]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/send.c
btrfs: return btrfs error code for dev excl ops err
[thirdparty/linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/crc32c.h>
a1857ebe 28#include <linux/vmalloc.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
32#include "locking.h"
33#include "disk-io.h"
34#include "btrfs_inode.h"
35#include "transaction.h"
36
37static int g_verbose = 0;
38
39#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40
41/*
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
47 */
48struct fs_path {
49 union {
50 struct {
51 char *start;
52 char *end;
53 char *prepared;
54
55 char *buf;
56 int buf_len;
35a3621b
SB
57 unsigned int reversed:1;
58 unsigned int virtual_mem:1;
31db9f7c
AB
59 char inline_buf[];
60 };
61 char pad[PAGE_SIZE];
62 };
63};
64#define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66
67
68/* reused for each extent */
69struct clone_root {
70 struct btrfs_root *root;
71 u64 ino;
72 u64 offset;
73
74 u64 found_refs;
75};
76
77#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79
80struct send_ctx {
81 struct file *send_filp;
82 loff_t send_off;
83 char *send_buf;
84 u32 send_size;
85 u32 send_max_size;
86 u64 total_send_size;
87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 88 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c
AB
89
90 struct vfsmount *mnt;
91
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
95 int clone_roots_cnt;
96
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
101
102 /*
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
105 */
106 u64 cur_ino;
107 u64 cur_inode_gen;
108 int cur_inode_new;
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
31db9f7c
AB
111 u64 cur_inode_size;
112 u64 cur_inode_mode;
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
123 struct file *cur_inode_filp;
124 char *read_buf;
125};
126
127struct name_cache_entry {
128 struct list_head list;
7e0926fe
AB
129 /*
130 * radix_tree has only 32bit entries but we need to handle 64bit inums.
131 * We use the lower 32bit of the 64bit inum to store it in the tree. If
132 * more then one inum would fall into the same entry, we use radix_list
133 * to store the additional entries. radix_list is also used to store
134 * entries where two entries have the same inum but different
135 * generations.
136 */
137 struct list_head radix_list;
31db9f7c
AB
138 u64 ino;
139 u64 gen;
140 u64 parent_ino;
141 u64 parent_gen;
142 int ret;
143 int need_later_update;
144 int name_len;
145 char name[];
146};
147
148static void fs_path_reset(struct fs_path *p)
149{
150 if (p->reversed) {
151 p->start = p->buf + p->buf_len - 1;
152 p->end = p->start;
153 *p->start = 0;
154 } else {
155 p->start = p->buf;
156 p->end = p->start;
157 *p->start = 0;
158 }
159}
160
924794c9 161static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
162{
163 struct fs_path *p;
164
165 p = kmalloc(sizeof(*p), GFP_NOFS);
166 if (!p)
167 return NULL;
168 p->reversed = 0;
169 p->virtual_mem = 0;
170 p->buf = p->inline_buf;
171 p->buf_len = FS_PATH_INLINE_SIZE;
172 fs_path_reset(p);
173 return p;
174}
175
924794c9 176static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
177{
178 struct fs_path *p;
179
924794c9 180 p = fs_path_alloc();
31db9f7c
AB
181 if (!p)
182 return NULL;
183 p->reversed = 1;
184 fs_path_reset(p);
185 return p;
186}
187
924794c9 188static void fs_path_free(struct fs_path *p)
31db9f7c
AB
189{
190 if (!p)
191 return;
192 if (p->buf != p->inline_buf) {
193 if (p->virtual_mem)
194 vfree(p->buf);
195 else
196 kfree(p->buf);
197 }
198 kfree(p);
199}
200
201static int fs_path_len(struct fs_path *p)
202{
203 return p->end - p->start;
204}
205
206static int fs_path_ensure_buf(struct fs_path *p, int len)
207{
208 char *tmp_buf;
209 int path_len;
210 int old_buf_len;
211
212 len++;
213
214 if (p->buf_len >= len)
215 return 0;
216
217 path_len = p->end - p->start;
218 old_buf_len = p->buf_len;
219 len = PAGE_ALIGN(len);
220
221 if (p->buf == p->inline_buf) {
222 tmp_buf = kmalloc(len, GFP_NOFS);
223 if (!tmp_buf) {
224 tmp_buf = vmalloc(len);
225 if (!tmp_buf)
226 return -ENOMEM;
227 p->virtual_mem = 1;
228 }
229 memcpy(tmp_buf, p->buf, p->buf_len);
230 p->buf = tmp_buf;
231 p->buf_len = len;
232 } else {
233 if (p->virtual_mem) {
234 tmp_buf = vmalloc(len);
235 if (!tmp_buf)
236 return -ENOMEM;
237 memcpy(tmp_buf, p->buf, p->buf_len);
238 vfree(p->buf);
239 } else {
240 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
241 if (!tmp_buf) {
242 tmp_buf = vmalloc(len);
243 if (!tmp_buf)
244 return -ENOMEM;
245 memcpy(tmp_buf, p->buf, p->buf_len);
246 kfree(p->buf);
247 p->virtual_mem = 1;
248 }
249 }
250 p->buf = tmp_buf;
251 p->buf_len = len;
252 }
253 if (p->reversed) {
254 tmp_buf = p->buf + old_buf_len - path_len - 1;
255 p->end = p->buf + p->buf_len - 1;
256 p->start = p->end - path_len;
257 memmove(p->start, tmp_buf, path_len + 1);
258 } else {
259 p->start = p->buf;
260 p->end = p->start + path_len;
261 }
262 return 0;
263}
264
265static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
266{
267 int ret;
268 int new_len;
269
270 new_len = p->end - p->start + name_len;
271 if (p->start != p->end)
272 new_len++;
273 ret = fs_path_ensure_buf(p, new_len);
274 if (ret < 0)
275 goto out;
276
277 if (p->reversed) {
278 if (p->start != p->end)
279 *--p->start = '/';
280 p->start -= name_len;
281 p->prepared = p->start;
282 } else {
283 if (p->start != p->end)
284 *p->end++ = '/';
285 p->prepared = p->end;
286 p->end += name_len;
287 *p->end = 0;
288 }
289
290out:
291 return ret;
292}
293
294static int fs_path_add(struct fs_path *p, const char *name, int name_len)
295{
296 int ret;
297
298 ret = fs_path_prepare_for_add(p, name_len);
299 if (ret < 0)
300 goto out;
301 memcpy(p->prepared, name, name_len);
302 p->prepared = NULL;
303
304out:
305 return ret;
306}
307
308static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
309{
310 int ret;
311
312 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
313 if (ret < 0)
314 goto out;
315 memcpy(p->prepared, p2->start, p2->end - p2->start);
316 p->prepared = NULL;
317
318out:
319 return ret;
320}
321
322static int fs_path_add_from_extent_buffer(struct fs_path *p,
323 struct extent_buffer *eb,
324 unsigned long off, int len)
325{
326 int ret;
327
328 ret = fs_path_prepare_for_add(p, len);
329 if (ret < 0)
330 goto out;
331
332 read_extent_buffer(eb, p->prepared, off, len);
333 p->prepared = NULL;
334
335out:
336 return ret;
337}
338
9ea3ef51 339#if 0
31db9f7c
AB
340static void fs_path_remove(struct fs_path *p)
341{
342 BUG_ON(p->reversed);
343 while (p->start != p->end && *p->end != '/')
344 p->end--;
345 *p->end = 0;
346}
9ea3ef51 347#endif
31db9f7c
AB
348
349static int fs_path_copy(struct fs_path *p, struct fs_path *from)
350{
351 int ret;
352
353 p->reversed = from->reversed;
354 fs_path_reset(p);
355
356 ret = fs_path_add_path(p, from);
357
358 return ret;
359}
360
361
362static void fs_path_unreverse(struct fs_path *p)
363{
364 char *tmp;
365 int len;
366
367 if (!p->reversed)
368 return;
369
370 tmp = p->start;
371 len = p->end - p->start;
372 p->start = p->buf;
373 p->end = p->start + len;
374 memmove(p->start, tmp, len + 1);
375 p->reversed = 0;
376}
377
378static struct btrfs_path *alloc_path_for_send(void)
379{
380 struct btrfs_path *path;
381
382 path = btrfs_alloc_path();
383 if (!path)
384 return NULL;
385 path->search_commit_root = 1;
386 path->skip_locking = 1;
387 return path;
388}
389
48a3b636 390static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
391{
392 int ret;
393 mm_segment_t old_fs;
394 u32 pos = 0;
395
396 old_fs = get_fs();
397 set_fs(KERNEL_DS);
398
399 while (pos < len) {
1bcea355 400 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
31db9f7c
AB
401 /* TODO handle that correctly */
402 /*if (ret == -ERESTARTSYS) {
403 continue;
404 }*/
405 if (ret < 0)
406 goto out;
407 if (ret == 0) {
408 ret = -EIO;
409 goto out;
410 }
411 pos += ret;
412 }
413
414 ret = 0;
415
416out:
417 set_fs(old_fs);
418 return ret;
419}
420
421static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
422{
423 struct btrfs_tlv_header *hdr;
424 int total_len = sizeof(*hdr) + len;
425 int left = sctx->send_max_size - sctx->send_size;
426
427 if (unlikely(left < total_len))
428 return -EOVERFLOW;
429
430 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 hdr->tlv_type = cpu_to_le16(attr);
432 hdr->tlv_len = cpu_to_le16(len);
433 memcpy(hdr + 1, data, len);
434 sctx->send_size += total_len;
435
436 return 0;
437}
438
439#if 0
440static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
441{
442 return tlv_put(sctx, attr, &value, sizeof(value));
443}
444
445static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
446{
447 __le16 tmp = cpu_to_le16(value);
448 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
449}
450
451static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
452{
453 __le32 tmp = cpu_to_le32(value);
454 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
455}
456#endif
457
458static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
459{
460 __le64 tmp = cpu_to_le64(value);
461 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
462}
463
464static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 const char *str, int len)
466{
467 if (len == -1)
468 len = strlen(str);
469 return tlv_put(sctx, attr, str, len);
470}
471
472static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 const u8 *uuid)
474{
475 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
476}
477
478#if 0
479static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 struct timespec *ts)
481{
482 struct btrfs_timespec bts;
483 bts.sec = cpu_to_le64(ts->tv_sec);
484 bts.nsec = cpu_to_le32(ts->tv_nsec);
485 return tlv_put(sctx, attr, &bts, sizeof(bts));
486}
487#endif
488
489static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 struct extent_buffer *eb,
491 struct btrfs_timespec *ts)
492{
493 struct btrfs_timespec bts;
494 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 return tlv_put(sctx, attr, &bts, sizeof(bts));
496}
497
498
499#define TLV_PUT(sctx, attrtype, attrlen, data) \
500 do { \
501 ret = tlv_put(sctx, attrtype, attrlen, data); \
502 if (ret < 0) \
503 goto tlv_put_failure; \
504 } while (0)
505
506#define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 do { \
508 ret = tlv_put_u##bits(sctx, attrtype, value); \
509 if (ret < 0) \
510 goto tlv_put_failure; \
511 } while (0)
512
513#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517#define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 do { \
519 ret = tlv_put_string(sctx, attrtype, str, len); \
520 if (ret < 0) \
521 goto tlv_put_failure; \
522 } while (0)
523#define TLV_PUT_PATH(sctx, attrtype, p) \
524 do { \
525 ret = tlv_put_string(sctx, attrtype, p->start, \
526 p->end - p->start); \
527 if (ret < 0) \
528 goto tlv_put_failure; \
529 } while(0)
530#define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 do { \
532 ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 if (ret < 0) \
534 goto tlv_put_failure; \
535 } while (0)
536#define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 do { \
538 ret = tlv_put_timespec(sctx, attrtype, ts); \
539 if (ret < 0) \
540 goto tlv_put_failure; \
541 } while (0)
542#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 do { \
544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 if (ret < 0) \
546 goto tlv_put_failure; \
547 } while (0)
548
549static int send_header(struct send_ctx *sctx)
550{
551 struct btrfs_stream_header hdr;
552
553 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
555
1bcea355
AJ
556 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
557 &sctx->send_off);
31db9f7c
AB
558}
559
560/*
561 * For each command/item we want to send to userspace, we call this function.
562 */
563static int begin_cmd(struct send_ctx *sctx, int cmd)
564{
565 struct btrfs_cmd_header *hdr;
566
567 if (!sctx->send_buf) {
568 WARN_ON(1);
569 return -EINVAL;
570 }
571
572 BUG_ON(sctx->send_size);
573
574 sctx->send_size += sizeof(*hdr);
575 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
576 hdr->cmd = cpu_to_le16(cmd);
577
578 return 0;
579}
580
581static int send_cmd(struct send_ctx *sctx)
582{
583 int ret;
584 struct btrfs_cmd_header *hdr;
585 u32 crc;
586
587 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
588 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
589 hdr->crc = 0;
590
591 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
592 hdr->crc = cpu_to_le32(crc);
593
1bcea355
AJ
594 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
595 &sctx->send_off);
31db9f7c
AB
596
597 sctx->total_send_size += sctx->send_size;
598 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
599 sctx->send_size = 0;
600
601 return ret;
602}
603
604/*
605 * Sends a move instruction to user space
606 */
607static int send_rename(struct send_ctx *sctx,
608 struct fs_path *from, struct fs_path *to)
609{
610 int ret;
611
612verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
613
614 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
615 if (ret < 0)
616 goto out;
617
618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
619 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
620
621 ret = send_cmd(sctx);
622
623tlv_put_failure:
624out:
625 return ret;
626}
627
628/*
629 * Sends a link instruction to user space
630 */
631static int send_link(struct send_ctx *sctx,
632 struct fs_path *path, struct fs_path *lnk)
633{
634 int ret;
635
636verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
637
638 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
639 if (ret < 0)
640 goto out;
641
642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
644
645 ret = send_cmd(sctx);
646
647tlv_put_failure:
648out:
649 return ret;
650}
651
652/*
653 * Sends an unlink instruction to user space
654 */
655static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
656{
657 int ret;
658
659verbose_printk("btrfs: send_unlink %s\n", path->start);
660
661 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
662 if (ret < 0)
663 goto out;
664
665 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
666
667 ret = send_cmd(sctx);
668
669tlv_put_failure:
670out:
671 return ret;
672}
673
674/*
675 * Sends a rmdir instruction to user space
676 */
677static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
678{
679 int ret;
680
681verbose_printk("btrfs: send_rmdir %s\n", path->start);
682
683 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
684 if (ret < 0)
685 goto out;
686
687 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
688
689 ret = send_cmd(sctx);
690
691tlv_put_failure:
692out:
693 return ret;
694}
695
696/*
697 * Helper function to retrieve some fields from an inode item.
698 */
699static int get_inode_info(struct btrfs_root *root,
700 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
701 u64 *mode, u64 *uid, u64 *gid,
702 u64 *rdev)
31db9f7c
AB
703{
704 int ret;
705 struct btrfs_inode_item *ii;
706 struct btrfs_key key;
707 struct btrfs_path *path;
708
709 path = alloc_path_for_send();
710 if (!path)
711 return -ENOMEM;
712
713 key.objectid = ino;
714 key.type = BTRFS_INODE_ITEM_KEY;
715 key.offset = 0;
716 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
717 if (ret < 0)
718 goto out;
719 if (ret) {
720 ret = -ENOENT;
721 goto out;
722 }
723
724 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
725 struct btrfs_inode_item);
726 if (size)
727 *size = btrfs_inode_size(path->nodes[0], ii);
728 if (gen)
729 *gen = btrfs_inode_generation(path->nodes[0], ii);
730 if (mode)
731 *mode = btrfs_inode_mode(path->nodes[0], ii);
732 if (uid)
733 *uid = btrfs_inode_uid(path->nodes[0], ii);
734 if (gid)
735 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
736 if (rdev)
737 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
738
739out:
740 btrfs_free_path(path);
741 return ret;
742}
743
744typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
745 struct fs_path *p,
746 void *ctx);
747
748/*
96b5bd77
JS
749 * Helper function to iterate the entries in ONE btrfs_inode_ref or
750 * btrfs_inode_extref.
31db9f7c
AB
751 * The iterate callback may return a non zero value to stop iteration. This can
752 * be a negative value for error codes or 1 to simply stop it.
