_work(inode);
9353 if (!work) {
9354 iput(inode);
9355 ret = -ENOMEM;
9356 goto out;
9357 }
9358 list_add_tail(&work->list, &works);
9359 btrfs_queue_work(root->fs_info->flush_workers,
9360 &work->work);
9361 } else {
b3776305 9362 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
e55cf7ca 9363 btrfs_add_delayed_iput(BTRFS_I(inode));
e076ab2a 9364 if (ret || wbc->nr_to_write <= 0)
b4912139
JB
9365 goto out;
9366 }
5b21f2ed 9367 cond_resched();
eb73c1b7 9368 spin_lock(&root->delalloc_lock);
ea8c2819 9369 }
eb73c1b7 9370 spin_unlock(&root->delalloc_lock);
8c8bee1d 9371
a1ecaabb 9372out:
eb73c1b7
MX
9373 list_for_each_entry_safe(work, next, &works, list) {
9374 list_del_init(&work->list);
40012f96
NB
9375 wait_for_completion(&work->completion);
9376 kfree(work);
eb73c1b7
MX
9377 }
9378
81f1d390 9379 if (!list_empty(&splice)) {
eb73c1b7
MX
9380 spin_lock(&root->delalloc_lock);
9381 list_splice_tail(&splice, &root->delalloc_inodes);
9382 spin_unlock(&root->delalloc_lock);
9383 }
573bfb72 9384 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9385 return ret;
9386}
1eafa6c7 9387
f9baa501 9388int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
eb73c1b7 9389{
e076ab2a
JB
9390 struct writeback_control wbc = {
9391 .nr_to_write = LONG_MAX,
9392 .sync_mode = WB_SYNC_NONE,
9393 .range_start = 0,
9394 .range_end = LLONG_MAX,
9395 };
0b246afa 9396 struct btrfs_fs_info *fs_info = root->fs_info;
1eafa6c7 9397
84961539 9398 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9399 return -EROFS;
9400
f9baa501 9401 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
eb73c1b7
MX
9402}
9403
9db4dc24 9404int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3d45f221 9405 bool in_reclaim_context)
eb73c1b7 9406{
e076ab2a 9407 struct writeback_control wbc = {
9db4dc24 9408 .nr_to_write = nr,
e076ab2a
JB
9409 .sync_mode = WB_SYNC_NONE,
9410 .range_start = 0,
9411 .range_end = LLONG_MAX,
9412 };
eb73c1b7 9413 struct btrfs_root *root;
84af994b 9414 LIST_HEAD(splice);
eb73c1b7
MX
9415 int ret;
9416
84961539 9417 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9418 return -EROFS;
9419
573bfb72 9420 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9421 spin_lock(&fs_info->delalloc_root_lock);
9422 list_splice_init(&fs_info->delalloc_roots, &splice);
d7830b71 9423 while (!list_empty(&splice)) {
e076ab2a
JB
9424 /*
9425 * Reset nr_to_write here so we know that we're doing a full
9426 * flush.
9427 */
9db4dc24 9428 if (nr == LONG_MAX)
e076ab2a
JB
9429 wbc.nr_to_write = LONG_MAX;
9430
eb73c1b7
MX
9431 root = list_first_entry(&splice, struct btrfs_root,
9432 delalloc_root);
00246528 9433 root = btrfs_grab_root(root);
eb73c1b7
MX
9434 BUG_ON(!root);
9435 list_move_tail(&root->delalloc_root,
9436 &fs_info->delalloc_roots);
9437 spin_unlock(&fs_info->delalloc_root_lock);
9438
e076ab2a 9439 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
00246528 9440 btrfs_put_root(root);
e076ab2a 9441 if (ret < 0 || wbc.nr_to_write <= 0)
eb73c1b7 9442 goto out;
eb73c1b7 9443 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9444 }
eb73c1b7 9445 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9446
6c255e67 9447 ret = 0;
eb73c1b7 9448out:
81f1d390 9449 if (!list_empty(&splice)) {
eb73c1b7
MX
9450 spin_lock(&fs_info->delalloc_root_lock);
9451 list_splice_tail(&splice, &fs_info->delalloc_roots);
9452 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9453 }
573bfb72 9454 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9455 return ret;
ea8c2819
CM
9456}
9457
7a77db95 9458static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
549c7297 9459 struct dentry *dentry, const char *symname)
39279cc3 9460{
41044b41 9461 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
39279cc3
CM
9462 struct btrfs_trans_handle *trans;
9463 struct btrfs_root *root = BTRFS_I(dir)->root;
9464 struct btrfs_path *path;
9465 struct btrfs_key key;
a1fd0c35 9466 struct inode *inode;
3538d68d
OS
9467 struct btrfs_new_inode_args new_inode_args = {
9468 .dir = dir,
9469 .dentry = dentry,
9470 };
9471 unsigned int trans_num_items;
39279cc3 9472 int err;
39279cc3
CM
9473 int name_len;
9474 int datasize;
5f39d397 9475 unsigned long ptr;
39279cc3 9476 struct btrfs_file_extent_item *ei;
5f39d397 9477 struct extent_buffer *leaf;
39279cc3 9478
f06becc4 9479 name_len = strlen(symname);
0b246afa 9480 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9481 return -ENAMETOOLONG;
1832a6d5 9482
a1fd0c35
OS
9483 inode = new_inode(dir->i_sb);
9484 if (!inode)
9485 return -ENOMEM;
f2d40141 9486 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
a1fd0c35
OS
9487 inode->i_op = &btrfs_symlink_inode_operations;
9488 inode_nohighmem(inode);
9489 inode->i_mapping->a_ops = &btrfs_aops;
caae78e0
OS
9490 btrfs_i_size_write(BTRFS_I(inode), name_len);
9491 inode_set_bytes(inode, name_len);
a1fd0c35 9492
3538d68d
OS
9493 new_inode_args.inode = inode;
9494 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9495 if (err)
9496 goto out_inode;
3538d68d
OS
9497 /* 1 additional item for the inline extent */
9498 trans_num_items++;
9499
9500 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9501 if (IS_ERR(trans)) {
3538d68d
OS
9502 err = PTR_ERR(trans);
9503 goto out_new_inode_args;
a1fd0c35 9504 }
1832a6d5 9505
caae78e0 9506 err = btrfs_create_new_inode(trans, &new_inode_args);
b0d5d10f 9507 if (err)
caae78e0 9508 goto out;
ad19db71 9509
39279cc3 9510 path = btrfs_alloc_path();
d8926bb3
MF
9511 if (!path) {
9512 err = -ENOMEM;
caae78e0
OS
9513 btrfs_abort_transaction(trans, err);
9514 discard_new_inode(inode);
9515 inode = NULL;
9516 goto out;
d8926bb3 9517 }
4a0cc7ca 9518 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9519 key.offset = 0;
962a298f 9520 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9521 datasize = btrfs_file_extent_calc_inline_size(name_len);
9522 err = btrfs_insert_empty_item(trans, root, path, &key,
9523 datasize);
54aa1f4d 9524 if (err) {
caae78e0 9525 btrfs_abort_transaction(trans, err);
b0839166 9526 btrfs_free_path(path);
caae78e0
OS
9527 discard_new_inode(inode);
