]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
btrfs: use the flags of an extent map to identify the compression type
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
348332e0 9#include <linux/blk-cgroup.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
f85781fb 34#include <linux/iomap.h>
92d32170 35#include <asm/unaligned.h>
14605409 36#include <linux/fsverity.h>
602cbe91 37#include "misc.h"
39279cc3
CM
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
39279cc3 42#include "print-tree.h"
e6dcd2dc 43#include "ordered-data.h"
95819c05 44#include "xattr.h"
e02119d5 45#include "tree-log.h"
103c1972 46#include "bio.h"
c8b97818 47#include "compression.h"
b4ce94de 48#include "locking.h"
dc89e982 49#include "free-space-cache.h"
63541927 50#include "props.h"
31193213 51#include "qgroup.h"
86736342 52#include "delalloc-space.h"
aac0023c 53#include "block-group.h"
467dc47e 54#include "space-info.h"
d8e3fb10 55#include "zoned.h"
b945a463 56#include "subpage.h"
26c2c454 57#include "inode-item.h"
c7f13d42 58#include "fs.h"
ad1ac501 59#include "accessors.h"
a0231804 60#include "extent-tree.h"
45c40c8f 61#include "root-tree.h"
59b818e0 62#include "defrag.h"
f2b39277 63#include "dir-item.h"
7c8ede16 64#include "file-item.h"
c7a03b52 65#include "uuid-tree.h"
7572dec8 66#include "ioctl.h"
af142b6f 67#include "file.h"
33cf97a7 68#include "acl.h"
67707479 69#include "relocation.h"
5c11adcc 70#include "verity.h"
7f0add25 71#include "super.h"
aa5d3003 72#include "orphan.h"
b9a9a850 73#include "backref.h"
02c372e1 74#include "raid-stripe-tree.h"
39279cc3
CM
75
76struct btrfs_iget_args {
0202e83f 77 u64 ino;
39279cc3
CM
78 struct btrfs_root *root;
79};
80
f28a4928 81struct btrfs_dio_data {
f85781fb
GR
82 ssize_t submitted;
83 struct extent_changeset *data_reserved;
53f2c206 84 struct btrfs_ordered_extent *ordered;
f5585f4f
FM
85 bool data_space_reserved;
86 bool nocow_done;
f28a4928
FM
87};
88
a3e171a0 89struct btrfs_dio_private {
67d66982 90 /* Range of I/O */
a3e171a0 91 u64 file_offset;
a3e171a0
CH
92 u32 bytes;
93
642c5d34 94 /* This must be last */
67d66982 95 struct btrfs_bio bbio;
a3e171a0
CH
96};
97
642c5d34
CH
98static struct bio_set btrfs_dio_bioset;
99
88d2beec
FM
100struct btrfs_rename_ctx {
101 /* Output field. Stores the index number of the old directory entry. */
102 u64 index;
103};
104
b9a9a850
QW
105/*
106 * Used by data_reloc_print_warning_inode() to pass needed info for filename
107 * resolution and output of error message.
108 */
109struct data_reloc_warn {
110 struct btrfs_path path;
111 struct btrfs_fs_info *fs_info;
112 u64 extent_item_size;
113 u64 logical;
114 int mirror_num;
115};
116
516095cd
DS
117/*
118 * For the file_extent_tree, we want to hold the inode lock when we lookup and
119 * update the disk_i_size, but lockdep will complain because our io_tree we hold
120 * the tree lock and get the inode lock when setting delalloc. These two things
121 * are unrelated, so make a class for the file_extent_tree so we don't get the
122 * two locking patterns mixed up.
123 */
124static struct lock_class_key file_extent_tree_class;
125
6e1d5dcc
AD
126static const struct inode_operations btrfs_dir_inode_operations;
127static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
128static const struct inode_operations btrfs_special_inode_operations;
129static const struct inode_operations btrfs_file_inode_operations;
7f09410b 130static const struct address_space_operations btrfs_aops;
828c0950 131static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
132
133static struct kmem_cache *btrfs_inode_cachep;
39279cc3 134
3972f260 135static int btrfs_setsize(struct inode *inode, struct iattr *attr);
d9dcae67 136static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
ba9145ad 137
256b0cf9
CH
138static noinline int run_delalloc_cow(struct btrfs_inode *inode,
139 struct page *locked_page, u64 start,
140 u64 end, struct writeback_control *wbc,
141 bool pages_dirty);
4b67c11d
NB
142static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
143 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
144 u64 block_len, u64 orig_block_len,
145 u64 ram_bytes, int compress_type,
146 int type);
7b128766 147
b9a9a850
QW
148static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
149 u64 root, void *warn_ctx)
150{
151 struct data_reloc_warn *warn = warn_ctx;
152 struct btrfs_fs_info *fs_info = warn->fs_info;
153 struct extent_buffer *eb;
154 struct btrfs_inode_item *inode_item;
155 struct inode_fs_paths *ipath = NULL;
156 struct btrfs_root *local_root;
157 struct btrfs_key key;
158 unsigned int nofs_flag;
159 u32 nlink;
160 int ret;
161
162 local_root = btrfs_get_fs_root(fs_info, root, true);
163 if (IS_ERR(local_root)) {
164 ret = PTR_ERR(local_root);
165 goto err;
166 }
167
168 /* This makes the path point to (inum INODE_ITEM ioff). */
169 key.objectid = inum;
170 key.type = BTRFS_INODE_ITEM_KEY;
171 key.offset = 0;
172
173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
174 if (ret) {
175 btrfs_put_root(local_root);
176 btrfs_release_path(&warn->path);
177 goto err;
178 }
179
180 eb = warn->path.nodes[0];
181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
182 nlink = btrfs_inode_nlink(eb, inode_item);
183 btrfs_release_path(&warn->path);
184
185 nofs_flag = memalloc_nofs_save();
186 ipath = init_ipath(4096, local_root, &warn->path);
187 memalloc_nofs_restore(nofs_flag);
188 if (IS_ERR(ipath)) {
189 btrfs_put_root(local_root);
190 ret = PTR_ERR(ipath);
191 ipath = NULL;
192 /*
193 * -ENOMEM, not a critical error, just output an generic error
194 * without filename.
195 */
196 btrfs_warn(fs_info,
197"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
198 warn->logical, warn->mirror_num, root, inum, offset);
199 return ret;
200 }
201 ret = paths_from_inode(inum, ipath);
202 if (ret < 0)
203 goto err;
204
205 /*
206 * We deliberately ignore the bit ipath might have been too small to
207 * hold all of the paths here
208 */
209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
210 btrfs_warn(fs_info,
211"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
212 warn->logical, warn->mirror_num, root, inum, offset,
213 fs_info->sectorsize, nlink,
214 (char *)(unsigned long)ipath->fspath->val[i]);
215 }
216
217 btrfs_put_root(local_root);
218 free_ipath(ipath);
219 return 0;
220
221err:
222 btrfs_warn(fs_info,
223"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
224 warn->logical, warn->mirror_num, root, inum, offset, ret);
225
226 free_ipath(ipath);
227 return ret;
228}
229
230/*
231 * Do extra user-friendly error output (e.g. lookup all the affected files).
232 *
233 * Return true if we succeeded doing the backref lookup.
234 * Return false if such lookup failed, and has to fallback to the old error message.
235 */
236static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
237 const u8 *csum, const u8 *csum_expected,
238 int mirror_num)
239{
240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
241 struct btrfs_path path = { 0 };
242 struct btrfs_key found_key = { 0 };
243 struct extent_buffer *eb;
244 struct btrfs_extent_item *ei;
245 const u32 csum_size = fs_info->csum_size;
246 u64 logical;
247 u64 flags;
248 u32 item_size;
249 int ret;
250
251 mutex_lock(&fs_info->reloc_mutex);
252 logical = btrfs_get_reloc_bg_bytenr(fs_info);
253 mutex_unlock(&fs_info->reloc_mutex);
254
255 if (logical == U64_MAX) {
256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
257 btrfs_warn_rl(fs_info,
258"csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
260 CSUM_FMT_VALUE(csum_size, csum),
261 CSUM_FMT_VALUE(csum_size, csum_expected),
262 mirror_num);
263 return;
264 }
265
266 logical += file_off;
267 btrfs_warn_rl(fs_info,
268"csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
269 inode->root->root_key.objectid,
270 btrfs_ino(inode), file_off, logical,
271 CSUM_FMT_VALUE(csum_size, csum),
272 CSUM_FMT_VALUE(csum_size, csum_expected),
273 mirror_num);
274
275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
276 if (ret < 0) {
277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
278 logical, ret);
279 return;
280 }
281 eb = path.nodes[0];
282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
283 item_size = btrfs_item_size(eb, path.slots[0]);
284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
285 unsigned long ptr = 0;
286 u64 ref_root;
287 u8 ref_level;
288
b7f9945a 289 while (true) {
b9a9a850
QW
290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
291 item_size, &ref_root,
292 &ref_level);
b7f9945a
QW
293 if (ret < 0) {
294 btrfs_warn_rl(fs_info,
295 "failed to resolve tree backref for logical %llu: %d",
296 logical, ret);
297 break;
298 }
299 if (ret > 0)
300 break;
301
b9a9a850
QW
302 btrfs_warn_rl(fs_info,
303"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
304 logical, mirror_num,
305 (ref_level ? "node" : "leaf"),
b7f9945a
QW
306 ref_level, ref_root);
307 }
b9a9a850
QW
308 btrfs_release_path(&path);
309 } else {
310 struct btrfs_backref_walk_ctx ctx = { 0 };
311 struct data_reloc_warn reloc_warn = { 0 };
312
313 btrfs_release_path(&path);
314
315 ctx.bytenr = found_key.objectid;
316 ctx.extent_item_pos = logical - found_key.objectid;
317 ctx.fs_info = fs_info;
318
319 reloc_warn.logical = logical;
320 reloc_warn.extent_item_size = found_key.offset;
321 reloc_warn.mirror_num = mirror_num;
322 reloc_warn.fs_info = fs_info;
323
324 iterate_extent_inodes(&ctx, true,
325 data_reloc_print_warning_inode, &reloc_warn);
326 }
327}
328
f60acad3
JB
329static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
331{
332 struct btrfs_root *root = inode->root;
333 const u32 csum_size = root->fs_info->csum_size;
334
b9a9a850
QW
335 /* For data reloc tree, it's better to do a backref lookup instead. */
336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
337 return print_data_reloc_error(inode, logical_start, csum,
338 csum_expected, mirror_num);
339
f60acad3
JB
340 /* Output without objectid, which is more meaningful */
341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
342 btrfs_warn_rl(root->fs_info,
343"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
344 root->root_key.objectid, btrfs_ino(inode),
345 logical_start,
346 CSUM_FMT_VALUE(csum_size, csum),
347 CSUM_FMT_VALUE(csum_size, csum_expected),
348 mirror_num);
349 } else {
350 btrfs_warn_rl(root->fs_info,
351"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 root->root_key.objectid, btrfs_ino(inode),
353 logical_start,
354 CSUM_FMT_VALUE(csum_size, csum),
355 CSUM_FMT_VALUE(csum_size, csum_expected),
356 mirror_num);
357 }
358}
359
a14b78ad 360/*
9580503b 361 * Lock inode i_rwsem based on arguments passed.
a14b78ad
GR
362 *
363 * ilock_flags can have the following bit set:
364 *
365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
367 * return -EAGAIN
8318ba79 368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
a14b78ad 369 */
29b6352b 370int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad
GR
371{
372 if (ilock_flags & BTRFS_ILOCK_SHARED) {
373 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 374 if (!inode_trylock_shared(&inode->vfs_inode))
a14b78ad
GR
375 return -EAGAIN;
376 else
377 return 0;
378 }
29b6352b 379 inode_lock_shared(&inode->vfs_inode);
a14b78ad
GR
380 } else {
381 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 382 if (!inode_trylock(&inode->vfs_inode))
a14b78ad
GR
383 return -EAGAIN;
384 else
385 return 0;
386 }
29b6352b 387 inode_lock(&inode->vfs_inode);
a14b78ad 388 }
8318ba79 389 if (ilock_flags & BTRFS_ILOCK_MMAP)
29b6352b 390 down_write(&inode->i_mmap_lock);
a14b78ad
GR
391 return 0;
392}
393
394/*
9580503b 395 * Unock inode i_rwsem.
a14b78ad
GR
396 *
397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
398 * to decide whether the lock acquired is shared or exclusive.
399 */
e5d4d75b 400void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad 401{
8318ba79 402 if (ilock_flags & BTRFS_ILOCK_MMAP)
e5d4d75b 403 up_write(&inode->i_mmap_lock);
a14b78ad 404 if (ilock_flags & BTRFS_ILOCK_SHARED)
e5d4d75b 405 inode_unlock_shared(&inode->vfs_inode);
a14b78ad 406 else
e5d4d75b 407 inode_unlock(&inode->vfs_inode);
a14b78ad
GR
408}
409
52427260
QW
410/*
411 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 412 * from the btrfs_run_delalloc_range() callback.
52427260
QW
413 *
414 * NOTE: caller must ensure that when an error happens, it can not call
415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
417 * to be released, which we want to happen only when finishing the ordered
d1051d6e 418 * extent (btrfs_finish_ordered_io()).
52427260 419 */
64e1db56 420static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
421 struct page *locked_page,
422 u64 offset, u64 bytes)
52427260 423{
63d71450
NA
424 unsigned long index = offset >> PAGE_SHIFT;
425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
0e47b25c 426 u64 page_start = 0, page_end = 0;
63d71450
NA
427 struct page *page;
428
99826e4c
NA
429 if (locked_page) {
430 page_start = page_offset(locked_page);
431 page_end = page_start + PAGE_SIZE - 1;
432 }
433
63d71450 434 while (index <= end_index) {
968f2566 435 /*
9783e4de
CH
436 * For locked page, we will call btrfs_mark_ordered_io_finished
437 * through btrfs_mark_ordered_io_finished() on it
438 * in run_delalloc_range() for the error handling, which will
439 * clear page Ordered and run the ordered extent accounting.
968f2566
QW
440 *
441 * Here we can't just clear the Ordered bit, or
442 * btrfs_mark_ordered_io_finished() would skip the accounting
443 * for the page range, and the ordered extent will never finish.
444 */
99826e4c 445 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
968f2566
QW
446 index++;
447 continue;
448 }
64e1db56 449 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
450 index++;
451 if (!page)
452 continue;
968f2566
QW
453
454 /*
455 * Here we just clear all Ordered bits for every page in the
711f447b 456 * range, then btrfs_mark_ordered_io_finished() will handle
968f2566
QW
457 * the ordered extent accounting for the range.
458 */
b945a463
QW
459 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
460 offset, bytes);
63d71450
NA
461 put_page(page);
462 }
d1051d6e 463
99826e4c
NA
464 if (locked_page) {
465 /* The locked page covers the full range, nothing needs to be done */
466 if (bytes + offset <= page_start + PAGE_SIZE)
467 return;
468 /*
469 * In case this page belongs to the delalloc range being
470 * instantiated then skip it, since the first page of a range is
471 * going to be properly cleaned up by the caller of
472 * run_delalloc_range
473 */
474 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
476 offset = page_offset(locked_page) + PAGE_SIZE;
477 }
d1051d6e
NB
478 }
479
711f447b 480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
52427260
QW
481}
482
7152b425 483static int btrfs_dirty_inode(struct btrfs_inode *inode);
7b128766 484
f34f57a3 485static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
3538d68d 486 struct btrfs_new_inode_args *args)
0279b4cd
JO
487{
488 int err;
489
3538d68d
OS
490 if (args->default_acl) {
491 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
492 ACL_TYPE_DEFAULT);
493 if (err)
494 return err;
495 }
496 if (args->acl) {
497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
498 if (err)
499 return err;
500 }
501 if (!args->default_acl && !args->acl)
502 cache_no_acl(args->inode);
503 return btrfs_xattr_security_init(trans, args->inode, args->dir,
504 &args->dentry->d_name);
0279b4cd
JO
505}
506
c8b97818
CM
507/*
508 * this does all the hard work for inserting an inline extent into
509 * the btree. The caller should have done a btrfs_drop_extents so that
510 * no overlapping inline items exist in the btree
511 */
40f76580 512static int insert_inline_extent(struct btrfs_trans_handle *trans,
8dd9872d
OS
513 struct btrfs_path *path,
514 struct btrfs_inode *inode, bool extent_inserted,
515 size_t size, size_t compressed_size,
fe3f566c 516 int compress_type,
d9496e8a
OS
517 struct page **compressed_pages,
518 bool update_i_size)
c8b97818 519{
8dd9872d 520 struct btrfs_root *root = inode->root;
c8b97818
CM
521 struct extent_buffer *leaf;
522 struct page *page = NULL;
523 char *kaddr;
524 unsigned long ptr;
525 struct btrfs_file_extent_item *ei;
c8b97818
CM
526 int ret;
527 size_t cur_size = size;
d9496e8a 528 u64 i_size;
c8b97818 529
982f1f5d
JJB
530 ASSERT((compressed_size > 0 && compressed_pages) ||
531 (compressed_size == 0 && !compressed_pages));
532
fe3f566c 533 if (compressed_size && compressed_pages)
c8b97818 534 cur_size = compressed_size;
c8b97818 535
1acae57b
FDBM
536 if (!extent_inserted) {
537 struct btrfs_key key;
538 size_t datasize;
c8b97818 539
8dd9872d
OS
540 key.objectid = btrfs_ino(inode);
541 key.offset = 0;
962a298f 542 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 543
1acae57b 544 datasize = btrfs_file_extent_calc_inline_size(cur_size);
1acae57b
FDBM
545 ret = btrfs_insert_empty_item(trans, root, path, &key,
546 datasize);
79b4f4c6 547 if (ret)
1acae57b 548 goto fail;
c8b97818
CM
549 }
550 leaf = path->nodes[0];
551 ei = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_file_extent_item);
553 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
555 btrfs_set_file_extent_encryption(leaf, ei, 0);
556 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
557 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
558 ptr = btrfs_file_extent_inline_start(ei);
559
261507a0 560 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
561 struct page *cpage;
562 int i = 0;
d397712b 563 while (compressed_size > 0) {
c8b97818 564 cpage = compressed_pages[i];
5b050f04 565 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 566 PAGE_SIZE);
c8b97818 567
4cb2e5e8 568 kaddr = kmap_local_page(cpage);
c8b97818 569 write_extent_buffer(leaf, kaddr, ptr, cur_size);
4cb2e5e8 570 kunmap_local(kaddr);
c8b97818
CM
571
572 i++;
573 ptr += cur_size;
574 compressed_size -= cur_size;
575 }
576 btrfs_set_file_extent_compression(leaf, ei,
261507a0 577 compress_type);
c8b97818 578 } else {
8dd9872d 579 page = find_get_page(inode->vfs_inode.i_mapping, 0);
c8b97818 580 btrfs_set_file_extent_compression(leaf, ei, 0);
4cb2e5e8 581 kaddr = kmap_local_page(page);
8dd9872d 582 write_extent_buffer(leaf, kaddr, ptr, size);
4cb2e5e8 583 kunmap_local(kaddr);
09cbfeaf 584 put_page(page);
c8b97818 585 }
50564b65 586 btrfs_mark_buffer_dirty(trans, leaf);
1acae57b 587 btrfs_release_path(path);
c8b97818 588
9ddc959e
JB
589 /*
590 * We align size to sectorsize for inline extents just for simplicity
591 * sake.
592 */
8dd9872d
OS
593 ret = btrfs_inode_set_file_extent_range(inode, 0,
594 ALIGN(size, root->fs_info->sectorsize));
9ddc959e
JB
595 if (ret)
596 goto fail;
597
c2167754 598 /*
d9496e8a
OS
599 * We're an inline extent, so nobody can extend the file past i_size
600 * without locking a page we already have locked.
c2167754 601 *
d9496e8a
OS
602 * We must do any i_size and inode updates before we unlock the pages.
603 * Otherwise we could end up racing with unlink.
c2167754 604 */
d9496e8a
OS
605 i_size = i_size_read(&inode->vfs_inode);
606 if (update_i_size && size > i_size) {
607 i_size_write(&inode->vfs_inode, size);
608 i_size = size;
609 }
610 inode->disk_i_size = i_size;
8dd9872d 611
c8b97818 612fail:
79b4f4c6 613 return ret;
c8b97818
CM
614}
615
616
617/*
618 * conditionally insert an inline extent into the file. This
619 * does the checks required to make sure the data is small enough
620 * to fit as an inline extent.
621 */
8dd9872d
OS
622static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
623 size_t compressed_size,
00361589 624 int compress_type,
d9496e8a
OS
625 struct page **compressed_pages,
626 bool update_i_size)
c8b97818 627{
5893dfb9 628 struct btrfs_drop_extents_args drop_args = { 0 };
a0349401 629 struct btrfs_root *root = inode->root;
0b246afa 630 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 631 struct btrfs_trans_handle *trans;
8dd9872d 632 u64 data_len = (compressed_size ?: size);
c8b97818 633 int ret;
1acae57b 634 struct btrfs_path *path;
c8b97818 635
8dd9872d
OS
636 /*
637 * We can create an inline extent if it ends at or beyond the current
638 * i_size, is no larger than a sector (decompressed), and the (possibly
639 * compressed) data fits in a leaf and the configured maximum inline
640 * size.
641 */
642 if (size < i_size_read(&inode->vfs_inode) ||
643 size > fs_info->sectorsize ||
0b246afa 644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8dd9872d 645 data_len > fs_info->max_inline)
c8b97818 646 return 1;
c8b97818 647
1acae57b
FDBM
648 path = btrfs_alloc_path();
649 if (!path)
650 return -ENOMEM;
651
00361589 652 trans = btrfs_join_transaction(root);
1acae57b
FDBM
653 if (IS_ERR(trans)) {
654 btrfs_free_path(path);
00361589 655 return PTR_ERR(trans);
1acae57b 656 }
a0349401 657 trans->block_rsv = &inode->block_rsv;
00361589 658
5893dfb9 659 drop_args.path = path;
8dd9872d
OS
660 drop_args.start = 0;
661 drop_args.end = fs_info->sectorsize;
5893dfb9
FM
662 drop_args.drop_cache = true;
663 drop_args.replace_extent = true;
8dd9872d 664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
5893dfb9 665 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
00361589 666 if (ret) {
66642832 667 btrfs_abort_transaction(trans, ret);
00361589
JB
668 goto out;
669 }
c8b97818 670
8dd9872d
OS
671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
672 size, compressed_size, compress_type,
d9496e8a 673 compressed_pages, update_i_size);
2adcac1a 674 if (ret && ret != -ENOSPC) {
66642832 675 btrfs_abort_transaction(trans, ret);
00361589 676 goto out;
2adcac1a 677 } else if (ret == -ENOSPC) {
00361589
JB
678 ret = 1;
679 goto out;
79787eaa 680 }
2adcac1a 681
8dd9872d 682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
8b9d0322 683 ret = btrfs_update_inode(trans, inode);
2766ff61
FM
684 if (ret && ret != -ENOSPC) {
685 btrfs_abort_transaction(trans, ret);
686 goto out;
687 } else if (ret == -ENOSPC) {
688 ret = 1;
689 goto out;
690 }
691
23e3337f 692 btrfs_set_inode_full_sync(inode);
00361589 693out:
94ed938a
QW
694 /*
695 * Don't forget to free the reserved space, as for inlined extent
696 * it won't count as data extent, free them directly here.
697 * And at reserve time, it's always aligned to page size, so
698 * just free one page here.
699 */
9e65bfca 700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
1acae57b 701 btrfs_free_path(path);
3a45bb20 702 btrfs_end_transaction(trans);
00361589 703 return ret;
c8b97818
CM
704}
705
771ed689
CM
706struct async_extent {
707 u64 start;
708 u64 ram_size;
709 u64 compressed_size;
710 struct page **pages;
711 unsigned long nr_pages;
261507a0 712 int compress_type;
771ed689
CM
713 struct list_head list;
714};
715
97db1204 716struct async_chunk {
99a81a44 717 struct btrfs_inode *inode;
771ed689
CM
718 struct page *locked_page;
719 u64 start;
720 u64 end;
bf9486d6 721 blk_opf_t write_flags;
771ed689 722 struct list_head extents;
ec39f769 723 struct cgroup_subsys_state *blkcg_css;
771ed689 724 struct btrfs_work work;
9e895a8f 725 struct async_cow *async_cow;
771ed689
CM
726};
727
97db1204 728struct async_cow {
97db1204
NB
729 atomic_t num_chunks;
730 struct async_chunk chunks[];
771ed689
CM
731};
732
97db1204 733static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
734 u64 start, u64 ram_size,
735 u64 compressed_size,
736 struct page **pages,
261507a0
LZ
737 unsigned long nr_pages,
738 int compress_type)
771ed689
CM
739{
740 struct async_extent *async_extent;
741
742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 743 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
744 async_extent->start = start;
745 async_extent->ram_size = ram_size;
746 async_extent->compressed_size = compressed_size;
747 async_extent->pages = pages;
748 async_extent->nr_pages = nr_pages;
261507a0 749 async_extent->compress_type = compress_type;
771ed689
CM
750 list_add_tail(&async_extent->list, &cow->extents);
751 return 0;
752}
753
42c16da6
QW
754/*
755 * Check if the inode needs to be submitted to compression, based on mount
756 * options, defragmentation, properties or heuristics.
757 */
808a1292
NB
758static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
759 u64 end)
f79707b0 760{
808a1292 761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 762
e6f9d696 763 if (!btrfs_inode_can_compress(inode)) {
42c16da6
QW
764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 766 btrfs_ino(inode));
42c16da6
QW
767 return 0;
768 }
0cf9b244
QW
769 /*
770 * Special check for subpage.
771 *
772 * We lock the full page then run each delalloc range in the page, thus
773 * for the following case, we will hit some subpage specific corner case:
774 *
775 * 0 32K 64K
776 * | |///////| |///////|
777 * \- A \- B
778 *
779 * In above case, both range A and range B will try to unlock the full
780 * page [0, 64K), causing the one finished later will have page
781 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 *
783 * So here we add an artificial limit that subpage compression can only
784 * if the range is fully page aligned.
785 *
786 * In theory we only need to ensure the first page is fully covered, but
787 * the tailing partial page will be locked until the full compression
788 * finishes, delaying the write of other range.
789 *
790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
791 * first to prevent any submitted async extent to unlock the full page.
792 * By this, we can ensure for subpage case that only the last async_cow
793 * will unlock the full page.
794 */
795 if (fs_info->sectorsize < PAGE_SIZE) {
1280d2d1
FK
796 if (!PAGE_ALIGNED(start) ||
797 !PAGE_ALIGNED(end + 1))
0cf9b244
QW
798 return 0;
799 }
800
f79707b0 801 /* force compress */
0b246afa 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 803 return 1;
eec63c65 804 /* defrag ioctl */
808a1292 805 if (inode->defrag_compress)
eec63c65 806 return 1;
f79707b0 807 /* bad compression ratios */
808a1292 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 809 return 0;
0b246afa 810 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
811 inode->flags & BTRFS_INODE_COMPRESS ||
812 inode->prop_compress)
813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
814 return 0;
815}
816
6158e1ce 817static inline void inode_should_defrag(struct btrfs_inode *inode,
558732df 818 u64 start, u64 end, u64 num_bytes, u32 small_write)
26d30f85
AJ
819{
820 /* If this is a small write inside eof, kick off a defrag */
821 if (num_bytes < small_write &&
6158e1ce 822 (start > 0 || end + 1 < inode->disk_i_size))
558732df 823 btrfs_add_inode_defrag(NULL, inode, small_write);
26d30f85
AJ
824}
825
d352ac68 826/*
c15d8cf2 827 * Work queue call back to started compression on a file and pages.
c8b97818 828 *
c15d8cf2
CH
829 * This is done inside an ordered work queue, and the compression is spread
830 * across many cpus. The actual IO submission is step two, and the ordered work
831 * queue takes care of making sure that happens in the same order things were
832 * put onto the queue by writepages and friends.
c8b97818 833 *
c15d8cf2
CH
834 * If this code finds it can't get good compression, it puts an entry onto the
835 * work queue to write the uncompressed bytes. This makes sure that both
836 * compressed inodes and uncompressed inodes are written in the same order that
837 * the flusher thread sent them down.
d352ac68 838 */
c15d8cf2 839static void compress_file_range(struct btrfs_work *work)
b888db2b 840{
c15d8cf2
CH
841 struct async_chunk *async_chunk =
842 container_of(work, struct async_chunk, work);
99a01bd6
DS
843 struct btrfs_inode *inode = async_chunk->inode;
844 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a994310a 845 struct address_space *mapping = inode->vfs_inode.i_mapping;
0b246afa 846 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
847 u64 start = async_chunk->start;
848 u64 end = async_chunk->end;
c8b97818 849 u64 actual_end;
d98da499 850 u64 i_size;
e6dcd2dc 851 int ret = 0;
e94e54e8 852 struct page **pages;
c8b97818 853 unsigned long nr_pages;
c8b97818
CM
854 unsigned long total_compressed = 0;
855 unsigned long total_in = 0;
e94e54e8 856 unsigned int poff;
c8b97818 857 int i;
0b246afa 858 int compress_type = fs_info->compress_type;
b888db2b 859
99a01bd6 860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
4cb5300b 861
44962ca3
CH
862 /*
863 * We need to call clear_page_dirty_for_io on each page in the range.
864 * Otherwise applications with the file mmap'd can wander in and change
865 * the page contents while we are compressing them.
866 */
867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
868
d98da499
JB
869 /*
870 * We need to save i_size before now because it could change in between
871 * us evaluating the size and assigning it. This is because we lock and
872 * unlock the page in truncate and fallocate, and then modify the i_size
873 * later on.
874 *
875 * The barriers are to emulate READ_ONCE, remove that once i_size_read
876 * does that for us.
877 */
878 barrier();
99a01bd6 879 i_size = i_size_read(&inode->vfs_inode);
d98da499
JB
880 barrier();
881 actual_end = min_t(u64, i_size, end + 1);
c8b97818 882again:
e94e54e8 883 pages = NULL;
09cbfeaf 884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
544fe4a9 885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
be20aa9d 886
f03d9301
CM
887 /*
888 * we don't want to send crud past the end of i_size through
889 * compression, that's just a waste of CPU time. So, if the
890 * end of the file is before the start of our current
891 * requested range of bytes, we bail out to the uncompressed
892 * cleanup code that can deal with all of this.
893 *
894 * It isn't really the fastest way to fix things, but this is a
895 * very uncommon corner.
896 */
897 if (actual_end <= start)
898 goto cleanup_and_bail_uncompressed;
899
c8b97818
CM
900 total_compressed = actual_end - start;
901
4bcbb332 902 /*
0cf9b244 903 * Skip compression for a small file range(<=blocksize) that
01327610 904 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
905 */
906 if (total_compressed <= blocksize &&
99a01bd6 907 (start > 0 || end + 1 < inode->disk_i_size))
4bcbb332
SW
908 goto cleanup_and_bail_uncompressed;
909
0cf9b244
QW
910 /*
911 * For subpage case, we require full page alignment for the sector
912 * aligned range.
913 * Thus we must also check against @actual_end, not just @end.
914 */
915 if (blocksize < PAGE_SIZE) {
1280d2d1
FK
916 if (!PAGE_ALIGNED(start) ||
917 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
0cf9b244
QW
918 goto cleanup_and_bail_uncompressed;
919 }
920
069eac78
DS
921 total_compressed = min_t(unsigned long, total_compressed,
922 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
923 total_in = 0;
924 ret = 0;
db94535d 925
771ed689 926 /*
e94e54e8
CH
927 * We do compression for mount -o compress and when the inode has not
928 * been flagged as NOCOMPRESS. This flag can change at any time if we
929 * discover bad compression ratios.
c8b97818 930 */
e94e54e8 931 if (!inode_need_compress(inode, start, end))
6a7167bf 932 goto cleanup_and_bail_uncompressed;
261507a0 933
e94e54e8
CH
934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
935 if (!pages) {
4adaa611 936 /*
e94e54e8
CH
937 * Memory allocation failure is not a fatal error, we can fall
938 * back to uncompressed code.
4adaa611 939 */
6a7167bf 940 goto cleanup_and_bail_uncompressed;
e94e54e8 941 }
f51d2b59 942
e94e54e8
CH
943 if (inode->defrag_compress)
944 compress_type = inode->defrag_compress;
945 else if (inode->prop_compress)
946 compress_type = inode->prop_compress;
947
e94e54e8
CH
948 /* Compression level is applied here. */
949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
950 mapping, start, pages, &nr_pages, &total_in,
951 &total_compressed);
952 if (ret)
184aa1ff 953 goto mark_incompressible;
c8b97818 954
e94e54e8
CH
955 /*
956 * Zero the tail end of the last page, as we might be sending it down
957 * to disk.
958 */
959 poff = offset_in_page(total_compressed);
960 if (poff)
961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
c8b97818 962
7367253a 963 /*
6a7167bf
CH
964 * Try to create an inline extent.
965 *
966 * If we didn't compress the entire range, try to create an uncompressed
967 * inline extent, else a compressed one.
968 *
7367253a 969 * Check cow_file_range() for why we don't even try to create inline
e94e54e8 970 * extent for the subpage case.
7367253a
QW
971 */
972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
6a7167bf
CH
973 if (total_in < actual_end) {
974 ret = cow_file_range_inline(inode, actual_end, 0,
975 BTRFS_COMPRESS_NONE, NULL,
976 false);
c8b97818 977 } else {
99a01bd6 978 ret = cow_file_range_inline(inode, actual_end,
fe3f566c 979 total_compressed,
d9496e8a
OS
980 compress_type, pages,
981 false);
c8b97818 982 }
79787eaa 983 if (ret <= 0) {
151a41bc 984 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING;
e6eb4314 987
a994310a
CH
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
151a41bc 990
771ed689 991 /*
79787eaa
JM
992 * inline extent creation worked or returned error,
993 * we don't need to create any more async work items.
994 * Unlock and free up our temp pages.
8b62f87b
JB
995 *
996 * We use DO_ACCOUNTING here because we need the
997 * delalloc_release_metadata to be done _after_ we drop
998 * our outstanding extent for clearing delalloc for this
999 * range.
771ed689 1000 */
99a01bd6 1001 extent_clear_unlock_delalloc(inode, start, end,
ad7ff17b 1002 NULL,
74e9194a 1003 clear_flags,
ba8b04c1 1004 PAGE_UNLOCK |
6869b0a8 1005 PAGE_START_WRITEBACK |
c2790a2e 1006 PAGE_END_WRITEBACK);
f778b6b8 1007 goto free_pages;
c8b97818
CM
1008 }
1009 }
1010
e94e54e8
CH
1011 /*
1012 * We aren't doing an inline extent. Round the compressed size up to a
1013 * block size boundary so the allocator does sane things.
1014 */
1015 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818 1016
e94e54e8
CH
1017 /*
1018 * One last check to make sure the compression is really a win, compare
1019 * the page count read with the blocks on disk, compression must free at
1020 * least one sector.
1021 */
1022 total_in = round_up(total_in, fs_info->sectorsize);
1023 if (total_compressed + blocksize > total_in)
184aa1ff 1024 goto mark_incompressible;
c8bb0c8b 1025
e94e54e8
CH
1026 /*
1027 * The async work queues will take care of doing actual allocation on
1028 * disk for these compressed pages, and will submit the bios.
1029 */
1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1031 nr_pages, compress_type);
1032 if (start + total_in < end) {
1033 start += total_in;
1034 cond_resched();
1035 goto again;
c8b97818 1036 }
e94e54e8
CH
1037 return;
1038
184aa1ff
CH
1039mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
e94e54e8 1042cleanup_and_bail_uncompressed:
b5326271 1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 1044 BTRFS_COMPRESS_NONE);
f778b6b8 1045free_pages:
c8bb0c8b 1046 if (pages) {
4d3a800e 1047 for (i = 0; i < nr_pages; i++) {
70b99e69 1048 WARN_ON(pages[i]->mapping);
9ba965dc 1049 btrfs_free_compr_page(pages[i]);
c8b97818
CM
1050 }
1051 kfree(pages);
c8b97818 1052 }
771ed689 1053}
771ed689 1054
40ae837b
FM
1055static void free_async_extent_pages(struct async_extent *async_extent)
1056{
1057 int i;
1058
1059 if (!async_extent->pages)
1060 return;
1061
1062 for (i = 0; i < async_extent->nr_pages; i++) {
1063 WARN_ON(async_extent->pages[i]->mapping);
9ba965dc 1064 btrfs_free_compr_page(async_extent->pages[i]);
40ae837b
FM
1065 }
1066 kfree(async_extent->pages);
1067 async_extent->nr_pages = 0;
1068 async_extent->pages = NULL;
771ed689
CM
1069}
1070
ff20d6a4
CH
1071static void submit_uncompressed_range(struct btrfs_inode *inode,
1072 struct async_extent *async_extent,
1073 struct page *locked_page)
771ed689 1074{
2b83a0ee
QW
1075 u64 start = async_extent->start;
1076 u64 end = async_extent->start + async_extent->ram_size - 1;
2b83a0ee 1077 int ret;
7027f871
CH
1078 struct writeback_control wbc = {
1079 .sync_mode = WB_SYNC_ALL,
1080 .range_start = start,
1081 .range_end = end,
1082 .no_cgroup_owner = 1,
1083 };
771ed689 1084
256b0cf9
CH
1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1087 wbc_detach_inode(&wbc);
2b83a0ee 1088 if (ret < 0) {
71aa147b
NA
1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1090 if (locked_page) {
1091 const u64 page_start = page_offset(locked_page);
71aa147b 1092
71aa147b
NA
1093 set_page_writeback(locked_page);
1094 end_page_writeback(locked_page);
9783e4de
CH
1095 btrfs_mark_ordered_io_finished(inode, locked_page,
1096 page_start, PAGE_SIZE,
1097 !ret);
9783e4de 1098 mapping_set_error(locked_page->mapping, ret);
2b83a0ee 1099 unlock_page(locked_page);
71aa147b 1100 }
2b83a0ee 1101 }
2b83a0ee 1102}
79787eaa 1103
84f262f0
CH
1104static void submit_one_async_extent(struct async_chunk *async_chunk,
1105 struct async_extent *async_extent,
1106 u64 *alloc_hint)
771ed689 1107{
84f262f0 1108 struct btrfs_inode *inode = async_chunk->inode;
b4ccace8
QW
1109 struct extent_io_tree *io_tree = &inode->io_tree;
1110 struct btrfs_root *root = inode->root;
1111 struct btrfs_fs_info *fs_info = root->fs_info;
d611935b 1112 struct btrfs_ordered_extent *ordered;
771ed689 1113 struct btrfs_key ins;
2b83a0ee 1114 struct page *locked_page = NULL;
771ed689 1115 struct extent_map *em;
f5a84ee3 1116 int ret = 0;
b4ccace8
QW
1117 u64 start = async_extent->start;
1118 u64 end = async_extent->start + async_extent->ram_size - 1;
771ed689 1119
896d7c1a
CH
1120 if (async_chunk->blkcg_css)
1121 kthread_associate_blkcg(async_chunk->blkcg_css);
1122
2b83a0ee
QW
1123 /*
1124 * If async_chunk->locked_page is in the async_extent range, we need to
1125 * handle it.
1126 */
1127 if (async_chunk->locked_page) {
1128 u64 locked_page_start = page_offset(async_chunk->locked_page);
1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
3e04e7f1 1130
2b83a0ee
QW
1131 if (!(start >= locked_page_end || end <= locked_page_start))
1132 locked_page = async_chunk->locked_page;
b4ccace8 1133 }
570eb97b 1134 lock_extent(io_tree, start, end, NULL);
ce62003f 1135
67583468 1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
ff20d6a4 1137 submit_uncompressed_range(inode, async_extent, locked_page);
e43a6210
CH
1138 goto done;
1139 }
ce62003f 1140
b4ccace8
QW
1141 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 async_extent->compressed_size,
1143 async_extent->compressed_size,
1144 0, *alloc_hint, &ins, 1, 1);
1145 if (ret) {
c2167754 1146 /*
b4ccace8
QW
1147 * Here we used to try again by going back to non-compressed
1148 * path for ENOSPC. But we can't reserve space even for
1149 * compressed size, how could it work for uncompressed size
1150 * which requires larger size? So here we directly go error
1151 * path.
c2167754 1152 */
b4ccace8
QW
1153 goto out_free;
1154 }
1155
1156 /* Here we're doing allocation and writeback of the compressed pages */
1157 em = create_io_em(inode, start,
1158 async_extent->ram_size, /* len */
1159 start, /* orig_start */
1160 ins.objectid, /* block_start */
1161 ins.offset, /* block_len */
1162 ins.offset, /* orig_block_len */
1163 async_extent->ram_size, /* ram_bytes */
1164 async_extent->compress_type,
1165 BTRFS_ORDERED_COMPRESSED);
1166 if (IS_ERR(em)) {
1167 ret = PTR_ERR(em);
1168 goto out_free_reserve;
1169 }
1170 free_extent_map(em);
771ed689 1171
d611935b 1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
cb36a9bb
OS
1173 async_extent->ram_size, /* num_bytes */
1174 async_extent->ram_size, /* ram_bytes */
1175 ins.objectid, /* disk_bytenr */
1176 ins.offset, /* disk_num_bytes */
1177 0, /* offset */
1178 1 << BTRFS_ORDERED_COMPRESSED,
1179 async_extent->compress_type);
d611935b 1180 if (IS_ERR(ordered)) {
4c0c8cfc 1181 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 1182 ret = PTR_ERR(ordered);
b4ccace8 1183 goto out_free_reserve;
771ed689 1184 }
b4ccace8
QW
1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186
1187 /* Clear dirty, set writeback and unlock the pages. */
1188 extent_clear_unlock_delalloc(inode, start, end,
1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1190 PAGE_UNLOCK | PAGE_START_WRITEBACK);
d611935b 1191 btrfs_submit_compressed_write(ordered,
b4ccace8
QW
1192 async_extent->pages, /* compressed_pages */
1193 async_extent->nr_pages,
05d06a5c 1194 async_chunk->write_flags, true);
b4ccace8 1195 *alloc_hint = ins.objectid + ins.offset;
e43a6210 1196done:
896d7c1a
CH
1197 if (async_chunk->blkcg_css)
1198 kthread_associate_blkcg(NULL);
b4ccace8 1199 kfree(async_extent);
84f262f0 1200 return;
b4ccace8 1201
3e04e7f1 1202out_free_reserve:
0b246afa 1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1205out_free:
a994310a 1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
b4ccace8 1207 extent_clear_unlock_delalloc(inode, start, end,
c2790a2e 1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 1209 EXTENT_DELALLOC_NEW |
151a41bc 1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
6869b0a8 1211 PAGE_UNLOCK | PAGE_START_WRITEBACK |
a994310a 1212 PAGE_END_WRITEBACK);
40ae837b 1213 free_async_extent_pages(async_extent);
84f262f0
CH
1214 if (async_chunk->blkcg_css)
1215 kthread_associate_blkcg(NULL);
1216 btrfs_debug(fs_info,
b4ccace8 1217"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
84f262f0
CH
1218 root->root_key.objectid, btrfs_ino(inode), start,
1219 async_extent->ram_size, ret);
1220 kfree(async_extent);
771ed689
CM
1221}
1222
43c69849 1223static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
1224 u64 num_bytes)
1225{
43c69849 1226 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
1227 struct extent_map *em;
1228 u64 alloc_hint = 0;
1229
1230 read_lock(&em_tree->lock);
1231 em = search_extent_mapping(em_tree, start, num_bytes);
1232 if (em) {
1233 /*
1234 * if block start isn't an actual block number then find the
1235 * first block in this inode and use that as a hint. If that
1236 * block is also bogus then just don't worry about it.
1237 */
1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 free_extent_map(em);
1240 em = search_extent_mapping(em_tree, 0, 0);
1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 alloc_hint = em->block_start;
1243 if (em)
1244 free_extent_map(em);
1245 } else {
1246 alloc_hint = em->block_start;
1247 free_extent_map(em);
1248 }
1249 }
1250 read_unlock(&em_tree->lock);
1251
1252 return alloc_hint;
1253}
1254
771ed689
CM
1255/*
1256 * when extent_io.c finds a delayed allocation range in the file,
1257 * the call backs end up in this code. The basic idea is to
1258 * allocate extents on disk for the range, and create ordered data structs
1259 * in ram to track those extents.
1260 *
1261 * locked_page is the page that writepage had locked already. We use
1262 * it to make sure we don't do extra locks or unlocks.
1263 *
ba9145ad 1264 * When this function fails, it unlocks all pages except @locked_page.
9ce7466f 1265 *
c56cbe90
CH
1266 * When this function successfully creates an inline extent, it returns 1 and
1267 * unlocks all pages including locked_page and starts I/O on them.
ba9145ad
CH
1268 * (In reality inline extents are limited to a single page, so locked_page is
1269 * the only page handled anyway).
9ce7466f 1270 *
ba9145ad
CH
1271 * When this function succeed and creates a normal extent, the page locking
1272 * status depends on the passed in flags:
9ce7466f 1273 *
ba9145ad
CH
1274 * - If @keep_locked is set, all pages are kept locked.
1275 * - Else all pages except for @locked_page are unlocked.
9ce7466f
NA
1276 *
1277 * When a failure happens in the second or later iteration of the
1278 * while-loop, the ordered extents created in previous iterations are kept
1279 * intact. So, the caller must clean them up by calling
1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281 * example.
771ed689 1282 */
6e26c442 1283static noinline int cow_file_range(struct btrfs_inode *inode,
c56cbe90
CH
1284 struct page *locked_page, u64 start, u64 end,
1285 u64 *done_offset,
53ffb30a 1286 bool keep_locked, bool no_inline)
771ed689 1287{
6e26c442
NB
1288 struct btrfs_root *root = inode->root;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 1290 u64 alloc_hint = 0;
9ce7466f 1291 u64 orig_start = start;
771ed689
CM
1292 u64 num_bytes;
1293 unsigned long ram_size;
a315e68f 1294 u64 cur_alloc_size = 0;
432cd2a1 1295 u64 min_alloc_size;
0b246afa 1296 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1297 struct btrfs_key ins;
1298 struct extent_map *em;
a315e68f
FM
1299 unsigned clear_bits;
1300 unsigned long page_ops;
1301 bool extent_reserved = false;
771ed689
CM
1302 int ret = 0;
1303
6e26c442 1304 if (btrfs_is_free_space_inode(inode)) {
29bce2f3
JB
1305 ret = -EINVAL;
1306 goto out_unlock;
02ecd2c2 1307 }
771ed689 1308
fda2832f 1309 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1310 num_bytes = max(blocksize, num_bytes);
566b1760 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1312
6e26c442 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1314
7367253a
QW
1315 /*
1316 * Due to the page size limit, for subpage we can only trigger the
1317 * writeback for the dirty sectors of page, that means data writeback
1318 * is doing more writeback than what we want.
1319 *
1320 * This is especially unexpected for some call sites like fallocate,
1321 * where we only increase i_size after everything is done.
1322 * This means we can trigger inline extent even if we didn't want to.
1323 * So here we skip inline extent creation completely.
1324 */
53ffb30a 1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
8dd9872d
OS
1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 end + 1);
1328
771ed689 1329 /* lets try to make an inline extent */
8dd9872d 1330 ret = cow_file_range_inline(inode, actual_end, 0,
d9496e8a 1331 BTRFS_COMPRESS_NONE, NULL, false);
771ed689 1332 if (ret == 0) {
8b62f87b
JB
1333 /*
1334 * We use DO_ACCOUNTING here because we need the
1335 * delalloc_release_metadata to be run _after_ we drop
1336 * our outstanding extent for clearing delalloc for this
1337 * range.
1338 */
4750af3b
QW
1339 extent_clear_unlock_delalloc(inode, start, end,
1340 locked_page,
c2790a2e 1341 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
4750af3b
QW
1345 /*
1346 * locked_page is locked by the caller of
1347 * writepage_delalloc(), not locked by
1348 * __process_pages_contig().
1349 *
1350 * We can't let __process_pages_contig() to unlock it,
1351 * as it doesn't have any subpage::writers recorded.
1352 *
1353 * Here we manually unlock the page, since the caller
c56cbe90
CH
1354 * can't determine if it's an inline extent or a
1355 * compressed extent.
4750af3b
QW
1356 */
1357 unlock_page(locked_page);
6e144bf1
CH
1358 ret = 1;
1359 goto done;
79787eaa 1360 } else if (ret < 0) {
79787eaa 1361 goto out_unlock;
771ed689
CM
1362 }
1363 }
1364
6e26c442 1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689 1366
432cd2a1
FM
1367 /*
1368 * Relocation relies on the relocated extents to have exactly the same
1369 * size as the original extents. Normally writeback for relocation data
1370 * extents follows a NOCOW path because relocation preallocates the
1371 * extents. However, due to an operation such as scrub turning a block
1372 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 * an extent allocated during COW has exactly the requested size and can
1374 * not be split into smaller extents, otherwise relocation breaks and
1375 * fails during the stage where it updates the bytenr of file extent
1376 * items.
