]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/transaction.c
btrfs: handle btrfs_record_root_in_trans failure in relocate_tree_block
[thirdparty/linux.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
164
165 down_write(&fs_info->commit_root_sem);
889bfa39 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
41e7acd3 171 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 172 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 173 }
2b9dbef2
JB
174
175 /* We can free old roots now. */
889bfa39
JB
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
889bfa39
JB
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
2b9dbef2 183 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 184 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 185 }
889bfa39 186 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
bbb86a37 214 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
bbb86a37 227 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 228 up_write(&fs_info->commit_root_sem);
817d52f8
JB
229}
230
0860adfd
MX
231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233{
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236}
237
238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240{
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243}
244
245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247{
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249}
250
251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252{
253 return atomic_read(&trans->num_extwriters);
178260b2
MX
254}
255
fb6dea26
JB
256/*
257 * To be called after all the new block groups attached to the transaction
258 * handle have been created (btrfs_create_pending_block_groups()).
259 */
260void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261{
262 struct btrfs_fs_info *fs_info = trans->fs_info;
eafa4fd0 263 struct btrfs_transaction *cur_trans = trans->transaction;
fb6dea26
JB
264
265 if (!trans->chunk_bytes_reserved)
266 return;
267
268 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 271 trans->chunk_bytes_reserved, NULL);
eafa4fd0
FM
272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 cond_wake_up(&cur_trans->chunk_reserve_wait);
fb6dea26
JB
274 trans->chunk_bytes_reserved = 0;
275}
276
d352ac68
CM
277/*
278 * either allocate a new transaction or hop into the existing one
279 */
2ff7e61e
JM
280static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 unsigned int type)
79154b1b
CM
282{
283 struct btrfs_transaction *cur_trans;
a4abeea4 284
19ae4e81 285 spin_lock(&fs_info->trans_lock);
d43317dc 286loop:
49b25e05 287 /* The file system has been taken offline. No new transactions. */
87533c47 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
290 return -EROFS;
291 }
292
19ae4e81 293 cur_trans = fs_info->running_transaction;
a4abeea4 294 if (cur_trans) {
bf31f87f 295 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
49b25e05 297 return cur_trans->aborted;
871383be 298 }
4a9d8bde 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
300 spin_unlock(&fs_info->trans_lock);
301 return -EBUSY;
302 }
9b64f57d 303 refcount_inc(&cur_trans->use_count);
13c5a93e 304 atomic_inc(&cur_trans->num_writers);
0860adfd 305 extwriter_counter_inc(cur_trans, type);
19ae4e81 306 spin_unlock(&fs_info->trans_lock);
a4abeea4 307 return 0;
79154b1b 308 }
19ae4e81 309 spin_unlock(&fs_info->trans_lock);
a4abeea4 310
354aa0fb
MX
311 /*
312 * If we are ATTACH, we just want to catch the current transaction,
313 * and commit it. If there is no transaction, just return ENOENT.
314 */
315 if (type == TRANS_ATTACH)
316 return -ENOENT;
317
4a9d8bde
MX
318 /*
319 * JOIN_NOLOCK only happens during the transaction commit, so
320 * it is impossible that ->running_transaction is NULL
321 */
322 BUG_ON(type == TRANS_JOIN_NOLOCK);
323
4b5faeac 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
325 if (!cur_trans)
326 return -ENOMEM;
d43317dc 327
19ae4e81
JS
328 spin_lock(&fs_info->trans_lock);
329 if (fs_info->running_transaction) {
d43317dc
CM
330 /*
331 * someone started a transaction after we unlocked. Make sure
4a9d8bde 332 * to redo the checks above
d43317dc 333 */
4b5faeac 334 kfree(cur_trans);
d43317dc 335 goto loop;
87533c47 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 337 spin_unlock(&fs_info->trans_lock);
4b5faeac 338 kfree(cur_trans);
7b8b92af 339 return -EROFS;
79154b1b 340 }
d43317dc 341
ab8d0fc4 342 cur_trans->fs_info = fs_info;
48778179
FM
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 345 atomic_set(&cur_trans->num_writers, 1);
0860adfd 346 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 349 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
9b64f57d 354 refcount_set(&cur_trans->use_count, 2);
3204d33c 355 cur_trans->flags = 0;
afd48513 356 cur_trans->start_time = ktime_get_seconds();
a4abeea4 357
a099d0fd
AM
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
5c9d028b 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
31b1a2bd 369 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 373 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 374
a4abeea4
JB
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 379 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 381 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 383 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 384 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 386 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
387 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 spin_lock_init(&cur_trans->releasing_ebs_lock);
eafa4fd0
FM
389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 init_waitqueue_head(&cur_trans->chunk_reserve_wait);
19ae4e81 391 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
396 fs_info->generation++;
397 cur_trans->transid = fs_info->generation;
398 fs_info->running_transaction = cur_trans;
49b25e05 399 cur_trans->aborted = 0;
19ae4e81 400 spin_unlock(&fs_info->trans_lock);
15ee9bc7 401
79154b1b
CM
402 return 0;
403}
404
d352ac68 405/*
92a7cc42
QW
406 * This does all the record keeping required to make sure that a shareable root
407 * is properly recorded in a given transaction. This is required to make sure
408 * the old root from before we joined the transaction is deleted when the
409 * transaction commits.
d352ac68 410 */
7585717f 411static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
412 struct btrfs_root *root,
413 int force)
6702ed49 414{
0b246afa
JM
415 struct btrfs_fs_info *fs_info = root->fs_info;
416
92a7cc42 417 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 418 root->last_trans < trans->transid) || force) {
0b246afa 419 WARN_ON(root == fs_info->extent_root);
4d31778a 420 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 421
7585717f 422 /*
27cdeb70 423 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
424 * we have the reloc mutex held now, so there
425 * is only one writer in this function
426 */
27cdeb70 427 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 428
27cdeb70 429 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
430 * they find our root->last_trans update
431 */
432 smp_wmb();
433
0b246afa 434 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 435 if (root->last_trans == trans->transid && !force) {
0b246afa 436 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
437 return 0;
438 }
0b246afa
JM
439 radix_tree_tag_set(&fs_info->fs_roots_radix,
440 (unsigned long)root->root_key.objectid,
441 BTRFS_ROOT_TRANS_TAG);
442 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
443 root->last_trans = trans->transid;
444
445 /* this is pretty tricky. We don't want to
446 * take the relocation lock in btrfs_record_root_in_trans
447 * unless we're really doing the first setup for this root in
448 * this transaction.
449 *
450 * Normally we'd use root->last_trans as a flag to decide
451 * if we want to take the expensive mutex.
452 *
453 * But, we have to set root->last_trans before we
454 * init the relocation root, otherwise, we trip over warnings
455 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 456 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
457 * fixing up the reloc trees and everyone must wait.
458 *
459 * When this is zero, they can trust root->last_trans and fly
460 * through btrfs_record_root_in_trans without having to take the
461 * lock. smp_wmb() makes sure that all the writes above are
462 * done before we pop in the zero below
463 */
5d4f98a2 464 btrfs_init_reloc_root(trans, root);
c7548af6 465 smp_mb__before_atomic();
27cdeb70 466 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
467 }
468 return 0;
469}
bcc63abb 470
7585717f 471
2b9dbef2
JB
472void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
473 struct btrfs_root *root)
474{
0b246afa 475 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
476 struct btrfs_transaction *cur_trans = trans->transaction;
477
478 /* Add ourselves to the transaction dropped list */
479 spin_lock(&cur_trans->dropped_roots_lock);
480 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
481 spin_unlock(&cur_trans->dropped_roots_lock);
482
483 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
484 spin_lock(&fs_info->fs_roots_radix_lock);
485 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
486 (unsigned long)root->root_key.objectid,
487 BTRFS_ROOT_TRANS_TAG);
0b246afa 488 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
489}
490
7585717f
CM
491int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
492 struct btrfs_root *root)
493{
0b246afa
JM
494 struct btrfs_fs_info *fs_info = root->fs_info;
495
92a7cc42 496 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
497 return 0;
498
499 /*
27cdeb70 500 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
501 * and barriers
502 */
503 smp_rmb();
504 if (root->last_trans == trans->transid &&
27cdeb70 505 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
506 return 0;
507
0b246afa 508 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 509 record_root_in_trans(trans, root, 0);
0b246afa 510 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
511
512 return 0;
513}
514
4a9d8bde
MX
515static inline int is_transaction_blocked(struct btrfs_transaction *trans)
516{
3296bf56 517 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 518 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 519 !TRANS_ABORTED(trans));
4a9d8bde
MX
520}
521
d352ac68
CM
522/* wait for commit against the current transaction to become unblocked
523 * when this is done, it is safe to start a new transaction, but the current
524 * transaction might not be fully on disk.
