]> git.ipfire.org Git - people/ms/linux.git/blame - fs/buffer.c
ocfs2: fix passing zero to 'PTR_ERR' warning
[people/ms/linux.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
31fb992c 50#include <linux/fscrypt.h>
1da177e4
LT
51
52static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 53static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 54 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
55
56#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
57
f0059afd
TH
58inline void touch_buffer(struct buffer_head *bh)
59{
5305cb83 60 trace_block_touch_buffer(bh);
f0059afd
TH
61 mark_page_accessed(bh->b_page);
62}
63EXPORT_SYMBOL(touch_buffer);
64
fc9b52cd 65void __lock_buffer(struct buffer_head *bh)
1da177e4 66{
74316201 67 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
68}
69EXPORT_SYMBOL(__lock_buffer);
70
fc9b52cd 71void unlock_buffer(struct buffer_head *bh)
1da177e4 72{
51b07fc3 73 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 74 smp_mb__after_atomic();
1da177e4
LT
75 wake_up_bit(&bh->b_state, BH_Lock);
76}
1fe72eaa 77EXPORT_SYMBOL(unlock_buffer);
1da177e4 78
b4597226
MG
79/*
80 * Returns if the page has dirty or writeback buffers. If all the buffers
81 * are unlocked and clean then the PageDirty information is stale. If
82 * any of the pages are locked, it is assumed they are locked for IO.
83 */
84void buffer_check_dirty_writeback(struct page *page,
85 bool *dirty, bool *writeback)
86{
87 struct buffer_head *head, *bh;
88 *dirty = false;
89 *writeback = false;
90
91 BUG_ON(!PageLocked(page));
92
93 if (!page_has_buffers(page))
94 return;
95
96 if (PageWriteback(page))
97 *writeback = true;
98
99 head = page_buffers(page);
100 bh = head;
101 do {
102 if (buffer_locked(bh))
103 *writeback = true;
104
105 if (buffer_dirty(bh))
106 *dirty = true;
107
108 bh = bh->b_this_page;
109 } while (bh != head);
110}
111EXPORT_SYMBOL(buffer_check_dirty_writeback);
112
1da177e4
LT
113/*
114 * Block until a buffer comes unlocked. This doesn't stop it
115 * from becoming locked again - you have to lock it yourself
116 * if you want to preserve its state.
117 */
118void __wait_on_buffer(struct buffer_head * bh)
119{
74316201 120 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 121}
1fe72eaa 122EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
123
124static void
125__clear_page_buffers(struct page *page)
126{
127 ClearPagePrivate(page);
4c21e2f2 128 set_page_private(page, 0);
09cbfeaf 129 put_page(page);
1da177e4
LT
130}
131
b744c2ac 132static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 133{
432f16e6
RE
134 if (!test_bit(BH_Quiet, &bh->b_state))
135 printk_ratelimited(KERN_ERR
a1c6f057
DM
136 "Buffer I/O error on dev %pg, logical block %llu%s\n",
137 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
138}
139
140/*
68671f35
DM
141 * End-of-IO handler helper function which does not touch the bh after
142 * unlocking it.
143 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
144 * a race there is benign: unlock_buffer() only use the bh's address for
145 * hashing after unlocking the buffer, so it doesn't actually touch the bh
146 * itself.
1da177e4 147 */
68671f35 148static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
149{
150 if (uptodate) {
151 set_buffer_uptodate(bh);
152 } else {
70246286 153 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
154 clear_buffer_uptodate(bh);
155 }
156 unlock_buffer(bh);
68671f35
DM
157}
158
159/*
160 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
161 * unlock the buffer. This is what ll_rw_block uses too.
162 */
163void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
164{
165 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
166 put_bh(bh);
167}
1fe72eaa 168EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
169
170void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
171{
1da177e4
LT
172 if (uptodate) {
173 set_buffer_uptodate(bh);
174 } else {
432f16e6 175 buffer_io_error(bh, ", lost sync page write");
87354e5d 176 mark_buffer_write_io_error(bh);
1da177e4
LT
177 clear_buffer_uptodate(bh);
178 }
179 unlock_buffer(bh);
180 put_bh(bh);
181}
1fe72eaa 182EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 183
1da177e4
LT
184/*
185 * Various filesystems appear to want __find_get_block to be non-blocking.
186 * But it's the page lock which protects the buffers. To get around this,
187 * we get exclusion from try_to_free_buffers with the blockdev mapping's
188 * private_lock.
189 *
b93b0163 190 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 191 * may be quite high. This code could TryLock the page, and if that
b93b0163 192 * succeeds, there is no need to take private_lock.
1da177e4
LT
193 */
194static struct buffer_head *
385fd4c5 195__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
196{
197 struct inode *bd_inode = bdev->bd_inode;
198 struct address_space *bd_mapping = bd_inode->i_mapping;
199 struct buffer_head *ret = NULL;
200 pgoff_t index;
201 struct buffer_head *bh;
202 struct buffer_head *head;
203 struct page *page;
204 int all_mapped = 1;
43636c80 205 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 206
09cbfeaf 207 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 208 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
209 if (!page)
210 goto out;
211
212 spin_lock(&bd_mapping->private_lock);
213 if (!page_has_buffers(page))
214 goto out_unlock;
215 head = page_buffers(page);
216 bh = head;
217 do {
97f76d3d
NK
218 if (!buffer_mapped(bh))
219 all_mapped = 0;
220 else if (bh->b_blocknr == block) {
1da177e4
LT
221 ret = bh;
222 get_bh(bh);
223 goto out_unlock;
224 }
1da177e4
LT
225 bh = bh->b_this_page;
226 } while (bh != head);
227
228 /* we might be here because some of the buffers on this page are
229 * not mapped. This is due to various races between
230 * file io on the block device and getblk. It gets dealt with
231 * elsewhere, don't buffer_error if we had some unmapped buffers
232 */
43636c80
TH
233 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
234 if (all_mapped && __ratelimit(&last_warned)) {
235 printk("__find_get_block_slow() failed. block=%llu, "
236 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
237 "device %pg blocksize: %d\n",
238 (unsigned long long)block,
239 (unsigned long long)bh->b_blocknr,
240 bh->b_state, bh->b_size, bdev,
241 1 << bd_inode->i_blkbits);
1da177e4
LT
242 }
243out_unlock:
244 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 245 put_page(page);
1da177e4
LT
246out:
247 return ret;
248}
249
1da177e4
LT
250static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
251{
1da177e4 252 unsigned long flags;
a3972203 253 struct buffer_head *first;
1da177e4
LT
254 struct buffer_head *tmp;
255 struct page *page;
256 int page_uptodate = 1;
257
258 BUG_ON(!buffer_async_read(bh));
259
260 page = bh->b_page;
261 if (uptodate) {
262 set_buffer_uptodate(bh);
263 } else {
264 clear_buffer_uptodate(bh);
432f16e6 265 buffer_io_error(bh, ", async page read");
1da177e4
LT
266 SetPageError(page);
267 }
268
269 /*
270 * Be _very_ careful from here on. Bad things can happen if
271 * two buffer heads end IO at almost the same time and both
272 * decide that the page is now completely done.