1377 */
37f00a6d 1378 if (btrfs_is_data_reloc_root(root))
432cd2a1
FM
1379 min_alloc_size = num_bytes;
1380 else
1381 min_alloc_size = fs_info->sectorsize;
1382
3752d22f 1383 while (num_bytes > 0) {
34bfaf15
CH
1384 struct btrfs_ordered_extent *ordered;
1385
3752d22f 1386 cur_alloc_size = num_bytes;
18513091 1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1388 min_alloc_size, 0, alloc_hint,
e570fd27 1389 &ins, 1, 1);
6e144bf1
CH
1390 if (ret == -EAGAIN) {
1391 /*
1392 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 * file systems, which is an indication that there are
1394 * no active zones to allocate from at the moment.
1395 *
1396 * If this is the first loop iteration, wait for at
1397 * least one zone to finish before retrying the
1398 * allocation. Otherwise ask the caller to write out
1399 * the already allocated blocks before coming back to
1400 * us, or return -ENOSPC if it can't handle retries.
1401 */
1402 ASSERT(btrfs_is_zoned(fs_info));
1403 if (start == orig_start) {
1404 wait_on_bit_io(&inode->root->fs_info->flags,
1405 BTRFS_FS_NEED_ZONE_FINISH,
1406 TASK_UNINTERRUPTIBLE);
1407 continue;
1408 }
1409 if (done_offset) {
1410 *done_offset = start - 1;
1411 return 0;
1412 }
1413 ret = -ENOSPC;
1414 }
00361589 1415 if (ret < 0)
79787eaa 1416 goto out_unlock;
a315e68f
FM
1417 cur_alloc_size = ins.offset;
1418 extent_reserved = true;
d397712b 1419
771ed689 1420 ram_size = ins.offset;
6e26c442 1421 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1422 start, /* orig_start */
1423 ins.objectid, /* block_start */
1424 ins.offset, /* block_len */
1425 ins.offset, /* orig_block_len */
1426 ram_size, /* ram_bytes */
1427 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1428 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1429 if (IS_ERR(em)) {
1430 ret = PTR_ERR(em);
ace68bac 1431 goto out_reserve;
090a127a 1432 }
6f9994db 1433 free_extent_map(em);
e6dcd2dc 1434
34bfaf15
CH
1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 ram_size, ins.objectid, cur_alloc_size,
1437 0, 1 << BTRFS_ORDERED_REGULAR,
1438 BTRFS_COMPRESS_NONE);
1439 if (IS_ERR(ordered)) {
1440 ret = PTR_ERR(ordered);
d9f85963 1441 goto out_drop_extent_cache;
34bfaf15 1442 }
c8b97818 1443
37f00a6d 1444 if (btrfs_is_data_reloc_root(root)) {
34bfaf15
CH
1445 ret = btrfs_reloc_clone_csums(ordered);
1446
4dbd80fb
QW
1447 /*
1448 * Only drop cache here, and process as normal.
1449 *
1450 * We must not allow extent_clear_unlock_delalloc()
1451 * at out_unlock label to free meta of this ordered
1452 * extent, as its meta should be freed by
1453 * btrfs_finish_ordered_io().
1454 *
1455 * So we must continue until @start is increased to
1456 * skip current ordered extent.
1457 */
00361589 1458 if (ret)
4c0c8cfc
FM
1459 btrfs_drop_extent_map_range(inode, start,
1460 start + ram_size - 1,
1461 false);
17d217fe 1462 }
34bfaf15 1463 btrfs_put_ordered_extent(ordered);
17d217fe 1464
0b246afa 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1466
f57ad937
QW
1467 /*
1468 * We're not doing compressed IO, don't unlock the first page
1469 * (which the caller expects to stay locked), don't clear any
1470 * dirty bits and don't set any writeback bits
8b62b72b 1471 *
f57ad937
QW
1472 * Do set the Ordered (Private2) bit so we know this page was
1473 * properly setup for writepage.
c8b97818 1474 */
ba9145ad 1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
f57ad937 1476 page_ops |= PAGE_SET_ORDERED;
a791e35e 1477
6e26c442 1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1479 locked_page,
c2790a2e 1480 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1481 page_ops);
3752d22f
AJ
1482 if (num_bytes < cur_alloc_size)
1483 num_bytes = 0;
4dbd80fb 1484 else
3752d22f 1485 num_bytes -= cur_alloc_size;
c59f8951
CM
1486 alloc_hint = ins.objectid + ins.offset;
1487 start += cur_alloc_size;
a315e68f 1488 extent_reserved = false;
4dbd80fb
QW
1489
1490 /*
1491 * btrfs_reloc_clone_csums() error, since start is increased
1492 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 * free metadata of current ordered extent, we're OK to exit.
1494 */
1495 if (ret)
1496 goto out_unlock;
b888db2b 1497 }
6e144bf1
CH
1498done:
1499 if (done_offset)
1500 *done_offset = end;
be20aa9d 1501 return ret;
b7d5b0a8 1502
d9f85963 1503out_drop_extent_cache:
4c0c8cfc 1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
ace68bac 1505out_reserve:
0b246afa 1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1508out_unlock:
9ce7466f
NA
1509 /*
1510 * Now, we have three regions to clean up:
1511 *
1512 * |-------(1)----|---(2)---|-------------(3)----------|
1513 * `- orig_start `- start `- start + cur_alloc_size `- end
1514 *
1515 * We process each region below.
1516 */
1517
a7e3b975
FM
1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
6869b0a8 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
9ce7466f 1521
a315e68f 1522 /*
9ce7466f
NA
1523 * For the range (1). We have already instantiated the ordered extents
1524 * for this region. They are cleaned up by
1525 * btrfs_cleanup_ordered_extents() in e.g,
1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 * function.
1530 *
ba9145ad 1531 * However, in case of @keep_locked, we still need to unlock the pages
9ce7466f
NA
1532 * (except @locked_page) to ensure all the pages are unlocked.
1533 */
ba9145ad 1534 if (keep_locked && orig_start < start) {
71aa147b
NA
1535 if (!locked_page)
1536 mapping_set_error(inode->vfs_inode.i_mapping, ret);
9ce7466f
NA
1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 locked_page, 0, page_ops);
71aa147b 1539 }
9ce7466f 1540
a315e68f 1541 /*
9ce7466f
NA
1542 * For the range (2). If we reserved an extent for our delalloc range
1543 * (or a subrange) and failed to create the respective ordered extent,
1544 * then it means that when we reserved the extent we decremented the
1545 * extent's size from the data space_info's bytes_may_use counter and
1546 * incremented the space_info's bytes_reserved counter by the same
1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 * to decrement again the data space_info's bytes_may_use counter,
1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
a315e68f
FM
1550 */
1551 if (extent_reserved) {
6e26c442 1552 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1553 start + cur_alloc_size - 1,
a315e68f
FM
1554 locked_page,
1555 clear_bits,
1556 page_ops);
1557 start += cur_alloc_size;
a315e68f 1558 }
9ce7466f
NA
1559
1560 /*
1561 * For the range (3). We never touched the region. In addition to the
1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 * space_info's bytes_may_use counter, reserved in
1564 * btrfs_check_data_free_space().
1565 */
12b2d64e
CH
1566 if (start < end) {
1567 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 clear_bits, page_ops);
1570 }
aaafa1eb 1571 return ret;
771ed689 1572}
c8b97818 1573
771ed689 1574/*
c15d8cf2
CH
1575 * Phase two of compressed writeback. This is the ordered portion of the code,
1576 * which only gets called in the order the work was queued. We walk all the
1577 * async extents created by compress_file_range and send them down to the disk.
078b8b90
DS
1578 *
1579 * If called with @do_free == true then it'll try to finish the work and free
1580 * the work struct eventually.
771ed689 1581 */
078b8b90 1582static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
771ed689 1583{
c5a68aec
NB
1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 work);
1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
00d31d17 1587 struct async_extent *async_extent;
771ed689 1588 unsigned long nr_pages;
00d31d17 1589 u64 alloc_hint = 0;
771ed689 1590
078b8b90
DS
1591 if (do_free) {
1592 struct async_chunk *async_chunk;
1593 struct async_cow *async_cow;
1594
1595 async_chunk = container_of(work, struct async_chunk, work);
1596 btrfs_add_delayed_iput(async_chunk->inode);
1597 if (async_chunk->blkcg_css)
1598 css_put(async_chunk->blkcg_css);
1599
1600 async_cow = async_chunk->async_cow;
1601 if (atomic_dec_and_test(&async_cow->num_chunks))
1602 kvfree(async_cow);
1603 return;
1604 }
1605
b5326271 1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1607 PAGE_SHIFT;
771ed689 1608
00d31d17
CH
1609 while (!list_empty(&async_chunk->extents)) {
1610 async_extent = list_entry(async_chunk->extents.next,
1611 struct async_extent, list);
1612 list_del(&async_extent->list);
1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 }
ac98141d
JB
1615
1616 /* atomic_sub_return implies a barrier */
1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 5 * SZ_1M)
1619 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1620}
c8b97818 1621
bb7b05fe 1622static bool run_delalloc_compressed(struct btrfs_inode *inode,
c56cbe90
CH
1623 struct page *locked_page, u64 start,
1624 u64 end, struct writeback_control *wbc)
771ed689 1625{
751b6431 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1628 struct async_cow *ctx;
1629 struct async_chunk *async_chunk;
771ed689 1630 unsigned long nr_pages;
97db1204
NB
1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 int i;
b1c16ac9 1633 unsigned nofs_flag;
bf9486d6 1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
771ed689 1635
b1c16ac9
NB
1636 nofs_flag = memalloc_nofs_save();
1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 memalloc_nofs_restore(nofs_flag);
973fb26e
CH
1639 if (!ctx)
1640 return false;
b1c16ac9 1641
973fb26e
CH
1642 unlock_extent(&inode->io_tree, start, end, NULL);
1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
97db1204
NB
1644
1645 async_chunk = ctx->chunks;
1646 atomic_set(&ctx->num_chunks, num_chunks);
1647
1648 for (i = 0; i < num_chunks; i++) {
973fb26e 1649 u64 cur_end = min(end, start + SZ_512K - 1);
771ed689 1650
bd4691a0
NB
1651 /*
1652 * igrab is called higher up in the call chain, take only the
1653 * lightweight reference for the callback lifetime
1654 */
751b6431 1655 ihold(&inode->vfs_inode);
9e895a8f 1656 async_chunk[i].async_cow = ctx;
99a81a44 1657 async_chunk[i].inode = inode;
97db1204
NB
1658 async_chunk[i].start = start;
1659 async_chunk[i].end = cur_end;
97db1204
NB
1660 async_chunk[i].write_flags = write_flags;
1661 INIT_LIST_HEAD(&async_chunk[i].extents);
1662
1d53c9e6
CM
1663 /*
1664 * The locked_page comes all the way from writepage and its
1665 * the original page we were actually given. As we spread
1666 * this large delalloc region across multiple async_chunk
1667 * structs, only the first struct needs a pointer to locked_page
1668 *
1669 * This way we don't need racey decisions about who is supposed
1670 * to unlock it.
1671 */
1672 if (locked_page) {
ec39f769
CM
1673 /*
1674 * Depending on the compressibility, the pages might or
1675 * might not go through async. We want all of them to
1676 * be accounted against wbc once. Let's do it here
1677 * before the paths diverge. wbc accounting is used
1678 * only for foreign writeback detection and doesn't
1679 * need full accuracy. Just account the whole thing
1680 * against the first page.
1681 */
1682 wbc_account_cgroup_owner(wbc, locked_page,
1683 cur_end - start);
1d53c9e6
CM
1684 async_chunk[i].locked_page = locked_page;
1685 locked_page = NULL;
1686 } else {
1687 async_chunk[i].locked_page = NULL;
1688 }
1689
ec39f769
CM
1690 if (blkcg_css != blkcg_root_css) {
1691 css_get(blkcg_css);
1692 async_chunk[i].blkcg_css = blkcg_css;
3480373e 1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
ec39f769
CM
1694 } else {
1695 async_chunk[i].blkcg_css = NULL;
1696 }
1697
c15d8cf2 1698 btrfs_init_work(&async_chunk[i].work, compress_file_range,
078b8b90 1699 submit_compressed_extents);
771ed689 1700
97db1204 1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1703
97db1204 1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1705
771ed689
CM
1706 start = cur_end + 1;
1707 }
973fb26e 1708 return true;
be20aa9d
CM
1709}
1710
256b0cf9
CH
1711/*
1712 * Run the delalloc range from start to end, and write back any dirty pages
1713 * covered by the range.
1714 */
1715static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 struct page *locked_page, u64 start,
1717 u64 end, struct writeback_control *wbc,
1718 bool pages_dirty)
42c01100 1719{
898793d9 1720 u64 done_offset = end;
42c01100
NA
1721 int ret;
1722
898793d9 1723 while (start <= end) {
c56cbe90
CH
1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 true, false);
6e144bf1 1726 if (ret)
898793d9 1727 return ret;
778b8785 1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
256b0cf9 1729 done_offset, wbc, pages_dirty);
898793d9
NA
1730 start = done_offset + 1;
1731 }
42c01100 1732
c56cbe90 1733 return 1;
42c01100
NA
1734}
1735
2ff7e61e 1736static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
26ce9114 1737 u64 bytenr, u64 num_bytes, bool nowait)
17d217fe 1738{
fc28b25e 1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
17d217fe 1740 struct btrfs_ordered_sum *sums;
fc28b25e 1741 int ret;
17d217fe
YZ
1742 LIST_HEAD(list);
1743
97e38239
QW
1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 &list, 0, nowait);
17d217fe
YZ
1746 if (ret == 0 && list_empty(&list))
1747 return 0;
1748
1749 while (!list_empty(&list)) {
1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 list_del(&sums->list);
1752 kfree(sums);
1753 }
58113753
LB
1754 if (ret < 0)
1755 return ret;
17d217fe
YZ
1756 return 1;
1757}
1758
8ba96f3d 1759static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
53ffb30a 1760 const u64 start, const u64 end)
467dc47e 1761{
8ba96f3d 1762 const bool is_space_ino = btrfs_is_free_space_inode(inode);
37f00a6d 1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
2166e5ed 1764 const u64 range_bytes = end + 1 - start;
8ba96f3d 1765 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1766 u64 range_start = start;
1767 u64 count;
53ffb30a 1768 int ret;
467dc47e
FM
1769
1770 /*
1771 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 * made we had not enough available data space and therefore we did not
1773 * reserve data space for it, since we though we could do NOCOW for the
1774 * respective file range (either there is prealloc extent or the inode
1775 * has the NOCOW bit set).
1776 *
1777 * However when we need to fallback to COW mode (because for example the
1778 * block group for the corresponding extent was turned to RO mode by a
1779 * scrub or relocation) we need to do the following:
1780 *
1781 * 1) We increment the bytes_may_use counter of the data space info.
1782 * If COW succeeds, it allocates a new data extent and after doing
1783 * that it decrements the space info's bytes_may_use counter and
1784 * increments its bytes_reserved counter by the same amount (we do
1785 * this at btrfs_add_reserved_bytes()). So we need to increment the
1786 * bytes_may_use counter to compensate (when space is reserved at
1787 * buffered write time, the bytes_may_use counter is incremented);
1788 *
1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 * that if the COW path fails for any reason, it decrements (through
1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 * data space info, which we incremented in the step above.
2166e5ed
FM
1793 *
1794 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1795 * space cache inode or an inode of the data relocation tree, we must
1796 * also increment bytes_may_use of the data space_info for the same
1797 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1798 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1799 * group that contains that extent to RO mode and therefore force COW
1800 * when starting writeback.
467dc47e 1801 */
2166e5ed 1802 count = count_range_bits(io_tree, &range_start, end, range_bytes,
8c6e53a7 1803 EXTENT_NORESERVE, 0, NULL);
6bd335b4
FM
1804 if (count > 0 || is_space_ino || is_reloc_ino) {
1805 u64 bytes = count;
8ba96f3d 1806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808
6bd335b4
FM
1809 if (is_space_ino || is_reloc_ino)
1810 bytes = range_bytes;
1811
467dc47e 1812 spin_lock(&sinfo->lock);
2166e5ed 1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1814 spin_unlock(&sinfo->lock);
1815
2166e5ed
FM
1816 if (count > 0)
1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
bd015294 1818 NULL);
467dc47e
FM
1819 }
1820
53ffb30a
CH
1821 /*
1822 * Don't try to create inline extents, as a mix of inline extent that
1823 * is written out and unlocked directly and a normal NOCOW extent
1824 * doesn't work.
1825 */
c56cbe90
CH
1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 ASSERT(ret != 1);
53ffb30a 1828 return ret;
467dc47e
FM
1829}
1830
619104ba
FM
1831struct can_nocow_file_extent_args {
1832 /* Input fields. */
1833
1834 /* Start file offset of the range we want to NOCOW. */
1835 u64 start;
1836 /* End file offset (inclusive) of the range we want to NOCOW. */
1837 u64 end;
1838 bool writeback_path;
1839 bool strict;
1840 /*
1841 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 * anymore.
1843 */
1844 bool free_path;
1845
1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847
1848 u64 disk_bytenr;
1849 u64 disk_num_bytes;
1850 u64 extent_offset;
1851 /* Number of bytes that can be written to in NOCOW mode. */
1852 u64 num_bytes;
1853};
1854
1855/*
1856 * Check if we can NOCOW the file extent that the path points to.
1857 * This function may return with the path released, so the caller should check
1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859 *
1860 * Returns: < 0 on error
1861 * 0 if we can not NOCOW
1862 * 1 if we can NOCOW
1863 */
1864static int can_nocow_file_extent(struct btrfs_path *path,
1865 struct btrfs_key *key,
1866 struct btrfs_inode *inode,
1867 struct can_nocow_file_extent_args *args)
1868{
1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 struct extent_buffer *leaf = path->nodes[0];
1871 struct btrfs_root *root = inode->root;
1872 struct btrfs_file_extent_item *fi;
1873 u64 extent_end;
1874 u8 extent_type;
1875 int can_nocow = 0;
1876 int ret = 0;
26ce9114 1877 bool nowait = path->nowait;
619104ba
FM
1878
1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 extent_type = btrfs_file_extent_type(leaf, fi);
1881
1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 goto out;
1884
1885 /* Can't access these fields unless we know it's not an inline extent. */
1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889
1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 extent_type == BTRFS_FILE_EXTENT_REG)
1892 goto out;
1893
1894 /*
1895 * If the extent was created before the generation where the last snapshot
1896 * for its subvolume was created, then this implies the extent is shared,
1897 * hence we must COW.
1898 */
a7bb6bd4 1899 if (!args->strict &&
619104ba
FM
1900 btrfs_file_extent_generation(leaf, fi) <=
1901 btrfs_root_last_snapshot(&root->root_item))
1902 goto out;
1903
1904 /* An explicit hole, must COW. */
1905 if (args->disk_bytenr == 0)
1906 goto out;
1907
1908 /* Compressed/encrypted/encoded extents must be COWed. */
1909 if (btrfs_file_extent_compression(leaf, fi) ||
1910 btrfs_file_extent_encryption(leaf, fi) ||
1911 btrfs_file_extent_other_encoding(leaf, fi))
1912 goto out;
1913
1914 extent_end = btrfs_file_extent_end(path);
1915
1916 /*
1917 * The following checks can be expensive, as they need to take other
1918 * locks and do btree or rbtree searches, so release the path to avoid
1919 * blocking other tasks for too long.
1920 */
1921 btrfs_release_path(path);
1922
1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 key->offset - args->extent_offset,
deccae40 1925 args->disk_bytenr, args->strict, path);
619104ba
FM
1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 if (ret != 0)
1928 goto out;
1929
1930 if (args->free_path) {
1931 /*
1932 * We don't need the path anymore, plus through the
1933 * csum_exist_in_range() call below we will end up allocating
1934 * another path. So free the path to avoid unnecessary extra
1935 * memory usage.
1936 */
1937 btrfs_free_path(path);
1938 path = NULL;
1939 }
1940
1941 /* If there are pending snapshots for this root, we must COW. */
1942 if (args->writeback_path && !is_freespace_inode &&
1943 atomic_read(&root->snapshot_force_cow))
1944 goto out;
1945
1946 args->disk_bytenr += args->extent_offset;
1947 args->disk_bytenr += args->start - key->offset;
1948 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949
1950 /*
1951 * Force COW if csums exist in the range. This ensures that csums for a
1952 * given extent are either valid or do not exist.
1953 */
26ce9114
JB
1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 nowait);
619104ba
FM
1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 if (ret != 0)
1958 goto out;
1959
1960 can_nocow = 1;
1961 out:
1962 if (args->free_path && path)
1963 btrfs_free_path(path);
1964
1965 return ret < 0 ? ret : can_nocow;
1966}
1967
d352ac68
CM
1968/*
1969 * when nowcow writeback call back. This checks for snapshots or COW copies
1970 * of the extents that exist in the file, and COWs the file as required.
1971 *
1972 * If no cow copies or snapshots exist, we write directly to the existing
1973 * blocks on disk
1974 */
968322c8 1975static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1976 struct page *locked_page,
53ffb30a 1977 const u64 start, const u64 end)
be20aa9d 1978{
968322c8
NB
1979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 struct btrfs_root *root = inode->root;
be20aa9d 1981 struct btrfs_path *path;
3e024846
NB
1982 u64 cow_start = (u64)-1;
1983 u64 cur_offset = start;
8ecebf4d 1984 int ret;
3e024846 1985 bool check_prev = true;
968322c8 1986 u64 ino = btrfs_ino(inode);
619104ba 1987 struct can_nocow_file_extent_args nocow_args = { 0 };
be20aa9d 1988
76c5126e
CH
1989 /*
1990 * Normally on a zoned device we're only doing COW writes, but in case
1991 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 * writing sequentially and can end up here as well.
1993 */
1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995
be20aa9d 1996 path = btrfs_alloc_path();
17ca04af 1997 if (!path) {
38dc8889
CH
1998 ret = -ENOMEM;
1999 goto error;
17ca04af 2000 }
82d5902d 2001
619104ba
FM
2002 nocow_args.end = end;
2003 nocow_args.writeback_path = true;
2004
80ff3856 2005 while (1) {
18f62b86 2006 struct btrfs_block_group *nocow_bg = NULL;
34bfaf15 2007 struct btrfs_ordered_extent *ordered;
3e024846
NB
2008 struct btrfs_key found_key;
2009 struct btrfs_file_extent_item *fi;
2010 struct extent_buffer *leaf;
2011 u64 extent_end;
3e024846 2012 u64 ram_bytes;
619104ba 2013 u64 nocow_end;
3e024846 2014 int extent_type;
3daea5fd 2015 bool is_prealloc;
762bf098 2016
e4c3b2dc 2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 2018 cur_offset, 0);
d788a349 2019 if (ret < 0)
79787eaa 2020 goto error;
a6bd9cd1
NB
2021
2022 /*
2023 * If there is no extent for our range when doing the initial
2024 * search, then go back to the previous slot as it will be the
2025 * one containing the search offset
2026 */
80ff3856
YZ
2027 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 leaf = path->nodes[0];
2029 btrfs_item_key_to_cpu(leaf, &found_key,
2030 path->slots[0] - 1);
33345d01 2031 if (found_key.objectid == ino &&
80ff3856
YZ
2032 found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 path->slots[0]--;
2034 }
3e024846 2035 check_prev = false;
80ff3856 2036next_slot:
a6bd9cd1 2037 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
2038 leaf = path->nodes[0];
2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 ret = btrfs_next_leaf(root, path);
953fa5ce 2041 if (ret < 0)
79787eaa 2042 goto error;
80ff3856
YZ
2043 if (ret > 0)
2044 break;
2045 leaf = path->nodes[0];
2046 }
be20aa9d 2047
80ff3856
YZ
2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049
a6bd9cd1 2050 /* Didn't find anything for our INO */
1d512cb7
FM
2051 if (found_key.objectid > ino)
2052 break;
a6bd9cd1
NB
2053 /*
2054 * Keep searching until we find an EXTENT_ITEM or there are no
2055 * more extents for this inode
2056 */
1d512cb7
FM
2057 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 path->slots[0]++;
2060 goto next_slot;
2061 }
a6bd9cd1
NB
2062
2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
2065 found_key.offset > end)
2066 break;
2067
a6bd9cd1
NB
2068 /*
2069 * If the found extent starts after requested offset, then
2070 * adjust extent_end to be right before this extent begins
2071 */
80ff3856
YZ
2072 if (found_key.offset > cur_offset) {
2073 extent_end = found_key.offset;
e9061e21 2074 extent_type = 0;
18f62b86 2075 goto must_cow;
80ff3856
YZ
2076 }
2077
a6bd9cd1
NB
2078 /*
2079 * Found extent which begins before our range and potentially
2080 * intersect it
2081 */
80ff3856
YZ
2082 fi = btrfs_item_ptr(leaf, path->slots[0],
2083 struct btrfs_file_extent_item);
2084 extent_type = btrfs_file_extent_type(leaf, fi);
619104ba
FM
2085 /* If this is triggered then we have a memory corruption. */
2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 ret = -EUCLEAN;
2089 goto error;
2090 }
cc95bef6 2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
619104ba 2092 extent_end = btrfs_file_extent_end(path);
c65ca98f 2093
619104ba
FM
2094 /*
2095 * If the extent we got ends before our current offset, skip to
2096 * the next extent.
2097 */
2098 if (extent_end <= cur_offset) {
2099 path->slots[0]++;
2100 goto next_slot;
2101 }
c65ca98f 2102
619104ba
FM
2103 nocow_args.start = cur_offset;
2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
953fa5ce 2105 if (ret < 0)
619104ba 2106 goto error;
953fa5ce 2107 if (ret == 0)
18f62b86 2108 goto must_cow;
58113753 2109
619104ba 2110 ret = 0;
18f62b86
CH
2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 if (!nocow_bg) {
2113must_cow:
2114 /*
2115 * If we can't perform NOCOW writeback for the range,
2116 * then record the beginning of the range that needs to
2117 * be COWed. It will be written out before the next
2118 * NOCOW range if we find one, or when exiting this
2119 * loop.
2120 */
80ff3856
YZ
2121 if (cow_start == (u64)-1)
2122 cow_start = cur_offset;
2123 cur_offset = extent_end;
2124 if (cur_offset > end)
2125 break;
c65ca98f
FM
2126 if (!path->nodes[0])
2127 continue;
80ff3856
YZ
2128 path->slots[0]++;
2129 goto next_slot;
7ea394f1
YZ
2130 }
2131
a6bd9cd1
NB
2132 /*
2133 * COW range from cow_start to found_key.offset - 1. As the key
2134 * will contain the beginning of the first extent that can be
2135 * NOCOW, following one which needs to be COW'ed
2136 */
80ff3856 2137 if (cow_start != (u64)-1) {
968322c8 2138 ret = fallback_to_cow(inode, locked_page,
53ffb30a 2139 cow_start, found_key.offset - 1);
80ff3856 2140 cow_start = (u64)-1;
18f62b86
CH
2141 if (ret) {
2142 btrfs_dec_nocow_writers(nocow_bg);
79787eaa 2143 goto error;
18f62b86 2144 }
7ea394f1 2145 }
80ff3856 2146
619104ba 2147 nocow_end = cur_offset + nocow_args.num_bytes - 1;
3daea5fd
CH
2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 if (is_prealloc) {
619104ba 2150 u64 orig_start = found_key.offset - nocow_args.extent_offset;
3e024846 2151 struct extent_map *em;
6f9994db 2152
619104ba 2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
6f9994db 2154 orig_start,
619104ba
FM
2155 nocow_args.disk_bytenr, /* block_start */
2156 nocow_args.num_bytes, /* block_len */
2157 nocow_args.disk_num_bytes, /* orig_block_len */
6f9994db
LB
2158 ram_bytes, BTRFS_COMPRESS_NONE,
2159 BTRFS_ORDERED_PREALLOC);
2160 if (IS_ERR(em)) {
18f62b86 2161 btrfs_dec_nocow_writers(nocow_bg);
6f9994db
LB
2162 ret = PTR_ERR(em);
2163 goto error;
d899e052 2164 }
6f9994db 2165 free_extent_map(em);
3daea5fd
CH
2166 }
2167
34bfaf15 2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
3daea5fd
CH
2169 nocow_args.num_bytes, nocow_args.num_bytes,
2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 is_prealloc
2172 ? (1 << BTRFS_ORDERED_PREALLOC)
2173 : (1 << BTRFS_ORDERED_NOCOW),
2174 BTRFS_COMPRESS_NONE);
18f62b86 2175 btrfs_dec_nocow_writers(nocow_bg);
34bfaf15 2176 if (IS_ERR(ordered)) {
3daea5fd 2177 if (is_prealloc) {
4c0c8cfc
FM
2178 btrfs_drop_extent_map_range(inode, cur_offset,
2179 nocow_end, false);
762bf098 2180 }
34bfaf15 2181 ret = PTR_ERR(ordered);
3daea5fd 2182 goto error;
d899e052 2183 }
80ff3856 2184
37f00a6d 2185 if (btrfs_is_data_reloc_root(root))
4dbd80fb
QW
2186 /*
2187 * Error handled later, as we must prevent
2188 * extent_clear_unlock_delalloc() in error handler
2189 * from freeing metadata of created ordered extent.
2190 */
34bfaf15
CH
2191 ret = btrfs_reloc_clone_csums(ordered);
2192 btrfs_put_ordered_extent(ordered);
efa56464 2193
619104ba 2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
c2790a2e 2195 locked_page, EXTENT_LOCKED |
18513091
WX
2196 EXTENT_DELALLOC |
2197 EXTENT_CLEAR_DATA_RESV,
f57ad937 2198 PAGE_UNLOCK | PAGE_SET_ORDERED);
18513091 2199
80ff3856 2200 cur_offset = extent_end;
4dbd80fb
QW
2201
2202 /*
2203 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 * handler, as metadata for created ordered extent will only
2205 * be freed by btrfs_finish_ordered_io().
2206 */
2207 if (ret)
2208 goto error;
80ff3856
YZ
2209 if (cur_offset > end)
2210 break;
be20aa9d 2211 }
b3b4aa74 2212 btrfs_release_path(path);
80ff3856 2213
506481b2 2214 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 2215 cow_start = cur_offset;
17ca04af 2216
80ff3856 2217 if (cow_start != (u64)-1) {
506481b2 2218 cur_offset = end;
53ffb30a 2219 ret = fallback_to_cow(inode, locked_page, cow_start, end);
953fa5ce 2220 cow_start = (u64)-1;
d788a349 2221 if (ret)
79787eaa 2222 goto error;
80ff3856
YZ
2223 }
2224
18f62b86
CH
2225 btrfs_free_path(path);
2226 return 0;
762bf098 2227
18f62b86 2228error:
953fa5ce
CH
2229 /*
2230 * If an error happened while a COW region is outstanding, cur_offset
2231 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 * as well.
2233 */
2234 if (cow_start != (u64)-1)
2235 cur_offset = cow_start;
18f62b86 2236 if (cur_offset < end)
968322c8 2237 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 2238 locked_page, EXTENT_LOCKED |
151a41bc
JB
2239 EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 2241 PAGE_START_WRITEBACK |
c2790a2e 2242 PAGE_END_WRITEBACK);
7ea394f1 2243 btrfs_free_path(path);
79787eaa 2244 return ret;
be20aa9d
CM
2245}
2246
6e65ae76 2247static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93 2248{
6e65ae76
GR
2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 if (inode->defrag_bytes &&
99be1a66 2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
6e65ae76
GR
2252 return false;
2253 return true;
2254 }
2255 return false;
47059d93
WS
2256}
2257
d352ac68 2258/*
5eaad97a
NB
2259 * Function to process delayed allocation (create CoW) for ranges which are
2260 * being touched for the first time.
d352ac68 2261 */
98456b9c 2262int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
c56cbe90 2263 u64 start, u64 end, struct writeback_control *wbc)
be20aa9d 2264{
42c01100 2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
c56cbe90 2266 int ret;
a2135011 2267
2749f7ef 2268 /*
c56cbe90
CH
2269 * The range must cover part of the @locked_page, or a return of 1
2270 * can confuse the caller.
2749f7ef
QW
2271 */
2272 ASSERT(!(end <= page_offset(locked_page) ||
2273 start >= page_offset(locked_page) + PAGE_SIZE));
2274
6e65ae76 2275 if (should_nocow(inode, start, end)) {
53ffb30a 2276 ret = run_delalloc_nocow(inode, locked_page, start, end);
973fb26e 2277 goto out;
7ddf5a42 2278 }
973fb26e
CH
2279
2280 if (btrfs_inode_can_compress(inode) &&
2281 inode_need_compress(inode, start, end) &&
c56cbe90
CH
2282 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 return 1;
973fb26e
CH
2284
2285 if (zoned)
256b0cf9
CH
2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 true);
973fb26e 2288 else
c56cbe90
CH
2289 ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 false, false);
973fb26e
CH
2291
2292out:
c56cbe90 2293 if (ret < 0)
98456b9c 2294 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 2295 end - start + 1);
b888db2b
CM
2296 return ret;
2297}
2298
62798a49 2299void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
abbb55f4 2300 struct extent_state *orig, u64 split)
9ed74f2d 2301{
62798a49 2302 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b
JB
2303 u64 size;
2304
0ca1f7ce 2305 /* not delalloc, ignore it */
9ed74f2d 2306 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 2307 return;
9ed74f2d 2308
dcab6a3b 2309 size = orig->end - orig->start + 1;
f7b12a62 2310 if (size > fs_info->max_extent_size) {
823bb20a 2311 u32 num_extents;
dcab6a3b
JB
2312 u64 new_size;
2313
2314 /*
5c848198 2315 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 2316 * applies here, just in reverse.
dcab6a3b
JB
2317 */
2318 new_size = orig->end - split + 1;
7d7672bc 2319 num_extents = count_max_extents(fs_info, new_size);
ba117213 2320 new_size = split - orig->start;
7d7672bc
NA
2321 num_extents += count_max_extents(fs_info, new_size);
2322 if (count_max_extents(fs_info, size) >= num_extents)
dcab6a3b
JB
2323 return;
2324 }
2325
62798a49
DS
2326 spin_lock(&inode->lock);
2327 btrfs_mod_outstanding_extents(inode, 1);
2328 spin_unlock(&inode->lock);
9ed74f2d
JB
2329}
2330
2331/*
5c848198
NB
2332 * Handle merged delayed allocation extents so we can keep track of new extents
2333 * that are just merged onto old extents, such as when we are doing sequential
2334 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 2335 */
2454151c 2336void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
5c848198 2337 struct extent_state *other)
9ed74f2d 2338{
2454151c 2339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b 2340 u64 new_size, old_size;
823bb20a 2341 u32 num_extents;
dcab6a3b 2342
9ed74f2d
JB
2343 /* not delalloc, ignore it */
2344 if (!(other->state & EXTENT_DELALLOC))
1bf85046 2345 return;
9ed74f2d 2346
8461a3de
JB
2347 if (new->start > other->start)
2348 new_size = new->end - other->start + 1;
2349 else
2350 new_size = other->end - new->start + 1;
dcab6a3b
JB
2351
2352 /* we're not bigger than the max, unreserve the space and go */
f7b12a62 2353 if (new_size <= fs_info->max_extent_size) {
2454151c
DS
2354 spin_lock(&inode->lock);
2355 btrfs_mod_outstanding_extents(inode, -1);
2356 spin_unlock(&inode->lock);
dcab6a3b
JB
2357 return;
2358 }
2359
2360 /*
ba117213
JB
2361 * We have to add up either side to figure out how many extents were
2362 * accounted for before we merged into one big extent. If the number of
2363 * extents we accounted for is <= the amount we need for the new range
2364 * then we can return, otherwise drop. Think of it like this
2365 *
2366 * [ 4k][MAX_SIZE]
2367 *
2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2369 * need 2 outstanding extents, on one side we have 1 and the other side
2370 * we have 1 so they are == and we can return. But in this case
2371 *
2372 * [MAX_SIZE+4k][MAX_SIZE+4k]
2373 *
2374 * Each range on their own accounts for 2 extents, but merged together
2375 * they are only 3 extents worth of accounting, so we need to drop in
2376 * this case.
dcab6a3b 2377 */
ba117213 2378 old_size = other->end - other->start + 1;
7d7672bc 2379 num_extents = count_max_extents(fs_info, old_size);
ba117213 2380 old_size = new->end - new->start + 1;
7d7672bc
NA
2381 num_extents += count_max_extents(fs_info, old_size);
2382 if (count_max_extents(fs_info, new_size) >= num_extents)
dcab6a3b
JB
2383 return;
2384
2454151c
DS
2385 spin_lock(&inode->lock);
2386 btrfs_mod_outstanding_extents(inode, -1);
2387 spin_unlock(&inode->lock);
9ed74f2d
JB
2388}
2389
eb73c1b7 2390static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
82ca5a04 2391 struct btrfs_inode *inode)
eb73c1b7 2392{
82ca5a04 2393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0b246afa 2394
eb73c1b7 2395 spin_lock(&root->delalloc_lock);
82ca5a04
DS
2396 if (list_empty(&inode->delalloc_inodes)) {
2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
eb73c1b7
MX
2399 root->nr_delalloc_inodes++;
2400 if (root->nr_delalloc_inodes == 1) {
0b246afa 2401 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2402 BUG_ON(!list_empty(&root->delalloc_root));
2403 list_add_tail(&root->delalloc_root,
0b246afa
JM
2404 &fs_info->delalloc_roots);
2405 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2406 }
2407 }
2408 spin_unlock(&root->delalloc_lock);
2409}
2410
2b877331
NB
2411void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2412 struct btrfs_inode *inode)
eb73c1b7 2413{
3ffbd68c 2414 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2415
9e3e97f4
NB
2416 if (!list_empty(&inode->delalloc_inodes)) {
2417 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2419 &inode->runtime_flags);
eb73c1b7
MX
2420 root->nr_delalloc_inodes--;
2421 if (!root->nr_delalloc_inodes) {
7c8a0d36 2422 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2423 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2424 BUG_ON(list_empty(&root->delalloc_root));
2425 list_del_init(&root->delalloc_root);
0b246afa 2426 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2427 }
2428 }
2b877331
NB
2429}
2430
2431static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2432 struct btrfs_inode *inode)
2433{
2434 spin_lock(&root->delalloc_lock);
2435 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2436 spin_unlock(&root->delalloc_lock);
2437}
2438
d352ac68 2439/*
e06a1fc9
NB
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
d352ac68 2442 */
4c5d166f 2443void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
6d92b304 2444 u32 bits)
291d673e 2445{
4c5d166f 2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0b246afa 2447
6d92b304 2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
47059d93 2449 WARN_ON(1);
75eff68e
CM
2450 /*
2451 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2452 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2453 * bit, which is only set or cleared with irqs on
2454 */
6d92b304 2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
4c5d166f 2456 struct btrfs_root *root = inode->root;
0ca1f7ce 2457 u64 len = state->end + 1 - state->start;
7d7672bc 2458 u32 num_extents = count_max_extents(fs_info, len);
4c5d166f 2459 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 2460
4c5d166f
DS
2461 spin_lock(&inode->lock);
2462 btrfs_mod_outstanding_extents(inode, num_extents);
2463 spin_unlock(&inode->lock);
287a0ab9 2464
6a3891c5 2465 /* For sanity tests */
0b246afa 2466 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2467 return;
2468
104b4e51
NB
2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 fs_info->delalloc_batch);
4c5d166f
DS
2471 spin_lock(&inode->lock);
2472 inode->delalloc_bytes += len;
6d92b304 2473 if (bits & EXTENT_DEFRAG)
4c5d166f 2474 inode->defrag_bytes += len;
df0af1a5 2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4c5d166f 2476 &inode->runtime_flags))
eb73c1b7 2477 btrfs_add_delalloc_inodes(root, inode);
4c5d166f 2478 spin_unlock(&inode->lock);
291d673e 2479 }
a7e3b975
FM
2480
2481 if (!(state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2482 (bits & EXTENT_DELALLOC_NEW)) {
4c5d166f
DS
2483 spin_lock(&inode->lock);
2484 inode->new_delalloc_bytes += state->end + 1 - state->start;
2485 spin_unlock(&inode->lock);
a7e3b975 2486 }
291d673e
CM
2487}
2488
d352ac68 2489/*
a36bb5f9
NB
2490 * Once a range is no longer delalloc this function ensures that proper
2491 * accounting happens.
d352ac68 2492 */
bd54766e 2493void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
6d92b304 2494 struct extent_state *state, u32 bits)
291d673e 2495{
bd54766e 2496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
47059d93 2497 u64 len = state->end + 1 - state->start;
7d7672bc 2498 u32 num_extents = count_max_extents(fs_info, len);
47059d93 2499
6d92b304 2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
4a4b964f 2501 spin_lock(&inode->lock);
6fc0ef68 2502 inode->defrag_bytes -= len;
4a4b964f
FM
2503 spin_unlock(&inode->lock);
2504 }
47059d93 2505
75eff68e
CM
2506 /*
2507 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2508 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2509 * bit, which is only set or cleared with irqs on
2510 */
6d92b304 2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
6fc0ef68 2512 struct btrfs_root *root = inode->root;
83eea1f1 2513 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2514
8b62f87b
JB
2515 spin_lock(&inode->lock);
2516 btrfs_mod_outstanding_extents(inode, -num_extents);
2517 spin_unlock(&inode->lock);
0ca1f7ce 2518
b6d08f06
JB
2519 /*
2520 * We don't reserve metadata space for space cache inodes so we
52042d8e 2521 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2522 * error.
2523 */
6d92b304 2524 if (bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2525 root != fs_info->tree_root)
43b18595 2526 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2527
6a3891c5 2528 /* For sanity tests. */
0b246afa 2529 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2530 return;
2531
37f00a6d 2532 if (!btrfs_is_data_reloc_root(root) &&
a315e68f 2533 do_list && !(state->state & EXTENT_NORESERVE) &&
6d92b304 2534 (bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2535 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2536
104b4e51
NB
2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2538 fs_info->delalloc_batch);
6fc0ef68
NB
2539 spin_lock(&inode->lock);
2540 inode->delalloc_bytes -= len;
2541 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2543 &inode->runtime_flags))
eb73c1b7 2544 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2545 spin_unlock(&inode->lock);
291d673e 2546 }
a7e3b975
FM
2547
2548 if ((state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2549 (bits & EXTENT_DELALLOC_NEW)) {
a7e3b975
FM
2550 spin_lock(&inode->lock);
2551 ASSERT(inode->new_delalloc_bytes >= len);
2552 inode->new_delalloc_bytes -= len;
6d92b304 2553 if (bits & EXTENT_ADD_INODE_BYTES)
2766ff61 2554 inode_add_bytes(&inode->vfs_inode, len);
a7e3b975
FM
2555 spin_unlock(&inode->lock);
2556 }
291d673e
CM
2557}
2558
71df088c
CH
2559static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2560 struct btrfs_ordered_extent *ordered)
d22002fd 2561{
69ccf3f4
CH
2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2563 u64 len = bbio->bio.bi_iter.bi_size;
b0307e28 2564 struct btrfs_ordered_extent *new;
ebdb44a0 2565 int ret;
d22002fd 2566
11d33ab6 2567 /* Must always be called for the beginning of an ordered extent. */
7edd339c
CH
2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2569 return -EINVAL;
d22002fd 2570
11d33ab6 2571 /* No need to split if the ordered extent covers the entire bio. */
ec63b84d
CH
2572 if (ordered->disk_num_bytes == len) {
2573 refcount_inc(&ordered->refs);
2574 bbio->ordered = ordered;
7edd339c 2575 return 0;
ec63b84d 2576 }
d22002fd 2577
f0f5329a
BB
2578 /*
2579 * Don't split the extent_map for NOCOW extents, as we're writing into
2580 * a pre-existing one.
2581 */
ebdb44a0
CH
2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2583 ret = split_extent_map(bbio->inode, bbio->file_offset,
f000bc6f
CH
2584 ordered->num_bytes, len,
2585 ordered->disk_bytenr);
ebdb44a0
CH
2586 if (ret)
2587 return ret;
2588 }
f0f5329a 2589
b0307e28
CH
2590 new = btrfs_split_ordered_extent(ordered, len);
2591 if (IS_ERR(new))
2592 return PTR_ERR(new);
ec63b84d 2593 bbio->ordered = new;
b0307e28 2594 return 0;
d22002fd
NA
2595}
2596
d352ac68
CM
2597/*
2598 * given a list of ordered sums record them in the inode. This happens
2599 * at IO completion time based on sums calculated at bio submission time.
2600 */
510f85ed
NB
2601static int add_pending_csums(struct btrfs_trans_handle *trans,
2602 struct list_head *list)
e6dcd2dc 2603{
e6dcd2dc 2604 struct btrfs_ordered_sum *sum;
fc28b25e 2605 struct btrfs_root *csum_root = NULL;
ac01f26a 2606 int ret;
e6dcd2dc 2607
c6e30871 2608 list_for_each_entry(sum, list, list) {
7c2871a2 2609 trans->adding_csums = true;
fc28b25e
JB
2610 if (!csum_root)
2611 csum_root = btrfs_csum_root(trans->fs_info,
5cfe76f8 2612 sum->logical);
fc28b25e 2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
7c2871a2 2614 trans->adding_csums = false;
ac01f26a
NB
2615 if (ret)
2616 return ret;
e6dcd2dc
CM
2617 }
2618 return 0;
2619}
2620
c3347309
FM
2621static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2622 const u64 start,
2623 const u64 len,
2624 struct extent_state **cached_state)
2625{
2626 u64 search_start = start;
2627 const u64 end = start + len - 1;
2628
2629 while (search_start < end) {
2630 const u64 search_len = end - search_start + 1;
2631 struct extent_map *em;
2632 u64 em_len;
2633 int ret = 0;
2634
2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2636 if (IS_ERR(em))
2637 return PTR_ERR(em);
2638
2639 if (em->block_start != EXTENT_MAP_HOLE)
2640 goto next;
2641
2642 em_len = em->len;
2643 if (em->start < search_start)
2644 em_len -= search_start - em->start;
2645 if (em_len > search_len)
2646 em_len = search_len;
2647
2648 ret = set_extent_bit(&inode->io_tree, search_start,
2649 search_start + em_len - 1,
1d126800 2650 EXTENT_DELALLOC_NEW, cached_state);
c3347309
FM
2651next:
2652 search_start = extent_map_end(em);
2653 free_extent_map(em);
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658}
2659
c2566f22 2660int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2661 unsigned int extra_bits,
330a5827 2662 struct extent_state **cached_state)
ea8c2819 2663{
fdb1e121 2664 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2665
2666 if (start >= i_size_read(&inode->vfs_inode) &&
2667 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2668 /*
2669 * There can't be any extents following eof in this case so just
2670 * set the delalloc new bit for the range directly.
2671 */
2672 extra_bits |= EXTENT_DELALLOC_NEW;
2673 } else {
2674 int ret;
2675
2676 ret = btrfs_find_new_delalloc_bytes(inode, start,
2677 end + 1 - start,
2678 cached_state);
2679 if (ret)
2680 return ret;
2681 }
2682
66240ab1 2683 return set_extent_bit(&inode->io_tree, start, end,
1d126800 2684 EXTENT_DELALLOC | extra_bits, cached_state);
ea8c2819
CM
2685}
2686
d352ac68 2687/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2688struct btrfs_writepage_fixup {
2689 struct page *page;
36eeaef5 2690 struct btrfs_inode *inode;
247e743c
CM
2691 struct btrfs_work work;
2692};
2693
b2950863 2694static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c 2695{
9783e4de
CH
2696 struct btrfs_writepage_fixup *fixup =
2697 container_of(work, struct btrfs_writepage_fixup, work);
247e743c 2698 struct btrfs_ordered_extent *ordered;
2ac55d41 2699 struct extent_state *cached_state = NULL;
364ecf36 2700 struct extent_changeset *data_reserved = NULL;
9783e4de
CH
2701 struct page *page = fixup->page;
2702 struct btrfs_inode *inode = fixup->inode;
2703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2704 u64 page_start = page_offset(page);
2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
25f3c502 2706 int ret = 0;
f4b1363c 2707 bool free_delalloc_space = true;
247e743c 2708
f4b1363c
JB
2709 /*
2710 * This is similar to page_mkwrite, we need to reserve the space before
2711 * we take the page lock.
2712 */
65d87f79
NB
2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 PAGE_SIZE);
4a096752 2715again:
247e743c 2716 lock_page(page);
25f3c502
CM
2717
2718 /*
2719 * Before we queued this fixup, we took a reference on the page.
2720 * page->mapping may go NULL, but it shouldn't be moved to a different
2721 * address space.
2722 */
f4b1363c
JB
2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2724 /*
2725 * Unfortunately this is a little tricky, either
2726 *
2727 * 1) We got here and our page had already been dealt with and
2728 * we reserved our space, thus ret == 0, so we need to just
2729 * drop our space reservation and bail. This can happen the
2730 * first time we come into the fixup worker, or could happen
2731 * while waiting for the ordered extent.