9528 inode = NULL;
9529 goto out;
54aa1f4d 9530 }
5f39d397
CM
9531 leaf = path->nodes[0];
9532 ei = btrfs_item_ptr(leaf, path->slots[0],
9533 struct btrfs_file_extent_item);
9534 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9535 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9536 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9537 btrfs_set_file_extent_encryption(leaf, ei, 0);
9538 btrfs_set_file_extent_compression(leaf, ei, 0);
9539 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9540 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9541
39279cc3 9542 ptr = btrfs_file_extent_inline_start(ei);
5f39d397 9543 write_extent_buffer(leaf, symname, ptr, name_len);
50564b65 9544 btrfs_mark_buffer_dirty(trans, leaf);
39279cc3 9545 btrfs_free_path(path);
5f39d397 9546
1e2e547a 9547 d_instantiate_new(dentry, inode);
caae78e0
OS
9548 err = 0;
9549out:
3a45bb20 9550 btrfs_end_transaction(trans);
2ff7e61e 9551 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9552out_new_inode_args:
9553 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9554out_inode:
9555 if (err)
9556 iput(inode);
39279cc3
CM
9557 return err;
9558}
16432985 9559
8fccebfa
FM
9560static struct btrfs_trans_handle *insert_prealloc_file_extent(
9561 struct btrfs_trans_handle *trans_in,
90dffd0c
NB
9562 struct btrfs_inode *inode,
9563 struct btrfs_key *ins,
203f44c5
QW
9564 u64 file_offset)
9565{
9566 struct btrfs_file_extent_item stack_fi;
bf385648 9567 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9568 struct btrfs_trans_handle *trans = trans_in;
9569 struct btrfs_path *path;
203f44c5
QW
9570 u64 start = ins->objectid;
9571 u64 len = ins->offset;
9e65bfca 9572 u64 qgroup_released = 0;
9729f10a 9573 int ret;
203f44c5
QW
9574
9575 memset(&stack_fi, 0, sizeof(stack_fi));
9576
9577 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9578 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9579 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9580 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9581 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9582 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9583 /* Encryption and other encoding is reserved and all 0 */
9584
9e65bfca
BB
9585 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9586 if (ret < 0)
9587 return ERR_PTR(ret);
8fccebfa
FM
9588
9589 if (trans) {
90dffd0c 9590 ret = insert_reserved_file_extent(trans, inode,
2766ff61 9591 file_offset, &stack_fi,
fbf48bb0 9592 true, qgroup_released);
8fccebfa 9593 if (ret)
a3ee79bd 9594 goto free_qgroup;
8fccebfa
FM
9595 return trans;
9596 }
9597
9598 extent_info.disk_offset = start;
9599 extent_info.disk_len = len;
9600 extent_info.data_offset = 0;
9601 extent_info.data_len = len;
9602 extent_info.file_offset = file_offset;
9603 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa 9604 extent_info.is_new_extent = true;
983d8209 9605 extent_info.update_times = true;
fbf48bb0 9606 extent_info.qgroup_reserved = qgroup_released;
8fccebfa
FM
9607 extent_info.insertions = 0;
9608
9609 path = btrfs_alloc_path();
a3ee79bd
QW
9610 if (!path) {
9611 ret = -ENOMEM;
9612 goto free_qgroup;
9613 }
8fccebfa 9614
bfc78479 9615 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9616 file_offset + len - 1, &extent_info,
9617 &trans);
9618 btrfs_free_path(path);
9619 if (ret)
a3ee79bd 9620 goto free_qgroup;
8fccebfa 9621 return trans;
a3ee79bd
QW
9622
9623free_qgroup:
9624 /*
9625 * We have released qgroup data range at the beginning of the function,
9626 * and normally qgroup_released bytes will be freed when committing
9627 * transaction.
9628 * But if we error out early, we have to free what we have released
9629 * or we leak qgroup data reservation.
9630 */
9631 btrfs_qgroup_free_refroot(inode->root->fs_info,
9632 inode->root->root_key.objectid, qgroup_released,
9633 BTRFS_QGROUP_RSV_DATA);
9634 return ERR_PTR(ret);
203f44c5 9635}
8fccebfa 9636
0af3d00b
JB
9637static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9638 u64 start, u64 num_bytes, u64 min_size,
9639 loff_t actual_len, u64 *alloc_hint,
9640 struct btrfs_trans_handle *trans)
d899e052 9641{
41044b41 9642 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5dc562c5 9643 struct extent_map *em;
d899e052
YZ
9644 struct btrfs_root *root = BTRFS_I(inode)->root;
9645 struct btrfs_key ins;
d899e052 9646 u64 cur_offset = start;
b778cf96 9647 u64 clear_offset = start;
55a61d1d 9648 u64 i_size;
154ea289 9649 u64 cur_bytes;
0b670dc4 9650 u64 last_alloc = (u64)-1;
d899e052 9651 int ret = 0;
0af3d00b 9652 bool own_trans = true;
18513091 9653 u64 end = start + num_bytes - 1;
d899e052 9654
0af3d00b
JB
9655 if (trans)
9656 own_trans = false;
d899e052 9657 while (num_bytes > 0) {
ee22184b 9658 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9659 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9660 /*
9661 * If we are severely fragmented we could end up with really
9662 * small allocations, so if the allocator is returning small
9663 * chunks lets make its job easier by only searching for those
9664 * sized chunks.
9665 */
9666 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9667 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9668 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9669 if (ret)
a22285a6 9670 break;
b778cf96
JB
9671
9672 /*
9673 * We've reserved this space, and thus converted it from
9674 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9675 * from here on out we will only need to clear our reservation
9676 * for the remaining unreserved area, so advance our
9677 * clear_offset by our extent size.
9678 */
9679 clear_offset += ins.offset;
5a303d5d 9680
0b670dc4 9681 last_alloc = ins.offset;
90dffd0c
NB
9682 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9683 &ins, cur_offset);
1afc708d
FM
9684 /*
9685 * Now that we inserted the prealloc extent we can finally
9686 * decrement the number of reservations in the block group.
9687 * If we did it before, we could race with relocation and have
9688 * relocation miss the reserved extent, making it fail later.