273 */
a3972203
NP
274 first = page_buffers(page);
275 local_irq_save(flags);
276 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
277 clear_buffer_async_read(bh);
278 unlock_buffer(bh);
279 tmp = bh;
280 do {
281 if (!buffer_uptodate(tmp))
282 page_uptodate = 0;
283 if (buffer_async_read(tmp)) {
284 BUG_ON(!buffer_locked(tmp));
285 goto still_busy;
286 }
287 tmp = tmp->b_this_page;
288 } while (tmp != bh);
a3972203
NP
289 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
290 local_irq_restore(flags);
1da177e4
LT
291
292 /*
293 * If none of the buffers had errors and they are all
294 * uptodate then we can set the page uptodate.
295 */
296 if (page_uptodate && !PageError(page))
297 SetPageUptodate(page);
298 unlock_page(page);
299 return;
300
301still_busy:
a3972203
NP
302 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
303 local_irq_restore(flags);
1da177e4
LT
304 return;
305}
306
31fb992c
EB
307struct decrypt_bh_ctx {
308 struct work_struct work;
309 struct buffer_head *bh;
310};
311
312static void decrypt_bh(struct work_struct *work)
313{
314 struct decrypt_bh_ctx *ctx =
315 container_of(work, struct decrypt_bh_ctx, work);
316 struct buffer_head *bh = ctx->bh;
317 int err;
318
319 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
320 bh_offset(bh));
321 end_buffer_async_read(bh, err == 0);
322 kfree(ctx);
323}
324
325/*
326 * I/O completion handler for block_read_full_page() - pages
327 * which come unlocked at the end of I/O.
328 */
329static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
330{
331 /* Decrypt if needed */
332 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
333 IS_ENCRYPTED(bh->b_page->mapping->host) &&
334 S_ISREG(bh->b_page->mapping->host->i_mode)) {
335 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
336
337 if (ctx) {
338 INIT_WORK(&ctx->work, decrypt_bh);
339 ctx->bh = bh;
340 fscrypt_enqueue_decrypt_work(&ctx->work);
341 return;
342 }
343 uptodate = 0;
344 }
345 end_buffer_async_read(bh, uptodate);
346}
347
1da177e4
LT
348/*
349 * Completion handler for block_write_full_page() - pages which are unlocked
350 * during I/O, and which have PageWriteback cleared upon I/O completion.
351 */
35c80d5f 352void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 353{
1da177e4 354 unsigned long flags;
a3972203 355 struct buffer_head *first;
1da177e4
LT
356 struct buffer_head *tmp;
357 struct page *page;
358
359 BUG_ON(!buffer_async_write(bh));
360
361 page = bh->b_page;
362 if (uptodate) {
363 set_buffer_uptodate(bh);
364 } else {
432f16e6 365 buffer_io_error(bh, ", lost async page write");
87354e5d 366 mark_buffer_write_io_error(bh);
1da177e4
LT
367 clear_buffer_uptodate(bh);
368 SetPageError(page);
369 }
370
a3972203
NP
371 first = page_buffers(page);
372 local_irq_save(flags);
373 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
374
1da177e4
LT
375 clear_buffer_async_write(bh);
376 unlock_buffer(bh);
377 tmp = bh->b_this_page;
378 while (tmp != bh) {
379 if (buffer_async_write(tmp)) {
380 BUG_ON(!buffer_locked(tmp));
381 goto still_busy;
382 }
383 tmp = tmp->b_this_page;
384 }
a3972203
NP
385 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
386 local_irq_restore(flags);
1da177e4
LT
387 end_page_writeback(page);
388 return;
389
390still_busy:
a3972203
NP
391 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
392 local_irq_restore(flags);
1da177e4
LT
393 return;
394}
1fe72eaa 395EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
396
397/*
398 * If a page's buffers are under async readin (end_buffer_async_read
399 * completion) then there is a possibility that another thread of
400 * control could lock one of the buffers after it has completed
401 * but while some of the other buffers have not completed. This
402 * locked buffer would confuse end_buffer_async_read() into not unlocking
403 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
404 * that this buffer is not under async I/O.
405 *
406 * The page comes unlocked when it has no locked buffer_async buffers
407 * left.
408 *
409 * PageLocked prevents anyone starting new async I/O reads any of
410 * the buffers.
411 *
412 * PageWriteback is used to prevent simultaneous writeout of the same
413 * page.
414 *
415 * PageLocked prevents anyone from starting writeback of a page which is
416 * under read I/O (PageWriteback is only ever set against a locked page).
417 */
418static void mark_buffer_async_read(struct buffer_head *bh)
419{
31fb992c 420 bh->b_end_io = end_buffer_async_read_io;
1da177e4
LT
421 set_buffer_async_read(bh);
422}
423
1fe72eaa
HS
424static void mark_buffer_async_write_endio(struct buffer_head *bh,
425 bh_end_io_t *handler)
1da177e4 426{
35c80d5f 427 bh->b_end_io = handler;
1da177e4
LT
428 set_buffer_async_write(bh);
429}
35c80d5f
CM
430
431void mark_buffer_async_write(struct buffer_head *bh)
432{
433 mark_buffer_async_write_endio(bh, end_buffer_async_write);
434}
1da177e4
LT
435EXPORT_SYMBOL(mark_buffer_async_write);
436
437
438/*
439 * fs/buffer.c contains helper functions for buffer-backed address space's
440 * fsync functions. A common requirement for buffer-based filesystems is
441 * that certain data from the backing blockdev needs to be written out for
442 * a successful fsync(). For example, ext2 indirect blocks need to be
443 * written back and waited upon before fsync() returns.
444 *
445 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
446 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
447 * management of a list of dependent buffers at ->i_mapping->private_list.
448 *
449 * Locking is a little subtle: try_to_free_buffers() will remove buffers
450 * from their controlling inode's queue when they are being freed. But
451 * try_to_free_buffers() will be operating against the *blockdev* mapping
452 * at the time, not against the S_ISREG file which depends on those buffers.
453 * So the locking for private_list is via the private_lock in the address_space
454 * which backs the buffers. Which is different from the address_space
455 * against which the buffers are listed. So for a particular address_space,
456 * mapping->private_lock does *not* protect mapping->private_list! In fact,
457 * mapping->private_list will always be protected by the backing blockdev's
458 * ->private_lock.
459 *
460 * Which introduces a requirement: all buffers on an address_space's
461 * ->private_list must be from the same address_space: the blockdev's.
462 *
463 * address_spaces which do not place buffers at ->private_list via these
464 * utility functions are free to use private_lock and private_list for
465 * whatever they want. The only requirement is that list_empty(private_list)
466 * be true at clear_inode() time.
467 *
468 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
469 * filesystems should do that. invalidate_inode_buffers() should just go
470 * BUG_ON(!list_empty).
471 *
472 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
473 * take an address_space, not an inode. And it should be called
474 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
475 * queued up.