753 *
96b5bd77 754 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 755 */
924794c9 756static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
757 struct btrfs_key *found_key, int resolve,
758 iterate_inode_ref_t iterate, void *ctx)
759{
96b5bd77 760 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
761 struct btrfs_item *item;
762 struct btrfs_inode_ref *iref;
96b5bd77 763 struct btrfs_inode_extref *extref;
31db9f7c
AB
764 struct btrfs_path *tmp_path;
765 struct fs_path *p;
96b5bd77 766 u32 cur = 0;
31db9f7c 767 u32 total;
96b5bd77 768 int slot = path->slots[0];
31db9f7c
AB
769 u32 name_len;
770 char *start;
771 int ret = 0;
96b5bd77 772 int num = 0;
31db9f7c 773 int index;
96b5bd77
JS
774 u64 dir;
775 unsigned long name_off;
776 unsigned long elem_size;
777 unsigned long ptr;
31db9f7c 778
924794c9 779 p = fs_path_alloc_reversed();
31db9f7c
AB
780 if (!p)
781 return -ENOMEM;
782
783 tmp_path = alloc_path_for_send();
784 if (!tmp_path) {
924794c9 785 fs_path_free(p);
31db9f7c
AB
786 return -ENOMEM;
787 }
788
31db9f7c 789
96b5bd77
JS
790 if (found_key->type == BTRFS_INODE_REF_KEY) {
791 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
792 struct btrfs_inode_ref);
793 item = btrfs_item_nr(eb, slot);
794 total = btrfs_item_size(eb, item);
795 elem_size = sizeof(*iref);
796 } else {
797 ptr = btrfs_item_ptr_offset(eb, slot);
798 total = btrfs_item_size_nr(eb, slot);
799 elem_size = sizeof(*extref);
800 }
801
31db9f7c
AB
802 while (cur < total) {
803 fs_path_reset(p);
804
96b5bd77
JS
805 if (found_key->type == BTRFS_INODE_REF_KEY) {
806 iref = (struct btrfs_inode_ref *)(ptr + cur);
807 name_len = btrfs_inode_ref_name_len(eb, iref);
808 name_off = (unsigned long)(iref + 1);
809 index = btrfs_inode_ref_index(eb, iref);
810 dir = found_key->offset;
811 } else {
812 extref = (struct btrfs_inode_extref *)(ptr + cur);
813 name_len = btrfs_inode_extref_name_len(eb, extref);
814 name_off = (unsigned long)&extref->name;
815 index = btrfs_inode_extref_index(eb, extref);
816 dir = btrfs_inode_extref_parent(eb, extref);
817 }
818
31db9f7c 819 if (resolve) {
96b5bd77
JS
820 start = btrfs_ref_to_path(root, tmp_path, name_len,
821 name_off, eb, dir,
822 p->buf, p->buf_len);
31db9f7c
AB
823 if (IS_ERR(start)) {
824 ret = PTR_ERR(start);
825 goto out;
826 }
827 if (start < p->buf) {
828 /* overflow , try again with larger buffer */
829 ret = fs_path_ensure_buf(p,
830 p->buf_len + p->buf - start);
831 if (ret < 0)
832 goto out;
96b5bd77
JS
833 start = btrfs_ref_to_path(root, tmp_path,
834 name_len, name_off,
835 eb, dir,
836 p->buf, p->buf_len);
31db9f7c
AB
837 if (IS_ERR(start)) {
838 ret = PTR_ERR(start);
839 goto out;
840 }
841 BUG_ON(start < p->buf);
842 }
843 p->start = start;
844 } else {
96b5bd77
JS
845 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
846 name_len);
31db9f7c
AB
847 if (ret < 0)
848 goto out;
849 }
850
96b5bd77
JS
851 cur += elem_size + name_len;
852 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
853 if (ret)
854 goto out;
31db9f7c
AB
855 num++;
856 }
857
858out:
859 btrfs_free_path(tmp_path);
924794c9 860 fs_path_free(p);
31db9f7c
AB
861 return ret;
862}
863
864typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
865 const char *name, int name_len,
866 const char *data, int data_len,
867 u8 type, void *ctx);
868
869/*
870 * Helper function to iterate the entries in ONE btrfs_dir_item.
871 * The iterate callback may return a non zero value to stop iteration. This can
872 * be a negative value for error codes or 1 to simply stop it.
873 *
874 * path must point to the dir item when called.
875 */
924794c9 876static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
877 struct btrfs_key *found_key,
878 iterate_dir_item_t iterate, void *ctx)
879{
880 int ret = 0;
881 struct extent_buffer *eb;
882 struct btrfs_item *item;
883 struct btrfs_dir_item *di;
31db9f7c
AB
884 struct btrfs_key di_key;
885 char *buf = NULL;
886 char *buf2 = NULL;
887 int buf_len;
888 int buf_virtual = 0;
889 u32 name_len;
890 u32 data_len;
891 u32 cur;
892 u32 len;
893 u32 total;
894 int slot;
895 int num;
896 u8 type;
897
898 buf_len = PAGE_SIZE;
899 buf = kmalloc(buf_len, GFP_NOFS);
900 if (!buf) {
901 ret = -ENOMEM;
902 goto out;
903 }
904
31db9f7c
AB
905 eb = path->nodes[0];
906 slot = path->slots[0];
907 item = btrfs_item_nr(eb, slot);
908 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
909 cur = 0;
910 len = 0;
911 total = btrfs_item_size(eb, item);
912
913 num = 0;
914 while (cur < total) {
915 name_len = btrfs_dir_name_len(eb, di);
916 data_len = btrfs_dir_data_len(eb, di);
917 type = btrfs_dir_type(eb, di);
918 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
919
920 if (name_len + data_len > buf_len) {
921 buf_len = PAGE_ALIGN(name_len + data_len);
922 if (buf_virtual) {
923 buf2 = vmalloc(buf_len);
924 if (!buf2) {
925 ret = -ENOMEM;
926 goto out;
927 }
928 vfree(buf);
929 } else {
930 buf2 = krealloc(buf, buf_len, GFP_NOFS);
931 if (!buf2) {
932 buf2 = vmalloc(buf_len);
933 if (!buf2) {
934 ret = -ENOMEM;
935 goto out;
936 }
937 kfree(buf);
938 buf_virtual = 1;
939 }
940 }
941
942 buf = buf2;
943 buf2 = NULL;
944 }
945
946 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
947 name_len + data_len);
948
949 len = sizeof(*di) + name_len + data_len;
950 di = (struct btrfs_dir_item *)((char *)di + len);
951 cur += len;
952
953 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
954 data_len, type, ctx);
955 if (ret < 0)
956 goto out;
957 if (ret) {
958 ret = 0;
959 goto out;
960 }
961
962 num++;
963 }
964
965out:
31db9f7c
AB
966 if (buf_virtual)
967 vfree(buf);
968 else
969 kfree(buf);
970 return ret;
971}
972
973static int __copy_first_ref(int num, u64 dir, int index,
974 struct fs_path *p, void *ctx)
975{
976 int ret;
977 struct fs_path *pt = ctx;
978
979 ret = fs_path_copy(pt, p);
980 if (ret < 0)
981 return ret;
982
983 /* we want the first only */
984 return 1;
985}
986
987/*
988 * Retrieve the first path of an inode. If an inode has more then one
989 * ref/hardlink, this is ignored.
990 */
924794c9 991static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
992 u64 ino, struct fs_path *path)
993{
994 int ret;
995 struct btrfs_key key, found_key;
996 struct btrfs_path *p;
997
998 p = alloc_path_for_send();
999 if (!p)
1000 return -ENOMEM;
1001
1002 fs_path_reset(path);
1003
1004 key.objectid = ino;
1005 key.type = BTRFS_INODE_REF_KEY;
1006 key.offset = 0;
1007
1008 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1009 if (ret < 0)
1010 goto out;
1011 if (ret) {
1012 ret = 1;
1013 goto out;
1014 }
1015 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1016 if (found_key.objectid != ino ||
96b5bd77
JS
1017 (found_key.type != BTRFS_INODE_REF_KEY &&
1018 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1019 ret = -ENOENT;
1020 goto out;
1021 }
1022
924794c9
TI
1023 ret = iterate_inode_ref(root, p, &found_key, 1,
1024 __copy_first_ref, path);
31db9f7c
AB
1025 if (ret < 0)
1026 goto out;
1027 ret = 0;
1028
1029out:
1030 btrfs_free_path(p);
1031 return ret;
1032}
1033
1034struct backref_ctx {
1035 struct send_ctx *sctx;
1036
1037 /* number of total found references */
1038 u64 found;
1039
1040 /*
1041 * used for clones found in send_root. clones found behind cur_objectid
1042 * and cur_offset are not considered as allowed clones.
1043 */
1044 u64 cur_objectid;
1045 u64 cur_offset;
1046
1047 /* may be truncated in case it's the last extent in a file */
1048 u64 extent_len;
1049
1050 /* Just to check for bugs in backref resolving */
ee849c04 1051 int found_itself;
31db9f7c
AB
1052};
1053
1054static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1055{
995e01b7 1056 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1057 struct clone_root *cr = (struct clone_root *)elt;
1058
1059 if (root < cr->root->objectid)
1060 return -1;
1061 if (root > cr->root->objectid)
1062 return 1;
1063 return 0;
1064}
1065
1066static int __clone_root_cmp_sort(const void *e1, const void *e2)
1067{
1068 struct clone_root *cr1 = (struct clone_root *)e1;
1069 struct clone_root *cr2 = (struct clone_root *)e2;
1070
1071 if (cr1->root->objectid < cr2->root->objectid)
1072 return -1;
1073 if (cr1->root->objectid > cr2->root->objectid)
1074 return 1;
1075 return 0;
1076}
1077
1078/*
1079 * Called for every backref that is found for the current extent.
766702ef 1080 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1081 */
1082static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1083{
1084 struct backref_ctx *bctx = ctx_;
1085 struct clone_root *found;
1086 int ret;
1087 u64 i_size;
1088
1089 /* First check if the root is in the list of accepted clone sources */
995e01b7 1090 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1091 bctx->sctx->clone_roots_cnt,
1092 sizeof(struct clone_root),
1093 __clone_root_cmp_bsearch);
1094 if (!found)
1095 return 0;
1096
1097 if (found->root == bctx->sctx->send_root &&
1098 ino == bctx->cur_objectid &&
1099 offset == bctx->cur_offset) {
ee849c04 1100 bctx->found_itself = 1;
31db9f7c
AB
1101 }
1102
1103 /*
766702ef 1104 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1105 * accept clones from these extents.
1106 */
85a7b33b
AB
1107 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1108 NULL);
31db9f7c
AB
1109 if (ret < 0)
1110 return ret;
1111
1112 if (offset + bctx->extent_len > i_size)
1113 return 0;
1114
1115 /*
1116 * Make sure we don't consider clones from send_root that are
1117 * behind the current inode/offset.
1118 */
1119 if (found->root == bctx->sctx->send_root) {
1120 /*
1121 * TODO for the moment we don't accept clones from the inode
1122 * that is currently send. We may change this when
1123 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1124 * file.
1125 */
1126 if (ino >= bctx->cur_objectid)
1127 return 0;
e938c8ad
AB
1128#if 0
1129 if (ino > bctx->cur_objectid)
1130 return 0;
1131 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1132 return 0;
e938c8ad 1133#endif
31db9f7c
AB
1134 }
1135
1136 bctx->found++;
1137 found->found_refs++;
1138 if (ino < found->ino) {
1139 found->ino = ino;
1140 found->offset = offset;
1141 } else if (found->ino == ino) {
1142 /*
1143 * same extent found more then once in the same file.
1144 */
1145 if (found->offset > offset + bctx->extent_len)
1146 found->offset = offset;
1147 }
1148
1149 return 0;
1150}
1151
1152/*
766702ef
AB
1153 * Given an inode, offset and extent item, it finds a good clone for a clone
1154 * instruction. Returns -ENOENT when none could be found. The function makes
1155 * sure that the returned clone is usable at the point where sending is at the
1156 * moment. This means, that no clones are accepted which lie behind the current
1157 * inode+offset.
1158 *
31db9f7c
AB
1159 * path must point to the extent item when called.
1160 */
1161static int find_extent_clone(struct send_ctx *sctx,
1162 struct btrfs_path *path,
1163 u64 ino, u64 data_offset,
1164 u64 ino_size,
1165 struct clone_root **found)
1166{
1167 int ret;
1168 int extent_type;
1169 u64 logical;
74dd17fb 1170 u64 disk_byte;
31db9f7c
AB
1171 u64 num_bytes;
1172 u64 extent_item_pos;
69917e43 1173 u64 flags = 0;
31db9f7c
AB
1174 struct btrfs_file_extent_item *fi;
1175 struct extent_buffer *eb = path->nodes[0];
35075bb0 1176 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1177 struct clone_root *cur_clone_root;
1178 struct btrfs_key found_key;
1179 struct btrfs_path *tmp_path;
74dd17fb 1180 int compressed;
31db9f7c
AB
1181 u32 i;
1182
1183 tmp_path = alloc_path_for_send();
1184 if (!tmp_path)
1185 return -ENOMEM;
1186
35075bb0
AB
1187 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1188 if (!backref_ctx) {
1189 ret = -ENOMEM;
1190 goto out;
1191 }
1192
31db9f7c
AB
1193 if (data_offset >= ino_size) {
1194 /*
1195 * There may be extents that lie behind the file's size.
1196 * I at least had this in combination with snapshotting while
1197 * writing large files.
1198 */
1199 ret = 0;
1200 goto out;
1201 }
1202
1203 fi = btrfs_item_ptr(eb, path->slots[0],
1204 struct btrfs_file_extent_item);
1205 extent_type = btrfs_file_extent_type(eb, fi);
1206 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
74dd17fb 1210 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1211
1212 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1213 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1214 if (disk_byte == 0) {
31db9f7c
AB
1215 ret = -ENOENT;
1216 goto out;
1217 }
74dd17fb 1218 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1219
69917e43
LB
1220 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1221 &found_key, &flags);
31db9f7c
AB
1222 btrfs_release_path(tmp_path);
1223
1224 if (ret < 0)
1225 goto out;
69917e43 1226 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1227 ret = -EIO;
1228 goto out;
1229 }
1230
1231 /*
1232 * Setup the clone roots.
1233 */
1234 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1235 cur_clone_root = sctx->clone_roots + i;
1236 cur_clone_root->ino = (u64)-1;
1237 cur_clone_root->offset = 0;
1238 cur_clone_root->found_refs = 0;
1239 }
1240
35075bb0
AB
1241 backref_ctx->sctx = sctx;
1242 backref_ctx->found = 0;
1243 backref_ctx->cur_objectid = ino;
1244 backref_ctx->cur_offset = data_offset;
1245 backref_ctx->found_itself = 0;
1246 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1247
1248 /*
1249 * The last extent of a file may be too large due to page alignment.
1250 * We need to adjust extent_len in this case so that the checks in
1251 * __iterate_backrefs work.
1252 */
1253 if (data_offset + num_bytes >= ino_size)
35075bb0 1254 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1255
1256 /*
1257 * Now collect all backrefs.
1258 */
74dd17fb
CM
1259 if (compressed == BTRFS_COMPRESS_NONE)
1260 extent_item_pos = logical - found_key.objectid;
1261 else
1262 extent_item_pos = 0;
1263
31db9f7c
AB
1264 extent_item_pos = logical - found_key.objectid;
1265 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1266 found_key.objectid, extent_item_pos, 1,
35075bb0 1267 __iterate_backrefs, backref_ctx);
74dd17fb 1268
31db9f7c
AB
1269 if (ret < 0)
1270 goto out;
1271
35075bb0 1272 if (!backref_ctx->found_itself) {
31db9f7c
AB
1273 /* found a bug in backref code? */
1274 ret = -EIO;
1275 printk(KERN_ERR "btrfs: ERROR did not find backref in "
1276 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1277 "disk_byte=%llu found extent=%llu\n",
1278 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1279 goto out;
1280 }
1281
1282verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1283 "ino=%llu, "
1284 "num_bytes=%llu, logical=%llu\n",
1285 data_offset, ino, num_bytes, logical);
1286
35075bb0 1287 if (!backref_ctx->found)
31db9f7c
AB
1288 verbose_printk("btrfs: no clones found\n");
1289
1290 cur_clone_root = NULL;
1291 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1292 if (sctx->clone_roots[i].found_refs) {
1293 if (!cur_clone_root)
1294 cur_clone_root = sctx->clone_roots + i;
1295 else if (sctx->clone_roots[i].root == sctx->send_root)
1296 /* prefer clones from send_root over others */
1297 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1298 }
1299
1300 }
1301
1302 if (cur_clone_root) {
1303 *found = cur_clone_root;
1304 ret = 0;
1305 } else {
1306 ret = -ENOENT;
1307 }
1308
1309out:
1310 btrfs_free_path(tmp_path);
35075bb0 1311 kfree(backref_ctx);
31db9f7c
AB
1312 return ret;
1313}
1314
924794c9 1315static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1316 u64 ino,
1317 struct fs_path *dest)
1318{
1319 int ret;
1320 struct btrfs_path *path;
1321 struct btrfs_key key;
1322 struct btrfs_file_extent_item *ei;
1323 u8 type;
1324 u8 compression;
1325 unsigned long off;
1326 int len;
1327
1328 path = alloc_path_for_send();
1329 if (!path)
1330 return -ENOMEM;
1331
1332 key.objectid = ino;
1333 key.type = BTRFS_EXTENT_DATA_KEY;
1334 key.offset = 0;
1335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1336 if (ret < 0)
1337 goto out;
1338 BUG_ON(ret);
1339
1340 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1341 struct btrfs_file_extent_item);
1342 type = btrfs_file_extent_type(path->nodes[0], ei);
1343 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1344 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1345 BUG_ON(compression);
1346
1347 off = btrfs_file_extent_inline_start(ei);
1348 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1349
1350 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1351
1352out:
1353 btrfs_free_path(path);
1354 return ret;
1355}
1356
1357/*
1358 * Helper function to generate a file name that is unique in the root of
1359 * send_root and parent_root. This is used to generate names for orphan inodes.