9689 */
9690 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9691 if (IS_ERR(trans)) {
9692 ret = PTR_ERR(trans);
2ff7e61e 9693 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9694 ins.offset, 0);
79787eaa
JM
9695 break;
9696 }
31193213 9697
5dc562c5
JB
9698 em = alloc_extent_map();
9699 if (!em) {
a1ba4c08
FM
9700 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9701 cur_offset + ins.offset - 1, false);
23e3337f 9702 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5
JB
9703 goto next;
9704 }
9705
9706 em->start = cur_offset;
9707 em->orig_start = cur_offset;
9708 em->len = ins.offset;
9709 em->block_start = ins.objectid;
9710 em->block_len = ins.offset;
b4939680 9711 em->orig_block_len = ins.offset;
cc95bef6 9712 em->ram_bytes = ins.offset;
f86f7a75 9713 em->flags |= EXTENT_FLAG_PREALLOC;
5dc562c5
JB
9714 em->generation = trans->transid;
9715
a1ba4c08 9716 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
5dc562c5
JB
9717 free_extent_map(em);
9718next:
d899e052
YZ
9719 num_bytes -= ins.offset;
9720 cur_offset += ins.offset;
efa56464 9721 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9722
0c4d2d95 9723 inode_inc_iversion(inode);
2a9462de 9724 inode_set_ctime_current(inode);
6cbff00f 9725 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9726 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9727 (actual_len > inode->i_size) &&
9728 (cur_offset > inode->i_size)) {
d1ea6a61 9729 if (cur_offset > actual_len)
55a61d1d 9730 i_size = actual_len;
d1ea6a61 9731 else
55a61d1d
JB
9732 i_size = cur_offset;
9733 i_size_write(inode, i_size);
76aea537 9734 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5a303d5d
YZ
9735 }
9736
8b9d0322 9737 ret = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
9738
9739 if (ret) {
66642832 9740 btrfs_abort_transaction(trans, ret);
79787eaa 9741 if (own_trans)
3a45bb20 9742 btrfs_end_transaction(trans);
79787eaa
JM
9743 break;
9744 }
d899e052 9745
8fccebfa 9746 if (own_trans) {
3a45bb20 9747 btrfs_end_transaction(trans);
8fccebfa
FM
9748 trans = NULL;
9749 }
5a303d5d 9750 }
b778cf96 9751 if (clear_offset < end)
25ce28ca 9752 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9753 end - clear_offset + 1);
d899e052
YZ
9754 return ret;
9755}
9756
0af3d00b
JB
9757int btrfs_prealloc_file_range(struct inode *inode, int mode,
9758 u64 start, u64 num_bytes, u64 min_size,
9759 loff_t actual_len, u64 *alloc_hint)
9760{
9761 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9762 min_size, actual_len, alloc_hint,
9763 NULL);
9764}
9765
9766int btrfs_prealloc_file_range_trans(struct inode *inode,
9767 struct btrfs_trans_handle *trans, int mode,
9768 u64 start, u64 num_bytes, u64 min_size,
9769 loff_t actual_len, u64 *alloc_hint)
9770{
9771 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9772 min_size, actual_len, alloc_hint, trans);
9773}
9774
4609e1f1 9775static int btrfs_permission(struct mnt_idmap *idmap,
549c7297 9776 struct inode *inode, int mask)
fdebe2bd 9777{
b83cc969 9778 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9779 umode_t mode = inode->i_mode;
b83cc969 9780
cb6db4e5
JM
9781 if (mask & MAY_WRITE &&
9782 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9783 if (btrfs_root_readonly(root))
9784 return -EROFS;
9785 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9786 return -EACCES;
9787 }
4609e1f1 9788 return generic_permission(idmap, inode, mask);
fdebe2bd 9789}
39279cc3 9790
011e2b71 9791static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
863f144f 9792 struct file *file, umode_t mode)
ef3b9af5 9793{
41044b41 9794 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
ef3b9af5
FM
9795 struct btrfs_trans_handle *trans;
9796 struct btrfs_root *root = BTRFS_I(dir)->root;
a1fd0c35 9797 struct inode *inode;
3538d68d
OS
9798 struct btrfs_new_inode_args new_inode_args = {
9799 .dir = dir,
863f144f 9800 .dentry = file->f_path.dentry,
3538d68d
OS
9801 .orphan = true,
9802 };
9803 unsigned int trans_num_items;
a1fd0c35
OS
9804 int ret;
9805
9806 inode = new_inode(dir->i_sb);
9807 if (!inode)
9808 return -ENOMEM;
f2d40141 9809 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
9810 inode->i_fop = &btrfs_file_operations;
9811 inode->i_op = &btrfs_file_inode_operations;
9812 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 9813
3538d68d
OS
9814 new_inode_args.inode = inode;
9815 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9816 if (ret)
9817 goto out_inode;
3538d68d
OS
9818
9819 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9820 if (IS_ERR(trans)) {
3538d68d
OS
9821 ret = PTR_ERR(trans);
9822 goto out_new_inode_args;
a1fd0c35 9823 }
ef3b9af5 9824
caae78e0 9825 ret = btrfs_create_new_inode(trans, &new_inode_args);
ef3b9af5 9826
5762b5c9 9827 /*
3538d68d
OS
9828 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9829 * set it to 1 because d_tmpfile() will issue a warning if the count is
9830 * 0, through:
5762b5c9
FM
9831 *
9832 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9833 */
9834 set_nlink(inode, 1);
caae78e0
OS
9835
9836 if (!ret) {
863f144f 9837 d_tmpfile(file, inode);
caae78e0
OS
9838 unlock_new_inode(inode);
9839 mark_inode_dirty(inode);
9840 }
9841
3a45bb20 9842 btrfs_end_transaction(trans);
2ff7e61e 9843 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9844out_new_inode_args:
9845 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9846out_inode:
9847 if (ret)
9848 iput(inode);
863f144f 9849 return finish_open_simple(file, ret);
ef3b9af5
FM
9850}
9851
d2a91064 9852void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
c6100a4b 9853{
d2a91064 9854 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c6100a4b
JB
9855 unsigned long index = start >> PAGE_SHIFT;
9856 unsigned long end_index = end >> PAGE_SHIFT;
9857 struct page *page;
d2a91064 9858 u32 len;
c6100a4b 9859
d2a91064
QW
9860 ASSERT(end + 1 - start <= U32_MAX);
9861 len = end + 1 - start;
c6100a4b 9862 while (index <= end_index) {
d2a91064 9863 page = find_get_page(inode->vfs_inode.i_mapping, index);
c6100a4b 9864 ASSERT(page); /* Pages should be in the extent_io_tree */
d2a91064 9865
55151ea9
QW
9866 /* This is for data, which doesn't yet support larger folio. */
9867 ASSERT(folio_order(page_folio(page)) == 0);
9868 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
c6100a4b
JB
9869 put_page(page);
9870 index++;
9871 }
9872}
9873
3ea4dc5b
OS
9874int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9875 int compress_type)
1881fba8
OS
9876{
9877 switch (compress_type) {
9878 case BTRFS_COMPRESS_NONE:
9879 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9880 case BTRFS_COMPRESS_ZLIB:
9881 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9882 case BTRFS_COMPRESS_LZO:
9883 /*
9884 * The LZO format depends on the sector size. 64K is the maximum
9885 * sector size that we support.
9886 */
9887 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9888 return -EINVAL;
9889 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9890 (fs_info->sectorsize_bits - 12);
9891 case BTRFS_COMPRESS_ZSTD:
9892 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9893 default:
9894 return -EUCLEAN;
9895 }
9896}
9897
9898static ssize_t btrfs_encoded_read_inline(
9899 struct kiocb *iocb,
9900 struct iov_iter *iter, u64 start,
9901 u64 lockend,
9902 struct extent_state **cached_state,
9903 u64 extent_start, size_t count,
9904 struct btrfs_ioctl_encoded_io_args *encoded,
9905 bool *unlocked)
9906{
9907 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9908 struct btrfs_root *root = inode->root;
9909 struct btrfs_fs_info *fs_info = root->fs_info;
9910 struct extent_io_tree *io_tree = &inode->io_tree;
9911 struct btrfs_path *path;
9912 struct extent_buffer *leaf;
9913 struct btrfs_file_extent_item *item;
9914 u64 ram_bytes;
9915 unsigned long ptr;
9916 void *tmp;
9917 ssize_t ret;
9918
9919 path = btrfs_alloc_path();
9920 if (!path) {
9921 ret = -ENOMEM;
9922 goto out;
9923 }
9924 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9925 extent_start, 0);
9926 if (ret) {
9927 if (ret > 0) {
9928 /* The extent item disappeared? */
9929 ret = -EIO;
9930 }
9931 goto out;
9932 }
9933 leaf = path->nodes[0];
9934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9935
9936 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9937 ptr = btrfs_file_extent_inline_start(item);
9938
9939 encoded->len = min_t(u64, extent_start + ram_bytes,
9940 inode->vfs_inode.i_size) - iocb->ki_pos;
9941 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9942 btrfs_file_extent_compression(leaf, item));
9943 if (ret < 0)
9944 goto out;
9945 encoded->compression = ret;
9946 if (encoded->compression) {
9947 size_t inline_size;
9948
9949 inline_size = btrfs_file_extent_inline_item_len(leaf,
9950 path->slots[0]);
9951 if (inline_size > count) {
9952 ret = -ENOBUFS;
9953 goto out;
9954 }
9955 count = inline_size;
9956 encoded->unencoded_len = ram_bytes;
9957 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9958 } else {
9959 count = min_t(u64, count, encoded->len);
9960 encoded->len = count;
9961 encoded->unencoded_len = count;
9962 ptr += iocb->ki_pos - extent_start;
9963 }
9964
9965 tmp = kmalloc(count, GFP_NOFS);
9966 if (!tmp) {
9967 ret = -ENOMEM;
9968 goto out;
9969 }
9970 read_extent_buffer(leaf, tmp, ptr, count);
9971 btrfs_release_path(path);
570eb97b 9972 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 9973 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
9974 *unlocked = true;
9975
9976 ret = copy_to_iter(tmp, count, iter);
9977 if (ret != count)
9978 ret = -EFAULT;
9979 kfree(tmp);
9980out:
9981 btrfs_free_path(path);
9982 return ret;
9983}
9984
9985struct btrfs_encoded_read_private {
1881fba8
OS
9986 wait_queue_head_t wait;
9987 atomic_t pending;
9988 blk_status_t status;
1881fba8
OS
9989};
9990
917f32a2 9991static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
1881fba8 9992{
917f32a2 9993 struct btrfs_encoded_read_private *priv = bbio->private;
1881fba8 9994
7609afac 9995 if (bbio->bio.bi_status) {
1881fba8
OS
9996 /*
9997 * The memory barrier implied by the atomic_dec_return() here
9998 * pairs with the memory barrier implied by the
9999 * atomic_dec_return() or io_wait_event() in
10000 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10001 * write is observed before the load of status in
10002 * btrfs_encoded_read_regular_fill_pages().