476 *
477 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
478 * list if it is already on a list. Because if the buffer is on a list,
479 * it *must* already be on the right one. If not, the filesystem is being
480 * silly. This will save a ton of locking. But first we have to ensure
481 * that buffers are taken *off* the old inode's list when they are freed
482 * (presumably in truncate). That requires careful auditing of all
483 * filesystems (do it inside bforget()). It could also be done by bringing
484 * b_inode back.
485 */
486
487/*
488 * The buffer's backing address_space's private_lock must be held
489 */
dbacefc9 490static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
491{
492 list_del_init(&bh->b_assoc_buffers);
58ff407b 493 WARN_ON(!bh->b_assoc_map);
58ff407b 494 bh->b_assoc_map = NULL;
1da177e4
LT
495}
496
497int inode_has_buffers(struct inode *inode)
498{
499 return !list_empty(&inode->i_data.private_list);
500}
501
502/*
503 * osync is designed to support O_SYNC io. It waits synchronously for
504 * all already-submitted IO to complete, but does not queue any new
505 * writes to the disk.
506 *
507 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
508 * you dirty the buffers, and then use osync_inode_buffers to wait for
509 * completion. Any other dirty buffers which are not yet queued for
510 * write will not be flushed to disk by the osync.
511 */
512static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
513{
514 struct buffer_head *bh;
515 struct list_head *p;
516 int err = 0;
517
518 spin_lock(lock);
519repeat:
520 list_for_each_prev(p, list) {
521 bh = BH_ENTRY(p);
522 if (buffer_locked(bh)) {
523 get_bh(bh);
524 spin_unlock(lock);
525 wait_on_buffer(bh);
526 if (!buffer_uptodate(bh))
527 err = -EIO;
528 brelse(bh);
529 spin_lock(lock);
530 goto repeat;
531 }
532 }
533 spin_unlock(lock);
534 return err;
535}
536
08fdc8a0 537void emergency_thaw_bdev(struct super_block *sb)
c2d75438 538{
01a05b33 539 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 540 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 541}
c2d75438 542
1da177e4 543/**
78a4a50a 544 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 545 * @mapping: the mapping which wants those buffers written
1da177e4
LT
546 *
547 * Starts I/O against the buffers at mapping->private_list, and waits upon
548 * that I/O.
549 *
67be2dd1
MW
550 * Basically, this is a convenience function for fsync().
551 * @mapping is a file or directory which needs those buffers to be written for
552 * a successful fsync().
1da177e4
LT
553 */
554int sync_mapping_buffers(struct address_space *mapping)
555{
252aa6f5 556 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
557
558 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
559 return 0;
560
561 return fsync_buffers_list(&buffer_mapping->private_lock,
562 &mapping->private_list);
563}
564EXPORT_SYMBOL(sync_mapping_buffers);
565
566/*
567 * Called when we've recently written block `bblock', and it is known that
568 * `bblock' was for a buffer_boundary() buffer. This means that the block at
569 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
570 * dirty, schedule it for IO. So that indirects merge nicely with their data.
571 */
572void write_boundary_block(struct block_device *bdev,
573 sector_t bblock, unsigned blocksize)
574{
575 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
576 if (bh) {
577 if (buffer_dirty(bh))
dfec8a14 578 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
579 put_bh(bh);
580 }
581}
582
583void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
584{
585 struct address_space *mapping = inode->i_mapping;
586 struct address_space *buffer_mapping = bh->b_page->mapping;
587
588 mark_buffer_dirty(bh);
252aa6f5
RA
589 if (!mapping->private_data) {
590 mapping->private_data = buffer_mapping;
1da177e4 591 } else {
252aa6f5 592 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 593 }
535ee2fb 594 if (!bh->b_assoc_map) {
1da177e4
LT
595 spin_lock(&buffer_mapping->private_lock);
596 list_move_tail(&bh->b_assoc_buffers,
597 &mapping->private_list);
58ff407b 598 bh->b_assoc_map = mapping;
1da177e4
LT
599 spin_unlock(&buffer_mapping->private_lock);
600 }
601}
602EXPORT_SYMBOL(mark_buffer_dirty_inode);
603
787d2214 604/*
ec82e1c1 605 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
787d2214
NP
606 * dirty.
607 *
608 * If warn is true, then emit a warning if the page is not uptodate and has
609 * not been truncated.
c4843a75 610 *
81f8c3a4 611 * The caller must hold lock_page_memcg().
787d2214 612 */
f82b3764 613void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 614 int warn)
787d2214 615{
227d53b3
KM
616 unsigned long flags;
617
b93b0163 618 xa_lock_irqsave(&mapping->i_pages, flags);
787d2214
NP
619 if (page->mapping) { /* Race with truncate? */
620 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 621 account_page_dirtied(page, mapping);
ec82e1c1
MW
622 __xa_set_mark(&mapping->i_pages, page_index(page),
623 PAGECACHE_TAG_DIRTY);
787d2214 624 }
b93b0163 625 xa_unlock_irqrestore(&mapping->i_pages, flags);
787d2214 626}
f82b3764 627EXPORT_SYMBOL_GPL(__set_page_dirty);
787d2214 628
1da177e4
LT
629/*
630 * Add a page to the dirty page list.
631 *
632 * It is a sad fact of life that this function is called from several places
633 * deeply under spinlocking. It may not sleep.
634 *
635 * If the page has buffers, the uptodate buffers are set dirty, to preserve
636 * dirty-state coherency between the page and the buffers. It the page does
637 * not have buffers then when they are later attached they will all be set
638 * dirty.
639 *
640 * The buffers are dirtied before the page is dirtied. There's a small race
641 * window in which a writepage caller may see the page cleanness but not the
642 * buffer dirtiness. That's fine. If this code were to set the page dirty
643 * before the buffers, a concurrent writepage caller could clear the page dirty
644 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
645 * page on the dirty page list.
646 *
647 * We use private_lock to lock against try_to_free_buffers while using the
648 * page's buffer list. Also use this to protect against clean buffers being
649 * added to the page after it was set dirty.
650 *
651 * FIXME: may need to call ->reservepage here as well. That's rather up to the
652 * address_space though.
653 */
654int __set_page_dirty_buffers(struct page *page)
655{
a8e7d49a 656 int newly_dirty;
787d2214 657 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
658
659 if (unlikely(!mapping))
660 return !TestSetPageDirty(page);
1da177e4
LT
661
662 spin_lock(&mapping->private_lock);
663 if (page_has_buffers(page)) {
664 struct buffer_head *head = page_buffers(page);
665 struct buffer_head *bh = head;
666
667 do {
668 set_buffer_dirty(bh);
669 bh = bh->b_this_page;
670 } while (bh != head);
671 }
c4843a75 672 /*
81f8c3a4
JW
673 * Lock out page->mem_cgroup migration to keep PageDirty
674 * synchronized with per-memcg dirty page counters.
c4843a75 675 */
62cccb8c 676 lock_page_memcg(page);
a8e7d49a 677 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
678 spin_unlock(&mapping->private_lock);
679
a8e7d49a 680 if (newly_dirty)
62cccb8c 681 __set_page_dirty(page, mapping, 1);
c4843a75 682
62cccb8c 683 unlock_page_memcg(page);
c4843a75
GT
684
685 if (newly_dirty)
686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
687
a8e7d49a 688 return newly_dirty;
1da177e4
LT
689}
690EXPORT_SYMBOL(__set_page_dirty_buffers);
691
692/*
693 * Write out and wait upon a list of buffers.