525 */
2ff7e61e 526static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 527{
f9295749 528 struct btrfs_transaction *cur_trans;
79154b1b 529
0b246afa
JM
530 spin_lock(&fs_info->trans_lock);
531 cur_trans = fs_info->running_transaction;
4a9d8bde 532 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 533 refcount_inc(&cur_trans->use_count);
0b246afa 534 spin_unlock(&fs_info->trans_lock);
72d63ed6 535
0b246afa 536 wait_event(fs_info->transaction_wait,
501407aa 537 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 538 TRANS_ABORTED(cur_trans));
724e2315 539 btrfs_put_transaction(cur_trans);
a4abeea4 540 } else {
0b246afa 541 spin_unlock(&fs_info->trans_lock);
f9295749 542 }
37d1aeee
CM
543}
544
2ff7e61e 545static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 546{
0b246afa 547 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
548 return 0;
549
92e2f7e3 550 if (type == TRANS_START)
a22285a6 551 return 1;
a4abeea4 552
a22285a6
YZ
553 return 0;
554}
555
20dd2cbf
MX
556static inline bool need_reserve_reloc_root(struct btrfs_root *root)
557{
0b246afa
JM
558 struct btrfs_fs_info *fs_info = root->fs_info;
559
560 if (!fs_info->reloc_ctl ||
92a7cc42 561 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
562 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
563 root->reloc_root)
564 return false;
565
566 return true;
567}
568
08e007d2 569static struct btrfs_trans_handle *
5aed1dd8 570start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
571 unsigned int type, enum btrfs_reserve_flush_enum flush,
572 bool enforce_qgroups)
37d1aeee 573{
0b246afa 574 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 575 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
576 struct btrfs_trans_handle *h;
577 struct btrfs_transaction *cur_trans;
b5009945 578 u64 num_bytes = 0;
c5567237 579 u64 qgroup_reserved = 0;
20dd2cbf 580 bool reloc_reserved = false;
9c343784 581 bool do_chunk_alloc = false;
20dd2cbf 582 int ret;
acce952b 583
46c4e71e 584 /* Send isn't supposed to start transactions. */
2755a0de 585 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 586
0b246afa 587 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 588 return ERR_PTR(-EROFS);
2a1eb461 589
46c4e71e 590 if (current->journal_info) {
0860adfd 591 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 592 h = current->journal_info;
b50fff81
DS
593 refcount_inc(&h->use_count);
594 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
595 h->orig_rsv = h->block_rsv;
596 h->block_rsv = NULL;
597 goto got_it;
598 }
b5009945
JB
599
600 /*
601 * Do the reservation before we join the transaction so we can do all
602 * the appropriate flushing if need be.
603 */
003d7c59 604 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
605 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
606 u64 delayed_refs_bytes = 0;
607
0b246afa 608 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
609 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
610 enforce_qgroups);
7174109c
QW
611 if (ret)
612 return ERR_PTR(ret);
c5567237 613
ba2c4d4e
JB
614 /*
615 * We want to reserve all the bytes we may need all at once, so
616 * we only do 1 enospc flushing cycle per transaction start. We
617 * accomplish this by simply assuming we'll do 2 x num_items
618 * worth of delayed refs updates in this trans handle, and
619 * refill that amount for whatever is missing in the reserve.
620 */
2bd36e7b 621 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
622 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
623 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
624 delayed_refs_bytes = num_bytes;
625 num_bytes <<= 1;
626 }
627
20dd2cbf
MX
628 /*
629 * Do the reservation for the relocation root creation
630 */
ee39b432 631 if (need_reserve_reloc_root(root)) {
0b246afa 632 num_bytes += fs_info->nodesize;
20dd2cbf
MX
633 reloc_reserved = true;
634 }
635
ba2c4d4e
JB
636 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
637 if (ret)
638 goto reserve_fail;
639 if (delayed_refs_bytes) {
640 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
641 delayed_refs_bytes);
642 num_bytes -= delayed_refs_bytes;
643 }
9c343784
JB
644
645 if (rsv->space_info->force_alloc)
646 do_chunk_alloc = true;
ba2c4d4e
JB
647 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
648 !delayed_refs_rsv->full) {
649 /*
650 * Some people call with btrfs_start_transaction(root, 0)
651 * because they can be throttled, but have some other mechanism
652 * for reserving space. We still want these guys to refill the
653 * delayed block_rsv so just add 1 items worth of reservation
654 * here.
655 */
656 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 657 if (ret)
843fcf35 658 goto reserve_fail;
b5009945 659 }
a22285a6 660again:
f2f767e7 661 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
662 if (!h) {
663 ret = -ENOMEM;
664 goto alloc_fail;
665 }
37d1aeee 666
98114659
JB
667 /*
668 * If we are JOIN_NOLOCK we're already committing a transaction and
669 * waiting on this guy, so we don't need to do the sb_start_intwrite
670 * because we're already holding a ref. We need this because we could
671 * have raced in and did an fsync() on a file which can kick a commit
672 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
673 *
674 * If we are ATTACH, it means we just want to catch the current
675 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 676 */
0860adfd 677 if (type & __TRANS_FREEZABLE)
0b246afa 678 sb_start_intwrite(fs_info->sb);
b2b5ef5c 679
2ff7e61e
JM
680 if (may_wait_transaction(fs_info, type))
681 wait_current_trans(fs_info);
a22285a6 682
a4abeea4 683 do {
2ff7e61e 684 ret = join_transaction(fs_info, type);
178260b2 685 if (ret == -EBUSY) {
2ff7e61e 686 wait_current_trans(fs_info);
a6d155d2
FM
687 if (unlikely(type == TRANS_ATTACH ||
688 type == TRANS_JOIN_NOSTART))
178260b2
MX
689 ret = -ENOENT;
690 }
a4abeea4
JB
691 } while (ret == -EBUSY);
692
a43f7f82 693 if (ret < 0)
843fcf35 694 goto join_fail;
0f7d52f4 695
0b246afa 696 cur_trans = fs_info->running_transaction;
a22285a6
YZ
697
698 h->transid = cur_trans->transid;
699 h->transaction = cur_trans;
d13603ef 700 h->root = root;
b50fff81 701 refcount_set(&h->use_count, 1);
64b63580 702 h->fs_info = root->fs_info;
7174109c 703
a698d075 704 h->type = type;
d9a0540a 705 h->can_flush_pending_bgs = true;
ea658bad 706 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 707
a22285a6 708 smp_mb();
3296bf56 709 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 710 may_wait_transaction(fs_info, type)) {
abdd2e80 711 current->journal_info = h;
3a45bb20 712 btrfs_commit_transaction(h);
a22285a6
YZ
713 goto again;
714 }
715
b5009945 716 if (num_bytes) {
0b246afa 717 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 718 h->transid, num_bytes, 1);
0b246afa 719 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 720 h->bytes_reserved = num_bytes;
20dd2cbf 721 h->reloc_reserved = reloc_reserved;
a22285a6 722 }
9ed74f2d 723
2a1eb461 724got_it:
bcf3a3e7 725 if (!current->journal_info)
a22285a6 726 current->journal_info = h;
fcc99734 727
9c343784
JB
728 /*
729 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
730 * ALLOC_FORCE the first run through, and then we won't allocate for
731 * anybody else who races in later. We don't care about the return
732 * value here.
733 */
734 if (do_chunk_alloc && num_bytes) {
735 u64 flags = h->block_rsv->space_info->flags;
736
737 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
738 CHUNK_ALLOC_NO_FORCE);
739 }
740
fcc99734
QW
741 /*
742 * btrfs_record_root_in_trans() needs to alloc new extents, and may
743 * call btrfs_join_transaction() while we're also starting a
744 * transaction.
745 *
746 * Thus it need to be called after current->journal_info initialized,
747 * or we can deadlock.
748 */
749 btrfs_record_root_in_trans(h, root);
750
79154b1b 751 return h;
843fcf35
MX
752
753join_fail:
0860adfd 754 if (type & __TRANS_FREEZABLE)
0b246afa 755 sb_end_intwrite(fs_info->sb);
843fcf35
MX
756 kmem_cache_free(btrfs_trans_handle_cachep, h);
757alloc_fail:
758 if (num_bytes)
2ff7e61e 759 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 760 num_bytes, NULL);
843fcf35 761reserve_fail:
733e03a0 762 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 763 return ERR_PTR(ret);
79154b1b
CM
764}
765
f9295749 766struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 767 unsigned int num_items)
f9295749 768{
08e007d2 769 return start_transaction(root, num_items, TRANS_START,
003d7c59 770 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 771}
003d7c59 772
8eab77ff
FM
773struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
774 struct btrfs_root *root,
7f9fe614 775 unsigned int num_items)
8eab77ff 776{
7f9fe614
JB
777 return start_transaction(root, num_items, TRANS_START,
778 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 779}
8407aa46 780
7a7eaa40 781struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 782{
003d7c59
JM
783 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
784 true);
f9295749
CM
785}
786
8d510121 787struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 788{
575a75d6 789 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 790 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
791}
792
a6d155d2
FM
793/*
794 * Similar to regular join but it never starts a transaction when none is
795 * running or after waiting for the current one to finish.
796 */
797struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
798{
799 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
800 BTRFS_RESERVE_NO_FLUSH, true);
801}
802
d4edf39b
MX
803/*
804 * btrfs_attach_transaction() - catch the running transaction
805 *
806 * It is used when we want to commit the current the transaction, but
807 * don't want to start a new one.