2732 * 2) Our page was already dealt with, but we happened to get an
2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2734 * this case we obviously don't have anything to release, but
2735 * because the page was already dealt with we don't want to
2736 * mark the page with an error, so make sure we're resetting
2737 * ret to 0. This is why we have this check _before_ the ret
2738 * check, because we do not want to have a surprise ENOSPC
2739 * when the page was already properly dealt with.
2740 */
2741 if (!ret) {
65d87f79
NB
2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2743 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2744 page_start, PAGE_SIZE,
2745 true);
2746 }
2747 ret = 0;
247e743c 2748 goto out_page;
f4b1363c 2749 }
247e743c 2750
25f3c502 2751 /*
f4b1363c
JB
2752 * We can't mess with the page state unless it is locked, so now that
2753 * it is locked bail if we failed to make our space reservation.
25f3c502 2754 */
f4b1363c
JB
2755 if (ret)
2756 goto out_page;
247e743c 2757
570eb97b 2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2759
2760 /* already ordered? We're done */
f57ad937 2761 if (PageOrdered(page))
f4b1363c 2762 goto out_reserved;
4a096752 2763
65d87f79 2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2765 if (ordered) {
570eb97b
JB
2766 unlock_extent(&inode->io_tree, page_start, page_end,
2767 &cached_state);
4a096752 2768 unlock_page(page);
36d45567 2769 btrfs_start_ordered_extent(ordered);
87826df0 2770 btrfs_put_ordered_extent(ordered);
4a096752
CM
2771 goto again;
2772 }
247e743c 2773
65d87f79 2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2775 &cached_state);
25f3c502 2776 if (ret)
53687007 2777 goto out_reserved;
f3038ee3 2778
25f3c502
CM
2779 /*
2780 * Everything went as planned, we're now the owner of a dirty page with
2781 * delayed allocation bits set and space reserved for our COW
2782 * destination.
2783 *
2784 * The page was dirty when we started, nothing should have cleaned it.
2785 */
2786 BUG_ON(!PageDirty(page));
f4b1363c 2787 free_delalloc_space = false;
53687007 2788out_reserved:
65d87f79 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2790 if (free_delalloc_space)
65d87f79
NB
2791 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2792 PAGE_SIZE, true);
570eb97b 2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
247e743c 2794out_page:
25f3c502
CM
2795 if (ret) {
2796 /*
2797 * We hit ENOSPC or other errors. Update the mapping and page
2798 * to reflect the errors and clean the page.
2799 */
2800 mapping_set_error(page->mapping, ret);
9783e4de
CH
2801 btrfs_mark_ordered_io_finished(inode, page, page_start,
2802 PAGE_SIZE, !ret);
25f3c502 2803 clear_page_dirty_for_io(page);
25f3c502 2804 }
9783e4de 2805 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
247e743c 2806 unlock_page(page);
09cbfeaf 2807 put_page(page);
b897abec 2808 kfree(fixup);
364ecf36 2809 extent_changeset_free(data_reserved);
f4b1363c
JB
2810 /*
2811 * As a precaution, do a delayed iput in case it would be the last iput
2812 * that could need flushing space. Recursing back to fixup worker would
2813 * deadlock.
2814 */
e55cf7ca 2815 btrfs_add_delayed_iput(inode);
247e743c
CM
2816}
2817
2818/*
2819 * There are a few paths in the higher layers of the kernel that directly
2820 * set the page dirty bit without asking the filesystem if it is a
2821 * good idea. This causes problems because we want to make sure COW
2822 * properly happens and the data=ordered rules are followed.
2823 *
c8b97818 2824 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2825 * hasn't been properly setup for IO. We kick off an async process
2826 * to fix it up. The async helper will wait for ordered extents, set
2827 * the delalloc bit and make it safe to write the page.
2828 */
a129ffb8 2829int btrfs_writepage_cow_fixup(struct page *page)
247e743c
CM
2830{
2831 struct inode *inode = page->mapping->host;
0b246afa 2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2833 struct btrfs_writepage_fixup *fixup;
247e743c 2834
f57ad937
QW
2835 /* This page has ordered extent covering it already */
2836 if (PageOrdered(page))
247e743c
CM
2837 return 0;
2838
25f3c502
CM
2839 /*
2840 * PageChecked is set below when we create a fixup worker for this page,
2841 * don't try to create another one if we're already PageChecked()
2842 *
2843 * The extent_io writepage code will redirty the page if we send back
2844 * EAGAIN.
2845 */
247e743c
CM
2846 if (PageChecked(page))
2847 return -EAGAIN;
2848
2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 if (!fixup)
2851 return -EAGAIN;
f421950f 2852
f4b1363c
JB
2853 /*
2854 * We are already holding a reference to this inode from
2855 * write_cache_pages. We need to hold it because the space reservation
2856 * takes place outside of the page lock, and we can't trust
2857 * page->mapping outside of the page lock.
2858 */
2859 ihold(inode);
e4f94347 2860 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
09cbfeaf 2861 get_page(page);
078b8b90 2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
247e743c 2863 fixup->page = page;
36eeaef5 2864 fixup->inode = BTRFS_I(inode);
0b246afa 2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2866
2867 return -EAGAIN;
247e743c
CM
2868}
2869
d899e052 2870static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2871 struct btrfs_inode *inode, u64 file_pos,
9729f10a 2872 struct btrfs_file_extent_item *stack_fi,
2766ff61 2873 const bool update_inode_bytes,
9729f10a 2874 u64 qgroup_reserved)
d899e052 2875{
c553f94d 2876 struct btrfs_root *root = inode->root;
2766ff61 2877 const u64 sectorsize = root->fs_info->sectorsize;
d899e052
YZ
2878 struct btrfs_path *path;
2879 struct extent_buffer *leaf;
2880 struct btrfs_key ins;
203f44c5
QW
2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
cb36a9bb 2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
203f44c5
QW
2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
5893dfb9 2886 struct btrfs_drop_extents_args drop_args = { 0 };
d899e052
YZ
2887 int ret;
2888
2889 path = btrfs_alloc_path();
d8926bb3
MF
2890 if (!path)
2891 return -ENOMEM;
d899e052 2892
a1ed835e
CM
2893 /*
2894 * we may be replacing one extent in the tree with another.
2895 * The new extent is pinned in the extent map, and we don't want
2896 * to drop it from the cache until it is completely in the btree.
2897 *
2898 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 * the caller is expected to unpin it and allow it to be merged
2900 * with the others.
2901 */
5893dfb9
FM
2902 drop_args.path = path;
2903 drop_args.start = file_pos;
2904 drop_args.end = file_pos + num_bytes;
2905 drop_args.replace_extent = true;
2906 drop_args.extent_item_size = sizeof(*stack_fi);
2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
79787eaa
JM
2908 if (ret)
2909 goto out;
d899e052 2910
5893dfb9 2911 if (!drop_args.extent_inserted) {
c553f94d 2912 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2913 ins.offset = file_pos;
2914 ins.type = BTRFS_EXTENT_DATA_KEY;
2915
1acae57b 2916 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2917 sizeof(*stack_fi));
1acae57b
FDBM
2918 if (ret)
2919 goto out;
2920 }
d899e052 2921 leaf = path->nodes[0];
203f44c5
QW
2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 write_extent_buffer(leaf, stack_fi,
2924 btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 sizeof(struct btrfs_file_extent_item));
b9473439 2926
50564b65 2927 btrfs_mark_buffer_dirty(trans, leaf);
ce195332 2928 btrfs_release_path(path);
d899e052 2929
2766ff61
FM
2930 /*
2931 * If we dropped an inline extent here, we know the range where it is
2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
1a9fd417 2933 * number of bytes only for that range containing the inline extent.
2766ff61
FM
2934 * The remaining of the range will be processed when clearning the
2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 */
2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939
2940 inline_size = drop_args.bytes_found - inline_size;
2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 drop_args.bytes_found -= inline_size;
2943 num_bytes -= sectorsize;
2944 }
2945
2946 if (update_inode_bytes)
2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
d899e052
YZ
2948
2949 ins.objectid = disk_bytenr;
2950 ins.offset = disk_num_bytes;
2951 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2952
c553f94d 2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2954 if (ret)
2955 goto out;
2956
c553f94d 2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
cb36a9bb
OS
2958 file_pos - offset,
2959 qgroup_reserved, &ins);
79787eaa 2960out:
d899e052 2961 btrfs_free_path(path);
b9473439 2962
79787eaa 2963 return ret;
d899e052
YZ
2964}
2965
2ff7e61e 2966static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2967 u64 start, u64 len)
2968{
32da5386 2969 struct btrfs_block_group *cache;
e570fd27 2970
0b246afa 2971 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2972 ASSERT(cache);
2973
2974 spin_lock(&cache->lock);
2975 cache->delalloc_bytes -= len;
2976 spin_unlock(&cache->lock);
2977
2978 btrfs_put_block_group(cache);
2979}
2980
203f44c5 2981static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2982 struct btrfs_ordered_extent *oe)
2983{
2984 struct btrfs_file_extent_item stack_fi;
2766ff61 2985 bool update_inode_bytes;
cb36a9bb
OS
2986 u64 num_bytes = oe->num_bytes;
2987 u64 ram_bytes = oe->ram_bytes;
203f44c5
QW
2988
2989 memset(&stack_fi, 0, sizeof(stack_fi));
2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 oe->disk_num_bytes);
cb36a9bb 2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
c1867eb3
DS
2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2996 num_bytes = oe->truncated_len;
2997 ram_bytes = num_bytes;
2998 }
cb36a9bb
OS
2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
203f44c5
QW
3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3002 /* Encryption and other encoding is reserved and all 0 */
3003
2766ff61
FM
3004 /*
3005 * For delalloc, when completing an ordered extent we update the inode's
3006 * bytes when clearing the range in the inode's io tree, so pass false
3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3008 * except if the ordered extent was truncated.
3009 */
3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
7c0c7269 3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
2766ff61
FM
3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3013
3c38c877
NB
3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3015 oe->file_offset, &stack_fi,
2766ff61 3016 update_inode_bytes, oe->qgroup_rsv);
203f44c5
QW
3017}
3018
3019/*
3020 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
3021 * an ordered extent if the range of bytes in the file it covers are
3022 * fully written.
3023 */
71df088c 3024int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3025{
72e7e6ed
NB
3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3027 struct btrfs_root *root = inode->root;
3028 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 3029 struct btrfs_trans_handle *trans = NULL;
72e7e6ed 3030 struct extent_io_tree *io_tree = &inode->io_tree;
2ac55d41 3031 struct extent_state *cached_state = NULL;
bffe633e 3032 u64 start, end;
261507a0 3033 int compress_type = 0;
77cef2ec 3034 int ret = 0;
bffe633e 3035 u64 logical_len = ordered_extent->num_bytes;
8d510121 3036 bool freespace_inode;
77cef2ec 3037 bool truncated = false;
49940bdd 3038 bool clear_reserved_extent = true;
2766ff61 3039 unsigned int clear_bits = EXTENT_DEFRAG;
a7e3b975 3040
bffe633e
OS
3041 start = ordered_extent->file_offset;
3042 end = start + ordered_extent->num_bytes - 1;
3043
a7e3b975
FM
3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
7c0c7269
OS
3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
2766ff61 3048 clear_bits |= EXTENT_DELALLOC_NEW;
e6dcd2dc 3049
72e7e6ed 3050 freespace_inode = btrfs_is_free_space_inode(inode);
5f4403e1
IA
3051 if (!freespace_inode)
3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
0cb59c99 3053
5fd02043
JB
3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3055 ret = -EIO;
3056 goto out;
3057 }
3058
71df088c 3059 if (btrfs_is_zoned(fs_info))
be1a1d7a
NA
3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3061 ordered_extent->disk_num_bytes);
d8e3fb10 3062
77cef2ec
JB
3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 truncated = true;
3065 logical_len = ordered_extent->truncated_len;
3066 /* Truncated the entire extent, don't bother adding */
3067 if (!logical_len)
3068 goto out;
3069 }
3070
c2167754 3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 3073
72e7e6ed 3074 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
3075 if (freespace_inode)
3076 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3077 else
3078 trans = btrfs_join_transaction(root);
3079 if (IS_ERR(trans)) {
3080 ret = PTR_ERR(trans);
3081 trans = NULL;
3082 goto out;
c2167754 3083 }
72e7e6ed 3084 trans->block_rsv = &inode->block_rsv;
0a5d0dc5 3085 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3086 if (ret) /* -ENOMEM or corruption */
66642832 3087 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3088 goto out;
3089 }
e6dcd2dc 3090
2766ff61 3091 clear_bits |= EXTENT_LOCKED;
570eb97b 3092 lock_extent(io_tree, start, end, &cached_state);
e6dcd2dc 3093
8d510121
NB
3094 if (freespace_inode)
3095 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3096 else
7a7eaa40 3097 trans = btrfs_join_transaction(root);
79787eaa
JM
3098 if (IS_ERR(trans)) {
3099 ret = PTR_ERR(trans);
3100 trans = NULL;
a7e3b975 3101 goto out;
79787eaa 3102 }
a79b7d4b 3103
72e7e6ed 3104 trans->block_rsv = &inode->block_rsv;
c2167754 3105
02c372e1
JT
3106 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3107 if (ret)
3108 goto out;
3109
c8b97818 3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3111 compress_type = ordered_extent->compress_type;
d899e052 3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3113 BUG_ON(compress_type);
72e7e6ed 3114 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
3115 ordered_extent->file_offset,
3116 ordered_extent->file_offset +
77cef2ec 3117 logical_len);
343d8a30
NA
3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3119 ordered_extent->disk_num_bytes);
d899e052 3120 } else {
0b246afa 3121 BUG_ON(root == fs_info->tree_root);
3c38c877 3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
3123 if (!ret) {
3124 clear_reserved_extent = false;
2ff7e61e 3125 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
3126 ordered_extent->disk_bytenr,
3127 ordered_extent->disk_num_bytes);
49940bdd 3128 }
d899e052 3129 }
00deaf04 3130 unpin_extent_cache(inode, ordered_extent->file_offset,
bffe633e 3131 ordered_extent->num_bytes, trans->transid);
79787eaa 3132 if (ret < 0) {
66642832 3133 btrfs_abort_transaction(trans, ret);
a7e3b975 3134 goto out;
79787eaa 3135 }
2ac55d41 3136
510f85ed 3137 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
3138 if (ret) {
3139 btrfs_abort_transaction(trans, ret);
3140 goto out;
3141 }
e6dcd2dc 3142
2766ff61
FM
3143 /*
3144 * If this is a new delalloc range, clear its new delalloc flag to
3145 * update the inode's number of bytes. This needs to be done first
3146 * before updating the inode item.
3147 */
3148 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
72e7e6ed 3150 clear_extent_bit(&inode->io_tree, start, end,
2766ff61 3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
bd015294 3152 &cached_state);
2766ff61 3153
72e7e6ed 3154 btrfs_inode_safe_disk_i_size_write(inode, 0);
0a5d0dc5 3155 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3156 if (ret) { /* -ENOMEM or corruption */
66642832 3157 btrfs_abort_transaction(trans, ret);
a7e3b975 3158 goto out;
1ef30be1
JB
3159 }
3160 ret = 0;
c2167754 3161out:
bd015294 3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
313facc5 3163 &cached_state);
a7e3b975 3164
a698d075 3165 if (trans)
3a45bb20 3166 btrfs_end_transaction(trans);
0cb59c99 3167
77cef2ec 3168 if (ret || truncated) {
bffe633e 3169 u64 unwritten_start = start;
77cef2ec 3170
d61bec08
JB
3171 /*
3172 * If we failed to finish this ordered extent for any reason we
3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3174 * extent, and mark the inode with the error if it wasn't
3175 * already set. Any error during writeback would have already
3176 * set the mapping error, so we need to set it if we're the ones
3177 * marking this ordered extent as failed.
3178 */
3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3180 &ordered_extent->flags))
3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3182
77cef2ec 3183 if (truncated)
bffe633e
OS
3184 unwritten_start += logical_len;
3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec 3186
4c0c8cfc
FM
3187 /* Drop extent maps for the part of the extent we didn't write. */
3188 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
5fd02043 3189
0bec9ef5
JB
3190 /*
3191 * If the ordered extent had an IOERR or something else went
3192 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3193 * back to the allocator. We only free the extent in the
3194 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3195 *
3196 * If we made it past insert_reserved_file_extent before we
3197 * errored out then we don't need to do this as the accounting
3198 * has already been done.
0bec9ef5 3199 */
77cef2ec 3200 if ((ret || !logical_len) &&
49940bdd 3201 clear_reserved_extent &&
77cef2ec 3202 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
3203 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3204 /*
3205 * Discard the range before returning it back to the
3206 * free space pool
3207 */
46b27f50 3208 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 3209 btrfs_discard_extent(fs_info,
bffe633e
OS
3210 ordered_extent->disk_bytenr,
3211 ordered_extent->disk_num_bytes,
3212 NULL);
2ff7e61e 3213 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
3214 ordered_extent->disk_bytenr,
3215 ordered_extent->disk_num_bytes, 1);
e28b0211
BB
3216 /*
3217 * Actually free the qgroup rsv which was released when
3218 * the ordered extent was created.
3219 */
3220 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3221 ordered_extent->qgroup_rsv,
3222 BTRFS_QGROUP_RSV_DATA);
4eaaec24 3223 }
0bec9ef5
JB
3224 }
3225
5fd02043 3226 /*
8bad3c02
LB
3227 * This needs to be done to make sure anybody waiting knows we are done
3228 * updating everything for this ordered extent.
5fd02043 3229 */
72e7e6ed 3230 btrfs_remove_ordered_extent(inode, ordered_extent);
5fd02043 3231
e6dcd2dc
CM
3232 /* once for us */
3233 btrfs_put_ordered_extent(ordered_extent);
3234 /* once for the tree */
3235 btrfs_put_ordered_extent(ordered_extent);
3236
5fd02043
JB
3237 return ret;
3238}
3239
71df088c
CH
3240int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3241{
3242 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
02c372e1
JT
3243 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3244 list_empty(&ordered->bioc_list))
71df088c
CH
3245 btrfs_finish_ordered_zoned(ordered);
3246 return btrfs_finish_one_ordered(ordered);
3247}
3248
ae643a74
QW
3249/*
3250 * Verify the checksum for a single sector without any extra action that depend
3251 * on the type of I/O.
3252 */
3253int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255{
3256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 char *kaddr;
3258
3259 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260
3261 shash->tfm = fs_info->csum_shash;
3262
3263 kaddr = kmap_local_page(page) + pgoff;
3264 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 kunmap_local(kaddr);
3266
3267 if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 return -EIO;
3269 return 0;
211f90e6
CM
3270}
3271
265d4ac0 3272/*
e5219044
CH
3273 * Verify the checksum of a single data sector.
3274 *
3275 * @bbio: btrfs_io_bio which contains the csum
3276 * @dev: device the sector is on
7ffd27e3 3277 * @bio_offset: offset to the beginning of the bio (in bytes)
e5219044 3278 * @bv: bio_vec to check
265d4ac0 3279 *
e5219044
CH
3280 * Check if the checksum on a data block is valid. When a checksum mismatch is
3281 * detected, report the error and fill the corrupted range with zero.
ae643a74 3282 *
e5219044 3283 * Return %true if the sector is ok or had no checksum to start with, else %false.
265d4ac0 3284 */
e5219044
CH
3285bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 u32 bio_offset, struct bio_vec *bv)
dc380aea 3287{
e5219044 3288 struct btrfs_inode *inode = bbio->inode;
621af94a 3289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
e5219044
CH
3290 u64 file_offset = bbio->file_offset + bio_offset;
3291 u64 end = file_offset + bv->bv_len - 1;
d5178578
JT
3292 u8 *csum_expected;
3293 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3294
3d49d0d3 3295 ASSERT(bv->bv_len == fs_info->sectorsize);
265d4ac0 3296
e5219044
CH
3297 if (!bbio->csum)
3298 return true;
d5178578 3299
e5219044
CH
3300 if (btrfs_is_data_reloc_root(inode->root) &&
3301 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
893fe243 3302 NULL)) {
e5219044
CH
3303 /* Skip the range without csum for data reloc inode */
3304 clear_extent_bits(&inode->io_tree, file_offset, end,
3305 EXTENT_NODATASUM);
3306 return true;
3307 }
3308
fa13661c
JT
3309 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 fs_info->csum_size;
3d49d0d3
CH
3311 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 csum_expected))
dc380aea 3313 goto zeroit;
e5219044 3314 return true;
ae643a74 3315
dc380aea 3316zeroit:
3d49d0d3
CH
3317 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 bbio->mirror_num);
3319 if (dev)
3320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 memzero_bvec(bv);
3322 return false;
07157aac 3323}
b888db2b 3324
c1c3fac2 3325/*
9580503b 3326 * Perform a delayed iput on @inode.
c1c3fac2
NB
3327 *
3328 * @inode: The inode we want to perform iput on
3329 *
3330 * This function uses the generic vfs_inode::i_count to track whether we should
3331 * just decrement it (in case it's > 1) or if this is the last iput then link
3332 * the inode to the delayed iput machinery. Delayed iputs are processed at
3333 * transaction commit time/superblock commit/cleaner kthread.
3334 */
e55cf7ca 3335void btrfs_add_delayed_iput(struct btrfs_inode *inode)
24bbcf04 3336{
e55cf7ca 3337 struct btrfs_fs_info *fs_info = inode->root->fs_info;
866e98a4 3338 unsigned long flags;
24bbcf04 3339
e55cf7ca 3340 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
24bbcf04
YZ
3341 return;
3342
034f784d 3343 atomic_inc(&fs_info->nr_delayed_iputs);
866e98a4
FM
3344 /*
3345 * Need to be irq safe here because we can be called from either an irq
3346 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 * context.
3348 */
3349 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
e55cf7ca
DS
3350 ASSERT(list_empty(&inode->delayed_iput));
3351 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
866e98a4 3352 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
fd340d0f
JB
3353 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3355}
3356
63611e73
JB
3357static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 struct btrfs_inode *inode)
3359{
3360 list_del_init(&inode->delayed_iput);
866e98a4 3361 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3362 iput(&inode->vfs_inode);
3363 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 wake_up(&fs_info->delayed_iputs_wait);
866e98a4 3365 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3366}
3367
3368static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 struct btrfs_inode *inode)
3370{
3371 if (!list_empty(&inode->delayed_iput)) {
866e98a4 3372 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3373 if (!list_empty(&inode->delayed_iput))
3374 run_delayed_iput_locked(fs_info, inode);
866e98a4 3375 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3376 }
3377}
3378
2ff7e61e 3379void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3380{
866e98a4
FM
3381 /*
3382 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 * calls btrfs_add_delayed_iput() and that needs to lock
3384 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 * prevent a deadlock.
3386 */
3387 spin_lock_irq(&fs_info->delayed_iput_lock);
8089fe62
DS
3388 while (!list_empty(&fs_info->delayed_iputs)) {
3389 struct btrfs_inode *inode;
3390
3391 inode = list_first_entry(&fs_info->delayed_iputs,
3392 struct btrfs_inode, delayed_iput);
63611e73 3393 run_delayed_iput_locked(fs_info, inode);
866e98a4
FM
3394 if (need_resched()) {
3395 spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 cond_resched();
3397 spin_lock_irq(&fs_info->delayed_iput_lock);
3398 }
24bbcf04 3399 }
866e98a4 3400 spin_unlock_irq(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3401}
3402
e43eec81 3403/*
2639631d
NB
3404 * Wait for flushing all delayed iputs
3405 *
3406 * @fs_info: the filesystem
034f784d
JB
3407 *
3408 * This will wait on any delayed iputs that are currently running with KILLABLE
3409 * set. Once they are all done running we will return, unless we are killed in
3410 * which case we return EINTR. This helps in user operations like fallocate etc
3411 * that might get blocked on the iputs.
2639631d
NB
3412 *
3413 * Return EINTR if we were killed, 0 if nothing's pending
034f784d
JB
3414 */
3415int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416{
3417 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 if (ret)
3420 return -EINTR;
3421 return 0;
3422}
3423
7b128766 3424/*
f7e9e8fc
OS
3425 * This creates an orphan entry for the given inode in case something goes wrong
3426 * in the middle of an unlink.
7b128766 3427 */
73f2e545 3428int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3429 struct btrfs_inode *inode)
7b128766 3430{
d68fc57b 3431 int ret;
7b128766 3432
27919067
OS
3433 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 if (ret && ret != -EEXIST) {
3435 btrfs_abort_transaction(trans, ret);
3436 return ret;
d68fc57b
YZ
3437 }
3438
d68fc57b 3439 return 0;
7b128766
JB
3440}
3441
3442/*
f7e9e8fc
OS
3443 * We have done the delete so we can go ahead and remove the orphan item for
3444 * this particular inode.
7b128766 3445 */
48a3b636 3446static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3447 struct btrfs_inode *inode)
7b128766 3448{
27919067 3449 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3450}
3451
3452/*
3453 * this cleans up any orphans that may be left on the list from the last use
3454 * of this root.
3455 */
66b4ffd1 3456int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3457{
0b246afa 3458 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3459 struct btrfs_path *path;
3460 struct extent_buffer *leaf;
7b128766
JB
3461 struct btrfs_key key, found_key;
3462 struct btrfs_trans_handle *trans;
3463 struct inode *inode;
8f6d7f4f 3464 u64 last_objectid = 0;
f7e9e8fc 3465 int ret = 0, nr_unlink = 0;
7b128766 3466
54230013 3467 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
66b4ffd1 3468 return 0;
c71bf099
YZ
3469
3470 path = btrfs_alloc_path();
66b4ffd1
JB
3471 if (!path) {
3472 ret = -ENOMEM;
3473 goto out;
3474 }
e4058b54 3475 path->reada = READA_BACK;
7b128766
JB
3476
3477 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3478 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3479 key.offset = (u64)-1;
3480
7b128766
JB
3481 while (1) {
3482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3483 if (ret < 0)
3484 goto out;
7b128766
JB
3485
3486 /*
3487 * if ret == 0 means we found what we were searching for, which
25985edc 3488 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3489 * find the key and see if we have stuff that matches
3490 */
3491 if (ret > 0) {
66b4ffd1 3492 ret = 0;
7b128766
JB
3493 if (path->slots[0] == 0)
3494 break;
3495 path->slots[0]--;
3496 }
3497
3498 /* pull out the item */
3499 leaf = path->nodes[0];
7b128766
JB
3500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501
3502 /* make sure the item matches what we want */
3503 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 break;
962a298f 3505 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3506 break;
3507
3508 /* release the path since we're done with it */
b3b4aa74 3509 btrfs_release_path(path);
7b128766
JB
3510
3511 /*
3512 * this is where we are basically btrfs_lookup, without the
3513 * crossing root thing. we store the inode number in the
3514 * offset of the orphan item.
3515 */
8f6d7f4f
JB
3516
3517 if (found_key.offset == last_objectid) {
a7f8de50
FM
3518 /*
3519 * We found the same inode as before. This means we were
3520 * not able to remove its items via eviction triggered
3521 * by an iput(). A transaction abort may have happened,
3522 * due to -ENOSPC for example, so try to grab the error
3523 * that lead to a transaction abort, if any.
3524 */
0b246afa
JM
3525 btrfs_err(fs_info,
3526 "Error removing orphan entry, stopping orphan cleanup");
a7f8de50 3527 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
8f6d7f4f
JB
3528 goto out;
3529 }
3530
3531 last_objectid = found_key.offset;
3532
5d4f98a2
YZ
3533 found_key.objectid = found_key.offset;
3534 found_key.type = BTRFS_INODE_ITEM_KEY;
3535 found_key.offset = 0;
0202e83f 3536 inode = btrfs_iget(fs_info->sb, last_objectid, root);
cbaee87f
FM
3537 if (IS_ERR(inode)) {
3538 ret = PTR_ERR(inode);
3539 inode = NULL;
3540 if (ret != -ENOENT)
3541 goto out;
3542 }
7b128766 3543
cbaee87f 3544 if (!inode && root == fs_info->tree_root) {
f8e9e0b0 3545 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3546 int is_dead_root = 0;
3547
3548 /*
0c0218e9 3549 * This is an orphan in the tree root. Currently these
f8e9e0b0 3550 * could come from 2 sources:
0c0218e9 3551 * a) a root (snapshot/subvolume) deletion in progress
f8e9e0b0 3552 * b) a free space cache inode
0c0218e9
FM
3553 * We need to distinguish those two, as the orphan item
3554 * for a root must not get deleted before the deletion
3555 * of the snapshot/subvolume's tree completes.
3556 *
3557 * btrfs_find_orphan_roots() ran before us, which has
3558 * found all deleted roots and loaded them into
fc7cbcd4 3559 * fs_info->fs_roots_radix. So here we can find if an
0c0218e9 3560 * orphan item corresponds to a deleted root by looking
fc7cbcd4 3561 * up the root from that radix tree.
f8e9e0b0 3562 */
a619b3c7 3563
fc7cbcd4
DS
3564 spin_lock(&fs_info->fs_roots_radix_lock);
3565 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 (unsigned long)found_key.objectid);
a619b3c7
RK
3567 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 is_dead_root = 1;
fc7cbcd4 3569 spin_unlock(&fs_info->fs_roots_radix_lock);
a619b3c7 3570
f8e9e0b0
AJ
3571 if (is_dead_root) {
3572 /* prevent this orphan from being found again */
3573 key.offset = found_key.objectid - 1;
3574 continue;
3575 }
f7e9e8fc 3576
f8e9e0b0 3577 }
f7e9e8fc 3578
7b128766 3579 /*
f7e9e8fc 3580 * If we have an inode with links, there are a couple of
70524253
BB
3581 * possibilities:
3582 *
3583 * 1. We were halfway through creating fsverity metadata for the
3584 * file. In that case, the orphan item represents incomplete
3585 * fsverity metadata which must be cleaned up with
3586 * btrfs_drop_verity_items and deleting the orphan item.
3587
3588 * 2. Old kernels (before v3.12) used to create an
f7e9e8fc
OS
3589 * orphan item for truncate indicating that there were possibly
3590 * extent items past i_size that needed to be deleted. In v3.12,
3591 * truncate was changed to update i_size in sync with the extent
3592 * items, but the (useless) orphan item was still created. Since
3593 * v4.18, we don't create the orphan item for truncate at all.
3594 *
3595 * So, this item could mean that we need to do a truncate, but
3596 * only if this filesystem was last used on a pre-v3.12 kernel
3597 * and was not cleanly unmounted. The odds of that are quite
3598 * slim, and it's a pain to do the truncate now, so just delete
3599 * the orphan item.
3600 *
3601 * It's also possible that this orphan item was supposed to be
3602 * deleted but wasn't. The inode number may have been reused,
3603 * but either way, we can delete the orphan item.
7b128766 3604 */
cbaee87f
FM
3605 if (!inode || inode->i_nlink) {
3606 if (inode) {
70524253 3607 ret = btrfs_drop_verity_items(BTRFS_I(inode));
f7e9e8fc 3608 iput(inode);
b777d279 3609 inode = NULL;
70524253
BB
3610 if (ret)
3611 goto out;
3612 }
a8c9e576 3613 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3614 if (IS_ERR(trans)) {
3615 ret = PTR_ERR(trans);
3616 goto out;
3617 }
0b246afa
JM
3618 btrfs_debug(fs_info, "auto deleting %Lu",
3619 found_key.objectid);
a8c9e576
JB
3620 ret = btrfs_del_orphan_item(trans, root,
3621 found_key.objectid);
3a45bb20 3622 btrfs_end_transaction(trans);
cbaee87f 3623 if (ret)
4ef31a45 3624 goto out;
7b128766
JB
3625 continue;
3626 }
3627
f7e9e8fc 3628 nr_unlink++;
7b128766
JB
3629
3630 /* this will do delete_inode and everything for us */
3631 iput(inode);
3632 }
3254c876
MX
3633 /* release the path since we're done with it */
3634 btrfs_release_path(path);
3635
a575ceeb 3636 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3637 trans = btrfs_join_transaction(root);
66b4ffd1 3638 if (!IS_ERR(trans))
3a45bb20 3639 btrfs_end_transaction(trans);
d68fc57b 3640 }
7b128766
JB
3641
3642 if (nr_unlink)
0b246afa 3643 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3644
3645out:
3646 if (ret)
0b246afa 3647 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3648 btrfs_free_path(path);
3649 return ret;
7b128766
JB
3650}
3651
46a53cca
CM
3652/*
3653 * very simple check to peek ahead in the leaf looking for xattrs. If we
3654 * don't find any xattrs, we know there can't be any acls.
3655 *
3656 * slot is the slot the inode is in, objectid is the objectid of the inode
3657 */
3658static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3659 int slot, u64 objectid,
3660 int *first_xattr_slot)
46a53cca
CM
3661{
3662 u32 nritems = btrfs_header_nritems(leaf);
3663 struct btrfs_key found_key;
f23b5a59
JB
3664 static u64 xattr_access = 0;
3665 static u64 xattr_default = 0;
46a53cca
CM
3666 int scanned = 0;
3667
f23b5a59 3668 if (!xattr_access) {
97d79299
AG
3669 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3673 }
3674
46a53cca 3675 slot++;
63541927 3676 *first_xattr_slot = -1;
46a53cca
CM
3677 while (slot < nritems) {
3678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679
3680 /* we found a different objectid, there must not be acls */
3681 if (found_key.objectid != objectid)
3682 return 0;
3683
3684 /* we found an xattr, assume we've got an acl */
f23b5a59 3685 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3686 if (*first_xattr_slot == -1)
3687 *first_xattr_slot = slot;
f23b5a59
JB
3688 if (found_key.offset == xattr_access ||
3689 found_key.offset == xattr_default)
3690 return 1;
3691 }
46a53cca
CM
3692
3693 /*
3694 * we found a key greater than an xattr key, there can't
3695 * be any acls later on
3696 */
3697 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 return 0;
3699
3700 slot++;
3701 scanned++;
3702
3703 /*
3704 * it goes inode, inode backrefs, xattrs, extents,
3705 * so if there are a ton of hard links to an inode there can
3706 * be a lot of backrefs. Don't waste time searching too hard,
3707 * this is just an optimization
3708 */
3709 if (scanned >= 8)
3710 break;
3711 }
3712 /* we hit the end of the leaf before we found an xattr or
3713 * something larger than an xattr. We have to assume the inode
3714 * has acls
3715 */
63541927
FDBM
3716 if (*first_xattr_slot == -1)
3717 *first_xattr_slot = slot;
46a53cca
CM
3718 return 1;
3719}
3720
d352ac68
CM
3721/*
3722 * read an inode from the btree into the in-memory inode
3723 */
4222ea71
FM
3724static int btrfs_read_locked_inode(struct inode *inode,
3725 struct btrfs_path *in_path)
39279cc3 3726{
0b246afa 3727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3728 struct btrfs_path *path = in_path;
5f39d397 3729 struct extent_buffer *leaf;
39279cc3
CM
3730 struct btrfs_inode_item *inode_item;
3731 struct btrfs_root *root = BTRFS_I(inode)->root;
3732 struct btrfs_key location;
67de1176 3733 unsigned long ptr;
46a53cca 3734 int maybe_acls;
618e21d5 3735 u32 rdev;
39279cc3 3736 int ret;
2f7e33d4 3737 bool filled = false;
63541927 3738 int first_xattr_slot;
2f7e33d4
MX
3739
3740 ret = btrfs_fill_inode(inode, &rdev);
3741 if (!ret)
3742 filled = true;
39279cc3 3743
4222ea71
FM
3744 if (!path) {
3745 path = btrfs_alloc_path();
3746 if (!path)
3747 return -ENOMEM;
3748 }
1748f843 3749
39279cc3 3750 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3751
39279cc3 3752 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3753 if (ret) {
4222ea71
FM
3754 if (path != in_path)
3755 btrfs_free_path(path);
f5b3a417 3756 return ret;
67710892 3757 }
39279cc3 3758
5f39d397 3759 leaf = path->nodes[0];
2f7e33d4
MX
3760
3761 if (filled)
67de1176 3762 goto cache_index;
2f7e33d4 3763
5f39d397
CM
3764 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 struct btrfs_inode_item);
5f39d397 3766 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3767 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3768 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3770 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3771 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3773
b1c38a13
JL
3774 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3775 btrfs_timespec_nsec(leaf, &inode_item->atime));
5f39d397 3776
b1c38a13
JL
3777 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3778 btrfs_timespec_nsec(leaf, &inode_item->mtime));
5f39d397 3779
2a9462de
JL
3780 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 btrfs_timespec_nsec(leaf, &inode_item->ctime));
5f39d397 3782
c6e8f898
DS
3783 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3784 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3785
a76a3cd4 3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789
c7f88c4e
JL
3790 inode_set_iversion_queried(inode,
3791 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3792 inode->i_generation = BTRFS_I(inode)->generation;
3793 inode->i_rdev = 0;
3794 rdev = btrfs_inode_rdev(leaf, inode_item);
3795
3796 BTRFS_I(inode)->index_cnt = (u64)-1;
77eea05e
BB
3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
6e17d30b
YD
3799
3800cache_index:
5dc562c5
JB
3801 /*
3802 * If we were modified in the current generation and evicted from memory
3803 * and then re-read we need to do a full sync since we don't have any
3804 * idea about which extents were modified before we were evicted from
3805 * cache.
6e17d30b
YD
3806 *
3807 * This is required for both inode re-read from disk and delayed inode
088aea3b 3808 * in delayed_nodes_tree.
5dc562c5 3809 */
4a4f8fe2 3810 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
5dc562c5
JB
3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 &BTRFS_I(inode)->runtime_flags);
3813
bde6c242
FM
3814 /*
3815 * We don't persist the id of the transaction where an unlink operation
3816 * against the inode was last made. So here we assume the inode might
3817 * have been evicted, and therefore the exact value of last_unlink_trans
3818 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 * between the inode and its parent if the inode is fsync'ed and the log
3820 * replayed. For example, in the scenario:
3821 *
3822 * touch mydir/foo
3823 * ln mydir/foo mydir/bar
3824 * sync
3825 * unlink mydir/bar
3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3827 * xfs_io -c fsync mydir/foo
3828 * <power failure>
3829 * mount fs, triggers fsync log replay
3830 *
3831 * We must make sure that when we fsync our inode foo we also log its
3832 * parent inode, otherwise after log replay the parent still has the
3833 * dentry with the "bar" name but our inode foo has a link count of 1
3834 * and doesn't have an inode ref with the name "bar" anymore.
3835 *
3836 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3837 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3838 * transaction commits on fsync if our inode is a directory, or if our
3839 * inode is not a directory, logging its parent unnecessarily.
3840 */
3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842
3ebac17c
FM
3843 /*
3844 * Same logic as for last_unlink_trans. We don't persist the generation
3845 * of the last transaction where this inode was used for a reflink
3846 * operation, so after eviction and reloading the inode we must be
3847 * pessimistic and assume the last transaction that modified the inode.
3848 */
3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850
67de1176
MX
3851 path->slots[0]++;
3852 if (inode->i_nlink != 1 ||
3853 path->slots[0] >= btrfs_header_nritems(leaf))
3854 goto cache_acl;
3855
3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3857 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3858 goto cache_acl;
3859
3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 if (location.type == BTRFS_INODE_REF_KEY) {
3862 struct btrfs_inode_ref *ref;
3863
3864 ref = (struct btrfs_inode_ref *)ptr;
3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 struct btrfs_inode_extref *extref;
3868
3869 extref = (struct btrfs_inode_extref *)ptr;
3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 extref);
3872 }
2f7e33d4 3873cache_acl:
46a53cca
CM
3874 /*
3875 * try to precache a NULL acl entry for files that don't have
3876 * any xattrs or acls
3877 */
33345d01 3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3880 if (first_xattr_slot != -1) {
3881 path->slots[0] = first_xattr_slot;
3882 ret = btrfs_load_inode_props(inode, path);
3883 if (ret)
0b246afa 3884 btrfs_err(fs_info,
351fd353 3885 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3886 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3887 root->root_key.objectid, ret);
3888 }
4222ea71
FM
3889 if (path != in_path)
3890 btrfs_free_path(path);
63541927 3891
72c04902
AV
3892 if (!maybe_acls)
3893 cache_no_acl(inode);
46a53cca 3894
39279cc3 3895 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3896 case S_IFREG:
3897 inode->i_mapping->a_ops = &btrfs_aops;
3898 inode->i_fop = &btrfs_file_operations;
3899 inode->i_op = &btrfs_file_inode_operations;
3900 break;
3901 case S_IFDIR:
3902 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3903 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3904 break;
3905 case S_IFLNK:
3906 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3907 inode_nohighmem(inode);
4779cc04 3908 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3909 break;
618e21d5 3910 default:
0279b4cd 3911 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3912 init_special_inode(inode, inode->i_mode, rdev);
3913 break;
39279cc3 3914 }
6cbff00f 3915
7b6a221e 3916 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3917 return 0;
39279cc3
CM
3918}
3919
d352ac68
CM
3920/*
3921 * given a leaf and an inode, copy the inode fields into the leaf
3922 */
e02119d5
CM
3923static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 struct extent_buffer *leaf,
5f39d397 3925 struct btrfs_inode_item *item,
39279cc3
CM
3926 struct inode *inode)
3927{
51fab693 3928 struct btrfs_map_token token;
77eea05e 3929 u64 flags;
51fab693 3930
c82f823c 3931 btrfs_init_map_token(&token, leaf);
5f39d397 3932
cc4c13d5
DS
3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938
3939 btrfs_set_token_timespec_sec(&token, &item->atime,
b1c38a13 3940 inode_get_atime_sec(inode));
cc4c13d5 3941 btrfs_set_token_timespec_nsec(&token, &item->atime,
b1c38a13 3942 inode_get_atime_nsec(inode));
cc4c13d5
DS
3943
3944 btrfs_set_token_timespec_sec(&token, &item->mtime,
b1c38a13 3945 inode_get_mtime_sec(inode));
cc4c13d5 3946 btrfs_set_token_timespec_nsec(&token, &item->mtime,
b1c38a13 3947 inode_get_mtime_nsec(inode));
cc4c13d5
DS
3948
3949 btrfs_set_token_timespec_sec(&token, &item->ctime,
b1c38a13 3950 inode_get_ctime_sec(inode));
cc4c13d5 3951 btrfs_set_token_timespec_nsec(&token, &item->ctime,
b1c38a13 3952 inode_get_ctime_nsec(inode));
cc4c13d5 3953
c6e8f898
DS
3954 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3955 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
cc4c13d5
DS
3956
3957 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3958 btrfs_set_token_inode_generation(&token, item,
3959 BTRFS_I(inode)->generation);
3960 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3961 btrfs_set_token_inode_transid(&token, item, trans->transid);
3962 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
3963 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3964 BTRFS_I(inode)->ro_flags);
3965 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 3966 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3967}
3968
d352ac68
CM
3969/*
3970 * copy everything in the in-memory inode into the btree.
3971 */
2115133f 3972static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
07a274a8 3973 struct btrfs_inode *inode)
39279cc3
CM
3974{
3975 struct btrfs_inode_item *inode_item;
3976 struct btrfs_path *path;
5f39d397 3977 struct extent_buffer *leaf;
39279cc3
CM
3978 int ret;
3979
3980 path = btrfs_alloc_path();
16cdcec7
MX
3981 if (!path)
3982 return -ENOMEM;
3983
07a274a8 3984 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
39279cc3
CM
3985 if (ret) {
3986 if (ret > 0)
3987 ret = -ENOENT;
3988 goto failed;
3989 }
3990
5f39d397
CM
3991 leaf = path->nodes[0];
3992 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3993 struct btrfs_inode_item);
39279cc3 3994
dfeb9e7c 3995 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
50564b65 3996 btrfs_mark_buffer_dirty(trans, leaf);
dfeb9e7c 3997 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3998 ret = 0;
3999failed:
39279cc3
CM
4000 btrfs_free_path(path);
4001 return ret;
4002}
4003
2115133f
CM
4004/*
4005 * copy everything in the in-memory inode into the btree.
4006 */
cddaaacc 4007int btrfs_update_inode(struct btrfs_trans_handle *trans,
cddaaacc 4008 struct btrfs_inode *inode)
2115133f 4009{
8b9d0322 4010 struct btrfs_root *root = inode->root;
0b246afa 4011 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4012 int ret;
4013
4014 /*
4015 * If the inode is a free space inode, we can deadlock during commit
4016 * if we put it into the delayed code.
4017 *
4018 * The data relocation inode should also be directly updated
4019 * without delay
4020 */
9a56fcd1 4021 if (!btrfs_is_free_space_inode(inode)
37f00a6d 4022 && !btrfs_is_data_reloc_root(root)
0b246afa 4023 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4024 btrfs_update_root_times(trans, root);
4025
04bd8e94 4026 ret = btrfs_delayed_update_inode(trans, inode);
2115133f 4027 if (!ret)
9a56fcd1 4028 btrfs_set_inode_last_trans(trans, inode);
2115133f
CM
4029 return ret;
4030 }
4031
07a274a8 4032 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4033}
4034
729f7961 4035int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
0a5d0dc5 4036 struct btrfs_inode *inode)
2115133f
CM
4037{
4038 int ret;
4039
8b9d0322 4040 ret = btrfs_update_inode(trans, inode);
2115133f 4041 if (ret == -ENOSPC)
07a274a8 4042 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4043 return ret;
4044}
4045
d352ac68
CM
4046/*
4047 * unlink helper that gets used here in inode.c and in the tree logging
4048 * recovery code. It remove a link in a directory with a given name, and
4049 * also drops the back refs in the inode to the directory
4050 */
92986796 4051static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e
NB
4052 struct btrfs_inode *dir,
4053 struct btrfs_inode *inode,
6db75318 4054 const struct fscrypt_str *name,
88d2beec 4055 struct btrfs_rename_ctx *rename_ctx)
39279cc3 4056{
4467af88 4057 struct btrfs_root *root = dir->root;
0b246afa 4058 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4059 struct btrfs_path *path;
39279cc3 4060 int ret = 0;
39279cc3 4061 struct btrfs_dir_item *di;
aec7477b 4062 u64 index;
33345d01
LZ
4063 u64 ino = btrfs_ino(inode);
4064 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4065
4066 path = btrfs_alloc_path();
54aa1f4d
CM
4067 if (!path) {
4068 ret = -ENOMEM;
554233a6 4069 goto out;
54aa1f4d
CM
4070 }
4071
e43eec81 4072 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
3cf5068f
LB
4073 if (IS_ERR_OR_NULL(di)) {
4074 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4075 goto err;
4076 }
39279cc3 4077 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4078 if (ret)
4079 goto err;
b3b4aa74 4080 btrfs_release_path(path);
39279cc3 4081
67de1176
MX
4082 /*
4083 * If we don't have dir index, we have to get it by looking up
4084 * the inode ref, since we get the inode ref, remove it directly,
4085 * it is unnecessary to do delayed deletion.
4086 *
4087 * But if we have dir index, needn't search inode ref to get it.
4088 * Since the inode ref is close to the inode item, it is better
4089 * that we delay to delete it, and just do this deletion when
4090 * we update the inode item.
4091 */
4ec5934e 4092 if (inode->dir_index) {
67de1176
MX
4093 ret = btrfs_delayed_delete_inode_ref(inode);
4094 if (!ret) {
4ec5934e 4095 index = inode->dir_index;
67de1176
MX
4096 goto skip_backref;
4097 }
4098 }
4099
e43eec81 4100 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
aec7477b 4101 if (ret) {
0b246afa 4102 btrfs_info(fs_info,
c2cf52eb 4103 "failed to delete reference to %.*s, inode %llu parent %llu",
e43eec81 4104 name->len, name->name, ino, dir_ino);
66642832 4105 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4106 goto err;
4107 }
67de1176 4108skip_backref:
88d2beec
FM
4109 if (rename_ctx)
4110 rename_ctx->index = index;
4111
9add2945 4112 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4113 if (ret) {
66642832 4114 btrfs_abort_transaction(trans, ret);
39279cc3 4115 goto err;
79787eaa 4116 }
39279cc3 4117
259c4b96
FM
4118 /*
4119 * If we are in a rename context, we don't need to update anything in the
4120 * log. That will be done later during the rename by btrfs_log_new_name().
143823cf 4121 * Besides that, doing it here would only cause extra unnecessary btree
259c4b96
FM
4122 * operations on the log tree, increasing latency for applications.
4123 */
4124 if (!rename_ctx) {
e43eec81
STD
4125 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4126 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
259c4b96 4127 }
63611e73
JB
4128
4129 /*
4130 * If we have a pending delayed iput we could end up with the final iput
4131 * being run in btrfs-cleaner context. If we have enough of these built
4132 * up we can end up burning a lot of time in btrfs-cleaner without any
4133 * way to throttle the unlinks. Since we're currently holding a ref on
4134 * the inode we can run the delayed iput here without any issues as the
4135 * final iput won't be done until after we drop the ref we're currently
4136 * holding.