694 *
695 * We have conflicting pressures: we want to make sure that all
696 * initially dirty buffers get waited on, but that any subsequently
697 * dirtied buffers don't. After all, we don't want fsync to last
698 * forever if somebody is actively writing to the file.
699 *
700 * Do this in two main stages: first we copy dirty buffers to a
701 * temporary inode list, queueing the writes as we go. Then we clean
702 * up, waiting for those writes to complete.
703 *
704 * During this second stage, any subsequent updates to the file may end
705 * up refiling the buffer on the original inode's dirty list again, so
706 * there is a chance we will end up with a buffer queued for write but
707 * not yet completed on that list. So, as a final cleanup we go through
708 * the osync code to catch these locked, dirty buffers without requeuing
709 * any newly dirty buffers for write.
710 */
711static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
712{
713 struct buffer_head *bh;
714 struct list_head tmp;
7eaceacc 715 struct address_space *mapping;
1da177e4 716 int err = 0, err2;
4ee2491e 717 struct blk_plug plug;
1da177e4
LT
718
719 INIT_LIST_HEAD(&tmp);
4ee2491e 720 blk_start_plug(&plug);
1da177e4
LT
721
722 spin_lock(lock);
723 while (!list_empty(list)) {
724 bh = BH_ENTRY(list->next);
535ee2fb 725 mapping = bh->b_assoc_map;
58ff407b 726 __remove_assoc_queue(bh);
535ee2fb
JK
727 /* Avoid race with mark_buffer_dirty_inode() which does
728 * a lockless check and we rely on seeing the dirty bit */
729 smp_mb();
1da177e4
LT
730 if (buffer_dirty(bh) || buffer_locked(bh)) {
731 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 732 bh->b_assoc_map = mapping;
1da177e4
LT
733 if (buffer_dirty(bh)) {
734 get_bh(bh);
735 spin_unlock(lock);
736 /*
737 * Ensure any pending I/O completes so that
9cb569d6
CH
738 * write_dirty_buffer() actually writes the
739 * current contents - it is a noop if I/O is
740 * still in flight on potentially older
741 * contents.
1da177e4 742 */
70fd7614 743 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
744
745 /*
746 * Kick off IO for the previous mapping. Note
747 * that we will not run the very last mapping,
748 * wait_on_buffer() will do that for us
749 * through sync_buffer().
750 */
1da177e4
LT
751 brelse(bh);
752 spin_lock(lock);
753 }
754 }
755 }
756
4ee2491e
JA
757 spin_unlock(lock);
758 blk_finish_plug(&plug);
759 spin_lock(lock);
760
1da177e4
LT
761 while (!list_empty(&tmp)) {
762 bh = BH_ENTRY(tmp.prev);
1da177e4 763 get_bh(bh);
535ee2fb
JK
764 mapping = bh->b_assoc_map;
765 __remove_assoc_queue(bh);
766 /* Avoid race with mark_buffer_dirty_inode() which does
767 * a lockless check and we rely on seeing the dirty bit */
768 smp_mb();
769 if (buffer_dirty(bh)) {
770 list_add(&bh->b_assoc_buffers,
e3892296 771 &mapping->private_list);
535ee2fb
JK
772 bh->b_assoc_map = mapping;
773 }
1da177e4
LT
774 spin_unlock(lock);
775 wait_on_buffer(bh);
776 if (!buffer_uptodate(bh))
777 err = -EIO;
778 brelse(bh);
779 spin_lock(lock);
780 }
781
782 spin_unlock(lock);
783 err2 = osync_buffers_list(lock, list);
784 if (err)
785 return err;
786 else
787 return err2;
788}
789
790/*
791 * Invalidate any and all dirty buffers on a given inode. We are
792 * probably unmounting the fs, but that doesn't mean we have already
793 * done a sync(). Just drop the buffers from the inode list.
794 *
795 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
796 * assumes that all the buffers are against the blockdev. Not true
797 * for reiserfs.
798 */
799void invalidate_inode_buffers(struct inode *inode)
800{
801 if (inode_has_buffers(inode)) {
802 struct address_space *mapping = &inode->i_data;
803 struct list_head *list = &mapping->private_list;
252aa6f5 804 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
805
806 spin_lock(&buffer_mapping->private_lock);
807 while (!list_empty(list))
808 __remove_assoc_queue(BH_ENTRY(list->next));
809 spin_unlock(&buffer_mapping->private_lock);
810 }
811}
52b19ac9 812EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
813
814/*
815 * Remove any clean buffers from the inode's buffer list. This is called
816 * when we're trying to free the inode itself. Those buffers can pin it.
817 *
818 * Returns true if all buffers were removed.
819 */
820int remove_inode_buffers(struct inode *inode)
821{
822 int ret = 1;
823
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
252aa6f5 827 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list)) {
831 struct buffer_head *bh = BH_ENTRY(list->next);
832 if (buffer_dirty(bh)) {
833 ret = 0;
834 break;
835 }
836 __remove_assoc_queue(bh);
837 }
838 spin_unlock(&buffer_mapping->private_lock);
839 }
840 return ret;
841}
842
843/*
844 * Create the appropriate buffers when given a page for data area and
845 * the size of each buffer.. Use the bh->b_this_page linked list to
846 * follow the buffers created. Return NULL if unable to create more
847 * buffers.
848 *
849 * The retry flag is used to differentiate async IO (paging, swapping)
850 * which may not fail from ordinary buffer allocations.
851 */
852struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 853 bool retry)
1da177e4
LT
854{
855 struct buffer_head *bh, *head;
f745c6f5 856 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 857 long offset;
f745c6f5 858 struct mem_cgroup *memcg;
1da177e4 859
640ab98f
JA
860 if (retry)
861 gfp |= __GFP_NOFAIL;
862
f745c6f5
SB
863 memcg = get_mem_cgroup_from_page(page);
864 memalloc_use_memcg(memcg);
865
1da177e4
LT
866 head = NULL;
867 offset = PAGE_SIZE;
868 while ((offset -= size) >= 0) {
640ab98f 869 bh = alloc_buffer_head(gfp);
1da177e4
LT
870 if (!bh)
871 goto no_grow;
872
1da177e4
LT
873 bh->b_this_page = head;
874 bh->b_blocknr = -1;
875 head = bh;
876
1da177e4
LT
877 bh->b_size = size;
878
879 /* Link the buffer to its page */
880 set_bh_page(bh, page, offset);
1da177e4 881 }
f745c6f5
SB
882out:
883 memalloc_unuse_memcg();
884 mem_cgroup_put(memcg);
1da177e4
LT
885 return head;
886/*
887 * In case anything failed, we just free everything we got.
