]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/volumes.c
btrfs: port device access to file
[thirdparty/linux.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
5a0e3ad6 8#include <linux/slab.h>
442a4f63 9#include <linux/ratelimit.h>
59641015 10#include <linux/kthread.h>
803b2f54 11#include <linux/semaphore.h>
8da4b8c4 12#include <linux/uuid.h>
f8e10cd3 13#include <linux/list_sort.h>
54fde91f 14#include <linux/namei.h>
784352fe 15#include "misc.h"
0b86a832
CM
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
53b381b3 22#include "raid56.h"
606686ee 23#include "rcu-string.h"
8dabb742 24#include "dev-replace.h"
99994cde 25#include "sysfs.h"
82fc28fb 26#include "tree-checker.h"
8719aaae 27#include "space-info.h"
aac0023c 28#include "block-group.h"
b0643e59 29#include "discard.h"
5b316468 30#include "zoned.h"
c7f13d42 31#include "fs.h"
07e81dc9 32#include "accessors.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
7f0add25 37#include "super.h"
10e27980 38#include "raid-stripe-tree.h"
0b86a832 39
bf08387f
QW
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
fd747f2d
JT
44struct btrfs_io_geometry {
45 u32 stripe_index;
46 u32 stripe_nr;
47 int mirror_num;
48 int num_stripes;
49 u64 stripe_offset;
50 u64 raid56_full_stripe_start;
51 int max_errors;
52 enum btrfs_map_op op;
53};
54
af902047
ZL
55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
57 .sub_stripes = 2,
58 .dev_stripes = 1,
59 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 60 .devs_min = 2,
8789f4fe 61 .tolerated_failures = 1,
af902047
ZL
62 .devs_increment = 2,
63 .ncopies = 2,
b50836ed 64 .nparity = 0,
ed23467b 65 .raid_name = "raid10",
41a6e891 66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
68 },
69 [BTRFS_RAID_RAID1] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 2,
73 .devs_min = 2,
8789f4fe 74 .tolerated_failures = 1,
af902047
ZL
75 .devs_increment = 2,
76 .ncopies = 2,
b50836ed 77 .nparity = 0,
ed23467b 78 .raid_name = "raid1",
41a6e891 79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 81 },
47e6f742
DS
82 [BTRFS_RAID_RAID1C3] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
cf93e15e 85 .devs_max = 3,
47e6f742
DS
86 .devs_min = 3,
87 .tolerated_failures = 2,
88 .devs_increment = 3,
89 .ncopies = 3,
db26a024 90 .nparity = 0,
47e6f742
DS
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 },
8d6fac00
DS
95 [BTRFS_RAID_RAID1C4] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
cf93e15e 98 .devs_max = 4,
8d6fac00
DS
99 .devs_min = 4,
100 .tolerated_failures = 3,
101 .devs_increment = 4,
102 .ncopies = 4,
db26a024 103 .nparity = 0,
8d6fac00
DS
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 },
af902047
ZL
108 [BTRFS_RAID_DUP] = {
109 .sub_stripes = 1,
110 .dev_stripes = 2,
111 .devs_max = 1,
112 .devs_min = 1,
8789f4fe 113 .tolerated_failures = 0,
af902047
ZL
114 .devs_increment = 1,
115 .ncopies = 2,
b50836ed 116 .nparity = 0,
ed23467b 117 .raid_name = "dup",
41a6e891 118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 119 .mindev_error = 0,
af902047
ZL
120 },
121 [BTRFS_RAID_RAID0] = {
122 .sub_stripes = 1,
123 .dev_stripes = 1,
124 .devs_max = 0,
b2f78e88 125 .devs_min = 1,
8789f4fe 126 .tolerated_failures = 0,
af902047
ZL
127 .devs_increment = 1,
128 .ncopies = 1,
b50836ed 129 .nparity = 0,
ed23467b 130 .raid_name = "raid0",
41a6e891 131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 132 .mindev_error = 0,
af902047
ZL
133 },
134 [BTRFS_RAID_SINGLE] = {
135 .sub_stripes = 1,
136 .dev_stripes = 1,
137 .devs_max = 1,
138 .devs_min = 1,
8789f4fe 139 .tolerated_failures = 0,
af902047
ZL
140 .devs_increment = 1,
141 .ncopies = 1,
b50836ed 142 .nparity = 0,
ed23467b 143 .raid_name = "single",
41a6e891 144 .bg_flag = 0,
f9fbcaa2 145 .mindev_error = 0,
af902047
ZL
146 },
147 [BTRFS_RAID_RAID5] = {
148 .sub_stripes = 1,
149 .dev_stripes = 1,
150 .devs_max = 0,
151 .devs_min = 2,
8789f4fe 152 .tolerated_failures = 1,
af902047 153 .devs_increment = 1,
da612e31 154 .ncopies = 1,
b50836ed 155 .nparity = 1,
ed23467b 156 .raid_name = "raid5",
41a6e891 157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
159 },
160 [BTRFS_RAID_RAID6] = {
161 .sub_stripes = 1,
162 .dev_stripes = 1,
163 .devs_max = 0,
164 .devs_min = 3,
8789f4fe 165 .tolerated_failures = 2,
af902047 166 .devs_increment = 1,
da612e31 167 .ncopies = 1,
b50836ed 168 .nparity = 2,
ed23467b 169 .raid_name = "raid6",
41a6e891 170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
172 },
173};
174
500a44c9
DS
175/*
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
178 */
179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180{
719fae89 181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
500a44c9 182
719fae89
QW
183 if (!profile)
184 return BTRFS_RAID_SINGLE;
185
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
500a44c9
DS
187}
188
158da513 189const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 190{
158da513
DS
191 const int index = btrfs_bg_flags_to_raid_index(flags);
192
193 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
194 return NULL;
195
158da513 196 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
197}
198
0b30f719
QW
199int btrfs_nr_parity_stripes(u64 type)
200{
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202
203 return btrfs_raid_array[index].nparity;
204}
205
f89e09cf
AJ
206/*
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
209 */
210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211{
212 int i;
213 int ret;
214 char *bp = buf;
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
217
218 if (!flags) {
219 strcpy(bp, "NONE");
220 return;
221 }
222
223#define DESCRIBE_FLAG(flag, desc) \
224 do { \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
228 goto out_overflow; \
229 size_bp -= ret; \
230 bp += ret; \
231 flags &= ~(flag); \
232 } \
233 } while (0)
234
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
243#undef DESCRIBE_FLAG
244
245 if (flags) {
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 size_bp -= ret;
248 }
249
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252
253 /*
254 * The text is trimmed, it's up to the caller to provide sufficiently
255 * large buffer
256 */
257out_overflow:;
258}
259
6f8e0fc7 260static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 263
9c6b1c4d
DS
264/*
265 * Device locking
266 * ==============
267 *
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
270 *
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
276 *
277 * the mutex can be very coarse and can cover long-running operations
278 *
279 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 280 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
281 *
282 * global::fs_devs - add, remove, updates to the global list
283 *
18c850fd
JB
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
286 * scan ioctl
9c6b1c4d
DS
287 *
288 * btrfs_device::name - renames (write side), read is RCU
289 *
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
293 *
294 * simple list traversal with read-only actions can be done with RCU protection
295 *
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
298 *
18c850fd
JB
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
301 *
9c6b1c4d
DS
302 * balance_mutex
303 * -------------
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
306 *
307 * chunk_mutex
308 * -----------
309 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
313 *
314 * cleaner_mutex
315 * -------------
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
318 *
319 *
320 * Lock nesting
321 * ============
322 *
323 * uuid_mutex
ae3e715f
AJ
324 * device_list_mutex
325 * chunk_mutex
326 * balance_mutex
89595e80
AJ
327 *
328 *
c3e1f96c
GR
329 * Exclusive operations
330 * ====================
89595e80
AJ
331 *
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
334 *
335 * - Balance (*)
336 * - Device add
337 * - Device remove
338 * - Device replace (*)
339 * - Resize
340 *
341 * The device operations (as above) can be in one of the following states:
342 *
343 * - Running state
344 * - Paused state
345 * - Completed state
346 *
347 * Only device operations marked with (*) can go into the Paused state for the
348 * following reasons:
349 *
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
355 *
c3e1f96c
GR
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 360 * The exclusive status is cleared when the device operation is canceled or
89595e80 361 * completed.
9c6b1c4d
DS
362 */
363
67a2c45e 364DEFINE_MUTEX(uuid_mutex);
8a4b83cc 365static LIST_HEAD(fs_uuids);
4143cb8b 366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
367{
368 return &fs_uuids;
369}
8a4b83cc 370
2dfeca9b 371/*
f7361d8c
AJ
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
373 *
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
2dfeca9b
DS
376 *
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
380 */
f7361d8c 381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
382{
383 struct btrfs_fs_devices *fs_devs;
384
78f2c9e6 385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
386 if (!fs_devs)
387 return ERR_PTR(-ENOMEM);
388
389 mutex_init(&fs_devs->device_list_mutex);
390
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 393 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 394 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378 395
19c4c49c
AJ
396 if (fsid) {
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
f7361d8c 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
19c4c49c 399 }
7239ff4b 400
2208a378
ID
401 return fs_devs;
402}
403
f2db4d5c 404static void btrfs_free_device(struct btrfs_device *device)
48dae9cf 405{
bbbf7243 406 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 407 rcu_string_free(device->name);
611ccc58 408 extent_io_tree_release(&device->alloc_state);
5b316468 409 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
410 kfree(device);
411}
412
e4404d6e
YZ
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
5f58d783 416
e4404d6e
YZ
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
a425f9d4 422 btrfs_free_device(device);
e4404d6e
YZ
423 }
424 kfree(fs_devices);
425}
426
ffc5a379 427void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
428{
429 struct btrfs_fs_devices *fs_devices;
8a4b83cc 430
2b82032c
YZ
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
e4404d6e 435 free_fs_devices(fs_devices);
8a4b83cc 436 }
8a4b83cc
CM
437}
438
1a898345
AJ
439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
441{
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 return false;
444
445 if (!metadata_fsid)
446 return true;
447
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 return false;
450
451 return true;
452}
453
7239ff4b
NB
454static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 456{
8a4b83cc
CM
457 struct btrfs_fs_devices *fs_devices;
458
7239ff4b
NB
459 ASSERT(fsid);
460
7a62d0f0 461 /* Handle non-split brain cases */
c4babc5e 462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1a898345
AJ
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 return fs_devices;
8a4b83cc
CM
465 }
466 return NULL;
467}
468
beaf8ab3 469static int
05bdb996 470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
9ae061cf 471 int flush, struct file **bdev_file,
8f32380d 472 struct btrfs_super_block **disk_super)
beaf8ab3 473{
86ec15d0 474 struct block_device *bdev;
beaf8ab3
SB
475 int ret;
476
9ae061cf 477 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
beaf8ab3 478
9ae061cf
CB
479 if (IS_ERR(*bdev_file)) {
480 ret = PTR_ERR(*bdev_file);
beaf8ab3
SB
481 goto error;
482 }
9ae061cf 483 bdev = file_bdev(*bdev_file);
beaf8ab3
SB
484
485 if (flush)
86ec15d0
JK
486 sync_blockdev(bdev);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3 488 if (ret) {
9ae061cf 489 fput(*bdev_file);
beaf8ab3
SB
490 goto error;
491 }
86ec15d0
JK
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
8f32380d
JT
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
9ae061cf 496 fput(*bdev_file);
beaf8ab3
SB
497 goto error;
498 }
499
500 return 0;
501
502error:
9ae061cf 503 *bdev_file = NULL;
beaf8ab3
SB
504 return ret;
505}
506
43dd529a
DS
507/*
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
16cab91a 510 *
43dd529a
DS
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
16cab91a 513 * @skip_device: Optional. Will skip this device when searching for the stale
43dd529a 514 * devices.
16cab91a
AJ
515 *
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
d8367db3 519 */
16cab91a 520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 521{
fa6d2ae5
AJ
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
bc27d6f0
AJ
524 int ret;
525 bool freed = false;
70bc7088 526
c1247069
AJ
527 lockdep_assert_held(&uuid_mutex);
528
bc27d6f0
AJ
529 /* Return good status if there is no instance of devt. */
530 ret = 0;
fa6d2ae5 531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 532
70bc7088 533 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
fa6d2ae5 536 if (skip_device && skip_device == device)
d8367db3 537 continue;
330a5bf4 538 if (devt && devt != device->devt)
38cf665d 539 continue;
70bc7088 540 if (fs_devices->opened) {
bc27d6f0 541 if (devt)
70bc7088
AJ
542 ret = -EBUSY;
543 break;
544 }
4fde46f0 545
4fde46f0 546 /* delete the stale device */
7bcb8164
AJ
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
550
bc27d6f0 551 freed = true;
7bcb8164
AJ
552 }
553 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 554
7bcb8164
AJ
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
4fde46f0
AJ
559 }
560 }
70bc7088 561
bc27d6f0
AJ
562 /* If there is at least one freed device return 0. */
563 if (freed)
564 return 0;
565
70bc7088 566 return ret;
4fde46f0
AJ
567}
568
69d427f3 569static struct btrfs_fs_devices *find_fsid_by_device(
a5b8a5f9
AJ
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
69d427f3
AJ
572{
573 struct btrfs_fs_devices *fsid_fs_devices;
a5b8a5f9 574 struct btrfs_fs_devices *devt_fs_devices;
69d427f3
AJ
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
a5b8a5f9 577 bool found_by_devt = false;
69d427f3
AJ
578
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582
a5b8a5f9
AJ
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
586
c47b02c1
AJ
587 /*
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
590 * not supported.
591 */
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
594
a5b8a5f9
AJ
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
598
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
602 break;
603 }
604 }
605 if (found_by_devt)
606 break;
607 }
608
609 if (found_by_devt) {
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
613 /* Stale device. */
614 return NULL;
615 } else {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
618 }
619 } else {
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* New device. */
625 if (fsid_fs_devices == NULL) {
626 return NULL;
627 } else {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
630 return NULL;
631 }
632 }
633
634 /* Not reached. */
69d427f3
AJ
635}
636
18c850fd
JB
637/*
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
641 */
0fb08bcc 642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
05bdb996 643 struct btrfs_device *device, blk_mode_t flags,
0fb08bcc
AJ
644 void *holder)
645{
9ae061cf 646 struct file *bdev_file;
0fb08bcc
AJ
647 struct btrfs_super_block *disk_super;
648 u64 devid;
649 int ret;
650
651 if (device->bdev)
652 return -EINVAL;
653 if (!device->name)
654 return -EINVAL;
655
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
9ae061cf 657 &bdev_file, &disk_super);
0fb08bcc
AJ
658 if (ret)
659 return ret;
660
0fb08bcc
AJ
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
8f32380d 663 goto error_free_page;
0fb08bcc
AJ
664
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 666 goto error_free_page;
0fb08bcc
AJ
667
668 device->generation = btrfs_super_generation(disk_super);
669
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 pr_err(
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 675 goto error_free_page;
7239ff4b
NB
676 }
677
ebbede42 678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 679 fs_devices->seeding = true;
0fb08bcc 680 } else {
9ae061cf 681 if (bdev_read_only(file_bdev(bdev_file)))
ebbede42
AJ
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 else
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
685 }
686
9ae061cf 687 if (!bdev_nonrot(file_bdev(bdev_file)))
7f0432d0 688 fs_devices->rotating = true;
0fb08bcc 689
9ae061cf 690 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
63a7cb13
DS
691 fs_devices->discardable = true;
692
9ae061cf
CB
693 device->bdev_file = bdev_file;
694 device->bdev = file_bdev(bdev_file);
e12c9621 695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
696
697 fs_devices->open_devices++;
ebbede42
AJ
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 700 fs_devices->rw_devices++;
b1b8e386 701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 702 }
8f32380d 703 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
704
705 return 0;
706
8f32380d
JT
707error_free_page:
708 btrfs_release_disk_super(disk_super);
9ae061cf 709 fput(bdev_file);
0fb08bcc
AJ
710
711 return -EINVAL;
712}
713
4844c366
AJ
714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715{
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720}
721
60999ca4
DS
722/*
723 * Add new device to list of registered devices
724 *
725 * Returns:
e124ece5
AJ
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
60999ca4 728 */
e124ece5 729static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
8a4b83cc
CM
732{
733 struct btrfs_device *device;
7a62d0f0 734 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 735 struct rcu_string *name;
8a4b83cc 736 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
738 dev_t path_devt;
739 int error;
a5b8a5f9 740 bool same_fsid_diff_dev = false;
7239ff4b
NB
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743
5966930d 744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
197a9ece
AJ
745 btrfs_err(NULL,
746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 path);
748 return ERR_PTR(-EAGAIN);
749 }
7239ff4b 750
4889bc05 751 error = lookup_bdev(path, &path_devt);
ed02363f
QW
752 if (error) {
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 path, error);
4889bc05 755 return ERR_PTR(error);
ed02363f 756 }
4889bc05 757
a5b8a5f9 758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
8a4b83cc 759
8a4b83cc 760 if (!fs_devices) {
f7361d8c 761 fs_devices = alloc_fs_devices(disk_super->fsid);
cd63ffbd
FM
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
764
f7361d8c
AJ
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768
a5b8a5f9
AJ
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
774 }
92900e51 775
9c6d173e 776 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 777 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 778
8a4b83cc
CM
779 device = NULL;
780 } else {
562d7b15
JB
781 struct btrfs_dev_lookup_args args = {
782 .devid = devid,
783 .uuid = disk_super->dev_item.uuid,
784 };
785
9c6d173e 786 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 787 device = btrfs_find_device(fs_devices, &args);
7a62d0f0 788
5966930d 789 if (found_transid > fs_devices->latest_generation) {
7a62d0f0
NB
790 memcpy(fs_devices->fsid, disk_super->fsid,
791 BTRFS_FSID_SIZE);
319baafc
AJ
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
7a62d0f0 794 }
8a4b83cc 795 }
443f24fe 796
8a4b83cc 797 if (!device) {
bb21e302
AJ
798 unsigned int nofs_flag;
799
9c6d173e 800 if (fs_devices->opened) {
ed02363f 801 btrfs_err(NULL,
7f9879eb
AJ
802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
9c6d173e 805 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 806 return ERR_PTR(-EBUSY);
9c6d173e 807 }
2b82032c 808
bb21e302 809 nofs_flag = memalloc_nofs_save();
12bd2fc0 810 device = btrfs_alloc_device(NULL, &devid,
bb21e302
AJ
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
12bd2fc0 813 if (IS_ERR(device)) {
9c6d173e 814 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 815 /* we can safely leave the fs_devices entry around */
e124ece5 816 return device;
8a4b83cc 817 }
606686ee 818
4889bc05 819 device->devt = path_devt;
90519d66 820
1f78160c 821 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 822 fs_devices->num_devices++;
e5e9a520 823
2b82032c 824 device->fs_devices = fs_devices;
4306a974 825 *new_device_added = true;
327f18cc
AJ
826
827 if (disk_super->label[0])
aa6c0df7
AJ
828 pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
327f18cc 832 else
aa6c0df7
AJ
833 pr_info(
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
327f18cc 837
606686ee 838 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
839 /*
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
846 * different name. or
847 * b. The missing-disk-which-was-replaced, has
848 * reappeared now.
849 *
850 * We must allow 1 and 2a above. But 2b would be a spurious
851 * and unintentional.
852 *
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
857 */
858
859 /*
0f23ae74
CM
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
b96de000 864 */
0f23ae74 865 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
866 /*
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
872 */
9c6d173e 873 mutex_unlock(&fs_devices->device_list_mutex);
ed02363f
QW
874 btrfs_err(NULL,
875"device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
e124ece5 877 return ERR_PTR(-EEXIST);
77bdae4d 878 }
b96de000 879
a9261d41
AJ
880 /*
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
79c9234b
DM
883 *
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
887 * torn down.
a9261d41
AJ
888 */
889 if (device->bdev) {
4889bc05 890 if (device->devt != path_devt) {
a9261d41 891 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 892 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
895 current->comm,
896 task_pid_nr(current));
a9261d41
AJ
897 return ERR_PTR(-EEXIST);
898 }
79c9234b 899 btrfs_info_in_rcu(NULL,
79dae17d 900 "devid %llu device path %s changed to %s scanned by %s (%d)",
cb3e217b 901 devid, btrfs_dev_name(device),
79dae17d
AJ
902 path, current->comm,
903 task_pid_nr(current));
a9261d41
AJ
904 }
905
606686ee 906 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
907 if (!name) {
908 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 909 return ERR_PTR(-ENOMEM);
9c6d173e 910 }
606686ee
JB
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
e6e674bd 913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 914 fs_devices->missing_devices--;
e6e674bd 915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 916 }
4889bc05 917 device->devt = path_devt;
8a4b83cc
CM
918 }
919
77bdae4d
AJ
920 /*
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
924 * (as above).
925 */
d1a63002 926 if (!fs_devices->opened) {
77bdae4d 927 device->generation = found_transid;
d1a63002
NB
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
930 }
77bdae4d 931
f2788d2f
AJ
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933
9c6d173e 934 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 935 return device;
8a4b83cc
CM
936}
937
e4404d6e
YZ
938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939{
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
d2979aa2 943 int ret = 0;
e4404d6e 944
c1247069
AJ
945 lockdep_assert_held(&uuid_mutex);
946
f7361d8c 947 fs_devices = alloc_fs_devices(orig->fsid);
2208a378
ID
948 if (IS_ERR(fs_devices))
949 return fs_devices;
e4404d6e 950
02db0844 951 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
952
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
bb21e302
AJ
954 const char *dev_path = NULL;
955
956 /*
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
959 */
960 if (orig_dev->name)
961 dev_path = orig_dev->name->str;
606686ee 962
12bd2fc0 963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
bb21e302 964 orig_dev->uuid, dev_path);
d2979aa2
AJ
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
e4404d6e 967 goto error;
d2979aa2 968 }
e4404d6e 969
21e61ec6
JT
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
972
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 if (!zone_info) {
975 btrfs_free_device(device);
976 ret = -ENOMEM;
977 goto error;
978 }
979 device->zone_info = zone_info;
980 }
981
e4404d6e
YZ
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
985 }
986 return fs_devices;
987error:
988 free_fs_devices(fs_devices);
d2979aa2 989 return ERR_PTR(ret);
e4404d6e
YZ
990}
991
3712ccb7 992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 993 struct btrfs_device **latest_dev)
dfe25020 994{
c6e30871 995 struct btrfs_device *device, *next;
a6b0d5c8 996
46224705 997 /* This is the initialized path, it is safe to release the devices. */
c6e30871 998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1001 &device->dev_state) &&
998a0671
AJ
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
3712ccb7
NB
1004 (!*latest_dev ||
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
a6b0d5c8 1007 }
2b82032c 1008 continue;
a6b0d5c8 1009 }
2b82032c 1010
cf89af14
AJ
1011 /*
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1014 */
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 continue;
1017
9ae061cf
CB
1018 if (device->bdev_file) {
1019 fput(device->bdev_file);
2b82032c 1020 device->bdev = NULL;
9ae061cf 1021 device->bdev_file = NULL;
2b82032c
YZ
1022 fs_devices->open_devices--;
1023 }
ebbede42 1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1025 list_del_init(&device->dev_alloc_list);
ebbede42 1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1027 fs_devices->rw_devices--;
2b82032c 1028 }
e4404d6e
YZ
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
a425f9d4 1031 btrfs_free_device(device);
dfe25020 1032 }
2b82032c 1033
3712ccb7
NB
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
bacce86a 1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1041{
1042 struct btrfs_device *latest_dev = NULL;
944d3f9f 1043 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1044
1045 mutex_lock(&uuid_mutex);
bacce86a 1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1047
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1050
d24fa5c1 1051 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1052
dfe25020 1053 mutex_unlock(&uuid_mutex);
dfe25020 1054}
a0af469b 1055
14238819
AJ
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
08ffcae8
DS
1058 if (!device->bdev)
1059 return;
1060
ebbede42 1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1064 }
1065
9ae061cf 1066 fput(device->bdev_file);
14238819
AJ
1067}
1068
959b1c04 1069static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1070{
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1072
ebbede42 1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1077 }
1078
0d977e0e
DCZX
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
5d03dbeb
LZ
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1084 fs_devices->missing_devices--;
5d03dbeb 1085 }
f448341a 1086
959b1c04 1087 btrfs_close_bdev(device);
321f69f8 1088 if (device->bdev) {
3fff3975 1089 fs_devices->open_devices--;
321f69f8 1090 device->bdev = NULL;
f448341a 1091 }
321f69f8 1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1093 btrfs_destroy_dev_zone_info(device);
f448341a 1094
321f69f8
JT
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
959b1c04 1098
6b225baa
FM
1099 /*
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1109 */
1110 device->last_flush_error = 0;
1111
321f69f8 1112 /* Verify the device is back in a pristine state */
1f16033c
AJ
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
f448341a
AJ
1117}
1118
54eed6ae 1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1120{
2037a093 1121 struct btrfs_device *device, *tmp;
e4404d6e 1122
425c6ed6
JB
1123 lockdep_assert_held(&uuid_mutex);
1124
2b82032c 1125 if (--fs_devices->opened > 0)
54eed6ae 1126 return;
8a4b83cc 1127
425c6ed6 1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1129 btrfs_close_one_device(device);
c9513edb 1130
e4404d6e
YZ
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
2b82032c 1133 fs_devices->opened = 0;
0395d84f 1134 fs_devices->seeding = false;
c4989c2f 1135 fs_devices->fs_info = NULL;
8a4b83cc
CM
1136}
1137
54eed6ae 1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1139{
944d3f9f
NB
1140 LIST_HEAD(list);
1141 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1142
1143 mutex_lock(&uuid_mutex);
54eed6ae 1144 close_fs_devices(fs_devices);
5f58d783 1145 if (!fs_devices->opened) {
944d3f9f 1146 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1147
5f58d783
AJ
1148 /*
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1152 * fully freed.
1153 */
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1157 }
1158 }
1159
1160
944d3f9f 1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1162 close_fs_devices(fs_devices);
944d3f9f 1163 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1164 free_fs_devices(fs_devices);
1165 }
425c6ed6 1166 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1167}
1168
897fb573 1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
05bdb996 1170 blk_mode_t flags, void *holder)
8a4b83cc 1171{
8a4b83cc 1172 struct btrfs_device *device;
443f24fe 1173 struct btrfs_device *latest_dev = NULL;
96c2e067 1174 struct btrfs_device *tmp_device;
8a4b83cc 1175
96c2e067
AJ
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 dev_list) {
1178 int ret;
a0af469b 1179
96c2e067
AJ
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 if (ret == 0 &&
1182 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1183 latest_dev = device;
96c2e067
AJ
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1188 }
8a4b83cc 1189 }
1ed802c9
AJ
1190 if (fs_devices->open_devices == 0)
1191 return -EINVAL;
1192
2b82032c 1193 fs_devices->opened = 1;
d24fa5c1 1194 fs_devices->latest_dev = latest_dev;
2b82032c 1195 fs_devices->total_rw_bytes = 0;
c4a816c6 1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1198
1199 return 0;
2b82032c
YZ
1200}
1201
4f0f586b
ST
1202static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
f8e10cd3 1204{
214cc184 1205 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1206
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210 if (dev1->devid < dev2->devid)
1211 return -1;
1212 else if (dev1->devid > dev2->devid)
1213 return 1;
1214 return 0;
1215}
1216
2b82032c 1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
05bdb996 1218 blk_mode_t flags, void *holder)
2b82032c
YZ
1219{
1220 int ret;
1221
f5194e34 1222 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1223 /*
1224 * The device_list_mutex cannot be taken here in case opening the
a8698707 1225 * underlying device takes further locks like open_mutex.