1360 */
1361static int gen_unique_name(struct send_ctx *sctx,
1362 u64 ino, u64 gen,
1363 struct fs_path *dest)
1364{
1365 int ret = 0;
1366 struct btrfs_path *path;
1367 struct btrfs_dir_item *di;
1368 char tmp[64];
1369 int len;
1370 u64 idx = 0;
1371
1372 path = alloc_path_for_send();
1373 if (!path)
1374 return -ENOMEM;
1375
1376 while (1) {
1377 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1378 ino, gen, idx);
1379 if (len >= sizeof(tmp)) {
1380 /* should really not happen */
1381 ret = -EOVERFLOW;
1382 goto out;
1383 }
1384
1385 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1386 path, BTRFS_FIRST_FREE_OBJECTID,
1387 tmp, strlen(tmp), 0);
1388 btrfs_release_path(path);
1389 if (IS_ERR(di)) {
1390 ret = PTR_ERR(di);
1391 goto out;
1392 }
1393 if (di) {
1394 /* not unique, try again */
1395 idx++;
1396 continue;
1397 }
1398
1399 if (!sctx->parent_root) {
1400 /* unique */
1401 ret = 0;
1402 break;
1403 }
1404
1405 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1406 path, BTRFS_FIRST_FREE_OBJECTID,
1407 tmp, strlen(tmp), 0);
1408 btrfs_release_path(path);
1409 if (IS_ERR(di)) {
1410 ret = PTR_ERR(di);
1411 goto out;
1412 }
1413 if (di) {
1414 /* not unique, try again */
1415 idx++;
1416 continue;
1417 }
1418 /* unique */
1419 break;
1420 }
1421
1422 ret = fs_path_add(dest, tmp, strlen(tmp));
1423
1424out:
1425 btrfs_free_path(path);
1426 return ret;
1427}
1428
1429enum inode_state {
1430 inode_state_no_change,
1431 inode_state_will_create,
1432 inode_state_did_create,
1433 inode_state_will_delete,
1434 inode_state_did_delete,
1435};
1436
1437static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1438{
1439 int ret;
1440 int left_ret;
1441 int right_ret;
1442 u64 left_gen;
1443 u64 right_gen;
1444
1445 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1446 NULL, NULL);
31db9f7c
AB
1447 if (ret < 0 && ret != -ENOENT)
1448 goto out;
1449 left_ret = ret;
1450
1451 if (!sctx->parent_root) {
1452 right_ret = -ENOENT;
1453 } else {
1454 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1455 NULL, NULL, NULL, NULL);
31db9f7c
AB
1456 if (ret < 0 && ret != -ENOENT)
1457 goto out;
1458 right_ret = ret;
1459 }
1460
1461 if (!left_ret && !right_ret) {
e938c8ad 1462 if (left_gen == gen && right_gen == gen) {
31db9f7c 1463 ret = inode_state_no_change;
e938c8ad 1464 } else if (left_gen == gen) {
31db9f7c
AB
1465 if (ino < sctx->send_progress)
1466 ret = inode_state_did_create;
1467 else
1468 ret = inode_state_will_create;
1469 } else if (right_gen == gen) {
1470 if (ino < sctx->send_progress)
1471 ret = inode_state_did_delete;
1472 else
1473 ret = inode_state_will_delete;
1474 } else {
1475 ret = -ENOENT;
1476 }
1477 } else if (!left_ret) {
1478 if (left_gen == gen) {
1479 if (ino < sctx->send_progress)
1480 ret = inode_state_did_create;
1481 else
1482 ret = inode_state_will_create;
1483 } else {
1484 ret = -ENOENT;
1485 }
1486 } else if (!right_ret) {
1487 if (right_gen == gen) {
1488 if (ino < sctx->send_progress)
1489 ret = inode_state_did_delete;
1490 else
1491 ret = inode_state_will_delete;
1492 } else {
1493 ret = -ENOENT;
1494 }
1495 } else {
1496 ret = -ENOENT;
1497 }
1498
1499out:
1500 return ret;
1501}
1502
1503static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1504{
1505 int ret;
1506
1507 ret = get_cur_inode_state(sctx, ino, gen);
1508 if (ret < 0)
1509 goto out;
1510
1511 if (ret == inode_state_no_change ||
1512 ret == inode_state_did_create ||
1513 ret == inode_state_will_delete)
1514 ret = 1;
1515 else
1516 ret = 0;
1517
1518out:
1519 return ret;
1520}
1521
1522/*
1523 * Helper function to lookup a dir item in a dir.
1524 */
1525static int lookup_dir_item_inode(struct btrfs_root *root,
1526 u64 dir, const char *name, int name_len,
1527 u64 *found_inode,
1528 u8 *found_type)
1529{
1530 int ret = 0;
1531 struct btrfs_dir_item *di;
1532 struct btrfs_key key;
1533 struct btrfs_path *path;
1534
1535 path = alloc_path_for_send();
1536 if (!path)
1537 return -ENOMEM;
1538
1539 di = btrfs_lookup_dir_item(NULL, root, path,
1540 dir, name, name_len, 0);
1541 if (!di) {
1542 ret = -ENOENT;
1543 goto out;
1544 }
1545 if (IS_ERR(di)) {
1546 ret = PTR_ERR(di);
1547 goto out;
1548 }
1549 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1550 *found_inode = key.objectid;
1551 *found_type = btrfs_dir_type(path->nodes[0], di);
1552
1553out:
1554 btrfs_free_path(path);
1555 return ret;
1556}
1557
766702ef
AB
1558/*
1559 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1560 * generation of the parent dir and the name of the dir entry.
1561 */
924794c9 1562static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1563 u64 *dir, u64 *dir_gen, struct fs_path *name)
1564{
1565 int ret;
1566 struct btrfs_key key;
1567 struct btrfs_key found_key;
1568 struct btrfs_path *path;
31db9f7c 1569 int len;
96b5bd77 1570 u64 parent_dir;
31db9f7c
AB
1571
1572 path = alloc_path_for_send();
1573 if (!path)
1574 return -ENOMEM;
1575
1576 key.objectid = ino;
1577 key.type = BTRFS_INODE_REF_KEY;
1578 key.offset = 0;
1579
1580 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1581 if (ret < 0)
1582 goto out;
1583 if (!ret)
1584 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1585 path->slots[0]);
96b5bd77
JS
1586 if (ret || found_key.objectid != ino ||
1587 (found_key.type != BTRFS_INODE_REF_KEY &&
1588 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1589 ret = -ENOENT;
1590 goto out;
1591 }
1592
96b5bd77
JS
1593 if (key.type == BTRFS_INODE_REF_KEY) {
1594 struct btrfs_inode_ref *iref;
1595 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1596 struct btrfs_inode_ref);
1597 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1598 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1599 (unsigned long)(iref + 1),
1600 len);
1601 parent_dir = found_key.offset;
1602 } else {
1603 struct btrfs_inode_extref *extref;
1604 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1605 struct btrfs_inode_extref);
1606 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1607 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1608 (unsigned long)&extref->name, len);
1609 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1610 }
31db9f7c
AB
1611 if (ret < 0)
1612 goto out;
1613 btrfs_release_path(path);
1614
96b5bd77 1615 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
85a7b33b 1616 NULL, NULL);
31db9f7c
AB
1617 if (ret < 0)
1618 goto out;
1619
96b5bd77 1620 *dir = parent_dir;
31db9f7c
AB
1621
1622out:
1623 btrfs_free_path(path);
1624 return ret;
1625}
1626
924794c9 1627static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1628 u64 ino, u64 dir,
1629 const char *name, int name_len)
1630{
1631 int ret;
1632 struct fs_path *tmp_name;
1633 u64 tmp_dir;
1634 u64 tmp_dir_gen;
1635
924794c9 1636 tmp_name = fs_path_alloc();
31db9f7c
AB
1637 if (!tmp_name)
1638 return -ENOMEM;
1639
924794c9 1640 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
31db9f7c
AB
1641 if (ret < 0)
1642 goto out;
1643
b9291aff 1644 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1645 ret = 0;
1646 goto out;
1647 }
1648
e938c8ad 1649 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1650
1651out:
924794c9 1652 fs_path_free(tmp_name);
31db9f7c
AB
1653 return ret;
1654}
1655
766702ef
AB
1656/*
1657 * Used by process_recorded_refs to determine if a new ref would overwrite an
1658 * already existing ref. In case it detects an overwrite, it returns the
1659 * inode/gen in who_ino/who_gen.
1660 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1661 * to make sure later references to the overwritten inode are possible.
1662 * Orphanizing is however only required for the first ref of an inode.
1663 * process_recorded_refs does an additional is_first_ref check to see if
1664 * orphanizing is really required.
1665 */
31db9f7c
AB
1666static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1667 const char *name, int name_len,
1668 u64 *who_ino, u64 *who_gen)
1669{
1670 int ret = 0;
ebdad913 1671 u64 gen;
31db9f7c
AB
1672 u64 other_inode = 0;
1673 u8 other_type = 0;
1674
1675 if (!sctx->parent_root)
1676 goto out;
1677
1678 ret = is_inode_existent(sctx, dir, dir_gen);
1679 if (ret <= 0)
1680 goto out;
1681
ebdad913
JB
1682 /*
1683 * If we have a parent root we need to verify that the parent dir was
1684 * not delted and then re-created, if it was then we have no overwrite
1685 * and we can just unlink this entry.
1686 */
1687 if (sctx->parent_root) {
1688 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1689 NULL, NULL, NULL);
1690 if (ret < 0 && ret != -ENOENT)
1691 goto out;
1692 if (ret) {
1693 ret = 0;
1694 goto out;
1695 }
1696 if (gen != dir_gen)
1697 goto out;
1698 }
1699
31db9f7c
AB
1700 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1701 &other_inode, &other_type);
1702 if (ret < 0 && ret != -ENOENT)
1703 goto out;
1704 if (ret) {
1705 ret = 0;
1706 goto out;
1707 }
1708
766702ef
AB
1709 /*
1710 * Check if the overwritten ref was already processed. If yes, the ref
1711 * was already unlinked/moved, so we can safely assume that we will not
1712 * overwrite anything at this point in time.
1713 */
31db9f7c
AB
1714 if (other_inode > sctx->send_progress) {
1715 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1716 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1717 if (ret < 0)
1718 goto out;
1719
1720 ret = 1;
1721 *who_ino = other_inode;
1722 } else {
1723 ret = 0;
1724 }
1725
1726out:
1727 return ret;
1728}
1729
766702ef
AB
1730/*
1731 * Checks if the ref was overwritten by an already processed inode. This is
1732 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1733 * thus the orphan name needs be used.
1734 * process_recorded_refs also uses it to avoid unlinking of refs that were
1735 * overwritten.
1736 */
31db9f7c
AB
1737static int did_overwrite_ref(struct send_ctx *sctx,
1738 u64 dir, u64 dir_gen,
1739 u64 ino, u64 ino_gen,
1740 const char *name, int name_len)
1741{
1742 int ret = 0;
1743 u64 gen;
1744 u64 ow_inode;
1745 u8 other_type;
1746
1747 if (!sctx->parent_root)
1748 goto out;
1749
1750 ret = is_inode_existent(sctx, dir, dir_gen);
1751 if (ret <= 0)
1752 goto out;
1753
1754 /* check if the ref was overwritten by another ref */
1755 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1756 &ow_inode, &other_type);
1757 if (ret < 0 && ret != -ENOENT)
1758 goto out;
1759 if (ret) {
1760 /* was never and will never be overwritten */
1761 ret = 0;
1762 goto out;
1763 }
1764
1765 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1766 NULL, NULL);
31db9f7c
AB
1767 if (ret < 0)
1768 goto out;
1769
1770 if (ow_inode == ino && gen == ino_gen) {
1771 ret = 0;
1772 goto out;
1773 }
1774
1775 /* we know that it is or will be overwritten. check this now */
1776 if (ow_inode < sctx->send_progress)
1777 ret = 1;
1778 else
1779 ret = 0;
1780
1781out:
1782 return ret;
1783}
1784
766702ef
AB
1785/*
1786 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1787 * that got overwritten. This is used by process_recorded_refs to determine
1788 * if it has to use the path as returned by get_cur_path or the orphan name.
1789 */
31db9f7c
AB
1790static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1791{
1792 int ret = 0;
1793 struct fs_path *name = NULL;
1794 u64 dir;
1795 u64 dir_gen;
1796
1797 if (!sctx->parent_root)
1798 goto out;
1799
924794c9 1800 name = fs_path_alloc();
31db9f7c
AB
1801 if (!name)
1802 return -ENOMEM;
1803
924794c9 1804 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1805 if (ret < 0)
1806 goto out;
1807
1808 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1809 name->start, fs_path_len(name));
31db9f7c
AB
1810
1811out:
924794c9 1812 fs_path_free(name);
31db9f7c
AB
1813 return ret;
1814}
1815
766702ef
AB
1816/*
1817 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1818 * so we need to do some special handling in case we have clashes. This function
1819 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1820 * In case of error, nce is kfreed.
766702ef 1821 */
31db9f7c
AB
1822static int name_cache_insert(struct send_ctx *sctx,
1823 struct name_cache_entry *nce)
1824{
1825 int ret = 0;
7e0926fe
AB
1826 struct list_head *nce_head;
1827
1828 nce_head = radix_tree_lookup(&sctx->name_cache,
1829 (unsigned long)nce->ino);
1830 if (!nce_head) {
1831 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1832 if (!nce_head) {
1833 kfree(nce);
31db9f7c 1834 return -ENOMEM;
cfa7a9cc 1835 }
7e0926fe 1836 INIT_LIST_HEAD(nce_head);
31db9f7c 1837
7e0926fe 1838 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1839 if (ret < 0) {
1840 kfree(nce_head);
1841 kfree(nce);
31db9f7c 1842 return ret;
5dc67d0b 1843 }
31db9f7c 1844 }
7e0926fe 1845 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1846 list_add_tail(&nce->list, &sctx->name_cache_list);
1847 sctx->name_cache_size++;
1848
1849 return ret;
1850}
1851
1852static void name_cache_delete(struct send_ctx *sctx,
1853 struct name_cache_entry *nce)
1854{
7e0926fe 1855 struct list_head *nce_head;
31db9f7c 1856
7e0926fe
AB
1857 nce_head = radix_tree_lookup(&sctx->name_cache,
1858 (unsigned long)nce->ino);
1859 BUG_ON(!nce_head);
31db9f7c 1860
7e0926fe 1861 list_del(&nce->radix_list);
31db9f7c 1862 list_del(&nce->list);
31db9f7c 1863 sctx->name_cache_size--;
7e0926fe
AB
1864
1865 if (list_empty(nce_head)) {
1866 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1867 kfree(nce_head);
1868 }
31db9f7c
AB
1869}
1870
1871static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1872 u64 ino, u64 gen)
1873{
7e0926fe
AB
1874 struct list_head *nce_head;
1875 struct name_cache_entry *cur;
31db9f7c 1876
7e0926fe
AB
1877 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1878 if (!nce_head)
31db9f7c
AB
1879 return NULL;
1880
7e0926fe
AB
1881 list_for_each_entry(cur, nce_head, radix_list) {
1882 if (cur->ino == ino && cur->gen == gen)
1883 return cur;
1884 }
31db9f7c
AB
1885 return NULL;
1886}
1887
766702ef
AB
1888/*
1889 * Removes the entry from the list and adds it back to the end. This marks the
1890 * entry as recently used so that name_cache_clean_unused does not remove it.
1891 */
31db9f7c
AB
1892static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1893{
1894 list_del(&nce->list);
1895 list_add_tail(&nce->list, &sctx->name_cache_list);
1896}
1897
766702ef
AB
1898/*
1899 * Remove some entries from the beginning of name_cache_list.
1900 */
31db9f7c
AB
1901static void name_cache_clean_unused(struct send_ctx *sctx)
1902{
1903 struct name_cache_entry *nce;
1904
1905 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1906 return;
1907
1908 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1909 nce = list_entry(sctx->name_cache_list.next,
1910 struct name_cache_entry, list);
1911 name_cache_delete(sctx, nce);
1912 kfree(nce);
1913 }
1914}
1915
1916static void name_cache_free(struct send_ctx *sctx)
1917{
1918 struct name_cache_entry *nce;
31db9f7c 1919
e938c8ad
AB
1920 while (!list_empty(&sctx->name_cache_list)) {
1921 nce = list_entry(sctx->name_cache_list.next,
1922 struct name_cache_entry, list);
31db9f7c 1923 name_cache_delete(sctx, nce);
17589bd9 1924 kfree(nce);
31db9f7c
AB
1925 }
1926}
1927
766702ef
AB
1928/*
1929 * Used by get_cur_path for each ref up to the root.
1930 * Returns 0 if it succeeded.
1931 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1932 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1933 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1934 * Returns <0 in case of error.
1935 */
31db9f7c
AB
1936static int __get_cur_name_and_parent(struct send_ctx *sctx,
1937 u64 ino, u64 gen,
1938 u64 *parent_ino,
1939 u64 *parent_gen,
1940 struct fs_path *dest)
1941{
1942 int ret;
1943 int nce_ret;
1944 struct btrfs_path *path = NULL;
1945 struct name_cache_entry *nce = NULL;
1946
766702ef
AB
1947 /*
1948 * First check if we already did a call to this function with the same
1949 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1950 * return the cached result.