888 */
889no_grow:
890 if (head) {
891 do {
892 bh = head;
893 head = head->b_this_page;
894 free_buffer_head(bh);
895 } while (head);
896 }
897
f745c6f5 898 goto out;
1da177e4
LT
899}
900EXPORT_SYMBOL_GPL(alloc_page_buffers);
901
902static inline void
903link_dev_buffers(struct page *page, struct buffer_head *head)
904{
905 struct buffer_head *bh, *tail;
906
907 bh = head;
908 do {
909 tail = bh;
910 bh = bh->b_this_page;
911 } while (bh);
912 tail->b_this_page = head;
913 attach_page_buffers(page, head);
914}
915
bbec0270
LT
916static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917{
918 sector_t retval = ~((sector_t)0);
919 loff_t sz = i_size_read(bdev->bd_inode);
920
921 if (sz) {
922 unsigned int sizebits = blksize_bits(size);
923 retval = (sz >> sizebits);
924 }
925 return retval;
926}
927
1da177e4
LT
928/*
929 * Initialise the state of a blockdev page's buffers.
930 */
676ce6d5 931static sector_t
1da177e4
LT
932init_page_buffers(struct page *page, struct block_device *bdev,
933 sector_t block, int size)
934{
935 struct buffer_head *head = page_buffers(page);
936 struct buffer_head *bh = head;
937 int uptodate = PageUptodate(page);
bbec0270 938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
939
940 do {
941 if (!buffer_mapped(bh)) {
01950a34
EB
942 bh->b_end_io = NULL;
943 bh->b_private = NULL;
1da177e4
LT
944 bh->b_bdev = bdev;
945 bh->b_blocknr = block;
946 if (uptodate)
947 set_buffer_uptodate(bh);
080399aa
JM
948 if (block < end_block)
949 set_buffer_mapped(bh);
1da177e4
LT
950 }
951 block++;
952 bh = bh->b_this_page;
953 } while (bh != head);
676ce6d5
HD
954
955 /*
956 * Caller needs to validate requested block against end of device.
957 */
958 return end_block;
1da177e4
LT
959}
960
961/*
962 * Create the page-cache page that contains the requested block.
963 *
676ce6d5 964 * This is used purely for blockdev mappings.
1da177e4 965 */
676ce6d5 966static int
1da177e4 967grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 968 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
969{
970 struct inode *inode = bdev->bd_inode;
971 struct page *page;
972 struct buffer_head *bh;
676ce6d5
HD
973 sector_t end_block;
974 int ret = 0; /* Will call free_more_memory() */
84235de3 975 gfp_t gfp_mask;
1da177e4 976
c62d2555 977 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 978
84235de3
JW
979 /*
980 * XXX: __getblk_slow() can not really deal with failure and
981 * will endlessly loop on improvised global reclaim. Prefer
982 * looping in the allocator rather than here, at least that
983 * code knows what it's doing.
984 */
985 gfp_mask |= __GFP_NOFAIL;
986
987 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 988
e827f923 989 BUG_ON(!PageLocked(page));
1da177e4
LT
990
991 if (page_has_buffers(page)) {
992 bh = page_buffers(page);
993 if (bh->b_size == size) {
676ce6d5 994 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
995 (sector_t)index << sizebits,
996 size);
676ce6d5 997 goto done;
1da177e4
LT
998 }
999 if (!try_to_free_buffers(page))
1000 goto failed;
1001 }
1002
1003 /*
1004 * Allocate some buffers for this page
1005 */
94dc24c0 1006 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
1007
1008 /*
1009 * Link the page to the buffers and initialise them. Take the
1010 * lock to be atomic wrt __find_get_block(), which does not
1011 * run under the page lock.
1012 */
1013 spin_lock(&inode->i_mapping->private_lock);
1014 link_dev_buffers(page, bh);
f2d5a944
AA
1015 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1016 size);
1da177e4 1017 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1018done:
1019 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1020failed:
1da177e4 1021 unlock_page(page);
09cbfeaf 1022 put_page(page);
676ce6d5 1023 return ret;
1da177e4
LT
1024}
1025
1026/*
1027 * Create buffers for the specified block device block's page. If
1028 * that page was dirty, the buffers are set dirty also.
1da177e4 1029 */
858119e1 1030static int
3b5e6454 1031grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1032{
1da177e4
LT
1033 pgoff_t index;
1034 int sizebits;
1035
1036 sizebits = -1;
1037 do {
1038 sizebits++;
1039 } while ((size << sizebits) < PAGE_SIZE);
1040
1041 index = block >> sizebits;
1da177e4 1042
e5657933
AM
1043 /*
1044 * Check for a block which wants to lie outside our maximum possible
1045 * pagecache index. (this comparison is done using sector_t types).
1046 */
1047 if (unlikely(index != block >> sizebits)) {
e5657933 1048 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1049 "device %pg\n",
8e24eea7 1050 __func__, (unsigned long long)block,
a1c6f057 1051 bdev);
e5657933
AM
1052 return -EIO;
1053 }
676ce6d5 1054
1da177e4 1055 /* Create a page with the proper size buffers.. */
3b5e6454 1056 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1057}
1058
0026ba40 1059static struct buffer_head *
3b5e6454
GK
1060__getblk_slow(struct block_device *bdev, sector_t block,
1061 unsigned size, gfp_t gfp)
1da177e4
LT
1062{
1063 /* Size must be multiple of hard sectorsize */
e1defc4f 1064 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1065 (size < 512 || size > PAGE_SIZE))) {
1066 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1067 size);
e1defc4f
MP
1068 printk(KERN_ERR "logical block size: %d\n",
1069 bdev_logical_block_size(bdev));
1da177e4
LT
1070
1071 dump_stack();
1072 return NULL;
1073 }
1074
676ce6d5
HD
1075 for (;;) {
1076 struct buffer_head *bh;
1077 int ret;
1da177e4
LT
1078
1079 bh = __find_get_block(bdev, block, size);
1080 if (bh)
1081 return bh;
676ce6d5 1082
3b5e6454 1083 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1084 if (ret < 0)
1085 return NULL;
1da177e4
LT
1086 }
1087}
1088
1089/*
1090 * The relationship between dirty buffers and dirty pages:
1091 *
1092 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1093 * the page is tagged dirty in the page cache.
1da177e4
LT
1094 *
1095 * At all times, the dirtiness of the buffers represents the dirtiness of
1096 * subsections of the page. If the page has buffers, the page dirty bit is
1097 * merely a hint about the true dirty state.
1098 *
1099 * When a page is set dirty in its entirety, all its buffers are marked dirty
1100 * (if the page has buffers).
1101 *
1102 * When a buffer is marked dirty, its page is dirtied, but the page's other
1103 * buffers are not.
1104 *
1105 * Also. When blockdev buffers are explicitly read with bread(), they
1106 * individually become uptodate. But their backing page remains not
1107 * uptodate - even if all of its buffers are uptodate. A subsequent
1108 * block_read_full_page() against that page will discover all the uptodate
1109 * buffers, will set the page uptodate and will perform no I/O.