18c850fd
JB
1226 *
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1229 */
f5194e34 1230
2b82032c 1231 if (fs_devices->opened) {
e4404d6e
YZ
1232 fs_devices->opened++;
1233 ret = 0;
2b82032c 1234 } else {
f8e10cd3 1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1236 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1237 }
542c5908 1238
8a4b83cc
CM
1239 return ret;
1240}
1241
8f32380d 1242void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1243{
8f32380d
JT
1244 struct page *page = virt_to_page(super);
1245
6cf86a00
AJ
1246 put_page(page);
1247}
1248
b335eab8 1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1250 u64 bytenr, u64 bytenr_orig)
6cf86a00 1251{
b335eab8
NB
1252 struct btrfs_super_block *disk_super;
1253 struct page *page;
6cf86a00
AJ
1254 void *p;
1255 pgoff_t index;
1256
1257 /* make sure our super fits in the device */
cda00eba 1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1259 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1260
1261 /* make sure our super fits in the page */
b335eab8
NB
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1264
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1269
1270 /* pull in the page with our super */
b335eab8 1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1272
b335eab8
NB
1273 if (IS_ERR(page))
1274 return ERR_CAST(page);
6cf86a00 1275
b335eab8 1276 p = page_address(page);
6cf86a00
AJ
1277
1278 /* align our pointer to the offset of the super block */
b335eab8 1279 disk_super = p + offset_in_page(bytenr);
6cf86a00 1280
12659251 1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1283 btrfs_release_disk_super(p);
b335eab8 1284 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1285 }
1286
b335eab8
NB
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1289
b335eab8 1290 return disk_super;
6cf86a00
AJ
1291}
1292
16cab91a 1293int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1294{
1295 int ret;
1296
1297 mutex_lock(&uuid_mutex);
16cab91a 1298 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1299 mutex_unlock(&uuid_mutex);
1300
1301 return ret;
1302}
1303
6f60cbd3
DS
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
bc27d6f0
AJ
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
6f60cbd3 1312 */
bc27d6f0
AJ
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 bool mount_arg_dev)
8a4b83cc
CM
1315{
1316 struct btrfs_super_block *disk_super;
4306a974 1317 bool new_device_added = false;
36350e95 1318 struct btrfs_device *device = NULL;
9ae061cf 1319 struct file *bdev_file;
12659251
NA
1320 u64 bytenr, bytenr_orig;
1321 int ret;
8a4b83cc 1322
899f9307
DS
1323 lockdep_assert_held(&uuid_mutex);
1324
6f60cbd3
DS
1325 /*
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 */
6f60cbd3 1331
50d281fc 1332 /*
2ef78928
CH
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
50d281fc
AJ
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1341 */
9ae061cf
CB
1342 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_file))
1344 return ERR_CAST(bdev_file);
6f60cbd3 1345
12659251 1346 bytenr_orig = btrfs_sb_offset(0);
9ae061cf 1347 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
4989d4a0
SK
1348 if (ret) {
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1351 }
12659251 1352
9ae061cf 1353 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
86ec15d0 1354 bytenr_orig);
b335eab8
NB
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
6f60cbd3 1357 goto error_bdev_put;
05a5c55d 1358 }
6f60cbd3 1359
bc27d6f0
AJ
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 dev_t devt;
1363
1364 ret = lookup_bdev(path, &devt);
1365 if (ret)
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 path, ret);
1368 else
1369 btrfs_free_stale_devices(devt, NULL);
1370
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 device = NULL;
1373 goto free_disk_super;
1374 }
1375
4306a974 1376 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1379
bc27d6f0 1380free_disk_super:
8f32380d 1381 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1382
1383error_bdev_put:
9ae061cf 1384 fput(bdev_file);
b6ed73bc 1385
36350e95 1386 return device;
8a4b83cc 1387}
0b86a832 1388
1c11b63e
JM
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1c11b63e
JM
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
6df9a95e 1395{
1c11b63e 1396 u64 physical_start, physical_end;
6df9a95e 1397
1c11b63e 1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1399
e5860f82
FM
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
c152b63e 1403
1c11b63e
JM
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
6df9a95e
JB
1409 }
1410 }
1c11b63e 1411 return false;
6df9a95e
JB
1412}
1413
ed8947bc 1414static u64 dev_extent_search_start(struct btrfs_device *device)
3b4ffa40
NA
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
ed8947bc 1418 return BTRFS_DEVICE_RANGE_RESERVED;
1cd6121f
NA
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1420 /*
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1424 */
ed8947bc 1425 return 0;
3b4ffa40
NA
1426 default:
1427 BUG();
1428 }
1429}
1430
1cd6121f
NA
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1433 u64 num_bytes)
1434{
1435 u64 zone_size = device->zone_info->zone_size;
1436 u64 pos;
1437 int ret;
1438 bool changed = false;
1439
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1445 num_bytes);
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1448 *hole_start = pos;
1449 changed = true;
1450 if (*hole_size < num_bytes)
1451 break;
1452 }
1453
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456 /* Range is ensured to be empty */
1457 if (!ret)
1458 return changed;
1459
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
d6f67afb 1463 *hole_size = 0;
7000babd 1464 return true;
1cd6121f
NA
1465 }
1466
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1469 changed = true;
1470 }
1471
1472 return changed;
1473}
1474
43dd529a
DS
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
3b4ffa40
NA
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1cd6121f 1483 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488{
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1cd6121f
NA
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
3b4ffa40 1523
3b4ffa40 1524 break;
3b4ffa40
NA
1525 }
1526
1527 return changed;
1528}
6df9a95e 1529
0b86a832 1530/*
43dd529a
DS
1531 * Find free space in the specified device.
1532 *
499f377f
JM
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
7bfc837d 1539 *
43dd529a
DS
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
7bfc837d
MX
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
135da976
QW
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1a9fd417 1555 * is not reported as available.
0b86a832 1556 */
ed8947bc
FM
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
0b86a832 1559{
0b246afa
JM
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1562 struct btrfs_key key;
7bfc837d 1563 struct btrfs_dev_extent *dev_extent;
2b82032c 1564 struct btrfs_path *path;
ed8947bc 1565 u64 search_start;
7bfc837d
MX
1566 u64 hole_size;
1567 u64 max_hole_start;
20218dfb 1568 u64 max_hole_size = 0;
7bfc837d 1569 u64 extent_end;
0b86a832
CM
1570 u64 search_end = device->total_bytes;
1571 int ret;
7bfc837d 1572 int slot;
0b86a832 1573 struct extent_buffer *l;
8cdc7c5b 1574
ed8947bc 1575 search_start = dev_extent_search_start(device);
20218dfb 1576 max_hole_start = search_start;
0b86a832 1577
1cd6121f
NA
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
6df9a95e 1581 path = btrfs_alloc_path();
20218dfb
JB
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto out;
1585 }
f2ab7618 1586again:
401e29c1
AJ
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1589 ret = -ENOSPC;
6df9a95e 1590 goto out;
7bfc837d
MX
1591 }
1592
e4058b54 1593 path->reada = READA_FORWARD;
6df9a95e
JB
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
7bfc837d 1596
0b86a832
CM
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1600
0ff40a91 1601 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1602 if (ret < 0)
7bfc837d 1603 goto out;
7bfc837d 1604
3c538de0 1605 while (search_start < search_end) {
0b86a832
CM
1606 l = path->nodes[0];
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret == 0)
1611 continue;
1612 if (ret < 0)
7bfc837d
MX
1613 goto out;
1614
1615 break;
0b86a832
CM
1616 }
1617 btrfs_item_key_to_cpu(l, &key, slot);
1618
1619 if (key.objectid < device->devid)
1620 goto next;
1621
1622 if (key.objectid > device->devid)
7bfc837d 1623 break;
0b86a832 1624
962a298f 1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1626 goto next;
9779b72f 1627
3c538de0
JB
1628 if (key.offset > search_end)
1629 break;
1630
7bfc837d
MX
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
3b4ffa40
NA
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1634 num_bytes);
6df9a95e 1635
7bfc837d
MX
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1639 }
9779b72f 1640
7bfc837d
MX
1641 /*
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1648 * caller.
1649 */
1650 if (hole_size >= num_bytes) {
1651 ret = 0;
1652 goto out;
0b86a832
CM
1653 }
1654 }
0b86a832 1655
0b86a832 1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1658 dev_extent);
1659 if (extent_end > search_start)
1660 search_start = extent_end;
0b86a832
CM
1661next:
1662 path->slots[0]++;
1663 cond_resched();
1664 }
0b86a832 1665
38c01b96 1666 /*
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1670 */
f2ab7618 1671 if (search_end > search_start) {
38c01b96 1672 hole_size = search_end - search_start;
3b4ffa40
NA
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 num_bytes)) {
f2ab7618
ZL
1675 btrfs_release_path(path);
1676 goto again;
1677 }
0b86a832 1678
f2ab7618
ZL
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1682 }
6df9a95e
JB
1683 }
1684
7bfc837d 1685 /* See above. */
f2ab7618 1686 if (max_hole_size < num_bytes)
7bfc837d
MX
1687 ret = -ENOSPC;
1688 else
1689 ret = 0;
1690
3c538de0 1691 ASSERT(max_hole_start + max_hole_size <= search_end);
7bfc837d 1692out:
2b82032c 1693 btrfs_free_path(path);
7bfc837d 1694 *start = max_hole_start;
b2117a39 1695 if (len)
7bfc837d 1696 *len = max_hole_size;
0b86a832
CM
1697 return ret;
1698}
1699
b2950863 1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1701 struct btrfs_device *device,
2196d6e8 1702 u64 start, u64 *dev_extent_len)
8f18cf13 1703{
0b246afa
JM
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1706 int ret;
1707 struct btrfs_path *path;
8f18cf13 1708 struct btrfs_key key;
a061fc8d
CM
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1712
1713 path = btrfs_alloc_path();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 key.objectid = device->devid;
1718 key.offset = start;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1720again:
8f18cf13 1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1722 if (ret > 0) {
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1725 if (ret)
1726 goto out;
a061fc8d
CM
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1733 key = found_key;
1734 btrfs_release_path(path);
1735 goto again;
a061fc8d
CM
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
79787eaa 1740 } else {
79787eaa 1741 goto out;
a061fc8d 1742 }
8f18cf13 1743
2196d6e8
MX
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
8f18cf13 1746 ret = btrfs_del_item(trans, root, path);
79bd3712 1747 if (ret == 0)
3204d33c 1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1749out:
8f18cf13
CM
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
6df9a95e 1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1755{
6df9a95e
JB
1756 struct rb_node *n;
1757 u64 ret = 0;
0b86a832 1758
7dc66abb
FM
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
6df9a95e 1761 if (n) {
7dc66abb
FM
1762 struct btrfs_chunk_map *map;
1763
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
0b86a832 1766 }
7dc66abb 1767 read_unlock(&fs_info->mapping_tree_lock);
6df9a95e 1768
0b86a832
CM
1769 return ret;
1770}
1771
53f10659
ID
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 u64 *devid_ret)
0b86a832
CM
1774{
1775 int ret;
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
2b82032c
YZ
1778 struct btrfs_path *path;
1779
2b82032c
YZ
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
0b86a832
CM
1783
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1787
53f10659 1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1789 if (ret < 0)
1790 goto error;
1791
a06dee4d
AJ
1792 if (ret == 0) {
1793 /* Corruption */
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = -EUCLEAN;
1796 goto error;
1797 }
0b86a832 1798
53f10659
ID
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1801 BTRFS_DEV_ITEM_KEY);
1802 if (ret) {
53f10659 1803 *devid_ret = 1;
0b86a832
CM
1804 } else {
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 path->slots[0]);
53f10659 1807 *devid_ret = found_key.offset + 1;
0b86a832
CM
1808 }
1809 ret = 0;
1810error:
2b82032c 1811 btrfs_free_path(path);
0b86a832
CM
1812 return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
c74a0b02 1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1820 struct btrfs_device *device)
0b86a832
CM
1821{
1822 int ret;
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1827 unsigned long ptr;
0b86a832 1828
0b86a832
CM
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
0b86a832
CM
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1835 key.offset = device->devid;
0b86a832 1836
2bb2e00e 1837 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
2bb2e00e 1840 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1841 if (ret)
1842 goto out;
1843
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1848 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
e17cade2
CM
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1861
410ba3a2 1862 ptr = btrfs_device_uuid(dev_item);
e17cade2 1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1864 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
50564b65 1867 btrfs_mark_buffer_dirty(trans, leaf);
0b86a832 1868
2b82032c 1869 ret = 0;
0b86a832
CM
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
8f18cf13 1874
5a1972bd
QW
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1880 */
54fde91f 1881static void update_dev_time(const char *device_path)
5a1972bd 1882{
54fde91f 1883 struct path path;
54fde91f 1884 int ret;
5a1972bd 1885
54fde91f
JB
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 if (ret)
5a1972bd 1888 return;
8f96a5bf 1889
913e9928 1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
54fde91f 1891 path_put(&path);
5a1972bd
QW
1892}
1893
bbac5869
QW
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
a061fc8d 1896{
f331a952 1897 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1898 int ret;
1899 struct btrfs_path *path;
a061fc8d 1900 struct btrfs_key key;
a061fc8d 1901
a061fc8d
CM
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
a061fc8d
CM
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
2bb2e00e 1910 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1912 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1913 if (ret) {
1914 if (ret > 0)
1915 ret = -ENOENT;
a061fc8d
CM
1916 goto out;
1917 }
1918
1919 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1920out:
1921 btrfs_free_path(path);
a061fc8d
CM
1922 return ret;
1923}
1924
3cc31a0d
DS
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 u64 num_devices)
a061fc8d 1932{
a061fc8d 1933 u64 all_avail;
de98ced9 1934 unsigned seq;
418775a2 1935 int i;
a061fc8d 1936
de98ced9 1937 do {
bd45ffbc 1938 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1939
bd45ffbc
AJ
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1944
418775a2 1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1947 continue;
a061fc8d 1948
efc222f8
AJ
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1951 }
1952
bd45ffbc 1953 return 0;
f1fa7f26
AJ
1954}
1955
c9162bdf
OS
1956static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1958{
2b82032c 1959 struct btrfs_device *next_device;
88acff64
AJ
1960
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
e6e674bd
AJ
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
88acff64
AJ
1965 return next_device;
1966 }
1967
1968 return NULL;
1969}
1970
1971/*
d24fa5c1 1972 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
b105e927 1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1978 struct btrfs_device *next_device)
88acff64 1979{
d6507cf1 1980 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1981
e493e8f9 1982 if (!next_device)
88acff64 1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 1984 device);
88acff64
AJ
1985 ASSERT(next_device);
1986
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1990
d24fa5c1
AJ
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
1993}
1994
1da73967
AJ
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2002
cb5583dd 2003 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2006 num_devices--;
2007 }
cb5583dd 2008 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2009
2010 return num_devices;
2011}
2012
0e0078f7
CH
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2015{
2016 struct btrfs_super_block *disk_super;
26ecf243
CH
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
0e0078f7
CH
2019 int ret;
2020
26ecf243 2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
0e0078f7
CH
2022 if (IS_ERR(disk_super))
2023 return;
2024
26ecf243
CH
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2028
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
0e0078f7
CH
2030 if (ret)
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 copy_num, ret);
0e0078f7
CH
2033}
2034
313b0858
JB
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
6fbceb9f 2038{
6fbceb9f
JT
2039 int copy_num;
2040
2041 if (!bdev)
2042 return;
2043
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
0e0078f7 2045 if (bdev_is_zoned(bdev))
12659251 2046 btrfs_reset_sb_log_zones(bdev, copy_num);
0e0078f7
CH
2047 else
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
6fbceb9f
JT
2049 }
2050
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054 /* Update ctime/mtime for device path for libblkid */
54fde91f 2055 update_dev_time(device_path);
6fbceb9f
JT
2056}
2057
1a15eb72
JB
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
9ae061cf 2060 struct file **bdev_file)
f1fa7f26 2061{
bbac5869 2062 struct btrfs_trans_handle *trans;
f1fa7f26 2063 struct btrfs_device *device;
1f78160c 2064 struct btrfs_fs_devices *cur_devices;
b5185197 2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2066 u64 num_devices;
a061fc8d
CM
2067 int ret = 0;
2068
914a519b
JB
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 return -EINVAL;
2072 }
2073
8ef9dc0f
JB
2074 /*
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2078 */
1da73967 2079 num_devices = btrfs_num_devices(fs_info);
8dabb742 2080
0b246afa 2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2082 if (ret)
bbac5869 2083 return ret;
a061fc8d 2084
1a15eb72
JB
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2086 if (!device) {
2087 if (args->missing)
a27a94c2
NB
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 else
1a15eb72 2090 ret = -ENOENT;
bbac5869 2091 return ret;
a27a94c2 2092 }
dfe25020 2093
eede2bf3
OS
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
cb3e217b 2097 btrfs_dev_name(device), device->devid);
bbac5869 2098 return -ETXTBSY;
eede2bf3
OS
2099 }
2100
bbac5869
QW
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2103
ebbede42 2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2107
ebbede42 2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2109 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2110 list_del_init(&device->dev_alloc_list);
c3929c36 2111 device->fs_devices->rw_devices--;
34441361 2112 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2113 }
a061fc8d
CM
2114
2115 ret = btrfs_shrink_device(device, 0);
2116 if (ret)
9b3517e9 2117 goto error_undo;
a061fc8d 2118
bbac5869
QW
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
9b3517e9 2122 goto error_undo;
bbac5869
QW
2123 }
2124
2125 ret = btrfs_rm_dev_item(trans, device);
2126 if (ret) {
2127 /* Any error in dev item removal is critical */
2128 btrfs_crit(fs_info,
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2133 return ret;
2134 }
a061fc8d 2135
e12c9621 2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2137 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
d7306801
FDBM
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
e5e9a520 2147 */
1f78160c 2148
41a52a0f
AJ
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
9675ea8c 2152 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2153 */
1f78160c 2154 cur_devices = device->fs_devices;
b5185197 2155 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2156 list_del_rcu(&device->dev_list);
e5e9a520 2157
41a52a0f
AJ
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
b4993e64
AJ
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2b82032c 2163
e6e674bd 2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2165 cur_devices->missing_devices--;
cd02dca5 2166
d6507cf1 2167 btrfs_assign_next_active_device(device, NULL);
2b82032c 2168
9ae061cf 2169 if (device->bdev_file) {
41a52a0f 2170 cur_devices->open_devices--;
0bfaa9c5 2171 /* remove sysfs entry */
53f8a74c 2172 btrfs_sysfs_remove_device(device);
0bfaa9c5 2173 }
99994cde 2174
0b246afa
JM
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2177 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2178
cea67ab9 2179 /*
3fa421de
JB
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2182 * free the device.
2183 *
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
9ae061cf
CB
2185 * write lock, and fput() on the block device will pull in the
2186 * ->open_mutex on the block device and it's dependencies. Instead
2187 * just flush the device and let the caller do the final bdev_release.
cea67ab9 2188 */
3fa421de 2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2191 device->name->str);
3fa421de
JB
2192 if (device->bdev) {
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2195 }
2196 }
cea67ab9 2197
9ae061cf 2198 *bdev_file = device->bdev_file;
8e75fd89
NB
2199 synchronize_rcu();
2200 btrfs_free_device(device);
cea67ab9 2201
8b41393f
JB
2202 /*
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2208 */
8e906945 2209 if (cur_devices->num_devices == 0) {
944d3f9f 2210 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
1f78160c 2213 free_fs_devices(cur_devices);
2b82032c
YZ
2214 }
2215
bbac5869
QW
2216 ret = btrfs_commit_transaction(trans);
2217
a061fc8d 2218 return ret;
24fc572f 2219
9b3517e9 2220error_undo:
ebbede42 2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2222 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2223 list_add(&device->dev_alloc_list,
b5185197 2224 &fs_devices->alloc_list);
c3929c36 2225 device->fs_devices->rw_devices++;
34441361 2226 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2227 }
bbac5869 2228 return ret;
a061fc8d
CM
2229}
2230
68a9db5f 2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2232{
d51908ce
AJ
2233 struct btrfs_fs_devices *fs_devices;
2234
68a9db5f 2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2236
25e8e911
AJ
2237 /*
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2242 */
2243 fs_devices = srcdev->fs_devices;
d51908ce 2244
e93c89c1 2245 list_del_rcu(&srcdev->dev_list);
619c47f3 2246 list_del(&srcdev->dev_alloc_list);
d51908ce 2247 fs_devices->num_devices--;
e6e674bd 2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2249 fs_devices->missing_devices--;
e93c89c1 2250
ebbede42 2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2252 fs_devices->rw_devices--;
1357272f 2253
82372bc8 2254 if (srcdev->bdev)
d51908ce 2255 fs_devices->open_devices--;
084b6e7c
QW
2256}
2257
65237ee3 2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2259{
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2261
a466c85e
JB
2262 mutex_lock(&uuid_mutex);
2263
14238819 2264 btrfs_close_bdev(srcdev);
8e75fd89
NB
2265 synchronize_rcu();
2266 btrfs_free_device(srcdev);
94d5f0c2 2267
94d5f0c2
AJ
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
6dd38f81
AJ
2270 /*
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2275 */
2276 ASSERT(fs_devices->seeding);
2277
944d3f9f 2278 list_del_init(&fs_devices->seed_list);
0226e0eb 2279 close_fs_devices(fs_devices);
8bef8401 2280 free_fs_devices(fs_devices);
94d5f0c2 2281 }
a466c85e 2282 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2283}
2284
4f5ad7bd 2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2286{
4f5ad7bd 2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2288
d9a071f0 2289 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2290
53f8a74c 2291 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2292
779bf3fe 2293 if (tgtdev->bdev)
d9a071f0 2294 fs_devices->open_devices--;
779bf3fe 2295
d9a071f0 2296 fs_devices->num_devices--;
e93c89c1 2297
d6507cf1 2298 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2299
e93c89c1 2300 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2301
d9a071f0 2302 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2303
8f32380d
JT
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 tgtdev->name->str);
14238819
AJ
2306
2307 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2308 synchronize_rcu();
2309 btrfs_free_device(tgtdev);
e93c89c1
SB
2310}
2311
43dd529a
DS
2312/*
2313 * Populate args from device at path.
faa775c4
JB
2314 *
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2332 const char *path)
7ba15b7d 2333{
7ba15b7d 2334 struct btrfs_super_block *disk_super;
9ae061cf 2335 struct file *bdev_file;
faa775c4 2336 int ret;
7ba15b7d 2337
faa775c4
JB
2338 if (!path || !path[0])
2339 return -EINVAL;
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2342 return 0;
2343 }
8f32380d 2344
faa775c4
JB
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2349 return -ENOMEM;
2350 }
8f32380d 2351
05bdb996 2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
9ae061cf 2353 &bdev_file, &disk_super);
9ea0106a
ZF
2354 if (ret) {
2355 btrfs_put_dev_args_from_path(args);
faa775c4 2356 return ret;
9ea0106a
ZF
2357 }
2358
faa775c4
JB
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2363 else
faa775c4 2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2365 btrfs_release_disk_super(disk_super);
9ae061cf 2366 fput(bdev_file);
faa775c4 2367 return 0;
7ba15b7d
SB
2368}
2369
5c5c0df0 2370/*
faa775c4
JB
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
5c5c0df0 2374 */
faa775c4
JB
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377 kfree(args->uuid);
2378 kfree(args->fsid);
2379 args->uuid = NULL;
2380 args->fsid = NULL;
2381}
2382
a27a94c2 2383struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
24e0474b 2386{
562d7b15 2387 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2388 struct btrfs_device *device;
faa775c4 2389 int ret;
24e0474b 2390
5c5c0df0 2391 if (devid) {
562d7b15
JB
2392 args.devid = devid;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2394 if (!device)
2395 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2396 return device;
2397 }
2398
faa775c4
JB
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 if (ret)
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2404 if (!device)
6e927ceb 2405 return ERR_PTR(-ENOENT);
faa775c4 2406 return device;
24e0474b
AJ
2407}
2408
849eae5e 2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2410{
0b246afa 2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2412 struct btrfs_fs_devices *old_devices;
e4404d6e 2413 struct btrfs_fs_devices *seed_devices;
2b82032c 2414
a32bf9a3 2415 lockdep_assert_held(&uuid_mutex);
e4404d6e 2416 if (!fs_devices->seeding)
849eae5e 2417 return ERR_PTR(-EINVAL);
2b82032c 2418
427c8fdd
NB
2419 /*
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2422 */
f7361d8c 2423 seed_devices = alloc_fs_devices(NULL);
2208a378 2424 if (IS_ERR(seed_devices))
849eae5e 2425 return seed_devices;
2b82032c 2426
427c8fdd
NB
2427 /*
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2431 * multiple fs seed.
2432 */
e4404d6e
YZ
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
849eae5e 2436 return old_devices;
2b82032c 2437 }
e4404d6e 2438
c4babc5e 2439 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2440
e4404d6e
YZ
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2445 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2446
849eae5e
AJ
2447 return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2456{
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2460 u64 super_flags;
2461
2462 /*
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2465 */
2466 lockdep_assert_held(&uuid_mutex);
2467
2468 /*
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2474 *
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2479 */
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2481
1f78160c
XG
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 synchronize_rcu);
2196d6e8
MX
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
c9513edb 2486
0395d84f 2487 fs_devices->seeding = false;
2b82032c
YZ
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
69611ac8 2490 fs_devices->missing_devices = 0;
7f0432d0 2491 fs_devices->rotating = false;
944d3f9f 2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2493
2494 generate_random_uuid(fs_devices->fsid);
7239ff4b 2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2497
2b82032c
YZ
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2501}
2502
2503/*
01327610 2504 * Store the expected generation for seed devices in device items.
2b82032c 2505 */
5c466629 2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2507{
562d7b15 2508 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2509 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2510 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
44880fdc 2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2b82032c
YZ
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2bb2e00e 2529 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2531 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2545 btrfs_release_path(path);
2b82032c
YZ
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
562d7b15 2556 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2558 BTRFS_UUID_SIZE);
1473b24e 2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2560 BTRFS_FSID_SIZE);
562d7b15
JB
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2564 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
50564b65 2569 btrfs_mark_buffer_dirty(trans, leaf);
2b82032c
YZ
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576error:
2577 btrfs_free_path(path);
2578 return ret;
2579}
2580
da353f6b 2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2582{
5112febb 2583 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
9ae061cf 2586 struct file *bdev_file;
0b246afa 2587 struct super_block *sb = fs_info->sb;
5da54bc1 2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8ba7d5f5 2589 struct btrfs_fs_devices *seed_devices = NULL;
39379faa
NA
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
788f20eb 2592 int ret = 0;
fd880809 2593 bool seeding_dev = false;
44cab9ba 2594 bool locked = false;
788f20eb 2595
5da54bc1 2596 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2597 return -EROFS;
788f20eb 2598
9ae061cf 2599 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
86ec15d0 2600 fs_info->bdev_holder, NULL);
9ae061cf
CB
2601 if (IS_ERR(bdev_file))
2602 return PTR_ERR(bdev_file);
a2135011 2603
9ae061cf 2604 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
b70f5097
NA
2605 ret = -EINVAL;
2606 goto error;
2607 }
2608
5da54bc1 2609 if (fs_devices->seeding) {
fd880809 2610 seeding_dev = true;
2b82032c
YZ
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
44cab9ba 2613 locked = true;
2b82032c
YZ
2614 }
2615
9ae061cf 2616 sync_blockdev(file_bdev(bdev_file));
a2135011 2617
f4cfa9bd
NB
2618 rcu_read_lock();
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
9ae061cf 2620 if (device->bdev == file_bdev(bdev_file)) {
788f20eb 2621 ret = -EEXIST;
f4cfa9bd 2622 rcu_read_unlock();
2b82032c 2623 goto error;
788f20eb
CM
2624 }
2625 }
f4cfa9bd 2626 rcu_read_unlock();
788f20eb 2627
bb21e302 2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
12bd2fc0 2629 if (IS_ERR(device)) {
788f20eb 2630 /* we can safely leave the fs_devices entry around */
12bd2fc0 2631 ret = PTR_ERR(device);
2b82032c 2632 goto error;
788f20eb
CM
2633 }
2634
5b316468 2635 device->fs_info = fs_info;
9ae061cf
CB
2636 device->bdev_file = bdev_file;
2637 device->bdev = file_bdev(bdev_file);
4889bc05
AJ
2638 ret = lookup_bdev(device_path, &device->devt);
2639 if (ret)
2640 goto error_free_device;
5b316468 2641
16beac87 2642 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2643 if (ret)
2644 goto error_free_device;
2645
a22285a6 2646 trans = btrfs_start_transaction(root, 0);
98d5dc13 2647 if (IS_ERR(trans)) {
98d5dc13 2648 ret = PTR_ERR(trans);
5b316468 2649 goto error_free_zone;
98d5dc13
TI
2650 }
2651
ebbede42 2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2653 device->generation = trans->transid;
0b246afa
JM
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
cda00eba 2657 device->total_bytes =
86ec15d0 2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2cc3c559 2659 device->disk_total_bytes = device->total_bytes;
935e5cc9 2660 device->commit_total_bytes = device->total_bytes;
e12c9621 2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
27087f37 2663 device->dev_stats_valid = 1;
9f6d2510 2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2665
2b82032c 2666 if (seeding_dev) {
a0a1db70 2667 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2668
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2673 btrfs_abort_transaction(trans, ret);
2674 goto error_trans;
2675 }
849eae5e
AJ
2676 }
2677
2678 mutex_lock(&fs_devices->device_list_mutex);
2679 if (seeding_dev) {
2680 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 device);
2b82032c 2683 }
788f20eb 2684
5da54bc1 2685 device->fs_devices = fs_devices;
e5e9a520 2686
34441361 2687 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2695
a5ed45f8 2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2697
86ec15d0 2698 if (!bdev_nonrot(device->bdev))
7f0432d0 2699 fs_devices->rotating = true;
c289811c 2700
39379faa 2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2702 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
788f20eb 2705
39379faa
NA
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
0d39376a 2709
2196d6e8
MX
2710 /*
2711 * we've got more storage, clear any full flags on the space
2712 * infos
2713 */
0b246afa 2714 btrfs_clear_space_info_full(fs_info);
2196d6e8 2715
34441361 2716 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2717
2718 /* Add sysfs device entry */
cd36da2e 2719 btrfs_sysfs_add_device(device);
ca10845a 2720
5da54bc1 2721 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2722
2b82032c 2723 if (seeding_dev) {
34441361 2724 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2725 ret = init_first_rw_device(trans);
34441361 2726 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2727 if (ret) {
66642832 2728 btrfs_abort_transaction(trans, ret);
d31c32f6 2729 goto error_sysfs;
005d6427 2730 }
2196d6e8
MX
2731 }
2732
8e87e856 2733 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2734 if (ret) {
66642832 2735 btrfs_abort_transaction(trans, ret);
d31c32f6 2736 goto error_sysfs;
2196d6e8
MX
2737 }
2738
2739 if (seeding_dev) {
5c466629 2740 ret = btrfs_finish_sprout(trans);
005d6427 2741 if (ret) {
66642832 2742 btrfs_abort_transaction(trans, ret);
d31c32f6 2743 goto error_sysfs;
005d6427 2744 }
b2373f25 2745
8e560081
NB
2746 /*
2747 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2748 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2749 */
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2751 }
2752
3a45bb20 2753 ret = btrfs_commit_transaction(trans);
a2135011 2754
2b82032c
YZ
2755 if (seeding_dev) {
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
44cab9ba 2758 locked = false;
788f20eb 2759
79787eaa
JM
2760 if (ret) /* transaction commit */
2761 return ret;
2762
2ff7e61e 2763 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2764 if (ret < 0)
0b246afa 2765 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2770 return 0;
7132a262
AJ
2771 ret = PTR_ERR(trans);
2772 trans = NULL;
2773 goto error_sysfs;
671415b7 2774 }
3a45bb20 2775 ret = btrfs_commit_transaction(trans);
2b82032c 2776 }
c9e9f97b 2777
7f551d96
AJ
2778 /*
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2781 * device.