10003 */
7609afac 10004 WRITE_ONCE(priv->status, bbio->bio.bi_status);
1881fba8
OS
10005 }
10006 if (!atomic_dec_return(&priv->pending))
10007 wake_up(&priv->wait);
917f32a2 10008 bio_put(&bbio->bio);
1881fba8
OS
10009}
10010
3ea4dc5b
OS
10011int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10012 u64 file_offset, u64 disk_bytenr,
10013 u64 disk_io_size, struct page **pages)
1881fba8 10014{
4317ff00 10015 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1881fba8 10016 struct btrfs_encoded_read_private priv = {
1881fba8 10017 .pending = ATOMIC_INIT(1),
1881fba8
OS
10018 };
10019 unsigned long i = 0;
b41bbd29 10020 struct btrfs_bio *bbio;
1881fba8
OS
10021
10022 init_waitqueue_head(&priv.wait);
1881fba8 10023
4317ff00
QW
10024 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10025 btrfs_encoded_read_endio, &priv);
b41bbd29 10026 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 10027 bbio->inode = inode;
1881fba8 10028
34f888ce
CH
10029 do {
10030 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10031
b41bbd29 10032 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
34f888ce 10033 atomic_inc(&priv.pending);
b41bbd29 10034 btrfs_submit_bio(bbio, 0);
34f888ce 10035
4317ff00 10036 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
b41bbd29
CH
10037 btrfs_encoded_read_endio, &priv);
10038 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 10039 bbio->inode = inode;
34f888ce 10040 continue;
1881fba8 10041 }
34f888ce
CH
10042
10043 i++;
10044 disk_bytenr += bytes;
10045 disk_io_size -= bytes;
10046 } while (disk_io_size);
10047
10048 atomic_inc(&priv.pending);
b41bbd29 10049 btrfs_submit_bio(bbio, 0);
1881fba8 10050
1881fba8
OS
10051 if (atomic_dec_return(&priv.pending))
10052 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10053 /* See btrfs_encoded_read_endio() for ordering. */
10054 return blk_status_to_errno(READ_ONCE(priv.status));
10055}
10056
10057static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10058 struct iov_iter *iter,
10059 u64 start, u64 lockend,
10060 struct extent_state **cached_state,
10061 u64 disk_bytenr, u64 disk_io_size,
10062 size_t count, bool compressed,
10063 bool *unlocked)
10064{
10065 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10066 struct extent_io_tree *io_tree = &inode->io_tree;
10067 struct page **pages;
10068 unsigned long nr_pages, i;
10069 u64 cur;
10070 size_t page_offset;
10071 ssize_t ret;
10072
10073 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10074 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10075 if (!pages)
10076 return -ENOMEM;
09e6cef1 10077 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
dd137dd1
STD
10078 if (ret) {
10079 ret = -ENOMEM;
10080 goto out;
1881fba8 10081 }
1881fba8
OS
10082
10083 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10084 disk_io_size, pages);
10085 if (ret)
10086 goto out;
10087
570eb97b 10088 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 10089 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10090 *unlocked = true;
10091
10092 if (compressed) {
10093 i = 0;
10094 page_offset = 0;
10095 } else {
10096 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10097 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10098 }
10099 cur = 0;
10100 while (cur < count) {
10101 size_t bytes = min_t(size_t, count - cur,
10102 PAGE_SIZE - page_offset);
10103
10104 if (copy_page_to_iter(pages[i], page_offset, bytes,
10105 iter) != bytes) {
10106 ret = -EFAULT;
10107 goto out;
10108 }
10109 i++;
10110 cur += bytes;
10111 page_offset = 0;
10112 }
10113 ret = count;
10114out:
10115 for (i = 0; i < nr_pages; i++) {
10116 if (pages[i])
10117 __free_page(pages[i]);
10118 }
10119 kfree(pages);
10120 return ret;
10121}
10122
10123ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10124 struct btrfs_ioctl_encoded_io_args *encoded)
10125{
10126 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10127 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10128 struct extent_io_tree *io_tree = &inode->io_tree;
10129 ssize_t ret;
10130 size_t count = iov_iter_count(iter);
10131 u64 start, lockend, disk_bytenr, disk_io_size;
10132 struct extent_state *cached_state = NULL;
10133 struct extent_map *em;
10134 bool unlocked = false;
10135
10136 file_accessed(iocb->ki_filp);
10137
29b6352b 10138 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10139
10140 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
e5d4d75b 10141 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10142 return 0;
10143 }
10144 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10145 /*
10146 * We don't know how long the extent containing iocb->ki_pos is, but if
10147 * it's compressed we know that it won't be longer than this.
10148 */
10149 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10150
10151 for (;;) {
10152 struct btrfs_ordered_extent *ordered;
10153
10154 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10155 lockend - start + 1);
10156 if (ret)
10157 goto out_unlock_inode;
570eb97b 10158 lock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10159 ordered = btrfs_lookup_ordered_range(inode, start,
10160 lockend - start + 1);
10161 if (!ordered)
10162 break;
10163 btrfs_put_ordered_extent(ordered);
570eb97b 10164 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10165 cond_resched();
10166 }
10167
8bab0a30 10168 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
1881fba8
OS
10169 if (IS_ERR(em)) {
10170 ret = PTR_ERR(em);
10171 goto out_unlock_extent;
10172 }
10173
10174 if (em->block_start == EXTENT_MAP_INLINE) {
10175 u64 extent_start = em->start;
10176
10177 /*
10178 * For inline extents we get everything we need out of the
10179 * extent item.
10180 */
10181 free_extent_map(em);
10182 em = NULL;
10183 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10184 &cached_state, extent_start,
10185 count, encoded, &unlocked);
10186 goto out;
10187 }
10188
10189 /*
10190 * We only want to return up to EOF even if the extent extends beyond
10191 * that.