808 *
809 * Note: If this function return -ENOENT, it just means there is no
810 * running transaction. But it is possible that the inactive transaction
811 * is still in the memory, not fully on disk. If you hope there is no
812 * inactive transaction in the fs when -ENOENT is returned, you should
813 * invoke
814 * btrfs_attach_transaction_barrier()
815 */
354aa0fb 816struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 817{
575a75d6 818 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 819 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
820}
821
d4edf39b 822/*
90b6d283 823 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 824 *
52042d8e 825 * It is similar to the above function, the difference is this one
d4edf39b
MX
826 * will wait for all the inactive transactions until they fully
827 * complete.
828 */
829struct btrfs_trans_handle *
830btrfs_attach_transaction_barrier(struct btrfs_root *root)
831{
832 struct btrfs_trans_handle *trans;
833
575a75d6 834 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 835 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 836 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 837 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
838
839 return trans;
840}
841
d0c2f4fa
FM
842/* Wait for a transaction commit to reach at least the given state. */
843static noinline void wait_for_commit(struct btrfs_transaction *commit,
844 const enum btrfs_trans_state min_state)
89ce8a63 845{
d0c2f4fa 846 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
847}
848
2ff7e61e 849int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
850{
851 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 852 int ret = 0;
46204592 853
46204592 854 if (transid) {
0b246afa 855 if (transid <= fs_info->last_trans_committed)
a4abeea4 856 goto out;
46204592
SW
857
858 /* find specified transaction */
0b246afa
JM
859 spin_lock(&fs_info->trans_lock);
860 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
861 if (t->transid == transid) {
862 cur_trans = t;
9b64f57d 863 refcount_inc(&cur_trans->use_count);
8cd2807f 864 ret = 0;
46204592
SW
865 break;
866 }
8cd2807f
MX
867 if (t->transid > transid) {
868 ret = 0;
46204592 869 break;
8cd2807f 870 }
46204592 871 }
0b246afa 872 spin_unlock(&fs_info->trans_lock);
42383020
SW
873
874 /*
875 * The specified transaction doesn't exist, or we
876 * raced with btrfs_commit_transaction
877 */
878 if (!cur_trans) {
0b246afa 879 if (transid > fs_info->last_trans_committed)
42383020 880 ret = -EINVAL;
8cd2807f 881 goto out;
42383020 882 }
46204592
SW
883 } else {
884 /* find newest transaction that is committing | committed */
0b246afa
JM
885 spin_lock(&fs_info->trans_lock);
886 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 887 list) {
4a9d8bde
MX
888 if (t->state >= TRANS_STATE_COMMIT_START) {
889 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 890 break;
46204592 891 cur_trans = t;
9b64f57d 892 refcount_inc(&cur_trans->use_count);
46204592
SW
893 break;
894 }
895 }
0b246afa 896 spin_unlock(&fs_info->trans_lock);
46204592 897 if (!cur_trans)
a4abeea4 898 goto out; /* nothing committing|committed */
46204592
SW
899 }
900
d0c2f4fa 901 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 902 btrfs_put_transaction(cur_trans);
a4abeea4 903out:
46204592
SW
904 return ret;
905}
906
2ff7e61e 907void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 908{
92e2f7e3 909 wait_current_trans(fs_info);
37d1aeee
CM
910}
911
8a8f4dea 912static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 913{
2ff7e61e 914 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 915
64403612 916 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 917 return true;
36ba022a 918
2ff7e61e 919 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
920}
921
a2633b6a 922bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
923{
924 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 925
3296bf56 926 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 927 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 928 return true;
8929ecfa 929
2ff7e61e 930 return should_end_transaction(trans);
8929ecfa
YZ
931}
932
dc60c525
NB
933static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
934
0e34693f 935{
dc60c525
NB
936 struct btrfs_fs_info *fs_info = trans->fs_info;
937
0e34693f
NB
938 if (!trans->block_rsv) {
939 ASSERT(!trans->bytes_reserved);
940 return;
941 }
942
943 if (!trans->bytes_reserved)
944 return;
945
946 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
947 trace_btrfs_space_reservation(fs_info, "transaction",
948 trans->transid, trans->bytes_reserved, 0);
949 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 950 trans->bytes_reserved, NULL);
0e34693f
NB
951 trans->bytes_reserved = 0;
952}
953
89ce8a63 954static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 955 int throttle)
79154b1b 956{
3a45bb20 957 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 958 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 959 int err = 0;
c3e69d58 960
b50fff81
DS
961 if (refcount_read(&trans->use_count) > 1) {
962 refcount_dec(&trans->use_count);
2a1eb461
JB
963 trans->block_rsv = trans->orig_rsv;
964 return 0;
965 }
966
dc60c525 967 btrfs_trans_release_metadata(trans);
4c13d758 968 trans->block_rsv = NULL;
c5567237 969
119e80df 970 btrfs_create_pending_block_groups(trans);
ea658bad 971
4fbcdf66
FM
972 btrfs_trans_release_chunk_metadata(trans);
973
0860adfd 974 if (trans->type & __TRANS_FREEZABLE)
0b246afa 975 sb_end_intwrite(info->sb);
6df7881a 976
8929ecfa 977 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
978 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
979 atomic_dec(&cur_trans->num_writers);
0860adfd 980 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 981
093258e6 982 cond_wake_up(&cur_trans->writer_wait);
724e2315 983 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
984
985 if (current->journal_info == trans)
986 current->journal_info = NULL;
ab78c84d 987
24bbcf04 988 if (throttle)
2ff7e61e 989 btrfs_run_delayed_iputs(info);
24bbcf04 990
bf31f87f 991 if (TRANS_ABORTED(trans) ||
0b246afa 992 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 993 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
994 if (TRANS_ABORTED(trans))
995 err = trans->aborted;
996 else
997 err = -EROFS;
4e121c06 998 }
49b25e05 999
4edc2ca3
DJ
1000 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1001 return err;
79154b1b
CM
1002}
1003
3a45bb20 1004int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1005{
3a45bb20 1006 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1007}
1008
3a45bb20 1009int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1010{
3a45bb20 1011 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1012}
1013
d352ac68
CM
1014/*
1015 * when btree blocks are allocated, they have some corresponding bits set for
1016 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1017 * those extents are sent to disk but does not wait on them
d352ac68 1018 */
2ff7e61e 1019int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1020 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1021{
777e6bd7 1022 int err = 0;
7c4452b9 1023 int werr = 0;
0b246afa 1024 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1025 struct extent_state *cached_state = NULL;
777e6bd7 1026 u64 start = 0;
5f39d397 1027 u64 end;
7c4452b9 1028
6300463b 1029 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1030 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1031 mark, &cached_state)) {
663dfbb0
FM
1032 bool wait_writeback = false;
1033
1034 err = convert_extent_bit(dirty_pages, start, end,
1035 EXTENT_NEED_WAIT,
210aa277 1036 mark, &cached_state);
663dfbb0
FM
1037 /*
1038 * convert_extent_bit can return -ENOMEM, which is most of the
1039 * time a temporary error. So when it happens, ignore the error
1040 * and wait for writeback of this range to finish - because we
1041 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1042 * to __btrfs_wait_marked_extents() would not know that
1043 * writeback for this range started and therefore wouldn't
1044 * wait for it to finish - we don't want to commit a
1045 * superblock that points to btree nodes/leafs for which
1046 * writeback hasn't finished yet (and without errors).
663dfbb0 1047 * We cleanup any entries left in the io tree when committing
41e7acd3 1048 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1049 */
1050 if (err == -ENOMEM) {
1051 err = 0;
1052 wait_writeback = true;
1053 }
1054 if (!err)
1055 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1056 if (err)
1057 werr = err;
663dfbb0
FM
1058 else if (wait_writeback)
1059 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1060 free_extent_state(cached_state);
663dfbb0 1061 cached_state = NULL;
1728366e
JB
1062 cond_resched();
1063 start = end + 1;
7c4452b9 1064 }
6300463b 1065 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1066 return werr;
1067}
1068
1069/*
1070 * when btree blocks are allocated, they have some corresponding bits set for
1071 * them in one of two extent_io trees. This is used to make sure all of
1072 * those extents are on disk for transaction or log commit. We wait
1073 * on all the pages and clear them from the dirty pages state tree
1074 */
bf89d38f
JM
1075static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1076 struct extent_io_tree *dirty_pages)
690587d1 1077{
690587d1
CM
1078 int err = 0;
1079 int werr = 0;
0b246afa 1080 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1081 struct extent_state *cached_state = NULL;
690587d1
CM
1082 u64 start = 0;
1083 u64 end;
777e6bd7 1084
1728366e 1085 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1086 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1087 /*
1088 * Ignore -ENOMEM errors returned by clear_extent_bit().