1951 */
31db9f7c
AB
1952 nce = name_cache_search(sctx, ino, gen);
1953 if (nce) {
1954 if (ino < sctx->send_progress && nce->need_later_update) {
1955 name_cache_delete(sctx, nce);
1956 kfree(nce);
1957 nce = NULL;
1958 } else {
1959 name_cache_used(sctx, nce);
1960 *parent_ino = nce->parent_ino;
1961 *parent_gen = nce->parent_gen;
1962 ret = fs_path_add(dest, nce->name, nce->name_len);
1963 if (ret < 0)
1964 goto out;
1965 ret = nce->ret;
1966 goto out;
1967 }
1968 }
1969
1970 path = alloc_path_for_send();
1971 if (!path)
1972 return -ENOMEM;
1973
766702ef
AB
1974 /*
1975 * If the inode is not existent yet, add the orphan name and return 1.
1976 * This should only happen for the parent dir that we determine in
1977 * __record_new_ref
1978 */
31db9f7c
AB
1979 ret = is_inode_existent(sctx, ino, gen);
1980 if (ret < 0)
1981 goto out;
1982
1983 if (!ret) {
1984 ret = gen_unique_name(sctx, ino, gen, dest);
1985 if (ret < 0)
1986 goto out;
1987 ret = 1;
1988 goto out_cache;
1989 }
1990
766702ef
AB
1991 /*
1992 * Depending on whether the inode was already processed or not, use
1993 * send_root or parent_root for ref lookup.
1994 */
31db9f7c 1995 if (ino < sctx->send_progress)
924794c9
TI
1996 ret = get_first_ref(sctx->send_root, ino,
1997 parent_ino, parent_gen, dest);
31db9f7c 1998 else
924794c9
TI
1999 ret = get_first_ref(sctx->parent_root, ino,
2000 parent_ino, parent_gen, dest);
31db9f7c
AB
2001 if (ret < 0)
2002 goto out;
2003
766702ef
AB
2004 /*
2005 * Check if the ref was overwritten by an inode's ref that was processed
2006 * earlier. If yes, treat as orphan and return 1.
2007 */
31db9f7c
AB
2008 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2009 dest->start, dest->end - dest->start);
2010 if (ret < 0)
2011 goto out;
2012 if (ret) {
2013 fs_path_reset(dest);
2014 ret = gen_unique_name(sctx, ino, gen, dest);
2015 if (ret < 0)
2016 goto out;
2017 ret = 1;
2018 }
2019
2020out_cache:
766702ef
AB
2021 /*
2022 * Store the result of the lookup in the name cache.
2023 */
31db9f7c
AB
2024 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2025 if (!nce) {
2026 ret = -ENOMEM;
2027 goto out;
2028 }
2029
2030 nce->ino = ino;
2031 nce->gen = gen;
2032 nce->parent_ino = *parent_ino;
2033 nce->parent_gen = *parent_gen;
2034 nce->name_len = fs_path_len(dest);
2035 nce->ret = ret;
2036 strcpy(nce->name, dest->start);
31db9f7c
AB
2037
2038 if (ino < sctx->send_progress)
2039 nce->need_later_update = 0;
2040 else
2041 nce->need_later_update = 1;
2042
2043 nce_ret = name_cache_insert(sctx, nce);
2044 if (nce_ret < 0)
2045 ret = nce_ret;
2046 name_cache_clean_unused(sctx);
2047
2048out:
2049 btrfs_free_path(path);
2050 return ret;
2051}
2052
2053/*
2054 * Magic happens here. This function returns the first ref to an inode as it
2055 * would look like while receiving the stream at this point in time.
2056 * We walk the path up to the root. For every inode in between, we check if it
2057 * was already processed/sent. If yes, we continue with the parent as found
2058 * in send_root. If not, we continue with the parent as found in parent_root.
2059 * If we encounter an inode that was deleted at this point in time, we use the
2060 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2061 * that were not created yet and overwritten inodes/refs.
2062 *
2063 * When do we have have orphan inodes:
2064 * 1. When an inode is freshly created and thus no valid refs are available yet
2065 * 2. When a directory lost all it's refs (deleted) but still has dir items
2066 * inside which were not processed yet (pending for move/delete). If anyone
2067 * tried to get the path to the dir items, it would get a path inside that
2068 * orphan directory.
2069 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2070 * of an unprocessed inode. If in that case the first ref would be
2071 * overwritten, the overwritten inode gets "orphanized". Later when we
2072 * process this overwritten inode, it is restored at a new place by moving
2073 * the orphan inode.
2074 *
2075 * sctx->send_progress tells this function at which point in time receiving
2076 * would be.
2077 */
2078static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2079 struct fs_path *dest)
2080{
2081 int ret = 0;
2082 struct fs_path *name = NULL;
2083 u64 parent_inode = 0;
2084 u64 parent_gen = 0;
2085 int stop = 0;
2086
924794c9 2087 name = fs_path_alloc();
31db9f7c
AB
2088 if (!name) {
2089 ret = -ENOMEM;
2090 goto out;
2091 }
2092
2093 dest->reversed = 1;
2094 fs_path_reset(dest);
2095
2096 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2097 fs_path_reset(name);
2098
2099 ret = __get_cur_name_and_parent(sctx, ino, gen,
2100 &parent_inode, &parent_gen, name);
2101 if (ret < 0)
2102 goto out;
2103 if (ret)
2104 stop = 1;
2105
2106 ret = fs_path_add_path(dest, name);
2107 if (ret < 0)
2108 goto out;
2109
2110 ino = parent_inode;
2111 gen = parent_gen;
2112 }
2113
2114out:
924794c9 2115 fs_path_free(name);
31db9f7c
AB
2116 if (!ret)
2117 fs_path_unreverse(dest);
2118 return ret;
2119}
2120
2121/*
2122 * Called for regular files when sending extents data. Opens a struct file
2123 * to read from the file.
2124 */
2125static int open_cur_inode_file(struct send_ctx *sctx)
2126{
2127 int ret = 0;
2128 struct btrfs_key key;
e2aed8df 2129 struct path path;
31db9f7c
AB
2130 struct inode *inode;
2131 struct dentry *dentry;
2132 struct file *filp;
2133 int new = 0;
2134
2135 if (sctx->cur_inode_filp)
2136 goto out;
2137
2138 key.objectid = sctx->cur_ino;
2139 key.type = BTRFS_INODE_ITEM_KEY;
2140 key.offset = 0;
2141
2142 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2143 &new);
2144 if (IS_ERR(inode)) {
2145 ret = PTR_ERR(inode);
2146 goto out;
2147 }
2148
2149 dentry = d_obtain_alias(inode);
2150 inode = NULL;
2151 if (IS_ERR(dentry)) {
2152 ret = PTR_ERR(dentry);
2153 goto out;
2154 }
2155
e2aed8df
LT
2156 path.mnt = sctx->mnt;
2157 path.dentry = dentry;
2158 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2159 dput(dentry);
31db9f7c 2160 dentry = NULL;
31db9f7c
AB
2161 if (IS_ERR(filp)) {
2162 ret = PTR_ERR(filp);
2163 goto out;
2164 }
2165 sctx->cur_inode_filp = filp;
2166
2167out:
2168 /*
2169 * no xxxput required here as every vfs op
2170 * does it by itself on failure
2171 */
2172 return ret;
2173}
2174
2175/*
2176 * Closes the struct file that was created in open_cur_inode_file
2177 */
2178static int close_cur_inode_file(struct send_ctx *sctx)
2179{
2180 int ret = 0;
2181
2182 if (!sctx->cur_inode_filp)
2183 goto out;
2184
2185 ret = filp_close(sctx->cur_inode_filp, NULL);
2186 sctx->cur_inode_filp = NULL;
2187
2188out:
2189 return ret;
2190}
2191
2192/*
2193 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2194 */
2195static int send_subvol_begin(struct send_ctx *sctx)
2196{
2197 int ret;
2198 struct btrfs_root *send_root = sctx->send_root;
2199 struct btrfs_root *parent_root = sctx->parent_root;
2200 struct btrfs_path *path;
2201 struct btrfs_key key;
2202 struct btrfs_root_ref *ref;
2203 struct extent_buffer *leaf;
2204 char *name = NULL;
2205 int namelen;
2206
2207 path = alloc_path_for_send();
2208 if (!path)
2209 return -ENOMEM;
2210
2211 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2212 if (!name) {
2213 btrfs_free_path(path);
2214 return -ENOMEM;
2215 }
2216
2217 key.objectid = send_root->objectid;
2218 key.type = BTRFS_ROOT_BACKREF_KEY;
2219 key.offset = 0;
2220
2221 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2222 &key, path, 1, 0);
2223 if (ret < 0)
2224 goto out;
2225 if (ret) {
2226 ret = -ENOENT;
2227 goto out;
2228 }
2229
2230 leaf = path->nodes[0];
2231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2232 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2233 key.objectid != send_root->objectid) {
2234 ret = -ENOENT;
2235 goto out;
2236 }
2237 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2238 namelen = btrfs_root_ref_name_len(leaf, ref);
2239 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2240 btrfs_release_path(path);
2241
31db9f7c
AB
2242 if (parent_root) {
2243 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2244 if (ret < 0)
2245 goto out;
2246 } else {
2247 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2248 if (ret < 0)
2249 goto out;
2250 }
2251
2252 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2253 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2254 sctx->send_root->root_item.uuid);
2255 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2256 sctx->send_root->root_item.ctransid);
2257 if (parent_root) {
2258 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2259 sctx->parent_root->root_item.uuid);
2260 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2261 sctx->parent_root->root_item.ctransid);
2262 }
2263
2264 ret = send_cmd(sctx);
2265
2266tlv_put_failure:
2267out:
2268 btrfs_free_path(path);
2269 kfree(name);
2270 return ret;
2271}
2272
2273static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2274{
2275 int ret = 0;
2276 struct fs_path *p;
2277
2278verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2279
924794c9 2280 p = fs_path_alloc();
31db9f7c
AB
2281 if (!p)
2282 return -ENOMEM;
2283
2284 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2285 if (ret < 0)
2286 goto out;
2287
2288 ret = get_cur_path(sctx, ino, gen, p);
2289 if (ret < 0)
2290 goto out;
2291 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2292 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2293
2294 ret = send_cmd(sctx);
2295
2296tlv_put_failure:
2297out:
924794c9 2298 fs_path_free(p);
31db9f7c
AB
2299 return ret;
2300}
2301
2302static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2303{
2304 int ret = 0;
2305 struct fs_path *p;
2306
2307verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2308
924794c9 2309 p = fs_path_alloc();
31db9f7c
AB
2310 if (!p)
2311 return -ENOMEM;
2312
2313 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2314 if (ret < 0)
2315 goto out;
2316
2317 ret = get_cur_path(sctx, ino, gen, p);
2318 if (ret < 0)
2319 goto out;
2320 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2321 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2322
2323 ret = send_cmd(sctx);
2324
2325tlv_put_failure:
2326out:
924794c9 2327 fs_path_free(p);
31db9f7c
AB
2328 return ret;
2329}
2330
2331static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2332{
2333 int ret = 0;
2334 struct fs_path *p;
2335
2336verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2337
924794c9 2338 p = fs_path_alloc();
31db9f7c
AB
2339 if (!p)
2340 return -ENOMEM;
2341
2342 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2343 if (ret < 0)
2344 goto out;
2345
2346 ret = get_cur_path(sctx, ino, gen, p);
2347 if (ret < 0)
2348 goto out;
2349 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2350 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2351 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2352
2353 ret = send_cmd(sctx);
2354
2355tlv_put_failure:
2356out:
924794c9 2357 fs_path_free(p);
31db9f7c
AB
2358 return ret;
2359}
2360
2361static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2362{
2363 int ret = 0;
2364 struct fs_path *p = NULL;
2365 struct btrfs_inode_item *ii;
2366 struct btrfs_path *path = NULL;
2367 struct extent_buffer *eb;
2368 struct btrfs_key key;
2369 int slot;
2370
2371verbose_printk("btrfs: send_utimes %llu\n", ino);
2372
924794c9 2373 p = fs_path_alloc();
31db9f7c
AB
2374 if (!p)
2375 return -ENOMEM;
2376
2377 path = alloc_path_for_send();
2378 if (!path) {
2379 ret = -ENOMEM;
2380 goto out;
2381 }
2382
2383 key.objectid = ino;
2384 key.type = BTRFS_INODE_ITEM_KEY;
2385 key.offset = 0;
2386 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2387 if (ret < 0)
2388 goto out;
2389
2390 eb = path->nodes[0];
2391 slot = path->slots[0];
2392 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2393
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2395 if (ret < 0)
2396 goto out;
2397
2398 ret = get_cur_path(sctx, ino, gen, p);
2399 if (ret < 0)
2400 goto out;
2401 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2402 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2403 btrfs_inode_atime(ii));
2404 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2405 btrfs_inode_mtime(ii));
2406 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2407 btrfs_inode_ctime(ii));
766702ef 2408 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2409
2410 ret = send_cmd(sctx);
2411
2412tlv_put_failure:
2413out:
924794c9 2414 fs_path_free(p);
31db9f7c
AB
2415 btrfs_free_path(path);
2416 return ret;
2417}
2418
2419/*
2420 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2421 * a valid path yet because we did not process the refs yet. So, the inode
2422 * is created as orphan.
2423 */
1f4692da 2424static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2425{
2426 int ret = 0;
31db9f7c 2427 struct fs_path *p;
31db9f7c 2428 int cmd;
1f4692da 2429 u64 gen;
31db9f7c 2430 u64 mode;
1f4692da 2431 u64 rdev;
31db9f7c 2432
1f4692da 2433verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2434
924794c9 2435 p = fs_path_alloc();
31db9f7c
AB
2436 if (!p)
2437 return -ENOMEM;
2438
1f4692da
AB
2439 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2440 NULL, &rdev);
2441 if (ret < 0)
2442 goto out;
31db9f7c 2443
e938c8ad 2444 if (S_ISREG(mode)) {
31db9f7c 2445 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2446 } else if (S_ISDIR(mode)) {
31db9f7c 2447 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2448 } else if (S_ISLNK(mode)) {
31db9f7c 2449 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2450 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2451 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2452 } else if (S_ISFIFO(mode)) {
31db9f7c 2453 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2454 } else if (S_ISSOCK(mode)) {
31db9f7c 2455 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2456 } else {
31db9f7c
AB
2457 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2458 (int)(mode & S_IFMT));
2459 ret = -ENOTSUPP;
2460 goto out;
2461 }
2462
2463 ret = begin_cmd(sctx, cmd);
2464 if (ret < 0)
2465 goto out;
2466
1f4692da 2467 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2468 if (ret < 0)
2469 goto out;
2470
2471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2472 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2473
2474 if (S_ISLNK(mode)) {
2475 fs_path_reset(p);
924794c9 2476 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2477 if (ret < 0)
2478 goto out;
2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2480 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2481 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2482 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2483 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2484 }
2485
2486 ret = send_cmd(sctx);
2487 if (ret < 0)
2488 goto out;
2489
2490
2491tlv_put_failure:
2492out:
924794c9 2493 fs_path_free(p);
31db9f7c
AB
2494 return ret;
2495}
2496
1f4692da
AB
2497/*
2498 * We need some special handling for inodes that get processed before the parent
2499 * directory got created. See process_recorded_refs for details.
2500 * This function does the check if we already created the dir out of order.
2501 */
2502static int did_create_dir(struct send_ctx *sctx, u64 dir)
2503{
2504 int ret = 0;
2505 struct btrfs_path *path = NULL;
2506 struct btrfs_key key;
2507 struct btrfs_key found_key;
2508 struct btrfs_key di_key;
2509 struct extent_buffer *eb;
2510 struct btrfs_dir_item *di;
2511 int slot;
2512
2513 path = alloc_path_for_send();
2514 if (!path) {
2515 ret = -ENOMEM;
2516 goto out;
2517 }
2518
2519 key.objectid = dir;
2520 key.type = BTRFS_DIR_INDEX_KEY;
2521 key.offset = 0;
2522 while (1) {
2523 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2524 1, 0);
2525 if (ret < 0)
2526 goto out;
2527 if (!ret) {
2528 eb = path->nodes[0];
2529 slot = path->slots[0];
2530 btrfs_item_key_to_cpu(eb, &found_key, slot);
2531 }
2532 if (ret || found_key.objectid != key.objectid ||
2533 found_key.type != key.type) {
2534 ret = 0;
2535 goto out;
2536 }
2537
2538 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2539 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2540
a0525414
JB
2541 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2542 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2543 ret = 1;
2544 goto out;
2545 }
2546
2547 key.offset = found_key.offset + 1;
2548 btrfs_release_path(path);
2549 }
2550
2551out:
2552 btrfs_free_path(path);
2553 return ret;
2554}
2555
2556/*
2557 * Only creates the inode if it is:
2558 * 1. Not a directory
2559 * 2. Or a directory which was not created already due to out of order
2560 * directories. See did_create_dir and process_recorded_refs for details.