10192 */
10193 encoded->len = min_t(u64, extent_map_end(em),
10194 inode->vfs_inode.i_size) - iocb->ki_pos;
10195 if (em->block_start == EXTENT_MAP_HOLE ||
f86f7a75 10196 (em->flags & EXTENT_FLAG_PREALLOC)) {
1881fba8
OS
10197 disk_bytenr = EXTENT_MAP_HOLE;
10198 count = min_t(u64, count, encoded->len);
10199 encoded->len = count;
10200 encoded->unencoded_len = count;
f86f7a75 10201 } else if (extent_map_is_compressed(em)) {
1881fba8
OS
10202 disk_bytenr = em->block_start;
10203 /*
10204 * Bail if the buffer isn't large enough to return the whole
10205 * compressed extent.
10206 */
10207 if (em->block_len > count) {
10208 ret = -ENOBUFS;
10209 goto out_em;
10210 }
c1867eb3
DS
10211 disk_io_size = em->block_len;
10212 count = em->block_len;
1881fba8
OS
10213 encoded->unencoded_len = em->ram_bytes;
10214 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10215 ret = btrfs_encoded_io_compression_from_extent(fs_info,
f86f7a75 10216 extent_map_compression(em));
1881fba8
OS
10217 if (ret < 0)
10218 goto out_em;
10219 encoded->compression = ret;
10220 } else {
10221 disk_bytenr = em->block_start + (start - em->start);
10222 if (encoded->len > count)
10223 encoded->len = count;
10224 /*
10225 * Don't read beyond what we locked. This also limits the page
10226 * allocations that we'll do.
10227 */
10228 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10229 count = start + disk_io_size - iocb->ki_pos;
10230 encoded->len = count;
10231 encoded->unencoded_len = count;
10232 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10233 }
10234 free_extent_map(em);
10235 em = NULL;
10236
10237 if (disk_bytenr == EXTENT_MAP_HOLE) {
570eb97b 10238 unlock_extent(io_tree, start, lockend, &cached_state);
e5d4d75b 10239 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10240 unlocked = true;
10241 ret = iov_iter_zero(count, iter);
10242 if (ret != count)
10243 ret = -EFAULT;
10244 } else {
10245 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10246 &cached_state, disk_bytenr,
10247 disk_io_size, count,
10248 encoded->compression,
10249 &unlocked);
10250 }
10251
10252out:
10253 if (ret >= 0)
10254 iocb->ki_pos += encoded->len;
10255out_em:
10256 free_extent_map(em);
10257out_unlock_extent:
10258 if (!unlocked)
570eb97b 10259 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10260out_unlock_inode:
10261 if (!unlocked)
e5d4d75b 10262 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10263 return ret;
10264}
10265
7c0c7269
OS
10266ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10267 const struct btrfs_ioctl_encoded_io_args *encoded)
10268{
10269 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10270 struct btrfs_root *root = inode->root;
10271 struct btrfs_fs_info *fs_info = root->fs_info;
10272 struct extent_io_tree *io_tree = &inode->io_tree;
10273 struct extent_changeset *data_reserved = NULL;
10274 struct extent_state *cached_state = NULL;
d611935b 10275 struct btrfs_ordered_extent *ordered;
7c0c7269
OS
10276 int compression;
10277 size_t orig_count;
10278 u64 start, end;
10279 u64 num_bytes, ram_bytes, disk_num_bytes;
10280 unsigned long nr_pages, i;
10281 struct page **pages;
10282 struct btrfs_key ins;
10283 bool extent_reserved = false;
10284 struct extent_map *em;
10285 ssize_t ret;
10286
10287 switch (encoded->compression) {
10288 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10289 compression = BTRFS_COMPRESS_ZLIB;
10290 break;
10291 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10292 compression = BTRFS_COMPRESS_ZSTD;
10293 break;
10294 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10295 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10296 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10297 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10298 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10299 /* The sector size must match for LZO. */
10300 if (encoded->compression -
10301 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10302 fs_info->sectorsize_bits)
10303 return -EINVAL;
10304 compression = BTRFS_COMPRESS_LZO;
10305 break;
10306 default:
10307 return -EINVAL;
10308 }
10309 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10310 return -EINVAL;
10311
1bd96c92
FM
10312 /*
10313 * Compressed extents should always have checksums, so error out if we
10314 * have a NOCOW file or inode was created while mounted with NODATASUM.
10315 */
10316 if (inode->flags & BTRFS_INODE_NODATASUM)
10317 return -EINVAL;
10318
7c0c7269
OS
10319 orig_count = iov_iter_count(from);
10320
10321 /* The extent size must be sane. */
10322 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10323 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10324 return -EINVAL;
10325
10326 /*
10327 * The compressed data must be smaller than the decompressed data.
10328 *
10329 * It's of course possible for data to compress to larger or the same
10330 * size, but the buffered I/O path falls back to no compression for such
10331 * data, and we don't want to break any assumptions by creating these
10332 * extents.
10333 *
10334 * Note that this is less strict than the current check we have that the
10335 * compressed data must be at least one sector smaller than the
10336 * decompressed data. We only want to enforce the weaker requirement
10337 * from old kernels that it is at least one byte smaller.
10338 */
10339 if (orig_count >= encoded->unencoded_len)
10340 return -EINVAL;
10341
10342 /* The extent must start on a sector boundary. */
10343 start = iocb->ki_pos;
10344 if (!IS_ALIGNED(start, fs_info->sectorsize))
10345 return -EINVAL;
10346
10347 /*
10348 * The extent must end on a sector boundary. However, we allow a write
10349 * which ends at or extends i_size to have an unaligned length; we round
10350 * up the extent size and set i_size to the unaligned end.
10351 */
10352 if (start + encoded->len < inode->vfs_inode.i_size &&
10353 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10354 return -EINVAL;
10355
10356 /* Finally, the offset in the unencoded data must be sector-aligned. */
10357 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10358 return -EINVAL;
10359
10360 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10361 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10362 end = start + num_bytes - 1;
10363
10364 /*
10365 * If the extent cannot be inline, the compressed data on disk must be
10366 * sector-aligned. For convenience, we extend it with zeroes if it
10367 * isn't.
10368 */
10369 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10370 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10371 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10372 if (!pages)
10373 return -ENOMEM;
10374 for (i = 0; i < nr_pages; i++) {
10375 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10376 char *kaddr;
10377
10378 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10379 if (!pages[i]) {
10380 ret = -ENOMEM;
10381 goto out_pages;
10382 }
70826b6b 10383 kaddr = kmap_local_page(pages[i]);
7c0c7269 10384 if (copy_from_iter(kaddr, bytes, from) != bytes) {
70826b6b 10385 kunmap_local(kaddr);
7c0c7269
OS
10386 ret = -EFAULT;
10387 goto out_pages;
10388 }
10389 if (bytes < PAGE_SIZE)
10390 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
70826b6b 10391 kunmap_local(kaddr);
7c0c7269
OS
10392 }
10393
10394 for (;;) {
10395 struct btrfs_ordered_extent *ordered;
10396
10397 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10398 if (ret)
10399 goto out_pages;
10400 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10401 start >> PAGE_SHIFT,
10402 end >> PAGE_SHIFT);
10403 if (ret)
10404 goto out_pages;
570eb97b 10405 lock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10406 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10407 if (!ordered &&
10408 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10409 break;
10410 if (ordered)
10411 btrfs_put_ordered_extent(ordered);
570eb97b 10412 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10413 cond_resched();
10414 }
10415
10416 /*
10417 * We don't use the higher-level delalloc space functions because our
10418 * num_bytes and disk_num_bytes are different.