4137 */
4138 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4139err:
4140 btrfs_free_path(path);
e02119d5
CM
4141 if (ret)
4142 goto out;
4143
e43eec81 4144 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4ec5934e
NB
4145 inode_inc_iversion(&inode->vfs_inode);
4146 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4147 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
8b9d0322 4148 ret = btrfs_update_inode(trans, dir);
e02119d5 4149out:
39279cc3
CM
4150 return ret;
4151}
4152
92986796 4153int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e 4154 struct btrfs_inode *dir, struct btrfs_inode *inode,
6db75318 4155 const struct fscrypt_str *name)
92986796
AV
4156{
4157 int ret;
e43eec81
STD
4158
4159 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
92986796 4160 if (!ret) {
4ec5934e 4161 drop_nlink(&inode->vfs_inode);
8b9d0322 4162 ret = btrfs_update_inode(trans, inode);
92986796
AV
4163 }
4164 return ret;
4165}
39279cc3 4166
a22285a6
YZ
4167/*
4168 * helper to start transaction for unlink and rmdir.
4169 *
d52be818
JB
4170 * unlink and rmdir are special in btrfs, they do not always free space, so
4171 * if we cannot make our reservations the normal way try and see if there is
4172 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4173 * allow the unlink to occur.
a22285a6 4174 */
e569b1d5 4175static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4df27c4d 4176{
e569b1d5 4177 struct btrfs_root *root = dir->root;
4df27c4d 4178
5630e2bc
FM
4179 return btrfs_start_transaction_fallback_global_rsv(root,
4180 BTRFS_UNLINK_METADATA_UNITS);
a22285a6
YZ
4181}
4182
4183static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4184{
a22285a6 4185 struct btrfs_trans_handle *trans;
2b0143b5 4186 struct inode *inode = d_inode(dentry);
a22285a6 4187 int ret;
ab3c5c18 4188 struct fscrypt_name fname;
a22285a6 4189
ab3c5c18
STD
4190 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4191 if (ret)
4192 return ret;
ab3c5c18
STD
4193
4194 /* This needs to handle no-key deletions later on */
a22285a6 4195
e569b1d5 4196 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4197 if (IS_ERR(trans)) {
4198 ret = PTR_ERR(trans);
4199 goto fscrypt_free;
4200 }
5f39d397 4201
4ec5934e 4202 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
59fcf388 4203 false);
12fcfd22 4204
e43eec81 4205 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4206 &fname.disk_name);
b532402e 4207 if (ret)
ab3c5c18 4208 goto end_trans;
7b128766 4209
a22285a6 4210 if (inode->i_nlink == 0) {
73f2e545 4211 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e 4212 if (ret)
ab3c5c18 4213 goto end_trans;
a22285a6 4214 }
7b128766 4215
ab3c5c18 4216end_trans:
3a45bb20 4217 btrfs_end_transaction(trans);
4467af88 4218 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
ab3c5c18
STD
4219fscrypt_free:
4220 fscrypt_free_filename(&fname);
39279cc3
CM
4221 return ret;
4222}
4223
f60a2364 4224static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
5b7544cb 4225 struct btrfs_inode *dir, struct dentry *dentry)
4df27c4d 4226{
5b7544cb 4227 struct btrfs_root *root = dir->root;
045d3967 4228 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
4229 struct btrfs_path *path;
4230 struct extent_buffer *leaf;
4231 struct btrfs_dir_item *di;
4232 struct btrfs_key key;
4233 u64 index;
4234 int ret;
045d3967 4235 u64 objectid;
5b7544cb 4236 u64 dir_ino = btrfs_ino(dir);
ab3c5c18
STD
4237 struct fscrypt_name fname;
4238
5b7544cb 4239 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
ab3c5c18
STD
4240 if (ret)
4241 return ret;
ab3c5c18
STD
4242
4243 /* This needs to handle no-key deletions later on */
4df27c4d 4244
045d3967
JB
4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4246 objectid = inode->root->root_key.objectid;
4247 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4248 objectid = inode->location.objectid;
4249 } else {
4250 WARN_ON(1);
ab3c5c18 4251 fscrypt_free_filename(&fname);
045d3967
JB
4252 return -EINVAL;
4253 }
4254
4df27c4d 4255 path = btrfs_alloc_path();
ab3c5c18
STD
4256 if (!path) {
4257 ret = -ENOMEM;
4258 goto out;
4259 }
4df27c4d 4260
33345d01 4261 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
6db75318 4262 &fname.disk_name, -1);
79787eaa 4263 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4264 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4265 goto out;
4266 }
4df27c4d
YZ
4267
4268 leaf = path->nodes[0];
4269 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4270 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4271 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4272 if (ret) {
66642832 4273 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4274 goto out;
4275 }
b3b4aa74 4276 btrfs_release_path(path);
4df27c4d 4277
d49d3287
JB
4278 /*
4279 * This is a placeholder inode for a subvolume we didn't have a
4280 * reference to at the time of the snapshot creation. In the meantime
4281 * we could have renamed the real subvol link into our snapshot, so
1a9fd417 4282 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
d49d3287
JB
4283 * Instead simply lookup the dir_index_item for this entry so we can
4284 * remove it. Otherwise we know we have a ref to the root and we can
4285 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4286 */
4287 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
6db75318 4288 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
79787eaa
JM
4289 if (IS_ERR_OR_NULL(di)) {
4290 if (!di)
4291 ret = -ENOENT;
4292 else
4293 ret = PTR_ERR(di);
66642832 4294 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4295 goto out;
4296 }
4df27c4d
YZ
4297
4298 leaf = path->nodes[0];
4299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 4300 index = key.offset;
d49d3287
JB
4301 btrfs_release_path(path);
4302 } else {
4303 ret = btrfs_del_root_ref(trans, objectid,
4304 root->root_key.objectid, dir_ino,
6db75318 4305 &index, &fname.disk_name);
d49d3287
JB
4306 if (ret) {
4307 btrfs_abort_transaction(trans, ret);
4308 goto out;
4309 }
4df27c4d
YZ
4310 }
4311
5b7544cb 4312 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4313 if (ret) {
66642832 4314 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4315 goto out;
4316 }
4df27c4d 4317
5b7544cb
DS
4318 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4319 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4320 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
0a5d0dc5 4321 ret = btrfs_update_inode_fallback(trans, dir);
79787eaa 4322 if (ret)
66642832 4323 btrfs_abort_transaction(trans, ret);
79787eaa 4324out:
71d7aed0 4325 btrfs_free_path(path);
ab3c5c18 4326 fscrypt_free_filename(&fname);
79787eaa 4327 return ret;
4df27c4d
YZ
4328}
4329
ec42f167
MT
4330/*
4331 * Helper to check if the subvolume references other subvolumes or if it's
4332 * default.
4333 */
f60a2364 4334static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4335{
4336 struct btrfs_fs_info *fs_info = root->fs_info;
4337 struct btrfs_path *path;
4338 struct btrfs_dir_item *di;
4339 struct btrfs_key key;
6db75318 4340 struct fscrypt_str name = FSTR_INIT("default", 7);
ec42f167
MT
4341 u64 dir_id;
4342 int ret;
4343
4344 path = btrfs_alloc_path();
4345 if (!path)
4346 return -ENOMEM;
4347
4348 /* Make sure this root isn't set as the default subvol */
4349 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4350 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
e43eec81 4351 dir_id, &name, 0);
ec42f167
MT
4352 if (di && !IS_ERR(di)) {
4353 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4354 if (key.objectid == root->root_key.objectid) {
4355 ret = -EPERM;
4356 btrfs_err(fs_info,
4357 "deleting default subvolume %llu is not allowed",
4358 key.objectid);
4359 goto out;
4360 }
4361 btrfs_release_path(path);
4362 }
4363
4364 key.objectid = root->root_key.objectid;
4365 key.type = BTRFS_ROOT_REF_KEY;
4366 key.offset = (u64)-1;
4367
4368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4369 if (ret < 0)
4370 goto out;
4371 BUG_ON(ret == 0);
4372
4373 ret = 0;
4374 if (path->slots[0] > 0) {
4375 path->slots[0]--;
4376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4377 if (key.objectid == root->root_key.objectid &&
4378 key.type == BTRFS_ROOT_REF_KEY)
4379 ret = -ENOTEMPTY;
4380 }
4381out:
4382 btrfs_free_path(path);
4383 return ret;
4384}
4385
20a68004
NB
4386/* Delete all dentries for inodes belonging to the root */
4387static void btrfs_prune_dentries(struct btrfs_root *root)
4388{
4389 struct btrfs_fs_info *fs_info = root->fs_info;
4390 struct rb_node *node;
4391 struct rb_node *prev;
4392 struct btrfs_inode *entry;
4393 struct inode *inode;
4394 u64 objectid = 0;
4395
84961539 4396 if (!BTRFS_FS_ERROR(fs_info))
20a68004
NB
4397 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4398
4399 spin_lock(&root->inode_lock);
4400again:
4401 node = root->inode_tree.rb_node;
4402 prev = NULL;
4403 while (node) {
4404 prev = node;
4405 entry = rb_entry(node, struct btrfs_inode, rb_node);
4406
37508515 4407 if (objectid < btrfs_ino(entry))
20a68004 4408 node = node->rb_left;
37508515 4409 else if (objectid > btrfs_ino(entry))
20a68004
NB
4410 node = node->rb_right;
4411 else
4412 break;
4413 }
4414 if (!node) {
4415 while (prev) {
4416 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4417 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4418 node = prev;
4419 break;
4420 }
4421 prev = rb_next(prev);
4422 }
4423 }
4424 while (node) {
4425 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4426 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4427 inode = igrab(&entry->vfs_inode);
4428 if (inode) {
4429 spin_unlock(&root->inode_lock);
4430 if (atomic_read(&inode->i_count) > 1)
4431 d_prune_aliases(inode);
4432 /*
4433 * btrfs_drop_inode will have it removed from the inode
4434 * cache when its usage count hits zero.
4435 */
4436 iput(inode);
4437 cond_resched();
4438 spin_lock(&root->inode_lock);
4439 goto again;
4440 }
4441
4442 if (cond_resched_lock(&root->inode_lock))
4443 goto again;
4444
4445 node = rb_next(node);
4446 }
4447 spin_unlock(&root->inode_lock);
4448}
4449
3c4f91e2 4450int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
f60a2364
MT
4451{
4452 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3c4f91e2 4453 struct btrfs_root *root = dir->root;
f60a2364
MT
4454 struct inode *inode = d_inode(dentry);
4455 struct btrfs_root *dest = BTRFS_I(inode)->root;
4456 struct btrfs_trans_handle *trans;
4457 struct btrfs_block_rsv block_rsv;
4458 u64 root_flags;
f60a2364 4459 int ret;
f60a2364
MT
4460
4461 /*
4462 * Don't allow to delete a subvolume with send in progress. This is
4463 * inside the inode lock so the error handling that has to drop the bit
4464 * again is not run concurrently.
4465 */
4466 spin_lock(&dest->root_item_lock);
a7176f74 4467 if (dest->send_in_progress) {
f60a2364
MT
4468 spin_unlock(&dest->root_item_lock);
4469 btrfs_warn(fs_info,
4470 "attempt to delete subvolume %llu during send",
4471 dest->root_key.objectid);
4472 return -EPERM;
4473 }
60021bd7
KH
4474 if (atomic_read(&dest->nr_swapfiles)) {
4475 spin_unlock(&dest->root_item_lock);
4476 btrfs_warn(fs_info,
4477 "attempt to delete subvolume %llu with active swapfile",
4478 root->root_key.objectid);
4479 return -EPERM;
4480 }
a7176f74
LF
4481 root_flags = btrfs_root_flags(&dest->root_item);
4482 btrfs_set_root_flags(&dest->root_item,
4483 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4484 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4485
4486 down_write(&fs_info->subvol_sem);
4487
ee0d904f
NB
4488 ret = may_destroy_subvol(dest);
4489 if (ret)
f60a2364
MT
4490 goto out_up_write;
4491
4492 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4493 /*
4494 * One for dir inode,
4495 * two for dir entries,
4496 * two for root ref/backref.
4497 */
ee0d904f
NB
4498 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4499 if (ret)
f60a2364
MT
4500 goto out_up_write;
4501
4502 trans = btrfs_start_transaction(root, 0);
4503 if (IS_ERR(trans)) {
ee0d904f 4504 ret = PTR_ERR(trans);
f60a2364
MT
4505 goto out_release;
4506 }
4507 trans->block_rsv = &block_rsv;
4508 trans->bytes_reserved = block_rsv.size;
4509
3c4f91e2 4510 btrfs_record_snapshot_destroy(trans, dir);
f60a2364 4511
045d3967 4512 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364 4513 if (ret) {
f60a2364
MT
4514 btrfs_abort_transaction(trans, ret);
4515 goto out_end_trans;
4516 }
4517
2731f518
JB
4518 ret = btrfs_record_root_in_trans(trans, dest);
4519 if (ret) {
4520 btrfs_abort_transaction(trans, ret);
4521 goto out_end_trans;
4522 }
f60a2364
MT
4523
4524 memset(&dest->root_item.drop_progress, 0,
4525 sizeof(dest->root_item.drop_progress));
c8422684 4526 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4527 btrfs_set_root_refs(&dest->root_item, 0);
4528
4529 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4530 ret = btrfs_insert_orphan_item(trans,
4531 fs_info->tree_root,
4532 dest->root_key.objectid);
4533 if (ret) {
4534 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4535 goto out_end_trans;
4536 }
4537 }
4538
d1957791 4539 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4540 BTRFS_UUID_KEY_SUBVOL,
4541 dest->root_key.objectid);
4542 if (ret && ret != -ENOENT) {
4543 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4544 goto out_end_trans;
4545 }
4546 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4547 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4548 dest->root_item.received_uuid,
4549 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4550 dest->root_key.objectid);
4551 if (ret && ret != -ENOENT) {
4552 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4553 goto out_end_trans;
4554 }
4555 }
4556
082b6c97
QW
4557 free_anon_bdev(dest->anon_dev);
4558 dest->anon_dev = 0;
f60a2364
MT
4559out_end_trans:
4560 trans->block_rsv = NULL;
4561 trans->bytes_reserved = 0;
4562 ret = btrfs_end_transaction(trans);
f60a2364
MT
4563 inode->i_flags |= S_DEAD;
4564out_release:
e85fde51 4565 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4566out_up_write:
4567 up_write(&fs_info->subvol_sem);
ee0d904f 4568 if (ret) {
f60a2364
MT
4569 spin_lock(&dest->root_item_lock);
4570 root_flags = btrfs_root_flags(&dest->root_item);
4571 btrfs_set_root_flags(&dest->root_item,
4572 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4573 spin_unlock(&dest->root_item_lock);
4574 } else {
4575 d_invalidate(dentry);
20a68004 4576 btrfs_prune_dentries(dest);
f60a2364 4577 ASSERT(dest->send_in_progress == 0);
f60a2364
MT
4578 }
4579
ee0d904f 4580 return ret;
f60a2364
MT
4581}
4582
39279cc3
CM
4583static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4584{
2b0143b5 4585 struct inode *inode = d_inode(dentry);
813febdb 4586 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1832a6d5 4587 int err = 0;
39279cc3 4588 struct btrfs_trans_handle *trans;
44f714da 4589 u64 last_unlink_trans;
ab3c5c18 4590 struct fscrypt_name fname;
39279cc3 4591
b3ae244e 4592 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4593 return -ENOTEMPTY;
813febdb
JB
4594 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4595 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4596 btrfs_err(fs_info,
4597 "extent tree v2 doesn't support snapshot deletion yet");
4598 return -EOPNOTSUPP;
4599 }
3c4f91e2 4600 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
813febdb 4601 }
134d4512 4602
ab3c5c18
STD
4603 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4604 if (err)
4605 return err;
ab3c5c18
STD
4606
4607 /* This needs to handle no-key deletions later on */
4608
e569b1d5 4609 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4610 if (IS_ERR(trans)) {
4611 err = PTR_ERR(trans);
4612 goto out_notrans;
4613 }
5df6a9f6 4614
4a0cc7ca 4615 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 4616 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4df27c4d
YZ
4617 goto out;
4618 }
4619
73f2e545 4620 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4621 if (err)
4df27c4d 4622 goto out;
7b128766 4623
44f714da
FM
4624 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4625
39279cc3 4626 /* now the directory is empty */
e43eec81 4627 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4628 &fname.disk_name);
44f714da 4629 if (!err) {
6ef06d27 4630 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4631 /*
4632 * Propagate the last_unlink_trans value of the deleted dir to
4633 * its parent directory. This is to prevent an unrecoverable
4634 * log tree in the case we do something like this:
4635 * 1) create dir foo
4636 * 2) create snapshot under dir foo
4637 * 3) delete the snapshot
4638 * 4) rmdir foo
4639 * 5) mkdir foo
4640 * 6) fsync foo or some file inside foo
4641 */
4642 if (last_unlink_trans >= trans->transid)
4643 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4644 }
4df27c4d 4645out:
3a45bb20 4646 btrfs_end_transaction(trans);
ab3c5c18 4647out_notrans:
813febdb 4648 btrfs_btree_balance_dirty(fs_info);
ab3c5c18 4649 fscrypt_free_filename(&fname);
3954401f 4650
39279cc3
CM
4651 return err;
4652}
4653
39279cc3 4654/*
9580503b
DS
4655 * Read, zero a chunk and write a block.
4656 *
2aaa6655
JB
4657 * @inode - inode that we're zeroing
4658 * @from - the offset to start zeroing
4659 * @len - the length to zero, 0 to zero the entire range respective to the
4660 * offset
4661 * @front - zero up to the offset instead of from the offset on
4662 *
9703fefe 4663 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4664 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4665 */
217f42eb
NB
4666int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4667 int front)
39279cc3 4668{
217f42eb
NB
4669 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4670 struct address_space *mapping = inode->vfs_inode.i_mapping;
4671 struct extent_io_tree *io_tree = &inode->io_tree;
e6dcd2dc 4672 struct btrfs_ordered_extent *ordered;
2ac55d41 4673 struct extent_state *cached_state = NULL;
364ecf36 4674 struct extent_changeset *data_reserved = NULL;
6d4572a9 4675 bool only_release_metadata = false;
0b246afa 4676 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4677 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4678 unsigned offset = from & (blocksize - 1);
39279cc3 4679 struct page *page;
3b16a4e3 4680 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4681 size_t write_bytes = blocksize;
39279cc3 4682 int ret = 0;
9703fefe
CR
4683 u64 block_start;
4684 u64 block_end;
39279cc3 4685
b03ebd99
NB
4686 if (IS_ALIGNED(offset, blocksize) &&
4687 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4688 goto out;
9703fefe 4689
8b62f87b
JB
4690 block_start = round_down(from, blocksize);
4691 block_end = block_start + blocksize - 1;
4692
217f42eb 4693 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
1daedb1d 4694 blocksize, false);
6d4572a9 4695 if (ret < 0) {
80f9d241 4696 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
6d4572a9
QW
4697 /* For nocow case, no need to reserve data space */
4698 only_release_metadata = true;
4699 } else {
4700 goto out;
4701 }
4702 }
d4135134 4703 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
6d4572a9
QW
4704 if (ret < 0) {
4705 if (!only_release_metadata)
217f42eb
NB
4706 btrfs_free_reserved_data_space(inode, data_reserved,
4707 block_start, blocksize);
6d4572a9
QW
4708 goto out;
4709 }
211c17f5 4710again:
3b16a4e3 4711 page = find_or_create_page(mapping, index, mask);
5d5e103a 4712 if (!page) {
217f42eb
NB
4713 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4714 blocksize, true);
4715 btrfs_delalloc_release_extents(inode, blocksize);
ac6a2b36 4716 ret = -ENOMEM;
39279cc3 4717 goto out;
5d5e103a 4718 }
e6dcd2dc 4719
39279cc3 4720 if (!PageUptodate(page)) {
fb12489b 4721 ret = btrfs_read_folio(NULL, page_folio(page));
39279cc3 4722 lock_page(page);
211c17f5
CM
4723 if (page->mapping != mapping) {
4724 unlock_page(page);
09cbfeaf 4725 put_page(page);
211c17f5
CM
4726 goto again;
4727 }
39279cc3
CM
4728 if (!PageUptodate(page)) {
4729 ret = -EIO;
89642229 4730 goto out_unlock;
39279cc3
CM
4731 }
4732 }
17b17fcd
JB
4733
4734 /*
4735 * We unlock the page after the io is completed and then re-lock it
4736 * above. release_folio() could have come in between that and cleared
cfbf07e2 4737 * folio private, but left the page in the mapping. Set the page mapped
17b17fcd
JB
4738 * here to make sure it's properly set for the subpage stuff.
4739 */
4740 ret = set_page_extent_mapped(page);
4741 if (ret < 0)
4742 goto out_unlock;
4743
211c17f5 4744 wait_on_page_writeback(page);
e6dcd2dc 4745
570eb97b 4746 lock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4747
217f42eb 4748 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4749 if (ordered) {
570eb97b 4750 unlock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4751 unlock_page(page);
09cbfeaf 4752 put_page(page);
36d45567 4753 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
4754 btrfs_put_ordered_extent(ordered);
4755 goto again;
4756 }
4757
217f42eb 4758 clear_extent_bit(&inode->io_tree, block_start, block_end,
e182163d 4759 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 4760 &cached_state);
5d5e103a 4761
217f42eb 4762 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 4763 &cached_state);
9ed74f2d 4764 if (ret) {
570eb97b 4765 unlock_extent(io_tree, block_start, block_end, &cached_state);
9ed74f2d
JB
4766 goto out_unlock;
4767 }
4768
9703fefe 4769 if (offset != blocksize) {
2aaa6655 4770 if (!len)
9703fefe 4771 len = blocksize - offset;
2aaa6655 4772 if (front)
d048b9c2
IW
4773 memzero_page(page, (block_start - page_offset(page)),
4774 offset);
2aaa6655 4775 else
d048b9c2
IW
4776 memzero_page(page, (block_start - page_offset(page)) + offset,
4777 len);
e6dcd2dc 4778 }
e4f94347
QW
4779 btrfs_page_clear_checked(fs_info, page, block_start,
4780 block_end + 1 - block_start);
6c9ac8be 4781 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
570eb97b 4782 unlock_extent(io_tree, block_start, block_end, &cached_state);
39279cc3 4783
6d4572a9 4784 if (only_release_metadata)
217f42eb 4785 set_extent_bit(&inode->io_tree, block_start, block_end,
1d126800 4786 EXTENT_NORESERVE, NULL);
6d4572a9 4787
89642229 4788out_unlock:
6d4572a9
QW
4789 if (ret) {
4790 if (only_release_metadata)
217f42eb 4791 btrfs_delalloc_release_metadata(inode, blocksize, true);
6d4572a9 4792 else
217f42eb 4793 btrfs_delalloc_release_space(inode, data_reserved,
6d4572a9
QW
4794 block_start, blocksize, true);
4795 }
217f42eb 4796 btrfs_delalloc_release_extents(inode, blocksize);
39279cc3 4797 unlock_page(page);
09cbfeaf 4798 put_page(page);
39279cc3 4799out:
6d4572a9 4800 if (only_release_metadata)
217f42eb 4801 btrfs_check_nocow_unlock(inode);
364ecf36 4802 extent_changeset_free(data_reserved);
39279cc3
CM
4803 return ret;
4804}
4805
0a325e62 4806static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
16e7549f 4807{
0a325e62 4808 struct btrfs_root *root = inode->root;
a4ba6cc0 4809 struct btrfs_fs_info *fs_info = root->fs_info;
16e7549f 4810 struct btrfs_trans_handle *trans;
5893dfb9 4811 struct btrfs_drop_extents_args drop_args = { 0 };
16e7549f
JB
4812 int ret;
4813
4814 /*
cceaa89f
FM
4815 * If NO_HOLES is enabled, we don't need to do anything.
4816 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4817 * or btrfs_update_inode() will be called, which guarantee that the next
4818 * fsync will know this inode was changed and needs to be logged.
16e7549f 4819 */
cceaa89f 4820 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f 4821 return 0;
16e7549f
JB
4822
4823 /*
4824 * 1 - for the one we're dropping
4825 * 1 - for the one we're adding
4826 * 1 - for updating the inode.
4827 */
4828 trans = btrfs_start_transaction(root, 3);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
5893dfb9
FM
4832 drop_args.start = offset;
4833 drop_args.end = offset + len;
4834 drop_args.drop_cache = true;
4835
a4ba6cc0 4836 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
16e7549f 4837 if (ret) {
66642832 4838 btrfs_abort_transaction(trans, ret);
3a45bb20 4839 btrfs_end_transaction(trans);
16e7549f
JB
4840 return ret;
4841 }
4842
d1f68ba0 4843 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
2766ff61 4844 if (ret) {
66642832 4845 btrfs_abort_transaction(trans, ret);
2766ff61 4846 } else {
a4ba6cc0 4847 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
8b9d0322 4848 btrfs_update_inode(trans, inode);
2766ff61 4849 }
3a45bb20 4850 btrfs_end_transaction(trans);
16e7549f
JB
4851 return ret;
4852}
4853
695a0d0d
JB
4854/*
4855 * This function puts in dummy file extents for the area we're creating a hole
4856 * for. So if we are truncating this file to a larger size we need to insert
4857 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4858 * the range between oldsize and size
4859 */
b06359a3 4860int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
39279cc3 4861{
b06359a3
NB
4862 struct btrfs_root *root = inode->root;
4863 struct btrfs_fs_info *fs_info = root->fs_info;
4864 struct extent_io_tree *io_tree = &inode->io_tree;
a22285a6 4865 struct extent_map *em = NULL;
2ac55d41 4866 struct extent_state *cached_state = NULL;
0b246afa
JM
4867 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4868 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4869 u64 last_byte;
4870 u64 cur_offset;
4871 u64 hole_size;
9ed74f2d 4872 int err = 0;
39279cc3 4873
a71754fc 4874 /*
9703fefe
CR
4875 * If our size started in the middle of a block we need to zero out the
4876 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4877 * expose stale data.
4878 */
b06359a3 4879 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4880 if (err)
4881 return err;
4882
9036c102
YZ
4883 if (size <= hole_start)
4884 return 0;
4885
b06359a3
NB
4886 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4887 &cached_state);
9036c102
YZ
4888 cur_offset = hole_start;
4889 while (1) {
b06359a3 4890 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
39b07b5d 4891 block_end - cur_offset);
79787eaa
JM
4892 if (IS_ERR(em)) {
4893 err = PTR_ERR(em);
f2767956 4894 em = NULL;
79787eaa
JM
4895 break;
4896 }
9036c102 4897 last_byte = min(extent_map_end(em), block_end);
0b246afa 4898 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4899 hole_size = last_byte - cur_offset;
4900
f86f7a75 4901 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5dc562c5 4902 struct extent_map *hole_em;
9ed74f2d 4903
0a325e62 4904 err = maybe_insert_hole(inode, cur_offset, hole_size);
16e7549f 4905 if (err)
3893e33b 4906 break;
9ddc959e 4907
b06359a3 4908 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4909 cur_offset, hole_size);
4910 if (err)
4911 break;
4912
5dc562c5
JB
4913 hole_em = alloc_extent_map();
4914 if (!hole_em) {
a1ba4c08
FM
4915 btrfs_drop_extent_map_range(inode, cur_offset,
4916 cur_offset + hole_size - 1,
4917 false);
23e3337f 4918 btrfs_set_inode_full_sync(inode);
5dc562c5
JB
4919 goto next;
4920 }
4921 hole_em->start = cur_offset;
4922 hole_em->len = hole_size;
4923 hole_em->orig_start = cur_offset;
8082510e 4924
5dc562c5
JB
4925 hole_em->block_start = EXTENT_MAP_HOLE;
4926 hole_em->block_len = 0;
b4939680 4927 hole_em->orig_block_len = 0;
cc95bef6 4928 hole_em->ram_bytes = hole_size;
4a4f8fe2 4929 hole_em->generation = btrfs_get_fs_generation(fs_info);
8082510e 4930
a1ba4c08 4931 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5dc562c5 4932 free_extent_map(hole_em);
9ddc959e 4933 } else {
b06359a3 4934 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4935 cur_offset, hole_size);
4936 if (err)
4937 break;
9036c102 4938 }
16e7549f 4939next:
9036c102 4940 free_extent_map(em);
a22285a6 4941 em = NULL;
9036c102 4942 cur_offset = last_byte;
8082510e 4943 if (cur_offset >= block_end)
9036c102
YZ
4944 break;
4945 }
a22285a6 4946 free_extent_map(em);
570eb97b 4947 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4948 return err;
4949}
39279cc3 4950
3972f260 4951static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4952{
f4a2f4c5
MX
4953 struct btrfs_root *root = BTRFS_I(inode)->root;
4954 struct btrfs_trans_handle *trans;
a41ad394 4955 loff_t oldsize = i_size_read(inode);
3972f260
ES
4956 loff_t newsize = attr->ia_size;
4957 int mask = attr->ia_valid;
8082510e
YZ
4958 int ret;
4959
3972f260
ES
4960 /*
4961 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4962 * special case where we need to update the times despite not having
4963 * these flags set. For all other operations the VFS set these flags
4964 * explicitly if it wants a timestamp update.
4965 */
dff6efc3
CH
4966 if (newsize != oldsize) {
4967 inode_inc_iversion(inode);
c1867eb3 4968 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
b1c38a13
JL
4969 inode_set_mtime_to_ts(inode,
4970 inode_set_ctime_current(inode));
c1867eb3 4971 }
dff6efc3 4972 }
3972f260 4973
a41ad394 4974 if (newsize > oldsize) {
9ea24bbe 4975 /*
ea14b57f 4976 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4977 * This is to ensure the snapshot captures a fully consistent
4978 * state of this file - if the snapshot captures this expanding
4979 * truncation, it must capture all writes that happened before
4980 * this truncation.
4981 */
dcc3eb96 4982 btrfs_drew_write_lock(&root->snapshot_lock);
b06359a3 4983 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
9ea24bbe 4984 if (ret) {
dcc3eb96 4985 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4986 return ret;
9ea24bbe 4987 }
8082510e 4988
f4a2f4c5 4989 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4990 if (IS_ERR(trans)) {
dcc3eb96 4991 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4992 return PTR_ERR(trans);
9ea24bbe 4993 }
f4a2f4c5
MX
4994
4995 i_size_write(inode, newsize);
76aea537 4996 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
27772b68 4997 pagecache_isize_extended(inode, oldsize, newsize);
8b9d0322 4998 ret = btrfs_update_inode(trans, BTRFS_I(inode));
dcc3eb96 4999 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 5000 btrfs_end_transaction(trans);
a41ad394 5001 } else {
24c0a722
NA
5002 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5003
5004 if (btrfs_is_zoned(fs_info)) {
5005 ret = btrfs_wait_ordered_range(inode,
5006 ALIGN(newsize, fs_info->sectorsize),
5007 (u64)-1);
5008 if (ret)
5009 return ret;
5010 }
8082510e 5011
a41ad394
JB
5012 /*
5013 * We're truncating a file that used to have good data down to
1fd4033d
NB
5014 * zero. Make sure any new writes to the file get on disk
5015 * on close.
a41ad394
JB
5016 */
5017 if (newsize == 0)
1fd4033d 5018 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 5019 &BTRFS_I(inode)->runtime_flags);
8082510e 5020
a41ad394 5021 truncate_setsize(inode, newsize);
2e60a51e 5022
2e60a51e 5023 inode_dio_wait(inode);
2e60a51e 5024
d9dcae67 5025 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
7f4f6e0a
JB
5026 if (ret && inode->i_nlink) {
5027 int err;
5028
5029 /*
f7e9e8fc
OS
5030 * Truncate failed, so fix up the in-memory size. We
5031 * adjusted disk_i_size down as we removed extents, so
5032 * wait for disk_i_size to be stable and then update the
5033 * in-memory size to match.
7f4f6e0a 5034 */
f7e9e8fc 5035 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5036 if (err)
f7e9e8fc
OS
5037 return err;
5038 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5039 }
8082510e
YZ
5040 }
5041
a41ad394 5042 return ret;
8082510e
YZ
5043}
5044
c1632a0f 5045static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
549c7297 5046 struct iattr *attr)
9036c102 5047{
2b0143b5 5048 struct inode *inode = d_inode(dentry);
b83cc969 5049 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5050 int err;
39279cc3 5051
b83cc969
LZ
5052 if (btrfs_root_readonly(root))
5053 return -EROFS;
5054
c1632a0f 5055 err = setattr_prepare(idmap, dentry, attr);
9036c102
YZ
5056 if (err)
5057 return err;
2bf5a725 5058
5a3f23d5 5059 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5060 err = btrfs_setsize(inode, attr);
8082510e
YZ
5061 if (err)
5062 return err;
39279cc3 5063 }
9036c102 5064
1025774c 5065 if (attr->ia_valid) {
c1632a0f 5066 setattr_copy(idmap, inode, attr);
0c4d2d95 5067 inode_inc_iversion(inode);
7152b425 5068 err = btrfs_dirty_inode(BTRFS_I(inode));
1025774c 5069
22c44fe6 5070 if (!err && attr->ia_valid & ATTR_MODE)
13e83a49 5071 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
1025774c 5072 }
33268eaf 5073
39279cc3
CM
5074 return err;
5075}
61295eb8 5076
131e404a 5077/*
895586eb
MWO
5078 * While truncating the inode pages during eviction, we get the VFS
5079 * calling btrfs_invalidate_folio() against each folio of the inode. This
5080 * is slow because the calls to btrfs_invalidate_folio() result in a
570eb97b 5081 * huge amount of calls to lock_extent() and clear_extent_bit(),
895586eb
MWO
5082 * which keep merging and splitting extent_state structures over and over,
5083 * wasting lots of time.
131e404a 5084 *
895586eb
MWO
5085 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5086 * skip all those expensive operations on a per folio basis and do only
5087 * the ordered io finishing, while we release here the extent_map and
5088 * extent_state structures, without the excessive merging and splitting.
131e404a
FDBM
5089 */
5090static void evict_inode_truncate_pages(struct inode *inode)
5091{
5092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
131e404a
FDBM
5093 struct rb_node *node;
5094
5095 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5096 truncate_inode_pages_final(&inode->i_data);
131e404a 5097
9c9d1b4f 5098 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
131e404a 5099
6ca07097
FM
5100 /*
5101 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5102 * We can have ongoing bios started by readahead that have
5103 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5104 * still in progress (unlocked the pages in the bio but did not yet
5105 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5106 * ranges can still be locked and eviction started because before
5107 * submitting those bios, which are executed by a separate task (work
5108 * queue kthread), inode references (inode->i_count) were not taken
5109 * (which would be dropped in the end io callback of each bio).
5110 * Therefore here we effectively end up waiting for those bios and
5111 * anyone else holding locked ranges without having bumped the inode's
5112 * reference count - if we don't do it, when they access the inode's
5113 * io_tree to unlock a range it may be too late, leading to an
5114 * use-after-free issue.
5115 */
131e404a
FDBM
5116 spin_lock(&io_tree->lock);
5117 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5118 struct extent_state *state;
5119 struct extent_state *cached_state = NULL;
6ca07097
FM
5120 u64 start;
5121 u64 end;
421f0922 5122 unsigned state_flags;
131e404a
FDBM
5123
5124 node = rb_first(&io_tree->state);
5125 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5126 start = state->start;
5127 end = state->end;
421f0922 5128 state_flags = state->state;
131e404a
FDBM
5129 spin_unlock(&io_tree->lock);
5130
570eb97b 5131 lock_extent(io_tree, start, end, &cached_state);
b9d0b389
QW
5132
5133 /*
5134 * If still has DELALLOC flag, the extent didn't reach disk,
5135 * and its reserved space won't be freed by delayed_ref.
5136 * So we need to free its reserved space here.
895586eb 5137 * (Refer to comment in btrfs_invalidate_folio, case 2)
b9d0b389
QW
5138 *
5139 * Note, end is the bytenr of last byte, so we need + 1 here.
5140 */
421f0922 5141 if (state_flags & EXTENT_DELALLOC)
8b8a979f 5142 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
9e65bfca 5143 end - start + 1, NULL);
b9d0b389 5144
6ca07097 5145 clear_extent_bit(io_tree, start, end,
bd015294 5146 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
e182163d 5147 &cached_state);
131e404a 5148
7064dd5c 5149 cond_resched();
131e404a
FDBM
5150 spin_lock(&io_tree->lock);
5151 }
5152 spin_unlock(&io_tree->lock);
5153}
5154
4b9d7b59 5155static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5156 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5157{
5158 struct btrfs_fs_info *fs_info = root->fs_info;
d3984c90 5159 struct btrfs_trans_handle *trans;
b13d57db 5160 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
d3984c90 5161 int ret;
4b9d7b59 5162
d3984c90
JB
5163 /*
5164 * Eviction should be taking place at some place safe because of our
5165 * delayed iputs. However the normal flushing code will run delayed
5166 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5167 *
5168 * We reserve the delayed_refs_extra here again because we can't use
5169 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5170 * above. We reserve our extra bit here because we generate a ton of
5171 * delayed refs activity by truncating.
5172 *
ee6adbfd
JB
5173 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5174 * if we fail to make this reservation we can re-try without the
5175 * delayed_refs_extra so we can make some forward progress.
d3984c90 5176 */
9270501c 5177 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
d3984c90
JB
5178 BTRFS_RESERVE_FLUSH_EVICT);
5179 if (ret) {
9270501c 5180 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
ee6adbfd
JB
5181 BTRFS_RESERVE_FLUSH_EVICT);
5182 if (ret) {
d3984c90
JB
5183 btrfs_warn(fs_info,
5184 "could not allocate space for delete; will truncate on mount");
5185 return ERR_PTR(-ENOSPC);
5186 }
5187 delayed_refs_extra = 0;
5188 }
4b9d7b59 5189
d3984c90
JB
5190 trans = btrfs_join_transaction(root);
5191 if (IS_ERR(trans))
5192 return trans;
5193
5194 if (delayed_refs_extra) {
5195 trans->block_rsv = &fs_info->trans_block_rsv;
5196 trans->bytes_reserved = delayed_refs_extra;
5197 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
4e0527de 5198 delayed_refs_extra, true);
4b9d7b59 5199 }
d3984c90 5200 return trans;
4b9d7b59
OS
5201}
5202
bd555975 5203void btrfs_evict_inode(struct inode *inode)
39279cc3 5204{
0b246afa 5205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5206 struct btrfs_trans_handle *trans;
5207 struct btrfs_root *root = BTRFS_I(inode)->root;
b7b1167c 5208 struct btrfs_block_rsv *rsv = NULL;
39279cc3
CM
5209 int ret;
5210
1abe9b8a 5211 trace_btrfs_inode_evict(inode);
5212
3d48d981 5213 if (!root) {
14605409 5214 fsverity_cleanup_inode(inode);
e8f1bc14 5215 clear_inode(inode);
3d48d981
NB
5216 return;
5217 }
5218
131e404a
FDBM
5219 evict_inode_truncate_pages(inode);
5220
69e9c6c6
SB
5221 if (inode->i_nlink &&
5222 ((btrfs_root_refs(&root->root_item) != 0 &&
5223 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5224 btrfs_is_free_space_inode(BTRFS_I(inode))))
b7b1167c 5225 goto out;
bd555975 5226
27919067 5227 if (is_bad_inode(inode))
b7b1167c 5228 goto out;
5f39d397 5229
7b40b695 5230 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
b7b1167c 5231 goto out;
c71bf099 5232
76dda93c 5233 if (inode->i_nlink > 0) {
69e9c6c6
SB
5234 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5235 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
b7b1167c 5236 goto out;
76dda93c
YZ
5237 }
5238
2adc75d6
JB
5239 /*
5240 * This makes sure the inode item in tree is uptodate and the space for
5241 * the inode update is released.
5242 */
aa79021f 5243 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5244 if (ret)
b7b1167c 5245 goto out;
0e8c36a9 5246
2adc75d6
JB
5247 /*
5248 * This drops any pending insert or delete operations we have for this
5249 * inode. We could have a delayed dir index deletion queued up, but
5250 * we're removing the inode completely so that'll be taken care of in
5251 * the truncate.
5252 */
5253 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5254
2ff7e61e 5255 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5256 if (!rsv)
b7b1167c 5257 goto out;
2bd36e7b 5258 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
710d5921 5259 rsv->failfast = true;
4289a667 5260
6ef06d27 5261 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5262
8082510e 5263 while (1) {
d9ac19c3 5264 struct btrfs_truncate_control control = {
71d18b53 5265 .inode = BTRFS_I(inode),
487e81d2 5266 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3
JB
5267 .new_size = 0,
5268 .min_type = 0,
5269 };
5270
ad80cf50 5271 trans = evict_refill_and_join(root, rsv);
27919067 5272 if (IS_ERR(trans))
b7b1167c 5273 goto out;
7b128766 5274
4289a667
JB
5275 trans->block_rsv = rsv;
5276
71d18b53 5277 ret = btrfs_truncate_inode_items(trans, root, &control);
27919067
OS
5278 trans->block_rsv = &fs_info->trans_block_rsv;
5279 btrfs_end_transaction(trans);
afa4b0af
FM
5280 /*
5281 * We have not added new delayed items for our inode after we
5282 * have flushed its delayed items, so no need to throttle on
5283 * delayed items. However we have modified extent buffers.
5284 */
5285 btrfs_btree_balance_dirty_nodelay(fs_info);
27919067 5286 if (ret && ret != -ENOSPC && ret != -EAGAIN)
b7b1167c 5287 goto out;
27919067 5288 else if (!ret)
8082510e 5289 break;
8082510e 5290 }
5f39d397 5291
4ef31a45 5292 /*
27919067
OS
5293 * Errors here aren't a big deal, it just means we leave orphan items in
5294 * the tree. They will be cleaned up on the next mount. If the inode
5295 * number gets reused, cleanup deletes the orphan item without doing
5296 * anything, and unlink reuses the existing orphan item.
5297 *
5298 * If it turns out that we are dropping too many of these, we might want
5299 * to add a mechanism for retrying these after a commit.
4ef31a45 5300 */
ad80cf50 5301 trans = evict_refill_and_join(root, rsv);
27919067
OS
5302 if (!IS_ERR(trans)) {
5303 trans->block_rsv = rsv;
5304 btrfs_orphan_del(trans, BTRFS_I(inode));
5305 trans->block_rsv = &fs_info->trans_block_rsv;
5306 btrfs_end_transaction(trans);
5307 }
54aa1f4d 5308
b7b1167c 5309out:
27919067 5310 btrfs_free_block_rsv(fs_info, rsv);
27919067
OS
5311 /*
5312 * If we didn't successfully delete, the orphan item will still be in
5313 * the tree and we'll retry on the next mount. Again, we might also want
5314 * to retry these periodically in the future.
5315 */
f48d1cf5 5316 btrfs_remove_delayed_node(BTRFS_I(inode));
14605409 5317 fsverity_cleanup_inode(inode);
dbd5768f 5318 clear_inode(inode);
39279cc3
CM
5319}
5320
5321/*
6bf9e4bd
QW
5322 * Return the key found in the dir entry in the location pointer, fill @type
5323 * with BTRFS_FT_*, and return 0.
5324 *
005d6712
SY
5325 * If no dir entries were found, returns -ENOENT.
5326 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3 5327 */
d1de429b 5328static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
6bf9e4bd 5329 struct btrfs_key *location, u8 *type)
39279cc3 5330{
39279cc3
CM
5331 struct btrfs_dir_item *di;
5332 struct btrfs_path *path;
d1de429b 5333 struct btrfs_root *root = dir->root;
0d9f7f3e 5334 int ret = 0;
ab3c5c18 5335 struct fscrypt_name fname;
39279cc3
CM
5336
5337 path = btrfs_alloc_path();
d8926bb3
MF
5338 if (!path)
5339 return -ENOMEM;
3954401f 5340
d1de429b 5341 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
10a8857a 5342 if (ret < 0)
ab3c5c18 5343 goto out;
10a8857a
STD
5344 /*
5345 * fscrypt_setup_filename() should never return a positive value, but
5346 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5347 */
5348 ASSERT(ret == 0);
ab3c5c18 5349
ab3c5c18
STD
5350 /* This needs to handle no-key deletions later on */
5351
d1de429b 5352 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
6db75318 5353 &fname.disk_name, 0);
3cf5068f
LB
5354 if (IS_ERR_OR_NULL(di)) {
5355 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5356 goto out;
5357 }
d397712b 5358
5f39d397 5359 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5360 if (location->type != BTRFS_INODE_ITEM_KEY &&
5361 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5362 ret = -EUCLEAN;
56a0e706
LB
5363 btrfs_warn(root->fs_info,
5364"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
d1de429b 5365 __func__, fname.disk_name.name, btrfs_ino(dir),
56a0e706 5366 location->objectid, location->type, location->offset);
56a0e706 5367 }
6bf9e4bd 5368 if (!ret)
94a48aef 5369 *type = btrfs_dir_ftype(path->nodes[0], di);
39279cc3 5370out:
ab3c5c18 5371 fscrypt_free_filename(&fname);
39279cc3
CM
5372 btrfs_free_path(path);
5373 return ret;
5374}
5375
5376/*
5377 * when we hit a tree root in a directory, the btrfs part of the inode
5378 * needs to be changed to reflect the root directory of the tree root. This
5379 * is kind of like crossing a mount point.
5380 */
2ff7e61e 5381static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
3c1b1c4c 5382 struct btrfs_inode *dir,
4df27c4d
YZ
5383 struct dentry *dentry,
5384 struct btrfs_key *location,
5385 struct btrfs_root **sub_root)
39279cc3 5386{
4df27c4d
YZ
5387 struct btrfs_path *path;
5388 struct btrfs_root *new_root;
5389 struct btrfs_root_ref *ref;
5390 struct extent_buffer *leaf;
1d4c08e0 5391 struct btrfs_key key;
4df27c4d
YZ
5392 int ret;
5393 int err = 0;
ab3c5c18 5394 struct fscrypt_name fname;
ab3c5c18 5395
3c1b1c4c 5396 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
ab3c5c18
STD
5397 if (ret)
5398 return ret;
39279cc3 5399
4df27c4d
YZ
5400 path = btrfs_alloc_path();
5401 if (!path) {
5402 err = -ENOMEM;
5403 goto out;
5404 }
39279cc3 5405
4df27c4d 5406 err = -ENOENT;
3c1b1c4c 5407 key.objectid = dir->root->root_key.objectid;
1d4c08e0
DS
5408 key.type = BTRFS_ROOT_REF_KEY;
5409 key.offset = location->objectid;
5410
0b246afa 5411 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5412 if (ret) {
5413 if (ret < 0)
5414 err = ret;
5415 goto out;
5416 }
39279cc3 5417
4df27c4d
YZ
5418 leaf = path->nodes[0];
5419 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3c1b1c4c 5420 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
6db75318 5421 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
4df27c4d 5422 goto out;
39279cc3 5423
6db75318
STD
5424 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5425 (unsigned long)(ref + 1), fname.disk_name.len);
4df27c4d
YZ
5426 if (ret)
5427 goto out;
5428
b3b4aa74 5429 btrfs_release_path(path);
4df27c4d 5430
56e9357a 5431 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5432 if (IS_ERR(new_root)) {
5433 err = PTR_ERR(new_root);
5434 goto out;
5435 }
5436
4df27c4d
YZ
5437 *sub_root = new_root;
5438 location->objectid = btrfs_root_dirid(&new_root->root_item);
5439 location->type = BTRFS_INODE_ITEM_KEY;
5440 location->offset = 0;
5441 err = 0;
5442out:
5443 btrfs_free_path(path);
ab3c5c18 5444 fscrypt_free_filename(&fname);
4df27c4d 5445 return err;
39279cc3
CM
5446}
5447
4c45a4f4 5448static void inode_tree_add(struct btrfs_inode *inode)
5d4f98a2 5449{
4c45a4f4 5450 struct btrfs_root *root = inode->root;
5d4f98a2 5451 struct btrfs_inode *entry;
03e860bd
NP
5452 struct rb_node **p;
5453 struct rb_node *parent;
4c45a4f4
DS
5454 struct rb_node *new = &inode->rb_node;
5455 u64 ino = btrfs_ino(inode);
5d4f98a2 5456
4c45a4f4 5457 if (inode_unhashed(&inode->vfs_inode))
76dda93c 5458 return;
e1409cef 5459 parent = NULL;
5d4f98a2 5460 spin_lock(&root->inode_lock);
e1409cef 5461 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5462 while (*p) {
5463 parent = *p;
5464 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5465
37508515 5466 if (ino < btrfs_ino(entry))
03e860bd 5467 p = &parent->rb_left;
37508515 5468 else if (ino > btrfs_ino(entry))
03e860bd 5469 p = &parent->rb_right;
5d4f98a2
YZ
5470 else {
5471 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5472 (I_WILL_FREE | I_FREEING)));
cef21937 5473 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5474 RB_CLEAR_NODE(parent);
5475 spin_unlock(&root->inode_lock);
cef21937 5476 return;
5d4f98a2
YZ
5477 }
5478 }
cef21937
FDBM
5479 rb_link_node(new, parent, p);
5480 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5481 spin_unlock(&root->inode_lock);
5482}
5483
b79b7249 5484static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5485{
b79b7249 5486 struct btrfs_root *root = inode->root;
76dda93c 5487 int empty = 0;
5d4f98a2 5488
03e860bd 5489 spin_lock(&root->inode_lock);
b79b7249
NB
5490 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5491 rb_erase(&inode->rb_node, &root->inode_tree);
5492 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5493 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5494 }
03e860bd 5495 spin_unlock(&root->inode_lock);
76dda93c 5496
69e9c6c6 5497 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5498 spin_lock(&root->inode_lock);
5499 empty = RB_EMPTY_ROOT(&root->inode_tree);
5500 spin_unlock(&root->inode_lock);
5501 if (empty)
5502 btrfs_add_dead_root(root);
5503 }
5504}
5505
5d4f98a2 5506
e02119d5
CM
5507static int btrfs_init_locked_inode(struct inode *inode, void *p)
5508{
5509 struct btrfs_iget_args *args = p;
0202e83f
DS
5510
5511 inode->i_ino = args->ino;
5512 BTRFS_I(inode)->location.objectid = args->ino;
5513 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5514 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5515 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5516 BUG_ON(args->root && !BTRFS_I(inode)->root);
9b9b8854
JB
5517
5518 if (args->root && args->root == args->root->fs_info->tree_root &&
5519 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5520 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5521 &BTRFS_I(inode)->runtime_flags);
39279cc3
CM
5522 return 0;
5523}
5524
5525static int btrfs_find_actor(struct inode *inode, void *opaque)
5526{
5527 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5528
5529 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5530 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5531}
5532
0202e83f 5533static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5534 struct btrfs_root *root)
39279cc3
CM
5535{
5536 struct inode *inode;
5537 struct btrfs_iget_args args;
0202e83f 5538 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5539
0202e83f 5540 args.ino = ino;
39279cc3
CM
5541 args.root = root;
5542
778ba82b 5543 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5544 btrfs_init_locked_inode,
5545 (void *)&args);
5546 return inode;
5547}
5548
4c66e0d4 5549/*
0202e83f 5550 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5551 * Path can be preallocated to prevent recursing back to iget through
5552 * allocator. NULL is also valid but may require an additional allocation
5553 * later.