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2784 */
4889bc05 2785 btrfs_forget_devices(device->devt);
7f551d96
AJ
2786
2787 /* Update ctime/mtime for blkid or udev */
54fde91f 2788 update_dev_time(device_path);
7f551d96 2789
2b82032c 2790 return ret;
79787eaa 2791
d31c32f6 2792error_sysfs:
53f8a74c 2793 btrfs_sysfs_remove_device(device);
39379faa
NA
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2810error_trans:
0af2c4bf 2811 if (seeding_dev)
a0a1db70 2812 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2813 if (trans)
2814 btrfs_end_transaction(trans);
5b316468
NA
2815error_free_zone:
2816 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2817error_free_device:
a425f9d4 2818 btrfs_free_device(device);
2b82032c 2819error:
9ae061cf 2820 fput(bdev_file);
44cab9ba 2821 if (locked) {
2b82032c
YZ
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2824 }
c9e9f97b 2825 return ret;
788f20eb
CM
2826}
2827
d397712b
CM
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
0b86a832
CM
2830{
2831 int ret;
2832 struct btrfs_path *path;
0b246afa 2833 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2837
0b86a832
CM
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 if (ret < 0)
2848 goto out;
2849
2850 if (ret > 0) {
2851 ret = -ENOENT;
2852 goto out;
2853 }
2854
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
50564b65 2867 btrfs_mark_buffer_dirty(trans, leaf);
0b86a832
CM
2868
2869out:
2870 btrfs_free_path(path);
2871 return ret;
2872}
2873
2196d6e8 2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2875 struct btrfs_device *device, u64 new_size)
2876{
0b246afa
JM
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2879 u64 old_total;
2880 u64 diff;
2bb2e00e 2881 int ret;
8f18cf13 2882
ebbede42 2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2884 return -EACCES;
2196d6e8 2885
7dfb8be1
NB
2886 new_size = round_down(new_size, fs_info->sectorsize);
2887
34441361 2888 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2889 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2891
63a212ab 2892 if (new_size <= device->total_bytes ||
401e29c1 2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2894 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2895 return -EINVAL;
2196d6e8 2896 }
2b82032c 2897
7dfb8be1
NB
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2b82032c 2900 device->fs_devices->total_rw_bytes += diff;
6f2d3c01 2901 atomic64_add(diff, &fs_info->free_chunk_space);
2b82032c 2902
7cc8e58d
MX
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2905 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
34441361 2909 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2910
2bb2e00e
FM
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2914
2915 return ret;
8f18cf13
CM
2916}
2917
f4208794 2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2919{
f4208794 2920 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2921 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2922 int ret;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2925
8f18cf13
CM
2926 path = btrfs_alloc_path();
2927 if (!path)
2928 return -ENOMEM;
2929
408fbf19 2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2935 if (ret < 0)
2936 goto out;
2937 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
79787eaa
JM
2940 ret = -ENOENT;
2941 goto out;
2942 }
8f18cf13
CM
2943
2944 ret = btrfs_del_item(trans, root, path);
79787eaa 2945 if (ret < 0)
0b246afa
JM
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
79787eaa 2948out:
8f18cf13 2949 btrfs_free_path(path);
65a246c5 2950 return ret;
8f18cf13
CM
2951}
2952
408fbf19 2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2954{
0b246afa 2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2958 u8 *ptr;
2959 int ret = 0;
2960 u32 num_stripes;
2961 u32 array_size;
2962 u32 len = 0;
2963 u32 cur;
2964 struct btrfs_key key;
2965
79bd3712 2966 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2967 array_size = btrfs_super_sys_array_size(super_copy);
2968
2969 ptr = super_copy->sys_chunk_array;
2970 cur = 0;
2971
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976 len = sizeof(*disk_key);
2977
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2982 } else {
2983 ret = -EIO;
2984 break;
2985 }
408fbf19 2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2989 array_size -= len;
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2991 } else {
2992 ptr += len;
2993 cur += len;
2994 }
2995 }
2996 return ret;
2997}
2998
7dc66abb
FM
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3001{
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3007
3008 while (node) {
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 prev = node;
3011 prev_map = map;
3012
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3017 } else {
3018 refcount_inc(&map->refs);
3019 return map;
3020 }
3021 }
3022
3023 if (!prev)
3024 return NULL;
3025
3026 orig_prev = prev;
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 }
3031
3032 if (!prev) {
3033 prev = orig_prev;
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 }
3039 }
3040
3041 if (prev) {
3042 u64 end = logical + length;
3043
3044 /*
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3048 */
3049 if (end < logical)
3050 end = U64_MAX;
3051
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3055 return prev_map;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3064{
3065 struct btrfs_chunk_map *map;
3066
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3070
3071 return map;
3072}
3073
60ca842e 3074/*
9580503b
DS
3075 * Find the mapping containing the given logical extent.
3076 *
60ca842e
OS
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
7dc66abb
FM
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
592d92ee 3084{
7dc66abb 3085 struct btrfs_chunk_map *map;
592d92ee 3086
7dc66abb 3087 map = btrfs_find_chunk_map(fs_info, logical, length);
592d92ee 3088
7dc66abb
FM
3089 if (unlikely(!map)) {
3090 read_unlock(&fs_info->mapping_tree_lock);
7d410d5e
FM
3091 btrfs_crit(fs_info,
3092 "unable to find chunk map for logical %llu length %llu",
592d92ee
LB
3093 logical, length);
3094 return ERR_PTR(-EINVAL);
3095 }
3096
7dc66abb
FM
3097 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3098 read_unlock(&fs_info->mapping_tree_lock);
592d92ee 3099 btrfs_crit(fs_info,
7d410d5e 3100 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
7dc66abb
FM
3101 logical, logical + length, map->start,
3102 map->start + map->chunk_len);
3103 btrfs_free_chunk_map(map);
592d92ee
LB
3104 return ERR_PTR(-EINVAL);
3105 }
3106
7dc66abb
FM
3107 /* Callers are responsible for dropping the reference. */
3108 return map;
592d92ee
LB
3109}
3110
79bd3712 3111static int remove_chunk_item(struct btrfs_trans_handle *trans,
7dc66abb 3112 struct btrfs_chunk_map *map, u64 chunk_offset)
79bd3712
FM
3113{
3114 int i;
3115
3116 /*
3117 * Removing chunk items and updating the device items in the chunks btree
3118 * requires holding the chunk_mutex.
3119 * See the comment at btrfs_chunk_alloc() for the details.
3120 */
3121 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3122
3123 for (i = 0; i < map->num_stripes; i++) {
3124 int ret;
3125
3126 ret = btrfs_update_device(trans, map->stripes[i].dev);
3127 if (ret)
3128 return ret;
3129 }
3130
3131 return btrfs_free_chunk(trans, chunk_offset);
3132}
3133
97aff912 3134int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3135{
97aff912 3136 struct btrfs_fs_info *fs_info = trans->fs_info;
7dc66abb 3137 struct btrfs_chunk_map *map;
2196d6e8 3138 u64 dev_extent_len = 0;
47ab2a6c 3139 int i, ret = 0;
0b246afa 3140 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3141
7dc66abb
FM
3142 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3143 if (IS_ERR(map)) {
47ab2a6c
JB
3144 /*
3145 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3146 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3147 * do anything we still error out.
3148 */
3149 ASSERT(0);
7dc66abb 3150 return PTR_ERR(map);
47ab2a6c 3151 }
8f18cf13 3152
57ba4cb8 3153 /*
79bd3712
FM
3154 * First delete the device extent items from the devices btree.
3155 * We take the device_list_mutex to avoid racing with the finishing phase
3156 * of a device replace operation. See the comment below before acquiring
3157 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3158 * because that can result in a deadlock when deleting the device extent
3159 * items from the devices btree - COWing an extent buffer from the btree
3160 * may result in allocating a new metadata chunk, which would attempt to
3161 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3162 */
3163 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3164 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3165 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3166 ret = btrfs_free_dev_extent(trans, device,
3167 map->stripes[i].physical,
3168 &dev_extent_len);
47ab2a6c 3169 if (ret) {
57ba4cb8 3170 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3171 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3172 goto out;
3173 }
a061fc8d 3174
2196d6e8 3175 if (device->bytes_used > 0) {
34441361 3176 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3177 btrfs_device_set_bytes_used(device,
3178 device->bytes_used - dev_extent_len);
a5ed45f8 3179 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3180 btrfs_clear_space_info_full(fs_info);
34441361 3181 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3182 }
79bd3712
FM
3183 }
3184 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3185
79bd3712
FM
3186 /*
3187 * We acquire fs_info->chunk_mutex for 2 reasons:
3188 *
3189 * 1) Just like with the first phase of the chunk allocation, we must
3190 * reserve system space, do all chunk btree updates and deletions, and
3191 * update the system chunk array in the superblock while holding this
3192 * mutex. This is for similar reasons as explained on the comment at
3193 * the top of btrfs_chunk_alloc();
3194 *
3195 * 2) Prevent races with the final phase of a device replace operation
3196 * that replaces the device object associated with the map's stripes,
3197 * because the device object's id can change at any time during that
3198 * final phase of the device replace operation
3199 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3200 * replaced device and then see it with an ID of
3201 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3202 * the device item, which does not exists on the chunk btree.
3203 * The finishing phase of device replace acquires both the
3204 * device_list_mutex and the chunk_mutex, in that order, so we are
3205 * safe by just acquiring the chunk_mutex.
3206 */
3207 trans->removing_chunk = true;
3208 mutex_lock(&fs_info->chunk_mutex);
3209
3210 check_system_chunk(trans, map->type);
3211
3212 ret = remove_chunk_item(trans, map, chunk_offset);
3213 /*
3214 * Normally we should not get -ENOSPC since we reserved space before
3215 * through the call to check_system_chunk().
3216 *
3217 * Despite our system space_info having enough free space, we may not
3218 * be able to allocate extents from its block groups, because all have
3219 * an incompatible profile, which will force us to allocate a new system
3220 * block group with the right profile, or right after we called
3221 * check_system_space() above, a scrub turned the only system block group
3222 * with enough free space into RO mode.
3223 * This is explained with more detail at do_chunk_alloc().
3224 *
3225 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3226 */
3227 if (ret == -ENOSPC) {
3228 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3229 struct btrfs_block_group *sys_bg;
3230
f6f39f7a 3231 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3232 if (IS_ERR(sys_bg)) {
3233 ret = PTR_ERR(sys_bg);
3234 btrfs_abort_transaction(trans, ret);
3235 goto out;
3236 }
3237
3238 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3239 if (ret) {
64bc6c2a
NB
3240 btrfs_abort_transaction(trans, ret);
3241 goto out;
dfe25020 3242 }
57ba4cb8 3243
79bd3712
FM
3244 ret = remove_chunk_item(trans, map, chunk_offset);
3245 if (ret) {
3246 btrfs_abort_transaction(trans, ret);
3247 goto out;
3248 }
3249 } else if (ret) {
66642832 3250 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3251 goto out;
3252 }
8f18cf13 3253
7dc66abb 3254 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
1abe9b8a 3255
8f18cf13 3256 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3257 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3258 if (ret) {
66642832 3259 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3260 goto out;
3261 }
8f18cf13
CM
3262 }
3263
79bd3712
FM
3264 mutex_unlock(&fs_info->chunk_mutex);
3265 trans->removing_chunk = false;
3266
3267 /*
3268 * We are done with chunk btree updates and deletions, so release the
3269 * system space we previously reserved (with check_system_chunk()).
3270 */
3271 btrfs_trans_release_chunk_metadata(trans);
3272
7dc66abb 3273 ret = btrfs_remove_block_group(trans, map);
47ab2a6c 3274 if (ret) {
66642832 3275 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3276 goto out;
3277 }
2b82032c 3278
47ab2a6c 3279out:
79bd3712
FM
3280 if (trans->removing_chunk) {
3281 mutex_unlock(&fs_info->chunk_mutex);
3282 trans->removing_chunk = false;
3283 }
2b82032c 3284 /* once for us */
7dc66abb 3285 btrfs_free_chunk_map(map);
47ab2a6c
JB
3286 return ret;
3287}
2b82032c 3288
18bb8bbf 3289int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3290{
5b4aacef 3291 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3292 struct btrfs_trans_handle *trans;
b0643e59 3293 struct btrfs_block_group *block_group;
01e86008 3294 u64 length;
47ab2a6c 3295 int ret;
2b82032c 3296
4b349253
JB
3297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3298 btrfs_err(fs_info,
3299 "relocate: not supported on extent tree v2 yet");
3300 return -EINVAL;
3301 }
3302
67c5e7d4
FM
3303 /*
3304 * Prevent races with automatic removal of unused block groups.
3305 * After we relocate and before we remove the chunk with offset
3306 * chunk_offset, automatic removal of the block group can kick in,
3307 * resulting in a failure when calling btrfs_remove_chunk() below.
3308 *
3309 * Make sure to acquire this mutex before doing a tree search (dev
3310 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3311 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3312 * we release the path used to search the chunk/dev tree and before
3313 * the current task acquires this mutex and calls us.
3314 */
f3372065 3315 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3316
47ab2a6c 3317 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3318 btrfs_scrub_pause(fs_info);
0b246afa 3319 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3320 btrfs_scrub_continue(fs_info);
2d82a40a
FM
3321 if (ret) {
3322 /*
3323 * If we had a transaction abort, stop all running scrubs.
3324 * See transaction.c:cleanup_transaction() why we do it here.
3325 */
3326 if (BTRFS_FS_ERROR(fs_info))
3327 btrfs_scrub_cancel(fs_info);
47ab2a6c 3328 return ret;
2d82a40a 3329 }
47ab2a6c 3330
b0643e59
DZ
3331 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3332 if (!block_group)
3333 return -ENOENT;
3334 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3335 length = block_group->length;
b0643e59
DZ
3336 btrfs_put_block_group(block_group);
3337
01e86008
JT
3338 /*
3339 * On a zoned file system, discard the whole block group, this will
3340 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3341 * resetting the zone fails, don't treat it as a fatal problem from the
3342 * filesystem's point of view.
3343 */
3344 if (btrfs_is_zoned(fs_info)) {
3345 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3346 if (ret)
3347 btrfs_info(fs_info,
3348 "failed to reset zone %llu after relocation",
3349 chunk_offset);
3350 }
3351
19c4d2f9
CM
3352 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3353 chunk_offset);
3354 if (IS_ERR(trans)) {
3355 ret = PTR_ERR(trans);
3356 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3357 return ret;
3358 }
3359
47ab2a6c 3360 /*
19c4d2f9
CM
3361 * step two, delete the device extents and the
3362 * chunk tree entries
47ab2a6c 3363 */
97aff912 3364 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3365 btrfs_end_transaction(trans);
19c4d2f9 3366 return ret;
2b82032c
YZ
3367}
3368
2ff7e61e 3369static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3370{
0b246afa 3371 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3372 struct btrfs_path *path;
3373 struct extent_buffer *leaf;
3374 struct btrfs_chunk *chunk;
3375 struct btrfs_key key;
3376 struct btrfs_key found_key;
2b82032c 3377 u64 chunk_type;
ba1bf481
JB
3378 bool retried = false;
3379 int failed = 0;
2b82032c
YZ
3380 int ret;
3381
3382 path = btrfs_alloc_path();
3383 if (!path)
3384 return -ENOMEM;
3385
ba1bf481 3386again:
2b82032c
YZ
3387 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3388 key.offset = (u64)-1;
3389 key.type = BTRFS_CHUNK_ITEM_KEY;
3390
3391 while (1) {
f3372065 3392 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3393 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3394 if (ret < 0) {
f3372065 3395 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3396 goto error;
67c5e7d4 3397 }
79787eaa 3398 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3399
3400 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3401 key.type);
67c5e7d4 3402 if (ret)
f3372065 3403 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3404 if (ret < 0)
3405 goto error;
3406 if (ret > 0)
3407 break;
1a40e23b 3408
2b82032c
YZ
3409 leaf = path->nodes[0];
3410 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3411
2b82032c
YZ
3412 chunk = btrfs_item_ptr(leaf, path->slots[0],
3413 struct btrfs_chunk);
3414 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3415 btrfs_release_path(path);
8f18cf13 3416
2b82032c 3417 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3418 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3419 if (ret == -ENOSPC)
3420 failed++;
14586651
HS
3421 else
3422 BUG_ON(ret);
2b82032c 3423 }
f3372065 3424 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3425
2b82032c
YZ
3426 if (found_key.offset == 0)
3427 break;
3428 key.offset = found_key.offset - 1;
3429 }
3430 ret = 0;
ba1bf481
JB
3431 if (failed && !retried) {
3432 failed = 0;
3433 retried = true;
3434 goto again;
fae7f21c 3435 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3436 ret = -ENOSPC;
3437 }
2b82032c
YZ
3438error:
3439 btrfs_free_path(path);
3440 return ret;
8f18cf13
CM
3441}
3442
a6f93c71
LB
3443/*
3444 * return 1 : allocate a data chunk successfully,
3445 * return <0: errors during allocating a data chunk,
3446 * return 0 : no need to allocate a data chunk.
3447 */
3448static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3449 u64 chunk_offset)
3450{
32da5386 3451 struct btrfs_block_group *cache;
a6f93c71
LB
3452 u64 bytes_used;
3453 u64 chunk_type;
3454
3455 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3456 ASSERT(cache);
3457 chunk_type = cache->flags;
3458 btrfs_put_block_group(cache);
3459
5ae21692
JT
3460 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3461 return 0;
3462
3463 spin_lock(&fs_info->data_sinfo->lock);
3464 bytes_used = fs_info->data_sinfo->bytes_used;
3465 spin_unlock(&fs_info->data_sinfo->lock);
3466
3467 if (!bytes_used) {
3468 struct btrfs_trans_handle *trans;
3469 int ret;
3470
3471 trans = btrfs_join_transaction(fs_info->tree_root);
3472 if (IS_ERR(trans))
3473 return PTR_ERR(trans);
3474
3475 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3476 btrfs_end_transaction(trans);
3477 if (ret < 0)
3478 return ret;
3479 return 1;
a6f93c71 3480 }
5ae21692 3481
a6f93c71
LB
3482 return 0;
3483}
3484
6bccf3ab 3485static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3486 struct btrfs_balance_control *bctl)
3487{
6bccf3ab 3488 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3489 struct btrfs_trans_handle *trans;
3490 struct btrfs_balance_item *item;
3491 struct btrfs_disk_balance_args disk_bargs;
3492 struct btrfs_path *path;
3493 struct extent_buffer *leaf;
3494 struct btrfs_key key;
3495 int ret, err;
3496
3497 path = btrfs_alloc_path();
3498 if (!path)
3499 return -ENOMEM;
3500
3501 trans = btrfs_start_transaction(root, 0);
3502 if (IS_ERR(trans)) {
3503 btrfs_free_path(path);
3504 return PTR_ERR(trans);
3505 }
3506
3507 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3508 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3509 key.offset = 0;
3510
3511 ret = btrfs_insert_empty_item(trans, root, path, &key,
3512 sizeof(*item));
3513 if (ret)
3514 goto out;
3515
3516 leaf = path->nodes[0];
3517 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3518
b159fa28 3519 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3520
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3522 btrfs_set_balance_data(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3524 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3525 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3526 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3527
3528 btrfs_set_balance_flags(leaf, item, bctl->flags);
3529
50564b65 3530 btrfs_mark_buffer_dirty(trans, leaf);
0940ebf6
ID
3531out:
3532 btrfs_free_path(path);
3a45bb20 3533 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3534 if (err && !ret)
3535 ret = err;
3536 return ret;
3537}
3538
6bccf3ab 3539static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3540{
6bccf3ab 3541 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3542 struct btrfs_trans_handle *trans;
3543 struct btrfs_path *path;
3544 struct btrfs_key key;
3545 int ret, err;
3546
3547 path = btrfs_alloc_path();
3548 if (!path)
3549 return -ENOMEM;
3550
3502a8c0 3551 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3552 if (IS_ERR(trans)) {
3553 btrfs_free_path(path);
3554 return PTR_ERR(trans);
3555 }
3556
3557 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3558 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3559 key.offset = 0;
3560
3561 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3562 if (ret < 0)
3563 goto out;
3564 if (ret > 0) {
3565 ret = -ENOENT;
3566 goto out;
3567 }
3568
3569 ret = btrfs_del_item(trans, root, path);
3570out:
3571 btrfs_free_path(path);
3a45bb20 3572 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3573 if (err && !ret)
3574 ret = err;
3575 return ret;
3576}
3577
59641015
ID
3578/*
3579 * This is a heuristic used to reduce the number of chunks balanced on
3580 * resume after balance was interrupted.
3581 */
3582static void update_balance_args(struct btrfs_balance_control *bctl)
3583{
3584 /*
3585 * Turn on soft mode for chunk types that were being converted.
3586 */
3587 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3592 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3593
3594 /*
3595 * Turn on usage filter if is not already used. The idea is
3596 * that chunks that we have already balanced should be
3597 * reasonably full. Don't do it for chunks that are being
3598 * converted - that will keep us from relocating unconverted
3599 * (albeit full) chunks.
3600 */
3601 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3602 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3603 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3604 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3605 bctl->data.usage = 90;
3606 }
3607 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3608 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3609 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3610 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3611 bctl->sys.usage = 90;
3612 }
3613 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3614 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3615 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3616 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3617 bctl->meta.usage = 90;
3618 }
3619}
3620
149196a2
DS
3621/*
3622 * Clear the balance status in fs_info and delete the balance item from disk.
3623 */
3624static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3625{
3626 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3627 int ret;
c9e9f97b
ID
3628
3629 BUG_ON(!fs_info->balance_ctl);
3630
3631 spin_lock(&fs_info->balance_lock);
3632 fs_info->balance_ctl = NULL;
3633 spin_unlock(&fs_info->balance_lock);
3634
3635 kfree(bctl);
149196a2
DS
3636 ret = del_balance_item(fs_info);
3637 if (ret)
3638 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3639}
3640
ed25e9b2
ID
3641/*
3642 * Balance filters. Return 1 if chunk should be filtered out
3643 * (should not be balanced).
3644 */
899c81ea 3645static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3646 struct btrfs_balance_args *bargs)
3647{
899c81ea
ID
3648 chunk_type = chunk_to_extended(chunk_type) &
3649 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3650
899c81ea 3651 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3652 return 0;
3653
3654 return 1;
3655}
3656
dba72cb3 3657static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3658 struct btrfs_balance_args *bargs)
bc309467 3659{
32da5386 3660 struct btrfs_block_group *cache;
bc309467
DS
3661 u64 chunk_used;
3662 u64 user_thresh_min;
3663 u64 user_thresh_max;
3664 int ret = 1;
3665
3666 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3667 chunk_used = cache->used;
bc309467
DS
3668
3669 if (bargs->usage_min == 0)
3670 user_thresh_min = 0;
3671 else
428c8e03 3672 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
bc309467
DS
3673
3674 if (bargs->usage_max == 0)
3675 user_thresh_max = 1;
3676 else if (bargs->usage_max > 100)
b3470b5d 3677 user_thresh_max = cache->length;
bc309467 3678 else
428c8e03 3679 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
bc309467
DS
3680
3681 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3682 ret = 0;
3683
3684 btrfs_put_block_group(cache);
3685 return ret;
3686}
3687
dba72cb3 3688static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3689 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3690{
32da5386 3691 struct btrfs_block_group *cache;
5ce5b3c0
ID
3692 u64 chunk_used, user_thresh;
3693 int ret = 1;
3694
3695 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3696 chunk_used = cache->used;
5ce5b3c0 3697
bc309467 3698 if (bargs->usage_min == 0)
3e39cea6 3699 user_thresh = 1;
a105bb88 3700 else if (bargs->usage > 100)
b3470b5d 3701 user_thresh = cache->length;
a105bb88 3702 else
428c8e03 3703 user_thresh = mult_perc(cache->length, bargs->usage);
a105bb88 3704
5ce5b3c0
ID
3705 if (chunk_used < user_thresh)
3706 ret = 0;
3707
3708 btrfs_put_block_group(cache);
3709 return ret;
3710}
3711
409d404b
ID
3712static int chunk_devid_filter(struct extent_buffer *leaf,
3713 struct btrfs_chunk *chunk,
3714 struct btrfs_balance_args *bargs)
3715{
3716 struct btrfs_stripe *stripe;
3717 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3718 int i;
3719
3720 for (i = 0; i < num_stripes; i++) {
3721 stripe = btrfs_stripe_nr(chunk, i);
3722 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3723 return 0;
3724 }
3725
3726 return 1;
3727}
3728
946c9256
DS
3729static u64 calc_data_stripes(u64 type, int num_stripes)
3730{
3731 const int index = btrfs_bg_flags_to_raid_index(type);
3732 const int ncopies = btrfs_raid_array[index].ncopies;
3733 const int nparity = btrfs_raid_array[index].nparity;
3734
d58ede8d 3735 return (num_stripes - nparity) / ncopies;
946c9256
DS
3736}
3737
94e60d5a
ID
3738/* [pstart, pend) */
3739static int chunk_drange_filter(struct extent_buffer *leaf,
3740 struct btrfs_chunk *chunk,
94e60d5a
ID
3741 struct btrfs_balance_args *bargs)
3742{
3743 struct btrfs_stripe *stripe;
3744 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3745 u64 stripe_offset;
3746 u64 stripe_length;
946c9256 3747 u64 type;
94e60d5a
ID
3748 int factor;
3749 int i;
3750
3751 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3752 return 0;
3753
946c9256
DS
3754 type = btrfs_chunk_type(leaf, chunk);
3755 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3756
3757 for (i = 0; i < num_stripes; i++) {
3758 stripe = btrfs_stripe_nr(chunk, i);
3759 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3760 continue;
3761
3762 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3763 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3764 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3765
3766 if (stripe_offset < bargs->pend &&
3767 stripe_offset + stripe_length > bargs->pstart)
3768 return 0;
3769 }
3770
3771 return 1;
3772}
3773
ea67176a
ID
3774/* [vstart, vend) */
3775static int chunk_vrange_filter(struct extent_buffer *leaf,
3776 struct btrfs_chunk *chunk,
3777 u64 chunk_offset,
3778 struct btrfs_balance_args *bargs)
3779{
3780 if (chunk_offset < bargs->vend &&
3781 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3782 /* at least part of the chunk is inside this vrange */
3783 return 0;
3784
3785 return 1;
3786}
3787
dee32d0a
GAP
3788static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3789 struct btrfs_chunk *chunk,
3790 struct btrfs_balance_args *bargs)
3791{
3792 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3793
3794 if (bargs->stripes_min <= num_stripes
3795 && num_stripes <= bargs->stripes_max)
3796 return 0;
3797
3798 return 1;
3799}
3800
899c81ea 3801static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3802 struct btrfs_balance_args *bargs)
3803{
3804 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3805 return 0;
3806
899c81ea
ID
3807 chunk_type = chunk_to_extended(chunk_type) &
3808 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3809
899c81ea 3810 if (bargs->target == chunk_type)
cfa4c961
ID
3811 return 1;
3812
3813 return 0;
3814}
3815
6ec0896c 3816static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3817 struct btrfs_chunk *chunk, u64 chunk_offset)
3818{
6ec0896c 3819 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3820 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3821 struct btrfs_balance_args *bargs = NULL;
3822 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3823
3824 /* type filter */
3825 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3826 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3827 return 0;
3828 }
3829
3830 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3831 bargs = &bctl->data;
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3833 bargs = &bctl->sys;
3834 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3835 bargs = &bctl->meta;
3836
ed25e9b2
ID
3837 /* profiles filter */
3838 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3839 chunk_profiles_filter(chunk_type, bargs)) {
3840 return 0;
5ce5b3c0
ID
3841 }
3842
3843 /* usage filter */
3844 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3845 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3846 return 0;
bc309467 3847 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3848 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3849 return 0;
409d404b
ID
3850 }
3851
3852 /* devid filter */
3853 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3854 chunk_devid_filter(leaf, chunk, bargs)) {
3855 return 0;
94e60d5a
ID
3856 }
3857
3858 /* drange filter, makes sense only with devid filter */
3859 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3860 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3861 return 0;
ea67176a
ID
3862 }
3863
3864 /* vrange filter */
3865 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3866 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3867 return 0;
ed25e9b2
ID
3868 }
3869
dee32d0a
GAP
3870 /* stripes filter */
3871 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3872 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3873 return 0;
3874 }
3875
cfa4c961
ID
3876 /* soft profile changing mode */
3877 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3878 chunk_soft_convert_filter(chunk_type, bargs)) {
3879 return 0;
3880 }
3881
7d824b6f
DS
3882 /*
3883 * limited by count, must be the last filter
3884 */
3885 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3886 if (bargs->limit == 0)
3887 return 0;
3888 else
3889 bargs->limit--;
12907fc7
DS
3890 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3891 /*
3892 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3893 * determined here because we do not have the global information
12907fc7
DS
3894 * about the count of all chunks that satisfy the filters.