1089 * When committing the transaction, we'll remove any entries
1090 * left in the io tree. For a log commit, we don't remove them
1091 * after committing the log because the tree can be accessed
1092 * concurrently - we do it only at transaction commit time when
41e7acd3 1093 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1094 */
1095 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1096 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1097 if (err == -ENOMEM)
1098 err = 0;
1099 if (!err)
1100 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1101 if (err)
1102 werr = err;
e38e2ed7
FM
1103 free_extent_state(cached_state);
1104 cached_state = NULL;
1728366e
JB
1105 cond_resched();
1106 start = end + 1;
777e6bd7 1107 }
7c4452b9
CM
1108 if (err)
1109 werr = err;
bf89d38f
JM
1110 return werr;
1111}
656f30db 1112
b9fae2eb 1113static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1114 struct extent_io_tree *dirty_pages)
1115{
1116 bool errors = false;
1117 int err;
656f30db 1118
bf89d38f
JM
1119 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1120 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1121 errors = true;
1122
1123 if (errors && !err)
1124 err = -EIO;
1125 return err;
1126}
656f30db 1127
bf89d38f
JM
1128int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1129{
1130 struct btrfs_fs_info *fs_info = log_root->fs_info;
1131 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1132 bool errors = false;
1133 int err;
656f30db 1134
bf89d38f
JM
1135 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1136
1137 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1138 if ((mark & EXTENT_DIRTY) &&
1139 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1140 errors = true;
1141
1142 if ((mark & EXTENT_NEW) &&
1143 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1144 errors = true;
1145
1146 if (errors && !err)
1147 err = -EIO;
1148 return err;
79154b1b
CM
1149}
1150
690587d1 1151/*
c9b577c0
NB
1152 * When btree blocks are allocated the corresponding extents are marked dirty.
1153 * This function ensures such extents are persisted on disk for transaction or
1154 * log commit.
1155 *
1156 * @trans: transaction whose dirty pages we'd like to write
690587d1 1157 */
70458a58 1158static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1159{
1160 int ret;
1161 int ret2;
c9b577c0 1162 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1163 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1164 struct blk_plug plug;
690587d1 1165
c6adc9cc 1166 blk_start_plug(&plug);
c9b577c0 1167 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1168 blk_finish_plug(&plug);
bf89d38f 1169 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1170
41e7acd3 1171 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1172
bf0da8c1
CM
1173 if (ret)
1174 return ret;
c9b577c0 1175 else if (ret2)
bf0da8c1 1176 return ret2;
c9b577c0
NB
1177 else
1178 return 0;
d0c803c4
CM
1179}
1180
d352ac68
CM
1181/*
1182 * this is used to update the root pointer in the tree of tree roots.
1183 *
1184 * But, in the case of the extent allocation tree, updating the root
1185 * pointer may allocate blocks which may change the root of the extent
1186 * allocation tree.
1187 *
1188 * So, this loops and repeats and makes sure the cowonly root didn't
1189 * change while the root pointer was being updated in the metadata.
1190 */
0b86a832
CM
1191static int update_cowonly_root(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root)
79154b1b
CM
1193{
1194 int ret;
0b86a832 1195 u64 old_root_bytenr;
86b9f2ec 1196 u64 old_root_used;
0b246afa
JM
1197 struct btrfs_fs_info *fs_info = root->fs_info;
1198 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1199
86b9f2ec 1200 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1201
d397712b 1202 while (1) {
0b86a832 1203 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1204 if (old_root_bytenr == root->node->start &&
ea526d18 1205 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1206 break;
87ef2bb4 1207
5d4f98a2 1208 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1209 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1210 &root->root_key,
1211 &root->root_item);
49b25e05
JM
1212 if (ret)
1213 return ret;
56bec294 1214
86b9f2ec 1215 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1216 }
276e680d 1217
0b86a832
CM
1218 return 0;
1219}
1220
d352ac68
CM
1221/*
1222 * update all the cowonly tree roots on disk
49b25e05
JM
1223 *
1224 * The error handling in this function may not be obvious. Any of the
1225 * failures will cause the file system to go offline. We still need
1226 * to clean up the delayed refs.
d352ac68 1227 */
9386d8bc 1228static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1229{
9386d8bc 1230 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1231 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1232 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1233 struct list_head *next;
84234f3a 1234 struct extent_buffer *eb;
56bec294 1235 int ret;
84234f3a
YZ
1236
1237 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1238 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1239 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1240 btrfs_tree_unlock(eb);
1241 free_extent_buffer(eb);
0b86a832 1242
49b25e05
JM
1243 if (ret)
1244 return ret;
87ef2bb4 1245
196c9d8d 1246 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1247 if (ret)
1248 return ret;
2b584c68 1249 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1250 if (ret)
1251 return ret;
280f8bd2 1252 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1253 if (ret)
1254 return ret;
546adb0d 1255
bbebb3e0 1256 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1257 if (ret)
1258 return ret;
1259
ea526d18 1260again:
d397712b 1261 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1262 struct btrfs_root *root;
0b86a832
CM
1263 next = fs_info->dirty_cowonly_roots.next;
1264 list_del_init(next);
1265 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1266 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1267
9e351cc8
JB
1268 if (root != fs_info->extent_root)
1269 list_add_tail(&root->dirty_list,
1270 &trans->transaction->switch_commits);
49b25e05
JM
1271 ret = update_cowonly_root(trans, root);
1272 if (ret)
1273 return ret;
79154b1b 1274 }
276e680d 1275
488bc2a2
JB
1276 /* Now flush any delayed refs generated by updating all of the roots */
1277 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1278 if (ret)
1279 return ret;
1280
1bbc621e 1281 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1282 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1283 if (ret)
1284 return ret;
488bc2a2
JB
1285
1286 /*
1287 * We're writing the dirty block groups, which could generate
1288 * delayed refs, which could generate more dirty block groups,
1289 * so we want to keep this flushing in this loop to make sure
1290 * everything gets run.
1291 */
c79a70b1 1292 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1293 if (ret)
1294 return ret;
1295 }
1296
1297 if (!list_empty(&fs_info->dirty_cowonly_roots))
1298 goto again;
1299
9e351cc8
JB
1300 list_add_tail(&fs_info->extent_root->dirty_list,
1301 &trans->transaction->switch_commits);
9f6cbcbb
DS
1302
1303 /* Update dev-replace pointer once everything is committed */
1304 fs_info->dev_replace.committed_cursor_left =
1305 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1306
79154b1b
CM
1307 return 0;
1308}
1309
d352ac68
CM
1310/*
1311 * dead roots are old snapshots that need to be deleted. This allocates
1312 * a dirty root struct and adds it into the list of dead roots that need to
1313 * be deleted
1314 */
cfad392b 1315void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1316{
0b246afa
JM
1317 struct btrfs_fs_info *fs_info = root->fs_info;
1318
1319 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1320 if (list_empty(&root->root_list)) {
1321 btrfs_grab_root(root);
0b246afa 1322 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1323 }
0b246afa 1324 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1325}
1326
d352ac68 1327/*
5d4f98a2 1328 * update all the cowonly tree roots on disk
d352ac68 1329 */
7e4443d9 1330static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1331{
7e4443d9 1332 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1333 struct btrfs_root *gang[8];
0f7d52f4
CM
1334 int i;
1335 int ret;
54aa1f4d 1336
a4abeea4 1337 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1338 while (1) {
5d4f98a2
YZ
1339 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1340 (void **)gang, 0,
0f7d52f4
CM
1341 ARRAY_SIZE(gang),
1342 BTRFS_ROOT_TRANS_TAG);
1343 if (ret == 0)
1344 break;
1345 for (i = 0; i < ret; i++) {
5b4aacef 1346 struct btrfs_root *root = gang[i];
4f4317c1
JB
1347 int ret2;
1348
5d4f98a2
YZ
1349 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1350 (unsigned long)root->root_key.objectid,
1351 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1352 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1353
e02119d5 1354 btrfs_free_log(trans, root);
5d4f98a2 1355 btrfs_update_reloc_root(trans, root);
bcc63abb 1356
f1ebcc74 1357 /* see comments in should_cow_block() */
27cdeb70 1358 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1359 smp_mb__after_atomic();
f1ebcc74 1360
978d910d 1361 if (root->commit_root != root->node) {
9e351cc8
JB
1362 list_add_tail(&root->dirty_list,
1363 &trans->transaction->switch_commits);
978d910d
YZ
1364 btrfs_set_root_node(&root->root_item,
1365 root->node);
1366 }
5d4f98a2 1367
4f4317c1 1368 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1369 &root->root_key,
1370 &root->root_item);
4f4317c1
JB
1371 if (ret2)
1372 return ret2;
a4abeea4 1373 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1374 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1375 }
1376 }
a4abeea4 1377 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1378 return 0;
0f7d52f4
CM
1379}
1380
d352ac68 1381/*
de78b51a
ES
1382 * defrag a given btree.
1383 * Every leaf in the btree is read and defragged.
d352ac68 1384 */
de78b51a 1385int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1386{
1387 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1388 struct btrfs_trans_handle *trans;
8929ecfa 1389 int ret;
e9d0b13b 1390
27cdeb70 1391 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1392 return 0;
8929ecfa 1393
6b80053d 1394 while (1) {
8929ecfa
YZ
1395 trans = btrfs_start_transaction(root, 0);
1396 if (IS_ERR(trans))
1397 return PTR_ERR(trans);
1398
de78b51a 1399 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1400
3a45bb20 1401 btrfs_end_transaction(trans);
2ff7e61e 1402 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1403 cond_resched();
1404
ab8d0fc4 1405 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1406 break;
210549eb 1407
ab8d0fc4
JM
1408 if (btrfs_defrag_cancelled(info)) {
1409 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1410 ret = -EAGAIN;
1411 break;
1412 }
e9d0b13b 1413 }
27cdeb70 1414 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1415 return ret;
e9d0b13b
CM
1416}
1417
6426c7ad
QW
1418/*
1419 * Do all special snapshot related qgroup dirty hack.