2561 */
2562static int send_create_inode_if_needed(struct send_ctx *sctx)
2563{
2564 int ret;
2565
2566 if (S_ISDIR(sctx->cur_inode_mode)) {
2567 ret = did_create_dir(sctx, sctx->cur_ino);
2568 if (ret < 0)
2569 goto out;
2570 if (ret) {
2571 ret = 0;
2572 goto out;
2573 }
2574 }
2575
2576 ret = send_create_inode(sctx, sctx->cur_ino);
2577 if (ret < 0)
2578 goto out;
2579
2580out:
2581 return ret;
2582}
2583
31db9f7c
AB
2584struct recorded_ref {
2585 struct list_head list;
2586 char *dir_path;
2587 char *name;
2588 struct fs_path *full_path;
2589 u64 dir;
2590 u64 dir_gen;
2591 int dir_path_len;
2592 int name_len;
2593};
2594
2595/*
2596 * We need to process new refs before deleted refs, but compare_tree gives us
2597 * everything mixed. So we first record all refs and later process them.
2598 * This function is a helper to record one ref.
2599 */
2600static int record_ref(struct list_head *head, u64 dir,
2601 u64 dir_gen, struct fs_path *path)
2602{
2603 struct recorded_ref *ref;
2604 char *tmp;
2605
2606 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2607 if (!ref)
2608 return -ENOMEM;
2609
2610 ref->dir = dir;
2611 ref->dir_gen = dir_gen;
2612 ref->full_path = path;
2613
2614 tmp = strrchr(ref->full_path->start, '/');
2615 if (!tmp) {
2616 ref->name_len = ref->full_path->end - ref->full_path->start;
2617 ref->name = ref->full_path->start;
2618 ref->dir_path_len = 0;
2619 ref->dir_path = ref->full_path->start;
2620 } else {
2621 tmp++;
2622 ref->name_len = ref->full_path->end - tmp;
2623 ref->name = tmp;
2624 ref->dir_path = ref->full_path->start;
2625 ref->dir_path_len = ref->full_path->end -
2626 ref->full_path->start - 1 - ref->name_len;
2627 }
2628
2629 list_add_tail(&ref->list, head);
2630 return 0;
2631}
2632
ba5e8f2e
JB
2633static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2634{
2635 struct recorded_ref *new;
2636
2637 new = kmalloc(sizeof(*ref), GFP_NOFS);
2638 if (!new)
2639 return -ENOMEM;
2640
2641 new->dir = ref->dir;
2642 new->dir_gen = ref->dir_gen;
2643 new->full_path = NULL;
2644 INIT_LIST_HEAD(&new->list);
2645 list_add_tail(&new->list, list);
2646 return 0;
2647}
2648
924794c9 2649static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2650{
2651 struct recorded_ref *cur;
31db9f7c 2652
e938c8ad
AB
2653 while (!list_empty(head)) {
2654 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2655 fs_path_free(cur->full_path);
e938c8ad 2656 list_del(&cur->list);
31db9f7c
AB
2657 kfree(cur);
2658 }
31db9f7c
AB
2659}
2660
2661static void free_recorded_refs(struct send_ctx *sctx)
2662{
924794c9
TI
2663 __free_recorded_refs(&sctx->new_refs);
2664 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2665}
2666
2667/*
766702ef 2668 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2669 * ref of an unprocessed inode gets overwritten and for all non empty
2670 * directories.
2671 */
2672static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2673 struct fs_path *path)
2674{
2675 int ret;
2676 struct fs_path *orphan;
2677
924794c9 2678 orphan = fs_path_alloc();
31db9f7c
AB
2679 if (!orphan)
2680 return -ENOMEM;
2681
2682 ret = gen_unique_name(sctx, ino, gen, orphan);
2683 if (ret < 0)
2684 goto out;
2685
2686 ret = send_rename(sctx, path, orphan);
2687
2688out:
924794c9 2689 fs_path_free(orphan);
31db9f7c
AB
2690 return ret;
2691}
2692
2693/*
2694 * Returns 1 if a directory can be removed at this point in time.
2695 * We check this by iterating all dir items and checking if the inode behind
2696 * the dir item was already processed.
2697 */
2698static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2699{
2700 int ret = 0;
2701 struct btrfs_root *root = sctx->parent_root;
2702 struct btrfs_path *path;
2703 struct btrfs_key key;
2704 struct btrfs_key found_key;
2705 struct btrfs_key loc;
2706 struct btrfs_dir_item *di;
2707
6d85ed05
AB
2708 /*
2709 * Don't try to rmdir the top/root subvolume dir.
2710 */
2711 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2712 return 0;
2713
31db9f7c
AB
2714 path = alloc_path_for_send();
2715 if (!path)
2716 return -ENOMEM;
2717
2718 key.objectid = dir;
2719 key.type = BTRFS_DIR_INDEX_KEY;
2720 key.offset = 0;
2721
2722 while (1) {
2723 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2724 if (ret < 0)
2725 goto out;
2726 if (!ret) {
2727 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2728 path->slots[0]);
2729 }
2730 if (ret || found_key.objectid != key.objectid ||
2731 found_key.type != key.type) {
2732 break;
2733 }
2734
2735 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2736 struct btrfs_dir_item);
2737 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2738
2739 if (loc.objectid > send_progress) {
2740 ret = 0;
2741 goto out;
2742 }
2743
2744 btrfs_release_path(path);
2745 key.offset = found_key.offset + 1;
2746 }
2747
2748 ret = 1;
2749
2750out:
2751 btrfs_free_path(path);
2752 return ret;
2753}
2754
31db9f7c
AB
2755/*
2756 * This does all the move/link/unlink/rmdir magic.
2757 */
2758static int process_recorded_refs(struct send_ctx *sctx)
2759{
2760 int ret = 0;
2761 struct recorded_ref *cur;
1f4692da 2762 struct recorded_ref *cur2;
ba5e8f2e 2763 struct list_head check_dirs;
31db9f7c 2764 struct fs_path *valid_path = NULL;
b24baf69 2765 u64 ow_inode = 0;
31db9f7c
AB
2766 u64 ow_gen;
2767 int did_overwrite = 0;
2768 int is_orphan = 0;
2769
2770verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2771
6d85ed05
AB
2772 /*
2773 * This should never happen as the root dir always has the same ref
2774 * which is always '..'
2775 */
2776 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 2777 INIT_LIST_HEAD(&check_dirs);
6d85ed05 2778
924794c9 2779 valid_path = fs_path_alloc();
31db9f7c
AB
2780 if (!valid_path) {
2781 ret = -ENOMEM;
2782 goto out;
2783 }
2784
31db9f7c
AB
2785 /*
2786 * First, check if the first ref of the current inode was overwritten
2787 * before. If yes, we know that the current inode was already orphanized
2788 * and thus use the orphan name. If not, we can use get_cur_path to
2789 * get the path of the first ref as it would like while receiving at
2790 * this point in time.
2791 * New inodes are always orphan at the beginning, so force to use the
2792 * orphan name in this case.
2793 * The first ref is stored in valid_path and will be updated if it
2794 * gets moved around.
2795 */
2796 if (!sctx->cur_inode_new) {
2797 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2798 sctx->cur_inode_gen);
2799 if (ret < 0)
2800 goto out;
2801 if (ret)
2802 did_overwrite = 1;
2803 }
2804 if (sctx->cur_inode_new || did_overwrite) {
2805 ret = gen_unique_name(sctx, sctx->cur_ino,
2806 sctx->cur_inode_gen, valid_path);
2807 if (ret < 0)
2808 goto out;
2809 is_orphan = 1;
2810 } else {
2811 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2812 valid_path);
2813 if (ret < 0)
2814 goto out;
2815 }
2816
2817 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
2818 /*
2819 * We may have refs where the parent directory does not exist
2820 * yet. This happens if the parent directories inum is higher
2821 * the the current inum. To handle this case, we create the
2822 * parent directory out of order. But we need to check if this
2823 * did already happen before due to other refs in the same dir.
2824 */
2825 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2826 if (ret < 0)
2827 goto out;
2828 if (ret == inode_state_will_create) {
2829 ret = 0;
2830 /*
2831 * First check if any of the current inodes refs did
2832 * already create the dir.
2833 */
2834 list_for_each_entry(cur2, &sctx->new_refs, list) {
2835 if (cur == cur2)
2836 break;
2837 if (cur2->dir == cur->dir) {
2838 ret = 1;
2839 break;
2840 }
2841 }
2842
2843 /*
2844 * If that did not happen, check if a previous inode
2845 * did already create the dir.
2846 */
2847 if (!ret)
2848 ret = did_create_dir(sctx, cur->dir);
2849 if (ret < 0)
2850 goto out;
2851 if (!ret) {
2852 ret = send_create_inode(sctx, cur->dir);
2853 if (ret < 0)
2854 goto out;
2855 }
2856 }
2857
31db9f7c
AB
2858 /*
2859 * Check if this new ref would overwrite the first ref of
2860 * another unprocessed inode. If yes, orphanize the
2861 * overwritten inode. If we find an overwritten ref that is
2862 * not the first ref, simply unlink it.
2863 */
2864 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2865 cur->name, cur->name_len,
2866 &ow_inode, &ow_gen);
2867 if (ret < 0)
2868 goto out;
2869 if (ret) {
924794c9
TI
2870 ret = is_first_ref(sctx->parent_root,
2871 ow_inode, cur->dir, cur->name,
2872 cur->name_len);
31db9f7c
AB
2873 if (ret < 0)
2874 goto out;
2875 if (ret) {
2876 ret = orphanize_inode(sctx, ow_inode, ow_gen,
2877 cur->full_path);
2878 if (ret < 0)
2879 goto out;
2880 } else {
2881 ret = send_unlink(sctx, cur->full_path);
2882 if (ret < 0)
2883 goto out;
2884 }
2885 }
2886
2887 /*
2888 * link/move the ref to the new place. If we have an orphan
2889 * inode, move it and update valid_path. If not, link or move
2890 * it depending on the inode mode.
2891 */
1f4692da 2892 if (is_orphan) {
31db9f7c
AB
2893 ret = send_rename(sctx, valid_path, cur->full_path);
2894 if (ret < 0)
2895 goto out;
2896 is_orphan = 0;
2897 ret = fs_path_copy(valid_path, cur->full_path);
2898 if (ret < 0)
2899 goto out;
2900 } else {
2901 if (S_ISDIR(sctx->cur_inode_mode)) {
2902 /*
2903 * Dirs can't be linked, so move it. For moved
2904 * dirs, we always have one new and one deleted
2905 * ref. The deleted ref is ignored later.
2906 */
2907 ret = send_rename(sctx, valid_path,
2908 cur->full_path);
2909 if (ret < 0)
2910 goto out;
2911 ret = fs_path_copy(valid_path, cur->full_path);
2912 if (ret < 0)
2913 goto out;
2914 } else {
2915 ret = send_link(sctx, cur->full_path,
2916 valid_path);
2917 if (ret < 0)
2918 goto out;
2919 }
2920 }
ba5e8f2e 2921 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
2922 if (ret < 0)
2923 goto out;
2924 }
2925
2926 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2927 /*
2928 * Check if we can already rmdir the directory. If not,
2929 * orphanize it. For every dir item inside that gets deleted
2930 * later, we do this check again and rmdir it then if possible.
2931 * See the use of check_dirs for more details.
2932 */
2933 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2934 if (ret < 0)
2935 goto out;
2936 if (ret) {
2937 ret = send_rmdir(sctx, valid_path);
2938 if (ret < 0)
2939 goto out;
2940 } else if (!is_orphan) {
2941 ret = orphanize_inode(sctx, sctx->cur_ino,
2942 sctx->cur_inode_gen, valid_path);
2943 if (ret < 0)
2944 goto out;
2945 is_orphan = 1;
2946 }
2947
2948 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 2949 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
2950 if (ret < 0)
2951 goto out;
2952 }
ccf1626b
AB
2953 } else if (S_ISDIR(sctx->cur_inode_mode) &&
2954 !list_empty(&sctx->deleted_refs)) {
2955 /*
2956 * We have a moved dir. Add the old parent to check_dirs
2957 */
2958 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2959 list);
ba5e8f2e 2960 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
2961 if (ret < 0)
2962 goto out;
31db9f7c
AB
2963 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2964 /*
2965 * We have a non dir inode. Go through all deleted refs and
2966 * unlink them if they were not already overwritten by other
2967 * inodes.
2968 */
2969 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2970 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2971 sctx->cur_ino, sctx->cur_inode_gen,
2972 cur->name, cur->name_len);
2973 if (ret < 0)
2974 goto out;
2975 if (!ret) {
1f4692da
AB
2976 ret = send_unlink(sctx, cur->full_path);
2977 if (ret < 0)
2978 goto out;
31db9f7c 2979 }
ba5e8f2e 2980 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
2981 if (ret < 0)
2982 goto out;
2983 }
31db9f7c
AB
2984 /*
2985 * If the inode is still orphan, unlink the orphan. This may
2986 * happen when a previous inode did overwrite the first ref
2987 * of this inode and no new refs were added for the current
766702ef
AB
2988 * inode. Unlinking does not mean that the inode is deleted in
2989 * all cases. There may still be links to this inode in other
2990 * places.
31db9f7c 2991 */
1f4692da 2992 if (is_orphan) {
31db9f7c
AB
2993 ret = send_unlink(sctx, valid_path);
2994 if (ret < 0)
2995 goto out;
2996 }
2997 }
2998
2999 /*
3000 * We did collect all parent dirs where cur_inode was once located. We
3001 * now go through all these dirs and check if they are pending for
3002 * deletion and if it's finally possible to perform the rmdir now.
3003 * We also update the inode stats of the parent dirs here.
3004 */
ba5e8f2e 3005 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3006 /*
3007 * In case we had refs into dirs that were not processed yet,
3008 * we don't need to do the utime and rmdir logic for these dirs.
3009 * The dir will be processed later.
3010 */
ba5e8f2e 3011 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3012 continue;
3013
ba5e8f2e 3014 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3015 if (ret < 0)
3016 goto out;
3017
3018 if (ret == inode_state_did_create ||
3019 ret == inode_state_no_change) {
3020 /* TODO delayed utimes */
ba5e8f2e 3021 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3022 if (ret < 0)
3023 goto out;
3024 } else if (ret == inode_state_did_delete) {
ba5e8f2e 3025 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
31db9f7c
AB
3026 if (ret < 0)
3027 goto out;
3028 if (ret) {
ba5e8f2e
JB
3029 ret = get_cur_path(sctx, cur->dir,
3030 cur->dir_gen, valid_path);
31db9f7c
AB
3031 if (ret < 0)
3032 goto out;
3033 ret = send_rmdir(sctx, valid_path);
3034 if (ret < 0)
3035 goto out;
3036 }
3037 }
3038 }
3039
31db9f7c
AB
3040 ret = 0;
3041
3042out:
ba5e8f2e 3043 __free_recorded_refs(&check_dirs);
31db9f7c 3044 free_recorded_refs(sctx);
924794c9 3045 fs_path_free(valid_path);
31db9f7c
AB
3046 return ret;
3047}
3048
3049static int __record_new_ref(int num, u64 dir, int index,
3050 struct fs_path *name,
3051 void *ctx)
3052{
3053 int ret = 0;
3054 struct send_ctx *sctx = ctx;
3055 struct fs_path *p;
3056 u64 gen;
3057
924794c9 3058 p = fs_path_alloc();
31db9f7c
AB
3059 if (!p)
3060 return -ENOMEM;
3061
3062 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3063 NULL, NULL);
31db9f7c
AB
3064 if (ret < 0)
3065 goto out;
3066
31db9f7c
AB
3067 ret = get_cur_path(sctx, dir, gen, p);
3068 if (ret < 0)
3069 goto out;
3070 ret = fs_path_add_path(p, name);
3071 if (ret < 0)
3072 goto out;
3073
3074 ret = record_ref(&sctx->new_refs, dir, gen, p);
3075
3076out:
3077 if (ret)
924794c9 3078 fs_path_free(p);
31db9f7c
AB
3079 return ret;
3080}
3081
3082static int __record_deleted_ref(int num, u64 dir, int index,
3083 struct fs_path *name,
3084 void *ctx)
3085{
3086 int ret = 0;
3087 struct send_ctx *sctx = ctx;
3088 struct fs_path *p;
3089 u64 gen;
3090
924794c9 3091 p = fs_path_alloc();
31db9f7c
AB
3092 if (!p)
3093 return -ENOMEM;
3094
3095 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3096 NULL, NULL);
31db9f7c
AB
3097 if (ret < 0)
3098 goto out;
3099
3100 ret = get_cur_path(sctx, dir, gen, p);
3101 if (ret < 0)
3102 goto out;
3103 ret = fs_path_add_path(p, name);
3104 if (ret < 0)
3105 goto out;
3106
3107 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3108
3109out:
3110 if (ret)
924794c9 3111 fs_path_free(p);
31db9f7c
AB
3112 return ret;
3113}
3114
3115static int record_new_ref(struct send_ctx *sctx)
3116{
3117 int ret;
3118
924794c9
TI
3119 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3120 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3121 if (ret < 0)
3122 goto out;
3123 ret = 0;
3124
3125out:
3126 return ret;
3127}
3128
3129static int record_deleted_ref(struct send_ctx *sctx)
3130{
3131 int ret;
3132
924794c9
TI
3133 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3134 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3135 if (ret < 0)
3136 goto out;
3137 ret = 0;
3138
3139out:
3140 return ret;
3141}
3142
3143struct find_ref_ctx {
3144 u64 dir;
ba5e8f2e
JB
3145 u64 dir_gen;
3146 struct btrfs_root *root;
31db9f7c
AB
3147 struct fs_path *name;
3148 int found_idx;
3149};
3150
3151static int __find_iref(int num, u64 dir, int index,
3152 struct fs_path *name,
3153 void *ctx_)
3154{
3155 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3156 u64 dir_gen;
3157 int ret;
31db9f7c
AB
3158
3159 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3160 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3161 /*
3162 * To avoid doing extra lookups we'll only do this if everything
3163 * else matches.