3895 */
3896 if (bargs->limit_max == 0)
3897 return 0;
3898 else
3899 bargs->limit_max--;
7d824b6f
DS
3900 }
3901
f43ffb60
ID
3902 return 1;
3903}
3904
c9e9f97b 3905static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3906{
19a39dce 3907 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3908 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3909 u64 chunk_type;
f43ffb60 3910 struct btrfs_chunk *chunk;
5a488b9d 3911 struct btrfs_path *path = NULL;
ec44a35c 3912 struct btrfs_key key;
ec44a35c 3913 struct btrfs_key found_key;
f43ffb60
ID
3914 struct extent_buffer *leaf;
3915 int slot;
c9e9f97b
ID
3916 int ret;
3917 int enospc_errors = 0;
19a39dce 3918 bool counting = true;
12907fc7 3919 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3920 u64 limit_data = bctl->data.limit;
3921 u64 limit_meta = bctl->meta.limit;
3922 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3923 u32 count_data = 0;
3924 u32 count_meta = 0;
3925 u32 count_sys = 0;
2c9fe835 3926 int chunk_reserved = 0;
ec44a35c 3927
ec44a35c 3928 path = btrfs_alloc_path();
17e9f796
MF
3929 if (!path) {
3930 ret = -ENOMEM;
3931 goto error;
3932 }
19a39dce
ID
3933
3934 /* zero out stat counters */
3935 spin_lock(&fs_info->balance_lock);
3936 memset(&bctl->stat, 0, sizeof(bctl->stat));
3937 spin_unlock(&fs_info->balance_lock);
3938again:
7d824b6f 3939 if (!counting) {
12907fc7
DS
3940 /*
3941 * The single value limit and min/max limits use the same bytes
3942 * in the
3943 */
7d824b6f
DS
3944 bctl->data.limit = limit_data;
3945 bctl->meta.limit = limit_meta;
3946 bctl->sys.limit = limit_sys;
3947 }
ec44a35c
CM
3948 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3949 key.offset = (u64)-1;
3950 key.type = BTRFS_CHUNK_ITEM_KEY;
3951
d397712b 3952 while (1) {
19a39dce 3953 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3954 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3955 ret = -ECANCELED;
3956 goto error;
3957 }
3958
f3372065 3959 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3960 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3961 if (ret < 0) {
f3372065 3962 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3963 goto error;
67c5e7d4 3964 }
ec44a35c
CM
3965
3966 /*
3967 * this shouldn't happen, it means the last relocate
3968 * failed
3969 */
3970 if (ret == 0)
c9e9f97b 3971 BUG(); /* FIXME break ? */
ec44a35c
CM
3972
3973 ret = btrfs_previous_item(chunk_root, path, 0,
3974 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3975 if (ret) {
f3372065 3976 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3977 ret = 0;
ec44a35c 3978 break;
c9e9f97b 3979 }
7d9eb12c 3980
f43ffb60
ID
3981 leaf = path->nodes[0];
3982 slot = path->slots[0];
3983 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3984
67c5e7d4 3985 if (found_key.objectid != key.objectid) {
f3372065 3986 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3987 break;
67c5e7d4 3988 }
7d9eb12c 3989
f43ffb60 3990 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3991 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3992
19a39dce
ID
3993 if (!counting) {
3994 spin_lock(&fs_info->balance_lock);
3995 bctl->stat.considered++;
3996 spin_unlock(&fs_info->balance_lock);
3997 }
3998
6ec0896c 3999 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 4000
b3b4aa74 4001 btrfs_release_path(path);
67c5e7d4 4002 if (!ret) {
f3372065 4003 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 4004 goto loop;
67c5e7d4 4005 }
f43ffb60 4006
19a39dce 4007 if (counting) {
f3372065 4008 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
4009 spin_lock(&fs_info->balance_lock);
4010 bctl->stat.expected++;
4011 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
4012
4013 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4014 count_data++;
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4016 count_sys++;
4017 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4018 count_meta++;
4019
4020 goto loop;
4021 }
4022
4023 /*
4024 * Apply limit_min filter, no need to check if the LIMITS
4025 * filter is used, limit_min is 0 by default
4026 */
4027 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4028 count_data < bctl->data.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4030 count_meta < bctl->meta.limit_min)
4031 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4032 count_sys < bctl->sys.limit_min)) {
f3372065 4033 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
4034 goto loop;
4035 }
4036
a6f93c71
LB
4037 if (!chunk_reserved) {
4038 /*
4039 * We may be relocating the only data chunk we have,
4040 * which could potentially end up with losing data's
4041 * raid profile, so lets allocate an empty one in
4042 * advance.
4043 */
4044 ret = btrfs_may_alloc_data_chunk(fs_info,
4045 found_key.offset);
2c9fe835 4046 if (ret < 0) {
f3372065 4047 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 4048 goto error;
a6f93c71
LB
4049 } else if (ret == 1) {
4050 chunk_reserved = 1;
2c9fe835 4051 }
2c9fe835
ZL
4052 }
4053
5b4aacef 4054 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 4055 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 4056 if (ret == -ENOSPC) {
c9e9f97b 4057 enospc_errors++;
eede2bf3
OS
4058 } else if (ret == -ETXTBSY) {
4059 btrfs_info(fs_info,
4060 "skipping relocation of block group %llu due to active swapfile",
4061 found_key.offset);
4062 ret = 0;
4063 } else if (ret) {
4064 goto error;
19a39dce
ID
4065 } else {
4066 spin_lock(&fs_info->balance_lock);
4067 bctl->stat.completed++;
4068 spin_unlock(&fs_info->balance_lock);
4069 }
f43ffb60 4070loop:
795a3321
ID
4071 if (found_key.offset == 0)
4072 break;
ba1bf481 4073 key.offset = found_key.offset - 1;
ec44a35c 4074 }
c9e9f97b 4075
19a39dce
ID
4076 if (counting) {
4077 btrfs_release_path(path);
4078 counting = false;
4079 goto again;
4080 }
ec44a35c
CM
4081error:
4082 btrfs_free_path(path);
c9e9f97b 4083 if (enospc_errors) {
efe120a0 4084 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4085 enospc_errors);
c9e9f97b
ID
4086 if (!ret)
4087 ret = -ENOSPC;
4088 }
4089
ec44a35c
CM
4090 return ret;
4091}
4092
43dd529a
DS
4093/*
4094 * See if a given profile is valid and reduced.
4095 *
4096 * @flags: profile to validate
4097 * @extended: if true @flags is treated as an extended profile
0c460c0d
ID
4098 */
4099static int alloc_profile_is_valid(u64 flags, int extended)
4100{
4101 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4102 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4103
4104 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4105
4106 /* 1) check that all other bits are zeroed */
4107 if (flags & ~mask)
4108 return 0;
4109
4110 /* 2) see if profile is reduced */
4111 if (flags == 0)
4112 return !extended; /* "0" is valid for usual profiles */
4113
c1499166 4114 return has_single_bit_set(flags);
0c460c0d
ID
4115}
4116
5ba366c3
DS
4117/*
4118 * Validate target profile against allowed profiles and return true if it's OK.
4119 * Otherwise print the error message and return false.
4120 */
4121static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4122 const struct btrfs_balance_args *bargs,
4123 u64 allowed, const char *type)
bdcd3c97 4124{
5ba366c3
DS
4125 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4126 return true;
4127
4128 /* Profile is valid and does not have bits outside of the allowed set */
4129 if (alloc_profile_is_valid(bargs->target, 1) &&
4130 (bargs->target & ~allowed) == 0)
4131 return true;
4132
4133 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4134 type, btrfs_bg_type_to_raid_name(bargs->target));
4135 return false;
bdcd3c97
AM
4136}
4137
56fc37d9
AJ
4138/*
4139 * Fill @buf with textual description of balance filter flags @bargs, up to
4140 * @size_buf including the terminating null. The output may be trimmed if it
4141 * does not fit into the provided buffer.
4142 */
4143static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4144 u32 size_buf)
4145{
4146 int ret;
4147 u32 size_bp = size_buf;
4148 char *bp = buf;
4149 u64 flags = bargs->flags;
4150 char tmp_buf[128] = {'\0'};
4151
4152 if (!flags)
4153 return;
4154
4155#define CHECK_APPEND_NOARG(a) \
4156 do { \
4157 ret = snprintf(bp, size_bp, (a)); \
4158 if (ret < 0 || ret >= size_bp) \
4159 goto out_overflow; \
4160 size_bp -= ret; \
4161 bp += ret; \
4162 } while (0)
4163
4164#define CHECK_APPEND_1ARG(a, v1) \
4165 do { \
4166 ret = snprintf(bp, size_bp, (a), (v1)); \
4167 if (ret < 0 || ret >= size_bp) \
4168 goto out_overflow; \
4169 size_bp -= ret; \
4170 bp += ret; \
4171 } while (0)
4172
4173#define CHECK_APPEND_2ARG(a, v1, v2) \
4174 do { \
4175 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4176 if (ret < 0 || ret >= size_bp) \
4177 goto out_overflow; \
4178 size_bp -= ret; \
4179 bp += ret; \
4180 } while (0)
4181
158da513
DS
4182 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4183 CHECK_APPEND_1ARG("convert=%s,",
4184 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4185
4186 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4187 CHECK_APPEND_NOARG("soft,");
4188
4189 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4190 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4191 sizeof(tmp_buf));
4192 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4193 }
4194
4195 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4196 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4197
4198 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4199 CHECK_APPEND_2ARG("usage=%u..%u,",
4200 bargs->usage_min, bargs->usage_max);
4201
4202 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4203 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4204
4205 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4206 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4207 bargs->pstart, bargs->pend);
4208
4209 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4210 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4211 bargs->vstart, bargs->vend);
4212
4213 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4214 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4215
4216 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4217 CHECK_APPEND_2ARG("limit=%u..%u,",
4218 bargs->limit_min, bargs->limit_max);
4219
4220 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4221 CHECK_APPEND_2ARG("stripes=%u..%u,",
4222 bargs->stripes_min, bargs->stripes_max);
4223
4224#undef CHECK_APPEND_2ARG
4225#undef CHECK_APPEND_1ARG
4226#undef CHECK_APPEND_NOARG
4227
4228out_overflow:
4229
4230 if (size_bp < size_buf)
4231 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4232 else
4233 buf[0] = '\0';
4234}
4235
4236static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4237{
4238 u32 size_buf = 1024;
4239 char tmp_buf[192] = {'\0'};
4240 char *buf;
4241 char *bp;
4242 u32 size_bp = size_buf;
4243 int ret;
4244 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4245
4246 buf = kzalloc(size_buf, GFP_KERNEL);
4247 if (!buf)
4248 return;
4249
4250 bp = buf;
4251
4252#define CHECK_APPEND_1ARG(a, v1) \
4253 do { \
4254 ret = snprintf(bp, size_bp, (a), (v1)); \
4255 if (ret < 0 || ret >= size_bp) \
4256 goto out_overflow; \
4257 size_bp -= ret; \
4258 bp += ret; \
4259 } while (0)
4260
4261 if (bctl->flags & BTRFS_BALANCE_FORCE)
4262 CHECK_APPEND_1ARG("%s", "-f ");
4263
4264 if (bctl->flags & BTRFS_BALANCE_DATA) {
4265 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4266 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4267 }
4268
4269 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4270 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4271 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4272 }
4273
4274 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4275 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4276 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4277 }
4278
4279#undef CHECK_APPEND_1ARG
4280
4281out_overflow:
4282
4283 if (size_bp < size_buf)
4284 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4285 btrfs_info(fs_info, "balance: %s %s",
4286 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4287 "resume" : "start", buf);
4288
4289 kfree(buf);
4290}
4291
c9e9f97b 4292/*
dccdb07b 4293 * Should be called with balance mutexe held
c9e9f97b 4294 */
6fcf6e2b
DS
4295int btrfs_balance(struct btrfs_fs_info *fs_info,
4296 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4297 struct btrfs_ioctl_balance_args *bargs)
4298{
14506127 4299 u64 meta_target, data_target;
f43ffb60 4300 u64 allowed;
e4837f8f 4301 int mixed = 0;
c9e9f97b 4302 int ret;
8dabb742 4303 u64 num_devices;
de98ced9 4304 unsigned seq;
e62869be 4305 bool reducing_redundancy;
b19c98f2 4306 bool paused = false;
081db89b 4307 int i;
c9e9f97b 4308
837d5b6e 4309 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4310 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4311 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4312 ret = -EINVAL;
4313 goto out;
4314 }
4315
e4837f8f
ID
4316 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4317 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4318 mixed = 1;
4319
f43ffb60
ID
4320 /*
4321 * In case of mixed groups both data and meta should be picked,
4322 * and identical options should be given for both of them.
4323 */
e4837f8f
ID
4324 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4325 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4326 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4327 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4328 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4329 btrfs_err(fs_info,
6dac13f8 4330 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4331 ret = -EINVAL;
4332 goto out;
4333 }
4334 }
4335
b35cf1f0
JB
4336 /*
4337 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4338 * are exclusive
b35cf1f0
JB
4339 */
4340 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4341
4342 /*
4343 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4344 * special bit for it, to make it easier to distinguish. Thus we need
4345 * to set it manually, or balance would refuse the profile.
4346 */
4347 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4348 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4349 if (num_devices >= btrfs_raid_array[i].devs_min)
4350 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4351
5ba366c3
DS
4352 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4353 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4354 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4355 ret = -EINVAL;
4356 goto out;
4357 }
4358
6079e12c
DS
4359 /*
4360 * Allow to reduce metadata or system integrity only if force set for
4361 * profiles with redundancy (copies, parity)
4362 */
4363 allowed = 0;
4364 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4365 if (btrfs_raid_array[i].ncopies >= 2 ||
4366 btrfs_raid_array[i].tolerated_failures >= 1)
4367 allowed |= btrfs_raid_array[i].bg_flag;
4368 }
de98ced9
MX
4369 do {
4370 seq = read_seqbegin(&fs_info->profiles_lock);
4371
4372 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4373 (fs_info->avail_system_alloc_bits & allowed) &&
4374 !(bctl->sys.target & allowed)) ||
4375 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4376 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4377 !(bctl->meta.target & allowed)))
e62869be 4378 reducing_redundancy = true;
5a8067c0 4379 else
e62869be 4380 reducing_redundancy = false;
5a8067c0
FM
4381
4382 /* if we're not converting, the target field is uninitialized */
4383 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4385 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4386 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4387 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4388
e62869be 4389 if (reducing_redundancy) {
5a8067c0
FM
4390 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4391 btrfs_info(fs_info,
e62869be 4392 "balance: force reducing metadata redundancy");
5a8067c0
FM
4393 } else {
4394 btrfs_err(fs_info,
e62869be 4395 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4396 ret = -EINVAL;
4397 goto out;
4398 }
4399 }
4400
14506127
AB
4401 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4402 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4403 btrfs_warn(fs_info,
6dac13f8 4404 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4405 btrfs_bg_type_to_raid_name(meta_target),
4406 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4407 }
4408
6bccf3ab 4409 ret = insert_balance_item(fs_info, bctl);
59641015 4410 if (ret && ret != -EEXIST)
0940ebf6
ID
4411 goto out;
4412
59641015
ID
4413 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4414 BUG_ON(ret == -EEXIST);
833aae18
DS
4415 BUG_ON(fs_info->balance_ctl);
4416 spin_lock(&fs_info->balance_lock);
4417 fs_info->balance_ctl = bctl;
4418 spin_unlock(&fs_info->balance_lock);
59641015
ID
4419 } else {
4420 BUG_ON(ret != -EEXIST);
4421 spin_lock(&fs_info->balance_lock);
4422 update_balance_args(bctl);
4423 spin_unlock(&fs_info->balance_lock);
4424 }
c9e9f97b 4425
3009a62f
DS
4426 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4427 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4428 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4429 mutex_unlock(&fs_info->balance_mutex);
4430
4431 ret = __btrfs_balance(fs_info);
4432
4433 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4434 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4435 btrfs_info(fs_info, "balance: paused");
efc0e69c 4436 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
b19c98f2 4437 paused = true;
efc0e69c 4438 }
44d354ab
QW
4439 /*
4440 * Balance can be canceled by:
4441 *
4442 * - Regular cancel request
4443 * Then ret == -ECANCELED and balance_cancel_req > 0
4444 *
4445 * - Fatal signal to "btrfs" process
4446 * Either the signal caught by wait_reserve_ticket() and callers
4447 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4448 * got -ECANCELED.
4449 * Either way, in this case balance_cancel_req = 0, and
4450 * ret == -EINTR or ret == -ECANCELED.
4451 *
4452 * So here we only check the return value to catch canceled balance.
4453 */
4454 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4455 btrfs_info(fs_info, "balance: canceled");
4456 else
4457 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4458
3009a62f 4459 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4460
4461 if (bargs) {
4462 memset(bargs, 0, sizeof(*bargs));
008ef096 4463 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4464 }
4465
b19c98f2
JB
4466 /* We didn't pause, we can clean everything up. */
4467 if (!paused) {
149196a2 4468 reset_balance_state(fs_info);
c3e1f96c 4469 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4470 }
4471
837d5b6e 4472 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4473
4474 return ret;
4475out:
59641015 4476 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4477 reset_balance_state(fs_info);
a17c95df 4478 else
59641015 4479 kfree(bctl);
c3e1f96c 4480 btrfs_exclop_finish(fs_info);
a17c95df 4481
59641015
ID
4482 return ret;
4483}
4484
4485static int balance_kthread(void *data)
4486{
2b6ba629 4487 struct btrfs_fs_info *fs_info = data;
9555c6c1 4488 int ret = 0;
59641015 4489
a690e5f2 4490 sb_start_write(fs_info->sb);
59641015 4491 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4492 if (fs_info->balance_ctl)
6fcf6e2b 4493 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4494 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4495 sb_end_write(fs_info->sb);
2b6ba629 4496
59641015
ID
4497 return ret;
4498}
4499
2b6ba629
ID
4500int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4501{
4502 struct task_struct *tsk;
4503
1354e1a1 4504 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4505 if (!fs_info->balance_ctl) {
1354e1a1 4506 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4507 return 0;
4508 }
1354e1a1 4509 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4510
3cdde224 4511 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4512 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4513 return 0;
4514 }
4515
efc0e69c
NB
4516 spin_lock(&fs_info->super_lock);
4517 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4518 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4519 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4520 /*
4521 * A ro->rw remount sequence should continue with the paused balance
4522 * regardless of who pauses it, system or the user as of now, so set
4523 * the resume flag.
4524 */
4525 spin_lock(&fs_info->balance_lock);
4526 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4527 spin_unlock(&fs_info->balance_lock);
4528
2b6ba629 4529 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4530 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4531}
4532
68310a5e 4533int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4534{
59641015
ID
4535 struct btrfs_balance_control *bctl;
4536 struct btrfs_balance_item *item;
4537 struct btrfs_disk_balance_args disk_bargs;
4538 struct btrfs_path *path;
4539 struct extent_buffer *leaf;
4540 struct btrfs_key key;
4541 int ret;
4542
4543 path = btrfs_alloc_path();
4544 if (!path)
4545 return -ENOMEM;
4546
59641015 4547 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4548 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4549 key.offset = 0;
4550
68310a5e 4551 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4552 if (ret < 0)
68310a5e 4553 goto out;
59641015
ID
4554 if (ret > 0) { /* ret = -ENOENT; */
4555 ret = 0;
68310a5e
ID
4556 goto out;
4557 }
4558
4559 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4560 if (!bctl) {
4561 ret = -ENOMEM;
4562 goto out;
59641015
ID
4563 }
4564
4565 leaf = path->nodes[0];
4566 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4567
68310a5e
ID
4568 bctl->flags = btrfs_balance_flags(leaf, item);
4569 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4570
4571 btrfs_balance_data(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4573 btrfs_balance_meta(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4575 btrfs_balance_sys(leaf, item, &disk_bargs);
4576 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4577
eee95e3f
DS
4578 /*
4579 * This should never happen, as the paused balance state is recovered
4580 * during mount without any chance of other exclusive ops to collide.
4581 *
4582 * This gives the exclusive op status to balance and keeps in paused
4583 * state until user intervention (cancel or umount). If the ownership
4584 * cannot be assigned, show a message but do not fail. The balance
4585 * is in a paused state and must have fs_info::balance_ctl properly
4586 * set up.
4587 */
efc0e69c 4588 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4589 btrfs_warn(fs_info,
6dac13f8 4590 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4591
fb286100
JB
4592 btrfs_release_path(path);
4593
68310a5e 4594 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4595 BUG_ON(fs_info->balance_ctl);
4596 spin_lock(&fs_info->balance_lock);
4597 fs_info->balance_ctl = bctl;
4598 spin_unlock(&fs_info->balance_lock);
68310a5e 4599 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4600out:
4601 btrfs_free_path(path);
ec44a35c
CM
4602 return ret;
4603}
4604
837d5b6e
ID
4605int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4606{
4607 int ret = 0;
4608
4609 mutex_lock(&fs_info->balance_mutex);
4610 if (!fs_info->balance_ctl) {
4611 mutex_unlock(&fs_info->balance_mutex);
4612 return -ENOTCONN;
4613 }
4614
3009a62f 4615 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4616 atomic_inc(&fs_info->balance_pause_req);
4617 mutex_unlock(&fs_info->balance_mutex);
4618
4619 wait_event(fs_info->balance_wait_q,
3009a62f 4620 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4621
4622 mutex_lock(&fs_info->balance_mutex);
4623 /* we are good with balance_ctl ripped off from under us */
3009a62f 4624 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4625 atomic_dec(&fs_info->balance_pause_req);
4626 } else {
4627 ret = -ENOTCONN;
4628 }
4629
4630 mutex_unlock(&fs_info->balance_mutex);
4631 return ret;
4632}
4633
a7e99c69
ID
4634int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4635{
4636 mutex_lock(&fs_info->balance_mutex);
4637 if (!fs_info->balance_ctl) {
4638 mutex_unlock(&fs_info->balance_mutex);
4639 return -ENOTCONN;
4640 }
4641
cf7d20f4
DS
4642 /*
4643 * A paused balance with the item stored on disk can be resumed at
4644 * mount time if the mount is read-write. Otherwise it's still paused
4645 * and we must not allow cancelling as it deletes the item.
4646 */
4647 if (sb_rdonly(fs_info->sb)) {
4648 mutex_unlock(&fs_info->balance_mutex);
4649 return -EROFS;
4650 }
4651
a7e99c69
ID
4652 atomic_inc(&fs_info->balance_cancel_req);
4653 /*
4654 * if we are running just wait and return, balance item is
4655 * deleted in btrfs_balance in this case
4656 */
3009a62f 4657 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4658 mutex_unlock(&fs_info->balance_mutex);
4659 wait_event(fs_info->balance_wait_q,
3009a62f 4660 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4661 mutex_lock(&fs_info->balance_mutex);
4662 } else {
a7e99c69 4663 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4664 /*
4665 * Lock released to allow other waiters to continue, we'll
4666 * reexamine the status again.
4667 */
a7e99c69
ID
4668 mutex_lock(&fs_info->balance_mutex);
4669
a17c95df 4670 if (fs_info->balance_ctl) {
149196a2 4671 reset_balance_state(fs_info);
c3e1f96c 4672 btrfs_exclop_finish(fs_info);
6dac13f8 4673 btrfs_info(fs_info, "balance: canceled");
a17c95df 4674 }
a7e99c69
ID
4675 }
4676
29eefa6d 4677 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4678 atomic_dec(&fs_info->balance_cancel_req);
4679 mutex_unlock(&fs_info->balance_mutex);
4680 return 0;
4681}
4682
97f4dd09 4683int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4684{
4685 struct btrfs_fs_info *fs_info = data;
4686 struct btrfs_root *root = fs_info->tree_root;
4687 struct btrfs_key key;
803b2f54
SB
4688 struct btrfs_path *path = NULL;
4689 int ret = 0;
4690 struct extent_buffer *eb;
4691 int slot;
4692 struct btrfs_root_item root_item;
4693 u32 item_size;
f45388f3 4694 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4695 bool closing = false;
803b2f54
SB
4696
4697 path = btrfs_alloc_path();
4698 if (!path) {
4699 ret = -ENOMEM;
4700 goto out;
4701 }
4702
4703 key.objectid = 0;
4704 key.type = BTRFS_ROOT_ITEM_KEY;
4705 key.offset = 0;
4706
803b2f54 4707 while (1) {
c94bec2c
JB
4708 if (btrfs_fs_closing(fs_info)) {
4709 closing = true;
4710 break;
4711 }
7c829b72
AJ
4712 ret = btrfs_search_forward(root, &key, path,
4713 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4714 if (ret) {
4715 if (ret > 0)
4716 ret = 0;
4717 break;
4718 }
4719
4720 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4721 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4722 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4723 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4724 goto skip;
4725
4726 eb = path->nodes[0];
4727 slot = path->slots[0];
3212fa14 4728 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4729 if (item_size < sizeof(root_item))
4730 goto skip;
4731
803b2f54
SB
4732 read_extent_buffer(eb, &root_item,
4733 btrfs_item_ptr_offset(eb, slot),
4734 (int)sizeof(root_item));
4735 if (btrfs_root_refs(&root_item) == 0)
4736 goto skip;
f45388f3
FDBM
4737
4738 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4739 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4740 if (trans)
4741 goto update_tree;
4742
4743 btrfs_release_path(path);
803b2f54
SB
4744 /*
4745 * 1 - subvol uuid item
4746 * 1 - received_subvol uuid item
4747 */
4748 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4749 if (IS_ERR(trans)) {
4750 ret = PTR_ERR(trans);
4751 break;
4752 }
f45388f3
FDBM
4753 continue;
4754 } else {
4755 goto skip;
4756 }
4757update_tree:
9771a5cf 4758 btrfs_release_path(path);
f45388f3 4759 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4760 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4761 BTRFS_UUID_KEY_SUBVOL,
4762 key.objectid);
4763 if (ret < 0) {
efe120a0 4764 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4765 ret);
803b2f54
SB
4766 break;
4767 }
4768 }
4769
4770 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4771 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4772 root_item.received_uuid,
4773 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4774 key.objectid);
4775 if (ret < 0) {
efe120a0 4776 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4777 ret);
803b2f54
SB
4778 break;
4779 }
4780 }
4781
f45388f3 4782skip:
9771a5cf 4783 btrfs_release_path(path);
803b2f54 4784 if (trans) {
3a45bb20 4785 ret = btrfs_end_transaction(trans);
f45388f3 4786 trans = NULL;
803b2f54
SB
4787 if (ret)
4788 break;
4789 }
4790
803b2f54
SB
4791 if (key.offset < (u64)-1) {
4792 key.offset++;
4793 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4794 key.offset = 0;
4795 key.type = BTRFS_ROOT_ITEM_KEY;
4796 } else if (key.objectid < (u64)-1) {
4797 key.offset = 0;
4798 key.type = BTRFS_ROOT_ITEM_KEY;
4799 key.objectid++;
4800 } else {
4801 break;
4802 }
4803 cond_resched();
4804 }
4805
4806out:
4807 btrfs_free_path(path);
f45388f3 4808 if (trans && !IS_ERR(trans))
3a45bb20 4809 btrfs_end_transaction(trans);
803b2f54 4810 if (ret)
efe120a0 4811 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4812 else if (!closing)
afcdd129 4813 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4814 up(&fs_info->uuid_tree_rescan_sem);
4815 return 0;
4816}
4817
f7a81ea4
SB
4818int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4819{
4820 struct btrfs_trans_handle *trans;
4821 struct btrfs_root *tree_root = fs_info->tree_root;
4822 struct btrfs_root *uuid_root;
803b2f54
SB
4823 struct task_struct *task;
4824 int ret;
f7a81ea4
SB
4825
4826 /*
4827 * 1 - root node
4828 * 1 - root item
4829 */
4830 trans = btrfs_start_transaction(tree_root, 2);
4831 if (IS_ERR(trans))
4832 return PTR_ERR(trans);
4833
9b7a2440 4834 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4835 if (IS_ERR(uuid_root)) {
6d13f549 4836 ret = PTR_ERR(uuid_root);
66642832 4837 btrfs_abort_transaction(trans, ret);
3a45bb20 4838 btrfs_end_transaction(trans);
6d13f549 4839 return ret;
f7a81ea4
SB
4840 }
4841
4842 fs_info->uuid_root = uuid_root;
4843
3a45bb20 4844 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4845 if (ret)
4846 return ret;
4847
4848 down(&fs_info->uuid_tree_rescan_sem);
4849 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4850 if (IS_ERR(task)) {
70f80175 4851 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4852 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4853 up(&fs_info->uuid_tree_rescan_sem);
4854 return PTR_ERR(task);
4855 }
4856
4857 return 0;
f7a81ea4 4858}
803b2f54 4859
8f18cf13
CM
4860/*
4861 * shrinking a device means finding all of the device extents past
4862 * the new size, and then following the back refs to the chunks.