10419 */
10420 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10421 if (ret)
10422 goto out_unlock;
10423 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10424 if (ret)
10425 goto out_free_data_space;
d4135134
FM
10426 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10427 false);
7c0c7269
OS
10428 if (ret)
10429 goto out_qgroup_free_data;
10430
10431 /* Try an inline extent first. */
10432 if (start == 0 && encoded->unencoded_len == encoded->len &&
10433 encoded->unencoded_offset == 0) {
10434 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10435 compression, pages, true);
10436 if (ret <= 0) {
10437 if (ret == 0)
10438 ret = orig_count;
10439 goto out_delalloc_release;
10440 }
10441 }
10442
10443 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10444 disk_num_bytes, 0, 0, &ins, 1, 1);
10445 if (ret)
10446 goto out_delalloc_release;
10447 extent_reserved = true;
10448
10449 em = create_io_em(inode, start, num_bytes,
10450 start - encoded->unencoded_offset, ins.objectid,
10451 ins.offset, ins.offset, ram_bytes, compression,
10452 BTRFS_ORDERED_COMPRESSED);
10453 if (IS_ERR(em)) {
10454 ret = PTR_ERR(em);
10455 goto out_free_reserved;
10456 }
10457 free_extent_map(em);
10458
d611935b 10459 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
7c0c7269
OS
10460 ins.objectid, ins.offset,
10461 encoded->unencoded_offset,
10462 (1 << BTRFS_ORDERED_ENCODED) |
10463 (1 << BTRFS_ORDERED_COMPRESSED),
10464 compression);
d611935b 10465 if (IS_ERR(ordered)) {
4c0c8cfc 10466 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 10467 ret = PTR_ERR(ordered);
7c0c7269
OS
10468 goto out_free_reserved;
10469 }
10470 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10471
10472 if (start + encoded->len > inode->vfs_inode.i_size)
10473 i_size_write(&inode->vfs_inode, start + encoded->len);
10474
570eb97b 10475 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10476
10477 btrfs_delalloc_release_extents(inode, num_bytes);
10478
d611935b 10479 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
7c0c7269
OS
10480 ret = orig_count;
10481 goto out;
10482
10483out_free_reserved:
10484 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10485 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10486out_delalloc_release:
10487 btrfs_delalloc_release_extents(inode, num_bytes);
10488 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10489out_qgroup_free_data:
10490 if (ret < 0)
9e65bfca 10491 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
7c0c7269
OS
10492out_free_data_space:
10493 /*
10494 * If btrfs_reserve_extent() succeeded, then we already decremented
10495 * bytes_may_use.
10496 */
10497 if (!extent_reserved)
10498 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10499out_unlock:
570eb97b 10500 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10501out_pages:
10502 for (i = 0; i < nr_pages; i++) {
10503 if (pages[i])
10504 __free_page(pages[i]);
10505 }
10506 kvfree(pages);
10507out:
10508 if (ret >= 0)
10509 iocb->ki_pos += encoded->len;
10510 return ret;
10511}
10512
ed46ff3d
OS
10513#ifdef CONFIG_SWAP
10514/*
10515 * Add an entry indicating a block group or device which is pinned by a
10516 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10517 * negative errno on failure.
10518 */
10519static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10520 bool is_block_group)
10521{
10522 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10523 struct btrfs_swapfile_pin *sp, *entry;
10524 struct rb_node **p;
10525 struct rb_node *parent = NULL;
10526
10527 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10528 if (!sp)
10529 return -ENOMEM;
10530 sp->ptr = ptr;
10531 sp->inode = inode;
10532 sp->is_block_group = is_block_group;
195a49ea 10533 sp->bg_extent_count = 1;
ed46ff3d
OS
10534
10535 spin_lock(&fs_info->swapfile_pins_lock);
10536 p = &fs_info->swapfile_pins.rb_node;
10537 while (*p) {
10538 parent = *p;
10539 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10540 if (sp->ptr < entry->ptr ||
10541 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10542 p = &(*p)->rb_left;
10543 } else if (sp->ptr > entry->ptr ||
10544 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10545 p = &(*p)->rb_right;
10546 } else {
195a49ea
FM
10547 if (is_block_group)
10548 entry->bg_extent_count++;
ed46ff3d
OS
10549 spin_unlock(&fs_info->swapfile_pins_lock);
10550 kfree(sp);
10551 return 1;
10552 }
10553 }
10554 rb_link_node(&sp->node, parent, p);
10555 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10556 spin_unlock(&fs_info->swapfile_pins_lock);
10557 return 0;
10558}
10559
10560/* Free all of the entries pinned by this swapfile. */
10561static void btrfs_free_swapfile_pins(struct inode *inode)
10562{
10563 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10564 struct btrfs_swapfile_pin *sp;
10565 struct rb_node *node, *next;
10566
10567 spin_lock(&fs_info->swapfile_pins_lock);
10568 node = rb_first(&fs_info->swapfile_pins);
10569 while (node) {
10570 next = rb_next(node);
10571 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10572 if (sp->inode == inode) {
10573 rb_erase(&sp->node, &fs_info->swapfile_pins);
195a49ea
FM
10574 if (sp->is_block_group) {
10575 btrfs_dec_block_group_swap_extents(sp->ptr,
10576 sp->bg_extent_count);
ed46ff3d 10577 btrfs_put_block_group(sp->ptr);
195a49ea 10578 }
ed46ff3d
OS
10579 kfree(sp);
10580 }
10581 node = next;
10582 }
10583 spin_unlock(&fs_info->swapfile_pins_lock);
10584}
10585
10586struct btrfs_swap_info {
10587 u64 start;
10588 u64 block_start;
10589 u64 block_len;
10590 u64 lowest_ppage;
10591 u64 highest_ppage;
10592 unsigned long nr_pages;
10593 int nr_extents;
10594};
10595
10596static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10597 struct btrfs_swap_info *bsi)
10598{
10599 unsigned long nr_pages;
c2f82263 10600 unsigned long max_pages;
ed46ff3d
OS
10601 u64 first_ppage, first_ppage_reported, next_ppage;
10602 int ret;
10603
c2f82263
FM
10604 /*
10605 * Our swapfile may have had its size extended after the swap header was
10606 * written. In that case activating the swapfile should not go beyond
10607 * the max size set in the swap header.
10608 */
10609 if (bsi->nr_pages >= sis->max)
10610 return 0;
10611
10612 max_pages = sis->max - bsi->nr_pages;
ce394a7f
YZ
10613 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10614 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
ed46ff3d
OS
10615
10616 if (first_ppage >= next_ppage)
10617 return 0;
10618 nr_pages = next_ppage - first_ppage;
c2f82263 10619 nr_pages = min(nr_pages, max_pages);
ed46ff3d
OS
10620
10621 first_ppage_reported = first_ppage;
10622 if (bsi->start == 0)
10623 first_ppage_reported++;
10624 if (bsi->lowest_ppage > first_ppage_reported)
10625 bsi->lowest_ppage = first_ppage_reported;
10626 if (bsi->highest_ppage < (next_ppage - 1))
10627 bsi->highest_ppage = next_ppage - 1;
10628
10629 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10630 if (ret < 0)
10631 return ret;
10632 bsi->nr_extents += ret;
10633 bsi->nr_pages += nr_pages;
10634 return 0;
10635}
10636
10637static void btrfs_swap_deactivate(struct file *file)
10638{
10639 struct inode *inode = file_inode(file);
10640
10641 btrfs_free_swapfile_pins(inode);
10642 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10643}
10644
10645static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10646 sector_t *span)
10647{
10648 struct inode *inode = file_inode(file);
dd0734f2
FM
10649 struct btrfs_root *root = BTRFS_I(inode)->root;
10650 struct btrfs_fs_info *fs_info = root->fs_info;
ed46ff3d
OS
10651 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10652 struct extent_state *cached_state = NULL;
10653 struct extent_map *em = NULL;
7dc66abb 10654 struct btrfs_chunk_map *map = NULL;
ed46ff3d
OS
10655 struct btrfs_device *device = NULL;
10656 struct btrfs_swap_info bsi = {
10657 .lowest_ppage = (sector_t)-1ULL,
10658 };
10659 int ret = 0;
10660 u64 isize;
10661 u64 start;
10662
10663 /*
10664 * If the swap file was just created, make sure delalloc is done. If the
10665 * file changes again after this, the user is doing something stupid and
10666 * we don't really care.