1a54ef8c 5554 */
0202e83f 5555struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5556 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5557{
5558 struct inode *inode;
5559
0202e83f 5560 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5561 if (!inode)
5d4f98a2 5562 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5563
5564 if (inode->i_state & I_NEW) {
67710892
FM
5565 int ret;
5566
4222ea71 5567 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5568 if (!ret) {
4c45a4f4 5569 inode_tree_add(BTRFS_I(inode));
1748f843 5570 unlock_new_inode(inode);
1748f843 5571 } else {
f5b3a417
AV
5572 iget_failed(inode);
5573 /*
5574 * ret > 0 can come from btrfs_search_slot called by
5575 * btrfs_read_locked_inode, this means the inode item
5576 * was not found.
5577 */
5578 if (ret > 0)
5579 ret = -ENOENT;
5580 inode = ERR_PTR(ret);
1748f843
MF
5581 }
5582 }
5583
1a54ef8c
BR
5584 return inode;
5585}
5586
0202e83f 5587struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5588{
0202e83f 5589 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5590}
5591
94628ad9 5592static struct inode *new_simple_dir(struct inode *dir,
4df27c4d
YZ
5593 struct btrfs_key *key,
5594 struct btrfs_root *root)
5595{
d5acbc60 5596 struct timespec64 ts;
94628ad9 5597 struct inode *inode = new_inode(dir->i_sb);
4df27c4d
YZ
5598
5599 if (!inode)
5600 return ERR_PTR(-ENOMEM);
5601
5c8fd99f 5602 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5603 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5604 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5605
5606 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5607 /*
5608 * We only need lookup, the rest is read-only and there's no inode
5609 * associated with the dentry
5610 */
5611 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5612 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5613 inode->i_fop = &simple_dir_operations;
5614 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
d5acbc60
LT
5615
5616 ts = inode_set_ctime_current(inode);
5617 inode_set_mtime_to_ts(inode, ts);
b1c38a13 5618 inode_set_atime_to_ts(inode, inode_get_atime(dir));
d5acbc60
LT
5619 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5620 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5621
94628ad9
LT
5622 inode->i_uid = dir->i_uid;
5623 inode->i_gid = dir->i_gid;
4df27c4d
YZ
5624
5625 return inode;
5626}
5627
a55e65b8
DS
5628static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5629static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5630static_assert(BTRFS_FT_DIR == FT_DIR);
5631static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5632static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5633static_assert(BTRFS_FT_FIFO == FT_FIFO);
5634static_assert(BTRFS_FT_SOCK == FT_SOCK);
5635static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5636
6bf9e4bd
QW
5637static inline u8 btrfs_inode_type(struct inode *inode)
5638{
6bf9e4bd
QW
5639 return fs_umode_to_ftype(inode->i_mode);
5640}
5641
3de4586c 5642struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5643{
0b246afa 5644 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5645 struct inode *inode;
4df27c4d 5646 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5647 struct btrfs_root *sub_root = root;
5648 struct btrfs_key location;
6bf9e4bd 5649 u8 di_type = 0;
b4aff1f8 5650 int ret = 0;
39279cc3
CM
5651
5652 if (dentry->d_name.len > BTRFS_NAME_LEN)
5653 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5654
d1de429b 5655 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
39279cc3
CM
5656 if (ret < 0)
5657 return ERR_PTR(ret);
5f39d397 5658
4df27c4d 5659 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5660 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5661 if (IS_ERR(inode))
5662 return inode;
5663
5664 /* Do extra check against inode mode with di_type */
5665 if (btrfs_inode_type(inode) != di_type) {
5666 btrfs_crit(fs_info,
5667"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5668 inode->i_mode, btrfs_inode_type(inode),
5669 di_type);
5670 iput(inode);
5671 return ERR_PTR(-EUCLEAN);
5672 }
4df27c4d
YZ
5673 return inode;
5674 }
5675
3c1b1c4c 5676 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
4df27c4d
YZ
5677 &location, &sub_root);
5678 if (ret < 0) {
5679 if (ret != -ENOENT)
5680 inode = ERR_PTR(ret);
5681 else
94628ad9 5682 inode = new_simple_dir(dir, &location, root);
4df27c4d 5683 } else {
0202e83f 5684 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
00246528 5685 btrfs_put_root(sub_root);
76dda93c 5686
fc8b235f
NB
5687 if (IS_ERR(inode))
5688 return inode;
5689
0b246afa 5690 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5691 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5692 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5693 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5694 if (ret) {
5695 iput(inode);
66b4ffd1 5696 inode = ERR_PTR(ret);
01cd3367 5697 }
c71bf099
YZ
5698 }
5699
3de4586c
CM
5700 return inode;
5701}
5702
fe15ce44 5703static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5704{
5705 struct btrfs_root *root;
2b0143b5 5706 struct inode *inode = d_inode(dentry);
76dda93c 5707
848cce0d 5708 if (!inode && !IS_ROOT(dentry))
2b0143b5 5709 inode = d_inode(dentry->d_parent);
76dda93c 5710
848cce0d
LZ
5711 if (inode) {
5712 root = BTRFS_I(inode)->root;
efefb143
YZ
5713 if (btrfs_root_refs(&root->root_item) == 0)
5714 return 1;
848cce0d 5715
4a0cc7ca 5716 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5717 return 1;
efefb143 5718 }
76dda93c
YZ
5719 return 0;
5720}
5721
3de4586c 5722static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5723 unsigned int flags)
3de4586c 5724{
3837d208 5725 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5726
3837d208
AV
5727 if (inode == ERR_PTR(-ENOENT))
5728 inode = NULL;
41d28bca 5729 return d_splice_alias(inode, dentry);
39279cc3
CM
5730}
5731
9b378f6a
FM
5732/*
5733 * Find the highest existing sequence number in a directory and then set the
5734 * in-memory index_cnt variable to the first free sequence number.
5735 */
5736static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5737{
5738 struct btrfs_root *root = inode->root;
5739 struct btrfs_key key, found_key;
5740 struct btrfs_path *path;
5741 struct extent_buffer *leaf;
5742 int ret;
5743
5744 key.objectid = btrfs_ino(inode);
5745 key.type = BTRFS_DIR_INDEX_KEY;
5746 key.offset = (u64)-1;
5747
5748 path = btrfs_alloc_path();
5749 if (!path)
5750 return -ENOMEM;
5751
5752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5753 if (ret < 0)
5754 goto out;
5755 /* FIXME: we should be able to handle this */
5756 if (ret == 0)
5757 goto out;
5758 ret = 0;
5759
5760 if (path->slots[0] == 0) {
5761 inode->index_cnt = BTRFS_DIR_START_INDEX;
5762 goto out;
5763 }
5764
5765 path->slots[0]--;
5766
5767 leaf = path->nodes[0];
5768 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5769
5770 if (found_key.objectid != btrfs_ino(inode) ||
5771 found_key.type != BTRFS_DIR_INDEX_KEY) {
5772 inode->index_cnt = BTRFS_DIR_START_INDEX;
5773 goto out;
5774 }
5775
5776 inode->index_cnt = found_key.offset + 1;
5777out:
5778 btrfs_free_path(path);
5779 return ret;
5780}
5781
5782static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5783{
8e7f82de 5784 int ret = 0;
9b378f6a 5785
8e7f82de
FM
5786 btrfs_inode_lock(dir, 0);
5787 if (dir->index_cnt == (u64)-1) {
9b378f6a
FM
5788 ret = btrfs_inode_delayed_dir_index_count(dir);
5789 if (ret) {
5790 ret = btrfs_set_inode_index_count(dir);
5791 if (ret)
8e7f82de 5792 goto out;
9b378f6a
FM
5793 }
5794 }
5795
35795036
FM
5796 /* index_cnt is the index number of next new entry, so decrement it. */
5797 *index = dir->index_cnt - 1;
8e7f82de
FM
5798out:
5799 btrfs_inode_unlock(dir, 0);
9b378f6a 5800
8e7f82de 5801 return ret;
9b378f6a
FM
5802}
5803
23b5ec74
JB
5804/*
5805 * All this infrastructure exists because dir_emit can fault, and we are holding
5806 * the tree lock when doing readdir. For now just allocate a buffer and copy
5807 * our information into that, and then dir_emit from the buffer. This is
5808 * similar to what NFS does, only we don't keep the buffer around in pagecache
5809 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5810 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5811 * tree lock.
5812 */
5813static int btrfs_opendir(struct inode *inode, struct file *file)
5814{
5815 struct btrfs_file_private *private;
9b378f6a
FM
5816 u64 last_index;
5817 int ret;
5818
5819 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5820 if (ret)
5821 return ret;
23b5ec74
JB
5822
5823 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5824 if (!private)
5825 return -ENOMEM;
9b378f6a 5826 private->last_index = last_index;
23b5ec74
JB
5827 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5828 if (!private->filldir_buf) {
5829 kfree(private);
5830 return -ENOMEM;
5831 }
5832 file->private_data = private;
5833 return 0;
5834}
5835
e60aa5da
FM
5836static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5837{
5838 struct btrfs_file_private *private = file->private_data;
5839 int ret;
5840
5841 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5842 &private->last_index);
5843 if (ret)
5844 return ret;
5845
5846 return generic_file_llseek(file, offset, whence);
5847}
5848
23b5ec74
JB
5849struct dir_entry {
5850 u64 ino;
5851 u64 offset;
5852 unsigned type;
5853 int name_len;
5854};
5855
5856static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5857{
5858 while (entries--) {
5859 struct dir_entry *entry = addr;
5860 char *name = (char *)(entry + 1);
5861
92d32170
DS
5862 ctx->pos = get_unaligned(&entry->offset);
5863 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5864 get_unaligned(&entry->ino),
5865 get_unaligned(&entry->type)))
23b5ec74 5866 return 1;
92d32170
DS
5867 addr += sizeof(struct dir_entry) +
5868 get_unaligned(&entry->name_len);
23b5ec74
JB
5869 ctx->pos++;
5870 }
5871 return 0;
5872}
5873
9cdda8d3 5874static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5875{
9cdda8d3 5876 struct inode *inode = file_inode(file);
39279cc3 5877 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5878 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5879 struct btrfs_dir_item *di;
5880 struct btrfs_key key;
5f39d397 5881 struct btrfs_key found_key;
39279cc3 5882 struct btrfs_path *path;
23b5ec74 5883 void *addr;
84af994b
RJ
5884 LIST_HEAD(ins_list);
5885 LIST_HEAD(del_list);
39279cc3 5886 int ret;
5f39d397
CM
5887 char *name_ptr;
5888 int name_len;
23b5ec74
JB
5889 int entries = 0;
5890 int total_len = 0;
02dbfc99 5891 bool put = false;
c2951f32 5892 struct btrfs_key location;
5f39d397 5893
9cdda8d3
AV
5894 if (!dir_emit_dots(file, ctx))
5895 return 0;
5896
49593bfa 5897 path = btrfs_alloc_path();
16cdcec7
MX
5898 if (!path)
5899 return -ENOMEM;
ff5714cc 5900
23b5ec74 5901 addr = private->filldir_buf;
e4058b54 5902 path->reada = READA_FORWARD;
49593bfa 5903
9b378f6a
FM
5904 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5905 &ins_list, &del_list);
16cdcec7 5906
23b5ec74 5907again:
c2951f32 5908 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5909 key.offset = ctx->pos;
4a0cc7ca 5910 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5911
a8ce68fd 5912 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
23b5ec74 5913 struct dir_entry *entry;
a8ce68fd 5914 struct extent_buffer *leaf = path->nodes[0];
94a48aef 5915 u8 ftype;
5f39d397
CM
5916
5917 if (found_key.objectid != key.objectid)
39279cc3 5918 break;
c2951f32 5919 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5920 break;
9cdda8d3 5921 if (found_key.offset < ctx->pos)
a8ce68fd 5922 continue;
9b378f6a
FM
5923 if (found_key.offset > private->last_index)
5924 break;
c2951f32 5925 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
a8ce68fd
GN
5926 continue;
5927 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
c2951f32 5928 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5929 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5930 PAGE_SIZE) {
5931 btrfs_release_path(path);
5932 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5933 if (ret)
5934 goto nopos;
5935 addr = private->filldir_buf;
5936 entries = 0;
5937 total_len = 0;
5938 goto again;
c2951f32 5939 }
23b5ec74 5940
94a48aef 5941 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
23b5ec74 5942 entry = addr;
23b5ec74 5943 name_ptr = (char *)(entry + 1);
94a48aef
OS
5944 read_extent_buffer(leaf, name_ptr,
5945 (unsigned long)(di + 1), name_len);
5946 put_unaligned(name_len, &entry->name_len);
5947 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
c2951f32 5948 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5949 put_unaligned(location.objectid, &entry->ino);
5950 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5951 entries++;
5952 addr += sizeof(struct dir_entry) + name_len;
5953 total_len += sizeof(struct dir_entry) + name_len;
39279cc3 5954 }
a8ce68fd
GN
5955 /* Catch error encountered during iteration */
5956 if (ret < 0)
5957 goto err;
5958
23b5ec74
JB
5959 btrfs_release_path(path);
5960
5961 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5962 if (ret)
5963 goto nopos;
49593bfa 5964
d2fbb2b5 5965 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5966 if (ret)
bc4ef759
DS
5967 goto nopos;
5968
db62efbb
ZB
5969 /*
5970 * Stop new entries from being returned after we return the last
5971 * entry.
5972 *
5973 * New directory entries are assigned a strictly increasing
5974 * offset. This means that new entries created during readdir
5975 * are *guaranteed* to be seen in the future by that readdir.
5976 * This has broken buggy programs which operate on names as
5977 * they're returned by readdir. Until we re-use freed offsets
5978 * we have this hack to stop new entries from being returned
5979 * under the assumption that they'll never reach this huge
5980 * offset.
5981 *
5982 * This is being careful not to overflow 32bit loff_t unless the
5983 * last entry requires it because doing so has broken 32bit apps
5984 * in the past.
5985 */
c2951f32
JM
5986 if (ctx->pos >= INT_MAX)
5987 ctx->pos = LLONG_MAX;
5988 else
5989 ctx->pos = INT_MAX;
39279cc3
CM
5990nopos:
5991 ret = 0;
5992err:
02dbfc99
OS
5993 if (put)
5994 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5995 btrfs_free_path(path);
39279cc3
CM
5996 return ret;
5997}
5998
39279cc3 5999/*
54aa1f4d 6000 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6001 * inode changes. But, it is most likely to find the inode in cache.
6002 * FIXME, needs more benchmarking...there are no reasons other than performance
6003 * to keep or drop this code.
6004 */
7152b425 6005static int btrfs_dirty_inode(struct btrfs_inode *inode)
39279cc3 6006{
7152b425
DS
6007 struct btrfs_root *root = inode->root;
6008 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6009 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6010 int ret;
6011
7152b425 6012 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
22c44fe6 6013 return 0;
39279cc3 6014
7a7eaa40 6015 trans = btrfs_join_transaction(root);
22c44fe6
JB
6016 if (IS_ERR(trans))
6017 return PTR_ERR(trans);
8929ecfa 6018
8b9d0322 6019 ret = btrfs_update_inode(trans, inode);
2199cb0f 6020 if (ret == -ENOSPC || ret == -EDQUOT) {
94b60442 6021 /* whoops, lets try again with the full transaction */
3a45bb20 6022 btrfs_end_transaction(trans);
94b60442 6023 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6024 if (IS_ERR(trans))
6025 return PTR_ERR(trans);
8929ecfa 6026
8b9d0322 6027 ret = btrfs_update_inode(trans, inode);
94b60442 6028 }
3a45bb20 6029 btrfs_end_transaction(trans);
7152b425 6030 if (inode->delayed_node)
2ff7e61e 6031 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6032
6033 return ret;
6034}
6035
6036/*
6037 * This is a copy of file_update_time. We need this so we can return error on
6038 * ENOSPC for updating the inode in the case of file write and mmap writes.
6039 */
913e9928 6040static int btrfs_update_time(struct inode *inode, int flags)
22c44fe6 6041{
2bc55652 6042 struct btrfs_root *root = BTRFS_I(inode)->root;
a666ce9b 6043 bool dirty;
2bc55652
AB
6044
6045 if (btrfs_root_readonly(root))
6046 return -EROFS;
6047
bb7cc0a6 6048 dirty = inode_update_timestamps(inode, flags);
7152b425 6049 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
39279cc3
CM
6050}
6051
d352ac68
CM
6052/*
6053 * helper to find a free sequence number in a given directory. This current
6054 * code is very simple, later versions will do smarter things in the btree
6055 */
877574e2 6056int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6057{
6058 int ret = 0;
6059
877574e2
NB
6060 if (dir->index_cnt == (u64)-1) {
6061 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6062 if (ret) {
6063 ret = btrfs_set_inode_index_count(dir);
6064 if (ret)
6065 return ret;
6066 }
aec7477b
JB
6067 }
6068
877574e2
NB
6069 *index = dir->index_cnt;
6070 dir->index_cnt++;
aec7477b
JB
6071
6072 return ret;
6073}
6074
b0d5d10f
CM
6075static int btrfs_insert_inode_locked(struct inode *inode)
6076{
6077 struct btrfs_iget_args args;
0202e83f
DS
6078
6079 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
6080 args.root = BTRFS_I(inode)->root;
6081
6082 return insert_inode_locked4(inode,
6083 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6084 btrfs_find_actor, &args);
6085}
6086
3538d68d
OS
6087int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6088 unsigned int *trans_num_items)
6089{
6090 struct inode *dir = args->dir;
6091 struct inode *inode = args->inode;
6092 int ret;
6093
ab3c5c18
STD
6094 if (!args->orphan) {
6095 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6096 &args->fname);
6097 if (ret)
6098 return ret;
ab3c5c18
STD
6099 }
6100
3538d68d 6101 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
ab3c5c18
STD
6102 if (ret) {
6103 fscrypt_free_filename(&args->fname);
3538d68d 6104 return ret;
ab3c5c18 6105 }
3538d68d
OS
6106
6107 /* 1 to add inode item */
6108 *trans_num_items = 1;
6109 /* 1 to add compression property */
6110 if (BTRFS_I(dir)->prop_compress)
6111 (*trans_num_items)++;
6112 /* 1 to add default ACL xattr */
6113 if (args->default_acl)
6114 (*trans_num_items)++;
6115 /* 1 to add access ACL xattr */
6116 if (args->acl)
6117 (*trans_num_items)++;
6118#ifdef CONFIG_SECURITY
6119 /* 1 to add LSM xattr */
6120 if (dir->i_security)
6121 (*trans_num_items)++;
6122#endif
6123 if (args->orphan) {
6124 /* 1 to add orphan item */
6125 (*trans_num_items)++;
6126 } else {
6127 /*
3538d68d
OS
6128 * 1 to add dir item
6129 * 1 to add dir index
6130 * 1 to update parent inode item
97bdf1a9
FM
6131 *
6132 * No need for 1 unit for the inode ref item because it is
6133 * inserted in a batch together with the inode item at
6134 * btrfs_create_new_inode().
3538d68d 6135 */
97bdf1a9 6136 *trans_num_items += 3;
3538d68d
OS
6137 }
6138 return 0;
6139}
6140
6141void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6142{
6143 posix_acl_release(args->acl);
6144 posix_acl_release(args->default_acl);
ab3c5c18 6145 fscrypt_free_filename(&args->fname);
3538d68d
OS
6146}
6147
19aee8de
AJ
6148/*
6149 * Inherit flags from the parent inode.
6150 *
6151 * Currently only the compression flags and the cow flags are inherited.
6152 */
7a0443f0 6153static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
19aee8de
AJ
6154{
6155 unsigned int flags;
6156
7a0443f0 6157 flags = dir->flags;
19aee8de
AJ
6158
6159 if (flags & BTRFS_INODE_NOCOMPRESS) {
7a0443f0
DS
6160 inode->flags &= ~BTRFS_INODE_COMPRESS;
6161 inode->flags |= BTRFS_INODE_NOCOMPRESS;
19aee8de 6162 } else if (flags & BTRFS_INODE_COMPRESS) {
7a0443f0
DS
6163 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6164 inode->flags |= BTRFS_INODE_COMPRESS;
19aee8de
AJ
6165 }
6166
6167 if (flags & BTRFS_INODE_NODATACOW) {
7a0443f0
DS
6168 inode->flags |= BTRFS_INODE_NODATACOW;
6169 if (S_ISREG(inode->vfs_inode.i_mode))
6170 inode->flags |= BTRFS_INODE_NODATASUM;
19aee8de
AJ
6171 }
6172
7a0443f0 6173 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
19aee8de
AJ
6174}
6175
3538d68d 6176int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
caae78e0 6177 struct btrfs_new_inode_args *args)
39279cc3 6178{
d5acbc60 6179 struct timespec64 ts;
caae78e0 6180 struct inode *dir = args->dir;
3538d68d 6181 struct inode *inode = args->inode;
6db75318 6182 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
caae78e0 6183 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
3538d68d 6184 struct btrfs_root *root;
5f39d397 6185 struct btrfs_inode_item *inode_item;
39279cc3 6186 struct btrfs_key *location;
5f39d397 6187 struct btrfs_path *path;
6437d458 6188 u64 objectid;
9c58309d
CM
6189 struct btrfs_inode_ref *ref;
6190 struct btrfs_key key[2];
6191 u32 sizes[2];
b7ef5f3a 6192 struct btrfs_item_batch batch;
9c58309d 6193 unsigned long ptr;
39279cc3 6194 int ret;
39279cc3 6195
5f39d397 6196 path = btrfs_alloc_path();
d8926bb3 6197 if (!path)
a1fd0c35 6198 return -ENOMEM;
39279cc3 6199
3538d68d
OS
6200 if (!args->subvol)
6201 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6202 root = BTRFS_I(inode)->root;
6203
6437d458 6204 ret = btrfs_get_free_objectid(root, &objectid);
caae78e0
OS
6205 if (ret)
6206 goto out;
581bb050
LZ
6207 inode->i_ino = objectid;
6208
caae78e0
OS
6209 if (args->orphan) {
6210 /*
6211 * O_TMPFILE, set link count to 0, so that after this point, we
6212 * fill in an inode item with the correct link count.
6213 */
6214 set_nlink(inode, 0);
6215 } else {
1abe9b8a 6216 trace_btrfs_inode_request(dir);
6217
caae78e0
OS
6218 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6219 if (ret)
6220 goto out;
aec7477b 6221 }
49024388
FM
6222 /* index_cnt is ignored for everything but a dir. */
6223 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
e02119d5 6224 BTRFS_I(inode)->generation = trans->transid;
76195853 6225 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6226
ed9b50a1
JB
6227 /*
6228 * We don't have any capability xattrs set here yet, shortcut any
6229 * queries for the xattrs here. If we add them later via the inode
6230 * security init path or any other path this flag will be cleared.
6231 */
6232 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6233
caae78e0
OS
6234 /*
6235 * Subvolumes don't inherit flags from their parent directory.
6236 * Originally this was probably by accident, but we probably can't
6237 * change it now without compatibility issues.
6238 */
6239 if (!args->subvol)
7a0443f0 6240 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
305eaac0 6241
a1fd0c35 6242 if (S_ISREG(inode->i_mode)) {
305eaac0
OS
6243 if (btrfs_test_opt(fs_info, NODATASUM))
6244 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6245 if (btrfs_test_opt(fs_info, NODATACOW))
6246 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6247 BTRFS_INODE_NODATASUM;
6248 }
6249
caae78e0
OS
6250 location = &BTRFS_I(inode)->location;
6251 location->objectid = objectid;
6252 location->offset = 0;
6253 location->type = BTRFS_INODE_ITEM_KEY;
6254
6255 ret = btrfs_insert_inode_locked(inode);
6256 if (ret < 0) {
6257 if (!args->orphan)
6258 BTRFS_I(dir)->index_cnt--;
6259 goto out;
6260 }
6261
5dc562c5
JB
6262 /*
6263 * We could have gotten an inode number from somebody who was fsynced
6264 * and then removed in this same transaction, so let's just set full
6265 * sync since it will be a full sync anyway and this will blow away the
6266 * old info in the log.
6267 */
23e3337f 6268 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5 6269
9c58309d 6270 key[0].objectid = objectid;
962a298f 6271 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6272 key[0].offset = 0;
6273
9c58309d 6274 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5 6275
caae78e0 6276 if (!args->orphan) {
ef3b9af5
FM
6277 /*
6278 * Start new inodes with an inode_ref. This is slightly more
6279 * efficient for small numbers of hard links since they will
6280 * be packed into one item. Extended refs will kick in if we
6281 * add more hard links than can fit in the ref item.
6282 */
6283 key[1].objectid = objectid;
962a298f 6284 key[1].type = BTRFS_INODE_REF_KEY;
caae78e0 6285 if (args->subvol) {
23c24ef8 6286 key[1].offset = objectid;
caae78e0
OS
6287 sizes[1] = 2 + sizeof(*ref);
6288 } else {
6289 key[1].offset = btrfs_ino(BTRFS_I(dir));
e43eec81 6290 sizes[1] = name->len + sizeof(*ref);
caae78e0 6291 }
ef3b9af5 6292 }
9c58309d 6293
b7ef5f3a
FM
6294 batch.keys = &key[0];
6295 batch.data_sizes = &sizes[0];
caae78e0
OS
6296 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6297 batch.nr = args->orphan ? 1 : 2;
b7ef5f3a 6298 ret = btrfs_insert_empty_items(trans, root, path, &batch);
caae78e0
OS
6299 if (ret != 0) {
6300 btrfs_abort_transaction(trans, ret);
6301 goto discard;
6302 }
5f39d397 6303
d5acbc60
LT
6304 ts = simple_inode_init_ts(inode);
6305 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6306 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
9cc97d64 6307
caae78e0
OS
6308 /*
6309 * We're going to fill the inode item now, so at this point the inode
6310 * must be fully initialized.
6311 */
6312
5f39d397
CM
6313 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6314 struct btrfs_inode_item);
b159fa28 6315 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6316 sizeof(*inode_item));
e02119d5 6317 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6318
caae78e0 6319 if (!args->orphan) {
ef3b9af5
FM
6320 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6321 struct btrfs_inode_ref);
ef3b9af5 6322 ptr = (unsigned long)(ref + 1);
caae78e0
OS
6323 if (args->subvol) {
6324 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6325 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6326 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6327 } else {
e43eec81
STD
6328 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6329 name->len);
caae78e0
OS
6330 btrfs_set_inode_ref_index(path->nodes[0], ref,
6331 BTRFS_I(inode)->dir_index);
e43eec81
STD
6332 write_extent_buffer(path->nodes[0], name->name, ptr,
6333 name->len);
caae78e0 6334 }
ef3b9af5 6335 }
9c58309d 6336
50564b65 6337 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
814e7718
FM
6338 /*
6339 * We don't need the path anymore, plus inheriting properties, adding
6340 * ACLs, security xattrs, orphan item or adding the link, will result in
6341 * allocating yet another path. So just free our path.
6342 */
6343 btrfs_free_path(path);
6344 path = NULL;
5f39d397 6345
6c3636eb
STD
6346 if (args->subvol) {
6347 struct inode *parent;
6348
6349 /*
6350 * Subvolumes inherit properties from their parent subvolume,
6351 * not the directory they were created in.
6352 */
6353 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6354 BTRFS_I(dir)->root);
6355 if (IS_ERR(parent)) {
6356 ret = PTR_ERR(parent);
6357 } else {
6358 ret = btrfs_inode_inherit_props(trans, inode, parent);
6359 iput(parent);
6360 }
6361 } else {
6362 ret = btrfs_inode_inherit_props(trans, inode, dir);
6363 }
6364 if (ret) {
6365 btrfs_err(fs_info,
6366 "error inheriting props for ino %llu (root %llu): %d",
6367 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6368 ret);
6369 }
6370
6371 /*
6372 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6373 * probably a bug.
6374 */
6375 if (!args->subvol) {
6376 ret = btrfs_init_inode_security(trans, args);
6377 if (ret) {
6378 btrfs_abort_transaction(trans, ret);
6379 goto discard;
6380 }
6381 }
6382
4c45a4f4 6383 inode_tree_add(BTRFS_I(inode));
1abe9b8a 6384
6385 trace_btrfs_inode_new(inode);
d9094414 6386 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6387
8ea05e3a
AB
6388 btrfs_update_root_times(trans, root);
6389
caae78e0
OS
6390 if (args->orphan) {
6391 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6392 } else {
6393 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 6394 0, BTRFS_I(inode)->dir_index);
caae78e0
OS
6395 }
6396 if (ret) {
6397 btrfs_abort_transaction(trans, ret);
6398 goto discard;
6399 }
63541927 6400
814e7718 6401 return 0;
b0d5d10f 6402
caae78e0 6403discard:
a1fd0c35
OS
6404 /*
6405 * discard_new_inode() calls iput(), but the caller owns the reference
6406 * to the inode.
6407 */
6408 ihold(inode);
32955c54 6409 discard_new_inode(inode);
caae78e0 6410out:
5f39d397 6411 btrfs_free_path(path);
a1fd0c35 6412 return ret;
39279cc3
CM
6413}
6414
d352ac68
CM
6415/*
6416 * utility function to add 'inode' into 'parent_inode' with
6417 * a give name and a given sequence number.
6418 * if 'add_backref' is true, also insert a backref from the
6419 * inode to the parent directory.
6420 */
e02119d5 6421int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6422 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6db75318 6423 const struct fscrypt_str *name, int add_backref, u64 index)
39279cc3 6424{
4df27c4d 6425 int ret = 0;
39279cc3 6426 struct btrfs_key key;
db0a669f
NB
6427 struct btrfs_root *root = parent_inode->root;
6428 u64 ino = btrfs_ino(inode);
6429 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6430
33345d01 6431 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6432 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6433 } else {
33345d01 6434 key.objectid = ino;
962a298f 6435 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6436 key.offset = 0;
6437 }
6438
33345d01 6439 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6440 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa 6441 root->root_key.objectid, parent_ino,
e43eec81 6442 index, name);
4df27c4d 6443 } else if (add_backref) {
e43eec81
STD
6444 ret = btrfs_insert_inode_ref(trans, root, name,
6445 ino, parent_ino, index);
4df27c4d 6446 }
39279cc3 6447
79787eaa
JM
6448 /* Nothing to clean up yet */
6449 if (ret)
6450 return ret;
4df27c4d 6451
e43eec81 6452 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
db0a669f 6453 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6454 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6455 goto fail_dir_item;
6456 else if (ret) {
66642832 6457 btrfs_abort_transaction(trans, ret);
79787eaa 6458 return ret;
39279cc3 6459 }
79787eaa 6460
db0a669f 6461 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
e43eec81 6462 name->len * 2);
db0a669f 6463 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6464 /*
6465 * If we are replaying a log tree, we do not want to update the mtime
6466 * and ctime of the parent directory with the current time, since the
6467 * log replay procedure is responsible for setting them to their correct
6468 * values (the ones it had when the fsync was done).
6469 */
2a9462de 6470 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
b1c38a13
JL
6471 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6472 inode_set_ctime_current(&parent_inode->vfs_inode));
5338e43a 6473
8b9d0322 6474 ret = btrfs_update_inode(trans, parent_inode);
79787eaa 6475 if (ret)
66642832 6476 btrfs_abort_transaction(trans, ret);
39279cc3 6477 return ret;
fe66a05a
CM
6478
6479fail_dir_item:
6480 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6481 u64 local_index;
6482 int err;
3ee1c553 6483 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa 6484 root->root_key.objectid, parent_ino,
e43eec81 6485 &local_index, name);
1690dd41
JT
6486 if (err)
6487 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6488 } else if (add_backref) {
6489 u64 local_index;
6490 int err;
6491
e43eec81
STD
6492 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6493 &local_index);
1690dd41
JT
6494 if (err)
6495 btrfs_abort_transaction(trans, err);
fe66a05a 6496 }
1690dd41
JT
6497
6498 /* Return the original error code */
fe66a05a 6499 return ret;
39279cc3
CM
6500}
6501
5f465bf1
OS
6502static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6503 struct inode *inode)
618e21d5 6504{
2ff7e61e 6505 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5 6506 struct btrfs_root *root = BTRFS_I(dir)->root;
3538d68d
OS
6507 struct btrfs_new_inode_args new_inode_args = {
6508 .dir = dir,
6509 .dentry = dentry,
6510 .inode = inode,
6511 };
6512 unsigned int trans_num_items;
5f465bf1 6513 struct btrfs_trans_handle *trans;
618e21d5 6514 int err;
618e21d5 6515
3538d68d 6516 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
6517 if (err)
6518 goto out_inode;
3538d68d
OS
6519
6520 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 6521 if (IS_ERR(trans)) {
3538d68d
OS
6522 err = PTR_ERR(trans);
6523 goto out_new_inode_args;
a1fd0c35 6524 }
1832a6d5 6525
caae78e0
OS
6526 err = btrfs_create_new_inode(trans, &new_inode_args);
6527 if (!err)
6528 d_instantiate_new(dentry, inode);
b0d5d10f 6529
3a45bb20 6530 btrfs_end_transaction(trans);
5f465bf1 6531 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
6532out_new_inode_args:
6533 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
6534out_inode:
6535 if (err)
6536 iput(inode);
618e21d5
JB
6537 return err;
6538}
6539
5ebb29be 6540static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
5f465bf1
OS
6541 struct dentry *dentry, umode_t mode, dev_t rdev)
6542{
6543 struct inode *inode;
6544
6545 inode = new_inode(dir->i_sb);
6546 if (!inode)
6547 return -ENOMEM;
f2d40141 6548 inode_init_owner(idmap, inode, dir, mode);
5f465bf1
OS
6549 inode->i_op = &btrfs_special_inode_operations;
6550 init_special_inode(inode, inode->i_mode, rdev);
6551 return btrfs_create_common(dir, dentry, inode);
6552}
6553
6c960e68 6554static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6555 struct dentry *dentry, umode_t mode, bool excl)
39279cc3 6556{
a1fd0c35 6557 struct inode *inode;
39279cc3 6558
a1fd0c35
OS
6559 inode = new_inode(dir->i_sb);
6560 if (!inode)
6561 return -ENOMEM;
f2d40141 6562 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
6563 inode->i_fop = &btrfs_file_operations;
6564 inode->i_op = &btrfs_file_inode_operations;
6565 inode->i_mapping->a_ops = &btrfs_aops;
5f465bf1 6566 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6567}
6568
6569static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6570 struct dentry *dentry)
6571{
271dba45 6572 struct btrfs_trans_handle *trans = NULL;
39279cc3 6573 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6574 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ab3c5c18 6576 struct fscrypt_name fname;
00e4e6b3 6577 u64 index;
39279cc3
CM
6578 int err;
6579 int drop_inode = 0;
6580
4a8be425 6581 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6582 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6583 return -EXDEV;
4a8be425 6584
f186373f 6585 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6586 return -EMLINK;
4a8be425 6587
ab3c5c18
STD
6588 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6589 if (err)
6590 goto fail;
6591
877574e2 6592 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6593 if (err)
6594 goto fail;
6595
a22285a6 6596 /*
7e6b6465 6597 * 2 items for inode and inode ref
a22285a6 6598 * 2 items for dir items
7e6b6465 6599 * 1 item for parent inode
399b0bbf 6600 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6601 */
399b0bbf 6602 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6603 if (IS_ERR(trans)) {
6604 err = PTR_ERR(trans);
271dba45 6605 trans = NULL;
a22285a6
YZ
6606 goto fail;
6607 }
5f39d397 6608
67de1176
MX
6609 /* There are several dir indexes for this inode, clear the cache. */
6610 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6611 inc_nlink(inode);
0c4d2d95 6612 inode_inc_iversion(inode);
2a9462de 6613 inode_set_ctime_current(inode);
7de9c6ee 6614 ihold(inode);
e9976151 6615 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6616
81512e89 6617 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6db75318 6618 &fname.disk_name, 1, index);
5f39d397 6619
a5719521 6620 if (err) {
54aa1f4d 6621 drop_inode = 1;
a5719521 6622 } else {
10d9f309 6623 struct dentry *parent = dentry->d_parent;
d4682ba0 6624
8b9d0322 6625 err = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
6626 if (err)
6627 goto fail;
ef3b9af5
FM
6628 if (inode->i_nlink == 1) {
6629 /*
6630 * If new hard link count is 1, it's a file created
6631 * with open(2) O_TMPFILE flag.
6632 */
3d6ae7bb 6633 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6634 if (err)
6635 goto fail;
6636 }
08c422c2 6637 d_instantiate(dentry, inode);
88d2beec 6638 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
a5719521 6639 }
39279cc3 6640
1832a6d5 6641fail:
ab3c5c18 6642 fscrypt_free_filename(&fname);
271dba45 6643 if (trans)
3a45bb20 6644 btrfs_end_transaction(trans);
39279cc3
CM
6645 if (drop_inode) {
6646 inode_dec_link_count(inode);
6647 iput(inode);
6648 }
2ff7e61e 6649 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6650 return err;
6651}
6652
c54bd91e 6653static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6654 struct dentry *dentry, umode_t mode)
39279cc3 6655{
a1fd0c35 6656 struct inode *inode;
39279cc3 6657
a1fd0c35
OS
6658 inode = new_inode(dir->i_sb);
6659 if (!inode)
6660 return -ENOMEM;
f2d40141 6661 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
a1fd0c35
OS
6662 inode->i_op = &btrfs_dir_inode_operations;
6663 inode->i_fop = &btrfs_dir_file_operations;
5f465bf1 6664 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6665}
6666
c8b97818 6667static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6668 struct page *page,
c8b97818
CM
6669 struct btrfs_file_extent_item *item)
6670{
6671 int ret;
6672 struct extent_buffer *leaf = path->nodes[0];
6673 char *tmp;
6674 size_t max_size;
6675 unsigned long inline_size;
6676 unsigned long ptr;
261507a0 6677 int compress_type;
c8b97818 6678
261507a0 6679 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818 6680 max_size = btrfs_file_extent_ram_bytes(leaf, item);
437bd07e 6681 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
c8b97818 6682 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6683 if (!tmp)
6684 return -ENOMEM;
c8b97818
CM
6685 ptr = btrfs_file_extent_inline_start(item);
6686
6687 read_extent_buffer(leaf, tmp, ptr, inline_size);
6688
09cbfeaf 6689 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
a982fc82 6690 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
e1699d2d
ZB
6691
6692 /*
6693 * decompression code contains a memset to fill in any space between the end
6694 * of the uncompressed data and the end of max_size in case the decompressed
6695 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6696 * the end of an inline extent and the beginning of the next block, so we
6697 * cover that region here.
6698 */
6699
a982fc82
QW
6700 if (max_size < PAGE_SIZE)
6701 memzero_page(page, max_size, PAGE_SIZE - max_size);
c8b97818 6702 kfree(tmp);
166ae5a4 6703 return ret;
c8b97818
CM
6704}
6705
a982fc82
QW
6706static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6707 struct page *page)
6708{
6709 struct btrfs_file_extent_item *fi;
6710 void *kaddr;
6711 size_t copy_size;
6712
6713 if (!page || PageUptodate(page))
6714 return 0;
6715
6716 ASSERT(page_offset(page) == 0);
6717
6718 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6719 struct btrfs_file_extent_item);
6720 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6721 return uncompress_inline(path, page, fi);
6722
6723 copy_size = min_t(u64, PAGE_SIZE,
6724 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6725 kaddr = kmap_local_page(page);
6726 read_extent_buffer(path->nodes[0], kaddr,
6727 btrfs_file_extent_inline_start(fi), copy_size);
6728 kunmap_local(kaddr);
6729 if (copy_size < PAGE_SIZE)
6730 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6731 return 0;
6732}
6733
43dd529a
DS
6734/*
6735 * Lookup the first extent overlapping a range in a file.
6736 *
39b07b5d
OS
6737 * @inode: file to search in
6738 * @page: page to read extent data into if the extent is inline
6739 * @pg_offset: offset into @page to copy to
6740 * @start: file offset
6741 * @len: length of range starting at @start
6742 *
43dd529a
DS
6743 * Return the first &struct extent_map which overlaps the given range, reading
6744 * it from the B-tree and caching it if necessary. Note that there may be more
6745 * extents which overlap the given range after the returned extent_map.
d352ac68 6746 *
39b07b5d
OS
6747 * If @page is not NULL and the extent is inline, this also reads the extent
6748 * data directly into the page and marks the extent up to date in the io_tree.
6749 *
6750 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6751 */
fc4f21b1 6752struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6753 struct page *page, size_t pg_offset,
6754 u64 start, u64 len)
a52d9a80 6755{
3ffbd68c 6756 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6757 int ret = 0;
a52d9a80
CM
6758 u64 extent_start = 0;
6759 u64 extent_end = 0;
fc4f21b1 6760 u64 objectid = btrfs_ino(inode);
7e74e235 6761 int extent_type = -1;
f421950f 6762 struct btrfs_path *path = NULL;
fc4f21b1 6763 struct btrfs_root *root = inode->root;
a52d9a80 6764 struct btrfs_file_extent_item *item;
5f39d397
CM
6765 struct extent_buffer *leaf;
6766 struct btrfs_key found_key;
a52d9a80 6767 struct extent_map *em = NULL;
fc4f21b1 6768 struct extent_map_tree *em_tree = &inode->extent_tree;
a52d9a80 6769
890871be 6770 read_lock(&em_tree->lock);
d1310b2e 6771 em = lookup_extent_mapping(em_tree, start, len);
890871be 6772 read_unlock(&em_tree->lock);
d1310b2e 6773
a52d9a80 6774 if (em) {
e1c4b745
CM
6775 if (em->start > start || em->start + em->len <= start)
6776 free_extent_map(em);
6777 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6778 free_extent_map(em);
6779 else
6780 goto out;
a52d9a80 6781 }
172ddd60 6782 em = alloc_extent_map();
a52d9a80 6783 if (!em) {
1028d1c4 6784 ret = -ENOMEM;
d1310b2e 6785 goto out;
a52d9a80 6786 }
d1310b2e 6787 em->start = EXTENT_MAP_HOLE;
445a6944 6788 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6789 em->len = (u64)-1;
c8b97818 6790 em->block_len = (u64)-1;
f421950f 6791
bee6ec82 6792 path = btrfs_alloc_path();
f421950f 6793 if (!path) {
1028d1c4 6794 ret = -ENOMEM;
bee6ec82 6795 goto out;
f421950f
CM
6796 }
6797
bee6ec82
LB
6798 /* Chances are we'll be called again, so go ahead and do readahead */
6799 path->reada = READA_FORWARD;
4d7240f0
JB
6800
6801 /*
6802 * The same explanation in load_free_space_cache applies here as well,
6803 * we only read when we're loading the free space cache, and at that
6804 * point the commit_root has everything we need.
6805 */
6806 if (btrfs_is_free_space_inode(inode)) {
6807 path->search_commit_root = 1;
6808 path->skip_locking = 1;
6809 }
51899412 6810
5c9a702e 6811 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6812 if (ret < 0) {
a52d9a80 6813 goto out;
b8eeab7f 6814 } else if (ret > 0) {
a52d9a80
CM
6815 if (path->slots[0] == 0)
6816 goto not_found;
6817 path->slots[0]--;
1028d1c4 6818 ret = 0;
a52d9a80
CM
6819 }
6820
5f39d397
CM
6821 leaf = path->nodes[0];
6822 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6823 struct btrfs_file_extent_item);
5f39d397 6824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6825 if (found_key.objectid != objectid ||
694c12ed 6826 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6827 /*
6828 * If we backup past the first extent we want to move forward
6829 * and see if there is an extent in front of us, otherwise we'll
6830 * say there is a hole for our whole search range which can
6831 * cause problems.
6832 */
6833 extent_end = start;
6834 goto next;
a52d9a80
CM
6835 }
6836
694c12ed 6837 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6838 extent_start = found_key.offset;
a5eeb3d1 6839 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6840 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6842 /* Only regular file could have regular/prealloc extent */
6843 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6844 ret = -EUCLEAN;
6bf9e4bd
QW
6845 btrfs_crit(fs_info,
6846 "regular/prealloc extent found for non-regular inode %llu",
6847 btrfs_ino(inode));
6848 goto out;
6849 }
09ed2f16
LB
6850 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6851 extent_start);
694c12ed 6852 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6853 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6854 path->slots[0],
6855 extent_start);
9036c102 6856 }
25a50341 6857next:
9036c102
YZ
6858 if (start >= extent_end) {
6859 path->slots[0]++;
6860 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6861 ret = btrfs_next_leaf(root, path);
1028d1c4 6862 if (ret < 0)
9036c102 6863 goto out;
1028d1c4 6864 else if (ret > 0)
9036c102 6865 goto not_found;
1028d1c4 6866
9036c102 6867 leaf = path->nodes[0];
a52d9a80 6868 }
9036c102
YZ
6869 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6870 if (found_key.objectid != objectid ||
6871 found_key.type != BTRFS_EXTENT_DATA_KEY)
6872 goto not_found;
6873 if (start + len <= found_key.offset)
6874 goto not_found;
e2eca69d
WS
6875 if (start > found_key.offset)
6876 goto next;
02a033df
NB
6877
6878 /* New extent overlaps with existing one */
9036c102 6879 em->start = start;
70c8a91c 6880 em->orig_start = start;
9036c102 6881 em->len = found_key.offset - start;
02a033df
NB
6882 em->block_start = EXTENT_MAP_HOLE;
6883 goto insert;
9036c102
YZ
6884 }
6885
280f15cb 6886 btrfs_extent_item_to_extent_map(inode, path, item, em);
7ffbb598 6887
694c12ed
NB
6888 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6889 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6890 goto insert;
694c12ed 6891 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
affc5424
QW
6892 /*
6893 * Inline extent can only exist at file offset 0. This is
6894 * ensured by tree-checker and inline extent creation path.
6895 * Thus all members representing file offsets should be zero.
6896 */
affc5424
QW
6897 ASSERT(pg_offset == 0);
6898 ASSERT(extent_start == 0);
6899 ASSERT(em->start == 0);
5f39d397 6900
a196a894
QW
6901 /*
6902 * btrfs_extent_item_to_extent_map() should have properly
6903 * initialized em members already.
6904 *
6905 * Other members are not utilized for inline extents.