4863 * The chunk relocation code actually frees the device extent
4864 */
4865int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4866{
0b246afa
JM
4867 struct btrfs_fs_info *fs_info = device->fs_info;
4868 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4869 struct btrfs_trans_handle *trans;
8f18cf13
CM
4870 struct btrfs_dev_extent *dev_extent = NULL;
4871 struct btrfs_path *path;
4872 u64 length;
8f18cf13
CM
4873 u64 chunk_offset;
4874 int ret;
4875 int slot;
ba1bf481
JB
4876 int failed = 0;
4877 bool retried = false;
8f18cf13
CM
4878 struct extent_buffer *l;
4879 struct btrfs_key key;
0b246afa 4880 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4881 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4882 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4883 u64 diff;
61d0d0d2 4884 u64 start;
e9fd2c05 4885 u64 free_diff = 0;
7dfb8be1
NB
4886
4887 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4888 start = new_size;
0e4324a4 4889 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4890
401e29c1 4891 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4892 return -EINVAL;
4893
8f18cf13
CM
4894 path = btrfs_alloc_path();
4895 if (!path)
4896 return -ENOMEM;
4897
0338dff6 4898 path->reada = READA_BACK;
8f18cf13 4899
61d0d0d2
NB
4900 trans = btrfs_start_transaction(root, 0);
4901 if (IS_ERR(trans)) {
4902 btrfs_free_path(path);
4903 return PTR_ERR(trans);
4904 }
4905
34441361 4906 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4907
7cc8e58d 4908 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4909 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4910 device->fs_devices->total_rw_bytes -= diff;
e9fd2c05
JB
4911
4912 /*
4913 * The new free_chunk_space is new_size - used, so we have to
4914 * subtract the delta of the old free_chunk_space which included
4915 * old_size - used. If used > new_size then just subtract this
4916 * entire device's free space.
4917 */
4918 if (device->bytes_used < new_size)
4919 free_diff = (old_size - device->bytes_used) -
4920 (new_size - device->bytes_used);
4921 else
4922 free_diff = old_size - device->bytes_used;
4923 atomic64_sub(free_diff, &fs_info->free_chunk_space);
2bf64758 4924 }
61d0d0d2
NB
4925
4926 /*
4927 * Once the device's size has been set to the new size, ensure all
4928 * in-memory chunks are synced to disk so that the loop below sees them
4929 * and relocates them accordingly.
4930 */
1c11b63e 4931 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4932 mutex_unlock(&fs_info->chunk_mutex);
4933 ret = btrfs_commit_transaction(trans);
4934 if (ret)
4935 goto done;
4936 } else {
4937 mutex_unlock(&fs_info->chunk_mutex);
4938 btrfs_end_transaction(trans);
4939 }
8f18cf13 4940
ba1bf481 4941again:
8f18cf13
CM
4942 key.objectid = device->devid;
4943 key.offset = (u64)-1;
4944 key.type = BTRFS_DEV_EXTENT_KEY;
4945
213e64da 4946 do {
f3372065 4947 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4948 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4949 if (ret < 0) {
f3372065 4950 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4951 goto done;
67c5e7d4 4952 }
8f18cf13
CM
4953
4954 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4955 if (ret) {
f3372065 4956 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4957 if (ret < 0)
4958 goto done;
8f18cf13 4959 ret = 0;
b3b4aa74 4960 btrfs_release_path(path);
bf1fb512 4961 break;
8f18cf13
CM
4962 }
4963
4964 l = path->nodes[0];
4965 slot = path->slots[0];
4966 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4967
ba1bf481 4968 if (key.objectid != device->devid) {
f3372065 4969 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4970 btrfs_release_path(path);
bf1fb512 4971 break;
ba1bf481 4972 }
8f18cf13
CM
4973
4974 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4975 length = btrfs_dev_extent_length(l, dev_extent);
4976
ba1bf481 4977 if (key.offset + length <= new_size) {
f3372065 4978 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4979 btrfs_release_path(path);
d6397bae 4980 break;
ba1bf481 4981 }
8f18cf13 4982
8f18cf13 4983 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4984 btrfs_release_path(path);
8f18cf13 4985
a6f93c71
LB
4986 /*
4987 * We may be relocating the only data chunk we have,
4988 * which could potentially end up with losing data's
4989 * raid profile, so lets allocate an empty one in
4990 * advance.
4991 */
4992 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4993 if (ret < 0) {
f3372065 4994 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4995 goto done;
4996 }
4997
0b246afa 4998 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4999 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 5000 if (ret == -ENOSPC) {
ba1bf481 5001 failed++;
eede2bf3
OS
5002 } else if (ret) {
5003 if (ret == -ETXTBSY) {
5004 btrfs_warn(fs_info,
5005 "could not shrink block group %llu due to active swapfile",
5006 chunk_offset);
5007 }
5008 goto done;
5009 }
213e64da 5010 } while (key.offset-- > 0);
ba1bf481
JB
5011
5012 if (failed && !retried) {
5013 failed = 0;
5014 retried = true;
5015 goto again;
5016 } else if (failed && retried) {
5017 ret = -ENOSPC;
ba1bf481 5018 goto done;
8f18cf13
CM
5019 }
5020
d6397bae 5021 /* Shrinking succeeded, else we would be at "done". */
a22285a6 5022 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
5023 if (IS_ERR(trans)) {
5024 ret = PTR_ERR(trans);
5025 goto done;
5026 }
5027
34441361 5028 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
5029 /* Clear all state bits beyond the shrunk device size */
5030 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5031 CHUNK_STATE_MASK);
5032
7cc8e58d 5033 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
5034 if (list_empty(&device->post_commit_list))
5035 list_add_tail(&device->post_commit_list,
5036 &trans->transaction->dev_update_list);
d6397bae 5037
d6397bae 5038 WARN_ON(diff > old_total);
7dfb8be1
NB
5039 btrfs_set_super_total_bytes(super_copy,
5040 round_down(old_total - diff, fs_info->sectorsize));
34441361 5041 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 5042
2bb2e00e 5043 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
5044 /* Now btrfs_update_device() will change the on-disk size. */
5045 ret = btrfs_update_device(trans, device);
2bb2e00e 5046 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
5047 if (ret < 0) {
5048 btrfs_abort_transaction(trans, ret);
5049 btrfs_end_transaction(trans);
5050 } else {
5051 ret = btrfs_commit_transaction(trans);
5052 }
8f18cf13
CM
5053done:
5054 btrfs_free_path(path);
53e489bc 5055 if (ret) {
34441361 5056 mutex_lock(&fs_info->chunk_mutex);
53e489bc 5057 btrfs_device_set_total_bytes(device, old_size);
e9fd2c05 5058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
53e489bc 5059 device->fs_devices->total_rw_bytes += diff;
e9fd2c05
JB
5060 atomic64_add(free_diff, &fs_info->free_chunk_space);
5061 }
34441361 5062 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 5063 }
8f18cf13
CM
5064 return ret;
5065}
5066
2ff7e61e 5067static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5068 struct btrfs_key *key,
5069 struct btrfs_chunk *chunk, int item_size)
5070{
0b246afa 5071 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5072 struct btrfs_disk_key disk_key;
5073 u32 array_size;
5074 u8 *ptr;
5075
79bd3712
FM
5076 lockdep_assert_held(&fs_info->chunk_mutex);
5077
0b86a832 5078 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5079 if (array_size + item_size + sizeof(disk_key)
79bd3712 5080 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5081 return -EFBIG;
5082
5083 ptr = super_copy->sys_chunk_array + array_size;
5084 btrfs_cpu_key_to_disk(&disk_key, key);
5085 memcpy(ptr, &disk_key, sizeof(disk_key));
5086 ptr += sizeof(disk_key);
5087 memcpy(ptr, chunk, item_size);
5088 item_size += sizeof(disk_key);
5089 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5090
0b86a832
CM
5091 return 0;
5092}
5093
73c5de00
AJ
5094/*
5095 * sort the devices in descending order by max_avail, total_avail
5096 */
5097static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5098{
73c5de00
AJ
5099 const struct btrfs_device_info *di_a = a;
5100 const struct btrfs_device_info *di_b = b;
9b3f68b9 5101
73c5de00 5102 if (di_a->max_avail > di_b->max_avail)
b2117a39 5103 return -1;
73c5de00 5104 if (di_a->max_avail < di_b->max_avail)
b2117a39 5105 return 1;
73c5de00
AJ
5106 if (di_a->total_avail > di_b->total_avail)
5107 return -1;
5108 if (di_a->total_avail < di_b->total_avail)
5109 return 1;
5110 return 0;
b2117a39 5111}
0b86a832 5112
53b381b3
DW
5113static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5114{
ffe2d203 5115 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5116 return;
5117
ceda0864 5118 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5119}
5120
cfbb825c
DS
5121static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5122{
5123 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5124 return;
5125
5126 btrfs_set_fs_incompat(info, RAID1C34);
5127}
5128
4f2bafe8 5129/*
f6f39f7a 5130 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5131 * Wraps needed parameters.
5132 */
5133struct alloc_chunk_ctl {
5134 u64 start;
5135 u64 type;
5136 /* Total number of stripes to allocate */
5137 int num_stripes;
5138 /* sub_stripes info for map */
5139 int sub_stripes;
5140 /* Stripes per device */
5141 int dev_stripes;
5142 /* Maximum number of devices to use */
5143 int devs_max;
5144 /* Minimum number of devices to use */
5145 int devs_min;
5146 /* ndevs has to be a multiple of this */
5147 int devs_increment;
5148 /* Number of copies */
5149 int ncopies;
5150 /* Number of stripes worth of bytes to store parity information */
5151 int nparity;
5152 u64 max_stripe_size;
5153 u64 max_chunk_size;
6aafb303 5154 u64 dev_extent_min;
4f2bafe8
NA
5155 u64 stripe_size;
5156 u64 chunk_size;
5157 int ndevs;
5158};
5159
27c314d5
NA
5160static void init_alloc_chunk_ctl_policy_regular(
5161 struct btrfs_fs_devices *fs_devices,
5162 struct alloc_chunk_ctl *ctl)
5163{
f6fca391 5164 struct btrfs_space_info *space_info;
27c314d5 5165
f6fca391
SR
5166 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5167 ASSERT(space_info);
5168
5169 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
8a540e99 5170 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
f6fca391
SR
5171
5172 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5173 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
27c314d5
NA
5174
5175 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5176 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
27c314d5 5177 ctl->max_chunk_size);
cb091225 5178 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
27c314d5
NA
5179}
5180
1cd6121f
NA
5181static void init_alloc_chunk_ctl_policy_zoned(
5182 struct btrfs_fs_devices *fs_devices,
5183 struct alloc_chunk_ctl *ctl)
5184{
5185 u64 zone_size = fs_devices->fs_info->zone_size;
5186 u64 limit;
5187 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5188 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5189 u64 min_chunk_size = min_data_stripes * zone_size;
5190 u64 type = ctl->type;
5191
5192 ctl->max_stripe_size = zone_size;
5193 if (type & BTRFS_BLOCK_GROUP_DATA) {
5194 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5195 zone_size);
5196 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5197 ctl->max_chunk_size = ctl->max_stripe_size;
5198 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5199 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5200 ctl->devs_max = min_t(int, ctl->devs_max,
5201 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5202 } else {
5203 BUG();
1cd6121f
NA
5204 }
5205
5206 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5207 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
1cd6121f
NA
5208 zone_size),
5209 min_chunk_size);
5210 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5211 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5212}
5213
27c314d5
NA
5214static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5215 struct alloc_chunk_ctl *ctl)
5216{
5217 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5218
5219 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5220 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5221 ctl->devs_max = btrfs_raid_array[index].devs_max;
5222 if (!ctl->devs_max)
5223 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5224 ctl->devs_min = btrfs_raid_array[index].devs_min;
5225 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5226 ctl->ncopies = btrfs_raid_array[index].ncopies;
5227 ctl->nparity = btrfs_raid_array[index].nparity;
5228 ctl->ndevs = 0;
5229
5230 switch (fs_devices->chunk_alloc_policy) {
5231 case BTRFS_CHUNK_ALLOC_REGULAR:
5232 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5233 break;
1cd6121f
NA
5234 case BTRFS_CHUNK_ALLOC_ZONED:
5235 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5236 break;
27c314d5
NA
5237 default:
5238 BUG();
5239 }
5240}
5241
560156cb
NA
5242static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5243 struct alloc_chunk_ctl *ctl,
5244 struct btrfs_device_info *devices_info)
b2117a39 5245{
560156cb 5246 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5247 struct btrfs_device *device;
73c5de00 5248 u64 total_avail;
560156cb 5249 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5250 int ret;
560156cb
NA
5251 int ndevs = 0;
5252 u64 max_avail;
5253 u64 dev_offset;
0cad8a11 5254
9f680ce0 5255 /*
73c5de00
AJ
5256 * in the first pass through the devices list, we gather information
5257 * about the available holes on each device.
9f680ce0 5258 */
ebcc9301 5259 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5260 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5261 WARN(1, KERN_ERR
efe120a0 5262 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5263 continue;
5264 }
b2117a39 5265
e12c9621
AJ
5266 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5267 &device->dev_state) ||
401e29c1 5268 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5269 continue;
b2117a39 5270
73c5de00
AJ
5271 if (device->total_bytes > device->bytes_used)
5272 total_avail = device->total_bytes - device->bytes_used;
5273 else
5274 total_avail = 0;
38c01b96 5275
5276 /* If there is no space on this device, skip it. */
6aafb303 5277 if (total_avail < ctl->dev_extent_min)
38c01b96 5278 continue;
b2117a39 5279
560156cb
NA
5280 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5281 &max_avail);
73c5de00 5282 if (ret && ret != -ENOSPC)
560156cb 5283 return ret;
b2117a39 5284
73c5de00 5285 if (ret == 0)
560156cb 5286 max_avail = dev_extent_want;
b2117a39 5287
6aafb303 5288 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5289 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5290 btrfs_debug(info,
560156cb 5291 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5292 __func__, device->devid, max_avail,
6aafb303 5293 ctl->dev_extent_min);
73c5de00 5294 continue;
4117f207 5295 }
b2117a39 5296
063d006f
ES
5297 if (ndevs == fs_devices->rw_devices) {
5298 WARN(1, "%s: found more than %llu devices\n",
5299 __func__, fs_devices->rw_devices);
5300 break;
5301 }
73c5de00
AJ
5302 devices_info[ndevs].dev_offset = dev_offset;
5303 devices_info[ndevs].max_avail = max_avail;
5304 devices_info[ndevs].total_avail = total_avail;
5305 devices_info[ndevs].dev = device;
5306 ++ndevs;
5307 }
560156cb 5308 ctl->ndevs = ndevs;
b2117a39 5309
73c5de00
AJ
5310 /*
5311 * now sort the devices by hole size / available space
5312 */
560156cb 5313 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5314 btrfs_cmp_device_info, NULL);
b2117a39 5315
560156cb
NA
5316 return 0;
5317}
5318
5badf512
NA
5319static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5320 struct btrfs_device_info *devices_info)
5321{
5322 /* Number of stripes that count for block group size */
5323 int data_stripes;
5324
5325 /*
5326 * The primary goal is to maximize the number of stripes, so use as
5327 * many devices as possible, even if the stripes are not maximum sized.
5328 *
5329 * The DUP profile stores more than one stripe per device, the
5330 * max_avail is the total size so we have to adjust.
5331 */
5332 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5333 ctl->dev_stripes);
5334 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5335
5336 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5337 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5338
5339 /*
5340 * Use the number of data stripes to figure out how big this chunk is
5341 * really going to be in terms of logical address space, and compare
5342 * that answer with the max chunk size. If it's higher, we try to
5343 * reduce stripe_size.
5344 */
5345 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5346 /*
5347 * Reduce stripe_size, round it up to a 16MB boundary again and
5348 * then use it, unless it ends up being even bigger than the
5349 * previous value we had already.
5350 */
5351 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5352 data_stripes), SZ_16M),
5353 ctl->stripe_size);
5354 }
5355
5da431b7
QW
5356 /* Stripe size should not go beyond 1G. */
5357 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5358
5badf512
NA
5359 /* Align to BTRFS_STRIPE_LEN */
5360 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5361 ctl->chunk_size = ctl->stripe_size * data_stripes;
5362
5363 return 0;
5364}
5365
1cd6121f
NA
5366static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5367 struct btrfs_device_info *devices_info)
5368{
5369 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5370 /* Number of stripes that count for block group size */
5371 int data_stripes;
5372
5373 /*
5374 * It should hold because:
5375 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5376 */
5377 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5378
5379 ctl->stripe_size = zone_size;
5380 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5381 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5382
5383 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5384 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5385 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5386 ctl->stripe_size) + ctl->nparity,
5387 ctl->dev_stripes);
5388 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5389 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5390 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5391 }
5392
5393 ctl->chunk_size = ctl->stripe_size * data_stripes;
5394
5395 return 0;
5396}
5397
5badf512
NA
5398static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5399 struct alloc_chunk_ctl *ctl,
5400 struct btrfs_device_info *devices_info)
5401{
5402 struct btrfs_fs_info *info = fs_devices->fs_info;
5403
5404 /*
5405 * Round down to number of usable stripes, devs_increment can be any
5406 * number so we can't use round_down() that requires power of 2, while
5407 * rounddown is safe.
5408 */
5409 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5410
5411 if (ctl->ndevs < ctl->devs_min) {
5412 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5413 btrfs_debug(info,
5414 "%s: not enough devices with free space: have=%d minimum required=%d",
5415 __func__, ctl->ndevs, ctl->devs_min);
5416 }
5417 return -ENOSPC;
5418 }
5419
5420 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5421
5422 switch (fs_devices->chunk_alloc_policy) {
5423 case BTRFS_CHUNK_ALLOC_REGULAR:
5424 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5425 case BTRFS_CHUNK_ALLOC_ZONED:
5426 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5427 default:
5428 BUG();
5429 }
5430}
5431
7dc66abb
FM
5432static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5433{
5434 for (int i = 0; i < map->num_stripes; i++) {
5435 struct btrfs_io_stripe *stripe = &map->stripes[i];
5436 struct btrfs_device *device = stripe->dev;
5437
5438 set_extent_bit(&device->alloc_state, stripe->physical,
5439 stripe->physical + map->stripe_size - 1,
5440 bits | EXTENT_NOWAIT, NULL);
5441 }
5442}
5443
5444static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5445{
5446 for (int i = 0; i < map->num_stripes; i++) {
5447 struct btrfs_io_stripe *stripe = &map->stripes[i];
5448 struct btrfs_device *device = stripe->dev;
5449
5450 __clear_extent_bit(&device->alloc_state, stripe->physical,
5451 stripe->physical + map->stripe_size - 1,
5452 bits | EXTENT_NOWAIT,
5453 NULL, NULL);
5454 }
5455}
5456
5457void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5458{
5459 write_lock(&fs_info->mapping_tree_lock);
5460 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5461 RB_CLEAR_NODE(&map->rb_node);
5462 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5463 write_unlock(&fs_info->mapping_tree_lock);
5464
5465 /* Once for the tree reference. */
5466 btrfs_free_chunk_map(map);
5467}
5468
5469EXPORT_FOR_TESTS
5470int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5471{
5472 struct rb_node **p;
5473 struct rb_node *parent = NULL;
5474 bool leftmost = true;
5475
5476 write_lock(&fs_info->mapping_tree_lock);
5477 p = &fs_info->mapping_tree.rb_root.rb_node;
5478 while (*p) {
5479 struct btrfs_chunk_map *entry;
5480
5481 parent = *p;
5482 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5483
5484 if (map->start < entry->start) {
5485 p = &(*p)->rb_left;
5486 } else if (map->start > entry->start) {
5487 p = &(*p)->rb_right;
5488 leftmost = false;
5489 } else {
5490 write_unlock(&fs_info->mapping_tree_lock);
5491 return -EEXIST;
5492 }
5493 }
5494 rb_link_node(&map->rb_node, parent, p);
5495 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5496 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5497 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5498 write_unlock(&fs_info->mapping_tree_lock);
5499
5500 return 0;
5501}
5502
5503EXPORT_FOR_TESTS
5504struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5505{
5506 struct btrfs_chunk_map *map;
5507
5508 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5509 if (!map)
5510 return NULL;
5511
5512 refcount_set(&map->refs, 1);
5513 RB_CLEAR_NODE(&map->rb_node);
5514
5515 return map;
5516}
5517
5518struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5519{
5520 const int size = btrfs_chunk_map_size(map->num_stripes);
5521 struct btrfs_chunk_map *clone;
5522
5523 clone = kmemdup(map, size, gfp);
5524 if (!clone)
5525 return NULL;
5526
5527 refcount_set(&clone->refs, 1);
5528 RB_CLEAR_NODE(&clone->rb_node);
5529
5530 return clone;
5531}
5532
79bd3712 5533static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5534 struct alloc_chunk_ctl *ctl,
5535 struct btrfs_device_info *devices_info)
560156cb
NA
5536{
5537 struct btrfs_fs_info *info = trans->fs_info;
7dc66abb 5538 struct btrfs_chunk_map *map;
79bd3712 5539 struct btrfs_block_group *block_group;
dce580ca
NA
5540 u64 start = ctl->start;
5541 u64 type = ctl->type;
560156cb
NA
5542 int ret;
5543 int i;
5544 int j;
5545
7dc66abb 5546 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
dce580ca 5547 if (!map)
79bd3712 5548 return ERR_PTR(-ENOMEM);
7dc66abb
FM
5549
5550 map->start = start;
5551 map->chunk_len = ctl->chunk_size;
5552 map->stripe_size = ctl->stripe_size;
5553 map->type = type;
5554 map->io_align = BTRFS_STRIPE_LEN;
5555 map->io_width = BTRFS_STRIPE_LEN;
5556 map->sub_stripes = ctl->sub_stripes;
dce580ca 5557 map->num_stripes = ctl->num_stripes;
560156cb 5558
dce580ca
NA
5559 for (i = 0; i < ctl->ndevs; ++i) {
5560 for (j = 0; j < ctl->dev_stripes; ++j) {
5561 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5562 map->stripes[s].dev = devices_info[i].dev;
5563 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5564 j * ctl->stripe_size;
6324fbf3 5565 }
6324fbf3 5566 }
0b86a832 5567
dce580ca 5568 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5569
7dc66abb 5570 ret = btrfs_add_chunk_map(info, map);
0f5d42b2 5571 if (ret) {
7dc66abb 5572 btrfs_free_chunk_map(map);
79bd3712 5573 return ERR_PTR(ret);
0f5d42b2 5574 }
1efb72a3 5575
5758d1bd 5576 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
7dc66abb
FM
5577 if (IS_ERR(block_group)) {
5578 btrfs_remove_chunk_map(info, map);
5579 return block_group;
5580 }
2b82032c 5581
7dc66abb 5582 for (int i = 0; i < map->num_stripes; i++) {
bbbf7243
NB
5583 struct btrfs_device *dev = map->stripes[i].dev;
5584
4f2bafe8 5585 btrfs_device_set_bytes_used(dev,
dce580ca 5586 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5587 if (list_empty(&dev->post_commit_list))
5588 list_add_tail(&dev->post_commit_list,
5589 &trans->transaction->dev_update_list);
5590 }
43530c46 5591
dce580ca 5592 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5593 &info->free_chunk_space);
1c116187 5594
0b246afa 5595 check_raid56_incompat_flag(info, type);
cfbb825c 5596 check_raid1c34_incompat_flag(info, type);
53b381b3 5597
79bd3712 5598 return block_group;
dce580ca
NA
5599}
5600
f6f39f7a 5601struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5602 u64 type)
dce580ca
NA
5603{
5604 struct btrfs_fs_info *info = trans->fs_info;
5605 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5606 struct btrfs_device_info *devices_info = NULL;
5607 struct alloc_chunk_ctl ctl;
79bd3712 5608 struct btrfs_block_group *block_group;
dce580ca
NA
5609 int ret;
5610
11c67b1a
NB
5611 lockdep_assert_held(&info->chunk_mutex);
5612
dce580ca
NA
5613 if (!alloc_profile_is_valid(type, 0)) {
5614 ASSERT(0);
79bd3712 5615 return ERR_PTR(-EINVAL);
dce580ca
NA
5616 }
5617
5618 if (list_empty(&fs_devices->alloc_list)) {
5619 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5620 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5621 return ERR_PTR(-ENOSPC);
dce580ca
NA
5622 }
5623
5624 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5625 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5626 ASSERT(0);
79bd3712 5627 return ERR_PTR(-EINVAL);
dce580ca
NA
5628 }
5629
11c67b1a 5630 ctl.start = find_next_chunk(info);
dce580ca
NA
5631 ctl.type = type;
5632 init_alloc_chunk_ctl(fs_devices, &ctl);
5633
5634 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5635 GFP_NOFS);
5636 if (!devices_info)
79bd3712 5637 return ERR_PTR(-ENOMEM);
dce580ca
NA
5638
5639 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5640 if (ret < 0) {
5641 block_group = ERR_PTR(ret);
dce580ca 5642 goto out;
79bd3712 5643 }
dce580ca
NA
5644
5645 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5646 if (ret < 0) {
5647 block_group = ERR_PTR(ret);
dce580ca 5648 goto out;
79bd3712 5649 }
dce580ca 5650
79bd3712 5651 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5652
5653out:
b2117a39 5654 kfree(devices_info);
79bd3712 5655 return block_group;
2b82032c
YZ
5656}
5657
79bd3712
FM
5658/*
5659 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5660 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5661 * chunks.
5662 *
5663 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5664 * phases.
5665 */
5666int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5667 struct btrfs_block_group *bg)
5668{
5669 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5670 struct btrfs_root *chunk_root = fs_info->chunk_root;
5671 struct btrfs_key key;
5672 struct btrfs_chunk *chunk;
5673 struct btrfs_stripe *stripe;
7dc66abb 5674 struct btrfs_chunk_map *map;
79bd3712
FM
5675 size_t item_size;
5676 int i;
5677 int ret;
5678
5679 /*
5680 * We take the chunk_mutex for 2 reasons:
5681 *
5682 * 1) Updates and insertions in the chunk btree must be done while holding
5683 * the chunk_mutex, as well as updating the system chunk array in the
5684 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5685 * details;
5686 *
5687 * 2) To prevent races with the final phase of a device replace operation
5688 * that replaces the device object associated with the map's stripes,
5689 * because the device object's id can change at any time during that
5690 * final phase of the device replace operation
5691 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5692 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5693 * which would cause a failure when updating the device item, which does
5694 * not exists, or persisting a stripe of the chunk item with such ID.
5695 * Here we can't use the device_list_mutex because our caller already
5696 * has locked the chunk_mutex, and the final phase of device replace
5697 * acquires both mutexes - first the device_list_mutex and then the
5698 * chunk_mutex. Using any of those two mutexes protects us from a
5699 * concurrent device replace.