3164 */
3165 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3166 NULL, NULL, NULL);
3167 if (ret)
3168 return ret;
3169 if (dir_gen != ctx->dir_gen)
3170 return 0;
31db9f7c
AB
3171 ctx->found_idx = num;
3172 return 1;
3173 }
3174 return 0;
3175}
3176
924794c9 3177static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3178 struct btrfs_path *path,
3179 struct btrfs_key *key,
ba5e8f2e 3180 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3181{
3182 int ret;
3183 struct find_ref_ctx ctx;
3184
3185 ctx.dir = dir;
3186 ctx.name = name;
ba5e8f2e 3187 ctx.dir_gen = dir_gen;
31db9f7c 3188 ctx.found_idx = -1;
ba5e8f2e 3189 ctx.root = root;
31db9f7c 3190
924794c9 3191 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3192 if (ret < 0)
3193 return ret;
3194
3195 if (ctx.found_idx == -1)
3196 return -ENOENT;
3197
3198 return ctx.found_idx;
3199}
3200
3201static int __record_changed_new_ref(int num, u64 dir, int index,
3202 struct fs_path *name,
3203 void *ctx)
3204{
ba5e8f2e 3205 u64 dir_gen;
31db9f7c
AB
3206 int ret;
3207 struct send_ctx *sctx = ctx;
3208
ba5e8f2e
JB
3209 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3210 NULL, NULL, NULL);
3211 if (ret)
3212 return ret;
3213
924794c9 3214 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 3215 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
3216 if (ret == -ENOENT)
3217 ret = __record_new_ref(num, dir, index, name, sctx);
3218 else if (ret > 0)
3219 ret = 0;
3220
3221 return ret;
3222}
3223
3224static int __record_changed_deleted_ref(int num, u64 dir, int index,
3225 struct fs_path *name,
3226 void *ctx)
3227{
ba5e8f2e 3228 u64 dir_gen;
31db9f7c
AB
3229 int ret;
3230 struct send_ctx *sctx = ctx;
3231
ba5e8f2e
JB
3232 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3233 NULL, NULL, NULL);
3234 if (ret)
3235 return ret;
3236
924794c9 3237 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 3238 dir, dir_gen, name);
31db9f7c
AB
3239 if (ret == -ENOENT)
3240 ret = __record_deleted_ref(num, dir, index, name, sctx);
3241 else if (ret > 0)
3242 ret = 0;
3243
3244 return ret;
3245}
3246
3247static int record_changed_ref(struct send_ctx *sctx)
3248{
3249 int ret = 0;
3250
924794c9 3251 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
3252 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3253 if (ret < 0)
3254 goto out;
924794c9 3255 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3256 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3257 if (ret < 0)
3258 goto out;
3259 ret = 0;
3260
3261out:
3262 return ret;
3263}
3264
3265/*
3266 * Record and process all refs at once. Needed when an inode changes the
3267 * generation number, which means that it was deleted and recreated.
3268 */
3269static int process_all_refs(struct send_ctx *sctx,
3270 enum btrfs_compare_tree_result cmd)
3271{
3272 int ret;
3273 struct btrfs_root *root;
3274 struct btrfs_path *path;
3275 struct btrfs_key key;
3276 struct btrfs_key found_key;
3277 struct extent_buffer *eb;
3278 int slot;
3279 iterate_inode_ref_t cb;
3280
3281 path = alloc_path_for_send();
3282 if (!path)
3283 return -ENOMEM;
3284
3285 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3286 root = sctx->send_root;
3287 cb = __record_new_ref;
3288 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3289 root = sctx->parent_root;
3290 cb = __record_deleted_ref;
3291 } else {
3292 BUG();
3293 }
3294
3295 key.objectid = sctx->cmp_key->objectid;
3296 key.type = BTRFS_INODE_REF_KEY;
3297 key.offset = 0;
3298 while (1) {
3299 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
e938c8ad 3300 if (ret < 0)
31db9f7c 3301 goto out;
e938c8ad 3302 if (ret)
31db9f7c 3303 break;
31db9f7c
AB
3304
3305 eb = path->nodes[0];
3306 slot = path->slots[0];
3307 btrfs_item_key_to_cpu(eb, &found_key, slot);
3308
3309 if (found_key.objectid != key.objectid ||
96b5bd77
JS
3310 (found_key.type != BTRFS_INODE_REF_KEY &&
3311 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 3312 break;
31db9f7c 3313
924794c9 3314 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
3315 btrfs_release_path(path);
3316 if (ret < 0)
3317 goto out;
3318
3319 key.offset = found_key.offset + 1;
3320 }
e938c8ad 3321 btrfs_release_path(path);
31db9f7c
AB
3322
3323 ret = process_recorded_refs(sctx);
3324
3325out:
3326 btrfs_free_path(path);
3327 return ret;
3328}
3329
3330static int send_set_xattr(struct send_ctx *sctx,
3331 struct fs_path *path,
3332 const char *name, int name_len,
3333 const char *data, int data_len)
3334{
3335 int ret = 0;
3336
3337 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3338 if (ret < 0)
3339 goto out;
3340
3341 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3342 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3343 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3344
3345 ret = send_cmd(sctx);
3346
3347tlv_put_failure:
3348out:
3349 return ret;
3350}
3351
3352static int send_remove_xattr(struct send_ctx *sctx,
3353 struct fs_path *path,
3354 const char *name, int name_len)
3355{
3356 int ret = 0;
3357
3358 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3359 if (ret < 0)
3360 goto out;
3361
3362 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3363 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3364
3365 ret = send_cmd(sctx);
3366
3367tlv_put_failure:
3368out:
3369 return ret;
3370}
3371
3372static int __process_new_xattr(int num, struct btrfs_key *di_key,
3373 const char *name, int name_len,
3374 const char *data, int data_len,
3375 u8 type, void *ctx)
3376{
3377 int ret;
3378 struct send_ctx *sctx = ctx;
3379 struct fs_path *p;
3380 posix_acl_xattr_header dummy_acl;
3381
924794c9 3382 p = fs_path_alloc();
31db9f7c
AB
3383 if (!p)
3384 return -ENOMEM;
3385
3386 /*
3387 * This hack is needed because empty acl's are stored as zero byte
3388 * data in xattrs. Problem with that is, that receiving these zero byte
3389 * acl's will fail later. To fix this, we send a dummy acl list that
3390 * only contains the version number and no entries.
3391 */
3392 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3393 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3394 if (data_len == 0) {
3395 dummy_acl.a_version =
3396 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3397 data = (char *)&dummy_acl;
3398 data_len = sizeof(dummy_acl);
3399 }
3400 }
3401
3402 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3403 if (ret < 0)
3404 goto out;
3405
3406 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3407
3408out:
924794c9 3409 fs_path_free(p);
31db9f7c
AB
3410 return ret;
3411}
3412
3413static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3414 const char *name, int name_len,
3415 const char *data, int data_len,
3416 u8 type, void *ctx)
3417{
3418 int ret;
3419 struct send_ctx *sctx = ctx;
3420 struct fs_path *p;
3421
924794c9 3422 p = fs_path_alloc();
31db9f7c
AB
3423 if (!p)
3424 return -ENOMEM;
3425
3426 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3427 if (ret < 0)
3428 goto out;
3429
3430 ret = send_remove_xattr(sctx, p, name, name_len);
3431
3432out:
924794c9 3433 fs_path_free(p);
31db9f7c
AB
3434 return ret;
3435}
3436
3437static int process_new_xattr(struct send_ctx *sctx)
3438{
3439 int ret = 0;
3440
924794c9
TI
3441 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3442 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
3443
3444 return ret;
3445}
3446
3447static int process_deleted_xattr(struct send_ctx *sctx)
3448{
3449 int ret;
3450
924794c9
TI
3451 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3452 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
3453
3454 return ret;
3455}
3456
3457struct find_xattr_ctx {
3458 const char *name;
3459 int name_len;
3460 int found_idx;
3461 char *found_data;
3462 int found_data_len;
3463};
3464
3465static int __find_xattr(int num, struct btrfs_key *di_key,
3466 const char *name, int name_len,
3467 const char *data, int data_len,
3468 u8 type, void *vctx)
3469{
3470 struct find_xattr_ctx *ctx = vctx;
3471
3472 if (name_len == ctx->name_len &&
3473 strncmp(name, ctx->name, name_len) == 0) {
3474 ctx->found_idx = num;
3475 ctx->found_data_len = data_len;
a5959bc0 3476 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
3477 if (!ctx->found_data)
3478 return -ENOMEM;
31db9f7c
AB
3479 return 1;
3480 }
3481 return 0;
3482}
3483
924794c9 3484static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
3485 struct btrfs_path *path,
3486 struct btrfs_key *key,
3487 const char *name, int name_len,
3488 char **data, int *data_len)
3489{
3490 int ret;
3491 struct find_xattr_ctx ctx;
3492
3493 ctx.name = name;
3494 ctx.name_len = name_len;
3495 ctx.found_idx = -1;
3496 ctx.found_data = NULL;
3497 ctx.found_data_len = 0;
3498
924794c9 3499 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
3500 if (ret < 0)
3501 return ret;
3502
3503 if (ctx.found_idx == -1)
3504 return -ENOENT;
3505 if (data) {
3506 *data = ctx.found_data;
3507 *data_len = ctx.found_data_len;
3508 } else {
3509 kfree(ctx.found_data);
3510 }
3511 return ctx.found_idx;
3512}
3513
3514
3515static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3516 const char *name, int name_len,
3517 const char *data, int data_len,
3518 u8 type, void *ctx)
3519{
3520 int ret;
3521 struct send_ctx *sctx = ctx;
3522 char *found_data = NULL;
3523 int found_data_len = 0;
31db9f7c 3524
924794c9
TI
3525 ret = find_xattr(sctx->parent_root, sctx->right_path,
3526 sctx->cmp_key, name, name_len, &found_data,
3527 &found_data_len);
31db9f7c
AB
3528 if (ret == -ENOENT) {
3529 ret = __process_new_xattr(num, di_key, name, name_len, data,
3530 data_len, type, ctx);
3531 } else if (ret >= 0) {
3532 if (data_len != found_data_len ||
3533 memcmp(data, found_data, data_len)) {
3534 ret = __process_new_xattr(num, di_key, name, name_len,
3535 data, data_len, type, ctx);
3536 } else {
3537 ret = 0;
3538 }
3539 }
3540
3541 kfree(found_data);
31db9f7c
AB
3542 return ret;
3543}
3544
3545static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3546 const char *name, int name_len,
3547 const char *data, int data_len,
3548 u8 type, void *ctx)
3549{
3550 int ret;
3551 struct send_ctx *sctx = ctx;
3552
924794c9
TI
3553 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3554 name, name_len, NULL, NULL);
31db9f7c
AB
3555 if (ret == -ENOENT)
3556 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3557 data_len, type, ctx);
3558 else if (ret >= 0)
3559 ret = 0;
3560
3561 return ret;
3562}
3563
3564static int process_changed_xattr(struct send_ctx *sctx)
3565{
3566 int ret = 0;
3567
924794c9 3568 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
3569 sctx->cmp_key, __process_changed_new_xattr, sctx);
3570 if (ret < 0)
3571 goto out;
924794c9 3572 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3573 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3574
3575out:
3576 return ret;
3577}
3578
3579static int process_all_new_xattrs(struct send_ctx *sctx)
3580{
3581 int ret;
3582 struct btrfs_root *root;
3583 struct btrfs_path *path;
3584 struct btrfs_key key;
3585 struct btrfs_key found_key;
3586 struct extent_buffer *eb;
3587 int slot;
3588
3589 path = alloc_path_for_send();
3590 if (!path)
3591 return -ENOMEM;
3592
3593 root = sctx->send_root;
3594
3595 key.objectid = sctx->cmp_key->objectid;
3596 key.type = BTRFS_XATTR_ITEM_KEY;
3597 key.offset = 0;
3598 while (1) {
3599 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3600 if (ret < 0)
3601 goto out;
3602 if (ret) {
3603 ret = 0;
3604 goto out;
3605 }
3606
3607 eb = path->nodes[0];
3608 slot = path->slots[0];
3609 btrfs_item_key_to_cpu(eb, &found_key, slot);
3610
3611 if (found_key.objectid != key.objectid ||
3612 found_key.type != key.type) {
3613 ret = 0;
3614 goto out;
3615 }
3616
924794c9
TI
3617 ret = iterate_dir_item(root, path, &found_key,
3618 __process_new_xattr, sctx);
31db9f7c
AB
3619 if (ret < 0)
3620 goto out;
3621
3622 btrfs_release_path(path);
3623 key.offset = found_key.offset + 1;
3624 }
3625
3626out:
3627 btrfs_free_path(path);
3628 return ret;
3629}
3630
3631/*
3632 * Read some bytes from the current inode/file and send a write command to
3633 * user space.
3634 */
3635static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3636{
3637 int ret = 0;
3638 struct fs_path *p;
3639 loff_t pos = offset;
e938c8ad 3640 int num_read = 0;
31db9f7c
AB
3641 mm_segment_t old_fs;
3642
924794c9 3643 p = fs_path_alloc();
31db9f7c
AB
3644 if (!p)
3645 return -ENOMEM;
3646
3647 /*
3648 * vfs normally only accepts user space buffers for security reasons.
3649 * we only read from the file and also only provide the read_buf buffer
3650 * to vfs. As this buffer does not come from a user space call, it's
3651 * ok to temporary allow kernel space buffers.
3652 */
3653 old_fs = get_fs();
3654 set_fs(KERNEL_DS);
3655
3656verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3657
3658 ret = open_cur_inode_file(sctx);
3659 if (ret < 0)
3660 goto out;
3661
3662 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3663 if (ret < 0)
3664 goto out;
e938c8ad
AB
3665 num_read = ret;
3666 if (!num_read)
31db9f7c
AB
3667 goto out;
3668
3669 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3670 if (ret < 0)
3671 goto out;
3672
3673 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3674 if (ret < 0)
3675 goto out;
3676
3677 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3678 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 3679 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
3680
3681 ret = send_cmd(sctx);
3682
3683tlv_put_failure:
3684out:
924794c9 3685 fs_path_free(p);
31db9f7c
AB
3686 set_fs(old_fs);
3687 if (ret < 0)
3688 return ret;
e938c8ad 3689 return num_read;
31db9f7c
AB
3690}
3691
3692/*
3693 * Send a clone command to user space.
3694 */
3695static int send_clone(struct send_ctx *sctx,
3696 u64 offset, u32 len,
3697 struct clone_root *clone_root)
3698{
3699 int ret = 0;
31db9f7c
AB
3700 struct fs_path *p;
3701 u64 gen;
3702
3703verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3704 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3705 clone_root->root->objectid, clone_root->ino,
3706 clone_root->offset);
3707
924794c9 3708 p = fs_path_alloc();
31db9f7c
AB
3709 if (!p)
3710 return -ENOMEM;
3711
3712 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3713 if (ret < 0)
3714 goto out;
3715
3716 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3717 if (ret < 0)
3718 goto out;
3719
3720 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3721 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3722 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3723
e938c8ad 3724 if (clone_root->root == sctx->send_root) {
31db9f7c 3725 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 3726 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
3727 if (ret < 0)
3728 goto out;
3729 ret = get_cur_path(sctx, clone_root->ino, gen, p);
3730 } else {
924794c9 3731 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
3732 }
3733 if (ret < 0)
3734 goto out;
3735
3736 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 3737 clone_root->root->root_item.uuid);
31db9f7c 3738 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
e938c8ad 3739 clone_root->root->root_item.ctransid);
31db9f7c
AB
3740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3741 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3742 clone_root->offset);
3743
3744 ret = send_cmd(sctx);
3745
3746tlv_put_failure:
3747out:
924794c9 3748 fs_path_free(p);
31db9f7c
AB
3749 return ret;
3750}
3751
cb95e7bf
MF
3752/*
3753 * Send an update extent command to user space.