6906 */
6907 ASSERT(em->block_start == EXTENT_MAP_INLINE);
946c2923 6908 ASSERT(em->len == fs_info->sectorsize);
e49aabd9 6909
a982fc82
QW
6910 ret = read_inline_extent(inode, path, page);
6911 if (ret < 0)
6912 goto out;
a52d9a80 6913 goto insert;
a52d9a80
CM
6914 }
6915not_found:
6916 em->start = start;
70c8a91c 6917 em->orig_start = start;
d1310b2e 6918 em->len = len;
5f39d397 6919 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6920insert:
1028d1c4 6921 ret = 0;
b3b4aa74 6922 btrfs_release_path(path);
d1310b2e 6923 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6924 btrfs_err(fs_info,
5d163e0e
JM
6925 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6926 em->start, em->len, start, len);
1028d1c4 6927 ret = -EIO;
a52d9a80
CM
6928 goto out;
6929 }
d1310b2e 6930
890871be 6931 write_lock(&em_tree->lock);
1028d1c4 6932 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6933 write_unlock(&em_tree->lock);
a52d9a80 6934out:
c6414280 6935 btrfs_free_path(path);
1abe9b8a 6936
fc4f21b1 6937 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6938
1028d1c4 6939 if (ret) {
a52d9a80 6940 free_extent_map(em);
1028d1c4 6941 return ERR_PTR(ret);
a52d9a80
CM
6942 }
6943 return em;
6944}
6945
64f54188 6946static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
53f2c206 6947 struct btrfs_dio_data *dio_data,
5f9a8a51
FM
6948 const u64 start,
6949 const u64 len,
6950 const u64 orig_start,
6951 const u64 block_start,
6952 const u64 block_len,
6953 const u64 orig_block_len,
6954 const u64 ram_bytes,
6955 const int type)
6956{
6957 struct extent_map *em = NULL;
53f2c206 6958 struct btrfs_ordered_extent *ordered;
5f9a8a51 6959
5f9a8a51 6960 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6961 em = create_io_em(inode, start, len, orig_start, block_start,
6962 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6963 BTRFS_COMPRESS_NONE, /* compress_type */
6964 type);
5f9a8a51
FM
6965 if (IS_ERR(em))
6966 goto out;
6967 }
53f2c206
BB
6968 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6969 block_start, block_len, 0,
6970 (1 << type) |
6971 (1 << BTRFS_ORDERED_DIRECT),
6972 BTRFS_COMPRESS_NONE);
6973 if (IS_ERR(ordered)) {
5f9a8a51
FM
6974 if (em) {
6975 free_extent_map(em);
4c0c8cfc
FM
6976 btrfs_drop_extent_map_range(inode, start,
6977 start + len - 1, false);
5f9a8a51 6978 }
53f2c206
BB
6979 em = ERR_CAST(ordered);
6980 } else {
6981 ASSERT(!dio_data->ordered);
6982 dio_data->ordered = ordered;
5f9a8a51
FM
6983 }
6984 out:
5f9a8a51
FM
6985
6986 return em;
6987}
6988
9fc6f911 6989static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
53f2c206 6990 struct btrfs_dio_data *dio_data,
4b46fce2
JB
6991 u64 start, u64 len)
6992{
9fc6f911
NB
6993 struct btrfs_root *root = inode->root;
6994 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6995 struct extent_map *em;
4b46fce2
JB
6996 struct btrfs_key ins;
6997 u64 alloc_hint;
6998 int ret;
4b46fce2 6999
9fc6f911 7000 alloc_hint = get_extent_allocation_hint(inode, start, len);
776a838f 7001again:
0b246afa 7002 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7003 0, alloc_hint, &ins, 1, 1);
776a838f
NA
7004 if (ret == -EAGAIN) {
7005 ASSERT(btrfs_is_zoned(fs_info));
7006 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7007 TASK_UNINTERRUPTIBLE);
7008 goto again;
7009 }
00361589
JB
7010 if (ret)
7011 return ERR_PTR(ret);
4b46fce2 7012
53f2c206 7013 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
5f9a8a51 7014 ins.objectid, ins.offset, ins.offset,
6288d6ea 7015 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7016 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7017 if (IS_ERR(em))
9fc6f911
NB
7018 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7019 1);
de0ee0ed 7020
4b46fce2
JB
7021 return em;
7022}
7023
f4639636 7024static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
05947ae1
AJ
7025{
7026 struct btrfs_block_group *block_group;
f4639636 7027 bool readonly = false;
05947ae1
AJ
7028
7029 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7030 if (!block_group || block_group->ro)
f4639636 7031 readonly = true;
05947ae1
AJ
7032 if (block_group)
7033 btrfs_put_block_group(block_group);
7034 return readonly;
7035}
7036
46bfbb5c 7037/*
e4ecaf90
QW
7038 * Check if we can do nocow write into the range [@offset, @offset + @len)
7039 *
7040 * @offset: File offset
7041 * @len: The length to write, will be updated to the nocow writeable
7042 * range
7043 * @orig_start: (optional) Return the original file offset of the file extent
7044 * @orig_len: (optional) Return the original on-disk length of the file extent
7045 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7046 * @strict: if true, omit optimizations that might force us into unnecessary
7047 * cow. e.g., don't trust generation number.
e4ecaf90 7048 *
e4ecaf90
QW
7049 * Return:
7050 * >0 and update @len if we can do nocow write
7051 * 0 if we can't do nocow write
7052 * <0 if error happened
7053 *
7054 * NOTE: This only checks the file extents, caller is responsible to wait for
7055 * any ordered extents.
46bfbb5c 7056 */
00361589 7057noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7058 u64 *orig_start, u64 *orig_block_len,
26ce9114 7059 u64 *ram_bytes, bool nowait, bool strict)
46bfbb5c 7060{
2ff7e61e 7061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
619104ba 7062 struct can_nocow_file_extent_args nocow_args = { 0 };
46bfbb5c
CM
7063 struct btrfs_path *path;
7064 int ret;
7065 struct extent_buffer *leaf;
7066 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7068 struct btrfs_file_extent_item *fi;
7069 struct btrfs_key key;
46bfbb5c 7070 int found_type;
e77751aa 7071
46bfbb5c
CM
7072 path = btrfs_alloc_path();
7073 if (!path)
7074 return -ENOMEM;
26ce9114 7075 path->nowait = nowait;
46bfbb5c 7076
f85b7379
DS
7077 ret = btrfs_lookup_file_extent(NULL, root, path,
7078 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7079 if (ret < 0)
7080 goto out;
7081
46bfbb5c 7082 if (ret == 1) {
619104ba 7083 if (path->slots[0] == 0) {
46bfbb5c
CM
7084 /* can't find the item, must cow */
7085 ret = 0;
7086 goto out;
7087 }
619104ba 7088 path->slots[0]--;
46bfbb5c
CM
7089 }
7090 ret = 0;
7091 leaf = path->nodes[0];
619104ba 7092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4a0cc7ca 7093 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7094 key.type != BTRFS_EXTENT_DATA_KEY) {
7095 /* not our file or wrong item type, must cow */
7096 goto out;
7097 }
7098
7099 if (key.offset > offset) {
7100 /* Wrong offset, must cow */
7101 goto out;
7102 }
7103
619104ba 7104 if (btrfs_file_extent_end(path) <= offset)
7ee9e440
JB
7105 goto out;
7106
619104ba
FM
7107 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7108 found_type = btrfs_file_extent_type(leaf, fi);
7109 if (ram_bytes)
7110 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
e77751aa 7111
619104ba
FM
7112 nocow_args.start = offset;
7113 nocow_args.end = offset + *len - 1;
7114 nocow_args.strict = strict;
7115 nocow_args.free_path = true;
7ee9e440 7116
619104ba
FM
7117 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7118 /* can_nocow_file_extent() has freed the path. */
7119 path = NULL;
7ee9e440 7120
619104ba
FM
7121 if (ret != 1) {
7122 /* Treat errors as not being able to NOCOW. */
7123 ret = 0;
78d4295b 7124 goto out;
7ee9e440 7125 }
eb384b55 7126
619104ba
FM
7127 ret = 0;
7128 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
46bfbb5c 7129 goto out;
7b2b7085 7130
619104ba
FM
7131 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7132 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7b2b7085
MX
7133 u64 range_end;
7134
619104ba 7135 range_end = round_up(offset + nocow_args.num_bytes,
da17066c 7136 root->fs_info->sectorsize) - 1;
99be1a66 7137 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7b2b7085
MX
7138 if (ret) {
7139 ret = -EAGAIN;
7140 goto out;
7141 }
7142 }
7143
619104ba
FM
7144 if (orig_start)
7145 *orig_start = key.offset - nocow_args.extent_offset;
7146 if (orig_block_len)
7147 *orig_block_len = nocow_args.disk_num_bytes;
00361589 7148
619104ba 7149 *len = nocow_args.num_bytes;
46bfbb5c
CM
7150 ret = 1;
7151out:
7152 btrfs_free_path(path);
7153 return ret;
7154}
7155
eb838e73 7156static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
59094403
FM
7157 struct extent_state **cached_state,
7158 unsigned int iomap_flags)
eb838e73 7159{
59094403
FM
7160 const bool writing = (iomap_flags & IOMAP_WRITE);
7161 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
eb838e73
JB
7163 struct btrfs_ordered_extent *ordered;
7164 int ret = 0;
7165
7166 while (1) {
59094403 7167 if (nowait) {
83ae4133
JB
7168 if (!try_lock_extent(io_tree, lockstart, lockend,
7169 cached_state))
59094403
FM
7170 return -EAGAIN;
7171 } else {
570eb97b 7172 lock_extent(io_tree, lockstart, lockend, cached_state);
59094403 7173 }
eb838e73
JB
7174 /*
7175 * We're concerned with the entire range that we're going to be
01327610 7176 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7177 * extents in this range.
7178 */
a776c6fa 7179 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7180 lockend - lockstart + 1);
7181
7182 /*
7183 * We need to make sure there are no buffered pages in this
7184 * range either, we could have raced between the invalidate in
7185 * generic_file_direct_write and locking the extent. The
7186 * invalidate needs to happen so that reads after a write do not
7187 * get stale data.
7188 */
fc4adbff 7189 if (!ordered &&
051c98eb
DS
7190 (!writing || !filemap_range_has_page(inode->i_mapping,
7191 lockstart, lockend)))
eb838e73
JB
7192 break;
7193
570eb97b 7194 unlock_extent(io_tree, lockstart, lockend, cached_state);
eb838e73
JB
7195
7196 if (ordered) {
59094403
FM
7197 if (nowait) {
7198 btrfs_put_ordered_extent(ordered);
7199 ret = -EAGAIN;
7200 break;
7201 }
ade77029
FM
7202 /*
7203 * If we are doing a DIO read and the ordered extent we
7204 * found is for a buffered write, we can not wait for it
7205 * to complete and retry, because if we do so we can
7206 * deadlock with concurrent buffered writes on page
7207 * locks. This happens only if our DIO read covers more
7208 * than one extent map, if at this point has already
7209 * created an ordered extent for a previous extent map
7210 * and locked its range in the inode's io tree, and a
7211 * concurrent write against that previous extent map's
7212 * range and this range started (we unlock the ranges
7213 * in the io tree only when the bios complete and
7214 * buffered writes always lock pages before attempting
7215 * to lock range in the io tree).
7216 */
7217 if (writing ||
7218 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
36d45567 7219 btrfs_start_ordered_extent(ordered);
ade77029 7220 else
59094403 7221 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7222 btrfs_put_ordered_extent(ordered);
7223 } else {
eb838e73 7224 /*
b850ae14
FM
7225 * We could trigger writeback for this range (and wait
7226 * for it to complete) and then invalidate the pages for
7227 * this range (through invalidate_inode_pages2_range()),
7228 * but that can lead us to a deadlock with a concurrent
ba206a02 7229 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7230 * triggered a readahead) on a page lock due to an
7231 * ordered dio extent we created before but did not have
7232 * yet a corresponding bio submitted (whence it can not
ba206a02 7233 * complete), which makes readahead wait for that
b850ae14
FM
7234 * ordered extent to complete while holding a lock on
7235 * that page.
eb838e73 7236 */
59094403 7237 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7238 }
7239
ade77029
FM
7240 if (ret)
7241 break;
7242
eb838e73
JB
7243 cond_resched();
7244 }
7245
7246 return ret;
7247}
7248
6f9994db 7249/* The callers of this must take lock_extent() */
4b67c11d
NB
7250static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7251 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7252 u64 block_len, u64 orig_block_len,
7253 u64 ram_bytes, int compress_type,
7254 int type)
69ffb543 7255{
69ffb543 7256 struct extent_map *em;
69ffb543
JB
7257 int ret;
7258
6f9994db
LB
7259 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7260 type == BTRFS_ORDERED_COMPRESSED ||
7261 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7262 type == BTRFS_ORDERED_REGULAR);
6f9994db 7263
69ffb543
JB
7264 em = alloc_extent_map();
7265 if (!em)
7266 return ERR_PTR(-ENOMEM);
7267
7268 em->start = start;
7269 em->orig_start = orig_start;
7270 em->len = len;
7271 em->block_len = block_len;
7272 em->block_start = block_start;
b4939680 7273 em->orig_block_len = orig_block_len;
cc95bef6 7274 em->ram_bytes = ram_bytes;
70c8a91c 7275 em->generation = -1;
f86f7a75
FM
7276 em->flags |= EXTENT_FLAG_PINNED;
7277 if (type == BTRFS_ORDERED_PREALLOC)
7278 em->flags |= EXTENT_FLAG_FILLING;
7279 else if (type == BTRFS_ORDERED_COMPRESSED)
7280 extent_map_set_compression(em, compress_type);
69ffb543 7281
a1ba4c08 7282 ret = btrfs_replace_extent_map_range(inode, em, true);
69ffb543
JB
7283 if (ret) {
7284 free_extent_map(em);
7285 return ERR_PTR(ret);
7286 }
7287
6f9994db 7288 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7289 return em;
7290}
7291
1c8d0175 7292
c5794e51 7293static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7294 struct inode *inode,
7295 struct btrfs_dio_data *dio_data,
7833b865 7296 u64 start, u64 *lenp,
d7a8ab4e 7297 unsigned int iomap_flags)
c5794e51 7298{
d4135134 7299 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
c5794e51
NB
7300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7301 struct extent_map *em = *map;
f0bfa76a
FM
7302 int type;
7303 u64 block_start, orig_start, orig_block_len, ram_bytes;
2306e83e 7304 struct btrfs_block_group *bg;
f0bfa76a
FM
7305 bool can_nocow = false;
7306 bool space_reserved = false;
7833b865 7307 u64 len = *lenp;
6d82ad13 7308 u64 prev_len;
c5794e51
NB
7309 int ret = 0;
7310
7311 /*
7312 * We don't allocate a new extent in the following cases
7313 *
7314 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7315 * existing extent.
7316 * 2) The extent is marked as PREALLOC. We're good to go here and can
7317 * just use the extent.
7318 *
7319 */
f86f7a75 7320 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
c5794e51
NB
7321 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7322 em->block_start != EXTENT_MAP_HOLE)) {
f86f7a75 7323 if (em->flags & EXTENT_FLAG_PREALLOC)
c5794e51
NB
7324 type = BTRFS_ORDERED_PREALLOC;
7325 else
7326 type = BTRFS_ORDERED_NOCOW;
7327 len = min(len, em->len - (start - em->start));
7328 block_start = em->block_start + (start - em->start);
7329
7330 if (can_nocow_extent(inode, start, &len, &orig_start,
26ce9114 7331 &orig_block_len, &ram_bytes, false, false) == 1) {
2306e83e
FM
7332 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7333 if (bg)
7334 can_nocow = true;
7335 }
f0bfa76a 7336 }
c5794e51 7337
6d82ad13 7338 prev_len = len;
f0bfa76a
FM
7339 if (can_nocow) {
7340 struct extent_map *em2;
7341
7342 /* We can NOCOW, so only need to reserve metadata space. */
d4135134
FM
7343 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7344 nowait);
f0bfa76a
FM
7345 if (ret < 0) {
7346 /* Our caller expects us to free the input extent map. */
7347 free_extent_map(em);
7348 *map = NULL;
2306e83e 7349 btrfs_dec_nocow_writers(bg);
d4135134
FM
7350 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7351 ret = -EAGAIN;
f0bfa76a
FM
7352 goto out;
7353 }
7354 space_reserved = true;
7355
53f2c206 7356 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
f0bfa76a
FM
7357 orig_start, block_start,
7358 len, orig_block_len,
7359 ram_bytes, type);
2306e83e 7360 btrfs_dec_nocow_writers(bg);
f0bfa76a
FM
7361 if (type == BTRFS_ORDERED_PREALLOC) {
7362 free_extent_map(em);
c1867eb3
DS
7363 *map = em2;
7364 em = em2;
f0bfa76a 7365 }
c5794e51 7366
f0bfa76a
FM
7367 if (IS_ERR(em2)) {
7368 ret = PTR_ERR(em2);
7369 goto out;
c5794e51 7370 }
f5585f4f
FM
7371
7372 dio_data->nocow_done = true;
f0bfa76a 7373 } else {
f0bfa76a
FM
7374 /* Our caller expects us to free the input extent map. */
7375 free_extent_map(em);
7376 *map = NULL;
7377
7833b865
CH
7378 if (nowait) {
7379 ret = -EAGAIN;
7380 goto out;
7381 }
d7a8ab4e 7382
f5585f4f
FM
7383 /*
7384 * If we could not allocate data space before locking the file
7385 * range and we can't do a NOCOW write, then we have to fail.
7386 */
7833b865
CH
7387 if (!dio_data->data_space_reserved) {
7388 ret = -ENOSPC;
7389 goto out;
7390 }
f5585f4f
FM
7391
7392 /*
7393 * We have to COW and we have already reserved data space before,
7394 * so now we reserve only metadata.
7395 */
7396 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7397 false);
f0bfa76a
FM
7398 if (ret < 0)
7399 goto out;
7400 space_reserved = true;
7401
53f2c206 7402 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
f0bfa76a
FM
7403 if (IS_ERR(em)) {
7404 ret = PTR_ERR(em);
7405 goto out;
7406 }
7407 *map = em;
7408 len = min(len, em->len - (start - em->start));
7409 if (len < prev_len)
f5585f4f
FM
7410 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7411 prev_len - len, true);
c5794e51
NB
7412 }
7413
f0bfa76a
FM
7414 /*
7415 * We have created our ordered extent, so we can now release our reservation
7416 * for an outstanding extent.
7417 */
6d82ad13 7418 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
c5794e51 7419
c5794e51
NB
7420 /*
7421 * Need to update the i_size under the extent lock so buffered
7422 * readers will get the updated i_size when we unlock.
7423 */
f85781fb 7424 if (start + len > i_size_read(inode))
c5794e51 7425 i_size_write(inode, start + len);
c5794e51 7426out:
f0bfa76a
FM
7427 if (ret && space_reserved) {
7428 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
f5585f4f 7429 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
f0bfa76a 7430 }
7833b865 7431 *lenp = len;
c5794e51
NB
7432 return ret;
7433}
7434
f85781fb
GR
7435static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7436 loff_t length, unsigned int flags, struct iomap *iomap,
7437 struct iomap *srcmap)
4b46fce2 7438{
491a6d01 7439 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
0b246afa 7440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7441 struct extent_map *em;
eb838e73 7442 struct extent_state *cached_state = NULL;
491a6d01 7443 struct btrfs_dio_data *dio_data = iter->private;
eb838e73 7444 u64 lockstart, lockend;
f85781fb 7445 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7446 int ret = 0;
f85781fb 7447 u64 len = length;
f5585f4f 7448 const u64 data_alloc_len = length;
f85781fb 7449 bool unlock_extents = false;
eb838e73 7450
79d3d1d1
JB
7451 /*
7452 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7453 * we're NOWAIT we may submit a bio for a partial range and return
7454 * EIOCBQUEUED, which would result in an errant short read.
7455 *
7456 * The best way to handle this would be to allow for partial completions
7457 * of iocb's, so we could submit the partial bio, return and fault in
7458 * the rest of the pages, and then submit the io for the rest of the
7459 * range. However we don't have that currently, so simply return
7460 * -EAGAIN at this point so that the normal path is used.
7461 */
7462 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7463 return -EAGAIN;
7464
ee5b46a3
CH
7465 /*
7466 * Cap the size of reads to that usually seen in buffered I/O as we need
7467 * to allocate a contiguous array for the checksums.
7468 */
f85781fb 7469 if (!write)
ee5b46a3 7470 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
eb838e73 7471
c329861d
JB
7472 lockstart = start;
7473 lockend = start + len - 1;
7474
f85781fb 7475 /*
b023e675
FM
7476 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7477 * enough if we've written compressed pages to this area, so we need to
7478 * flush the dirty pages again to make absolutely sure that any
7479 * outstanding dirty pages are on disk - the first flush only starts
7480 * compression on the data, while keeping the pages locked, so by the
7481 * time the second flush returns we know bios for the compressed pages
7482 * were submitted and finished, and the pages no longer under writeback.
7483 *
7484 * If we have a NOWAIT request and we have any pages in the range that
7485 * are locked, likely due to compression still in progress, we don't want
7486 * to block on page locks. We also don't want to block on pages marked as
7487 * dirty or under writeback (same as for the non-compression case).
7488 * iomap_dio_rw() did the same check, but after that and before we got
7489 * here, mmap'ed writes may have happened or buffered reads started
7490 * (readpage() and readahead(), which lock pages), as we haven't locked
7491 * the file range yet.
f85781fb
GR
7492 */
7493 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7494 &BTRFS_I(inode)->runtime_flags)) {
b023e675
FM
7495 if (flags & IOMAP_NOWAIT) {
7496 if (filemap_range_needs_writeback(inode->i_mapping,
7497 lockstart, lockend))
7498 return -EAGAIN;
7499 } else {
7500 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7501 start + length - 1);
7502 if (ret)
7503 return ret;
7504 }
f85781fb
GR
7505 }
7506
491a6d01 7507 memset(dio_data, 0, sizeof(*dio_data));
f85781fb 7508
f5585f4f
FM
7509 /*
7510 * We always try to allocate data space and must do it before locking
7511 * the file range, to avoid deadlocks with concurrent writes to the same
7512 * range if the range has several extents and the writes don't expand the
7513 * current i_size (the inode lock is taken in shared mode). If we fail to
7514 * allocate data space here we continue and later, after locking the
7515 * file range, we fail with ENOSPC only if we figure out we can not do a
7516 * NOCOW write.
7517 */
7518 if (write && !(flags & IOMAP_NOWAIT)) {
7519 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7520 &dio_data->data_reserved,
1daedb1d 7521 start, data_alloc_len, false);
f5585f4f
FM
7522 if (!ret)
7523 dio_data->data_space_reserved = true;
7524 else if (ret && !(BTRFS_I(inode)->flags &
7525 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7526 goto err;
7527 }
e1cbbfa5 7528
eb838e73
JB
7529 /*
7530 * If this errors out it's because we couldn't invalidate pagecache for
59094403
FM
7531 * this range and we need to fallback to buffered IO, or we are doing a
7532 * NOWAIT read/write and we need to block.
eb838e73 7533 */
59094403
FM
7534 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7535 if (ret < 0)
9c9464cc 7536 goto err;
eb838e73 7537
39b07b5d 7538 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7539 if (IS_ERR(em)) {
7540 ret = PTR_ERR(em);
7541 goto unlock_err;
7542 }
4b46fce2
JB
7543
7544 /*
7545 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7546 * io. INLINE is special, and we could probably kludge it in here, but
7547 * it's still buffered so for safety lets just fall back to the generic
7548 * buffered path.
7549 *
7550 * For COMPRESSED we _have_ to read the entire extent in so we can
7551 * decompress it, so there will be buffering required no matter what we
7552 * do, so go ahead and fallback to buffered.
7553 *
01327610 7554 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7555 * to buffered IO. Don't blame me, this is the price we pay for using
7556 * the generic code.
7557 */
f86f7a75 7558 if (extent_map_is_compressed(em) ||
4b46fce2
JB
7559 em->block_start == EXTENT_MAP_INLINE) {
7560 free_extent_map(em);
a4527e18
FM
7561 /*
7562 * If we are in a NOWAIT context, return -EAGAIN in order to
7563 * fallback to buffered IO. This is not only because we can
7564 * block with buffered IO (no support for NOWAIT semantics at
7565 * the moment) but also to avoid returning short reads to user
7566 * space - this happens if we were able to read some data from
7567 * previous non-compressed extents and then when we fallback to
7568 * buffered IO, at btrfs_file_read_iter() by calling
7569 * filemap_read(), we fail to fault in pages for the read buffer,
7570 * in which case filemap_read() returns a short read (the number
7571 * of bytes previously read is > 0, so it does not return -EFAULT).
7572 */
7573 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
eb838e73 7574 goto unlock_err;
4b46fce2
JB
7575 }
7576
f85781fb 7577 len = min(len, em->len - (start - em->start));
ca93e44b
FM
7578
7579 /*
7580 * If we have a NOWAIT request and the range contains multiple extents
7581 * (or a mix of extents and holes), then we return -EAGAIN to make the
7582 * caller fallback to a context where it can do a blocking (without
7583 * NOWAIT) request. This way we avoid doing partial IO and returning
7584 * success to the caller, which is not optimal for writes and for reads
7585 * it can result in unexpected behaviour for an application.
7586 *
7587 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7588 * iomap_dio_rw(), we can end up returning less data then what the caller
7589 * asked for, resulting in an unexpected, and incorrect, short read.
7590 * That is, the caller asked to read N bytes and we return less than that,
7591 * which is wrong unless we are crossing EOF. This happens if we get a
7592 * page fault error when trying to fault in pages for the buffer that is
7593 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7594 * have previously submitted bios for other extents in the range, in
7595 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7596 * those bios have completed by the time we get the page fault error,
7597 * which we return back to our caller - we should only return EIOCBQUEUED
7598 * after we have submitted bios for all the extents in the range.
7599 */
7600 if ((flags & IOMAP_NOWAIT) && len < length) {
7601 free_extent_map(em);
7602 ret = -EAGAIN;
7603 goto unlock_err;
7604 }
7605
f85781fb
GR
7606 if (write) {
7607 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7833b865 7608 start, &len, flags);
c5794e51
NB
7609 if (ret < 0)
7610 goto unlock_err;
f85781fb
GR
7611 unlock_extents = true;
7612 /* Recalc len in case the new em is smaller than requested */
7613 len = min(len, em->len - (start - em->start));
f5585f4f
FM
7614 if (dio_data->data_space_reserved) {
7615 u64 release_offset;
7616 u64 release_len = 0;
7617
7618 if (dio_data->nocow_done) {
7619 release_offset = start;
7620 release_len = data_alloc_len;
7621 } else if (len < data_alloc_len) {
7622 release_offset = start + len;
7623 release_len = data_alloc_len - len;
7624 }
7625
7626 if (release_len > 0)
7627 btrfs_free_reserved_data_space(BTRFS_I(inode),
7628 dio_data->data_reserved,
7629 release_offset,
7630 release_len);
7631 }
c5794e51 7632 } else {
1c8d0175
NB
7633 /*
7634 * We need to unlock only the end area that we aren't using.
7635 * The rest is going to be unlocked by the endio routine.
7636 */
f85781fb
GR
7637 lockstart = start + len;
7638 if (lockstart < lockend)
7639 unlock_extents = true;
7640 }
7641
7642 if (unlock_extents)
570eb97b
JB
7643 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7644 &cached_state);
f85781fb
GR
7645 else
7646 free_extent_state(cached_state);
7647
7648 /*
7649 * Translate extent map information to iomap.
7650 * We trim the extents (and move the addr) even though iomap code does
7651 * that, since we have locked only the parts we are performing I/O in.
7652 */
7653 if ((em->block_start == EXTENT_MAP_HOLE) ||
f86f7a75 7654 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
f85781fb
GR
7655 iomap->addr = IOMAP_NULL_ADDR;
7656 iomap->type = IOMAP_HOLE;
7657 } else {
7658 iomap->addr = em->block_start + (start - em->start);
7659 iomap->type = IOMAP_MAPPED;
a43a67a2 7660 }
f85781fb 7661 iomap->offset = start;
d24fa5c1 7662 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
f85781fb 7663 iomap->length = len;
4b46fce2
JB
7664 free_extent_map(em);
7665
7666 return 0;
eb838e73
JB
7667
7668unlock_err:
570eb97b
JB
7669 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7670 &cached_state);
9c9464cc 7671err:
f5585f4f
FM
7672 if (dio_data->data_space_reserved) {
7673 btrfs_free_reserved_data_space(BTRFS_I(inode),
7674 dio_data->data_reserved,
7675 start, data_alloc_len);
7676 extent_changeset_free(dio_data->data_reserved);
7677 }
7678
f85781fb
GR
7679 return ret;
7680}
7681
7682static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7683 ssize_t written, unsigned int flags, struct iomap *iomap)
7684{
491a6d01
CH
7685 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7686 struct btrfs_dio_data *dio_data = iter->private;
f85781fb
GR
7687 size_t submitted = dio_data->submitted;
7688 const bool write = !!(flags & IOMAP_WRITE);
491a6d01 7689 int ret = 0;
f85781fb
GR
7690
7691 if (!write && (iomap->type == IOMAP_HOLE)) {
7692 /* If reading from a hole, unlock and return */
570eb97b
JB
7693 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7694 NULL);
491a6d01 7695 return 0;
f85781fb
GR
7696 }
7697
7698 if (submitted < length) {
7699 pos += submitted;
7700 length -= submitted;
7701 if (write)
b41b6f69
CH
7702 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7703 pos, length, false);
f85781fb
GR
7704 else
7705 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
570eb97b 7706 pos + length - 1, NULL);
f85781fb
GR
7707 ret = -ENOTBLK;
7708 }
53f2c206
BB
7709 if (write) {
7710 btrfs_put_ordered_extent(dio_data->ordered);
7711 dio_data->ordered = NULL;
7712 }
f85781fb 7713
f0bfa76a 7714 if (write)
f85781fb 7715 extent_changeset_free(dio_data->data_reserved);
8b110e39
MX
7716 return ret;
7717}
7718
67d66982 7719static void btrfs_dio_end_io(struct btrfs_bio *bbio)
8b110e39 7720{
67d66982
CH
7721 struct btrfs_dio_private *dip =
7722 container_of(bbio, struct btrfs_dio_private, bbio);
7723 struct btrfs_inode *inode = bbio->inode;
917f32a2 7724 struct bio *bio = &bbio->bio;
e65e1535 7725
67d66982
CH
7726 if (bio->bi_status) {
7727 btrfs_warn(inode->root->fs_info,
7728 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7729 btrfs_ino(inode), bio->bi_opf,
7730 dip->file_offset, dip->bytes, bio->bi_status);
7609afac 7731 }
1ae39938 7732
b41b6f69
CH
7733 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7734 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7735 dip->file_offset, dip->bytes,
7736 !bio->bi_status);
7737 } else {
67d66982
CH
7738 unlock_extent(&inode->io_tree, dip->file_offset,
7739 dip->file_offset + dip->bytes - 1, NULL);
b41b6f69 7740 }
ea1f0ced 7741
67d66982
CH
7742 bbio->bio.bi_private = bbio->private;
7743 iomap_dio_bio_end_io(bio);
e65e1535
MX
7744}
7745
67d66982
CH
7746static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7747 loff_t file_offset)
c36cac28 7748{
67d66982 7749 struct btrfs_bio *bbio = btrfs_bio(bio);
642c5d34 7750 struct btrfs_dio_private *dip =
67d66982 7751 container_of(bbio, struct btrfs_dio_private, bbio);
491a6d01 7752 struct btrfs_dio_data *dio_data = iter->private;
544d24f9 7753
4317ff00
QW
7754 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7755 btrfs_dio_end_io, bio->bi_private);
7756 bbio->inode = BTRFS_I(iter->inode);
67d66982 7757 bbio->file_offset = file_offset;
e65e1535 7758
67d66982
CH
7759 dip->file_offset = file_offset;
7760 dip->bytes = bio->bi_iter.bi_size;
e65e1535 7761
67d66982 7762 dio_data->submitted += bio->bi_iter.bi_size;
b73a6fd1
BB
7763
7764 /*
7765 * Check if we are doing a partial write. If we are, we need to split
7766 * the ordered extent to match the submitted bio. Hang on to the
7767 * remaining unfinishable ordered_extent in dio_data so that it can be
7768 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7769 * remaining pages is blocked on the outstanding ordered extent.
7770 */
7771 if (iter->flags & IOMAP_WRITE) {
7772 int ret;
7773
7774 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7775 if (ret) {
7cad645e
CH
7776 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7777 file_offset, dip->bytes,
7778 !ret);
7779 bio->bi_status = errno_to_blk_status(ret);
7780 iomap_dio_bio_end_io(bio);
b73a6fd1
BB
7781 return;
7782 }
7783 }
7784
ae42a154 7785 btrfs_submit_bio(bbio, 0);
4b46fce2
JB
7786}
7787
36e8c622 7788static const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
7789 .iomap_begin = btrfs_dio_iomap_begin,
7790 .iomap_end = btrfs_dio_iomap_end,
7791};
7792
36e8c622 7793static const struct iomap_dio_ops btrfs_dio_ops = {
67d66982 7794 .submit_io = btrfs_dio_submit_io,
642c5d34 7795 .bio_set = &btrfs_dio_bioset,
f85781fb
GR
7796};
7797
8184620a 7798ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
36e8c622 7799{
53f2c206 7800 struct btrfs_dio_data data = { 0 };
491a6d01 7801
36e8c622 7802 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8184620a
FM
7803 IOMAP_DIO_PARTIAL, &data, done_before);
7804}
7805
7806struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7807 size_t done_before)
7808{
53f2c206 7809 struct btrfs_dio_data data = { 0 };
8184620a
FM
7810
7811 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7812 IOMAP_DIO_PARTIAL, &data, done_before);
36e8c622
CH
7813}
7814
1506fcc8 7815static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7816 u64 start, u64 len)
1506fcc8 7817{
05dadc09
TI
7818 int ret;
7819
45dd052e 7820 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7821 if (ret)
7822 return ret;
7823
33a86cfa
FM
7824 /*
7825 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7826 * file range (0 to LLONG_MAX), but that is not enough if we have
7827 * compression enabled. The first filemap_fdatawrite_range() only kicks
7828 * in the compression of data (in an async thread) and will return
7829 * before the compression is done and writeback is started. A second
7830 * filemap_fdatawrite_range() is needed to wait for the compression to
ac3c0d36
FM
7831 * complete and writeback to start. We also need to wait for ordered
7832 * extents to complete, because our fiemap implementation uses mainly
7833 * file extent items to list the extents, searching for extent maps
7834 * only for file ranges with holes or prealloc extents to figure out
7835 * if we have delalloc in those ranges.
33a86cfa
FM
7836 */
7837 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
ac3c0d36 7838 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
33a86cfa
FM
7839 if (ret)
7840 return ret;
7841 }
7842
facee0a0 7843 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
7844}
7845
48a3b636
ES
7846static int btrfs_writepages(struct address_space *mapping,
7847 struct writeback_control *wbc)
b293f02e 7848{
8ae225a8 7849 return extent_writepages(mapping, wbc);
b293f02e
CM
7850}
7851
ba206a02 7852static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 7853{
ba206a02 7854 extent_readahead(rac);
3ab2fb5a 7855}
2a3ff0ad 7856
7c11d0ae 7857/*
f913cff3 7858 * For release_folio() and invalidate_folio() we have a race window where
895586eb 7859 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7c11d0ae
QW
7860 * If we continue to release/invalidate the page, we could cause use-after-free
7861 * for subpage spinlock. So this function is to spin and wait for subpage
7862 * spinlock.
7863 */
7864static void wait_subpage_spinlock(struct page *page)
7865{
7866 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
cfbf07e2 7867 struct folio *folio = page_folio(page);
7c11d0ae
QW
7868 struct btrfs_subpage *subpage;
7869
fbca46eb 7870 if (!btrfs_is_subpage(fs_info, page))
7c11d0ae
QW
7871 return;
7872
cfbf07e2
QW
7873 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7874 subpage = folio_get_private(folio);
7c11d0ae
QW
7875
7876 /*
7877 * This may look insane as we just acquire the spinlock and release it,
7878 * without doing anything. But we just want to make sure no one is
7879 * still holding the subpage spinlock.
7880 * And since the page is not dirty nor writeback, and we have page
7881 * locked, the only possible way to hold a spinlock is from the endio
7882 * function to clear page writeback.
7883 *
7884 * Here we just acquire the spinlock so that all existing callers
7885 * should exit and we're safe to release/invalidate the page.
7886 */
7887 spin_lock_irq(&subpage->lock);
7888 spin_unlock_irq(&subpage->lock);
7889}
7890
f913cff3 7891static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
9ebefb18 7892{
f913cff3 7893 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7c11d0ae
QW
7894
7895 if (ret == 1) {
f913cff3
MWO
7896 wait_subpage_spinlock(&folio->page);
7897 clear_page_extent_mapped(&folio->page);
7c11d0ae 7898 }
a52d9a80 7899 return ret;
39279cc3
CM
7900}
7901
f913cff3 7902static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
e6dcd2dc 7903{
f913cff3
MWO
7904 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7905 return false;
7906 return __btrfs_release_folio(folio, gfp_flags);
e6dcd2dc
CM
7907}
7908
f8e66081 7909#ifdef CONFIG_MIGRATION
e7a60a17
MWO
7910static int btrfs_migrate_folio(struct address_space *mapping,
7911 struct folio *dst, struct folio *src,
f8e66081
RG
7912 enum migrate_mode mode)
7913{
e7a60a17 7914 int ret = filemap_migrate_folio(mapping, dst, src, mode);
f8e66081 7915
f8e66081
RG
7916 if (ret != MIGRATEPAGE_SUCCESS)
7917 return ret;
7918
e7a60a17
MWO
7919 if (folio_test_ordered(src)) {
7920 folio_clear_ordered(src);
7921 folio_set_ordered(dst);
f8e66081
RG
7922 }
7923
f8e66081
RG
7924 return MIGRATEPAGE_SUCCESS;
7925}
e7a60a17
MWO
7926#else
7927#define btrfs_migrate_folio NULL
f8e66081
RG
7928#endif
7929
895586eb
MWO
7930static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7931 size_t length)
39279cc3 7932{
895586eb 7933 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
b945a463 7934 struct btrfs_fs_info *fs_info = inode->root->fs_info;
53ac7ead 7935 struct extent_io_tree *tree = &inode->io_tree;
2ac55d41 7936 struct extent_state *cached_state = NULL;
895586eb
MWO
7937 u64 page_start = folio_pos(folio);
7938 u64 page_end = page_start + folio_size(folio) - 1;
3b835840 7939 u64 cur;
53ac7ead 7940 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 7941
8b62b72b 7942 /*
895586eb
MWO
7943 * We have folio locked so no new ordered extent can be created on this
7944 * page, nor bio can be submitted for this folio.
8b62b72b 7945 *
895586eb
MWO
7946 * But already submitted bio can still be finished on this folio.
7947 * Furthermore, endio function won't skip folio which has Ordered
f57ad937 7948 * (Private2) already cleared, so it's possible for endio and
895586eb
MWO
7949 * invalidate_folio to do the same ordered extent accounting twice
7950 * on one folio.
266a2586
QW
7951 *
7952 * So here we wait for any submitted bios to finish, so that we won't
895586eb 7953 * do double ordered extent accounting on the same folio.
8b62b72b 7954 */
895586eb
MWO
7955 folio_wait_writeback(folio);
7956 wait_subpage_spinlock(&folio->page);
8b62b72b 7957
bcd77455
QW
7958 /*
7959 * For subpage case, we have call sites like
7960 * btrfs_punch_hole_lock_range() which passes range not aligned to
7961 * sectorsize.
895586eb
MWO
7962 * If the range doesn't cover the full folio, we don't need to and
7963 * shouldn't clear page extent mapped, as folio->private can still
bcd77455
QW
7964 * record subpage dirty bits for other part of the range.
7965 *
895586eb
MWO
7966 * For cases that invalidate the full folio even the range doesn't
7967 * cover the full folio, like invalidating the last folio, we're
bcd77455
QW
7968 * still safe to wait for ordered extent to finish.
7969 */
5a60542c 7970 if (!(offset == 0 && length == folio_size(folio))) {
f913cff3 7971 btrfs_release_folio(folio, GFP_NOFS);
e6dcd2dc
CM
7972 return;
7973 }
131e404a
FDBM
7974
7975 if (!inode_evicting)
570eb97b 7976 lock_extent(tree, page_start, page_end, &cached_state);
951c80f8 7977
3b835840
QW
7978 cur = page_start;
7979 while (cur < page_end) {
7980 struct btrfs_ordered_extent *ordered;
3b835840 7981 u64 range_end;
b945a463 7982 u32 range_len;
bd015294 7983 u32 extra_flags = 0;
3b835840
QW
7984
7985 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7986 page_end + 1 - cur);
7987 if (!ordered) {
7988 range_end = page_end;
7989 /*
7990 * No ordered extent covering this range, we are safe
7991 * to delete all extent states in the range.
7992 */
bd015294 7993 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
7994 goto next;
7995 }
7996 if (ordered->file_offset > cur) {
7997 /*
7998 * There is a range between [cur, oe->file_offset) not
7999 * covered by any ordered extent.
8000 * We are safe to delete all extent states, and handle
8001 * the ordered extent in the next iteration.
8002 */
8003 range_end = ordered->file_offset - 1;
bd015294 8004 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8005 goto next;
8006 }
8007
8008 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8009 page_end);
b945a463
QW
8010 ASSERT(range_end + 1 - cur < U32_MAX);
8011 range_len = range_end + 1 - cur;
895586eb 8012 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
3b835840 8013 /*
f57ad937
QW
8014 * If Ordered (Private2) is cleared, it means endio has
8015 * already been executed for the range.
3b835840
QW
8016 * We can't delete the extent states as
8017 * btrfs_finish_ordered_io() may still use some of them.
8018 */
3b835840
QW
8019 goto next;
8020 }
895586eb 8021 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
3b835840 8022
eb84ae03 8023 /*
2766ff61
FM
8024 * IO on this page will never be started, so we need to account
8025 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8026 * here, must leave that up for the ordered extent completion.
3b835840
QW
8027 *
8028 * This will also unlock the range for incoming
8029 * btrfs_finish_ordered_io().
eb84ae03 8030 */
131e404a 8031 if (!inode_evicting)
3b835840 8032 clear_extent_bit(tree, cur, range_end,
2766ff61 8033 EXTENT_DELALLOC |
131e404a 8034 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
bd015294 8035 EXTENT_DEFRAG, &cached_state);
3b835840 8036
54c65371 8037 spin_lock_irq(&inode->ordered_tree_lock);
3b835840
QW
8038 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8039 ordered->truncated_len = min(ordered->truncated_len,
8040 cur - ordered->file_offset);
54c65371 8041 spin_unlock_irq(&inode->ordered_tree_lock);
3b835840 8042
bd015294
JB
8043 /*
8044 * If the ordered extent has finished, we're safe to delete all
8045 * the extent states of the range, otherwise
8046 * btrfs_finish_ordered_io() will get executed by endio for
8047 * other pages, so we can't delete extent states.
8048 */
3b835840 8049 if (btrfs_dec_test_ordered_pending(inode, &ordered,
f41b6ba9 8050 cur, range_end + 1 - cur)) {
3b835840
QW
8051 btrfs_finish_ordered_io(ordered);
8052 /*
8053 * The ordered extent has finished, now we're again
8054 * safe to delete all extent states of the range.
8055 */
bd015294 8056 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8057 }
8058next:
8059 if (ordered)
8060 btrfs_put_ordered_extent(ordered);
8b62b72b 8061 /*
3b835840
QW
8062 * Qgroup reserved space handler
8063 * Sector(s) here will be either:
266a2586 8064 *
3b835840
QW
8065 * 1) Already written to disk or bio already finished
8066 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8067 * Qgroup will be handled by its qgroup_record then.
8068 * btrfs_qgroup_free_data() call will do nothing here.
8069 *
8070 * 2) Not written to disk yet
8071 * Then btrfs_qgroup_free_data() call will clear the
8072 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8073 * reserved data space.
8074 * Since the IO will never happen for this page.
8b62b72b 8075 */
9e65bfca 8076 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
131e404a 8077 if (!inode_evicting) {
3b835840
QW
8078 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8079 EXTENT_DELALLOC | EXTENT_UPTODATE |
bd015294
JB
8080 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8081 extra_flags, &cached_state);
131e404a 8082 }
3b835840 8083 cur = range_end + 1;
131e404a 8084 }
b9d0b389 8085 /*
3b835840 8086 * We have iterated through all ordered extents of the page, the page
f57ad937
QW
8087 * should not have Ordered (Private2) anymore, or the above iteration
8088 * did something wrong.
b9d0b389 8089 */
895586eb
MWO
8090 ASSERT(!folio_test_ordered(folio));
8091 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
3b835840 8092 if (!inode_evicting)
f913cff3 8093 __btrfs_release_folio(folio, GFP_NOFS);
895586eb 8094 clear_page_extent_mapped(&folio->page);
39279cc3
CM
8095}
8096
9ebefb18
CM
8097/*
8098 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8099 * called from a page fault handler when a page is first dirtied. Hence we must
8100 * be careful to check for EOF conditions here. We set the page up correctly
8101 * for a written page which means we get ENOSPC checking when writing into
8102 * holes and correct delalloc and unwritten extent mapping on filesystems that
8103 * support these features.
8104 *
8105 * We are not allowed to take the i_mutex here so we have to play games to
8106 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8107 * truncate_setsize() writes the inode size before removing pages, once we have
8108 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8109 * beyond EOF, then the page is guaranteed safe against truncation until we
8110 * unlock the page.
8111 */
a528a241 8112vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8113{
c2ec175c 8114 struct page *page = vmf->page;
11bac800 8115 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8116 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8117 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8118 struct btrfs_ordered_extent *ordered;
2ac55d41 8119 struct extent_state *cached_state = NULL;
364ecf36 8120 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 8121 unsigned long zero_start;
9ebefb18 8122 loff_t size;
a528a241
SJ
8123 vm_fault_t ret;
8124 int ret2;
9998eb70 8125 int reserved = 0;
d0b7da88 8126 u64 reserved_space;
a52d9a80 8127 u64 page_start;
e6dcd2dc 8128 u64 page_end;
d0b7da88
CR
8129 u64 end;
8130
09cbfeaf 8131 reserved_space = PAGE_SIZE;
9ebefb18 8132
b2b5ef5c 8133 sb_start_pagefault(inode->i_sb);
df480633 8134 page_start = page_offset(page);
09cbfeaf 8135 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8136 end = page_end;
df480633 8137
d0b7da88
CR
8138 /*
8139 * Reserving delalloc space after obtaining the page lock can lead to
8140 * deadlock. For example, if a dirty page is locked by this function
8141 * and the call to btrfs_delalloc_reserve_space() ends up triggering
f3e90c1c 8142 * dirty page write out, then the btrfs_writepages() function could
d0b7da88
CR
8143 * end up waiting indefinitely to get a lock on the page currently
8144 * being processed by btrfs_page_mkwrite() function.
8145 */
e5b7231e
NB
8146 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8147 page_start, reserved_space);
a528a241
SJ
8148 if (!ret2) {
8149 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8150 reserved = 1;
8151 }
a528a241
SJ
8152 if (ret2) {
8153 ret = vmf_error(ret2);
9998eb70
CM
8154 if (reserved)
8155 goto out;
8156 goto out_noreserve;
56a76f82 8157 }
1832a6d5 8158
56a76f82 8159 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8160again:
8318ba79 8161 down_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8162 lock_page(page);
9ebefb18 8163 size = i_size_read(inode);
a52d9a80 8164
9ebefb18 8165 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8166 (page_start >= size)) {
9ebefb18
CM
8167 /* page got truncated out from underneath us */
8168 goto out_unlock;
8169 }
e6dcd2dc
CM
8170 wait_on_page_writeback(page);
8171
570eb97b 8172 lock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8173 ret2 = set_page_extent_mapped(page);
8174 if (ret2 < 0) {
8175 ret = vmf_error(ret2);
570eb97b 8176 unlock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8177 goto out_unlock;
8178 }
e6dcd2dc 8179
eb84ae03
CM
8180 /*
8181 * we can't set the delalloc bits if there are pending ordered
8182 * extents. Drop our locks and wait for them to finish
8183 */
a776c6fa
NB
8184 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8185 PAGE_SIZE);
e6dcd2dc 8186 if (ordered) {
570eb97b 8187 unlock_extent(io_tree, page_start, page_end, &cached_state);
e6dcd2dc 8188 unlock_page(page);
8318ba79 8189 up_read(&BTRFS_I(inode)->i_mmap_lock);
36d45567 8190 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
8191 btrfs_put_ordered_extent(ordered);
8192 goto again;
8193 }
8194
09cbfeaf 8195 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8196 reserved_space = round_up(size - page_start,
0b246afa 8197 fs_info->sectorsize);
09cbfeaf 8198 if (reserved_space < PAGE_SIZE) {
d0b7da88 8199 end = page_start + reserved_space - 1;
86d52921
NB
8200 btrfs_delalloc_release_space(BTRFS_I(inode),
8201 data_reserved, page_start,
8202 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8203 }
8204 }
8205
fbf19087 8206 /*
5416034f
LB
8207 * page_mkwrite gets called when the page is firstly dirtied after it's
8208 * faulted in, but write(2) could also dirty a page and set delalloc
8209 * bits, thus in this case for space account reason, we still need to
8210 * clear any delalloc bits within this page range since we have to
8211 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8212 */
d0b7da88 8213 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d 8214 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
bd015294 8215 EXTENT_DEFRAG, &cached_state);
fbf19087 8216
c2566f22 8217 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8218 &cached_state);
a528a241 8219 if (ret2) {
570eb97b 8220 unlock_extent(io_tree, page_start, page_end, &cached_state);
9ed74f2d
JB
8221 ret = VM_FAULT_SIGBUS;
8222 goto out_unlock;
8223 }
9ebefb18
CM
8224
8225 /* page is wholly or partially inside EOF */
09cbfeaf 8226 if (page_start + PAGE_SIZE > size)
7073017a 8227 zero_start = offset_in_page(size);
9ebefb18 8228 else
09cbfeaf 8229 zero_start = PAGE_SIZE;
9ebefb18 8230
21a8935e 8231 if (zero_start != PAGE_SIZE)
d048b9c2 8232 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
21a8935e 8233
e4f94347 8234 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2d8ec40e
QW
8235 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8236 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
5a3f23d5 8237
bc0939fc 8238 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
257c62e1 8239
570eb97b 8240 unlock_extent(io_tree, page_start, page_end, &cached_state);
8318ba79 8241 up_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8242
76de60ed
YY
8243 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8244 sb_end_pagefault(inode->i_sb);
8245 extent_changeset_free(data_reserved);
8246 return VM_FAULT_LOCKED;
717beb96
CM
8247
8248out_unlock:
9ebefb18 8249 unlock_page(page);
8318ba79 8250 up_read(&BTRFS_I(inode)->i_mmap_lock);
1832a6d5 8251out:
8702ba93 8252 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8253 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8254 reserved_space, (ret != 0));
9998eb70 8255out_noreserve:
b2b5ef5c 8256 sb_end_pagefault(inode->i_sb);
364ecf36 8257 extent_changeset_free(data_reserved);
9ebefb18
CM
8258 return ret;
8259}
8260
d9dcae67 8261static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
39279cc3 8262{
d9ac19c3 8263 struct btrfs_truncate_control control = {
d9dcae67
DS
8264 .inode = inode,
8265 .ino = btrfs_ino(inode),
d9ac19c3 8266 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 8267 .clear_extent_range = true,
d9ac19c3 8268 };
d9dcae67
DS
8269 struct btrfs_root *root = inode->root;
8270 struct btrfs_fs_info *fs_info = root->fs_info;
fcb80c2a 8271 struct btrfs_block_rsv *rsv;
ad7e1a74 8272 int ret;
39279cc3 8273 struct btrfs_trans_handle *trans;
0b246afa 8274 u64 mask = fs_info->sectorsize - 1;
6822b3f7 8275 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8276
213e8c55 8277 if (!skip_writeback) {
d9dcae67
DS
8278 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8279 inode->vfs_inode.i_size & (~mask),
213e8c55
FM
8280 (u64)-1);
8281 if (ret)
8282 return ret;
8283 }
39279cc3 8284
fcb80c2a 8285 /*
f7e9e8fc
OS
8286 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8287 * things going on here:
fcb80c2a 8288 *
f7e9e8fc 8289 * 1) We need to reserve space to update our inode.
fcb80c2a 8290 *
f7e9e8fc 8291 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8292 * be free'd up by the truncate operation, but also have some slack
8293 * space reserved in case it uses space during the truncate (thank you
8294 * very much snapshotting).