5700 */
5701 lockdep_assert_held(&fs_info->chunk_mutex);
5702
7dc66abb
FM
5703 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5704 if (IS_ERR(map)) {
5705 ret = PTR_ERR(map);
79bd3712
FM
5706 btrfs_abort_transaction(trans, ret);
5707 return ret;
5708 }
5709
79bd3712
FM
5710 item_size = btrfs_chunk_item_size(map->num_stripes);
5711
5712 chunk = kzalloc(item_size, GFP_NOFS);
5713 if (!chunk) {
5714 ret = -ENOMEM;
5715 btrfs_abort_transaction(trans, ret);
50460e37 5716 goto out;
2b82032c
YZ
5717 }
5718
79bd3712
FM
5719 for (i = 0; i < map->num_stripes; i++) {
5720 struct btrfs_device *device = map->stripes[i].dev;
5721
5722 ret = btrfs_update_device(trans, device);
5723 if (ret)
5724 goto out;
5725 }
5726
2b82032c 5727 stripe = &chunk->stripe;
6df9a95e 5728 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5729 struct btrfs_device *device = map->stripes[i].dev;
5730 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5731
e17cade2
CM
5732 btrfs_set_stack_stripe_devid(stripe, device->devid);
5733 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5734 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5735 stripe++;
0b86a832
CM
5736 }
5737
79bd3712 5738 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5739 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
a97699d1 5740 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
2b82032c
YZ
5741 btrfs_set_stack_chunk_type(chunk, map->type);
5742 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
a97699d1
QW
5743 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5744 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
0b246afa 5745 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5746 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5747
2b82032c
YZ
5748 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5749 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5750 key.offset = bg->start;
0b86a832 5751
2b82032c 5752 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5753 if (ret)
5754 goto out;
5755
3349b57f 5756 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
79bd3712
FM
5757
5758 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5759 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5760 if (ret)
5761 goto out;
8f18cf13 5762 }
1abe9b8a 5763
6df9a95e 5764out:
0b86a832 5765 kfree(chunk);
7dc66abb 5766 btrfs_free_chunk_map(map);
4ed1d16e 5767 return ret;
2b82032c 5768}
0b86a832 5769
6f8e0fc7 5770static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5771{
6f8e0fc7 5772 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5773 u64 alloc_profile;
79bd3712
FM
5774 struct btrfs_block_group *meta_bg;
5775 struct btrfs_block_group *sys_bg;
5776
5777 /*
5778 * When adding a new device for sprouting, the seed device is read-only
5779 * so we must first allocate a metadata and a system chunk. But before
5780 * adding the block group items to the extent, device and chunk btrees,
5781 * we must first:
5782 *
5783 * 1) Create both chunks without doing any changes to the btrees, as
5784 * otherwise we would get -ENOSPC since the block groups from the
5785 * seed device are read-only;
5786 *
5787 * 2) Add the device item for the new sprout device - finishing the setup
5788 * of a new block group requires updating the device item in the chunk
5789 * btree, so it must exist when we attempt to do it. The previous step
5790 * ensures this does not fail with -ENOSPC.
5791 *
5792 * After that we can add the block group items to their btrees:
5793 * update existing device item in the chunk btree, add a new block group
5794 * item to the extent btree, add a new chunk item to the chunk btree and
5795 * finally add the new device extent items to the devices btree.
5796 */
2b82032c 5797
1b86826d 5798 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5799 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5800 if (IS_ERR(meta_bg))
5801 return PTR_ERR(meta_bg);
2b82032c 5802
1b86826d 5803 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5804 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5805 if (IS_ERR(sys_bg))
5806 return PTR_ERR(sys_bg);
5807
5808 return 0;
2b82032c
YZ
5809}
5810
7dc66abb 5811static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
d20983b4 5812{
fc9a2ac7 5813 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5814
fc9a2ac7 5815 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5816}
5817
a09f23c3 5818bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c 5819{
7dc66abb 5820 struct btrfs_chunk_map *map;
d20983b4 5821 int miss_ndevs = 0;
2b82032c 5822 int i;
a09f23c3 5823 bool ret = true;
2b82032c 5824
7dc66abb
FM
5825 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5826 if (IS_ERR(map))
a09f23c3 5827 return false;
2b82032c 5828
2b82032c 5829 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5830 if (test_bit(BTRFS_DEV_STATE_MISSING,
5831 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5832 miss_ndevs++;
5833 continue;
5834 }
ebbede42
AJ
5835 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5836 &map->stripes[i].dev->dev_state)) {
a09f23c3 5837 ret = false;
d20983b4 5838 goto end;
2b82032c
YZ
5839 }
5840 }
d20983b4
MX
5841
5842 /*
a09f23c3
AJ
5843 * If the number of missing devices is larger than max errors, we can
5844 * not write the data into that chunk successfully.
d20983b4
MX
5845 */
5846 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5847 ret = false;
d20983b4 5848end:
7dc66abb 5849 btrfs_free_chunk_map(map);
a09f23c3 5850 return ret;
0b86a832
CM
5851}
5852
7dc66abb 5853void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
0b86a832 5854{
7dc66abb
FM
5855 write_lock(&fs_info->mapping_tree_lock);
5856 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5857 struct btrfs_chunk_map *map;
5858 struct rb_node *node;
0b86a832 5859
7dc66abb
FM
5860 node = rb_first_cached(&fs_info->mapping_tree);
5861 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5862 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5863 RB_CLEAR_NODE(&map->rb_node);
5864 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5865 /* Once for the tree ref. */
5866 btrfs_free_chunk_map(map);
5867 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
0b86a832 5868 }
7dc66abb 5869 write_unlock(&fs_info->mapping_tree_lock);
0b86a832
CM
5870}
5871
5d964051 5872int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5873{
7dc66abb 5874 struct btrfs_chunk_map *map;
6d322b48
QW
5875 enum btrfs_raid_types index;
5876 int ret = 1;
f188591e 5877
7dc66abb
FM
5878 map = btrfs_get_chunk_map(fs_info, logical, len);
5879 if (IS_ERR(map))
592d92ee
LB
5880 /*
5881 * We could return errors for these cases, but that could get
5882 * ugly and we'd probably do the same thing which is just not do
5883 * anything else and exit, so return 1 so the callers don't try
5884 * to use other copies.
5885 */
fb7669b5 5886 return 1;
fb7669b5 5887
6d322b48
QW
5888 index = btrfs_bg_flags_to_raid_index(map->type);
5889
5890 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5891 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5892 ret = btrfs_raid_array[index].ncopies;
53b381b3
DW
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5894 ret = 2;
5895 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5896 /*
5897 * There could be two corrupted data stripes, we need
5898 * to loop retry in order to rebuild the correct data.
e7e02096 5899 *
8810f751
LB
5900 * Fail a stripe at a time on every retry except the
5901 * stripe under reconstruction.
5902 */
5903 ret = map->num_stripes;
7dc66abb 5904 btrfs_free_chunk_map(map);
f188591e
CM
5905 return ret;
5906}
5907
2ff7e61e 5908unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5909 u64 logical)
5910{
7dc66abb 5911 struct btrfs_chunk_map *map;
0b246afa 5912 unsigned long len = fs_info->sectorsize;
53b381b3 5913
b036f479
QW
5914 if (!btrfs_fs_incompat(fs_info, RAID56))
5915 return len;
5916
7dc66abb 5917 map = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5918
7dc66abb 5919 if (!WARN_ON(IS_ERR(map))) {
69f03f13 5920 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
cb091225 5921 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
7dc66abb 5922 btrfs_free_chunk_map(map);
69f03f13 5923 }
53b381b3
DW
5924 return len;
5925}
5926
e4ff5fb5 5927int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3 5928{
7dc66abb 5929 struct btrfs_chunk_map *map;
53b381b3
DW
5930 int ret = 0;
5931
b036f479
QW
5932 if (!btrfs_fs_incompat(fs_info, RAID56))
5933 return 0;
5934
7dc66abb 5935 map = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5936
7dc66abb 5937 if (!WARN_ON(IS_ERR(map))) {
69f03f13
NB
5938 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5939 ret = 1;
7dc66abb 5940 btrfs_free_chunk_map(map);
69f03f13 5941 }
53b381b3
DW
5942 return ret;
5943}
5944
30d9861f 5945static int find_live_mirror(struct btrfs_fs_info *fs_info,
7dc66abb 5946 struct btrfs_chunk_map *map, int first,
8ba0ae78 5947 int dev_replace_is_ongoing)
dfe25020
CM
5948{
5949 int i;
99f92a7c 5950 int num_stripes;
8ba0ae78 5951 int preferred_mirror;
30d9861f
SB
5952 int tolerance;
5953 struct btrfs_device *srcdev;
5954
99f92a7c 5955 ASSERT((map->type &
c7369b3f 5956 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5957
5958 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5959 num_stripes = map->sub_stripes;
5960 else
5961 num_stripes = map->num_stripes;
5962
33fd2f71
AJ
5963 switch (fs_info->fs_devices->read_policy) {
5964 default:
5965 /* Shouldn't happen, just warn and use pid instead of failing */
5966 btrfs_warn_rl(fs_info,
5967 "unknown read_policy type %u, reset to pid",
5968 fs_info->fs_devices->read_policy);
5969 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5970 fallthrough;
5971 case BTRFS_READ_POLICY_PID:
5972 preferred_mirror = first + (current->pid % num_stripes);
5973 break;
5974 }
8ba0ae78 5975
30d9861f
SB
5976 if (dev_replace_is_ongoing &&
5977 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5978 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5979 srcdev = fs_info->dev_replace.srcdev;
5980 else
5981 srcdev = NULL;
5982
5983 /*
5984 * try to avoid the drive that is the source drive for a
5985 * dev-replace procedure, only choose it if no other non-missing
5986 * mirror is available
5987 */
5988 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5989 if (map->stripes[preferred_mirror].dev->bdev &&
5990 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5991 return preferred_mirror;
99f92a7c 5992 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5993 if (map->stripes[i].dev->bdev &&
5994 (tolerance || map->stripes[i].dev != srcdev))
5995 return i;
5996 }
dfe25020 5997 }
30d9861f 5998
dfe25020
CM
5999 /* we couldn't find one that doesn't fail. Just return something
6000 * and the io error handling code will clean up eventually
6001 */
8ba0ae78 6002 return preferred_mirror;
dfe25020
CM
6003}
6004
731ccf15 6005static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
02c372e1 6006 u64 logical,
1faf3885 6007 u16 total_stripes)
6e9606d2 6008{
4ced85f8
QW
6009 struct btrfs_io_context *bioc;
6010
6011 bioc = kzalloc(
4c664611
QW
6012 /* The size of btrfs_io_context */
6013 sizeof(struct btrfs_io_context) +
6014 /* Plus the variable array for the stripes */
18d758a2 6015 sizeof(struct btrfs_io_stripe) * (total_stripes),
9f0eac07
L
6016 GFP_NOFS);
6017
6018 if (!bioc)
6019 return NULL;
6e9606d2 6020
4c664611 6021 refcount_set(&bioc->refs, 1);
6e9606d2 6022
731ccf15 6023 bioc->fs_info = fs_info;
1faf3885 6024 bioc->replace_stripe_src = -1;
18d758a2 6025 bioc->full_stripe_logical = (u64)-1;
02c372e1 6026 bioc->logical = logical;
608769a4 6027
4c664611 6028 return bioc;
6e9606d2
ZL
6029}
6030
4c664611 6031void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 6032{
4c664611
QW
6033 WARN_ON(!refcount_read(&bioc->refs));
6034 refcount_inc(&bioc->refs);
6e9606d2
ZL
6035}
6036
4c664611 6037void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 6038{
4c664611 6039 if (!bioc)
6e9606d2 6040 return;
4c664611
QW
6041 if (refcount_dec_and_test(&bioc->refs))
6042 kfree(bioc);
6e9606d2
ZL
6043}
6044
0b3d4cd3
LB
6045/*
6046 * Please note that, discard won't be sent to target device of device
6047 * replace.
6048 */
a4012f06
CH
6049struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6050 u64 logical, u64 *length_ret,
6051 u32 *num_stripes)
0b3d4cd3 6052{
7dc66abb 6053 struct btrfs_chunk_map *map;
a4012f06 6054 struct btrfs_discard_stripe *stripes;
6b7faadd 6055 u64 length = *length_ret;
0b3d4cd3 6056 u64 offset;
6ded22c1
QW
6057 u32 stripe_nr;
6058 u32 stripe_nr_end;
6059 u32 stripe_cnt;
0b3d4cd3 6060 u64 stripe_end_offset;
0b3d4cd3 6061 u64 stripe_offset;
0b3d4cd3
LB
6062 u32 stripe_index;
6063 u32 factor = 0;
6064 u32 sub_stripes = 0;
6ded22c1 6065 u32 stripes_per_dev = 0;
0b3d4cd3
LB
6066 u32 remaining_stripes = 0;
6067 u32 last_stripe = 0;
a4012f06 6068 int ret;
0b3d4cd3
LB
6069 int i;
6070
7dc66abb
FM
6071 map = btrfs_get_chunk_map(fs_info, logical, length);
6072 if (IS_ERR(map))
6073 return ERR_CAST(map);
a4012f06 6074
0b3d4cd3
LB
6075 /* we don't discard raid56 yet */
6076 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6077 ret = -EOPNOTSUPP;
a4012f06 6078 goto out_free_map;
a97699d1 6079 }
0b3d4cd3 6080
7dc66abb
FM
6081 offset = logical - map->start;
6082 length = min_t(u64, map->start + map->chunk_len - logical, length);
6b7faadd 6083 *length_ret = length;
0b3d4cd3 6084
0b3d4cd3
LB
6085 /*
6086 * stripe_nr counts the total number of stripes we have to stride
6087 * to get to this block
6088 */
a97699d1 6089 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
6090
6091 /* stripe_offset is the offset of this block in its stripe */
cb091225 6092 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
0b3d4cd3 6093
a97699d1
QW
6094 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6095 BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3 6096 stripe_cnt = stripe_nr_end - stripe_nr;
cb091225 6097 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
0b3d4cd3
LB
6098 (offset + length);
6099 /*
6100 * after this, stripe_nr is the number of stripes on this
6101 * device we have to walk to find the data, and stripe_index is
6102 * the number of our device in the stripe array
6103 */
a4012f06 6104 *num_stripes = 1;
0b3d4cd3
LB
6105 stripe_index = 0;
6106 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6107 BTRFS_BLOCK_GROUP_RAID10)) {
6108 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6109 sub_stripes = 1;
6110 else
6111 sub_stripes = map->sub_stripes;
6112
6113 factor = map->num_stripes / sub_stripes;
a4012f06 6114 *num_stripes = min_t(u64, map->num_stripes,
0b3d4cd3 6115 sub_stripes * stripe_cnt);
6ded22c1
QW
6116 stripe_index = stripe_nr % factor;
6117 stripe_nr /= factor;
0b3d4cd3 6118 stripe_index *= sub_stripes;
6ded22c1
QW
6119
6120 remaining_stripes = stripe_cnt % factor;
6121 stripes_per_dev = stripe_cnt / factor;
6122 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
c7369b3f 6123 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3 6124 BTRFS_BLOCK_GROUP_DUP)) {
a4012f06 6125 *num_stripes = map->num_stripes;
0b3d4cd3 6126 } else {
6ded22c1
QW
6127 stripe_index = stripe_nr % map->num_stripes;
6128 stripe_nr /= map->num_stripes;
0b3d4cd3
LB
6129 }
6130
a4012f06
CH
6131 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6132 if (!stripes) {
0b3d4cd3 6133 ret = -ENOMEM;
a4012f06 6134 goto out_free_map;
0b3d4cd3
LB
6135 }
6136
a4012f06
CH
6137 for (i = 0; i < *num_stripes; i++) {
6138 stripes[i].physical =
0b3d4cd3 6139 map->stripes[stripe_index].physical +
cb091225 6140 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
a4012f06 6141 stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6142
6143 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6144 BTRFS_BLOCK_GROUP_RAID10)) {
cb091225 6145 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
0b3d4cd3
LB
6146
6147 if (i / sub_stripes < remaining_stripes)
a97699d1 6148 stripes[i].length += BTRFS_STRIPE_LEN;
0b3d4cd3
LB
6149
6150 /*
6151 * Special for the first stripe and
6152 * the last stripe:
6153 *
6154 * |-------|...|-------|
6155 * |----------|
6156 * off end_off
6157 */
6158 if (i < sub_stripes)
a4012f06 6159 stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6160
6161 if (stripe_index >= last_stripe &&
6162 stripe_index <= (last_stripe +
6163 sub_stripes - 1))
a4012f06 6164 stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6165
6166 if (i == sub_stripes - 1)
6167 stripe_offset = 0;
6168 } else {
a4012f06 6169 stripes[i].length = length;
0b3d4cd3
LB
6170 }
6171
6172 stripe_index++;
6173 if (stripe_index == map->num_stripes) {
6174 stripe_index = 0;
6175 stripe_nr++;
6176 }
6177 }
6178
7dc66abb 6179 btrfs_free_chunk_map(map);
a4012f06
CH
6180 return stripes;
6181out_free_map:
7dc66abb 6182 btrfs_free_chunk_map(map);
a4012f06 6183 return ERR_PTR(ret);
0b3d4cd3
LB
6184}
6185
6143c23c
NA
6186static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6187{
6188 struct btrfs_block_group *cache;
6189 bool ret;
6190
de17addc 6191 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6192 if (!btrfs_is_zoned(fs_info))
6193 return false;
6194
6195 cache = btrfs_lookup_block_group(fs_info, logical);
6196
3349b57f 6197 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6143c23c
NA
6198
6199 btrfs_put_block_group(cache);
6200 return ret;
6201}
6202
73c0f228 6203static void handle_ops_on_dev_replace(enum btrfs_map_op op,
be5c7edb 6204 struct btrfs_io_context *bioc,
73c0f228 6205 struct btrfs_dev_replace *dev_replace,
6143c23c 6206 u64 logical,
73c0f228
LB
6207 int *num_stripes_ret, int *max_errors_ret)
6208{
73c0f228 6209 u64 srcdev_devid = dev_replace->srcdev->devid;
1faf3885
QW
6210 /*
6211 * At this stage, num_stripes is still the real number of stripes,
6212 * excluding the duplicated stripes.
6213 */
73c0f228 6214 int num_stripes = *num_stripes_ret;
1faf3885 6215 int nr_extra_stripes = 0;
73c0f228
LB
6216 int max_errors = *max_errors_ret;
6217 int i;
6218
1faf3885
QW
6219 /*
6220 * A block group which has "to_copy" set will eventually be copied by
6221 * the dev-replace process. We can avoid cloning IO here.
6222 */
6223 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6224 return;
73c0f228 6225
1faf3885
QW
6226 /*
6227 * Duplicate the write operations while the dev-replace procedure is
6228 * running. Since the copying of the old disk to the new disk takes
6229 * place at run time while the filesystem is mounted writable, the
6230 * regular write operations to the old disk have to be duplicated to go
6231 * to the new disk as well.
6232 *
6233 * Note that device->missing is handled by the caller, and that the
6234 * write to the old disk is already set up in the stripes array.
6235 */
6236 for (i = 0; i < num_stripes; i++) {
6237 struct btrfs_io_stripe *old = &bioc->stripes[i];
6238 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6143c23c 6239
1faf3885
QW
6240 if (old->dev->devid != srcdev_devid)
6241 continue;
73c0f228 6242
1faf3885
QW
6243 new->physical = old->physical;
6244 new->dev = dev_replace->tgtdev;
6245 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6246 bioc->replace_stripe_src = i;
6247 nr_extra_stripes++;
6248 }
73c0f228 6249
1faf3885
QW
6250 /* We can only have at most 2 extra nr_stripes (for DUP). */
6251 ASSERT(nr_extra_stripes <= 2);
6252 /*
6253 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6254 * replace.
6255 * If we have 2 extra stripes, only choose the one with smaller physical.
6256 */
6257 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6258 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6259 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
73c0f228 6260
1faf3885
QW
6261 /* Only DUP can have two extra stripes. */
6262 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6263
6264 /*
6265 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6266 * The extra stripe would still be there, but won't be accessed.
6267 */
6268 if (first->physical > second->physical) {
6269 swap(second->physical, first->physical);
6270 swap(second->dev, first->dev);
6271 nr_extra_stripes--;
73c0f228
LB
6272 }
6273 }
6274
1faf3885
QW
6275 *num_stripes_ret = num_stripes + nr_extra_stripes;
6276 *max_errors_ret = max_errors + nr_extra_stripes;
6277 bioc->replace_nr_stripes = nr_extra_stripes;
73c0f228
LB
6278}
6279
e94dfb7a
JT
6280static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6281 struct btrfs_io_geometry *io_geom)
5f141126 6282{
cc353a8b 6283 /*
f8a02dc6
CH
6284 * Stripe_nr is the stripe where this block falls. stripe_offset is
6285 * the offset of this block in its stripe.
cc353a8b 6286 */
e94dfb7a
JT
6287 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6288 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6289 ASSERT(io_geom->stripe_offset < U32_MAX);
5f141126 6290
f8a02dc6 6291 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
cb091225
QW
6292 unsigned long full_stripe_len =
6293 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5f141126 6294
a97699d1
QW
6295 /*
6296 * For full stripe start, we use previously calculated
6297 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6298 * STRIPE_LEN.
6299 *
6300 * By this we can avoid u64 division completely. And we have
6301 * to go rounddown(), not round_down(), as nr_data_stripes is
6302 * not ensured to be power of 2.
6303 */
e94dfb7a
JT
6304 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6305 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
5f141126 6306
e94dfb7a
JT
6307 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6308 ASSERT(io_geom->raid56_full_stripe_start <= offset);
5f141126 6309 /*
f8a02dc6
CH
6310 * For writes to RAID56, allow to write a full stripe set, but
6311 * no straddling of stripe sets.
5f141126 6312 */
e94dfb7a
JT
6313 if (io_geom->op == BTRFS_MAP_WRITE)
6314 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
5f141126
NB
6315 }
6316
f8a02dc6
CH
6317 /*
6318 * For other RAID types and for RAID56 reads, allow a single stripe (on
6319 * a single disk).
6320 */
6321 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
e94dfb7a 6322 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
f8a02dc6 6323 return U64_MAX;
5f141126
NB
6324}
6325
6edf6822
JT
6326static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6327 u64 *length, struct btrfs_io_stripe *dst,
6328 struct btrfs_chunk_map *map,
6329 struct btrfs_io_geometry *io_geom)
03793cbb 6330{
6edf6822 6331 dst->dev = map->stripes[io_geom->stripe_index].dev;
10e27980 6332
6edf6822
JT
6333 if (io_geom->op == BTRFS_MAP_READ &&
6334 btrfs_need_stripe_tree_update(fs_info, map->type))
10e27980 6335 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6edf6822
JT
6336 map->type,
6337 io_geom->stripe_index, dst);
10e27980 6338
6edf6822
JT
6339 dst->physical = map->stripes[io_geom->stripe_index].physical +
6340 io_geom->stripe_offset +
6341 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
10e27980 6342 return 0;
03793cbb
CH
6343}
6344
02d05b64
JT
6345static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6346 const struct btrfs_io_stripe *smap,
6347 const struct btrfs_chunk_map *map,
6348 int num_alloc_stripes,
6349 enum btrfs_map_op op, int mirror_num)
6350{
6351 if (!smap)
6352 return false;
6353
6354 if (num_alloc_stripes != 1)
6355 return false;
6356
6357 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6358 return false;
6359
6360 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6361 return false;
6362
6363 return true;
6364}
6365
30e8534b
JT
6366static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6367 struct btrfs_io_geometry *io_geom)
6368{
6369 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6370 io_geom->stripe_nr /= map->num_stripes;
6371 if (io_geom->op == BTRFS_MAP_READ)
6372 io_geom->mirror_num = 1;
6373}
6374
5e36aba8
JT
6375static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6376 struct btrfs_chunk_map *map,
6377 struct btrfs_io_geometry *io_geom,
6378 bool dev_replace_is_ongoing)
6379{
6380 if (io_geom->op != BTRFS_MAP_READ) {
6381 io_geom->num_stripes = map->num_stripes;
6382 return;
6383 }
6384
6385 if (io_geom->mirror_num) {
6386 io_geom->stripe_index = io_geom->mirror_num - 1;
6387 return;
6388 }
6389
6390 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6391 dev_replace_is_ongoing);
6392 io_geom->mirror_num = io_geom->stripe_index + 1;
6393}
6394
5aeb15c8
JT
6395static void map_blocks_dup(const struct btrfs_chunk_map *map,
6396 struct btrfs_io_geometry *io_geom)
6397{
6398 if (io_geom->op != BTRFS_MAP_READ) {
6399 io_geom->num_stripes = map->num_stripes;
6400 return;
6401 }
6402
6403 if (io_geom->mirror_num) {
6404 io_geom->stripe_index = io_geom->mirror_num - 1;
6405 return;
6406 }
6407
6408 io_geom->mirror_num = 1;
6409}
6410
8938f112
JT
6411static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6412 struct btrfs_chunk_map *map,
6413 struct btrfs_io_geometry *io_geom,
6414 bool dev_replace_is_ongoing)
6415{
6416 u32 factor = map->num_stripes / map->sub_stripes;
6417 int old_stripe_index;
6418
6419 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6420 io_geom->stripe_nr /= factor;
6421
6422 if (io_geom->op != BTRFS_MAP_READ) {
6423 io_geom->num_stripes = map->sub_stripes;
6424 return;
6425 }
6426
6427 if (io_geom->mirror_num) {
6428 io_geom->stripe_index += io_geom->mirror_num - 1;
6429 return;
6430 }
6431
6432 old_stripe_index = io_geom->stripe_index;
6433 io_geom->stripe_index = find_live_mirror(fs_info, map,
6434 io_geom->stripe_index,
6435 dev_replace_is_ongoing);
6436 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6437}
6438
089221d3
JT
6439static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6440 struct btrfs_io_geometry *io_geom,
6441 u64 logical, u64 *length)
6442{
6443 int data_stripes = nr_data_stripes(map);
6444
6445 /*
6446 * Needs full stripe mapping.
6447 *
6448 * Push stripe_nr back to the start of the full stripe For those cases
6449 * needing a full stripe, @stripe_nr is the full stripe number.
6450 *
6451 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6452 * that can be expensive. Here we just divide @stripe_nr with
6453 * @data_stripes.
6454 */
6455 io_geom->stripe_nr /= data_stripes;
6456
6457 /* RAID[56] write or recovery. Return all stripes */
6458 io_geom->num_stripes = map->num_stripes;
6459 io_geom->max_errors = btrfs_chunk_max_errors(map);
6460
6461 /* Return the length to the full stripe end. */
6462 *length = min(logical + *length,
6463 io_geom->raid56_full_stripe_start + map->start +
6464 btrfs_stripe_nr_to_offset(data_stripes)) -
6465 logical;
6466 io_geom->stripe_index = 0;
6467 io_geom->stripe_offset = 0;
6468}
6469
6470static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6471 struct btrfs_io_geometry *io_geom)
6472{
6473 int data_stripes = nr_data_stripes(map);
6474
6475 ASSERT(io_geom->mirror_num <= 1);
6476 /* Just grab the data stripe directly. */
6477 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6478 io_geom->stripe_nr /= data_stripes;
6479
6480 /* We distribute the parity blocks across stripes. */
6481 io_geom->stripe_index =
6482 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6483
6484 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6485 io_geom->mirror_num = 1;
6486}
6487
a16fb8c6
JT
6488static void map_blocks_single(const struct btrfs_chunk_map *map,
6489 struct btrfs_io_geometry *io_geom)
6490{
6491 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6492 io_geom->stripe_nr /= map->num_stripes;
6493 io_geom->mirror_num = io_geom->stripe_index + 1;
6494}
6495
ed3764f7
QW
6496/*
6497 * Map one logical range to one or more physical ranges.
6498 *
6499 * @length: (Mandatory) mapped length of this run.
6500 * One logical range can be split into different segments
6501 * due to factors like zones and RAID0/5/6/10 stripe
6502 * boundaries.
6503 *
6504 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6505 * which has one or more physical ranges (btrfs_io_stripe)
6506 * recorded inside.
6507 * Caller should call btrfs_put_bioc() to free it after use.
6508 *
6509 * @smap: (Optional) single physical range optimization.
6510 * If the map request can be fulfilled by one single
6511 * physical range, and this is parameter is not NULL,
6512 * then @bioc_ret would be NULL, and @smap would be
6513 * updated.
6514 *
6515 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6516 * value is 0.
6517 *
6518 * Mirror number 0 means to choose any live mirrors.
6519 *
6520 * For non-RAID56 profiles, non-zero mirror_num means
6521 * the Nth mirror. (e.g. mirror_num 1 means the first
6522 * copy).
6523 *
6524 * For RAID56 profile, mirror 1 means rebuild from P and
6525 * the remaining data stripes.