1110 */
1111
1112/**
1113 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1114 * @bh: the buffer_head to mark dirty
1da177e4 1115 *
ec82e1c1
MW
1116 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1117 * its backing page dirty, then tag the page as dirty in the page cache
1118 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1119 * inode list.
1120 *
1121 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1122 * i_pages lock and mapping->host->i_lock.
1da177e4 1123 */
fc9b52cd 1124void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1125{
787d2214 1126 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1127
5305cb83
TH
1128 trace_block_dirty_buffer(bh);
1129
1be62dc1
LT
1130 /*
1131 * Very *carefully* optimize the it-is-already-dirty case.
1132 *
1133 * Don't let the final "is it dirty" escape to before we
1134 * perhaps modified the buffer.
1135 */
1136 if (buffer_dirty(bh)) {
1137 smp_mb();
1138 if (buffer_dirty(bh))
1139 return;
1140 }
1141
a8e7d49a
LT
1142 if (!test_set_buffer_dirty(bh)) {
1143 struct page *page = bh->b_page;
c4843a75 1144 struct address_space *mapping = NULL;
c4843a75 1145
62cccb8c 1146 lock_page_memcg(page);
8e9d78ed 1147 if (!TestSetPageDirty(page)) {
c4843a75 1148 mapping = page_mapping(page);
8e9d78ed 1149 if (mapping)
62cccb8c 1150 __set_page_dirty(page, mapping, 0);
8e9d78ed 1151 }
62cccb8c 1152 unlock_page_memcg(page);
c4843a75
GT
1153 if (mapping)
1154 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1155 }
1da177e4 1156}
1fe72eaa 1157EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1158
87354e5d
JL
1159void mark_buffer_write_io_error(struct buffer_head *bh)
1160{
1161 set_buffer_write_io_error(bh);
1162 /* FIXME: do we need to set this in both places? */
1163 if (bh->b_page && bh->b_page->mapping)
1164 mapping_set_error(bh->b_page->mapping, -EIO);
1165 if (bh->b_assoc_map)
1166 mapping_set_error(bh->b_assoc_map, -EIO);
1167}
1168EXPORT_SYMBOL(mark_buffer_write_io_error);
1169
1da177e4
LT
1170/*
1171 * Decrement a buffer_head's reference count. If all buffers against a page
1172 * have zero reference count, are clean and unlocked, and if the page is clean
1173 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1174 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1175 * a page but it ends up not being freed, and buffers may later be reattached).
1176 */
1177void __brelse(struct buffer_head * buf)
1178{
1179 if (atomic_read(&buf->b_count)) {
1180 put_bh(buf);
1181 return;
1182 }
5c752ad9 1183 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1184}
1fe72eaa 1185EXPORT_SYMBOL(__brelse);
1da177e4
LT
1186
1187/*
1188 * bforget() is like brelse(), except it discards any
1189 * potentially dirty data.
1190 */
1191void __bforget(struct buffer_head *bh)
1192{
1193 clear_buffer_dirty(bh);
535ee2fb 1194 if (bh->b_assoc_map) {
1da177e4
LT
1195 struct address_space *buffer_mapping = bh->b_page->mapping;
1196
1197 spin_lock(&buffer_mapping->private_lock);
1198 list_del_init(&bh->b_assoc_buffers);
58ff407b 1199 bh->b_assoc_map = NULL;
1da177e4
LT
1200 spin_unlock(&buffer_mapping->private_lock);
1201 }
1202 __brelse(bh);
1203}
1fe72eaa 1204EXPORT_SYMBOL(__bforget);
1da177e4
LT
1205
1206static struct buffer_head *__bread_slow(struct buffer_head *bh)
1207{
1208 lock_buffer(bh);
1209 if (buffer_uptodate(bh)) {
1210 unlock_buffer(bh);
1211 return bh;
1212 } else {
1213 get_bh(bh);
1214 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1215 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1216 wait_on_buffer(bh);
1217 if (buffer_uptodate(bh))
1218 return bh;
1219 }
1220 brelse(bh);
1221 return NULL;
1222}
1223
1224/*
1225 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1226 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1227 * refcount elevated by one when they're in an LRU. A buffer can only appear
1228 * once in a particular CPU's LRU. A single buffer can be present in multiple
1229 * CPU's LRUs at the same time.
1230 *
1231 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1232 * sb_find_get_block().
1233 *
1234 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1235 * a local interrupt disable for that.
1236 */
1237
86cf78d7 1238#define BH_LRU_SIZE 16
1da177e4
LT
1239
1240struct bh_lru {
1241 struct buffer_head *bhs[BH_LRU_SIZE];
1242};
1243
1244static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1245
1246#ifdef CONFIG_SMP
1247#define bh_lru_lock() local_irq_disable()
1248#define bh_lru_unlock() local_irq_enable()
1249#else
1250#define bh_lru_lock() preempt_disable()
1251#define bh_lru_unlock() preempt_enable()
1252#endif
1253
1254static inline void check_irqs_on(void)
1255{
1256#ifdef irqs_disabled
1257 BUG_ON(irqs_disabled());
1258#endif
1259}
1260
1261/*
241f01fb
EB
1262 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1263 * inserted at the front, and the buffer_head at the back if any is evicted.
1264 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1265 */
1266static void bh_lru_install(struct buffer_head *bh)
1267{
241f01fb
EB
1268 struct buffer_head *evictee = bh;
1269 struct bh_lru *b;
1270 int i;
1da177e4
LT
1271
1272 check_irqs_on();
1273 bh_lru_lock();
1da177e4 1274
241f01fb
EB
1275 b = this_cpu_ptr(&bh_lrus);
1276 for (i = 0; i < BH_LRU_SIZE; i++) {
1277 swap(evictee, b->bhs[i]);
1278 if (evictee == bh) {
1279 bh_lru_unlock();
1280 return;
1da177e4 1281 }
1da177e4 1282 }
1da177e4 1283
241f01fb
EB
1284 get_bh(bh);
1285 bh_lru_unlock();
1286 brelse(evictee);
1da177e4
LT
1287}
1288
1289/*
1290 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1291 */
858119e1 1292static struct buffer_head *
3991d3bd 1293lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1294{
1295 struct buffer_head *ret = NULL;
3991d3bd 1296 unsigned int i;
1da177e4
LT
1297
1298 check_irqs_on();
1299 bh_lru_lock();
1da177e4 1300 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1301 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1302
9470dd5d
ZB
1303 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1304 bh->b_size == size) {
1da177e4
LT
1305 if (i) {
1306 while (i) {
c7b92516
CL
1307 __this_cpu_write(bh_lrus.bhs[i],
1308 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1309 i--;
1310 }
c7b92516 1311 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1312 }
1313 get_bh(bh);
1314 ret = bh;
1315 break;
1316 }
1317 }
1318 bh_lru_unlock();
1319 return ret;
1320}
1321
1322/*
1323 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1324 * it in the LRU and mark it as accessed. If it is not present then return
1325 * NULL
1326 */
1327struct buffer_head *
3991d3bd 1328__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1329{
1330 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1331
1332 if (bh == NULL) {
2457aec6 1333 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1334 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1335 if (bh)
1336 bh_lru_install(bh);
2457aec6 1337 } else
1da177e4 1338 touch_buffer(bh);
2457aec6 1339
1da177e4
LT
1340 return bh;
1341}
1342EXPORT_SYMBOL(__find_get_block);
1343
1344/*
3b5e6454 1345 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1346 * which corresponds to the passed block_device, block and size. The
1347 * returned buffer has its reference count incremented.