3754 */
3755static int send_update_extent(struct send_ctx *sctx,
3756 u64 offset, u32 len)
3757{
3758 int ret = 0;
3759 struct fs_path *p;
3760
924794c9 3761 p = fs_path_alloc();
cb95e7bf
MF
3762 if (!p)
3763 return -ENOMEM;
3764
3765 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
3766 if (ret < 0)
3767 goto out;
3768
3769 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3770 if (ret < 0)
3771 goto out;
3772
3773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3774 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3775 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
3776
3777 ret = send_cmd(sctx);
3778
3779tlv_put_failure:
3780out:
924794c9 3781 fs_path_free(p);
cb95e7bf
MF
3782 return ret;
3783}
3784
31db9f7c
AB
3785static int send_write_or_clone(struct send_ctx *sctx,
3786 struct btrfs_path *path,
3787 struct btrfs_key *key,
3788 struct clone_root *clone_root)
3789{
3790 int ret = 0;
3791 struct btrfs_file_extent_item *ei;
3792 u64 offset = key->offset;
3793 u64 pos = 0;
3794 u64 len;
3795 u32 l;
3796 u8 type;
3797
3798 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3799 struct btrfs_file_extent_item);
3800 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 3801 if (type == BTRFS_FILE_EXTENT_INLINE) {
31db9f7c 3802 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
74dd17fb
CM
3803 /*
3804 * it is possible the inline item won't cover the whole page,
3805 * but there may be items after this page. Make
3806 * sure to send the whole thing
3807 */
3808 len = PAGE_CACHE_ALIGN(len);
3809 } else {
31db9f7c 3810 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 3811 }
31db9f7c
AB
3812
3813 if (offset + len > sctx->cur_inode_size)
3814 len = sctx->cur_inode_size - offset;
3815 if (len == 0) {
3816 ret = 0;
3817 goto out;
3818 }
3819
cb95e7bf
MF
3820 if (clone_root) {
3821 ret = send_clone(sctx, offset, len, clone_root);
3822 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
3823 ret = send_update_extent(sctx, offset, len);
3824 } else {
31db9f7c
AB
3825 while (pos < len) {
3826 l = len - pos;
3827 if (l > BTRFS_SEND_READ_SIZE)
3828 l = BTRFS_SEND_READ_SIZE;
3829 ret = send_write(sctx, pos + offset, l);
3830 if (ret < 0)
3831 goto out;
3832 if (!ret)
3833 break;
3834 pos += ret;
3835 }
3836 ret = 0;
31db9f7c 3837 }
31db9f7c
AB
3838out:
3839 return ret;
3840}
3841
3842static int is_extent_unchanged(struct send_ctx *sctx,
3843 struct btrfs_path *left_path,
3844 struct btrfs_key *ekey)
3845{
3846 int ret = 0;
3847 struct btrfs_key key;
3848 struct btrfs_path *path = NULL;
3849 struct extent_buffer *eb;
3850 int slot;
3851 struct btrfs_key found_key;
3852 struct btrfs_file_extent_item *ei;
3853 u64 left_disknr;
3854 u64 right_disknr;
3855 u64 left_offset;
3856 u64 right_offset;
3857 u64 left_offset_fixed;
3858 u64 left_len;
3859 u64 right_len;
74dd17fb
CM
3860 u64 left_gen;
3861 u64 right_gen;
31db9f7c
AB
3862 u8 left_type;
3863 u8 right_type;
3864
3865 path = alloc_path_for_send();
3866 if (!path)
3867 return -ENOMEM;
3868
3869 eb = left_path->nodes[0];
3870 slot = left_path->slots[0];
31db9f7c
AB
3871 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3872 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
3873
3874 if (left_type != BTRFS_FILE_EXTENT_REG) {
3875 ret = 0;
3876 goto out;
3877 }
74dd17fb
CM
3878 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3879 left_len = btrfs_file_extent_num_bytes(eb, ei);
3880 left_offset = btrfs_file_extent_offset(eb, ei);
3881 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
3882
3883 /*
3884 * Following comments will refer to these graphics. L is the left
3885 * extents which we are checking at the moment. 1-8 are the right
3886 * extents that we iterate.
3887 *
3888 * |-----L-----|
3889 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3890 *
3891 * |-----L-----|
3892 * |--1--|-2b-|...(same as above)
3893 *
3894 * Alternative situation. Happens on files where extents got split.
3895 * |-----L-----|
3896 * |-----------7-----------|-6-|
3897 *
3898 * Alternative situation. Happens on files which got larger.
3899 * |-----L-----|
3900 * |-8-|
3901 * Nothing follows after 8.
3902 */
3903
3904 key.objectid = ekey->objectid;
3905 key.type = BTRFS_EXTENT_DATA_KEY;
3906 key.offset = ekey->offset;
3907 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3908 if (ret < 0)
3909 goto out;
3910 if (ret) {
3911 ret = 0;
3912 goto out;
3913 }
3914
3915 /*
3916 * Handle special case where the right side has no extents at all.
3917 */
3918 eb = path->nodes[0];
3919 slot = path->slots[0];
3920 btrfs_item_key_to_cpu(eb, &found_key, slot);
3921 if (found_key.objectid != key.objectid ||
3922 found_key.type != key.type) {
57cfd462
JB
3923 /* If we're a hole then just pretend nothing changed */
3924 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
3925 goto out;
3926 }
3927
3928 /*
3929 * We're now on 2a, 2b or 7.
3930 */
3931 key = found_key;
3932 while (key.offset < ekey->offset + left_len) {
3933 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3934 right_type = btrfs_file_extent_type(eb, ei);
3935 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3936 right_len = btrfs_file_extent_num_bytes(eb, ei);
3937 right_offset = btrfs_file_extent_offset(eb, ei);
74dd17fb 3938 right_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
3939
3940 if (right_type != BTRFS_FILE_EXTENT_REG) {
3941 ret = 0;
3942 goto out;
3943 }
3944
3945 /*
3946 * Are we at extent 8? If yes, we know the extent is changed.
3947 * This may only happen on the first iteration.
3948 */
d8347fa4 3949 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
3950 /* If we're a hole just pretend nothing changed */
3951 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
3952 goto out;
3953 }
3954
3955 left_offset_fixed = left_offset;
3956 if (key.offset < ekey->offset) {
3957 /* Fix the right offset for 2a and 7. */
3958 right_offset += ekey->offset - key.offset;
3959 } else {
3960 /* Fix the left offset for all behind 2a and 2b */
3961 left_offset_fixed += key.offset - ekey->offset;
3962 }
3963
3964 /*
3965 * Check if we have the same extent.
3966 */
3954096d 3967 if (left_disknr != right_disknr ||
74dd17fb
CM
3968 left_offset_fixed != right_offset ||
3969 left_gen != right_gen) {
31db9f7c
AB
3970 ret = 0;
3971 goto out;
3972 }
3973
3974 /*
3975 * Go to the next extent.
3976 */
3977 ret = btrfs_next_item(sctx->parent_root, path);
3978 if (ret < 0)
3979 goto out;
3980 if (!ret) {
3981 eb = path->nodes[0];
3982 slot = path->slots[0];
3983 btrfs_item_key_to_cpu(eb, &found_key, slot);
3984 }
3985 if (ret || found_key.objectid != key.objectid ||
3986 found_key.type != key.type) {
3987 key.offset += right_len;
3988 break;
adaa4b8e
JS
3989 }
3990 if (found_key.offset != key.offset + right_len) {
3991 ret = 0;
3992 goto out;
31db9f7c
AB
3993 }
3994 key = found_key;
3995 }
3996
3997 /*
3998 * We're now behind the left extent (treat as unchanged) or at the end
3999 * of the right side (treat as changed).
4000 */
4001 if (key.offset >= ekey->offset + left_len)
4002 ret = 1;
4003 else
4004 ret = 0;
4005
4006
4007out:
4008 btrfs_free_path(path);
4009 return ret;
4010}
4011
4012static int process_extent(struct send_ctx *sctx,
4013 struct btrfs_path *path,
4014 struct btrfs_key *key)
4015{
31db9f7c 4016 struct clone_root *found_clone = NULL;
57cfd462 4017 int ret = 0;
31db9f7c
AB
4018
4019 if (S_ISLNK(sctx->cur_inode_mode))
4020 return 0;
4021
4022 if (sctx->parent_root && !sctx->cur_inode_new) {
4023 ret = is_extent_unchanged(sctx, path, key);
4024 if (ret < 0)
4025 goto out;
4026 if (ret) {
4027 ret = 0;
4028 goto out;
4029 }
57cfd462
JB
4030 } else {
4031 struct btrfs_file_extent_item *ei;
4032 u8 type;
4033
4034 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4035 struct btrfs_file_extent_item);
4036 type = btrfs_file_extent_type(path->nodes[0], ei);
4037 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4038 type == BTRFS_FILE_EXTENT_REG) {
4039 /*
4040 * The send spec does not have a prealloc command yet,
4041 * so just leave a hole for prealloc'ed extents until
4042 * we have enough commands queued up to justify rev'ing
4043 * the send spec.
4044 */
4045 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4046 ret = 0;
4047 goto out;
4048 }
4049
4050 /* Have a hole, just skip it. */
4051 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4052 ret = 0;
4053 goto out;
4054 }
4055 }
31db9f7c
AB
4056 }
4057
4058 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4059 sctx->cur_inode_size, &found_clone);
4060 if (ret != -ENOENT && ret < 0)
4061 goto out;
4062
4063 ret = send_write_or_clone(sctx, path, key, found_clone);
4064
4065out:
4066 return ret;
4067}
4068
4069static int process_all_extents(struct send_ctx *sctx)
4070{
4071 int ret;
4072 struct btrfs_root *root;
4073 struct btrfs_path *path;
4074 struct btrfs_key key;
4075 struct btrfs_key found_key;
4076 struct extent_buffer *eb;
4077 int slot;
4078
4079 root = sctx->send_root;
4080 path = alloc_path_for_send();
4081 if (!path)
4082 return -ENOMEM;
4083
4084 key.objectid = sctx->cmp_key->objectid;
4085 key.type = BTRFS_EXTENT_DATA_KEY;
4086 key.offset = 0;
4087 while (1) {
4088 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
4089 if (ret < 0)
4090 goto out;
4091 if (ret) {
4092 ret = 0;
4093 goto out;
4094 }
4095
4096 eb = path->nodes[0];
4097 slot = path->slots[0];
4098 btrfs_item_key_to_cpu(eb, &found_key, slot);
4099
4100 if (found_key.objectid != key.objectid ||
4101 found_key.type != key.type) {
4102 ret = 0;
4103 goto out;
4104 }
4105
4106 ret = process_extent(sctx, path, &found_key);
4107 if (ret < 0)
4108 goto out;
4109
4110 btrfs_release_path(path);
4111 key.offset = found_key.offset + 1;
4112 }
4113
4114out:
4115 btrfs_free_path(path);
4116 return ret;
4117}
4118
4119static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4120{
4121 int ret = 0;
4122
4123 if (sctx->cur_ino == 0)
4124 goto out;
4125 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 4126 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4127 goto out;
4128 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4129 goto out;
4130
4131 ret = process_recorded_refs(sctx);
e479d9bb
AB
4132 if (ret < 0)
4133 goto out;
4134
4135 /*
4136 * We have processed the refs and thus need to advance send_progress.
4137 * Now, calls to get_cur_xxx will take the updated refs of the current
4138 * inode into account.
4139 */
4140 sctx->send_progress = sctx->cur_ino + 1;
31db9f7c
AB
4141
4142out:
4143 return ret;
4144}
4145
4146static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4147{
4148 int ret = 0;
4149 u64 left_mode;
4150 u64 left_uid;
4151 u64 left_gid;
4152 u64 right_mode;
4153 u64 right_uid;
4154 u64 right_gid;
4155 int need_chmod = 0;
4156 int need_chown = 0;
4157
4158 ret = process_recorded_refs_if_needed(sctx, at_end);
4159 if (ret < 0)
4160 goto out;
4161
4162 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4163 goto out;
4164 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4165 goto out;
4166
4167 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4168 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4169 if (ret < 0)
4170 goto out;
4171
e2d044fe
AL
4172 if (!sctx->parent_root || sctx->cur_inode_new) {
4173 need_chown = 1;
4174 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 4175 need_chmod = 1;
e2d044fe
AL
4176 } else {
4177 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4178 NULL, NULL, &right_mode, &right_uid,
4179 &right_gid, NULL);
4180 if (ret < 0)
4181 goto out;
31db9f7c 4182
e2d044fe
AL
4183 if (left_uid != right_uid || left_gid != right_gid)
4184 need_chown = 1;
4185 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4186 need_chmod = 1;
31db9f7c
AB
4187 }
4188
4189 if (S_ISREG(sctx->cur_inode_mode)) {
4190 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4191 sctx->cur_inode_size);
4192 if (ret < 0)
4193 goto out;
4194 }
4195
4196 if (need_chown) {
4197 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4198 left_uid, left_gid);
4199 if (ret < 0)
4200 goto out;
4201 }
4202 if (need_chmod) {
4203 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4204 left_mode);
4205 if (ret < 0)
4206 goto out;
4207 }
4208
4209 /*
4210 * Need to send that every time, no matter if it actually changed
4211 * between the two trees as we have done changes to the inode before.
4212 */
4213 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4214 if (ret < 0)
4215 goto out;
4216
4217out:
4218 return ret;
4219}
4220
4221static int changed_inode(struct send_ctx *sctx,
4222 enum btrfs_compare_tree_result result)
4223{
4224 int ret = 0;
4225 struct btrfs_key *key = sctx->cmp_key;
4226 struct btrfs_inode_item *left_ii = NULL;
4227 struct btrfs_inode_item *right_ii = NULL;
4228 u64 left_gen = 0;
4229 u64 right_gen = 0;
4230
4231 ret = close_cur_inode_file(sctx);
4232 if (ret < 0)
4233 goto out;
4234
4235 sctx->cur_ino = key->objectid;
4236 sctx->cur_inode_new_gen = 0;
e479d9bb
AB
4237
4238 /*
4239 * Set send_progress to current inode. This will tell all get_cur_xxx
4240 * functions that the current inode's refs are not updated yet. Later,
4241 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4242 */
31db9f7c
AB
4243 sctx->send_progress = sctx->cur_ino;
4244
4245 if (result == BTRFS_COMPARE_TREE_NEW ||
4246 result == BTRFS_COMPARE_TREE_CHANGED) {
4247 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4248 sctx->left_path->slots[0],
4249 struct btrfs_inode_item);
4250 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4251 left_ii);
4252 } else {
4253 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4254 sctx->right_path->slots[0],
4255 struct btrfs_inode_item);
4256 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4257 right_ii);
4258 }
4259 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4260 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4261 sctx->right_path->slots[0],
4262 struct btrfs_inode_item);
4263
4264 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4265 right_ii);
6d85ed05
AB
4266
4267 /*
4268 * The cur_ino = root dir case is special here. We can't treat
4269 * the inode as deleted+reused because it would generate a
4270 * stream that tries to delete/mkdir the root dir.
4271 */
4272 if (left_gen != right_gen &&
4273 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
4274 sctx->cur_inode_new_gen = 1;
4275 }
4276
4277 if (result == BTRFS_COMPARE_TREE_NEW) {
4278 sctx->cur_inode_gen = left_gen;
4279 sctx->cur_inode_new = 1;
4280 sctx->cur_inode_deleted = 0;
4281 sctx->cur_inode_size = btrfs_inode_size(
4282 sctx->left_path->nodes[0], left_ii);
4283 sctx->cur_inode_mode = btrfs_inode_mode(
4284 sctx->left_path->nodes[0], left_ii);
4285 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4286 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4287 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4288 sctx->cur_inode_gen = right_gen;
4289 sctx->cur_inode_new = 0;
4290 sctx->cur_inode_deleted = 1;
4291 sctx->cur_inode_size = btrfs_inode_size(
4292 sctx->right_path->nodes[0], right_ii);
4293 sctx->cur_inode_mode = btrfs_inode_mode(
4294 sctx->right_path->nodes[0], right_ii);
4295 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
4296 /*
4297 * We need to do some special handling in case the inode was
4298 * reported as changed with a changed generation number. This
4299 * means that the original inode was deleted and new inode
4300 * reused the same inum. So we have to treat the old inode as
4301 * deleted and the new one as new.
4302 */
31db9f7c 4303 if (sctx->cur_inode_new_gen) {
766702ef
AB
4304 /*
4305 * First, process the inode as if it was deleted.
4306 */
31db9f7c
AB
4307 sctx->cur_inode_gen = right_gen;
4308 sctx->cur_inode_new = 0;
4309 sctx->cur_inode_deleted = 1;
4310 sctx->cur_inode_size = btrfs_inode_size(
4311 sctx->right_path->nodes[0], right_ii);
4312 sctx->cur_inode_mode = btrfs_inode_mode(
4313 sctx->right_path->nodes[0], right_ii);
4314 ret = process_all_refs(sctx,
4315 BTRFS_COMPARE_TREE_DELETED);
4316 if (ret < 0)
4317 goto out;
4318
766702ef
AB
4319 /*
4320 * Now process the inode as if it was new.
4321 */
31db9f7c
AB
4322 sctx->cur_inode_gen = left_gen;
4323 sctx->cur_inode_new = 1;
4324 sctx->cur_inode_deleted = 0;
4325 sctx->cur_inode_size = btrfs_inode_size(
4326 sctx->left_path->nodes[0], left_ii);
4327 sctx->cur_inode_mode = btrfs_inode_mode(
4328 sctx->left_path->nodes[0], left_ii);
1f4692da 4329 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4330 if (ret < 0)
4331 goto out;
4332
4333 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4334 if (ret < 0)
4335 goto out;
e479d9bb
AB
4336 /*
4337 * Advance send_progress now as we did not get into
4338 * process_recorded_refs_if_needed in the new_gen case.
4339 */
4340 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
4341
4342 /*
4343 * Now process all extents and xattrs of the inode as if
4344 * they were all new.