1420 *
1421 * Will do all needed qgroup inherit and dirty hack like switch commit
1422 * roots inside one transaction and write all btree into disk, to make
1423 * qgroup works.
1424 */
1425static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *src,
1427 struct btrfs_root *parent,
1428 struct btrfs_qgroup_inherit *inherit,
1429 u64 dst_objectid)
1430{
1431 struct btrfs_fs_info *fs_info = src->fs_info;
1432 int ret;
1433
1434 /*
1435 * Save some performance in the case that qgroups are not
1436 * enabled. If this check races with the ioctl, rescan will
1437 * kick in anyway.
1438 */
9ea6e2b5 1439 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1440 return 0;
6426c7ad 1441
4d31778a 1442 /*
52042d8e 1443 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1444 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1445 * recorded root will never be updated again, causing an outdated root
1446 * item.
1447 */
1448 record_root_in_trans(trans, src, 1);
1449
2a4d84c1
JB
1450 /*
1451 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1452 * src root, so we must run the delayed refs here.
1453 *
1454 * However this isn't particularly fool proof, because there's no
1455 * synchronization keeping us from changing the tree after this point
1456 * before we do the qgroup_inherit, or even from making changes while
1457 * we're doing the qgroup_inherit. But that's a problem for the future,
1458 * for now flush the delayed refs to narrow the race window where the
1459 * qgroup counters could end up wrong.
1460 */
1461 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1462 if (ret) {
1463 btrfs_abort_transaction(trans, ret);
1464 goto out;
1465 }
1466
6426c7ad
QW
1467 /*
1468 * We are going to commit transaction, see btrfs_commit_transaction()
1469 * comment for reason locking tree_log_mutex
1470 */
1471 mutex_lock(&fs_info->tree_log_mutex);
1472
7e4443d9 1473 ret = commit_fs_roots(trans);
6426c7ad
QW
1474 if (ret)
1475 goto out;
460fb20a 1476 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1477 if (ret < 0)
1478 goto out;
1479
1480 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1481 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1482 inherit);
1483 if (ret < 0)
1484 goto out;
1485
1486 /*
1487 * Now we do a simplified commit transaction, which will:
1488 * 1) commit all subvolume and extent tree
1489 * To ensure all subvolume and extent tree have a valid
1490 * commit_root to accounting later insert_dir_item()
1491 * 2) write all btree blocks onto disk
1492 * This is to make sure later btree modification will be cowed
1493 * Or commit_root can be populated and cause wrong qgroup numbers
1494 * In this simplified commit, we don't really care about other trees
1495 * like chunk and root tree, as they won't affect qgroup.
1496 * And we don't write super to avoid half committed status.
1497 */
9386d8bc 1498 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1499 if (ret)
1500 goto out;
889bfa39 1501 switch_commit_roots(trans);
70458a58 1502 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1503 if (ret)
f7af3934 1504 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1505 "Error while writing out transaction for qgroup");
1506
1507out:
1508 mutex_unlock(&fs_info->tree_log_mutex);
1509
1510 /*
1511 * Force parent root to be updated, as we recorded it before so its
1512 * last_trans == cur_transid.
1513 * Or it won't be committed again onto disk after later
1514 * insert_dir_item()
1515 */
1516 if (!ret)
1517 record_root_in_trans(trans, parent, 1);
1518 return ret;
1519}
1520
d352ac68
CM
1521/*
1522 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1523 * transaction commit. This does the actual creation.
1524 *
1525 * Note:
1526 * If the error which may affect the commitment of the current transaction
1527 * happens, we should return the error number. If the error which just affect
1528 * the creation of the pending snapshots, just return 0.
d352ac68 1529 */
80b6794d 1530static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1531 struct btrfs_pending_snapshot *pending)
1532{
08d50ca3
NB
1533
1534 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1535 struct btrfs_key key;
80b6794d 1536 struct btrfs_root_item *new_root_item;
3063d29f
CM
1537 struct btrfs_root *tree_root = fs_info->tree_root;
1538 struct btrfs_root *root = pending->root;
6bdb72de 1539 struct btrfs_root *parent_root;
98c9942a 1540 struct btrfs_block_rsv *rsv;
6bdb72de 1541 struct inode *parent_inode;
42874b3d
MX
1542 struct btrfs_path *path;
1543 struct btrfs_dir_item *dir_item;
a22285a6 1544 struct dentry *dentry;
3063d29f 1545 struct extent_buffer *tmp;
925baedd 1546 struct extent_buffer *old;
95582b00 1547 struct timespec64 cur_time;
aec8030a 1548 int ret = 0;
d68fc57b 1549 u64 to_reserve = 0;
6bdb72de 1550 u64 index = 0;
a22285a6 1551 u64 objectid;
b83cc969 1552 u64 root_flags;
3063d29f 1553
8546b570
DS
1554 ASSERT(pending->path);
1555 path = pending->path;
42874b3d 1556
b0c0ea63
DS
1557 ASSERT(pending->root_item);
1558 new_root_item = pending->root_item;
a22285a6 1559
543068a2 1560 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1561 if (pending->error)
6fa9700e 1562 goto no_free_objectid;
3063d29f 1563
d6726335
QW
1564 /*
1565 * Make qgroup to skip current new snapshot's qgroupid, as it is
1566 * accounted by later btrfs_qgroup_inherit().
1567 */
1568 btrfs_set_skip_qgroup(trans, objectid);
1569
147d256e 1570 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1571
1572 if (to_reserve > 0) {
aec8030a
MX
1573 pending->error = btrfs_block_rsv_add(root,
1574 &pending->block_rsv,
1575 to_reserve,
1576 BTRFS_RESERVE_NO_FLUSH);
1577 if (pending->error)
d6726335 1578 goto clear_skip_qgroup;
d68fc57b
YZ
1579 }
1580
3063d29f 1581 key.objectid = objectid;
a22285a6
YZ
1582 key.offset = (u64)-1;
1583 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1584
6fa9700e 1585 rsv = trans->block_rsv;
a22285a6 1586 trans->block_rsv = &pending->block_rsv;
2382c5cc 1587 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1588 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1589 trans->transid,
1590 trans->bytes_reserved, 1);
a22285a6 1591 dentry = pending->dentry;
e9662f70 1592 parent_inode = pending->dir;
a22285a6 1593 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1594 record_root_in_trans(trans, parent_root, 0);
a22285a6 1595
c2050a45 1596 cur_time = current_time(parent_inode);
04b285f3 1597
3063d29f
CM
1598 /*
1599 * insert the directory item
1600 */
877574e2 1601 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1602 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1603
1604 /* check if there is a file/dir which has the same name. */
1605 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1606 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1607 dentry->d_name.name,
1608 dentry->d_name.len, 0);
1609 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1610 pending->error = -EEXIST;
aec8030a 1611 goto dir_item_existed;
42874b3d
MX
1612 } else if (IS_ERR(dir_item)) {
1613 ret = PTR_ERR(dir_item);
66642832 1614 btrfs_abort_transaction(trans, ret);
8732d44f 1615 goto fail;
79787eaa 1616 }
42874b3d 1617 btrfs_release_path(path);
52c26179 1618
e999376f
CM
1619 /*
1620 * pull in the delayed directory update
1621 * and the delayed inode item
1622 * otherwise we corrupt the FS during
1623 * snapshot
1624 */
e5c304e6 1625 ret = btrfs_run_delayed_items(trans);
8732d44f 1626 if (ret) { /* Transaction aborted */
66642832 1627 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1628 goto fail;
1629 }
e999376f 1630
6426c7ad 1631 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1632 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1633 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1634 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1635
b83cc969
LZ
1636 root_flags = btrfs_root_flags(new_root_item);
1637 if (pending->readonly)
1638 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1639 else
1640 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1641 btrfs_set_root_flags(new_root_item, root_flags);
1642
8ea05e3a
AB
1643 btrfs_set_root_generation_v2(new_root_item,
1644 trans->transid);
807fc790 1645 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1646 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1647 BTRFS_UUID_SIZE);
70023da2
SB
1648 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1649 memset(new_root_item->received_uuid, 0,
1650 sizeof(new_root_item->received_uuid));
1651 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1652 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1653 btrfs_set_root_stransid(new_root_item, 0);
1654 btrfs_set_root_rtransid(new_root_item, 0);
1655 }
3cae210f
QW
1656 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1657 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1658 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1659
6bdb72de 1660 old = btrfs_lock_root_node(root);
9631e4cc
JB
1661 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1662 BTRFS_NESTING_COW);
79787eaa
JM
1663 if (ret) {
1664 btrfs_tree_unlock(old);
1665 free_extent_buffer(old);
66642832 1666 btrfs_abort_transaction(trans, ret);
8732d44f 1667 goto fail;
79787eaa 1668 }
49b25e05 1669
49b25e05 1670 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1671 /* clean up in any case */
6bdb72de
SW
1672 btrfs_tree_unlock(old);
1673 free_extent_buffer(old);
8732d44f 1674 if (ret) {
66642832 1675 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1676 goto fail;
1677 }
f1ebcc74 1678 /* see comments in should_cow_block() */
27cdeb70 1679 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1680 smp_wmb();
1681
6bdb72de 1682 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1683 /* record when the snapshot was created in key.offset */
1684 key.offset = trans->transid;
1685 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1686 btrfs_tree_unlock(tmp);
1687 free_extent_buffer(tmp);
8732d44f 1688 if (ret) {
66642832 1689 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1690 goto fail;
1691 }
6bdb72de 1692
a22285a6
YZ
1693 /*
1694 * insert root back/forward references
1695 */
6025c19f 1696 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1697 parent_root->root_key.objectid,
4a0cc7ca 1698 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1699 dentry->d_name.name, dentry->d_name.len);
8732d44f 1700 if (ret) {
66642832 1701 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1702 goto fail;
1703 }
0660b5af 1704
a22285a6 1705 key.offset = (u64)-1;
2dfb1e43 1706 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1707 if (IS_ERR(pending->snap)) {
1708 ret = PTR_ERR(pending->snap);
2d892ccd 1709 pending->snap = NULL;
66642832 1710 btrfs_abort_transaction(trans, ret);
8732d44f 1711 goto fail;
79787eaa 1712 }
d68fc57b 1713
49b25e05 1714 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1715 if (ret) {
66642832 1716 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1717 goto fail;
1718 }
361048f5 1719
6426c7ad
QW
1720 /*
1721 * Do special qgroup accounting for snapshot, as we do some qgroup
1722 * snapshot hack to do fast snapshot.