8295 *
f7e9e8fc 8296 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8297 * space doing the truncate, and we have no earthly idea how much space
01327610 8298 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8299 * doesn't end up using space reserved for updating the inode. We also
8300 * need to be able to stop the transaction and start a new one, which
8301 * means we need to be able to update the inode several times, and we
8302 * have no idea of knowing how many times that will be, so we can't just
8303 * reserve 1 item for the entirety of the operation, so that has to be
8304 * done separately as well.
fcb80c2a
JB
8305 *
8306 * So that leaves us with
8307 *
f7e9e8fc 8308 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8309 * transaction reservation.
f7e9e8fc 8310 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8311 * updating the inode.
8312 */
2ff7e61e 8313 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8314 if (!rsv)
8315 return -ENOMEM;
4a338542 8316 rsv->size = min_size;
710d5921 8317 rsv->failfast = true;
f0cd846e 8318
907cbceb 8319 /*
07127184 8320 * 1 for the truncate slack space
907cbceb
JB
8321 * 1 for updating the inode.
8322 */
f3fe820c 8323 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8324 if (IS_ERR(trans)) {
ad7e1a74 8325 ret = PTR_ERR(trans);
fcb80c2a
JB
8326 goto out;
8327 }
f0cd846e 8328
907cbceb 8329 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8330 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8331 min_size, false);
6822b3f7
FM
8332 /*
8333 * We have reserved 2 metadata units when we started the transaction and
8334 * min_size matches 1 unit, so this should never fail, but if it does,
8335 * it's not critical we just fail truncation.
8336 */
8337 if (WARN_ON(ret)) {
8338 btrfs_end_transaction(trans);
8339 goto out;
8340 }
f0cd846e 8341
ca7e70f5 8342 trans->block_rsv = rsv;
907cbceb 8343
8082510e 8344 while (1) {
9a4a1429 8345 struct extent_state *cached_state = NULL;
d9dcae67 8346 const u64 new_size = inode->vfs_inode.i_size;
9a4a1429
JB
8347 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8348
d9ac19c3 8349 control.new_size = new_size;
d9dcae67 8350 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429
JB
8351 /*
8352 * We want to drop from the next block forward in case this new
8353 * size is not block aligned since we will be keeping the last
8354 * block of the extent just the way it is.
8355 */
d9dcae67 8356 btrfs_drop_extent_map_range(inode,
4c0c8cfc
FM
8357 ALIGN(new_size, fs_info->sectorsize),
8358 (u64)-1, false);
9a4a1429 8359
71d18b53 8360 ret = btrfs_truncate_inode_items(trans, root, &control);
c2ddb612 8361
d9dcae67
DS
8362 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8363 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
c2ddb612 8364
d9dcae67 8365 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429 8366
ddfae63c 8367 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8368 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8369 break;
39279cc3 8370
8b9d0322 8371 ret = btrfs_update_inode(trans, inode);
ad7e1a74 8372 if (ret)
3893e33b 8373 break;
ca7e70f5 8374
3a45bb20 8375 btrfs_end_transaction(trans);
2ff7e61e 8376 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8377
8378 trans = btrfs_start_transaction(root, 2);
8379 if (IS_ERR(trans)) {
ad7e1a74 8380 ret = PTR_ERR(trans);
ca7e70f5
JB
8381 trans = NULL;
8382 break;
8383 }
8384
63f018be 8385 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8386 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8387 rsv, min_size, false);
6822b3f7
FM
8388 /*
8389 * We have reserved 2 metadata units when we started the
8390 * transaction and min_size matches 1 unit, so this should never
8391 * fail, but if it does, it's not critical we just fail truncation.
8392 */
8393 if (WARN_ON(ret))
8394 break;
8395
ca7e70f5 8396 trans->block_rsv = rsv;
8082510e
YZ
8397 }
8398
ddfae63c
JB
8399 /*
8400 * We can't call btrfs_truncate_block inside a trans handle as we could
54f03ab1
JB
8401 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8402 * know we've truncated everything except the last little bit, and can
8403 * do btrfs_truncate_block and then update the disk_i_size.
ddfae63c 8404 */
54f03ab1 8405 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
ddfae63c
JB
8406 btrfs_end_transaction(trans);
8407 btrfs_btree_balance_dirty(fs_info);
8408
d9dcae67 8409 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
ddfae63c
JB
8410 if (ret)
8411 goto out;
8412 trans = btrfs_start_transaction(root, 1);
8413 if (IS_ERR(trans)) {
8414 ret = PTR_ERR(trans);
8415 goto out;
8416 }
d9dcae67 8417 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8418 }
8419
917c16b2 8420 if (trans) {
ad7e1a74
OS
8421 int ret2;
8422
0b246afa 8423 trans->block_rsv = &fs_info->trans_block_rsv;
8b9d0322 8424 ret2 = btrfs_update_inode(trans, inode);
ad7e1a74
OS
8425 if (ret2 && !ret)
8426 ret = ret2;
7b128766 8427
ad7e1a74
OS
8428 ret2 = btrfs_end_transaction(trans);
8429 if (ret2 && !ret)
8430 ret = ret2;
2ff7e61e 8431 btrfs_btree_balance_dirty(fs_info);
917c16b2 8432 }
fcb80c2a 8433out:
2ff7e61e 8434 btrfs_free_block_rsv(fs_info, rsv);
0d7d3165
FM
8435 /*
8436 * So if we truncate and then write and fsync we normally would just
8437 * write the extents that changed, which is a problem if we need to
8438 * first truncate that entire inode. So set this flag so we write out
8439 * all of the extents in the inode to the sync log so we're completely
8440 * safe.
8441 *
8442 * If no extents were dropped or trimmed we don't need to force the next
8443 * fsync to truncate all the inode's items from the log and re-log them
8444 * all. This means the truncate operation did not change the file size,
8445 * or changed it to a smaller size but there was only an implicit hole
8446 * between the old i_size and the new i_size, and there were no prealloc
8447 * extents beyond i_size to drop.
8448 */
d9ac19c3 8449 if (control.extents_found > 0)
d9dcae67 8450 btrfs_set_inode_full_sync(inode);
fcb80c2a 8451
ad7e1a74 8452 return ret;
39279cc3
CM
8453}
8454
f2d40141 8455struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
8456 struct inode *dir)
8457{
8458 struct inode *inode;
8459
8460 inode = new_inode(dir->i_sb);
8461 if (inode) {
8462 /*
8463 * Subvolumes don't inherit the sgid bit or the parent's gid if
8464 * the parent's sgid bit is set. This is probably a bug.
8465 */
f2d40141 8466 inode_init_owner(idmap, inode, NULL,
a1fd0c35
OS
8467 S_IFDIR | (~current_umask() & S_IRWXUGO));
8468 inode->i_op = &btrfs_dir_inode_operations;
8469 inode->i_fop = &btrfs_dir_file_operations;
8470 }
8471 return inode;
8472}
8473
39279cc3
CM
8474struct inode *btrfs_alloc_inode(struct super_block *sb)
8475{
69fe2d75 8476 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8477 struct btrfs_inode *ei;
2ead6ae7 8478 struct inode *inode;
637e6e0f
DS
8479 struct extent_io_tree *file_extent_tree = NULL;
8480
8481 /* Self tests may pass a NULL fs_info. */
8482 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8483 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8484 if (!file_extent_tree)
8485 return NULL;
8486 }
39279cc3 8487
fd60b288 8488 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
637e6e0f
DS
8489 if (!ei) {
8490 kfree(file_extent_tree);
39279cc3 8491 return NULL;
637e6e0f 8492 }
2ead6ae7
YZ
8493
8494 ei->root = NULL;
2ead6ae7 8495 ei->generation = 0;
15ee9bc7 8496 ei->last_trans = 0;
257c62e1 8497 ei->last_sub_trans = 0;
e02119d5 8498 ei->logged_trans = 0;
2ead6ae7 8499 ei->delalloc_bytes = 0;
a7e3b975 8500 ei->new_delalloc_bytes = 0;
47059d93 8501 ei->defrag_bytes = 0;
2ead6ae7
YZ
8502 ei->disk_i_size = 0;
8503 ei->flags = 0;
77eea05e 8504 ei->ro_flags = 0;
7709cde3 8505 ei->csum_bytes = 0;
2ead6ae7 8506 ei->index_cnt = (u64)-1;
67de1176 8507 ei->dir_index = 0;
2ead6ae7 8508 ei->last_unlink_trans = 0;
3ebac17c 8509 ei->last_reflink_trans = 0;
46d8bc34 8510 ei->last_log_commit = 0;
2ead6ae7 8511
9e0baf60
JB
8512 spin_lock_init(&ei->lock);
8513 ei->outstanding_extents = 0;
69fe2d75
JB
8514 if (sb->s_magic != BTRFS_TEST_MAGIC)
8515 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8516 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8517 ei->runtime_flags = 0;
b52aa8c9 8518 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8519 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8520
16cdcec7
MX
8521 ei->delayed_node = NULL;
8522
c6e8f898
DS
8523 ei->i_otime_sec = 0;
8524 ei->i_otime_nsec = 0;
9cc97d64 8525
2ead6ae7 8526 inode = &ei->vfs_inode;
a8067e02 8527 extent_map_tree_init(&ei->extent_tree);
738290c0
DS
8528
8529 /* This io tree sets the valid inode. */
35da5a7e 8530 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
0988fc7b 8531 ei->io_tree.inode = ei;
738290c0 8532
637e6e0f
DS
8533 ei->file_extent_tree = file_extent_tree;
8534 if (file_extent_tree) {
8535 extent_io_tree_init(fs_info, ei->file_extent_tree,
8536 IO_TREE_INODE_FILE_EXTENT);
8537 /* Lockdep class is set only for the file extent tree. */
8538 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8539 }
2ead6ae7 8540 mutex_init(&ei->log_mutex);
54c65371
DS
8541 spin_lock_init(&ei->ordered_tree_lock);
8542 ei->ordered_tree = RB_ROOT;
8543 ei->ordered_tree_last = NULL;
2ead6ae7 8544 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8545 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8546 RB_CLEAR_NODE(&ei->rb_node);
8318ba79 8547 init_rwsem(&ei->i_mmap_lock);
2ead6ae7
YZ
8548
8549 return inode;
39279cc3
CM
8550}
8551
aaedb55b
JB
8552#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8553void btrfs_test_destroy_inode(struct inode *inode)
8554{
4c0c8cfc 8555 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
637e6e0f 8556 kfree(BTRFS_I(inode)->file_extent_tree);
aaedb55b
JB
8557 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8558}
8559#endif
8560
26602cab 8561void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8562{
637e6e0f 8563 kfree(BTRFS_I(inode)->file_extent_tree);
fa0d7e3d
NP
8564 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8565}
8566
633cc816 8567void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8568{
e6dcd2dc 8569 struct btrfs_ordered_extent *ordered;
633cc816
NB
8570 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8571 struct btrfs_root *root = inode->root;
5f4403e1 8572 bool freespace_inode;
5a3f23d5 8573
633cc816
NB
8574 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8575 WARN_ON(vfs_inode->i_data.nrpages);
8576 WARN_ON(inode->block_rsv.reserved);
8577 WARN_ON(inode->block_rsv.size);
8578 WARN_ON(inode->outstanding_extents);
dc287224
FM
8579 if (!S_ISDIR(vfs_inode->i_mode)) {
8580 WARN_ON(inode->delalloc_bytes);
8581 WARN_ON(inode->new_delalloc_bytes);
8582 }
633cc816
NB
8583 WARN_ON(inode->csum_bytes);
8584 WARN_ON(inode->defrag_bytes);
39279cc3 8585
a6dbd429
JB
8586 /*
8587 * This can happen where we create an inode, but somebody else also
8588 * created the same inode and we need to destroy the one we already
8589 * created.
8590 */
8591 if (!root)
26602cab 8592 return;
a6dbd429 8593
5f4403e1
IA
8594 /*
8595 * If this is a free space inode do not take the ordered extents lockdep
8596 * map.
8597 */
8598 freespace_inode = btrfs_is_free_space_inode(inode);
8599
d397712b 8600 while (1) {
633cc816 8601 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8602 if (!ordered)
8603 break;
8604 else {
633cc816 8605 btrfs_err(root->fs_info,
5d163e0e 8606 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8607 ordered->file_offset, ordered->num_bytes);
5f4403e1
IA
8608
8609 if (!freespace_inode)
8610 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8611
71fe0a55 8612 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8613 btrfs_put_ordered_extent(ordered);
8614 btrfs_put_ordered_extent(ordered);
8615 }
8616 }
633cc816
NB
8617 btrfs_qgroup_check_reserved_leak(inode);
8618 inode_tree_del(inode);
4c0c8cfc 8619 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
633cc816
NB
8620 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8621 btrfs_put_root(inode->root);
39279cc3
CM
8622}
8623
45321ac5 8624int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8625{
8626 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8627
6379ef9f
NA
8628 if (root == NULL)
8629 return 1;
8630
fa6ac876 8631 /* the snap/subvol tree is on deleting */
69e9c6c6 8632 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8633 return 1;
76dda93c 8634 else
45321ac5 8635 return generic_drop_inode(inode);
76dda93c
YZ
8636}
8637
0ee0fda0 8638static void init_once(void *foo)
39279cc3 8639{
0d031dc4 8640 struct btrfs_inode *ei = foo;
39279cc3
CM
8641
8642 inode_init_once(&ei->vfs_inode);
8643}
8644
e67c718b 8645void __cold btrfs_destroy_cachep(void)
39279cc3 8646{
8c0a8537
KS
8647 /*
8648 * Make sure all delayed rcu free inodes are flushed before we
8649 * destroy cache.
8650 */
8651 rcu_barrier();
642c5d34 8652 bioset_exit(&btrfs_dio_bioset);
5598e900 8653 kmem_cache_destroy(btrfs_inode_cachep);
39279cc3
CM
8654}
8655
f5c29bd9 8656int __init btrfs_init_cachep(void)
39279cc3 8657{
837e1972 8658 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8659 sizeof(struct btrfs_inode), 0,
5d097056
VD
8660 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8661 init_once);
39279cc3
CM
8662 if (!btrfs_inode_cachep)
8663 goto fail;
9601e3f6 8664
642c5d34 8665 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
67d66982 8666 offsetof(struct btrfs_dio_private, bbio.bio),
642c5d34
CH
8667 BIOSET_NEED_BVECS))
8668 goto fail;
8669
39279cc3
CM
8670 return 0;
8671fail:
8672 btrfs_destroy_cachep();
8673 return -ENOMEM;
8674}
8675
b74d24f7 8676static int btrfs_getattr(struct mnt_idmap *idmap,
549c7297 8677 const struct path *path, struct kstat *stat,
a528d35e 8678 u32 request_mask, unsigned int flags)
39279cc3 8679{
df0af1a5 8680 u64 delalloc_bytes;
2766ff61 8681 u64 inode_bytes;
a528d35e 8682 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8683 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34 8684 u32 bi_flags = BTRFS_I(inode)->flags;
14605409 8685 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
04a87e34
YS
8686
8687 stat->result_mask |= STATX_BTIME;
c6e8f898
DS
8688 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8689 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
04a87e34
YS
8690 if (bi_flags & BTRFS_INODE_APPEND)
8691 stat->attributes |= STATX_ATTR_APPEND;
8692 if (bi_flags & BTRFS_INODE_COMPRESS)
8693 stat->attributes |= STATX_ATTR_COMPRESSED;
8694 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8695 stat->attributes |= STATX_ATTR_IMMUTABLE;
8696 if (bi_flags & BTRFS_INODE_NODUMP)
8697 stat->attributes |= STATX_ATTR_NODUMP;
14605409
BB
8698 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8699 stat->attributes |= STATX_ATTR_VERITY;
04a87e34
YS
8700
8701 stat->attributes_mask |= (STATX_ATTR_APPEND |
8702 STATX_ATTR_COMPRESSED |
8703 STATX_ATTR_IMMUTABLE |
8704 STATX_ATTR_NODUMP);
fadc0d8b 8705
0d72b928 8706 generic_fillattr(idmap, request_mask, inode, stat);
0ee5dc67 8707 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8708
8709 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8710 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
2766ff61 8711 inode_bytes = inode_get_bytes(inode);
df0af1a5 8712 spin_unlock(&BTRFS_I(inode)->lock);
2766ff61 8713 stat->blocks = (ALIGN(inode_bytes, blocksize) +
29e70be2 8714 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
39279cc3
CM
8715 return 0;
8716}
8717
cdd1fedf
DF
8718static int btrfs_rename_exchange(struct inode *old_dir,
8719 struct dentry *old_dentry,
8720 struct inode *new_dir,
8721 struct dentry *new_dentry)
8722{
0b246afa 8723 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf 8724 struct btrfs_trans_handle *trans;
c1621871 8725 unsigned int trans_num_items;
cdd1fedf
DF
8726 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8727 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8728 struct inode *new_inode = new_dentry->d_inode;
8729 struct inode *old_inode = old_dentry->d_inode;
88d2beec
FM
8730 struct btrfs_rename_ctx old_rename_ctx;
8731 struct btrfs_rename_ctx new_rename_ctx;
4a0cc7ca
NB
8732 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8733 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8734 u64 old_idx = 0;
8735 u64 new_idx = 0;
cdd1fedf 8736 int ret;
75b463d2 8737 int ret2;
dc09ef35 8738 bool need_abort = false;
ab3c5c18 8739 struct fscrypt_name old_fname, new_fname;
6db75318 8740 struct fscrypt_str *old_name, *new_name;
cdd1fedf 8741
3f79f6f6
N
8742 /*
8743 * For non-subvolumes allow exchange only within one subvolume, in the
8744 * same inode namespace. Two subvolumes (represented as directory) can
8745 * be exchanged as they're a logical link and have a fixed inode number.
8746 */
8747 if (root != dest &&
8748 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8749 new_ino != BTRFS_FIRST_FREE_OBJECTID))
cdd1fedf
DF
8750 return -EXDEV;
8751
ab3c5c18
STD
8752 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8753 if (ret)
8754 return ret;
8755
8756 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8757 if (ret) {
8758 fscrypt_free_filename(&old_fname);
8759 return ret;
8760 }
8761
6db75318
STD
8762 old_name = &old_fname.disk_name;
8763 new_name = &new_fname.disk_name;
ab3c5c18 8764
cdd1fedf 8765 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8766 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8767 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8768 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8769
8770 /*
c1621871
OS
8771 * For each inode:
8772 * 1 to remove old dir item
8773 * 1 to remove old dir index
8774 * 1 to add new dir item
8775 * 1 to add new dir index
8776 * 1 to update parent inode
8777 *
8778 * If the parents are the same, we only need to account for one
cdd1fedf 8779 */
c1621871
OS
8780 trans_num_items = (old_dir == new_dir ? 9 : 10);
8781 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8782 /*
8783 * 1 to remove old root ref
8784 * 1 to remove old root backref
8785 * 1 to add new root ref
8786 * 1 to add new root backref
8787 */
8788 trans_num_items += 4;
8789 } else {
8790 /*
8791 * 1 to update inode item
8792 * 1 to remove old inode ref
8793 * 1 to add new inode ref
8794 */
8795 trans_num_items += 3;
8796 }
8797 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8798 trans_num_items += 4;
8799 else
8800 trans_num_items += 3;
8801 trans = btrfs_start_transaction(root, trans_num_items);
cdd1fedf
DF
8802 if (IS_ERR(trans)) {
8803 ret = PTR_ERR(trans);
8804 goto out_notrans;
8805 }
8806
00aa8e87
JB
8807 if (dest != root) {
8808 ret = btrfs_record_root_in_trans(trans, dest);
8809 if (ret)
8810 goto out_fail;
8811 }
3e174099 8812
cdd1fedf
DF
8813 /*
8814 * We need to find a free sequence number both in the source and
8815 * in the destination directory for the exchange.
8816 */
877574e2 8817 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8818 if (ret)
8819 goto out_fail;
877574e2 8820 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8821 if (ret)
8822 goto out_fail;
8823
8824 BTRFS_I(old_inode)->dir_index = 0ULL;
8825 BTRFS_I(new_inode)->dir_index = 0ULL;
8826
8827 /* Reference for the source. */
8828 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8829 /* force full log commit if subvolume involved. */
90787766 8830 btrfs_set_log_full_commit(trans);
cdd1fedf 8831 } else {
6db75318 8832 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
f85b7379
DS
8833 btrfs_ino(BTRFS_I(new_dir)),
8834 old_idx);
cdd1fedf
DF
8835 if (ret)
8836 goto out_fail;
dc09ef35 8837 need_abort = true;
cdd1fedf
DF
8838 }
8839
8840 /* And now for the dest. */
8841 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 /* force full log commit if subvolume involved. */
90787766 8843 btrfs_set_log_full_commit(trans);
cdd1fedf 8844 } else {
6db75318 8845 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
f85b7379
DS
8846 btrfs_ino(BTRFS_I(old_dir)),
8847 new_idx);
dc09ef35
JB
8848 if (ret) {
8849 if (need_abort)
8850 btrfs_abort_transaction(trans, ret);
cdd1fedf 8851 goto out_fail;
dc09ef35 8852 }
cdd1fedf
DF
8853 }
8854
8855 /* Update inode version and ctime/mtime. */
8856 inode_inc_iversion(old_dir);
8857 inode_inc_iversion(new_dir);
8858 inode_inc_iversion(old_inode);
8859 inode_inc_iversion(new_inode);
130f1eca 8860 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
cdd1fedf
DF
8861
8862 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379 8863 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 8864 BTRFS_I(old_inode), true);
f85b7379 8865 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
59fcf388 8866 BTRFS_I(new_inode), true);
cdd1fedf
DF
8867 }
8868
8869 /* src is a subvolume */
8870 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8871 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
cdd1fedf 8872 } else { /* src is an inode */
4467af88 8873 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 8874 BTRFS_I(old_dentry->d_inode),
6db75318 8875 old_name, &old_rename_ctx);
cdd1fedf 8876 if (!ret)
8b9d0322 8877 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
cdd1fedf
DF
8878 }
8879 if (ret) {
66642832 8880 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8881 goto out_fail;
8882 }
8883
8884 /* dest is a subvolume */
8885 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8886 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
cdd1fedf 8887 } else { /* dest is an inode */
4467af88 8888 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 8889 BTRFS_I(new_dentry->d_inode),
6db75318 8890 new_name, &new_rename_ctx);
cdd1fedf 8891 if (!ret)
8b9d0322 8892 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
cdd1fedf
DF
8893 }
8894 if (ret) {
66642832 8895 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8896 goto out_fail;
8897 }
8898
db0a669f 8899 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 8900 new_name, 0, old_idx);
cdd1fedf 8901 if (ret) {
66642832 8902 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8903 goto out_fail;
8904 }
8905
db0a669f 8906 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
6db75318 8907 old_name, 0, new_idx);
cdd1fedf 8908 if (ret) {
66642832 8909 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8910 goto out_fail;
8911 }
8912
8913 if (old_inode->i_nlink == 1)
8914 BTRFS_I(old_inode)->dir_index = old_idx;
8915 if (new_inode->i_nlink == 1)
8916 BTRFS_I(new_inode)->dir_index = new_idx;
8917
259c4b96
FM
8918 /*
8919 * Now pin the logs of the roots. We do it to ensure that no other task
8920 * can sync the logs while we are in progress with the rename, because
8921 * that could result in an inconsistency in case any of the inodes that
8922 * are part of this rename operation were logged before.
8923 */
8924 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8925 btrfs_pin_log_trans(root);
8926 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8927 btrfs_pin_log_trans(dest);
8928
8929 /* Do the log updates for all inodes. */
8930 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8931 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 8932 old_rename_ctx.index, new_dentry->d_parent);
259c4b96 8933 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8934 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
88d2beec 8935 new_rename_ctx.index, old_dentry->d_parent);
259c4b96
FM
8936
8937 /* Now unpin the logs. */
8938 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8939 btrfs_end_log_trans(root);
8940 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
cdd1fedf 8941 btrfs_end_log_trans(dest);
cdd1fedf 8942out_fail:
75b463d2
FM
8943 ret2 = btrfs_end_transaction(trans);
8944 ret = ret ? ret : ret2;
cdd1fedf 8945out_notrans:
943eb3bf
JB
8946 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8947 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8948 up_read(&fs_info->subvol_sem);
cdd1fedf 8949
ab3c5c18
STD
8950 fscrypt_free_filename(&new_fname);
8951 fscrypt_free_filename(&old_fname);
cdd1fedf
DF
8952 return ret;
8953}
8954
f2d40141 8955static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
8956 struct inode *dir)
8957{
8958 struct inode *inode;
8959
8960 inode = new_inode(dir->i_sb);
8961 if (inode) {
f2d40141 8962 inode_init_owner(idmap, inode, dir,
a1fd0c35
OS
8963 S_IFCHR | WHITEOUT_MODE);
8964 inode->i_op = &btrfs_special_inode_operations;
8965 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8966 }
8967 return inode;
8968}
8969
f2d40141 8970static int btrfs_rename(struct mnt_idmap *idmap,
ca07274c
CB
8971 struct inode *old_dir, struct dentry *old_dentry,
8972 struct inode *new_dir, struct dentry *new_dentry,
8973 unsigned int flags)
39279cc3 8974{
0b246afa 8975 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
3538d68d
OS
8976 struct btrfs_new_inode_args whiteout_args = {
8977 .dir = old_dir,
8978 .dentry = old_dentry,
8979 };
39279cc3 8980 struct btrfs_trans_handle *trans;
5062af35 8981 unsigned int trans_num_items;
39279cc3 8982 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8983 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
8984 struct inode *new_inode = d_inode(new_dentry);
8985 struct inode *old_inode = d_inode(old_dentry);
88d2beec 8986 struct btrfs_rename_ctx rename_ctx;
00e4e6b3 8987 u64 index = 0;
39279cc3 8988 int ret;
75b463d2 8989 int ret2;
4a0cc7ca 8990 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
ab3c5c18 8991 struct fscrypt_name old_fname, new_fname;
39279cc3 8992
4a0cc7ca 8993 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8994 return -EPERM;
8995
4df27c4d 8996 /* we only allow rename subvolume link between subvolumes */
33345d01 8997 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8998 return -EXDEV;
8999
33345d01 9000 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9001 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9002 return -ENOTEMPTY;
5f39d397 9003
4df27c4d
YZ
9004 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9005 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9006 return -ENOTEMPTY;
9c52057c 9007
ab3c5c18
STD
9008 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9009 if (ret)
9010 return ret;
9c52057c 9011
ab3c5c18
STD
9012 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9013 if (ret) {
9014 fscrypt_free_filename(&old_fname);
9015 return ret;
9016 }
9c52057c 9017
9c52057c 9018 /* check for collisions, even if the name isn't there */
6db75318 9019 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9c52057c
CM
9020 if (ret) {
9021 if (ret == -EEXIST) {
9022 /* we shouldn't get
9023 * eexist without a new_inode */
fae7f21c 9024 if (WARN_ON(!new_inode)) {
ab3c5c18 9025 goto out_fscrypt_names;
9c52057c
CM
9026 }
9027 } else {
9028 /* maybe -EOVERFLOW */
ab3c5c18 9029 goto out_fscrypt_names;
9c52057c
CM
9030 }
9031 }
9032 ret = 0;
9033
5a3f23d5 9034 /*
8d875f95
CM
9035 * we're using rename to replace one file with another. Start IO on it
9036 * now so we don't add too much work to the end of the transaction
5a3f23d5 9037 */
8d875f95 9038 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9039 filemap_flush(old_inode->i_mapping);
9040
a1fd0c35 9041 if (flags & RENAME_WHITEOUT) {
f2d40141 9042 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
abe3bf74
CJ
9043 if (!whiteout_args.inode) {
9044 ret = -ENOMEM;
9045 goto out_fscrypt_names;
9046 }
3538d68d
OS
9047 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9048 if (ret)
9049 goto out_whiteout_inode;
9050 } else {
9051 /* 1 to update the old parent inode. */
9052 trans_num_items = 1;
a1fd0c35
OS
9053 }
9054
c1621871
OS
9055 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9056 /* Close the race window with snapshot create/destroy ioctl */
0b246afa 9057 down_read(&fs_info->subvol_sem);
c1621871
OS
9058 /*
9059 * 1 to remove old root ref
9060 * 1 to remove old root backref
9061 * 1 to add new root ref
9062 * 1 to add new root backref
9063 */
3538d68d 9064 trans_num_items += 4;
c1621871
OS
9065 } else {
9066 /*
9067 * 1 to update inode
9068 * 1 to remove old inode ref
9069 * 1 to add new inode ref
9070 */
3538d68d 9071 trans_num_items += 3;
c1621871 9072 }
a22285a6 9073 /*
c1621871
OS
9074 * 1 to remove old dir item
9075 * 1 to remove old dir index
c1621871
OS
9076 * 1 to add new dir item
9077 * 1 to add new dir index
a22285a6 9078 */
3538d68d
OS
9079 trans_num_items += 4;
9080 /* 1 to update new parent inode if it's not the same as the old parent */
c1621871
OS
9081 if (new_dir != old_dir)
9082 trans_num_items++;
9083 if (new_inode) {
9084 /*
9085 * 1 to update inode
9086 * 1 to remove inode ref
9087 * 1 to remove dir item
9088 * 1 to remove dir index
9089 * 1 to possibly add orphan item
9090 */
9091 trans_num_items += 5;
9092 }
5062af35 9093 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9094 if (IS_ERR(trans)) {
cdd1fedf
DF
9095 ret = PTR_ERR(trans);
9096 goto out_notrans;
9097 }
76dda93c 9098
b0fec6fd
JB
9099 if (dest != root) {
9100 ret = btrfs_record_root_in_trans(trans, dest);
9101 if (ret)
9102 goto out_fail;
9103 }
5f39d397 9104
877574e2 9105 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9106 if (ret)
9107 goto out_fail;
5a3f23d5 9108
67de1176 9109 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9110 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9111 /* force full log commit if subvolume involved. */
90787766 9112 btrfs_set_log_full_commit(trans);
4df27c4d 9113 } else {
6db75318
STD
9114 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9115 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9116 index);
a5719521
YZ
9117 if (ret)
9118 goto out_fail;
4df27c4d 9119 }
5a3f23d5 9120
0c4d2d95
JB
9121 inode_inc_iversion(old_dir);
9122 inode_inc_iversion(new_dir);
9123 inode_inc_iversion(old_inode);
130f1eca 9124 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
5f39d397 9125
12fcfd22 9126 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379 9127 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 9128 BTRFS_I(old_inode), true);
12fcfd22 9129
33345d01 9130 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5b7544cb 9131 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
4df27c4d 9132 } else {
4467af88 9133 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
e43eec81 9134 BTRFS_I(d_inode(old_dentry)),
6db75318 9135 &old_fname.disk_name, &rename_ctx);
92986796 9136 if (!ret)
8b9d0322 9137 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
4df27c4d 9138 }
79787eaa 9139 if (ret) {
66642832 9140 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9141 goto out_fail;
9142 }
39279cc3
CM
9143
9144 if (new_inode) {
0c4d2d95 9145 inode_inc_iversion(new_inode);
4a0cc7ca 9146 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9147 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 9148 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
4df27c4d
YZ
9149 BUG_ON(new_inode->i_nlink == 0);
9150 } else {
4467af88 9151 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9152 BTRFS_I(d_inode(new_dentry)),
6db75318 9153 &new_fname.disk_name);
4df27c4d 9154 }
4ef31a45 9155 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9156 ret = btrfs_orphan_add(trans,
9157 BTRFS_I(d_inode(new_dentry)));
79787eaa 9158 if (ret) {
66642832 9159 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9160 goto out_fail;
9161 }
39279cc3 9162 }
aec7477b 9163
db0a669f 9164 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 9165 &new_fname.disk_name, 0, index);
79787eaa 9166 if (ret) {
66642832 9167 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9168 goto out_fail;
9169 }
39279cc3 9170
67de1176
MX
9171 if (old_inode->i_nlink == 1)
9172 BTRFS_I(old_inode)->dir_index = index;
9173
259c4b96 9174 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9175 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 9176 rename_ctx.index, new_dentry->d_parent);
cdd1fedf
DF
9177
9178 if (flags & RENAME_WHITEOUT) {
caae78e0 9179 ret = btrfs_create_new_inode(trans, &whiteout_args);
cdd1fedf 9180 if (ret) {
66642832 9181 btrfs_abort_transaction(trans, ret);
cdd1fedf 9182 goto out_fail;
caae78e0
OS
9183 } else {
9184 unlock_new_inode(whiteout_args.inode);
9185 iput(whiteout_args.inode);
9186 whiteout_args.inode = NULL;
cdd1fedf 9187 }
4df27c4d 9188 }
39279cc3 9189out_fail:
75b463d2
FM
9190 ret2 = btrfs_end_transaction(trans);
9191 ret = ret ? ret : ret2;
b44c59a8 9192out_notrans:
33345d01 9193 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9194 up_read(&fs_info->subvol_sem);
a1fd0c35 9195 if (flags & RENAME_WHITEOUT)
3538d68d
OS
9196 btrfs_new_inode_args_destroy(&whiteout_args);
9197out_whiteout_inode:
9198 if (flags & RENAME_WHITEOUT)
9199 iput(whiteout_args.inode);
ab3c5c18
STD
9200out_fscrypt_names:
9201 fscrypt_free_filename(&old_fname);
9202 fscrypt_free_filename(&new_fname);
39279cc3
CM
9203 return ret;
9204}
9205
e18275ae 9206static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
549c7297
CB
9207 struct dentry *old_dentry, struct inode *new_dir,
9208 struct dentry *new_dentry, unsigned int flags)
80ace85c 9209{
ca6dee6b
FM
9210 int ret;
9211
cdd1fedf 9212 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9213 return -EINVAL;
9214
cdd1fedf 9215 if (flags & RENAME_EXCHANGE)
ca6dee6b
FM
9216 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9217 new_dentry);
9218 else
f2d40141 9219 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
ca6dee6b 9220 new_dentry, flags);
cdd1fedf 9221
ca6dee6b
FM
9222 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9223
9224 return ret;
80ace85c
MS
9225}
9226
3a2f8c07
NB
9227struct btrfs_delalloc_work {
9228 struct inode *inode;
9229 struct completion completion;
9230 struct list_head list;
9231 struct btrfs_work work;
9232};
9233
8ccf6f19
MX
9234static void btrfs_run_delalloc_work(struct btrfs_work *work)
9235{
9236 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9237 struct inode *inode;
8ccf6f19
MX
9238
9239 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9240 work);
9f23e289 9241 inode = delalloc_work->inode;
30424601
DS
9242 filemap_flush(inode->i_mapping);
9243 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9244 &BTRFS_I(inode)->runtime_flags))
9f23e289 9245 filemap_flush(inode->i_mapping);
8ccf6f19 9246
076da91c 9247 iput(inode);
8ccf6f19
MX
9248 complete(&delalloc_work->completion);
9249}
9250
3a2f8c07 9251static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9252{
9253 struct btrfs_delalloc_work *work;
9254
100d5702 9255 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9256 if (!work)
9257 return NULL;
9258
9259 init_completion(&work->completion);
9260 INIT_LIST_HEAD(&work->list);
9261 work->inode = inode;
078b8b90 9262 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8ccf6f19
MX
9263
9264 return work;
9265}
9266
d352ac68
CM
9267/*
9268 * some fairly slow code that needs optimization. This walks the list
9269 * of all the inodes with pending delalloc and forces them to disk.
9270 */
e076ab2a
JB
9271static int start_delalloc_inodes(struct btrfs_root *root,
9272 struct writeback_control *wbc, bool snapshot,
3d45f221 9273 bool in_reclaim_context)
ea8c2819 9274{
ea8c2819 9275 struct btrfs_inode *binode;
5b21f2ed 9276 struct inode *inode;
8ccf6f19 9277 struct btrfs_delalloc_work *work, *next;
84af994b
RJ
9278 LIST_HEAD(works);
9279 LIST_HEAD(splice);
8ccf6f19 9280 int ret = 0;
e076ab2a 9281 bool full_flush = wbc->nr_to_write == LONG_MAX;
ea8c2819 9282
573bfb72 9283 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9284 spin_lock(&root->delalloc_lock);
9285 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9286 while (!list_empty(&splice)) {
9287 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9288 delalloc_inodes);
1eafa6c7 9289
eb73c1b7
MX
9290 list_move_tail(&binode->delalloc_inodes,
9291 &root->delalloc_inodes);
3d45f221
FM
9292
9293 if (in_reclaim_context &&
9294 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9295 continue;
9296
5b21f2ed 9297 inode = igrab(&binode->vfs_inode);
df0af1a5 9298 if (!inode) {
eb73c1b7 9299 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9300 continue;
df0af1a5 9301 }
eb73c1b7 9302 spin_unlock(&root->delalloc_lock);
1eafa6c7 9303
3cd24c69
EL
9304 if (snapshot)
9305 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9306 &binode->runtime_flags);
e076ab2a
JB
9307 if (full_flush) {
9308 work = btrfs_alloc_delalloc_work(inode);
9309 if (!work) {
9310 iput(inode);
9311 ret = -ENOMEM;
9312 goto out;
9313 }
9314 list_add_tail(&work->list, &works);
9315 btrfs_queue_work(root->fs_info->flush_workers,
9316 &work->work);
9317 } else {
b3776305 9318 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
e55cf7ca 9319 btrfs_add_delayed_iput(BTRFS_I(inode));
e076ab2a 9320 if (ret || wbc->nr_to_write <= 0)
b4912139
JB
9321 goto out;
9322 }
5b21f2ed 9323 cond_resched();
eb73c1b7 9324 spin_lock(&root->delalloc_lock);
ea8c2819 9325 }
eb73c1b7 9326 spin_unlock(&root->delalloc_lock);
8c8bee1d 9327
a1ecaabb 9328out:
eb73c1b7
MX
9329 list_for_each_entry_safe(work, next, &works, list) {
9330 list_del_init(&work->list);
40012f96
NB
9331 wait_for_completion(&work->completion);
9332 kfree(work);
eb73c1b7
MX
9333 }
9334
81f1d390 9335 if (!list_empty(&splice)) {
eb73c1b7
MX
9336 spin_lock(&root->delalloc_lock);
9337 list_splice_tail(&splice, &root->delalloc_inodes);
9338 spin_unlock(&root->delalloc_lock);
9339 }
573bfb72 9340 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9341 return ret;
9342}
1eafa6c7 9343
f9baa501 9344int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
eb73c1b7 9345{
e076ab2a
JB
9346 struct writeback_control wbc = {
9347 .nr_to_write = LONG_MAX,
9348 .sync_mode = WB_SYNC_NONE,
9349 .range_start = 0,
9350 .range_end = LLONG_MAX,
9351 };
0b246afa 9352 struct btrfs_fs_info *fs_info = root->fs_info;
1eafa6c7 9353
84961539 9354 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9355 return -EROFS;
9356
f9baa501 9357 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
eb73c1b7
MX
9358}
9359
9db4dc24 9360int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3d45f221 9361 bool in_reclaim_context)
eb73c1b7 9362{
e076ab2a 9363 struct writeback_control wbc = {
9db4dc24 9364 .nr_to_write = nr,
e076ab2a
JB
9365 .sync_mode = WB_SYNC_NONE,
9366 .range_start = 0,
9367 .range_end = LLONG_MAX,
9368 };
eb73c1b7 9369 struct btrfs_root *root;
84af994b 9370 LIST_HEAD(splice);
eb73c1b7
MX
9371 int ret;
9372
84961539 9373 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9374 return -EROFS;
9375
573bfb72 9376 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9377 spin_lock(&fs_info->delalloc_root_lock);
9378 list_splice_init(&fs_info->delalloc_roots, &splice);
d7830b71 9379 while (!list_empty(&splice)) {
e076ab2a
JB
9380 /*
9381 * Reset nr_to_write here so we know that we're doing a full
9382 * flush.
9383 */
9db4dc24 9384 if (nr == LONG_MAX)
e076ab2a
JB
9385 wbc.nr_to_write = LONG_MAX;
9386
eb73c1b7
MX
9387 root = list_first_entry(&splice, struct btrfs_root,
9388 delalloc_root);
00246528 9389 root = btrfs_grab_root(root);
eb73c1b7
MX
9390 BUG_ON(!root);
9391 list_move_tail(&root->delalloc_root,
9392 &fs_info->delalloc_roots);
9393 spin_unlock(&fs_info->delalloc_root_lock);
9394
e076ab2a 9395 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
00246528 9396 btrfs_put_root(root);
e076ab2a 9397 if (ret < 0 || wbc.nr_to_write <= 0)
eb73c1b7 9398 goto out;
eb73c1b7 9399 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9400 }
eb73c1b7 9401 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9402
6c255e67 9403 ret = 0;
eb73c1b7 9404out:
81f1d390 9405 if (!list_empty(&splice)) {
eb73c1b7
MX
9406 spin_lock(&fs_info->delalloc_root_lock);
9407 list_splice_tail(&splice, &fs_info->delalloc_roots);
9408 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9409 }
573bfb72 9410 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9411 return ret;
ea8c2819
CM
9412}
9413
7a77db95 9414static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
549c7297 9415 struct dentry *dentry, const char *symname)
39279cc3 9416{
0b246afa 9417 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9418 struct btrfs_trans_handle *trans;
9419 struct btrfs_root *root = BTRFS_I(dir)->root;
9420 struct btrfs_path *path;
9421 struct btrfs_key key;
a1fd0c35 9422 struct inode *inode;
3538d68d
OS
9423 struct btrfs_new_inode_args new_inode_args = {
9424 .dir = dir,
9425 .dentry = dentry,
9426 };
9427 unsigned int trans_num_items;
39279cc3 9428 int err;
39279cc3
CM
9429 int name_len;
9430 int datasize;
5f39d397 9431 unsigned long ptr;
39279cc3 9432 struct btrfs_file_extent_item *ei;
5f39d397 9433 struct extent_buffer *leaf;
39279cc3 9434
f06becc4 9435 name_len = strlen(symname);
0b246afa 9436 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9437 return -ENAMETOOLONG;
1832a6d5 9438
a1fd0c35
OS
9439 inode = new_inode(dir->i_sb);
9440 if (!inode)
9441 return -ENOMEM;
f2d40141 9442 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
a1fd0c35
OS
9443 inode->i_op = &btrfs_symlink_inode_operations;
9444 inode_nohighmem(inode);
9445 inode->i_mapping->a_ops = &btrfs_aops;
caae78e0
OS
9446 btrfs_i_size_write(BTRFS_I(inode), name_len);
9447 inode_set_bytes(inode, name_len);
a1fd0c35 9448
3538d68d
OS
9449 new_inode_args.inode = inode;
9450 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9451 if (err)
9452 goto out_inode;
3538d68d
OS
9453 /* 1 additional item for the inline extent */
9454 trans_num_items++;
9455
9456 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9457 if (IS_ERR(trans)) {
3538d68d
OS
9458 err = PTR_ERR(trans);
9459 goto out_new_inode_args;
a1fd0c35 9460 }
1832a6d5 9461
caae78e0 9462 err = btrfs_create_new_inode(trans, &new_inode_args);
b0d5d10f 9463 if (err)
caae78e0 9464 goto out;
ad19db71 9465
39279cc3 9466 path = btrfs_alloc_path();
d8926bb3
MF
9467 if (!path) {
9468 err = -ENOMEM;
caae78e0
OS
9469 btrfs_abort_transaction(trans, err);
9470 discard_new_inode(inode);
9471 inode = NULL;
9472 goto out;
d8926bb3 9473 }
4a0cc7ca 9474 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9475 key.offset = 0;
962a298f 9476 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9477 datasize = btrfs_file_extent_calc_inline_size(name_len);
9478 err = btrfs_insert_empty_item(trans, root, path, &key,
9479 datasize);
54aa1f4d 9480 if (err) {
caae78e0 9481 btrfs_abort_transaction(trans, err);
b0839166 9482 btrfs_free_path(path);
caae78e0
OS
9483 discard_new_inode(inode);
9484 inode = NULL;
9485 goto out;
54aa1f4d 9486 }
5f39d397
CM
9487 leaf = path->nodes[0];
9488 ei = btrfs_item_ptr(leaf, path->slots[0],
9489 struct btrfs_file_extent_item);
9490 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9491 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9492 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9493 btrfs_set_file_extent_encryption(leaf, ei, 0);
9494 btrfs_set_file_extent_compression(leaf, ei, 0);
9495 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9496 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9497
39279cc3 9498 ptr = btrfs_file_extent_inline_start(ei);
5f39d397 9499 write_extent_buffer(leaf, symname, ptr, name_len);
50564b65 9500 btrfs_mark_buffer_dirty(trans, leaf);
39279cc3 9501 btrfs_free_path(path);
5f39d397 9502
1e2e547a 9503 d_instantiate_new(dentry, inode);
caae78e0
OS
9504 err = 0;
9505out:
3a45bb20 9506 btrfs_end_transaction(trans);
2ff7e61e 9507 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9508out_new_inode_args:
9509 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9510out_inode:
9511 if (err)
9512 iput(inode);
39279cc3
CM
9513 return err;
9514}
16432985 9515
8fccebfa
FM
9516static struct btrfs_trans_handle *insert_prealloc_file_extent(
9517 struct btrfs_trans_handle *trans_in,
90dffd0c
NB
9518 struct btrfs_inode *inode,
9519 struct btrfs_key *ins,
203f44c5
QW
9520 u64 file_offset)
9521{
9522 struct btrfs_file_extent_item stack_fi;
bf385648 9523 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9524 struct btrfs_trans_handle *trans = trans_in;
9525 struct btrfs_path *path;
203f44c5
QW
9526 u64 start = ins->objectid;
9527 u64 len = ins->offset;
9e65bfca 9528 u64 qgroup_released = 0;
9729f10a 9529 int ret;
203f44c5
QW
9530
9531 memset(&stack_fi, 0, sizeof(stack_fi));
9532
9533 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9534 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9535 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9536 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9537 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9538 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9539 /* Encryption and other encoding is reserved and all 0 */
9540
9e65bfca
BB
9541 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9542 if (ret < 0)
9543 return ERR_PTR(ret);
8fccebfa
FM
9544
9545 if (trans) {
90dffd0c 9546 ret = insert_reserved_file_extent(trans, inode,
2766ff61 9547 file_offset, &stack_fi,
fbf48bb0 9548 true, qgroup_released);
8fccebfa 9549 if (ret)
a3ee79bd 9550 goto free_qgroup;
8fccebfa
FM
9551 return trans;
9552 }
9553
9554 extent_info.disk_offset = start;
9555 extent_info.disk_len = len;
9556 extent_info.data_offset = 0;
9557 extent_info.data_len = len;
9558 extent_info.file_offset = file_offset;
9559 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa 9560 extent_info.is_new_extent = true;
983d8209 9561 extent_info.update_times = true;
fbf48bb0 9562 extent_info.qgroup_reserved = qgroup_released;
8fccebfa
FM
9563 extent_info.insertions = 0;
9564
9565 path = btrfs_alloc_path();
a3ee79bd
QW
9566 if (!path) {
9567 ret = -ENOMEM;
9568 goto free_qgroup;
9569 }
8fccebfa 9570
bfc78479 9571 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9572 file_offset + len - 1, &extent_info,
9573 &trans);
9574 btrfs_free_path(path);
9575 if (ret)
a3ee79bd 9576 goto free_qgroup;
8fccebfa 9577 return trans;
a3ee79bd
QW
9578
9579free_qgroup:
9580 /*
9581 * We have released qgroup data range at the beginning of the function,
9582 * and normally qgroup_released bytes will be freed when committing
9583 * transaction.