10667 */
10668 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10669 if (ret)
10670 return ret;
10671
10672 /*
10673 * The inode is locked, so these flags won't change after we check them.
10674 */
10675 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10676 btrfs_warn(fs_info, "swapfile must not be compressed");
10677 return -EINVAL;
10678 }
10679 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10680 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10681 return -EINVAL;
10682 }
10683 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10684 btrfs_warn(fs_info, "swapfile must not be checksummed");
10685 return -EINVAL;
10686 }
10687
10688 /*
10689 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10690 * under us. The exclop protection makes sure they aren't running/won't
10691 * run concurrently while we are mapping the swap extents, and
10692 * fs_info->swapfile_pins prevents them from running while the swap
10693 * file is active and moving the extents. Note that this also prevents
10694 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10695 * really worth the trouble to allow it.
10696 */
c3e1f96c 10697 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10698 btrfs_warn(fs_info,
10699 "cannot activate swapfile while exclusive operation is running");
10700 return -EBUSY;
10701 }
dd0734f2
FM
10702
10703 /*
10704 * Prevent snapshot creation while we are activating the swap file.
10705 * We do not want to race with snapshot creation. If snapshot creation
10706 * already started before we bumped nr_swapfiles from 0 to 1 and
10707 * completes before the first write into the swap file after it is
10708 * activated, than that write would fallback to COW.
10709 */
10710 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10711 btrfs_exclop_finish(fs_info);
10712 btrfs_warn(fs_info,
10713 "cannot activate swapfile because snapshot creation is in progress");
10714 return -EINVAL;
10715 }
ed46ff3d
OS
10716 /*
10717 * Snapshots can create extents which require COW even if NODATACOW is
10718 * set. We use this counter to prevent snapshots. We must increment it
10719 * before walking the extents because we don't want a concurrent
10720 * snapshot to run after we've already checked the extents.
60021bd7
KH
10721 *
10722 * It is possible that subvolume is marked for deletion but still not
10723 * removed yet. To prevent this race, we check the root status before
10724 * activating the swapfile.
ed46ff3d 10725 */
60021bd7
KH
10726 spin_lock(&root->root_item_lock);
10727 if (btrfs_root_dead(root)) {
10728 spin_unlock(&root->root_item_lock);
10729
10730 btrfs_exclop_finish(fs_info);
10731 btrfs_warn(fs_info,
10732 "cannot activate swapfile because subvolume %llu is being deleted",
10733 root->root_key.objectid);
10734 return -EPERM;
10735 }
dd0734f2 10736 atomic_inc(&root->nr_swapfiles);
60021bd7 10737 spin_unlock(&root->root_item_lock);
ed46ff3d
OS
10738
10739 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10740
570eb97b 10741 lock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10742 start = 0;
10743 while (start < isize) {
10744 u64 logical_block_start, physical_block_start;
32da5386 10745 struct btrfs_block_group *bg;
ed46ff3d
OS
10746 u64 len = isize - start;
10747
8bab0a30 10748 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
ed46ff3d
OS
10749 if (IS_ERR(em)) {
10750 ret = PTR_ERR(em);
10751 goto out;
10752 }
10753
10754 if (em->block_start == EXTENT_MAP_HOLE) {
10755 btrfs_warn(fs_info, "swapfile must not have holes");
10756 ret = -EINVAL;
10757 goto out;
10758 }
10759 if (em->block_start == EXTENT_MAP_INLINE) {
10760 /*
10761 * It's unlikely we'll ever actually find ourselves
10762 * here, as a file small enough to fit inline won't be
10763 * big enough to store more than the swap header, but in
10764 * case something changes in the future, let's catch it
10765 * here rather than later.
10766 */
10767 btrfs_warn(fs_info, "swapfile must not be inline");
10768 ret = -EINVAL;
10769 goto out;
10770 }
f86f7a75 10771 if (extent_map_is_compressed(em)) {
ed46ff3d
OS
10772 btrfs_warn(fs_info, "swapfile must not be compressed");
10773 ret = -EINVAL;
10774 goto out;
10775 }
10776
10777 logical_block_start = em->block_start + (start - em->start);
10778 len = min(len, em->len - (start - em->start));
10779 free_extent_map(em);
10780 em = NULL;
10781
26ce9114 10782 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
ed46ff3d
OS
10783 if (ret < 0) {
10784 goto out;
10785 } else if (ret) {
10786 ret = 0;
10787 } else {
10788 btrfs_warn(fs_info,
10789 "swapfile must not be copy-on-write");
10790 ret = -EINVAL;
10791 goto out;
10792 }
10793
7dc66abb
FM
10794 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10795 if (IS_ERR(map)) {
10796 ret = PTR_ERR(map);
ed46ff3d
OS
10797 goto out;
10798 }
10799
7dc66abb 10800 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
ed46ff3d
OS
10801 btrfs_warn(fs_info,
10802 "swapfile must have single data profile");
10803 ret = -EINVAL;
10804 goto out;
10805 }
10806
10807 if (device == NULL) {
7dc66abb 10808 device = map->stripes[0].dev;
ed46ff3d
OS
10809 ret = btrfs_add_swapfile_pin(inode, device, false);
10810 if (ret == 1)
10811 ret = 0;
10812 else if (ret)
10813 goto out;
7dc66abb 10814 } else if (device != map->stripes[0].dev) {
ed46ff3d
OS
10815 btrfs_warn(fs_info, "swapfile must be on one device");
10816 ret = -EINVAL;
10817 goto out;
10818 }
10819
7dc66abb
FM
10820 physical_block_start = (map->stripes[0].physical +
10821 (logical_block_start - map->start));
10822 len = min(len, map->chunk_len - (logical_block_start - map->start));
10823 btrfs_free_chunk_map(map);
10824 map = NULL;
ed46ff3d
OS
10825
10826 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10827 if (!bg) {
10828 btrfs_warn(fs_info,
10829 "could not find block group containing swapfile");
10830 ret = -EINVAL;
10831 goto out;
10832 }
10833
195a49ea
FM
10834 if (!btrfs_inc_block_group_swap_extents(bg)) {
10835 btrfs_warn(fs_info,
10836 "block group for swapfile at %llu is read-only%s",
10837 bg->start,
10838 atomic_read(&fs_info->scrubs_running) ?