1723 * To co-operate with that hack, we do hack again.
1724 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1725 */
1726 ret = qgroup_account_snapshot(trans, root, parent_root,
1727 pending->inherit, objectid);
1728 if (ret < 0)
1729 goto fail;
1730
684572df
LF
1731 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1732 dentry->d_name.len, BTRFS_I(parent_inode),
1733 &key, BTRFS_FT_DIR, index);
42874b3d 1734 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1735 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1736 if (ret) {
66642832 1737 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1738 goto fail;
1739 }
42874b3d 1740
6ef06d27 1741 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1742 dentry->d_name.len * 2);
04b285f3 1743 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1744 current_time(parent_inode);
729f7961 1745 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1746 if (ret) {
66642832 1747 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1748 goto fail;
1749 }
807fc790
AS
1750 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1751 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1752 objectid);
dd5f9615 1753 if (ret) {
66642832 1754 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1755 goto fail;
1756 }
1757 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1758 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1759 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1760 objectid);
1761 if (ret && ret != -EEXIST) {
66642832 1762 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1763 goto fail;
1764 }
1765 }
d6726335 1766
3063d29f 1767fail:
aec8030a
MX
1768 pending->error = ret;
1769dir_item_existed:
98c9942a 1770 trans->block_rsv = rsv;
2382c5cc 1771 trans->bytes_reserved = 0;
d6726335
QW
1772clear_skip_qgroup:
1773 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1774no_free_objectid:
1775 kfree(new_root_item);
b0c0ea63 1776 pending->root_item = NULL;
42874b3d 1777 btrfs_free_path(path);
8546b570
DS
1778 pending->path = NULL;
1779
49b25e05 1780 return ret;
3063d29f
CM
1781}
1782
d352ac68
CM
1783/*
1784 * create all the snapshots we've scheduled for creation
1785 */
08d50ca3 1786static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1787{
aec8030a 1788 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1789 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1790 int ret = 0;
3de4586c 1791
aec8030a
MX
1792 list_for_each_entry_safe(pending, next, head, list) {
1793 list_del(&pending->list);
08d50ca3 1794 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1795 if (ret)
1796 break;
1797 }
1798 return ret;
3de4586c
CM
1799}
1800
2ff7e61e 1801static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1802{
1803 struct btrfs_root_item *root_item;
1804 struct btrfs_super_block *super;
1805
0b246afa 1806 super = fs_info->super_copy;
5d4f98a2 1807
0b246afa 1808 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1809 super->chunk_root = root_item->bytenr;
1810 super->chunk_root_generation = root_item->generation;
1811 super->chunk_root_level = root_item->level;
5d4f98a2 1812
0b246afa 1813 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1814 super->root = root_item->bytenr;
1815 super->generation = root_item->generation;
1816 super->root_level = root_item->level;
0b246afa 1817 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1818 super->cache_generation = root_item->generation;
94846229
BB
1819 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1820 super->cache_generation = 0;
0b246afa 1821 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1822 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1823}
1824
f36f3042
CM
1825int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1826{
4a9d8bde 1827 struct btrfs_transaction *trans;
f36f3042 1828 int ret = 0;
4a9d8bde 1829
a4abeea4 1830 spin_lock(&info->trans_lock);
4a9d8bde
MX
1831 trans = info->running_transaction;
1832 if (trans)
1833 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1834 spin_unlock(&info->trans_lock);
f36f3042
CM
1835 return ret;
1836}
1837
8929ecfa
YZ
1838int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1839{
4a9d8bde 1840 struct btrfs_transaction *trans;
8929ecfa 1841 int ret = 0;
4a9d8bde 1842
a4abeea4 1843 spin_lock(&info->trans_lock);
4a9d8bde
MX
1844 trans = info->running_transaction;
1845 if (trans)
1846 ret = is_transaction_blocked(trans);
a4abeea4 1847 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1848 return ret;
1849}
1850
bb9c12c9
SW
1851/*
1852 * wait for the current transaction commit to start and block subsequent
1853 * transaction joins
1854 */
2ff7e61e 1855static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1856 struct btrfs_transaction *trans)
1857{
2ff7e61e 1858 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1859 trans->state >= TRANS_STATE_COMMIT_START ||
1860 TRANS_ABORTED(trans));
bb9c12c9
SW
1861}
1862
1863/*
1864 * wait for the current transaction to start and then become unblocked.
1865 * caller holds ref.
1866 */
2ff7e61e
JM
1867static void wait_current_trans_commit_start_and_unblock(
1868 struct btrfs_fs_info *fs_info,
1869 struct btrfs_transaction *trans)
bb9c12c9 1870{
2ff7e61e 1871 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1872 trans->state >= TRANS_STATE_UNBLOCKED ||
1873 TRANS_ABORTED(trans));
bb9c12c9
SW
1874}
1875
1876/*
1877 * commit transactions asynchronously. once btrfs_commit_transaction_async
1878 * returns, any subsequent transaction will not be allowed to join.
1879 */
1880struct btrfs_async_commit {
1881 struct btrfs_trans_handle *newtrans;
7892b5af 1882 struct work_struct work;
bb9c12c9
SW
1883};
1884
1885static void do_async_commit(struct work_struct *work)
1886{
1887 struct btrfs_async_commit *ac =
7892b5af 1888 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1889
6fc4e354
SW
1890 /*
1891 * We've got freeze protection passed with the transaction.
1892 * Tell lockdep about it.
1893 */
b1a06a4b 1894 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1895 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1896
e209db7a
SW
1897 current->journal_info = ac->newtrans;
1898
3a45bb20 1899 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1900 kfree(ac);
1901}
1902
1903int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1904 int wait_for_unblock)
1905{
3a45bb20 1906 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1907 struct btrfs_async_commit *ac;
1908 struct btrfs_transaction *cur_trans;
1909
1910 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1911 if (!ac)
1912 return -ENOMEM;
bb9c12c9 1913
7892b5af 1914 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1915 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1916 if (IS_ERR(ac->newtrans)) {
1917 int err = PTR_ERR(ac->newtrans);
1918 kfree(ac);
1919 return err;
1920 }
bb9c12c9
SW
1921
1922 /* take transaction reference */
bb9c12c9 1923 cur_trans = trans->transaction;
9b64f57d 1924 refcount_inc(&cur_trans->use_count);
bb9c12c9 1925
3a45bb20 1926 btrfs_end_transaction(trans);
6fc4e354
SW
1927
1928 /*
1929 * Tell lockdep we've released the freeze rwsem, since the
1930 * async commit thread will be the one to unlock it.
1931 */
b1a06a4b 1932 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1933 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1934
7892b5af 1935 schedule_work(&ac->work);
bb9c12c9
SW
1936
1937 /* wait for transaction to start and unblock */
bb9c12c9 1938 if (wait_for_unblock)
2ff7e61e 1939 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1940 else
2ff7e61e 1941 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1942
38e88054
SW
1943 if (current->journal_info == trans)
1944 current->journal_info = NULL;
1945
724e2315 1946 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1947 return 0;
1948}
1949
49b25e05 1950
97cb39bb 1951static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1952{
97cb39bb 1953 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1954 struct btrfs_transaction *cur_trans = trans->transaction;
1955
b50fff81 1956 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1957
66642832 1958 btrfs_abort_transaction(trans, err);
7b8b92af 1959
0b246afa 1960 spin_lock(&fs_info->trans_lock);
66b6135b 1961
25d8c284
MX
1962 /*
1963 * If the transaction is removed from the list, it means this
1964 * transaction has been committed successfully, so it is impossible
1965 * to call the cleanup function.