4345 */
31db9f7c
AB
4346 ret = process_all_extents(sctx);
4347 if (ret < 0)
4348 goto out;
4349 ret = process_all_new_xattrs(sctx);
4350 if (ret < 0)
4351 goto out;
4352 } else {
4353 sctx->cur_inode_gen = left_gen;
4354 sctx->cur_inode_new = 0;
4355 sctx->cur_inode_new_gen = 0;
4356 sctx->cur_inode_deleted = 0;
4357 sctx->cur_inode_size = btrfs_inode_size(
4358 sctx->left_path->nodes[0], left_ii);
4359 sctx->cur_inode_mode = btrfs_inode_mode(
4360 sctx->left_path->nodes[0], left_ii);
4361 }
4362 }
4363
4364out:
4365 return ret;
4366}
4367
766702ef
AB
4368/*
4369 * We have to process new refs before deleted refs, but compare_trees gives us
4370 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4371 * first and later process them in process_recorded_refs.
4372 * For the cur_inode_new_gen case, we skip recording completely because
4373 * changed_inode did already initiate processing of refs. The reason for this is
4374 * that in this case, compare_tree actually compares the refs of 2 different
4375 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4376 * refs of the right tree as deleted and all refs of the left tree as new.
4377 */
31db9f7c
AB
4378static int changed_ref(struct send_ctx *sctx,
4379 enum btrfs_compare_tree_result result)
4380{
4381 int ret = 0;
4382
4383 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4384
4385 if (!sctx->cur_inode_new_gen &&
4386 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4387 if (result == BTRFS_COMPARE_TREE_NEW)
4388 ret = record_new_ref(sctx);
4389 else if (result == BTRFS_COMPARE_TREE_DELETED)
4390 ret = record_deleted_ref(sctx);
4391 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4392 ret = record_changed_ref(sctx);
4393 }
4394
4395 return ret;
4396}
4397
766702ef
AB
4398/*
4399 * Process new/deleted/changed xattrs. We skip processing in the
4400 * cur_inode_new_gen case because changed_inode did already initiate processing
4401 * of xattrs. The reason is the same as in changed_ref
4402 */
31db9f7c
AB
4403static int changed_xattr(struct send_ctx *sctx,
4404 enum btrfs_compare_tree_result result)
4405{
4406 int ret = 0;
4407
4408 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4409
4410 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4411 if (result == BTRFS_COMPARE_TREE_NEW)
4412 ret = process_new_xattr(sctx);
4413 else if (result == BTRFS_COMPARE_TREE_DELETED)
4414 ret = process_deleted_xattr(sctx);
4415 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4416 ret = process_changed_xattr(sctx);
4417 }
4418
4419 return ret;
4420}
4421
766702ef
AB
4422/*
4423 * Process new/deleted/changed extents. We skip processing in the
4424 * cur_inode_new_gen case because changed_inode did already initiate processing
4425 * of extents. The reason is the same as in changed_ref
4426 */
31db9f7c
AB
4427static int changed_extent(struct send_ctx *sctx,
4428 enum btrfs_compare_tree_result result)
4429{
4430 int ret = 0;
4431
4432 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4433
4434 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4435 if (result != BTRFS_COMPARE_TREE_DELETED)
4436 ret = process_extent(sctx, sctx->left_path,
4437 sctx->cmp_key);
4438 }
4439
4440 return ret;
4441}
4442
ba5e8f2e
JB
4443static int dir_changed(struct send_ctx *sctx, u64 dir)
4444{
4445 u64 orig_gen, new_gen;
4446 int ret;
4447
4448 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
4449 NULL, NULL);
4450 if (ret)
4451 return ret;
4452
4453 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
4454 NULL, NULL, NULL);
4455 if (ret)
4456 return ret;
4457
4458 return (orig_gen != new_gen) ? 1 : 0;
4459}
4460
4461static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
4462 struct btrfs_key *key)
4463{
4464 struct btrfs_inode_extref *extref;
4465 struct extent_buffer *leaf;
4466 u64 dirid = 0, last_dirid = 0;
4467 unsigned long ptr;
4468 u32 item_size;
4469 u32 cur_offset = 0;
4470 int ref_name_len;
4471 int ret = 0;
4472
4473 /* Easy case, just check this one dirid */
4474 if (key->type == BTRFS_INODE_REF_KEY) {
4475 dirid = key->offset;
4476
4477 ret = dir_changed(sctx, dirid);
4478 goto out;
4479 }
4480
4481 leaf = path->nodes[0];
4482 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4483 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4484 while (cur_offset < item_size) {
4485 extref = (struct btrfs_inode_extref *)(ptr +
4486 cur_offset);
4487 dirid = btrfs_inode_extref_parent(leaf, extref);
4488 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
4489 cur_offset += ref_name_len + sizeof(*extref);
4490 if (dirid == last_dirid)
4491 continue;
4492 ret = dir_changed(sctx, dirid);
4493 if (ret)
4494 break;
4495 last_dirid = dirid;
4496 }
4497out:
4498 return ret;
4499}
4500
766702ef
AB
4501/*
4502 * Updates compare related fields in sctx and simply forwards to the actual
4503 * changed_xxx functions.
4504 */
31db9f7c
AB
4505static int changed_cb(struct btrfs_root *left_root,
4506 struct btrfs_root *right_root,
4507 struct btrfs_path *left_path,
4508 struct btrfs_path *right_path,
4509 struct btrfs_key *key,
4510 enum btrfs_compare_tree_result result,
4511 void *ctx)
4512{
4513 int ret = 0;
4514 struct send_ctx *sctx = ctx;
4515
ba5e8f2e
JB
4516 if (result == BTRFS_COMPARE_TREE_SAME) {
4517 if (key->type != BTRFS_INODE_REF_KEY &&
4518 key->type != BTRFS_INODE_EXTREF_KEY)
4519 return 0;
4520 ret = compare_refs(sctx, left_path, key);
4521 if (!ret)
4522 return 0;
4523 if (ret < 0)
4524 return ret;
4525 result = BTRFS_COMPARE_TREE_CHANGED;
4526 ret = 0;
4527 }
4528
31db9f7c
AB
4529 sctx->left_path = left_path;
4530 sctx->right_path = right_path;
4531 sctx->cmp_key = key;
4532
4533 ret = finish_inode_if_needed(sctx, 0);
4534 if (ret < 0)
4535 goto out;
4536
2981e225
AB
4537 /* Ignore non-FS objects */
4538 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4539 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4540 goto out;
4541
31db9f7c
AB
4542 if (key->type == BTRFS_INODE_ITEM_KEY)
4543 ret = changed_inode(sctx, result);
96b5bd77
JS
4544 else if (key->type == BTRFS_INODE_REF_KEY ||
4545 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4546 ret = changed_ref(sctx, result);
4547 else if (key->type == BTRFS_XATTR_ITEM_KEY)
4548 ret = changed_xattr(sctx, result);
4549 else if (key->type == BTRFS_EXTENT_DATA_KEY)
4550 ret = changed_extent(sctx, result);
4551
4552out:
4553 return ret;
4554}
4555
4556static int full_send_tree(struct send_ctx *sctx)
4557{
4558 int ret;
4559 struct btrfs_trans_handle *trans = NULL;
4560 struct btrfs_root *send_root = sctx->send_root;
4561 struct btrfs_key key;
4562 struct btrfs_key found_key;
4563 struct btrfs_path *path;
4564 struct extent_buffer *eb;
4565 int slot;
4566 u64 start_ctransid;
4567 u64 ctransid;
4568
4569 path = alloc_path_for_send();
4570 if (!path)
4571 return -ENOMEM;
4572
5f3ab90a 4573 spin_lock(&send_root->root_item_lock);
31db9f7c 4574 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 4575 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
4576
4577 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4578 key.type = BTRFS_INODE_ITEM_KEY;
4579 key.offset = 0;
4580
4581join_trans:
4582 /*
4583 * We need to make sure the transaction does not get committed
4584 * while we do anything on commit roots. Join a transaction to prevent
4585 * this.
4586 */
4587 trans = btrfs_join_transaction(send_root);
4588 if (IS_ERR(trans)) {
4589 ret = PTR_ERR(trans);
4590 trans = NULL;
4591 goto out;
4592 }
4593
4594 /*
766702ef
AB
4595 * Make sure the tree has not changed after re-joining. We detect this
4596 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c 4597 */
5f3ab90a 4598 spin_lock(&send_root->root_item_lock);
31db9f7c 4599 ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 4600 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
4601
4602 if (ctransid != start_ctransid) {
4603 WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4604 "send was modified in between. This is "
4605 "probably a bug.\n");
4606 ret = -EIO;
4607 goto out;
4608 }
4609
4610 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4611 if (ret < 0)
4612 goto out;
4613 if (ret)
4614 goto out_finish;
4615
4616 while (1) {
4617 /*
4618 * When someone want to commit while we iterate, end the
4619 * joined transaction and rejoin.
4620 */
4621 if (btrfs_should_end_transaction(trans, send_root)) {
4622 ret = btrfs_end_transaction(trans, send_root);
4623 trans = NULL;
4624 if (ret < 0)
4625 goto out;
4626 btrfs_release_path(path);
4627 goto join_trans;
4628 }
4629
4630 eb = path->nodes[0];
4631 slot = path->slots[0];
4632 btrfs_item_key_to_cpu(eb, &found_key, slot);
4633
4634 ret = changed_cb(send_root, NULL, path, NULL,
4635 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4636 if (ret < 0)
4637 goto out;
4638
4639 key.objectid = found_key.objectid;
4640 key.type = found_key.type;
4641 key.offset = found_key.offset + 1;
4642
4643 ret = btrfs_next_item(send_root, path);
4644 if (ret < 0)
4645 goto out;
4646 if (ret) {
4647 ret = 0;
4648 break;
4649 }
4650 }
4651
4652out_finish:
4653 ret = finish_inode_if_needed(sctx, 1);
4654
4655out:
4656 btrfs_free_path(path);
4657 if (trans) {
4658 if (!ret)
4659 ret = btrfs_end_transaction(trans, send_root);
4660 else
4661 btrfs_end_transaction(trans, send_root);
4662 }
4663 return ret;
4664}
4665
4666static int send_subvol(struct send_ctx *sctx)
4667{
4668 int ret;
4669
c2c71324
SB
4670 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
4671 ret = send_header(sctx);
4672 if (ret < 0)
4673 goto out;
4674 }
31db9f7c
AB
4675
4676 ret = send_subvol_begin(sctx);
4677 if (ret < 0)
4678 goto out;
4679
4680 if (sctx->parent_root) {
4681 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4682 changed_cb, sctx);
4683 if (ret < 0)
4684 goto out;
4685 ret = finish_inode_if_needed(sctx, 1);
4686 if (ret < 0)
4687 goto out;
4688 } else {
4689 ret = full_send_tree(sctx);
4690 if (ret < 0)
4691 goto out;
4692 }
4693
4694out:
4695 if (!ret)
4696 ret = close_cur_inode_file(sctx);
4697 else
4698 close_cur_inode_file(sctx);
4699
4700 free_recorded_refs(sctx);
4701 return ret;
4702}
4703
4704long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4705{
4706 int ret = 0;
4707 struct btrfs_root *send_root;
4708 struct btrfs_root *clone_root;
4709 struct btrfs_fs_info *fs_info;
4710 struct btrfs_ioctl_send_args *arg = NULL;
4711 struct btrfs_key key;
31db9f7c
AB
4712 struct send_ctx *sctx = NULL;
4713 u32 i;
4714 u64 *clone_sources_tmp = NULL;
4715
4716 if (!capable(CAP_SYS_ADMIN))
4717 return -EPERM;
4718
496ad9aa 4719 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
4720 fs_info = send_root->fs_info;
4721
139f807a
JB
4722 /*
4723 * This is done when we lookup the root, it should already be complete
4724 * by the time we get here.
4725 */
4726 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
4727
4728 /*
4729 * If we just created this root we need to make sure that the orphan
4730 * cleanup has been done and committed since we search the commit root,
4731 * so check its commit root transid with our otransid and if they match
4732 * commit the transaction to make sure everything is updated.
4733 */
4734 down_read(&send_root->fs_info->extent_commit_sem);
4735 if (btrfs_header_generation(send_root->commit_root) ==
4736 btrfs_root_otransid(&send_root->root_item)) {
4737 struct btrfs_trans_handle *trans;
4738
4739 up_read(&send_root->fs_info->extent_commit_sem);
4740
4741 trans = btrfs_attach_transaction_barrier(send_root);
4742 if (IS_ERR(trans)) {
4743 if (PTR_ERR(trans) != -ENOENT) {
4744 ret = PTR_ERR(trans);
4745 goto out;
4746 }
4747 /* ENOENT means theres no transaction */
4748 } else {
4749 ret = btrfs_commit_transaction(trans, send_root);
4750 if (ret)
4751 goto out;
4752 }
4753 } else {
4754 up_read(&send_root->fs_info->extent_commit_sem);
4755 }
4756
31db9f7c
AB
4757 arg = memdup_user(arg_, sizeof(*arg));
4758 if (IS_ERR(arg)) {
4759 ret = PTR_ERR(arg);
4760 arg = NULL;
4761 goto out;
4762 }
4763
4764 if (!access_ok(VERIFY_READ, arg->clone_sources,
4765 sizeof(*arg->clone_sources *
4766 arg->clone_sources_count))) {
4767 ret = -EFAULT;
4768 goto out;
4769 }
4770
c2c71324 4771 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
4772 ret = -EINVAL;
4773 goto out;
4774 }
4775
31db9f7c
AB
4776 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4777 if (!sctx) {
4778 ret = -ENOMEM;
4779 goto out;
4780 }
4781
4782 INIT_LIST_HEAD(&sctx->new_refs);
4783 INIT_LIST_HEAD(&sctx->deleted_refs);
4784 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4785 INIT_LIST_HEAD(&sctx->name_cache_list);
4786
cb95e7bf
MF
4787 sctx->flags = arg->flags;
4788
31db9f7c 4789 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
4790 if (!sctx->send_filp) {
4791 ret = -EBADF;
31db9f7c
AB
4792 goto out;
4793 }
4794
4795 sctx->mnt = mnt_file->f_path.mnt;
4796
4797 sctx->send_root = send_root;
4798 sctx->clone_roots_cnt = arg->clone_sources_count;
4799
4800 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4801 sctx->send_buf = vmalloc(sctx->send_max_size);
4802 if (!sctx->send_buf) {
4803 ret = -ENOMEM;
4804 goto out;
4805 }
4806
4807 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4808 if (!sctx->read_buf) {
4809 ret = -ENOMEM;
4810 goto out;
4811 }
4812
4813 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4814 (arg->clone_sources_count + 1));
4815 if (!sctx->clone_roots) {
4816 ret = -ENOMEM;
4817 goto out;
4818 }
4819
4820 if (arg->clone_sources_count) {
4821 clone_sources_tmp = vmalloc(arg->clone_sources_count *
4822 sizeof(*arg->clone_sources));
4823 if (!clone_sources_tmp) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
4828 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4829 arg->clone_sources_count *
4830 sizeof(*arg->clone_sources));
4831 if (ret) {
4832 ret = -EFAULT;
4833 goto out;
4834 }
4835
4836 for (i = 0; i < arg->clone_sources_count; i++) {
4837 key.objectid = clone_sources_tmp[i];
4838 key.type = BTRFS_ROOT_ITEM_KEY;
4839 key.offset = (u64)-1;
4840 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c
AB
4841 if (IS_ERR(clone_root)) {
4842 ret = PTR_ERR(clone_root);
4843 goto out;
4844 }
4845 sctx->clone_roots[i].root = clone_root;
4846 }
4847 vfree(clone_sources_tmp);
4848 clone_sources_tmp = NULL;
4849 }
4850
4851 if (arg->parent_root) {
4852 key.objectid = arg->parent_root;
4853 key.type = BTRFS_ROOT_ITEM_KEY;
4854 key.offset = (u64)-1;
4855 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596
SB
4856 if (IS_ERR(sctx->parent_root)) {
4857 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
4858 goto out;
4859 }
4860 }
4861
4862 /*
4863 * Clones from send_root are allowed, but only if the clone source
4864 * is behind the current send position. This is checked while searching
4865 * for possible clone sources.
4866 */
4867 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4868
4869 /* We do a bsearch later */
4870 sort(sctx->clone_roots, sctx->clone_roots_cnt,
4871 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4872 NULL);
4873
4874 ret = send_subvol(sctx);
4875 if (ret < 0)
4876 goto out;
4877
c2c71324
SB
4878 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
4879 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4880 if (ret < 0)
4881 goto out;
4882 ret = send_cmd(sctx);
4883 if (ret < 0)
4884 goto out;
4885 }
31db9f7c
AB
4886
4887out:
31db9f7c
AB
4888 kfree(arg);
4889 vfree(clone_sources_tmp);
4890
4891 if (sctx) {
4892 if (sctx->send_filp)
4893 fput(sctx->send_filp);
4894
4895 vfree(sctx->clone_roots);
4896 vfree(sctx->send_buf);
4897 vfree(sctx->read_buf);
4898
4899 name_cache_free(sctx);
4900
4901 kfree(sctx);
4902 }
4903
4904 return ret;
4905}