6526 *
6527 * For RAID6 profile, mirror > 2 means mark another
6528 * data/P stripe error and rebuild from the remaining
6529 * stripes..
ed3764f7 6530 */
cd4efd21
CH
6531int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6532 u64 logical, u64 *length,
6533 struct btrfs_io_context **bioc_ret,
9fb2acc2 6534 struct btrfs_io_stripe *smap, int *mirror_num_ret)
0b86a832 6535{
7dc66abb 6536 struct btrfs_chunk_map *map;
fd747f2d 6537 struct btrfs_io_geometry io_geom = { 0 };
f8a02dc6 6538 u64 map_offset;
cea9e445 6539 int i;
de11cc12 6540 int ret = 0;
5f50fa91 6541 int num_copies;
4c664611 6542 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6543 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6544 int dev_replace_is_ongoing = 0;
4ced85f8 6545 u16 num_alloc_stripes;
f8a02dc6 6546 u64 max_len;
89b798ad 6547
4c664611 6548 ASSERT(bioc_ret);
0b3d4cd3 6549
fd747f2d
JT
6550 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6551 io_geom.num_stripes = 1;
6552 io_geom.stripe_index = 0;
6553 io_geom.op = op;
6554
5f50fa91 6555 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
fd747f2d 6556 if (io_geom.mirror_num > num_copies)
5f50fa91
QW
6557 return -EINVAL;
6558
7dc66abb
FM
6559 map = btrfs_get_chunk_map(fs_info, logical, *length);
6560 if (IS_ERR(map))
6561 return PTR_ERR(map);
42034313 6562
7dc66abb 6563 map_offset = logical - map->start;
fd747f2d 6564 io_geom.raid56_full_stripe_start = (u64)-1;
e94dfb7a 6565 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
7dc66abb 6566 *length = min_t(u64, map->chunk_len - map_offset, max_len);
593060d7 6567
cb5583dd 6568 down_read(&dev_replace->rwsem);
472262f3 6569 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6570 /*
6571 * Hold the semaphore for read during the whole operation, write is
6572 * requested at commit time but must wait.
6573 */
472262f3 6574 if (!dev_replace_is_ongoing)
cb5583dd 6575 up_read(&dev_replace->rwsem);
472262f3 6576
b55b3077
JT
6577 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6578 case BTRFS_BLOCK_GROUP_RAID0:
30e8534b 6579 map_blocks_raid0(map, &io_geom);
b55b3077
JT
6580 break;
6581 case BTRFS_BLOCK_GROUP_RAID1:
6582 case BTRFS_BLOCK_GROUP_RAID1C3:
6583 case BTRFS_BLOCK_GROUP_RAID1C4:
5e36aba8 6584 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
b55b3077
JT
6585 break;
6586 case BTRFS_BLOCK_GROUP_DUP:
5aeb15c8 6587 map_blocks_dup(map, &io_geom);
b55b3077
JT
6588 break;
6589 case BTRFS_BLOCK_GROUP_RAID10:
8938f112 6590 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
b55b3077
JT
6591 break;
6592 case BTRFS_BLOCK_GROUP_RAID5:
6593 case BTRFS_BLOCK_GROUP_RAID6:
089221d3
JT
6594 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6595 map_blocks_raid56_write(map, &io_geom, logical, length);
6596 else
6597 map_blocks_raid56_read(map, &io_geom);
b55b3077
JT
6598 break;
6599 default:
8790d502 6600 /*
6ded22c1 6601 * After this, stripe_nr is the number of stripes on this
47c5713f
DS
6602 * device we have to walk to find the data, and stripe_index is
6603 * the number of our device in the stripe array
8790d502 6604 */
a16fb8c6 6605 map_blocks_single(map, &io_geom);
b55b3077 6606 break;
8790d502 6607 }
fd747f2d 6608 if (io_geom.stripe_index >= map->num_stripes) {
5d163e0e
JM
6609 btrfs_crit(fs_info,
6610 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
fd747f2d 6611 io_geom.stripe_index, map->num_stripes);
e042d1ec
JB
6612 ret = -EINVAL;
6613 goto out;
6614 }
cea9e445 6615
fd747f2d 6616 num_alloc_stripes = io_geom.num_stripes;
1faf3885
QW
6617 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6618 op != BTRFS_MAP_READ)
6619 /*
6620 * For replace case, we need to add extra stripes for extra
6621 * duplicated stripes.
6622 *
6623 * For both WRITE and GET_READ_MIRRORS, we may have at most
6624 * 2 more stripes (DUP types, otherwise 1).
6625 */
6626 num_alloc_stripes += 2;
2c8cdd6e 6627
03793cbb
CH
6628 /*
6629 * If this I/O maps to a single device, try to return the device and
6630 * physical block information on the stack instead of allocating an
6631 * I/O context structure.
6632 */
02d05b64 6633 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
fd747f2d 6634 io_geom.mirror_num)) {
6edf6822 6635 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
4e7de35e 6636 if (mirror_num_ret)
fd747f2d 6637 *mirror_num_ret = io_geom.mirror_num;
03793cbb 6638 *bioc_ret = NULL;
03793cbb
CH
6639 goto out;
6640 }
6641
02c372e1 6642 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
4c664611 6643 if (!bioc) {
de11cc12
LZ
6644 ret = -ENOMEM;
6645 goto out;
6646 }
1faf3885 6647 bioc->map_type = map->type;
608769a4 6648
18d758a2
QW
6649 /*
6650 * For RAID56 full map, we need to make sure the stripes[] follows the
6651 * rule that data stripes are all ordered, then followed with P and Q
6652 * (if we have).
6653 *
6654 * It's still mostly the same as other profiles, just with extra rotation.
6655 */
9fb2acc2 6656 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
fd747f2d 6657 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
18d758a2
QW
6658 /*
6659 * For RAID56 @stripe_nr is already the number of full stripes
6660 * before us, which is also the rotation value (needs to modulo
6661 * with num_stripes).
6662 *
6663 * In this case, we just add @stripe_nr with @i, then do the
6664 * modulo, to reduce one modulo call.
6665 */
7dc66abb 6666 bioc->full_stripe_logical = map->start +
d9d4ce9f
JT
6667 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6668 nr_data_stripes(map));
fd747f2d 6669 for (int i = 0; i < io_geom.num_stripes; i++) {
89f547c6
JT
6670 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6671 u32 stripe_index;
6672
6673 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6674 dst->dev = map->stripes[stripe_index].dev;
6675 dst->physical =
6676 map->stripes[stripe_index].physical +
6677 io_geom.stripe_offset +
6678 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
10e27980 6679 }
18d758a2
QW
6680 } else {
6681 /*
6682 * For all other non-RAID56 profiles, just copy the target
6683 * stripe into the bioc.
6684 */
fd747f2d 6685 for (i = 0; i < io_geom.num_stripes; i++) {
6edf6822
JT
6686 ret = set_io_stripe(fs_info, logical, length,
6687 &bioc->stripes[i], map, &io_geom);
10e27980
JT
6688 if (ret < 0)
6689 break;
fd747f2d 6690 io_geom.stripe_index++;
18d758a2 6691 }
593060d7 6692 }
de11cc12 6693
10e27980
JT
6694 if (ret) {
6695 *bioc_ret = NULL;
6696 btrfs_put_bioc(bioc);
6697 goto out;
6698 }
6699
8680e587 6700 if (op != BTRFS_MAP_READ)
fd747f2d 6701 io_geom.max_errors = btrfs_chunk_max_errors(map);
de11cc12 6702
73c0f228 6703 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
8680e587 6704 op != BTRFS_MAP_READ) {
be5c7edb 6705 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
fd747f2d 6706 &io_geom.num_stripes, &io_geom.max_errors);
472262f3
SB
6707 }
6708
4c664611 6709 *bioc_ret = bioc;
fd747f2d
JT
6710 bioc->num_stripes = io_geom.num_stripes;
6711 bioc->max_errors = io_geom.max_errors;
6712 bioc->mirror_num = io_geom.mirror_num;
ad6d620e 6713
cea9e445 6714out:
73beece9 6715 if (dev_replace_is_ongoing) {
53176dde
DS
6716 lockdep_assert_held(&dev_replace->rwsem);
6717 /* Unlock and let waiting writers proceed */
cb5583dd 6718 up_read(&dev_replace->rwsem);
73beece9 6719 }
7dc66abb 6720 btrfs_free_chunk_map(map);
de11cc12 6721 return ret;
0b86a832
CM
6722}
6723
562d7b15
JB
6724static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6725 const struct btrfs_fs_devices *fs_devices)
6726{
6727 if (args->fsid == NULL)
6728 return true;
6729 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6730 return true;
6731 return false;
6732}
6733
6734static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6735 const struct btrfs_device *device)
6736{
0fca385d
LS
6737 if (args->missing) {
6738 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6739 !device->bdev)
6740 return true;
6741 return false;
6742 }
562d7b15 6743
0fca385d 6744 if (device->devid != args->devid)
562d7b15
JB
6745 return false;
6746 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6747 return false;
0fca385d 6748 return true;
562d7b15
JB
6749}
6750
09ba3bc9
AJ
6751/*
6752 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6753 * return NULL.
6754 *
6755 * If devid and uuid are both specified, the match must be exact, otherwise
6756 * only devid is used.
09ba3bc9 6757 */
562d7b15
JB
6758struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6759 const struct btrfs_dev_lookup_args *args)
0b86a832 6760{
2b82032c 6761 struct btrfs_device *device;
944d3f9f
NB
6762 struct btrfs_fs_devices *seed_devs;
6763
562d7b15 6764 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6765 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6766 if (dev_args_match_device(args, device))
944d3f9f
NB
6767 return device;
6768 }
6769 }
2b82032c 6770
944d3f9f 6771 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6772 if (!dev_args_match_fs_devices(args, seed_devs))
6773 continue;
6774 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6775 if (dev_args_match_device(args, device))
6776 return device;
2b82032c 6777 }
2b82032c 6778 }
944d3f9f 6779
2b82032c 6780 return NULL;
0b86a832
CM
6781}
6782
2ff7e61e 6783static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6784 u64 devid, u8 *dev_uuid)
6785{
6786 struct btrfs_device *device;
fccc0007 6787 unsigned int nofs_flag;
dfe25020 6788
fccc0007
JB
6789 /*
6790 * We call this under the chunk_mutex, so we want to use NOFS for this
6791 * allocation, however we don't want to change btrfs_alloc_device() to
6792 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6793 * places.
6794 */
bb21e302 6795
fccc0007 6796 nofs_flag = memalloc_nofs_save();
bb21e302 6797 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
fccc0007 6798 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6799 if (IS_ERR(device))
adfb69af 6800 return device;
12bd2fc0
ID
6801
6802 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6803 device->fs_devices = fs_devices;
dfe25020 6804 fs_devices->num_devices++;
12bd2fc0 6805
e6e674bd 6806 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6807 fs_devices->missing_devices++;
12bd2fc0 6808
dfe25020
CM
6809 return device;
6810}
6811
43dd529a
DS
6812/*
6813 * Allocate new device struct, set up devid and UUID.
6814 *
12bd2fc0
ID
6815 * @fs_info: used only for generating a new devid, can be NULL if
6816 * devid is provided (i.e. @devid != NULL).
6817 * @devid: a pointer to devid for this device. If NULL a new devid
6818 * is generated.
6819 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6820 * is generated.
bb21e302 6821 * @path: a pointer to device path if available, NULL otherwise.
12bd2fc0
ID
6822 *
6823 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6824 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6825 * destroyed with btrfs_free_device.
12bd2fc0
ID
6826 */
6827struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
bb21e302
AJ
6828 const u64 *devid, const u8 *uuid,
6829 const char *path)
12bd2fc0
ID
6830{
6831 struct btrfs_device *dev;
6832 u64 tmp;
6833
fae7f21c 6834 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6835 return ERR_PTR(-EINVAL);
12bd2fc0 6836
fe4f46d4
DS
6837 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6838 if (!dev)
6839 return ERR_PTR(-ENOMEM);
6840
fe4f46d4
DS
6841 INIT_LIST_HEAD(&dev->dev_list);
6842 INIT_LIST_HEAD(&dev->dev_alloc_list);
6843 INIT_LIST_HEAD(&dev->post_commit_list);
6844
fe4f46d4
DS
6845 atomic_set(&dev->dev_stats_ccnt, 0);
6846 btrfs_device_data_ordered_init(dev);
35da5a7e 6847 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
12bd2fc0
ID
6848
6849 if (devid)
6850 tmp = *devid;
6851 else {
6852 int ret;
6853
6854 ret = find_next_devid(fs_info, &tmp);
6855 if (ret) {
a425f9d4 6856 btrfs_free_device(dev);
12bd2fc0
ID
6857 return ERR_PTR(ret);
6858 }
6859 }
6860 dev->devid = tmp;
6861
6862 if (uuid)
6863 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6864 else
6865 generate_random_uuid(dev->uuid);
6866
bb21e302
AJ
6867 if (path) {
6868 struct rcu_string *name;
6869
6870 name = rcu_string_strdup(path, GFP_KERNEL);
6871 if (!name) {
6872 btrfs_free_device(dev);
6873 return ERR_PTR(-ENOMEM);
6874 }
6875 rcu_assign_pointer(dev->name, name);
6876 }
6877
12bd2fc0
ID
6878 return dev;
6879}
6880
5a2b8e60 6881static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6882 u64 devid, u8 *uuid, bool error)
5a2b8e60 6883{
2b902dfc
AJ
6884 if (error)
6885 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6886 devid, uuid);
6887 else
6888 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6889 devid, uuid);
5a2b8e60
AJ
6890}
6891
7dc66abb 6892u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
39e264a4 6893{
bc88b486 6894 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
e4f6c6be 6895
7dc66abb 6896 return div_u64(map->chunk_len, data_stripes);
39e264a4
NB
6897}
6898
e9306ad4
QW
6899#if BITS_PER_LONG == 32
6900/*
6901 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6902 * can't be accessed on 32bit systems.
6903 *
6904 * This function do mount time check to reject the fs if it already has
6905 * metadata chunk beyond that limit.
6906 */
6907static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6908 u64 logical, u64 length, u64 type)
6909{
6910 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6911 return 0;
6912
6913 if (logical + length < MAX_LFS_FILESIZE)
6914 return 0;
6915
6916 btrfs_err_32bit_limit(fs_info);
6917 return -EOVERFLOW;
6918}
6919
6920/*
6921 * This is to give early warning for any metadata chunk reaching
6922 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6923 * Although we can still access the metadata, it's not going to be possible
6924 * once the limit is reached.
6925 */
6926static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6927 u64 logical, u64 length, u64 type)
6928{
6929 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6930 return;
6931
6932 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6933 return;
6934
6935 btrfs_warn_32bit_limit(fs_info);
6936}
6937#endif
6938
ff37c89f
NB
6939static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6940 u64 devid, u8 *uuid)
6941{
6942 struct btrfs_device *dev;
6943
6944 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6945 btrfs_report_missing_device(fs_info, devid, uuid, true);
6946 return ERR_PTR(-ENOENT);
6947 }
6948
6949 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6950 if (IS_ERR(dev)) {
6951 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6952 devid, PTR_ERR(dev));
6953 return dev;
6954 }
6955 btrfs_report_missing_device(fs_info, devid, uuid, false);
6956
6957 return dev;
6958}
6959
9690ac09 6960static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6961 struct btrfs_chunk *chunk)
6962{
562d7b15 6963 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 6964 struct btrfs_fs_info *fs_info = leaf->fs_info;
7dc66abb 6965 struct btrfs_chunk_map *map;
e06cd3dd
LB
6966 u64 logical;
6967 u64 length;
e06cd3dd 6968 u64 devid;
e9306ad4 6969 u64 type;
e06cd3dd 6970 u8 uuid[BTRFS_UUID_SIZE];
76a66ba1 6971 int index;
e06cd3dd
LB
6972 int num_stripes;
6973 int ret;
6974 int i;
6975
6976 logical = key->offset;
6977 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6978 type = btrfs_chunk_type(leaf, chunk);
76a66ba1 6979 index = btrfs_bg_flags_to_raid_index(type);
e06cd3dd
LB
6980 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6981
e9306ad4
QW
6982#if BITS_PER_LONG == 32
6983 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6984 if (ret < 0)
6985 return ret;
6986 warn_32bit_meta_chunk(fs_info, logical, length, type);
6987#endif
6988
075cb3c7
QW
6989 /*
6990 * Only need to verify chunk item if we're reading from sys chunk array,
6991 * as chunk item in tree block is already verified by tree-checker.
6992 */
6993 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6994 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6995 if (ret)
6996 return ret;
6997 }
a061fc8d 6998
7dc66abb 6999 map = btrfs_find_chunk_map(fs_info, logical, 1);
0b86a832
CM
7000
7001 /* already mapped? */
7dc66abb
FM
7002 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7003 btrfs_free_chunk_map(map);
0b86a832 7004 return 0;
7dc66abb
FM
7005 } else if (map) {
7006 btrfs_free_chunk_map(map);
0b86a832 7007 }
0b86a832 7008
7dc66abb
FM
7009 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7010 if (!map)
0b86a832 7011 return -ENOMEM;
0b86a832 7012
7dc66abb
FM
7013 map->start = logical;
7014 map->chunk_len = length;
593060d7
CM
7015 map->num_stripes = num_stripes;
7016 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7017 map->io_align = btrfs_chunk_io_align(leaf, chunk);
e9306ad4 7018 map->type = type;
76a66ba1
QW
7019 /*
7020 * We can't use the sub_stripes value, as for profiles other than
7021 * RAID10, they may have 0 as sub_stripes for filesystems created by
7022 * older mkfs (<v5.4).
7023 * In that case, it can cause divide-by-zero errors later.
7024 * Since currently sub_stripes is fixed for each profile, let's
7025 * use the trusted value instead.
7026 */
7027 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
cf90d884 7028 map->verified_stripes = 0;
7dc66abb 7029 map->stripe_size = btrfs_calc_stripe_length(map);
593060d7
CM
7030 for (i = 0; i < num_stripes; i++) {
7031 map->stripes[i].physical =
7032 btrfs_stripe_offset_nr(leaf, chunk, i);
7033 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 7034 args.devid = devid;
a443755f
CM
7035 read_extent_buffer(leaf, uuid, (unsigned long)
7036 btrfs_stripe_dev_uuid_nr(chunk, i),
7037 BTRFS_UUID_SIZE);
562d7b15
JB
7038 args.uuid = uuid;
7039 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 7040 if (!map->stripes[i].dev) {
ff37c89f
NB
7041 map->stripes[i].dev = handle_missing_device(fs_info,
7042 devid, uuid);
adfb69af 7043 if (IS_ERR(map->stripes[i].dev)) {
1742e1c9 7044 ret = PTR_ERR(map->stripes[i].dev);
7dc66abb 7045 btrfs_free_chunk_map(map);
1742e1c9 7046 return ret;
dfe25020
CM
7047 }
7048 }
ff37c89f 7049
e12c9621
AJ
7050 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7051 &(map->stripes[i].dev->dev_state));
0b86a832
CM
7052 }
7053
7dc66abb 7054 ret = btrfs_add_chunk_map(fs_info, map);
64f64f43
QW
7055 if (ret < 0) {
7056 btrfs_err(fs_info,
7057 "failed to add chunk map, start=%llu len=%llu: %d",
7dc66abb 7058 map->start, map->chunk_len, ret);
64f64f43 7059 }
0b86a832 7060
64f64f43 7061 return ret;
0b86a832
CM
7062}
7063
143bede5 7064static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7065 struct btrfs_dev_item *dev_item,
7066 struct btrfs_device *device)
7067{
7068 unsigned long ptr;
0b86a832
CM
7069
7070 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7071 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7072 device->total_bytes = device->disk_total_bytes;
935e5cc9 7073 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7074 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7075 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7076 device->type = btrfs_device_type(leaf, dev_item);
7077 device->io_align = btrfs_device_io_align(leaf, dev_item);
7078 device->io_width = btrfs_device_io_width(leaf, dev_item);
7079 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7080 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7081 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7082
410ba3a2 7083 ptr = btrfs_device_uuid(dev_item);
e17cade2 7084 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7085}
7086
2ff7e61e 7087static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7088 u8 *fsid)
2b82032c
YZ
7089{
7090 struct btrfs_fs_devices *fs_devices;
7091 int ret;
7092
a32bf9a3 7093 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7094 ASSERT(fsid);
2b82032c 7095
427c8fdd 7096 /* This will match only for multi-device seed fs */
944d3f9f 7097 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7098 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7099 return fs_devices;
7100
2b82032c 7101
7239ff4b 7102 fs_devices = find_fsid(fsid, NULL);
2b82032c 7103 if (!fs_devices) {
0b246afa 7104 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7105 return ERR_PTR(-ENOENT);
7106
f7361d8c 7107 fs_devices = alloc_fs_devices(fsid);
5f375835
MX
7108 if (IS_ERR(fs_devices))
7109 return fs_devices;
7110
0395d84f 7111 fs_devices->seeding = true;
5f375835
MX
7112 fs_devices->opened = 1;
7113 return fs_devices;
2b82032c 7114 }
e4404d6e 7115
427c8fdd
NB
7116 /*
7117 * Upon first call for a seed fs fsid, just create a private copy of the
7118 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7119 */
e4404d6e 7120 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7121 if (IS_ERR(fs_devices))
7122 return fs_devices;
2b82032c 7123
05bdb996 7124 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
48d28232
JL
7125 if (ret) {
7126 free_fs_devices(fs_devices);
c83b60c0 7127 return ERR_PTR(ret);
48d28232 7128 }
2b82032c
YZ
7129
7130 if (!fs_devices->seeding) {
0226e0eb 7131 close_fs_devices(fs_devices);
e4404d6e 7132 free_fs_devices(fs_devices);
c83b60c0 7133 return ERR_PTR(-EINVAL);
2b82032c
YZ
7134 }
7135
944d3f9f 7136 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7137
5f375835 7138 return fs_devices;
2b82032c
YZ
7139}
7140
17850759 7141static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7142 struct btrfs_dev_item *dev_item)
7143{
562d7b15 7144 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 7145 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7147 struct btrfs_device *device;
7148 u64 devid;
7149 int ret;
44880fdc 7150 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7151 u8 dev_uuid[BTRFS_UUID_SIZE];
7152
c1867eb3
DS
7153 devid = btrfs_device_id(leaf, dev_item);
7154 args.devid = devid;
410ba3a2 7155 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7156 BTRFS_UUID_SIZE);
1473b24e 7157 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7158 BTRFS_FSID_SIZE);
562d7b15
JB
7159 args.uuid = dev_uuid;
7160 args.fsid = fs_uuid;
2b82032c 7161
de37aa51 7162 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7163 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7164 if (IS_ERR(fs_devices))
7165 return PTR_ERR(fs_devices);
2b82032c
YZ
7166 }
7167
562d7b15 7168 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 7169 if (!device) {
c5502451 7170 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7171 btrfs_report_missing_device(fs_info, devid,
7172 dev_uuid, true);
45dbdbc9 7173 return -ENOENT;
c5502451 7174 }
2b82032c 7175
2ff7e61e 7176 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7177 if (IS_ERR(device)) {
7178 btrfs_err(fs_info,
7179 "failed to add missing dev %llu: %ld",
7180 devid, PTR_ERR(device));
7181 return PTR_ERR(device);
7182 }
2b902dfc 7183 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7184 } else {
c5502451 7185 if (!device->bdev) {
2b902dfc
AJ
7186 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7187 btrfs_report_missing_device(fs_info,
7188 devid, dev_uuid, true);
45dbdbc9 7189 return -ENOENT;
2b902dfc
AJ
7190 }
7191 btrfs_report_missing_device(fs_info, devid,
7192 dev_uuid, false);
c5502451 7193 }
5f375835 7194
e6e674bd
AJ
7195 if (!device->bdev &&
7196 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7197 /*
7198 * this happens when a device that was properly setup
7199 * in the device info lists suddenly goes bad.
7200 * device->bdev is NULL, and so we have to set
7201 * device->missing to one here
7202 */
5f375835 7203 device->fs_devices->missing_devices++;
e6e674bd 7204 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7205 }
5f375835
MX
7206
7207 /* Move the device to its own fs_devices */
7208 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7209 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7210 &device->dev_state));
5f375835
MX
7211
7212 list_move(&device->dev_list, &fs_devices->devices);
7213 device->fs_devices->num_devices--;
7214 fs_devices->num_devices++;
7215
7216 device->fs_devices->missing_devices--;
7217 fs_devices->missing_devices++;
7218
7219 device->fs_devices = fs_devices;
7220 }
2b82032c
YZ
7221 }
7222
0b246afa 7223 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7224 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7225 if (device->generation !=
7226 btrfs_device_generation(leaf, dev_item))
7227 return -EINVAL;
6324fbf3 7228 }
0b86a832
CM
7229
7230 fill_device_from_item(leaf, dev_item, device);
3a160a93 7231 if (device->bdev) {
cda00eba 7232 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7233
7234 if (device->total_bytes > max_total_bytes) {
7235 btrfs_err(fs_info,
7236 "device total_bytes should be at most %llu but found %llu",
7237 max_total_bytes, device->total_bytes);
7238 return -EINVAL;
7239 }
7240 }
e12c9621 7241 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7243 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7244 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7245 atomic64_add(device->total_bytes - device->bytes_used,
7246 &fs_info->free_chunk_space);
2bf64758 7247 }
0b86a832 7248 ret = 0;
0b86a832
CM
7249 return ret;
7250}
7251
6bccf3ab 7252int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7253{
ab8d0fc4 7254 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7255 struct extent_buffer *sb;
0b86a832 7256 struct btrfs_disk_key *disk_key;
0b86a832 7257 struct btrfs_chunk *chunk;
1ffb22cf
DS
7258 u8 *array_ptr;
7259 unsigned long sb_array_offset;
84eed90f 7260 int ret = 0;
0b86a832
CM
7261 u32 num_stripes;
7262 u32 array_size;
7263 u32 len = 0;
1ffb22cf 7264 u32 cur_offset;
e06cd3dd 7265 u64 type;
84eed90f 7266 struct btrfs_key key;
0b86a832 7267
0b246afa 7268 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7269
a83fffb7 7270 /*
e959d3c1
QW
7271 * We allocated a dummy extent, just to use extent buffer accessors.
7272 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7273 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7274 */
e959d3c1
QW
7275 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7276 if (!sb)
7277 return -ENOMEM;
4db8c528 7278 set_extent_buffer_uptodate(sb);
4008c04a 7279
a061fc8d 7280 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7281 array_size = btrfs_super_sys_array_size(super_copy);
7282
1ffb22cf
DS
7283 array_ptr = super_copy->sys_chunk_array;
7284 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7285 cur_offset = 0;
0b86a832 7286
1ffb22cf
DS
7287 while (cur_offset < array_size) {
7288 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7289 len = sizeof(*disk_key);
7290 if (cur_offset + len > array_size)
7291 goto out_short_read;
7292
0b86a832
CM
7293 btrfs_disk_key_to_cpu(&key, disk_key);
7294
1ffb22cf
DS
7295 array_ptr += len;
7296 sb_array_offset += len;
7297 cur_offset += len;
0b86a832 7298
32ab3d1b
JT
7299 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7300 btrfs_err(fs_info,
7301 "unexpected item type %u in sys_array at offset %u",
7302 (u32)key.type, cur_offset);
7303 ret = -EIO;
7304 break;
7305 }
f5cdedd7 7306
32ab3d1b
JT
7307 chunk = (struct btrfs_chunk *)sb_array_offset;
7308 /*
7309 * At least one btrfs_chunk with one stripe must be present,
7310 * exact stripe count check comes afterwards
7311 */
7312 len = btrfs_chunk_item_size(1);
7313 if (cur_offset + len > array_size)
7314 goto out_short_read;
e06cd3dd 7315
32ab3d1b
JT
7316 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7317 if (!num_stripes) {
7318 btrfs_err(fs_info,
7319 "invalid number of stripes %u in sys_array at offset %u",
7320 num_stripes, cur_offset);
7321 ret = -EIO;
7322 break;
7323 }
e3540eab 7324
32ab3d1b
JT
7325 type = btrfs_chunk_type(sb, chunk);
7326 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7327 btrfs_err(fs_info,
32ab3d1b
JT
7328 "invalid chunk type %llu in sys_array at offset %u",
7329 type, cur_offset);
84eed90f
CM
7330 ret = -EIO;
7331 break;
0b86a832 7332 }
32ab3d1b
JT
7333
7334 len = btrfs_chunk_item_size(num_stripes);
7335 if (cur_offset + len > array_size)
7336 goto out_short_read;
7337
7338 ret = read_one_chunk(&key, sb, chunk);
7339 if (ret)
7340 break;
7341
1ffb22cf
DS
7342 array_ptr += len;
7343 sb_array_offset += len;
7344 cur_offset += len;
0b86a832 7345 }
d865177a 7346 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7347 free_extent_buffer_stale(sb);
84eed90f 7348 return ret;
e3540eab
DS
7349
7350out_short_read:
ab8d0fc4 7351 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7352 len, cur_offset);
d865177a 7353 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7354 free_extent_buffer_stale(sb);
e3540eab 7355 return -EIO;
0b86a832
CM
7356}
7357
21634a19
QW
7358/*
7359 * Check if all chunks in the fs are OK for read-write degraded mount
7360 *
6528b99d
AJ
7361 * If the @failing_dev is specified, it's accounted as missing.
7362 *
21634a19
QW
7363 * Return true if all chunks meet the minimal RW mount requirements.