1966 */
1967 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1968
49b25e05 1969 list_del_init(&cur_trans->list);
0b246afa 1970 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1971 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1972 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1973 wait_event(cur_trans->writer_wait,
1974 atomic_read(&cur_trans->num_writers) == 1);
1975
0b246afa 1976 spin_lock(&fs_info->trans_lock);
d7096fc3 1977 }
0b246afa 1978 spin_unlock(&fs_info->trans_lock);
49b25e05 1979
2ff7e61e 1980 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1981
0b246afa
JM
1982 spin_lock(&fs_info->trans_lock);
1983 if (cur_trans == fs_info->running_transaction)
1984 fs_info->running_transaction = NULL;
1985 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1986
e0228285 1987 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1988 sb_end_intwrite(fs_info->sb);
724e2315
JB
1989 btrfs_put_transaction(cur_trans);
1990 btrfs_put_transaction(cur_trans);
49b25e05 1991
97cb39bb 1992 trace_btrfs_transaction_commit(trans->root);
49b25e05 1993
49b25e05
JM
1994 if (current->journal_info == trans)
1995 current->journal_info = NULL;
0b246afa 1996 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1997
1998 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1999}
2000
c7cc64a9
DS
2001/*
2002 * Release reserved delayed ref space of all pending block groups of the
2003 * transaction and remove them from the list
2004 */
2005static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2006{
2007 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2008 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2009
2010 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2011 btrfs_delayed_refs_rsv_release(fs_info, 1);
2012 list_del_init(&block_group->bg_list);
2013 }
2014}
2015
88090ad3 2016static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2017{
ce8ea7cc
JB
2018 /*
2019 * We use writeback_inodes_sb here because if we used
2020 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2021 * Currently are holding the fs freeze lock, if we do an async flush
2022 * we'll do btrfs_join_transaction() and deadlock because we need to
2023 * wait for the fs freeze lock. Using the direct flushing we benefit
2024 * from already being in a transaction and our join_transaction doesn't
2025 * have to re-take the fs freeze lock.
2026 */
88090ad3 2027 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2028 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2029 return 0;
2030}
2031
88090ad3 2032static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2033{
88090ad3 2034 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2035 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2036}
2037
3a45bb20 2038int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2039{
3a45bb20 2040 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2041 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2042 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2043 int ret;
79154b1b 2044
35b814f3
NB
2045 ASSERT(refcount_read(&trans->use_count) == 1);
2046
d62b23c9
JB
2047 /*
2048 * Some places just start a transaction to commit it. We need to make
2049 * sure that if this commit fails that the abort code actually marks the
2050 * transaction as failed, so set trans->dirty to make the abort code do
2051 * the right thing.
2052 */
2053 trans->dirty = true;
2054
8d25a086 2055 /* Stop the commit early if ->aborted is set */
bf31f87f 2056 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2057 ret = cur_trans->aborted;
3a45bb20 2058 btrfs_end_transaction(trans);
e4a2bcac 2059 return ret;
25287e0a 2060 }
49b25e05 2061
f45c752b
JB
2062 btrfs_trans_release_metadata(trans);
2063 trans->block_rsv = NULL;
2064
56bec294 2065 /*
e19eb11f
JB
2066 * We only want one transaction commit doing the flushing so we do not
2067 * waste a bunch of time on lock contention on the extent root node.
56bec294 2068 */
e19eb11f
JB
2069 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2070 &cur_trans->delayed_refs.flags)) {
2071 /*
2072 * Make a pass through all the delayed refs we have so far.
2073 * Any running threads may add more while we are here.
2074 */
2075 ret = btrfs_run_delayed_refs(trans, 0);
2076 if (ret) {
2077 btrfs_end_transaction(trans);
2078 return ret;
2079 }
2080 }
56bec294 2081
119e80df 2082 btrfs_create_pending_block_groups(trans);
ea658bad 2083
3204d33c 2084 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2085 int run_it = 0;
2086
2087 /* this mutex is also taken before trying to set
2088 * block groups readonly. We need to make sure
2089 * that nobody has set a block group readonly
2090 * after a extents from that block group have been
2091 * allocated for cache files. btrfs_set_block_group_ro
2092 * will wait for the transaction to commit if it
3204d33c 2093 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2094 *
3204d33c
JB
2095 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2096 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2097 * hurt to have more than one go through, but there's no
2098 * real advantage to it either.
2099 */
0b246afa 2100 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2101 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2102 &cur_trans->flags))
1bbc621e 2103 run_it = 1;
0b246afa 2104 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2105
f9cacae3 2106 if (run_it) {
21217054 2107 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2108 if (ret) {
2109 btrfs_end_transaction(trans);
2110 return ret;
2111 }
2112 }
1bbc621e
CM
2113 }
2114
0b246afa 2115 spin_lock(&fs_info->trans_lock);
4a9d8bde 2116 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2117 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2118
0b246afa 2119 spin_unlock(&fs_info->trans_lock);
9b64f57d 2120 refcount_inc(&cur_trans->use_count);
ccd467d6 2121
d0c2f4fa
FM
2122 if (trans->in_fsync)
2123 want_state = TRANS_STATE_SUPER_COMMITTED;
2124 ret = btrfs_end_transaction(trans);
2125 wait_for_commit(cur_trans, want_state);
15ee9bc7 2126
bf31f87f 2127 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2128 ret = cur_trans->aborted;
2129
724e2315 2130 btrfs_put_transaction(cur_trans);
15ee9bc7 2131
49b25e05 2132 return ret;
79154b1b 2133 }
4313b399 2134
4a9d8bde 2135 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2136 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2137
0b246afa 2138 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2139 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2140
2141 if (trans->in_fsync)
2142 want_state = TRANS_STATE_SUPER_COMMITTED;
2143
ccd467d6
CM
2144 prev_trans = list_entry(cur_trans->list.prev,
2145 struct btrfs_transaction, list);
d0c2f4fa 2146 if (prev_trans->state < want_state) {
9b64f57d 2147 refcount_inc(&prev_trans->use_count);
0b246afa 2148 spin_unlock(&fs_info->trans_lock);
ccd467d6 2149
d0c2f4fa
FM
2150 wait_for_commit(prev_trans, want_state);
2151
bf31f87f 2152 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2153
724e2315 2154 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2155 if (ret)
2156 goto cleanup_transaction;
a4abeea4 2157 } else {
0b246afa 2158 spin_unlock(&fs_info->trans_lock);
ccd467d6 2159 }
a4abeea4 2160 } else {
0b246afa 2161 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2162 /*
2163 * The previous transaction was aborted and was already removed
2164 * from the list of transactions at fs_info->trans_list. So we
2165 * abort to prevent writing a new superblock that reflects a
2166 * corrupt state (pointing to trees with unwritten nodes/leafs).
2167 */
2168 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2169 ret = -EROFS;
2170 goto cleanup_transaction;
2171 }
ccd467d6 2172 }
15ee9bc7 2173
0860adfd
MX
2174 extwriter_counter_dec(cur_trans, trans->type);
2175
88090ad3 2176 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2177 if (ret)
2178 goto cleanup_transaction;
2179
e5c304e6 2180 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2181 if (ret)
2182 goto cleanup_transaction;
15ee9bc7 2183
581227d0
MX
2184 wait_event(cur_trans->writer_wait,
2185 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2186
581227d0 2187 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2188 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2189 if (ret)
2190 goto cleanup_transaction;
2191
88090ad3 2192 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2193
48778179
FM
2194 /*
2195 * Wait for all ordered extents started by a fast fsync that joined this
2196 * transaction. Otherwise if this transaction commits before the ordered
2197 * extents complete we lose logged data after a power failure.
2198 */
2199 wait_event(cur_trans->pending_wait,
2200 atomic_read(&cur_trans->pending_ordered) == 0);
2201
2ff7e61e 2202 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2203 /*
2204 * Ok now we need to make sure to block out any other joins while we
2205 * commit the transaction. We could have started a join before setting
4a9d8bde 2206 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2207 */
0b246afa 2208 spin_lock(&fs_info->trans_lock);
4a9d8bde 2209 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2210 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2211 wait_event(cur_trans->writer_wait,
2212 atomic_read(&cur_trans->num_writers) == 1);
2213
bf31f87f 2214 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2215 ret = cur_trans->aborted;
6cf7f77e 2216 goto scrub_continue;
2cba30f1 2217 }
7585717f
CM
2218 /*
2219 * the reloc mutex makes sure that we stop
2220 * the balancing code from coming in and moving
2221 * extents around in the middle of the commit
2222 */
0b246afa 2223 mutex_lock(&fs_info->reloc_mutex);
7585717f 2224
42874b3d
MX
2225 /*
2226 * We needn't worry about the delayed items because we will
2227 * deal with them in create_pending_snapshot(), which is the
2228 * core function of the snapshot creation.