10839 " (scrub running)" : "");
10840 btrfs_put_block_group(bg);
10841 ret = -EINVAL;
10842 goto out;
10843 }
10844
ed46ff3d
OS
10845 ret = btrfs_add_swapfile_pin(inode, bg, true);
10846 if (ret) {
10847 btrfs_put_block_group(bg);
10848 if (ret == 1)
10849 ret = 0;
10850 else
10851 goto out;
10852 }
10853
10854 if (bsi.block_len &&
10855 bsi.block_start + bsi.block_len == physical_block_start) {
10856 bsi.block_len += len;
10857 } else {
10858 if (bsi.block_len) {
10859 ret = btrfs_add_swap_extent(sis, &bsi);
10860 if (ret)
10861 goto out;
10862 }
10863 bsi.start = start;
10864 bsi.block_start = physical_block_start;
10865 bsi.block_len = len;
10866 }
10867
10868 start += len;
10869 }
10870
10871 if (bsi.block_len)
10872 ret = btrfs_add_swap_extent(sis, &bsi);
10873
10874out:
10875 if (!IS_ERR_OR_NULL(em))
10876 free_extent_map(em);
7dc66abb
FM
10877 if (!IS_ERR_OR_NULL(map))
10878 btrfs_free_chunk_map(map);
ed46ff3d 10879
570eb97b 10880 unlock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10881
10882 if (ret)
10883 btrfs_swap_deactivate(file);
10884
dd0734f2
FM
10885 btrfs_drew_write_unlock(&root->snapshot_lock);
10886
c3e1f96c 10887 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10888
10889 if (ret)
10890 return ret;
10891
10892 if (device)
10893 sis->bdev = device->bdev;
10894 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10895 sis->max = bsi.nr_pages;
10896 sis->pages = bsi.nr_pages - 1;
10897 sis->highest_bit = bsi.nr_pages - 1;
10898 return bsi.nr_extents;
10899}
10900#else
10901static void btrfs_swap_deactivate(struct file *file)
10902{
10903}
10904
10905static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10906 sector_t *span)
10907{
10908 return -EOPNOTSUPP;
10909}
10910#endif
10911
2766ff61
FM
10912/*
10913 * Update the number of bytes used in the VFS' inode. When we replace extents in
10914 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10915 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10916 * always get a correct value.
10917 */
10918void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10919 const u64 add_bytes,
10920 const u64 del_bytes)
10921{
10922 if (add_bytes == del_bytes)
10923 return;
10924
10925 spin_lock(&inode->lock);
10926 if (del_bytes > 0)
10927 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10928 if (add_bytes > 0)
10929 inode_add_bytes(&inode->vfs_inode, add_bytes);
10930 spin_unlock(&inode->lock);
10931}
10932
43dd529a 10933/*
63c34cb4
FM
10934 * Verify that there are no ordered extents for a given file range.
10935 *
10936 * @inode: The target inode.
10937 * @start: Start offset of the file range, should be sector size aligned.
10938 * @end: End offset (inclusive) of the file range, its value +1 should be
10939 * sector size aligned.
10940 *
10941 * This should typically be used for cases where we locked an inode's VFS lock in
10942 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10943 * we have flushed all delalloc in the range, we have waited for all ordered
10944 * extents in the range to complete and finally we have locked the file range in
10945 * the inode's io_tree.
10946 */
10947void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10948{
10949 struct btrfs_root *root = inode->root;
10950 struct btrfs_ordered_extent *ordered;
10951
10952 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10953 return;
10954
10955 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10956 if (ordered) {
10957 btrfs_err(root->fs_info,
10958"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10959 start, end, btrfs_ino(inode), root->root_key.objectid,
10960 ordered->file_offset,
10961 ordered->file_offset + ordered->num_bytes - 1);
10962 btrfs_put_ordered_extent(ordered);
10963 }
10964
10965 ASSERT(ordered == NULL);
10966}
10967
6e1d5dcc 10968static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10969 .getattr = btrfs_getattr,
39279cc3
CM
10970 .lookup = btrfs_lookup,
10971 .create = btrfs_create,
10972 .unlink = btrfs_unlink,
10973 .link = btrfs_link,
10974 .mkdir = btrfs_mkdir,
10975 .rmdir = btrfs_rmdir,
2773bf00 10976 .rename = btrfs_rename2,
39279cc3
CM
10977 .symlink = btrfs_symlink,
10978 .setattr = btrfs_setattr,
618e21d5 10979 .mknod = btrfs_mknod,
5103e947 10980 .listxattr = btrfs_listxattr,
fdebe2bd 10981 .permission = btrfs_permission,
cac2f8b8 10982 .get_inode_acl = btrfs_get_acl,
996a710d 10983 .set_acl = btrfs_set_acl,
93fd63c2 10984 .update_time = btrfs_update_time,
ef3b9af5 10985 .tmpfile = btrfs_tmpfile,
97fc2977
MS
10986 .fileattr_get = btrfs_fileattr_get,
10987 .fileattr_set = btrfs_fileattr_set,
39279cc3 10988};
76dda93c 10989
828c0950 10990static const struct file_operations btrfs_dir_file_operations = {
e60aa5da 10991 .llseek = btrfs_dir_llseek,
39279cc3 10992 .read = generic_read_dir,
02dbfc99 10993 .iterate_shared = btrfs_real_readdir,
23b5ec74 10994 .open = btrfs_opendir,
34287aa3 10995 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10996#ifdef CONFIG_COMPAT
4c63c245 10997 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10998#endif
6bf13c0c 10999 .release = btrfs_release_file,
e02119d5 11000 .fsync = btrfs_sync_file,
39279cc3
CM
11001};
11002
35054394
CM
11003/*
11004 * btrfs doesn't support the bmap operation because swapfiles
11005 * use bmap to make a mapping of extents in the file. They assume
11006 * these extents won't change over the life of the file and they
11007 * use the bmap result to do IO directly to the drive.
11008 *
11009 * the btrfs bmap call would return logical addresses that aren't
11010 * suitable for IO and they also will change frequently as COW
11011 * operations happen. So, swapfile + btrfs == corruption.
11012 *
11013 * For now we're avoiding this by dropping bmap.
11014 */
7f09410b 11015static const struct address_space_operations btrfs_aops = {
fb12489b 11016 .read_folio = btrfs_read_folio,
b293f02e 11017 .writepages = btrfs_writepages,
ba206a02 11018 .readahead = btrfs_readahead,
895586eb 11019 .invalidate_folio = btrfs_invalidate_folio,
f913cff3 11020 .release_folio = btrfs_release_folio,
e7a60a17 11021 .migrate_folio = btrfs_migrate_folio,
187c82cb 11022 .dirty_folio = filemap_dirty_folio,
af7628d6 11023 .error_remove_folio = generic_error_remove_folio,
ed46ff3d
OS
11024 .swap_activate = btrfs_swap_activate,
11025 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
11026};
11027
6e1d5dcc 11028static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
11029 .getattr = btrfs_getattr,
11030 .setattr = btrfs_setattr,
5103e947 11031 .listxattr = btrfs_listxattr,
fdebe2bd 11032 .permission = btrfs_permission,
1506fcc8 11033 .fiemap = btrfs_fiemap,
cac2f8b8 11034 .get_inode_acl = btrfs_get_acl,
996a710d 11035 .set_acl = btrfs_set_acl,
e41f941a 11036 .update_time = btrfs_update_time,
97fc2977
MS
11037 .fileattr_get = btrfs_fileattr_get,
11038 .fileattr_set = btrfs_fileattr_set,
39279cc3 11039};
6e1d5dcc 11040static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
11041 .getattr = btrfs_getattr,
11042 .setattr = btrfs_setattr,
fdebe2bd 11043 .permission = btrfs_permission,
33268eaf 11044 .listxattr = btrfs_listxattr,
cac2f8b8 11045 .get_inode_acl = btrfs_get_acl,
996a710d 11046 .set_acl = btrfs_set_acl,
e41f941a 11047 .update_time = btrfs_update_time,
618e21d5 11048};
6e1d5dcc 11049static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11050 .get_link = page_get_link,
f209561a 11051 .getattr = btrfs_getattr,
22c44fe6 11052 .setattr = btrfs_setattr,
fdebe2bd 11053 .permission = btrfs_permission,
0279b4cd 11054 .listxattr = btrfs_listxattr,
e41f941a 11055 .update_time = btrfs_update_time,
39279cc3 11056};
76dda93c 11057
82d339d9 11058const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11059 .d_delete = btrfs_dentry_delete,
11060};