7364 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7365 */
6528b99d
AJ
7366bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7367 struct btrfs_device *failing_dev)
21634a19 7368{
7dc66abb
FM
7369 struct btrfs_chunk_map *map;
7370 u64 next_start;
21634a19
QW
7371 bool ret = true;
7372
7dc66abb 7373 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
21634a19 7374 /* No chunk at all? Return false anyway */
7dc66abb 7375 if (!map) {
21634a19
QW
7376 ret = false;
7377 goto out;
7378 }
7dc66abb 7379 while (map) {
21634a19
QW
7380 int missing = 0;
7381 int max_tolerated;
7382 int i;
7383
21634a19
QW
7384 max_tolerated =
7385 btrfs_get_num_tolerated_disk_barrier_failures(
7386 map->type);
7387 for (i = 0; i < map->num_stripes; i++) {
7388 struct btrfs_device *dev = map->stripes[i].dev;
7389
e6e674bd
AJ
7390 if (!dev || !dev->bdev ||
7391 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7392 dev->last_flush_error)
7393 missing++;
6528b99d
AJ
7394 else if (failing_dev && failing_dev == dev)
7395 missing++;
21634a19
QW
7396 }
7397 if (missing > max_tolerated) {
6528b99d
AJ
7398 if (!failing_dev)
7399 btrfs_warn(fs_info,
52042d8e 7400 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7dc66abb
FM
7401 map->start, missing, max_tolerated);
7402 btrfs_free_chunk_map(map);
21634a19
QW
7403 ret = false;
7404 goto out;
7405 }
7dc66abb
FM
7406 next_start = map->start + map->chunk_len;
7407 btrfs_free_chunk_map(map);
21634a19 7408
7dc66abb 7409 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
21634a19
QW
7410 }
7411out:
7412 return ret;
7413}
7414
d85327b1
DS
7415static void readahead_tree_node_children(struct extent_buffer *node)
7416{
7417 int i;
7418 const int nr_items = btrfs_header_nritems(node);
7419
bfb484d9
JB
7420 for (i = 0; i < nr_items; i++)
7421 btrfs_readahead_node_child(node, i);
d85327b1
DS
7422}
7423
5b4aacef 7424int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7425{
5b4aacef 7426 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7427 struct btrfs_path *path;
7428 struct extent_buffer *leaf;
7429 struct btrfs_key key;
7430 struct btrfs_key found_key;
7431 int ret;
7432 int slot;
43cb1478 7433 int iter_ret = 0;
99e3ecfc 7434 u64 total_dev = 0;
d85327b1 7435 u64 last_ra_node = 0;
0b86a832 7436
0b86a832
CM
7437 path = btrfs_alloc_path();
7438 if (!path)
7439 return -ENOMEM;
7440
3dd0f7a3
AJ
7441 /*
7442 * uuid_mutex is needed only if we are mounting a sprout FS
7443 * otherwise we don't need it.
7444 */
b367e47f 7445 mutex_lock(&uuid_mutex);
b367e47f 7446
48cfa61b
BB
7447 /*
7448 * It is possible for mount and umount to race in such a way that
7449 * we execute this code path, but open_fs_devices failed to clear
7450 * total_rw_bytes. We certainly want it cleared before reading the
7451 * device items, so clear it here.
7452 */
7453 fs_info->fs_devices->total_rw_bytes = 0;
7454
4d9380e0
FM
7455 /*
7456 * Lockdep complains about possible circular locking dependency between
7457 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7458 * used for freeze procection of a fs (struct super_block.s_writers),
7459 * which we take when starting a transaction, and extent buffers of the
7460 * chunk tree if we call read_one_dev() while holding a lock on an
7461 * extent buffer of the chunk tree. Since we are mounting the filesystem
7462 * and at this point there can't be any concurrent task modifying the
7463 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7464 */
7465 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7466 path->skip_locking = 1;
7467
395927a9
FDBM
7468 /*
7469 * Read all device items, and then all the chunk items. All
7470 * device items are found before any chunk item (their object id
7471 * is smaller than the lowest possible object id for a chunk
7472 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7473 */
7474 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7475 key.offset = 0;
7476 key.type = 0;
43cb1478
GN
7477 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7478 struct extent_buffer *node = path->nodes[1];
d85327b1 7479
0b86a832
CM
7480 leaf = path->nodes[0];
7481 slot = path->slots[0];
43cb1478 7482
d85327b1
DS
7483 if (node) {
7484 if (last_ra_node != node->start) {
7485 readahead_tree_node_children(node);
7486 last_ra_node = node->start;
7487 }
7488 }
395927a9
FDBM
7489 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7490 struct btrfs_dev_item *dev_item;
7491 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7492 struct btrfs_dev_item);
17850759 7493 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7494 if (ret)
7495 goto error;
99e3ecfc 7496 total_dev++;
0b86a832
CM
7497 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7498 struct btrfs_chunk *chunk;
79bd3712
FM
7499
7500 /*
7501 * We are only called at mount time, so no need to take
7502 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7503 * we always lock first fs_info->chunk_mutex before
7504 * acquiring any locks on the chunk tree. This is a
7505 * requirement for chunk allocation, see the comment on
7506 * top of btrfs_chunk_alloc() for details.
7507 */
0b86a832 7508 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7509 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7510 if (ret)
7511 goto error;
0b86a832 7512 }
43cb1478
GN
7513 }
7514 /* Catch error found during iteration */
7515 if (iter_ret < 0) {
7516 ret = iter_ret;
7517 goto error;
0b86a832 7518 }
99e3ecfc
LB
7519
7520 /*
7521 * After loading chunk tree, we've got all device information,
7522 * do another round of validation checks.
7523 */
0b246afa 7524 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7525 btrfs_warn(fs_info,
7526"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7527 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7528 total_dev);
d201238c
QW
7529 fs_info->fs_devices->total_devices = total_dev;
7530 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7531 }
0b246afa
JM
7532 if (btrfs_super_total_bytes(fs_info->super_copy) <
7533 fs_info->fs_devices->total_rw_bytes) {
7534 btrfs_err(fs_info,
99e3ecfc 7535 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7536 btrfs_super_total_bytes(fs_info->super_copy),
7537 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7538 ret = -EINVAL;
7539 goto error;
7540 }
0b86a832
CM
7541 ret = 0;
7542error:
b367e47f
LZ
7543 mutex_unlock(&uuid_mutex);
7544
2b82032c 7545 btrfs_free_path(path);
0b86a832
CM
7546 return ret;
7547}
442a4f63 7548
a8d1b164 7549int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
cb517eab 7550{
944d3f9f 7551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab 7552 struct btrfs_device *device;
a8d1b164 7553 int ret = 0;
cb517eab 7554
944d3f9f
NB
7555 fs_devices->fs_info = fs_info;
7556
7557 mutex_lock(&fs_devices->device_list_mutex);
7558 list_for_each_entry(device, &fs_devices->devices, dev_list)
7559 device->fs_info = fs_info;
944d3f9f
NB
7560
7561 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
a8d1b164 7562 list_for_each_entry(device, &seed_devs->devices, dev_list) {
fb456252 7563 device->fs_info = fs_info;
a8d1b164
JT
7564 ret = btrfs_get_dev_zone_info(device, false);
7565 if (ret)
7566 break;
7567 }
29cc83f6 7568
944d3f9f 7569 seed_devs->fs_info = fs_info;
29cc83f6 7570 }
e17125b5 7571 mutex_unlock(&fs_devices->device_list_mutex);
a8d1b164
JT
7572
7573 return ret;
cb517eab
MX
7574}
7575
1dc990df
DS
7576static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7577 const struct btrfs_dev_stats_item *ptr,
7578 int index)
7579{
7580 u64 val;
7581
7582 read_extent_buffer(eb, &val,
7583 offsetof(struct btrfs_dev_stats_item, values) +
7584 ((unsigned long)ptr) + (index * sizeof(u64)),
7585 sizeof(val));
7586 return val;
7587}
7588
7589static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7590 struct btrfs_dev_stats_item *ptr,
7591 int index, u64 val)
7592{
7593 write_extent_buffer(eb, &val,
7594 offsetof(struct btrfs_dev_stats_item, values) +
7595 ((unsigned long)ptr) + (index * sizeof(u64)),
7596 sizeof(val));
7597}
7598
92e26df4
JB
7599static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7600 struct btrfs_path *path)
733f4fbb 7601{
124604eb 7602 struct btrfs_dev_stats_item *ptr;
733f4fbb 7603 struct extent_buffer *eb;
124604eb
JB
7604 struct btrfs_key key;
7605 int item_size;
7606 int i, ret, slot;
7607
82d62d06
JB
7608 if (!device->fs_info->dev_root)
7609 return 0;
7610
124604eb
JB
7611 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7612 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7613 key.offset = device->devid;
7614 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7615 if (ret) {
7616 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7617 btrfs_dev_stat_set(device, i, 0);
7618 device->dev_stats_valid = 1;
7619 btrfs_release_path(path);
92e26df4 7620 return ret < 0 ? ret : 0;
124604eb
JB
7621 }
7622 slot = path->slots[0];
7623 eb = path->nodes[0];
3212fa14 7624 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7625
7626 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7627
7628 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7629 if (item_size >= (1 + i) * sizeof(__le64))
7630 btrfs_dev_stat_set(device, i,
7631 btrfs_dev_stats_value(eb, ptr, i));
7632 else
7633 btrfs_dev_stat_set(device, i, 0);
7634 }
7635
7636 device->dev_stats_valid = 1;
7637 btrfs_dev_stat_print_on_load(device);
7638 btrfs_release_path(path);
92e26df4
JB
7639
7640 return 0;
124604eb
JB
7641}
7642
7643int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7644{
7645 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7646 struct btrfs_device *device;
7647 struct btrfs_path *path = NULL;
92e26df4 7648 int ret = 0;
733f4fbb
SB
7649
7650 path = btrfs_alloc_path();
3b80a984
AJ
7651 if (!path)
7652 return -ENOMEM;
733f4fbb
SB
7653
7654 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7655 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7656 ret = btrfs_device_init_dev_stats(device, path);
7657 if (ret)
7658 goto out;
7659 }
124604eb 7660 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7661 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7662 ret = btrfs_device_init_dev_stats(device, path);
7663 if (ret)
7664 goto out;
7665 }
733f4fbb 7666 }
92e26df4 7667out:
733f4fbb
SB
7668 mutex_unlock(&fs_devices->device_list_mutex);
7669
733f4fbb 7670 btrfs_free_path(path);
92e26df4 7671 return ret;
733f4fbb
SB
7672}
7673
7674static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7675 struct btrfs_device *device)
7676{
5495f195 7677 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7678 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7679 struct btrfs_path *path;
7680 struct btrfs_key key;
7681 struct extent_buffer *eb;
7682 struct btrfs_dev_stats_item *ptr;
7683 int ret;
7684 int i;
7685
242e2956
DS
7686 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7687 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7688 key.offset = device->devid;
7689
7690 path = btrfs_alloc_path();
fa252992
DS
7691 if (!path)
7692 return -ENOMEM;
733f4fbb
SB
7693 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7694 if (ret < 0) {
0b246afa 7695 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7696 "error %d while searching for dev_stats item for device %s",
cb3e217b 7697 ret, btrfs_dev_name(device));
733f4fbb
SB
7698 goto out;
7699 }
7700
7701 if (ret == 0 &&
3212fa14 7702 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7703 /* need to delete old one and insert a new one */
7704 ret = btrfs_del_item(trans, dev_root, path);
7705 if (ret != 0) {
0b246afa 7706 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7707 "delete too small dev_stats item for device %s failed %d",
cb3e217b 7708 btrfs_dev_name(device), ret);
733f4fbb
SB
7709 goto out;
7710 }
7711 ret = 1;
7712 }
7713
7714 if (ret == 1) {
7715 /* need to insert a new item */
7716 btrfs_release_path(path);
7717 ret = btrfs_insert_empty_item(trans, dev_root, path,
7718 &key, sizeof(*ptr));
7719 if (ret < 0) {
0b246afa 7720 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7721 "insert dev_stats item for device %s failed %d",
cb3e217b 7722 btrfs_dev_name(device), ret);
733f4fbb
SB
7723 goto out;
7724 }
7725 }
7726
7727 eb = path->nodes[0];
7728 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7729 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7730 btrfs_set_dev_stats_value(eb, ptr, i,
7731 btrfs_dev_stat_read(device, i));
50564b65 7732 btrfs_mark_buffer_dirty(trans, eb);
733f4fbb
SB
7733
7734out:
7735 btrfs_free_path(path);
7736 return ret;
7737}
7738
7739/*
7740 * called from commit_transaction. Writes all changed device stats to disk.
7741 */
196c9d8d 7742int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7743{
196c9d8d 7744 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7745 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7746 struct btrfs_device *device;
addc3fa7 7747 int stats_cnt;
733f4fbb
SB
7748 int ret = 0;
7749
7750 mutex_lock(&fs_devices->device_list_mutex);
7751 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7752 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7753 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7754 continue;
7755
9deae968
NB
7756
7757 /*
7758 * There is a LOAD-LOAD control dependency between the value of
7759 * dev_stats_ccnt and updating the on-disk values which requires
7760 * reading the in-memory counters. Such control dependencies
7761 * require explicit read memory barriers.
7762 *
7763 * This memory barriers pairs with smp_mb__before_atomic in
7764 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7765 * barrier implied by atomic_xchg in
7766 * btrfs_dev_stats_read_and_reset
7767 */
7768 smp_rmb();
7769
5495f195 7770 ret = update_dev_stat_item(trans, device);
733f4fbb 7771 if (!ret)
addc3fa7 7772 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7773 }
7774 mutex_unlock(&fs_devices->device_list_mutex);
7775
7776 return ret;
7777}
7778
442a4f63
SB
7779void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7780{
7781 btrfs_dev_stat_inc(dev, index);
442a4f63 7782
733f4fbb
SB
7783 if (!dev->dev_stats_valid)
7784 return;
fb456252 7785 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7786 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7787 btrfs_dev_name(dev),
442a4f63
SB
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7791 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7792 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7793}
c11d2c23 7794
733f4fbb
SB
7795static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7796{
a98cdb85
SB
7797 int i;
7798
7799 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7800 if (btrfs_dev_stat_read(dev, i) != 0)
7801 break;
7802 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7803 return; /* all values == 0, suppress message */
7804
fb456252 7805 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7806 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7807 btrfs_dev_name(dev),
733f4fbb
SB
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7813}
7814
2ff7e61e 7815int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7816 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7817{
562d7b15 7818 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7819 struct btrfs_device *dev;
0b246afa 7820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7821 int i;
7822
7823 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7824 args.devid = stats->devid;
7825 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7826 mutex_unlock(&fs_devices->device_list_mutex);
7827
7828 if (!dev) {
0b246afa 7829 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7830 return -ENODEV;
733f4fbb 7831 } else if (!dev->dev_stats_valid) {
0b246afa 7832 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7833 return -ENODEV;
b27f7c0c 7834 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7835 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7836 if (stats->nr_items > i)
7837 stats->values[i] =
7838 btrfs_dev_stat_read_and_reset(dev, i);
7839 else
4e411a7d 7840 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7841 }
a69976bc
AJ
7842 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7843 current->comm, task_pid_nr(current));
c11d2c23
SB
7844 } else {
7845 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7846 if (stats->nr_items > i)
7847 stats->values[i] = btrfs_dev_stat_read(dev, i);
7848 }
7849 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7850 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7851 return 0;
7852}
a8a6dab7 7853
935e5cc9 7854/*
bbbf7243
NB
7855 * Update the size and bytes used for each device where it changed. This is
7856 * delayed since we would otherwise get errors while writing out the
7857 * superblocks.
7858 *
7859 * Must be invoked during transaction commit.
935e5cc9 7860 */
bbbf7243 7861void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7862{
935e5cc9
MX
7863 struct btrfs_device *curr, *next;
7864
bbbf7243 7865 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7866
bbbf7243 7867 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7868 return;
7869
bbbf7243
NB
7870 /*
7871 * We don't need the device_list_mutex here. This list is owned by the
7872 * transaction and the transaction must complete before the device is
7873 * released.
7874 */
7875 mutex_lock(&trans->fs_info->chunk_mutex);
7876 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7877 post_commit_list) {
7878 list_del_init(&curr->post_commit_list);
7879 curr->commit_total_bytes = curr->disk_total_bytes;
7880 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7881 }
bbbf7243 7882 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7883}
5a13f430 7884
46df06b8
DS
7885/*
7886 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7887 */
7888int btrfs_bg_type_to_factor(u64 flags)
7889{
44b28ada
DS
7890 const int index = btrfs_bg_flags_to_raid_index(flags);
7891
7892 return btrfs_raid_array[index].ncopies;
46df06b8 7893}
cf90d884
QW
7894
7895
cf90d884
QW
7896
7897static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7898 u64 chunk_offset, u64 devid,
7899 u64 physical_offset, u64 physical_len)
7900{
562d7b15 7901 struct btrfs_dev_lookup_args args = { .devid = devid };
7dc66abb 7902 struct btrfs_chunk_map *map;
05a37c48 7903 struct btrfs_device *dev;
cf90d884
QW
7904 u64 stripe_len;
7905 bool found = false;
7906 int ret = 0;
7907 int i;
7908
7dc66abb
FM
7909 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7910 if (!map) {
cf90d884
QW
7911 btrfs_err(fs_info,
7912"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7913 physical_offset, devid);
7914 ret = -EUCLEAN;
7915 goto out;
7916 }
7917
7dc66abb 7918 stripe_len = btrfs_calc_stripe_length(map);
cf90d884
QW
7919 if (physical_len != stripe_len) {
7920 btrfs_err(fs_info,
7921"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7dc66abb 7922 physical_offset, devid, map->start, physical_len,
cf90d884
QW
7923 stripe_len);
7924 ret = -EUCLEAN;
7925 goto out;
7926 }
7927
3613249a
QW
7928 /*
7929 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7930 * space. Although kernel can handle it without problem, better to warn
7931 * the users.
7932 */
7933 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7934 btrfs_warn(fs_info,
7935 "devid %llu physical %llu len %llu inside the reserved space",
7936 devid, physical_offset, physical_len);
7937
cf90d884
QW
7938 for (i = 0; i < map->num_stripes; i++) {
7939 if (map->stripes[i].dev->devid == devid &&
7940 map->stripes[i].physical == physical_offset) {
7941 found = true;
7942 if (map->verified_stripes >= map->num_stripes) {
7943 btrfs_err(fs_info,
7944 "too many dev extents for chunk %llu found",
7dc66abb 7945 map->start);
cf90d884
QW
7946 ret = -EUCLEAN;
7947 goto out;
7948 }
7949 map->verified_stripes++;
7950 break;
7951 }
7952 }
7953 if (!found) {
7954 btrfs_err(fs_info,
7955 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7956 physical_offset, devid);
7957 ret = -EUCLEAN;
7958 }
05a37c48 7959
1a9fd417 7960 /* Make sure no dev extent is beyond device boundary */
562d7b15 7961 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
7962 if (!dev) {
7963 btrfs_err(fs_info, "failed to find devid %llu", devid);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
1b3922a8 7967
05a37c48
QW
7968 if (physical_offset + physical_len > dev->disk_total_bytes) {
7969 btrfs_err(fs_info,
7970"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7971 devid, physical_offset, physical_len,
7972 dev->disk_total_bytes);
7973 ret = -EUCLEAN;
7974 goto out;
7975 }
381a696e
NA
7976
7977 if (dev->zone_info) {
7978 u64 zone_size = dev->zone_info->zone_size;
7979
7980 if (!IS_ALIGNED(physical_offset, zone_size) ||
7981 !IS_ALIGNED(physical_len, zone_size)) {
7982 btrfs_err(fs_info,
7983"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7984 devid, physical_offset, physical_len);
7985 ret = -EUCLEAN;
7986 goto out;
7987 }
7988 }
7989
cf90d884 7990out:
7dc66abb 7991 btrfs_free_chunk_map(map);
cf90d884
QW
7992 return ret;
7993}
7994
7995static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7996{
cf90d884
QW
7997 struct rb_node *node;
7998 int ret = 0;
7999
7dc66abb
FM
8000 read_lock(&fs_info->mapping_tree_lock);
8001 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8002 struct btrfs_chunk_map *map;
8003
8004 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8005 if (map->num_stripes != map->verified_stripes) {
cf90d884
QW
8006 btrfs_err(fs_info,
8007 "chunk %llu has missing dev extent, have %d expect %d",
7dc66abb 8008 map->start, map->verified_stripes, map->num_stripes);
cf90d884
QW
8009 ret = -EUCLEAN;
8010 goto out;
8011 }
8012 }
8013out:
7dc66abb 8014 read_unlock(&fs_info->mapping_tree_lock);
cf90d884
QW
8015 return ret;
8016}
8017
8018/*
8019 * Ensure that all dev extents are mapped to correct chunk, otherwise
8020 * later chunk allocation/free would cause unexpected behavior.
8021 *
8022 * NOTE: This will iterate through the whole device tree, which should be of
8023 * the same size level as the chunk tree. This slightly increases mount time.
8024 */
8025int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8026{
8027 struct btrfs_path *path;
8028 struct btrfs_root *root = fs_info->dev_root;
8029 struct btrfs_key key;
5eb19381
QW
8030 u64 prev_devid = 0;
8031 u64 prev_dev_ext_end = 0;
cf90d884
QW
8032 int ret = 0;
8033
42437a63
JB
8034 /*
8035 * We don't have a dev_root because we mounted with ignorebadroots and
8036 * failed to load the root, so we want to skip the verification in this
8037 * case for sure.
8038 *
8039 * However if the dev root is fine, but the tree itself is corrupted
8040 * we'd still fail to mount. This verification is only to make sure
8041 * writes can happen safely, so instead just bypass this check
8042 * completely in the case of IGNOREBADROOTS.
8043 */
8044 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8045 return 0;
8046
cf90d884
QW
8047 key.objectid = 1;
8048 key.type = BTRFS_DEV_EXTENT_KEY;
8049 key.offset = 0;
8050
8051 path = btrfs_alloc_path();
8052 if (!path)
8053 return -ENOMEM;
8054
8055 path->reada = READA_FORWARD;
8056 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8057 if (ret < 0)
8058 goto out;
8059
8060 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8061 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8062 if (ret < 0)
8063 goto out;
8064 /* No dev extents at all? Not good */
8065 if (ret > 0) {
8066 ret = -EUCLEAN;
8067 goto out;
8068 }
8069 }
8070 while (1) {
8071 struct extent_buffer *leaf = path->nodes[0];
8072 struct btrfs_dev_extent *dext;
8073 int slot = path->slots[0];
8074 u64 chunk_offset;
8075 u64 physical_offset;
8076 u64 physical_len;
8077 u64 devid;
8078
8079 btrfs_item_key_to_cpu(leaf, &key, slot);
8080 if (key.type != BTRFS_DEV_EXTENT_KEY)
8081 break;
8082 devid = key.objectid;
8083 physical_offset = key.offset;
8084
8085 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8086 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8087 physical_len = btrfs_dev_extent_length(leaf, dext);
8088
5eb19381
QW
8089 /* Check if this dev extent overlaps with the previous one */
8090 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8091 btrfs_err(fs_info,
8092"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8093 devid, physical_offset, prev_dev_ext_end);
8094 ret = -EUCLEAN;
8095 goto out;
8096 }
8097
cf90d884
QW
8098 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8099 physical_offset, physical_len);
8100 if (ret < 0)
8101 goto out;
5eb19381
QW
8102 prev_devid = devid;
8103 prev_dev_ext_end = physical_offset + physical_len;
8104
cf90d884
QW
8105 ret = btrfs_next_item(root, path);
8106 if (ret < 0)
8107 goto out;
8108 if (ret > 0) {
8109 ret = 0;
8110 break;
8111 }
8112 }
8113
8114 /* Ensure all chunks have corresponding dev extents */
8115 ret = verify_chunk_dev_extent_mapping(fs_info);
8116out:
8117 btrfs_free_path(path);
8118 return ret;
8119}
eede2bf3
OS
8120
8121/*
8122 * Check whether the given block group or device is pinned by any inode being
8123 * used as a swapfile.
8124 */
8125bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8126{
8127 struct btrfs_swapfile_pin *sp;
8128 struct rb_node *node;
8129
8130 spin_lock(&fs_info->swapfile_pins_lock);
8131 node = fs_info->swapfile_pins.rb_node;
8132 while (node) {
8133 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8134 if (ptr < sp->ptr)
8135 node = node->rb_left;
8136 else if (ptr > sp->ptr)
8137 node = node->rb_right;
8138 else
8139 break;
8140 }
8141 spin_unlock(&fs_info->swapfile_pins_lock);
8142 return node != NULL;
8143}
f7ef5287
NA
8144
8145static int relocating_repair_kthread(void *data)
8146{
0d031dc4 8147 struct btrfs_block_group *cache = data;
f7ef5287
NA
8148 struct btrfs_fs_info *fs_info = cache->fs_info;
8149 u64 target;
8150 int ret = 0;
8151
8152 target = cache->start;
8153 btrfs_put_block_group(cache);
8154
ca5e4ea0 8155 sb_start_write(fs_info->sb);
f7ef5287
NA
8156 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8157 btrfs_info(fs_info,
8158 "zoned: skip relocating block group %llu to repair: EBUSY",
8159 target);
ca5e4ea0 8160 sb_end_write(fs_info->sb);
f7ef5287
NA
8161 return -EBUSY;
8162 }
8163
f3372065 8164 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8165
8166 /* Ensure block group still exists */
8167 cache = btrfs_lookup_block_group(fs_info, target);
8168 if (!cache)
8169 goto out;
8170
3349b57f 8171 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
f7ef5287
NA
8172 goto out;
8173
8174 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8175 if (ret < 0)
8176 goto out;
8177
8178 btrfs_info(fs_info,
8179 "zoned: relocating block group %llu to repair IO failure",
8180 target);
8181 ret = btrfs_relocate_chunk(fs_info, target);
8182
8183out:
8184 if (cache)
8185 btrfs_put_block_group(cache);
f3372065 8186 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 8187 btrfs_exclop_finish(fs_info);
ca5e4ea0 8188 sb_end_write(fs_info->sb);
f7ef5287
NA
8189
8190 return ret;
8191}
8192
554aed7d 8193bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
8194{
8195 struct btrfs_block_group *cache;
8196
554aed7d
JT
8197 if (!btrfs_is_zoned(fs_info))
8198 return false;
8199
f7ef5287
NA
8200 /* Do not attempt to repair in degraded state */
8201 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 8202 return true;
f7ef5287
NA
8203
8204 cache = btrfs_lookup_block_group(fs_info, logical);
8205 if (!cache)
554aed7d 8206 return true;
f7ef5287 8207
3349b57f 8208 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
f7ef5287 8209 btrfs_put_block_group(cache);
554aed7d 8210 return true;
f7ef5287 8211 }
f7ef5287
NA
8212
8213 kthread_run(relocating_repair_kthread, cache,
8214 "btrfs-relocating-repair");
8215
554aed7d 8216 return true;
f7ef5287 8217}
4886ff7b
QW
8218
8219static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8220 struct btrfs_io_stripe *smap,
8221 u64 logical)
8222{
8223 int data_stripes = nr_bioc_data_stripes(bioc);
8224 int i;
8225
8226 for (i = 0; i < data_stripes; i++) {
8227 u64 stripe_start = bioc->full_stripe_logical +
cb091225 8228 btrfs_stripe_nr_to_offset(i);
4886ff7b
QW
8229
8230 if (logical >= stripe_start &&
8231 logical < stripe_start + BTRFS_STRIPE_LEN)
8232 break;
8233 }
8234 ASSERT(i < data_stripes);
8235 smap->dev = bioc->stripes[i].dev;
8236 smap->physical = bioc->stripes[i].physical +
8237 ((logical - bioc->full_stripe_logical) &
8238 BTRFS_STRIPE_LEN_MASK);
8239}
8240
8241/*
8242 * Map a repair write into a single device.
8243 *
8244 * A repair write is triggered by read time repair or scrub, which would only
8245 * update the contents of a single device.
8246 * Not update any other mirrors nor go through RMW path.
8247 *
8248 * Callers should ensure:
8249 *
8250 * - Call btrfs_bio_counter_inc_blocked() first
8251 * - The range does not cross stripe boundary
8252 * - Has a valid @mirror_num passed in.
8253 */
8254int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8255 struct btrfs_io_stripe *smap, u64 logical,
8256 u32 length, int mirror_num)
8257{
8258 struct btrfs_io_context *bioc = NULL;
8259 u64 map_length = length;
8260 int mirror_ret = mirror_num;
8261 int ret;
8262
8263 ASSERT(mirror_num > 0);
8264
cd4efd21 8265 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
9fb2acc2 8266 &bioc, smap, &mirror_ret);
4886ff7b
QW
8267 if (ret < 0)
8268 return ret;
8269
8270 /* The map range should not cross stripe boundary. */
8271 ASSERT(map_length >= length);
8272
8273 /* Already mapped to single stripe. */
8274 if (!bioc)
8275 goto out;
8276
8277 /* Map the RAID56 multi-stripe writes to a single one. */
8278 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8279 map_raid56_repair_block(bioc, smap, logical);
8280 goto out;
8281 }
8282
8283 ASSERT(mirror_num <= bioc->num_stripes);
8284 smap->dev = bioc->stripes[mirror_num - 1].dev;
8285 smap->physical = bioc->stripes[mirror_num - 1].physical;
8286out:
8287 btrfs_put_bioc(bioc);
8288 ASSERT(smap->dev);
8289 return 0;
8290}