2229 */
08d50ca3 2230 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2231 if (ret)
2232 goto unlock_reloc;
3063d29f 2233
42874b3d
MX
2234 /*
2235 * We insert the dir indexes of the snapshots and update the inode
2236 * of the snapshots' parents after the snapshot creation, so there
2237 * are some delayed items which are not dealt with. Now deal with
2238 * them.
2239 *
2240 * We needn't worry that this operation will corrupt the snapshots,
2241 * because all the tree which are snapshoted will be forced to COW
2242 * the nodes and leaves.
2243 */
e5c304e6 2244 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2245 if (ret)
2246 goto unlock_reloc;
16cdcec7 2247
c79a70b1 2248 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2249 if (ret)
2250 goto unlock_reloc;
56bec294 2251
e999376f
CM
2252 /*
2253 * make sure none of the code above managed to slip in a
2254 * delayed item
2255 */
ccdf9b30 2256 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2257
2c90e5d6 2258 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2259
e02119d5
CM
2260 /* btrfs_commit_tree_roots is responsible for getting the
2261 * various roots consistent with each other. Every pointer
2262 * in the tree of tree roots has to point to the most up to date
2263 * root for every subvolume and other tree. So, we have to keep
2264 * the tree logging code from jumping in and changing any
2265 * of the trees.
2266 *
2267 * At this point in the commit, there can't be any tree-log
2268 * writers, but a little lower down we drop the trans mutex
2269 * and let new people in. By holding the tree_log_mutex
2270 * from now until after the super is written, we avoid races
2271 * with the tree-log code.
2272 */
0b246afa 2273 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2274
7e4443d9 2275 ret = commit_fs_roots(trans);
56e9f6ea
DS
2276 if (ret)
2277 goto unlock_tree_log;
54aa1f4d 2278
3818aea2 2279 /*
7e1876ac
DS
2280 * Since the transaction is done, we can apply the pending changes
2281 * before the next transaction.
3818aea2 2282 */
0b246afa 2283 btrfs_apply_pending_changes(fs_info);
3818aea2 2284
5d4f98a2 2285 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2286 * safe to free the root of tree log roots
2287 */
0b246afa 2288 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2289
0ed4792a
QW
2290 /*
2291 * Since fs roots are all committed, we can get a quite accurate
2292 * new_roots. So let's do quota accounting.
2293 */
460fb20a 2294 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2295 if (ret < 0)
2296 goto unlock_tree_log;
0ed4792a 2297
9386d8bc 2298 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2299 if (ret)
2300 goto unlock_tree_log;
54aa1f4d 2301
2cba30f1
MX
2302 /*
2303 * The tasks which save the space cache and inode cache may also
2304 * update ->aborted, check it.
2305 */
bf31f87f 2306 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2307 ret = cur_trans->aborted;
56e9f6ea 2308 goto unlock_tree_log;
2cba30f1
MX
2309 }
2310
0b246afa 2311 cur_trans = fs_info->running_transaction;
5d4f98a2 2312
0b246afa
JM
2313 btrfs_set_root_node(&fs_info->tree_root->root_item,
2314 fs_info->tree_root->node);
2315 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2316 &cur_trans->switch_commits);
5d4f98a2 2317
0b246afa
JM
2318 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2319 fs_info->chunk_root->node);
2320 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2321 &cur_trans->switch_commits);
2322
889bfa39 2323 switch_commit_roots(trans);
5d4f98a2 2324
ce93ec54 2325 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2326 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2327 update_super_roots(fs_info);
e02119d5 2328
0b246afa
JM
2329 btrfs_set_super_log_root(fs_info->super_copy, 0);
2330 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2331 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2332 sizeof(*fs_info->super_copy));
ccd467d6 2333
bbbf7243 2334 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2335
0b246afa
JM
2336 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2337 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2338
4fbcdf66
FM
2339 btrfs_trans_release_chunk_metadata(trans);
2340
0b246afa 2341 spin_lock(&fs_info->trans_lock);
4a9d8bde 2342 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2343 fs_info->running_transaction = NULL;
2344 spin_unlock(&fs_info->trans_lock);
2345 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2346
0b246afa 2347 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2348
70458a58 2349 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2350 if (ret) {
0b246afa
JM
2351 btrfs_handle_fs_error(fs_info, ret,
2352 "Error while writing out transaction");
56e9f6ea
DS
2353 /*
2354 * reloc_mutex has been unlocked, tree_log_mutex is still held
2355 * but we can't jump to unlock_tree_log causing double unlock
2356 */
0b246afa 2357 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2358 goto scrub_continue;
49b25e05
JM
2359 }
2360
d3575156
NA
2361 /*
2362 * At this point, we should have written all the tree blocks allocated
2363 * in this transaction. So it's now safe to free the redirtyied extent
2364 * buffers.
2365 */
2366 btrfs_free_redirty_list(cur_trans);
2367
eece6a9c 2368 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2369 /*
2370 * the super is written, we can safely allow the tree-loggers
2371 * to go about their business
2372 */
0b246afa 2373 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2374 if (ret)
2375 goto scrub_continue;
e02119d5 2376
d0c2f4fa
FM
2377 /*
2378 * We needn't acquire the lock here because there is no other task
2379 * which can change it.
2380 */
2381 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2382 wake_up(&cur_trans->commit_wait);
2383
5ead2dd0 2384 btrfs_finish_extent_commit(trans);
4313b399 2385
3204d33c 2386 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2387 btrfs_clear_space_info_full(fs_info);
13212b54 2388
0b246afa 2389 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2390 /*
2391 * We needn't acquire the lock here because there is no other task
2392 * which can change it.
2393 */
2394 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2395 wake_up(&cur_trans->commit_wait);
3de4586c 2396
0b246afa 2397 spin_lock(&fs_info->trans_lock);
13c5a93e 2398 list_del_init(&cur_trans->list);
0b246afa 2399 spin_unlock(&fs_info->trans_lock);
a4abeea4 2400
724e2315
JB
2401 btrfs_put_transaction(cur_trans);
2402 btrfs_put_transaction(cur_trans);
58176a96 2403
0860adfd 2404 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2405 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2406
3a45bb20 2407 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2408
2ff7e61e 2409 btrfs_scrub_continue(fs_info);
a2de733c 2410
9ed74f2d
JB
2411 if (current->journal_info == trans)
2412 current->journal_info = NULL;
2413
2c90e5d6 2414 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2415
79154b1b 2416 return ret;
49b25e05 2417
56e9f6ea
DS
2418unlock_tree_log:
2419 mutex_unlock(&fs_info->tree_log_mutex);
2420unlock_reloc:
2421 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2422scrub_continue:
2ff7e61e 2423 btrfs_scrub_continue(fs_info);
49b25e05 2424cleanup_transaction:
dc60c525 2425 btrfs_trans_release_metadata(trans);
c7cc64a9 2426 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2427 btrfs_trans_release_chunk_metadata(trans);
0e721106 2428 trans->block_rsv = NULL;
0b246afa 2429 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2430 if (current->journal_info == trans)
2431 current->journal_info = NULL;
97cb39bb 2432 cleanup_transaction(trans, ret);
49b25e05
JM
2433
2434 return ret;
79154b1b
CM
2435}
2436
d352ac68 2437/*
9d1a2a3a
DS
2438 * return < 0 if error
2439 * 0 if there are no more dead_roots at the time of call
2440 * 1 there are more to be processed, call me again
2441 *
2442 * The return value indicates there are certainly more snapshots to delete, but
2443 * if there comes a new one during processing, it may return 0. We don't mind,
2444 * because btrfs_commit_super will poke cleaner thread and it will process it a
2445 * few seconds later.
d352ac68 2446 */
9d1a2a3a 2447int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2448{
9d1a2a3a 2449 int ret;
5d4f98a2
YZ
2450 struct btrfs_fs_info *fs_info = root->fs_info;
2451
a4abeea4 2452 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2453 if (list_empty(&fs_info->dead_roots)) {
2454 spin_unlock(&fs_info->trans_lock);
2455 return 0;
2456 }
2457 root = list_first_entry(&fs_info->dead_roots,
2458 struct btrfs_root, root_list);
cfad392b 2459 list_del_init(&root->root_list);
a4abeea4 2460 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2461
4fd786e6 2462 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2463
9d1a2a3a 2464 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2465
9d1a2a3a
DS
2466 if (btrfs_header_backref_rev(root->node) <
2467 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2468 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2469 else
0078a9f9 2470 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2471
dc9492c1 2472 btrfs_put_root(root);
6596a928 2473 return (ret < 0) ? 0 : 1;
e9d0b13b 2474}
572d9ab7
DS
2475
2476void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2477{
2478 unsigned long prev;
2479 unsigned long bit;
2480
6c9fe14f 2481 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2482 if (!prev)
2483 return;
2484
d51033d0
DS
2485 bit = 1 << BTRFS_PENDING_COMMIT;
2486 if (prev & bit)
2487 btrfs_debug(fs_info, "pending commit done");
2488 prev &= ~bit;
2489
572d9ab7
DS
2490 if (prev)
2491 btrfs_warn(fs_info,
2492 "unknown pending changes left 0x%lx, ignoring", prev);
2493}