1348 *
3b5e6454
GK
1349 * __getblk_gfp() will lock up the machine if grow_dev_page's
1350 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1351 */
1352struct buffer_head *
3b5e6454
GK
1353__getblk_gfp(struct block_device *bdev, sector_t block,
1354 unsigned size, gfp_t gfp)
1da177e4
LT
1355{
1356 struct buffer_head *bh = __find_get_block(bdev, block, size);
1357
1358 might_sleep();
1359 if (bh == NULL)
3b5e6454 1360 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1361 return bh;
1362}
3b5e6454 1363EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1364
1365/*
1366 * Do async read-ahead on a buffer..
1367 */
3991d3bd 1368void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1369{
1370 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1371 if (likely(bh)) {
70246286 1372 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1373 brelse(bh);
1374 }
1da177e4
LT
1375}
1376EXPORT_SYMBOL(__breadahead);
1377
1378/**
3b5e6454 1379 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1380 * @bdev: the block_device to read from
1da177e4
LT
1381 * @block: number of block
1382 * @size: size (in bytes) to read
3b5e6454
GK
1383 * @gfp: page allocation flag
1384 *
1da177e4 1385 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1386 * The page cache can be allocated from non-movable area
1387 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1388 * It returns NULL if the block was unreadable.
1389 */
1390struct buffer_head *
3b5e6454
GK
1391__bread_gfp(struct block_device *bdev, sector_t block,
1392 unsigned size, gfp_t gfp)
1da177e4 1393{
3b5e6454 1394 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1395
a3e713b5 1396 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1397 bh = __bread_slow(bh);
1398 return bh;
1399}
3b5e6454 1400EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1401
1402/*
1403 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1404 * This doesn't race because it runs in each cpu either in irq
1405 * or with preempt disabled.
1406 */
1407static void invalidate_bh_lru(void *arg)
1408{
1409 struct bh_lru *b = &get_cpu_var(bh_lrus);
1410 int i;
1411
1412 for (i = 0; i < BH_LRU_SIZE; i++) {
1413 brelse(b->bhs[i]);
1414 b->bhs[i] = NULL;
1415 }
1416 put_cpu_var(bh_lrus);
1417}
42be35d0
GBY
1418
1419static bool has_bh_in_lru(int cpu, void *dummy)
1420{
1421 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1422 int i;
1da177e4 1423
42be35d0
GBY
1424 for (i = 0; i < BH_LRU_SIZE; i++) {
1425 if (b->bhs[i])
1426 return 1;
1427 }
1428
1429 return 0;
1430}
1431
f9a14399 1432void invalidate_bh_lrus(void)
1da177e4 1433{
42be35d0 1434 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1435}
9db5579b 1436EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1437
1438void set_bh_page(struct buffer_head *bh,
1439 struct page *page, unsigned long offset)
1440{
1441 bh->b_page = page;
e827f923 1442 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1443 if (PageHighMem(page))
1444 /*
1445 * This catches illegal uses and preserves the offset:
1446 */
1447 bh->b_data = (char *)(0 + offset);
1448 else
1449 bh->b_data = page_address(page) + offset;
1450}
1451EXPORT_SYMBOL(set_bh_page);
1452
1453/*
1454 * Called when truncating a buffer on a page completely.
1455 */
e7470ee8
MG
1456
1457/* Bits that are cleared during an invalidate */
1458#define BUFFER_FLAGS_DISCARD \
1459 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1460 1 << BH_Delay | 1 << BH_Unwritten)
1461
858119e1 1462static void discard_buffer(struct buffer_head * bh)
1da177e4 1463{
e7470ee8
MG
1464 unsigned long b_state, b_state_old;
1465
1da177e4
LT
1466 lock_buffer(bh);
1467 clear_buffer_dirty(bh);
1468 bh->b_bdev = NULL;
e7470ee8
MG
1469 b_state = bh->b_state;
1470 for (;;) {
1471 b_state_old = cmpxchg(&bh->b_state, b_state,
1472 (b_state & ~BUFFER_FLAGS_DISCARD));
1473 if (b_state_old == b_state)
1474 break;
1475 b_state = b_state_old;
1476 }
1da177e4
LT
1477 unlock_buffer(bh);
1478}
1479
1da177e4 1480/**
814e1d25 1481 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1482 *
1483 * @page: the page which is affected
d47992f8
LC
1484 * @offset: start of the range to invalidate
1485 * @length: length of the range to invalidate
1da177e4
LT
1486 *
1487 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1488 * invalidated by a truncate operation.
1da177e4
LT
1489 *
1490 * block_invalidatepage() does not have to release all buffers, but it must
1491 * ensure that no dirty buffer is left outside @offset and that no I/O
1492 * is underway against any of the blocks which are outside the truncation
1493 * point. Because the caller is about to free (and possibly reuse) those
1494 * blocks on-disk.
1495 */
d47992f8
LC
1496void block_invalidatepage(struct page *page, unsigned int offset,
1497 unsigned int length)
1da177e4
LT
1498{
1499 struct buffer_head *head, *bh, *next;
1500 unsigned int curr_off = 0;
d47992f8 1501 unsigned int stop = length + offset;
1da177e4
LT
1502
1503 BUG_ON(!PageLocked(page));
1504 if (!page_has_buffers(page))
1505 goto out;
1506
d47992f8
LC
1507 /*
1508 * Check for overflow
1509 */
09cbfeaf 1510 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1511
1da177e4
LT
1512 head = page_buffers(page);
1513 bh = head;
1514 do {
1515 unsigned int next_off = curr_off + bh->b_size;
1516 next = bh->b_this_page;
1517
d47992f8
LC
1518 /*
1519 * Are we still fully in range ?
1520 */
1521 if (next_off > stop)
1522 goto out;
1523
1da177e4
LT
1524 /*
1525 * is this block fully invalidated?
1526 */
1527 if (offset <= curr_off)
1528 discard_buffer(bh);
1529 curr_off = next_off;
1530 bh = next;
1531 } while (bh != head);
1532
1533 /*
1534 * We release buffers only if the entire page is being invalidated.
1535 * The get_block cached value has been unconditionally invalidated,
1536 * so real IO is not possible anymore.
1537 */
3172485f 1538 if (length == PAGE_SIZE)
2ff28e22 1539 try_to_release_page(page, 0);
1da177e4 1540out:
2ff28e22 1541 return;
1da177e4
LT
1542}
1543EXPORT_SYMBOL(block_invalidatepage);
1544
d47992f8 1545
1da177e4
LT
1546/*
1547 * We attach and possibly dirty the buffers atomically wrt
1548 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1549 * is already excluded via the page lock.