9584 * But if we error out early, we have to free what we have released
9585 * or we leak qgroup data reservation.
9586 */
9587 btrfs_qgroup_free_refroot(inode->root->fs_info,
9588 inode->root->root_key.objectid, qgroup_released,
9589 BTRFS_QGROUP_RSV_DATA);
9590 return ERR_PTR(ret);
203f44c5 9591}
8fccebfa 9592
0af3d00b
JB
9593static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9594 u64 start, u64 num_bytes, u64 min_size,
9595 loff_t actual_len, u64 *alloc_hint,
9596 struct btrfs_trans_handle *trans)
d899e052 9597{
0b246afa 9598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5 9599 struct extent_map *em;
d899e052
YZ
9600 struct btrfs_root *root = BTRFS_I(inode)->root;
9601 struct btrfs_key ins;
d899e052 9602 u64 cur_offset = start;
b778cf96 9603 u64 clear_offset = start;
55a61d1d 9604 u64 i_size;
154ea289 9605 u64 cur_bytes;
0b670dc4 9606 u64 last_alloc = (u64)-1;
d899e052 9607 int ret = 0;
0af3d00b 9608 bool own_trans = true;
18513091 9609 u64 end = start + num_bytes - 1;
d899e052 9610
0af3d00b
JB
9611 if (trans)
9612 own_trans = false;
d899e052 9613 while (num_bytes > 0) {
ee22184b 9614 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9615 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9616 /*
9617 * If we are severely fragmented we could end up with really
9618 * small allocations, so if the allocator is returning small
9619 * chunks lets make its job easier by only searching for those
9620 * sized chunks.
9621 */
9622 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9623 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9624 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9625 if (ret)
a22285a6 9626 break;
b778cf96
JB
9627
9628 /*
9629 * We've reserved this space, and thus converted it from
9630 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9631 * from here on out we will only need to clear our reservation
9632 * for the remaining unreserved area, so advance our
9633 * clear_offset by our extent size.
9634 */
9635 clear_offset += ins.offset;
5a303d5d 9636
0b670dc4 9637 last_alloc = ins.offset;
90dffd0c
NB
9638 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9639 &ins, cur_offset);
1afc708d
FM
9640 /*
9641 * Now that we inserted the prealloc extent we can finally
9642 * decrement the number of reservations in the block group.
9643 * If we did it before, we could race with relocation and have
9644 * relocation miss the reserved extent, making it fail later.
9645 */
9646 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9647 if (IS_ERR(trans)) {
9648 ret = PTR_ERR(trans);
2ff7e61e 9649 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9650 ins.offset, 0);
79787eaa
JM
9651 break;
9652 }
31193213 9653
5dc562c5
JB
9654 em = alloc_extent_map();
9655 if (!em) {
a1ba4c08
FM
9656 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9657 cur_offset + ins.offset - 1, false);
23e3337f 9658 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5
JB
9659 goto next;
9660 }
9661
9662 em->start = cur_offset;
9663 em->orig_start = cur_offset;
9664 em->len = ins.offset;
9665 em->block_start = ins.objectid;
9666 em->block_len = ins.offset;
b4939680 9667 em->orig_block_len = ins.offset;
cc95bef6 9668 em->ram_bytes = ins.offset;
f86f7a75 9669 em->flags |= EXTENT_FLAG_PREALLOC;
5dc562c5
JB
9670 em->generation = trans->transid;
9671
a1ba4c08 9672 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
5dc562c5
JB
9673 free_extent_map(em);
9674next:
d899e052
YZ
9675 num_bytes -= ins.offset;
9676 cur_offset += ins.offset;
efa56464 9677 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9678
0c4d2d95 9679 inode_inc_iversion(inode);
2a9462de 9680 inode_set_ctime_current(inode);
6cbff00f 9681 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9682 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9683 (actual_len > inode->i_size) &&
9684 (cur_offset > inode->i_size)) {
d1ea6a61 9685 if (cur_offset > actual_len)
55a61d1d 9686 i_size = actual_len;
d1ea6a61 9687 else
55a61d1d
JB
9688 i_size = cur_offset;
9689 i_size_write(inode, i_size);
76aea537 9690 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5a303d5d
YZ
9691 }
9692
8b9d0322 9693 ret = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
9694
9695 if (ret) {
66642832 9696 btrfs_abort_transaction(trans, ret);
79787eaa 9697 if (own_trans)
3a45bb20 9698 btrfs_end_transaction(trans);
79787eaa
JM
9699 break;
9700 }
d899e052 9701
8fccebfa 9702 if (own_trans) {
3a45bb20 9703 btrfs_end_transaction(trans);
8fccebfa
FM
9704 trans = NULL;
9705 }
5a303d5d 9706 }
b778cf96 9707 if (clear_offset < end)
25ce28ca 9708 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9709 end - clear_offset + 1);
d899e052
YZ
9710 return ret;
9711}
9712
0af3d00b
JB
9713int btrfs_prealloc_file_range(struct inode *inode, int mode,
9714 u64 start, u64 num_bytes, u64 min_size,
9715 loff_t actual_len, u64 *alloc_hint)
9716{
9717 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9718 min_size, actual_len, alloc_hint,
9719 NULL);
9720}
9721
9722int btrfs_prealloc_file_range_trans(struct inode *inode,
9723 struct btrfs_trans_handle *trans, int mode,
9724 u64 start, u64 num_bytes, u64 min_size,
9725 loff_t actual_len, u64 *alloc_hint)
9726{
9727 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9728 min_size, actual_len, alloc_hint, trans);
9729}
9730
4609e1f1 9731static int btrfs_permission(struct mnt_idmap *idmap,
549c7297 9732 struct inode *inode, int mask)
fdebe2bd 9733{
b83cc969 9734 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9735 umode_t mode = inode->i_mode;
b83cc969 9736
cb6db4e5
JM
9737 if (mask & MAY_WRITE &&
9738 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9739 if (btrfs_root_readonly(root))
9740 return -EROFS;
9741 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9742 return -EACCES;
9743 }
4609e1f1 9744 return generic_permission(idmap, inode, mask);
fdebe2bd 9745}
39279cc3 9746
011e2b71 9747static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
863f144f 9748 struct file *file, umode_t mode)
ef3b9af5 9749{
2ff7e61e 9750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9751 struct btrfs_trans_handle *trans;
9752 struct btrfs_root *root = BTRFS_I(dir)->root;
a1fd0c35 9753 struct inode *inode;
3538d68d
OS
9754 struct btrfs_new_inode_args new_inode_args = {
9755 .dir = dir,
863f144f 9756 .dentry = file->f_path.dentry,
3538d68d
OS
9757 .orphan = true,
9758 };
9759 unsigned int trans_num_items;
a1fd0c35
OS
9760 int ret;
9761
9762 inode = new_inode(dir->i_sb);
9763 if (!inode)
9764 return -ENOMEM;
f2d40141 9765 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
9766 inode->i_fop = &btrfs_file_operations;
9767 inode->i_op = &btrfs_file_inode_operations;
9768 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 9769
3538d68d
OS
9770 new_inode_args.inode = inode;
9771 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9772 if (ret)
9773 goto out_inode;
3538d68d
OS
9774
9775 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9776 if (IS_ERR(trans)) {
3538d68d
OS
9777 ret = PTR_ERR(trans);
9778 goto out_new_inode_args;
a1fd0c35 9779 }
ef3b9af5 9780
caae78e0 9781 ret = btrfs_create_new_inode(trans, &new_inode_args);
ef3b9af5 9782
5762b5c9 9783 /*
3538d68d
OS
9784 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9785 * set it to 1 because d_tmpfile() will issue a warning if the count is
9786 * 0, through:
5762b5c9
FM
9787 *
9788 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9789 */
9790 set_nlink(inode, 1);
caae78e0
OS
9791
9792 if (!ret) {
863f144f 9793 d_tmpfile(file, inode);
caae78e0
OS
9794 unlock_new_inode(inode);
9795 mark_inode_dirty(inode);
9796 }
9797
3a45bb20 9798 btrfs_end_transaction(trans);
2ff7e61e 9799 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9800out_new_inode_args:
9801 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9802out_inode:
9803 if (ret)
9804 iput(inode);
863f144f 9805 return finish_open_simple(file, ret);
ef3b9af5
FM
9806}
9807
d2a91064 9808void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
c6100a4b 9809{
d2a91064 9810 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c6100a4b
JB
9811 unsigned long index = start >> PAGE_SHIFT;
9812 unsigned long end_index = end >> PAGE_SHIFT;
9813 struct page *page;
d2a91064 9814 u32 len;
c6100a4b 9815
d2a91064
QW
9816 ASSERT(end + 1 - start <= U32_MAX);
9817 len = end + 1 - start;
c6100a4b 9818 while (index <= end_index) {
d2a91064 9819 page = find_get_page(inode->vfs_inode.i_mapping, index);
c6100a4b 9820 ASSERT(page); /* Pages should be in the extent_io_tree */
d2a91064
QW
9821
9822 btrfs_page_set_writeback(fs_info, page, start, len);
c6100a4b
JB
9823 put_page(page);
9824 index++;
9825 }
9826}
9827
3ea4dc5b
OS
9828int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9829 int compress_type)
1881fba8
OS
9830{
9831 switch (compress_type) {
9832 case BTRFS_COMPRESS_NONE:
9833 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9834 case BTRFS_COMPRESS_ZLIB:
9835 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9836 case BTRFS_COMPRESS_LZO:
9837 /*
9838 * The LZO format depends on the sector size. 64K is the maximum
9839 * sector size that we support.
9840 */
9841 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9842 return -EINVAL;
9843 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9844 (fs_info->sectorsize_bits - 12);
9845 case BTRFS_COMPRESS_ZSTD:
9846 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9847 default:
9848 return -EUCLEAN;
9849 }
9850}
9851
9852static ssize_t btrfs_encoded_read_inline(
9853 struct kiocb *iocb,
9854 struct iov_iter *iter, u64 start,
9855 u64 lockend,
9856 struct extent_state **cached_state,
9857 u64 extent_start, size_t count,
9858 struct btrfs_ioctl_encoded_io_args *encoded,
9859 bool *unlocked)
9860{
9861 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9862 struct btrfs_root *root = inode->root;
9863 struct btrfs_fs_info *fs_info = root->fs_info;
9864 struct extent_io_tree *io_tree = &inode->io_tree;
9865 struct btrfs_path *path;
9866 struct extent_buffer *leaf;
9867 struct btrfs_file_extent_item *item;
9868 u64 ram_bytes;
9869 unsigned long ptr;
9870 void *tmp;
9871 ssize_t ret;
9872
9873 path = btrfs_alloc_path();
9874 if (!path) {
9875 ret = -ENOMEM;
9876 goto out;
9877 }
9878 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9879 extent_start, 0);
9880 if (ret) {
9881 if (ret > 0) {
9882 /* The extent item disappeared? */
9883 ret = -EIO;
9884 }
9885 goto out;
9886 }
9887 leaf = path->nodes[0];
9888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9889
9890 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9891 ptr = btrfs_file_extent_inline_start(item);
9892
9893 encoded->len = min_t(u64, extent_start + ram_bytes,
9894 inode->vfs_inode.i_size) - iocb->ki_pos;
9895 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9896 btrfs_file_extent_compression(leaf, item));
9897 if (ret < 0)
9898 goto out;
9899 encoded->compression = ret;
9900 if (encoded->compression) {
9901 size_t inline_size;
9902
9903 inline_size = btrfs_file_extent_inline_item_len(leaf,
9904 path->slots[0]);
9905 if (inline_size > count) {
9906 ret = -ENOBUFS;
9907 goto out;
9908 }
9909 count = inline_size;
9910 encoded->unencoded_len = ram_bytes;
9911 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9912 } else {
9913 count = min_t(u64, count, encoded->len);
9914 encoded->len = count;
9915 encoded->unencoded_len = count;
9916 ptr += iocb->ki_pos - extent_start;
9917 }
9918
9919 tmp = kmalloc(count, GFP_NOFS);
9920 if (!tmp) {
9921 ret = -ENOMEM;
9922 goto out;
9923 }
9924 read_extent_buffer(leaf, tmp, ptr, count);
9925 btrfs_release_path(path);
570eb97b 9926 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 9927 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
9928 *unlocked = true;
9929
9930 ret = copy_to_iter(tmp, count, iter);
9931 if (ret != count)
9932 ret = -EFAULT;
9933 kfree(tmp);
9934out:
9935 btrfs_free_path(path);
9936 return ret;
9937}
9938
9939struct btrfs_encoded_read_private {
1881fba8
OS
9940 wait_queue_head_t wait;
9941 atomic_t pending;
9942 blk_status_t status;
1881fba8
OS
9943};
9944
917f32a2 9945static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
1881fba8 9946{
917f32a2 9947 struct btrfs_encoded_read_private *priv = bbio->private;
1881fba8 9948
7609afac 9949 if (bbio->bio.bi_status) {
1881fba8
OS
9950 /*
9951 * The memory barrier implied by the atomic_dec_return() here
9952 * pairs with the memory barrier implied by the
9953 * atomic_dec_return() or io_wait_event() in
9954 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9955 * write is observed before the load of status in
9956 * btrfs_encoded_read_regular_fill_pages().
9957 */
7609afac 9958 WRITE_ONCE(priv->status, bbio->bio.bi_status);
1881fba8
OS
9959 }
9960 if (!atomic_dec_return(&priv->pending))
9961 wake_up(&priv->wait);
917f32a2 9962 bio_put(&bbio->bio);
1881fba8
OS
9963}
9964
3ea4dc5b
OS
9965int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9966 u64 file_offset, u64 disk_bytenr,
9967 u64 disk_io_size, struct page **pages)
1881fba8 9968{
4317ff00 9969 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1881fba8 9970 struct btrfs_encoded_read_private priv = {
1881fba8 9971 .pending = ATOMIC_INIT(1),
1881fba8
OS
9972 };
9973 unsigned long i = 0;
b41bbd29 9974 struct btrfs_bio *bbio;
1881fba8
OS
9975
9976 init_waitqueue_head(&priv.wait);
1881fba8 9977
4317ff00
QW
9978 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9979 btrfs_encoded_read_endio, &priv);
b41bbd29 9980 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 9981 bbio->inode = inode;
1881fba8 9982
34f888ce
CH
9983 do {
9984 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9985
b41bbd29 9986 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
34f888ce 9987 atomic_inc(&priv.pending);
b41bbd29 9988 btrfs_submit_bio(bbio, 0);
34f888ce 9989
4317ff00 9990 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
b41bbd29
CH
9991 btrfs_encoded_read_endio, &priv);
9992 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 9993 bbio->inode = inode;
34f888ce 9994 continue;
1881fba8 9995 }
34f888ce
CH
9996
9997 i++;
9998 disk_bytenr += bytes;
9999 disk_io_size -= bytes;
10000 } while (disk_io_size);
10001
10002 atomic_inc(&priv.pending);
b41bbd29 10003 btrfs_submit_bio(bbio, 0);
1881fba8 10004
1881fba8
OS
10005 if (atomic_dec_return(&priv.pending))
10006 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10007 /* See btrfs_encoded_read_endio() for ordering. */
10008 return blk_status_to_errno(READ_ONCE(priv.status));
10009}
10010
10011static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10012 struct iov_iter *iter,
10013 u64 start, u64 lockend,
10014 struct extent_state **cached_state,
10015 u64 disk_bytenr, u64 disk_io_size,
10016 size_t count, bool compressed,
10017 bool *unlocked)
10018{
10019 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10020 struct extent_io_tree *io_tree = &inode->io_tree;
10021 struct page **pages;
10022 unsigned long nr_pages, i;
10023 u64 cur;
10024 size_t page_offset;
10025 ssize_t ret;
10026
10027 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10028 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10029 if (!pages)
10030 return -ENOMEM;
dd137dd1
STD
10031 ret = btrfs_alloc_page_array(nr_pages, pages);
10032 if (ret) {
10033 ret = -ENOMEM;
10034 goto out;
1881fba8 10035 }
1881fba8
OS
10036
10037 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10038 disk_io_size, pages);
10039 if (ret)
10040 goto out;
10041
570eb97b 10042 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 10043 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10044 *unlocked = true;
10045
10046 if (compressed) {
10047 i = 0;
10048 page_offset = 0;
10049 } else {
10050 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10051 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10052 }
10053 cur = 0;
10054 while (cur < count) {
10055 size_t bytes = min_t(size_t, count - cur,
10056 PAGE_SIZE - page_offset);
10057
10058 if (copy_page_to_iter(pages[i], page_offset, bytes,
10059 iter) != bytes) {
10060 ret = -EFAULT;
10061 goto out;
10062 }
10063 i++;
10064 cur += bytes;
10065 page_offset = 0;
10066 }
10067 ret = count;
10068out:
10069 for (i = 0; i < nr_pages; i++) {
10070 if (pages[i])
10071 __free_page(pages[i]);
10072 }
10073 kfree(pages);
10074 return ret;
10075}
10076
10077ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10078 struct btrfs_ioctl_encoded_io_args *encoded)
10079{
10080 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10081 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10082 struct extent_io_tree *io_tree = &inode->io_tree;
10083 ssize_t ret;
10084 size_t count = iov_iter_count(iter);
10085 u64 start, lockend, disk_bytenr, disk_io_size;
10086 struct extent_state *cached_state = NULL;
10087 struct extent_map *em;
10088 bool unlocked = false;
10089
10090 file_accessed(iocb->ki_filp);
10091
29b6352b 10092 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10093
10094 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
e5d4d75b 10095 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10096 return 0;
10097 }
10098 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10099 /*
10100 * We don't know how long the extent containing iocb->ki_pos is, but if
10101 * it's compressed we know that it won't be longer than this.
10102 */
10103 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10104
10105 for (;;) {
10106 struct btrfs_ordered_extent *ordered;
10107
10108 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10109 lockend - start + 1);
10110 if (ret)
10111 goto out_unlock_inode;
570eb97b 10112 lock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10113 ordered = btrfs_lookup_ordered_range(inode, start,
10114 lockend - start + 1);
10115 if (!ordered)
10116 break;
10117 btrfs_put_ordered_extent(ordered);
570eb97b 10118 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10119 cond_resched();
10120 }
10121
10122 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10123 if (IS_ERR(em)) {
10124 ret = PTR_ERR(em);
10125 goto out_unlock_extent;
10126 }
10127
10128 if (em->block_start == EXTENT_MAP_INLINE) {
10129 u64 extent_start = em->start;
10130
10131 /*
10132 * For inline extents we get everything we need out of the
10133 * extent item.
10134 */
10135 free_extent_map(em);
10136 em = NULL;
10137 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10138 &cached_state, extent_start,
10139 count, encoded, &unlocked);
10140 goto out;
10141 }
10142
10143 /*
10144 * We only want to return up to EOF even if the extent extends beyond
10145 * that.
10146 */
10147 encoded->len = min_t(u64, extent_map_end(em),
10148 inode->vfs_inode.i_size) - iocb->ki_pos;
10149 if (em->block_start == EXTENT_MAP_HOLE ||
f86f7a75 10150 (em->flags & EXTENT_FLAG_PREALLOC)) {
1881fba8
OS
10151 disk_bytenr = EXTENT_MAP_HOLE;
10152 count = min_t(u64, count, encoded->len);
10153 encoded->len = count;
10154 encoded->unencoded_len = count;
f86f7a75 10155 } else if (extent_map_is_compressed(em)) {
1881fba8
OS
10156 disk_bytenr = em->block_start;
10157 /*
10158 * Bail if the buffer isn't large enough to return the whole
10159 * compressed extent.
10160 */
10161 if (em->block_len > count) {
10162 ret = -ENOBUFS;
10163 goto out_em;
10164 }
c1867eb3
DS
10165 disk_io_size = em->block_len;
10166 count = em->block_len;
1881fba8
OS
10167 encoded->unencoded_len = em->ram_bytes;
10168 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10169 ret = btrfs_encoded_io_compression_from_extent(fs_info,
f86f7a75 10170 extent_map_compression(em));
1881fba8
OS
10171 if (ret < 0)
10172 goto out_em;
10173 encoded->compression = ret;
10174 } else {
10175 disk_bytenr = em->block_start + (start - em->start);
10176 if (encoded->len > count)
10177 encoded->len = count;
10178 /*
10179 * Don't read beyond what we locked. This also limits the page
10180 * allocations that we'll do.
10181 */
10182 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10183 count = start + disk_io_size - iocb->ki_pos;
10184 encoded->len = count;
10185 encoded->unencoded_len = count;
10186 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10187 }
10188 free_extent_map(em);
10189 em = NULL;
10190
10191 if (disk_bytenr == EXTENT_MAP_HOLE) {
570eb97b 10192 unlock_extent(io_tree, start, lockend, &cached_state);
e5d4d75b 10193 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10194 unlocked = true;
10195 ret = iov_iter_zero(count, iter);
10196 if (ret != count)
10197 ret = -EFAULT;
10198 } else {
10199 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10200 &cached_state, disk_bytenr,
10201 disk_io_size, count,
10202 encoded->compression,
10203 &unlocked);
10204 }
10205
10206out:
10207 if (ret >= 0)
10208 iocb->ki_pos += encoded->len;
10209out_em:
10210 free_extent_map(em);
10211out_unlock_extent:
10212 if (!unlocked)
570eb97b 10213 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10214out_unlock_inode:
10215 if (!unlocked)
e5d4d75b 10216 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10217 return ret;
10218}
10219
7c0c7269
OS
10220ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10221 const struct btrfs_ioctl_encoded_io_args *encoded)
10222{
10223 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10224 struct btrfs_root *root = inode->root;
10225 struct btrfs_fs_info *fs_info = root->fs_info;
10226 struct extent_io_tree *io_tree = &inode->io_tree;
10227 struct extent_changeset *data_reserved = NULL;
10228 struct extent_state *cached_state = NULL;
d611935b 10229 struct btrfs_ordered_extent *ordered;
7c0c7269
OS
10230 int compression;
10231 size_t orig_count;
10232 u64 start, end;
10233 u64 num_bytes, ram_bytes, disk_num_bytes;
10234 unsigned long nr_pages, i;
10235 struct page **pages;
10236 struct btrfs_key ins;
10237 bool extent_reserved = false;
10238 struct extent_map *em;
10239 ssize_t ret;
10240
10241 switch (encoded->compression) {
10242 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10243 compression = BTRFS_COMPRESS_ZLIB;
10244 break;
10245 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10246 compression = BTRFS_COMPRESS_ZSTD;
10247 break;
10248 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10249 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10250 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10251 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10252 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10253 /* The sector size must match for LZO. */
10254 if (encoded->compression -
10255 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10256 fs_info->sectorsize_bits)
10257 return -EINVAL;
10258 compression = BTRFS_COMPRESS_LZO;
10259 break;
10260 default:
10261 return -EINVAL;
10262 }
10263 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10264 return -EINVAL;
10265
10266 orig_count = iov_iter_count(from);
10267
10268 /* The extent size must be sane. */
10269 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10270 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10271 return -EINVAL;
10272
10273 /*
10274 * The compressed data must be smaller than the decompressed data.
10275 *
10276 * It's of course possible for data to compress to larger or the same
10277 * size, but the buffered I/O path falls back to no compression for such
10278 * data, and we don't want to break any assumptions by creating these
10279 * extents.
10280 *
10281 * Note that this is less strict than the current check we have that the
10282 * compressed data must be at least one sector smaller than the
10283 * decompressed data. We only want to enforce the weaker requirement
10284 * from old kernels that it is at least one byte smaller.
10285 */
10286 if (orig_count >= encoded->unencoded_len)
10287 return -EINVAL;
10288
10289 /* The extent must start on a sector boundary. */
10290 start = iocb->ki_pos;
10291 if (!IS_ALIGNED(start, fs_info->sectorsize))
10292 return -EINVAL;
10293
10294 /*
10295 * The extent must end on a sector boundary. However, we allow a write
10296 * which ends at or extends i_size to have an unaligned length; we round
10297 * up the extent size and set i_size to the unaligned end.
10298 */
10299 if (start + encoded->len < inode->vfs_inode.i_size &&
10300 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10301 return -EINVAL;
10302
10303 /* Finally, the offset in the unencoded data must be sector-aligned. */
10304 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10305 return -EINVAL;
10306
10307 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10308 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10309 end = start + num_bytes - 1;
10310
10311 /*
10312 * If the extent cannot be inline, the compressed data on disk must be
10313 * sector-aligned. For convenience, we extend it with zeroes if it
10314 * isn't.
10315 */
10316 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10317 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10318 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10319 if (!pages)
10320 return -ENOMEM;
10321 for (i = 0; i < nr_pages; i++) {
10322 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10323 char *kaddr;
10324
10325 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10326 if (!pages[i]) {
10327 ret = -ENOMEM;
10328 goto out_pages;
10329 }
70826b6b 10330 kaddr = kmap_local_page(pages[i]);
7c0c7269 10331 if (copy_from_iter(kaddr, bytes, from) != bytes) {
70826b6b 10332 kunmap_local(kaddr);
7c0c7269
OS
10333 ret = -EFAULT;
10334 goto out_pages;
10335 }
10336 if (bytes < PAGE_SIZE)
10337 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
70826b6b 10338 kunmap_local(kaddr);
7c0c7269
OS
10339 }
10340
10341 for (;;) {
10342 struct btrfs_ordered_extent *ordered;
10343
10344 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10345 if (ret)
10346 goto out_pages;
10347 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10348 start >> PAGE_SHIFT,
10349 end >> PAGE_SHIFT);
10350 if (ret)
10351 goto out_pages;
570eb97b 10352 lock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10353 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10354 if (!ordered &&
10355 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10356 break;
10357 if (ordered)
10358 btrfs_put_ordered_extent(ordered);
570eb97b 10359 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10360 cond_resched();
10361 }
10362
10363 /*
10364 * We don't use the higher-level delalloc space functions because our
10365 * num_bytes and disk_num_bytes are different.
10366 */
10367 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10368 if (ret)
10369 goto out_unlock;
10370 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10371 if (ret)
10372 goto out_free_data_space;
d4135134
FM
10373 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10374 false);
7c0c7269
OS
10375 if (ret)
10376 goto out_qgroup_free_data;
10377
10378 /* Try an inline extent first. */
10379 if (start == 0 && encoded->unencoded_len == encoded->len &&
10380 encoded->unencoded_offset == 0) {
10381 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10382 compression, pages, true);
10383 if (ret <= 0) {
10384 if (ret == 0)
10385 ret = orig_count;
10386 goto out_delalloc_release;
10387 }
10388 }
10389
10390 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10391 disk_num_bytes, 0, 0, &ins, 1, 1);
10392 if (ret)
10393 goto out_delalloc_release;
10394 extent_reserved = true;
10395
10396 em = create_io_em(inode, start, num_bytes,
10397 start - encoded->unencoded_offset, ins.objectid,
10398 ins.offset, ins.offset, ram_bytes, compression,
10399 BTRFS_ORDERED_COMPRESSED);
10400 if (IS_ERR(em)) {
10401 ret = PTR_ERR(em);
10402 goto out_free_reserved;
10403 }
10404 free_extent_map(em);
10405
d611935b 10406 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
7c0c7269
OS
10407 ins.objectid, ins.offset,
10408 encoded->unencoded_offset,
10409 (1 << BTRFS_ORDERED_ENCODED) |
10410 (1 << BTRFS_ORDERED_COMPRESSED),
10411 compression);
d611935b 10412 if (IS_ERR(ordered)) {
4c0c8cfc 10413 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 10414 ret = PTR_ERR(ordered);
7c0c7269
OS
10415 goto out_free_reserved;
10416 }
10417 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10418
10419 if (start + encoded->len > inode->vfs_inode.i_size)
10420 i_size_write(&inode->vfs_inode, start + encoded->len);
10421
570eb97b 10422 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10423
10424 btrfs_delalloc_release_extents(inode, num_bytes);
10425
d611935b 10426 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
7c0c7269
OS
10427 ret = orig_count;
10428 goto out;
10429
10430out_free_reserved:
10431 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10432 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10433out_delalloc_release:
10434 btrfs_delalloc_release_extents(inode, num_bytes);
10435 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10436out_qgroup_free_data:
10437 if (ret < 0)
9e65bfca 10438 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
7c0c7269
OS
10439out_free_data_space:
10440 /*
10441 * If btrfs_reserve_extent() succeeded, then we already decremented
10442 * bytes_may_use.
10443 */
10444 if (!extent_reserved)
10445 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10446out_unlock:
570eb97b 10447 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10448out_pages:
10449 for (i = 0; i < nr_pages; i++) {
10450 if (pages[i])
10451 __free_page(pages[i]);
10452 }
10453 kvfree(pages);
10454out:
10455 if (ret >= 0)
10456 iocb->ki_pos += encoded->len;
10457 return ret;
10458}
10459
ed46ff3d
OS
10460#ifdef CONFIG_SWAP
10461/*
10462 * Add an entry indicating a block group or device which is pinned by a
10463 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10464 * negative errno on failure.
10465 */
10466static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10467 bool is_block_group)
10468{
10469 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10470 struct btrfs_swapfile_pin *sp, *entry;
10471 struct rb_node **p;
10472 struct rb_node *parent = NULL;
10473
10474 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10475 if (!sp)
10476 return -ENOMEM;
10477 sp->ptr = ptr;
10478 sp->inode = inode;
10479 sp->is_block_group = is_block_group;
195a49ea 10480 sp->bg_extent_count = 1;
ed46ff3d
OS
10481
10482 spin_lock(&fs_info->swapfile_pins_lock);
10483 p = &fs_info->swapfile_pins.rb_node;
10484 while (*p) {
10485 parent = *p;
10486 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10487 if (sp->ptr < entry->ptr ||
10488 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10489 p = &(*p)->rb_left;
10490 } else if (sp->ptr > entry->ptr ||
10491 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10492 p = &(*p)->rb_right;
10493 } else {
195a49ea
FM
10494 if (is_block_group)
10495 entry->bg_extent_count++;
ed46ff3d
OS
10496 spin_unlock(&fs_info->swapfile_pins_lock);
10497 kfree(sp);
10498 return 1;
10499 }
10500 }
10501 rb_link_node(&sp->node, parent, p);
10502 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10503 spin_unlock(&fs_info->swapfile_pins_lock);
10504 return 0;
10505}
10506
10507/* Free all of the entries pinned by this swapfile. */
10508static void btrfs_free_swapfile_pins(struct inode *inode)
10509{
10510 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10511 struct btrfs_swapfile_pin *sp;
10512 struct rb_node *node, *next;
10513
10514 spin_lock(&fs_info->swapfile_pins_lock);
10515 node = rb_first(&fs_info->swapfile_pins);
10516 while (node) {
10517 next = rb_next(node);
10518 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10519 if (sp->inode == inode) {
10520 rb_erase(&sp->node, &fs_info->swapfile_pins);
195a49ea
FM
10521 if (sp->is_block_group) {
10522 btrfs_dec_block_group_swap_extents(sp->ptr,
10523 sp->bg_extent_count);
ed46ff3d 10524 btrfs_put_block_group(sp->ptr);
195a49ea 10525 }
ed46ff3d
OS
10526 kfree(sp);
10527 }
10528 node = next;
10529 }
10530 spin_unlock(&fs_info->swapfile_pins_lock);
10531}
10532
10533struct btrfs_swap_info {
10534 u64 start;
10535 u64 block_start;
10536 u64 block_len;
10537 u64 lowest_ppage;
10538 u64 highest_ppage;
10539 unsigned long nr_pages;
10540 int nr_extents;
10541};
10542
10543static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10544 struct btrfs_swap_info *bsi)
10545{
10546 unsigned long nr_pages;
c2f82263 10547 unsigned long max_pages;
ed46ff3d
OS
10548 u64 first_ppage, first_ppage_reported, next_ppage;
10549 int ret;
10550
c2f82263
FM
10551 /*
10552 * Our swapfile may have had its size extended after the swap header was
10553 * written. In that case activating the swapfile should not go beyond
10554 * the max size set in the swap header.
10555 */
10556 if (bsi->nr_pages >= sis->max)
10557 return 0;
10558
10559 max_pages = sis->max - bsi->nr_pages;
ce394a7f
YZ
10560 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10561 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
ed46ff3d
OS
10562
10563 if (first_ppage >= next_ppage)
10564 return 0;
10565 nr_pages = next_ppage - first_ppage;
c2f82263 10566 nr_pages = min(nr_pages, max_pages);
ed46ff3d
OS
10567
10568 first_ppage_reported = first_ppage;
10569 if (bsi->start == 0)
10570 first_ppage_reported++;
10571 if (bsi->lowest_ppage > first_ppage_reported)
10572 bsi->lowest_ppage = first_ppage_reported;
10573 if (bsi->highest_ppage < (next_ppage - 1))
10574 bsi->highest_ppage = next_ppage - 1;
10575
10576 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10577 if (ret < 0)
10578 return ret;
10579 bsi->nr_extents += ret;
10580 bsi->nr_pages += nr_pages;
10581 return 0;
10582}
10583
10584static void btrfs_swap_deactivate(struct file *file)
10585{
10586 struct inode *inode = file_inode(file);
10587
10588 btrfs_free_swapfile_pins(inode);
10589 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10590}
10591
10592static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10593 sector_t *span)
10594{
10595 struct inode *inode = file_inode(file);
dd0734f2
FM
10596 struct btrfs_root *root = BTRFS_I(inode)->root;
10597 struct btrfs_fs_info *fs_info = root->fs_info;
ed46ff3d
OS
10598 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10599 struct extent_state *cached_state = NULL;
10600 struct extent_map *em = NULL;
7dc66abb 10601 struct btrfs_chunk_map *map = NULL;
ed46ff3d
OS
10602 struct btrfs_device *device = NULL;
10603 struct btrfs_swap_info bsi = {
10604 .lowest_ppage = (sector_t)-1ULL,
10605 };
10606 int ret = 0;
10607 u64 isize;
10608 u64 start;
10609
10610 /*
10611 * If the swap file was just created, make sure delalloc is done. If the
10612 * file changes again after this, the user is doing something stupid and
10613 * we don't really care.
10614 */
10615 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10616 if (ret)
10617 return ret;
10618
10619 /*
10620 * The inode is locked, so these flags won't change after we check them.
10621 */
10622 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10623 btrfs_warn(fs_info, "swapfile must not be compressed");
10624 return -EINVAL;
10625 }
10626 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10627 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10628 return -EINVAL;
10629 }
10630 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10631 btrfs_warn(fs_info, "swapfile must not be checksummed");
10632 return -EINVAL;
10633 }
10634
10635 /*
10636 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10637 * under us. The exclop protection makes sure they aren't running/won't
10638 * run concurrently while we are mapping the swap extents, and
10639 * fs_info->swapfile_pins prevents them from running while the swap
10640 * file is active and moving the extents. Note that this also prevents
10641 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10642 * really worth the trouble to allow it.
10643 */
c3e1f96c 10644 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10645 btrfs_warn(fs_info,
10646 "cannot activate swapfile while exclusive operation is running");
10647 return -EBUSY;
10648 }
dd0734f2
FM
10649
10650 /*
10651 * Prevent snapshot creation while we are activating the swap file.
10652 * We do not want to race with snapshot creation. If snapshot creation
10653 * already started before we bumped nr_swapfiles from 0 to 1 and
10654 * completes before the first write into the swap file after it is
10655 * activated, than that write would fallback to COW.
10656 */
10657 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10658 btrfs_exclop_finish(fs_info);
10659 btrfs_warn(fs_info,
10660 "cannot activate swapfile because snapshot creation is in progress");
10661 return -EINVAL;
10662 }
ed46ff3d
OS
10663 /*
10664 * Snapshots can create extents which require COW even if NODATACOW is
10665 * set. We use this counter to prevent snapshots. We must increment it
10666 * before walking the extents because we don't want a concurrent
10667 * snapshot to run after we've already checked the extents.
60021bd7
KH
10668 *
10669 * It is possible that subvolume is marked for deletion but still not
10670 * removed yet. To prevent this race, we check the root status before
10671 * activating the swapfile.
ed46ff3d 10672 */
60021bd7
KH
10673 spin_lock(&root->root_item_lock);
10674 if (btrfs_root_dead(root)) {
10675 spin_unlock(&root->root_item_lock);
10676
10677 btrfs_exclop_finish(fs_info);
10678 btrfs_warn(fs_info,
10679 "cannot activate swapfile because subvolume %llu is being deleted",
10680 root->root_key.objectid);
10681 return -EPERM;
10682 }
dd0734f2 10683 atomic_inc(&root->nr_swapfiles);
60021bd7 10684 spin_unlock(&root->root_item_lock);
ed46ff3d
OS
10685
10686 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10687
570eb97b 10688 lock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10689 start = 0;
10690 while (start < isize) {
10691 u64 logical_block_start, physical_block_start;
32da5386 10692 struct btrfs_block_group *bg;
ed46ff3d
OS
10693 u64 len = isize - start;
10694
39b07b5d 10695 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10696 if (IS_ERR(em)) {
10697 ret = PTR_ERR(em);
10698 goto out;
10699 }
10700
10701 if (em->block_start == EXTENT_MAP_HOLE) {
10702 btrfs_warn(fs_info, "swapfile must not have holes");
10703 ret = -EINVAL;
10704 goto out;
10705 }
10706 if (em->block_start == EXTENT_MAP_INLINE) {
10707 /*
10708 * It's unlikely we'll ever actually find ourselves
10709 * here, as a file small enough to fit inline won't be
10710 * big enough to store more than the swap header, but in
10711 * case something changes in the future, let's catch it
10712 * here rather than later.
10713 */
10714 btrfs_warn(fs_info, "swapfile must not be inline");
10715 ret = -EINVAL;
10716 goto out;
10717 }
f86f7a75 10718 if (extent_map_is_compressed(em)) {
ed46ff3d
OS
10719 btrfs_warn(fs_info, "swapfile must not be compressed");
10720 ret = -EINVAL;
10721 goto out;
10722 }
10723
10724 logical_block_start = em->block_start + (start - em->start);
10725 len = min(len, em->len - (start - em->start));
10726 free_extent_map(em);
10727 em = NULL;
10728
26ce9114 10729 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
ed46ff3d
OS
10730 if (ret < 0) {
10731 goto out;
10732 } else if (ret) {
10733 ret = 0;
10734 } else {
10735 btrfs_warn(fs_info,
10736 "swapfile must not be copy-on-write");
10737 ret = -EINVAL;
10738 goto out;
10739 }
10740
7dc66abb
FM
10741 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10742 if (IS_ERR(map)) {
10743 ret = PTR_ERR(map);
ed46ff3d
OS
10744 goto out;
10745 }
10746
7dc66abb 10747 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
ed46ff3d
OS
10748 btrfs_warn(fs_info,
10749 "swapfile must have single data profile");
10750 ret = -EINVAL;
10751 goto out;
10752 }
10753
10754 if (device == NULL) {
7dc66abb 10755 device = map->stripes[0].dev;
ed46ff3d
OS
10756 ret = btrfs_add_swapfile_pin(inode, device, false);
10757 if (ret == 1)
10758 ret = 0;
10759 else if (ret)
10760 goto out;
7dc66abb 10761 } else if (device != map->stripes[0].dev) {
ed46ff3d
OS
10762 btrfs_warn(fs_info, "swapfile must be on one device");
10763 ret = -EINVAL;
10764 goto out;
10765 }
10766
7dc66abb
FM
10767 physical_block_start = (map->stripes[0].physical +
10768 (logical_block_start - map->start));
10769 len = min(len, map->chunk_len - (logical_block_start - map->start));
10770 btrfs_free_chunk_map(map);
10771 map = NULL;
ed46ff3d
OS
10772
10773 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10774 if (!bg) {
10775 btrfs_warn(fs_info,
10776 "could not find block group containing swapfile");
10777 ret = -EINVAL;
10778 goto out;
10779 }
10780
195a49ea
FM
10781 if (!btrfs_inc_block_group_swap_extents(bg)) {
10782 btrfs_warn(fs_info,
10783 "block group for swapfile at %llu is read-only%s",
10784 bg->start,
10785 atomic_read(&fs_info->scrubs_running) ?
10786 " (scrub running)" : "");
10787 btrfs_put_block_group(bg);
10788 ret = -EINVAL;
10789 goto out;
10790 }
10791
ed46ff3d
OS
10792 ret = btrfs_add_swapfile_pin(inode, bg, true);
10793 if (ret) {
10794 btrfs_put_block_group(bg);
10795 if (ret == 1)
10796 ret = 0;
10797 else
10798 goto out;
10799 }
10800
10801 if (bsi.block_len &&
10802 bsi.block_start + bsi.block_len == physical_block_start) {
10803 bsi.block_len += len;
10804 } else {
10805 if (bsi.block_len) {
10806 ret = btrfs_add_swap_extent(sis, &bsi);
10807 if (ret)
10808 goto out;
10809 }
10810 bsi.start = start;
10811 bsi.block_start = physical_block_start;
10812 bsi.block_len = len;
10813 }
10814
10815 start += len;
10816 }
10817
10818 if (bsi.block_len)
10819 ret = btrfs_add_swap_extent(sis, &bsi);
10820
10821out:
10822 if (!IS_ERR_OR_NULL(em))
10823 free_extent_map(em);
7dc66abb
FM
10824 if (!IS_ERR_OR_NULL(map))
10825 btrfs_free_chunk_map(map);
ed46ff3d 10826
570eb97b 10827 unlock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10828
10829 if (ret)
10830 btrfs_swap_deactivate(file);
10831
dd0734f2
FM
10832 btrfs_drew_write_unlock(&root->snapshot_lock);
10833
c3e1f96c 10834 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10835
10836 if (ret)
10837 return ret;
10838
10839 if (device)
10840 sis->bdev = device->bdev;
10841 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10842 sis->max = bsi.nr_pages;
10843 sis->pages = bsi.nr_pages - 1;
10844 sis->highest_bit = bsi.nr_pages - 1;
10845 return bsi.nr_extents;
10846}
10847#else
10848static void btrfs_swap_deactivate(struct file *file)
10849{
10850}
10851
10852static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10853 sector_t *span)
10854{
10855 return -EOPNOTSUPP;
10856}
10857#endif
10858
2766ff61
FM
10859/*
10860 * Update the number of bytes used in the VFS' inode. When we replace extents in
10861 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10862 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10863 * always get a correct value.
10864 */
10865void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10866 const u64 add_bytes,
10867 const u64 del_bytes)
10868{
10869 if (add_bytes == del_bytes)
10870 return;
10871
10872 spin_lock(&inode->lock);
10873 if (del_bytes > 0)
10874 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10875 if (add_bytes > 0)
10876 inode_add_bytes(&inode->vfs_inode, add_bytes);
10877 spin_unlock(&inode->lock);
10878}
10879
43dd529a 10880/*
63c34cb4
FM
10881 * Verify that there are no ordered extents for a given file range.
10882 *
10883 * @inode: The target inode.
10884 * @start: Start offset of the file range, should be sector size aligned.
10885 * @end: End offset (inclusive) of the file range, its value +1 should be
10886 * sector size aligned.
10887 *
10888 * This should typically be used for cases where we locked an inode's VFS lock in
10889 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10890 * we have flushed all delalloc in the range, we have waited for all ordered
10891 * extents in the range to complete and finally we have locked the file range in
10892 * the inode's io_tree.
10893 */
10894void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10895{
10896 struct btrfs_root *root = inode->root;
10897 struct btrfs_ordered_extent *ordered;
10898
10899 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10900 return;
10901
10902 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10903 if (ordered) {
10904 btrfs_err(root->fs_info,
10905"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10906 start, end, btrfs_ino(inode), root->root_key.objectid,
10907 ordered->file_offset,
10908 ordered->file_offset + ordered->num_bytes - 1);
10909 btrfs_put_ordered_extent(ordered);
10910 }
10911
10912 ASSERT(ordered == NULL);
10913}
10914
6e1d5dcc 10915static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10916 .getattr = btrfs_getattr,
39279cc3
CM
10917 .lookup = btrfs_lookup,
10918 .create = btrfs_create,
10919 .unlink = btrfs_unlink,
10920 .link = btrfs_link,
10921 .mkdir = btrfs_mkdir,
10922 .rmdir = btrfs_rmdir,
2773bf00 10923 .rename = btrfs_rename2,
39279cc3
CM
10924 .symlink = btrfs_symlink,
10925 .setattr = btrfs_setattr,
618e21d5 10926 .mknod = btrfs_mknod,
5103e947 10927 .listxattr = btrfs_listxattr,
fdebe2bd 10928 .permission = btrfs_permission,
cac2f8b8 10929 .get_inode_acl = btrfs_get_acl,
996a710d 10930 .set_acl = btrfs_set_acl,
93fd63c2 10931 .update_time = btrfs_update_time,
ef3b9af5 10932 .tmpfile = btrfs_tmpfile,
97fc2977
MS
10933 .fileattr_get = btrfs_fileattr_get,
10934 .fileattr_set = btrfs_fileattr_set,
39279cc3 10935};
76dda93c 10936
828c0950 10937static const struct file_operations btrfs_dir_file_operations = {
e60aa5da 10938 .llseek = btrfs_dir_llseek,
39279cc3 10939 .read = generic_read_dir,
02dbfc99 10940 .iterate_shared = btrfs_real_readdir,
23b5ec74 10941 .open = btrfs_opendir,
34287aa3 10942 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10943#ifdef CONFIG_COMPAT
4c63c245 10944 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10945#endif
6bf13c0c 10946 .release = btrfs_release_file,
e02119d5 10947 .fsync = btrfs_sync_file,
39279cc3
CM
10948};
10949
35054394
CM
10950/*
10951 * btrfs doesn't support the bmap operation because swapfiles
10952 * use bmap to make a mapping of extents in the file. They assume
10953 * these extents won't change over the life of the file and they
10954 * use the bmap result to do IO directly to the drive.
10955 *
10956 * the btrfs bmap call would return logical addresses that aren't
10957 * suitable for IO and they also will change frequently as COW
10958 * operations happen. So, swapfile + btrfs == corruption.
10959 *
10960 * For now we're avoiding this by dropping bmap.
10961 */
7f09410b 10962static const struct address_space_operations btrfs_aops = {
fb12489b 10963 .read_folio = btrfs_read_folio,
b293f02e 10964 .writepages = btrfs_writepages,
ba206a02 10965 .readahead = btrfs_readahead,
895586eb 10966 .invalidate_folio = btrfs_invalidate_folio,
f913cff3 10967 .release_folio = btrfs_release_folio,
e7a60a17 10968 .migrate_folio = btrfs_migrate_folio,
187c82cb 10969 .dirty_folio = filemap_dirty_folio,
465fdd97 10970 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10971 .swap_activate = btrfs_swap_activate,
10972 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10973};
10974
6e1d5dcc 10975static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10976 .getattr = btrfs_getattr,
10977 .setattr = btrfs_setattr,
5103e947 10978 .listxattr = btrfs_listxattr,
fdebe2bd 10979 .permission = btrfs_permission,
1506fcc8 10980 .fiemap = btrfs_fiemap,
cac2f8b8 10981 .get_inode_acl = btrfs_get_acl,
996a710d 10982 .set_acl = btrfs_set_acl,
e41f941a 10983 .update_time = btrfs_update_time,
97fc2977
MS
10984 .fileattr_get = btrfs_fileattr_get,
10985 .fileattr_set = btrfs_fileattr_set,
39279cc3 10986};
6e1d5dcc 10987static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10988 .getattr = btrfs_getattr,
10989 .setattr = btrfs_setattr,
fdebe2bd 10990 .permission = btrfs_permission,
33268eaf 10991 .listxattr = btrfs_listxattr,
cac2f8b8 10992 .get_inode_acl = btrfs_get_acl,
996a710d 10993 .set_acl = btrfs_set_acl,
e41f941a 10994 .update_time = btrfs_update_time,
618e21d5 10995};
6e1d5dcc 10996static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10997 .get_link = page_get_link,
f209561a 10998 .getattr = btrfs_getattr,
22c44fe6 10999 .setattr = btrfs_setattr,
fdebe2bd 11000 .permission = btrfs_permission,
0279b4cd 11001 .listxattr = btrfs_listxattr,
e41f941a 11002 .update_time = btrfs_update_time,
39279cc3 11003};
76dda93c 11004
82d339d9 11005const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11006 .d_delete = btrfs_dentry_delete,
11007};