1550 */
1551void create_empty_buffers(struct page *page,
1552 unsigned long blocksize, unsigned long b_state)
1553{
1554 struct buffer_head *bh, *head, *tail;
1555
640ab98f 1556 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1557 bh = head;
1558 do {
1559 bh->b_state |= b_state;
1560 tail = bh;
1561 bh = bh->b_this_page;
1562 } while (bh);
1563 tail->b_this_page = head;
1564
1565 spin_lock(&page->mapping->private_lock);
1566 if (PageUptodate(page) || PageDirty(page)) {
1567 bh = head;
1568 do {
1569 if (PageDirty(page))
1570 set_buffer_dirty(bh);
1571 if (PageUptodate(page))
1572 set_buffer_uptodate(bh);
1573 bh = bh->b_this_page;
1574 } while (bh != head);
1575 }
1576 attach_page_buffers(page, head);
1577 spin_unlock(&page->mapping->private_lock);
1578}
1579EXPORT_SYMBOL(create_empty_buffers);
1580
29f3ad7d
JK
1581/**
1582 * clean_bdev_aliases: clean a range of buffers in block device
1583 * @bdev: Block device to clean buffers in
1584 * @block: Start of a range of blocks to clean
1585 * @len: Number of blocks to clean
1da177e4 1586 *
29f3ad7d
JK
1587 * We are taking a range of blocks for data and we don't want writeback of any
1588 * buffer-cache aliases starting from return from this function and until the
1589 * moment when something will explicitly mark the buffer dirty (hopefully that
1590 * will not happen until we will free that block ;-) We don't even need to mark
1591 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1592 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1593 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1594 * would confuse anyone who might pick it with bread() afterwards...
1595 *
1596 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1597 * writeout I/O going on against recently-freed buffers. We don't wait on that
1598 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1599 * need to. That happens here.
1da177e4 1600 */
29f3ad7d 1601void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1602{
29f3ad7d
JK
1603 struct inode *bd_inode = bdev->bd_inode;
1604 struct address_space *bd_mapping = bd_inode->i_mapping;
1605 struct pagevec pvec;
1606 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1607 pgoff_t end;
c10f778d 1608 int i, count;
29f3ad7d
JK
1609 struct buffer_head *bh;
1610 struct buffer_head *head;
1da177e4 1611
29f3ad7d 1612 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
86679820 1613 pagevec_init(&pvec);
397162ff 1614 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1615 count = pagevec_count(&pvec);
1616 for (i = 0; i < count; i++) {
29f3ad7d 1617 struct page *page = pvec.pages[i];
1da177e4 1618
29f3ad7d
JK
1619 if (!page_has_buffers(page))
1620 continue;
1621 /*
1622 * We use page lock instead of bd_mapping->private_lock
1623 * to pin buffers here since we can afford to sleep and
1624 * it scales better than a global spinlock lock.
1625 */
1626 lock_page(page);
1627 /* Recheck when the page is locked which pins bhs */
1628 if (!page_has_buffers(page))
1629 goto unlock_page;
1630 head = page_buffers(page);
1631 bh = head;
1632 do {
6c006a9d 1633 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1634 goto next;
1635 if (bh->b_blocknr >= block + len)
1636 break;
1637 clear_buffer_dirty(bh);
1638 wait_on_buffer(bh);
1639 clear_buffer_req(bh);
1640next:
1641 bh = bh->b_this_page;
1642 } while (bh != head);
1643unlock_page:
1644 unlock_page(page);
1645 }
1646 pagevec_release(&pvec);
1647 cond_resched();
c10f778d
JK
1648 /* End of range already reached? */
1649 if (index > end || !index)
1650 break;
1da177e4
LT
1651 }
1652}
29f3ad7d 1653EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1654
45bce8f3
LT
1655/*
1656 * Size is a power-of-two in the range 512..PAGE_SIZE,
1657 * and the case we care about most is PAGE_SIZE.
1658 *
1659 * So this *could* possibly be written with those
1660 * constraints in mind (relevant mostly if some
1661 * architecture has a slow bit-scan instruction)
1662 */
1663static inline int block_size_bits(unsigned int blocksize)
1664{
1665 return ilog2(blocksize);
1666}
1667
1668static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1669{
1670 BUG_ON(!PageLocked(page));
1671
1672 if (!page_has_buffers(page))
6aa7de05
MR
1673 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1674 b_state);
45bce8f3
LT
1675 return page_buffers(page);
1676}
1677
1da177e4
LT
1678/*
1679 * NOTE! All mapped/uptodate combinations are valid:
1680 *
1681 * Mapped Uptodate Meaning
1682 *
1683 * No No "unknown" - must do get_block()
1684 * No Yes "hole" - zero-filled
1685 * Yes No "allocated" - allocated on disk, not read in
1686 * Yes Yes "valid" - allocated and up-to-date in memory.
1687 *
1688 * "Dirty" is valid only with the last case (mapped+uptodate).
1689 */
1690
1691/*
1692 * While block_write_full_page is writing back the dirty buffers under
1693 * the page lock, whoever dirtied the buffers may decide to clean them
1694 * again at any time. We handle that by only looking at the buffer
1695 * state inside lock_buffer().
1696 *
1697 * If block_write_full_page() is called for regular writeback
1698 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1699 * locked buffer. This only can happen if someone has written the buffer
1700 * directly, with submit_bh(). At the address_space level PageWriteback
1701 * prevents this contention from occurring.
6e34eedd
TT
1702 *
1703 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1704 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1705 * causes the writes to be flagged as synchronous writes.
1da177e4 1706 */
b4bba389 1707int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1708 get_block_t *get_block, struct writeback_control *wbc,
1709 bh_end_io_t *handler)
1da177e4
LT
1710{
1711 int err;
1712 sector_t block;
1713 sector_t last_block;
f0fbd5fc 1714 struct buffer_head *bh, *head;
45bce8f3 1715 unsigned int blocksize, bbits;
1da177e4 1716 int nr_underway = 0;
7637241e 1717 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1718
45bce8f3 1719 head = create_page_buffers(page, inode,
1da177e4 1720 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1721
1722 /*
1723 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1724 * here, and the (potentially unmapped) buffers may become dirty at
1725 * any time. If a buffer becomes dirty here after we've inspected it
1726 * then we just miss that fact, and the page stays dirty.
1727 *
1728 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1729 * handle that here by just cleaning them.
1730 */
1731
1da177e4 1732 bh = head;
45bce8f3
LT
1733 blocksize = bh->b_size;
1734 bbits = block_size_bits(blocksize);
1735
09cbfeaf 1736 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1737 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1738
1739 /*
1740 * Get all the dirty buffers mapped to disk addresses and
1741 * handle any aliases from the underlying blockdev's mapping.
1742 */
1743 do {
1744 if (block > last_block) {
1745 /*
1746 * mapped buffers outside i_size will occur, because
1747 * this page can be outside i_size when there is a
1748 * truncate in progress.
1749 */
1750 /*
1751 * The buffer was zeroed by block_write_full_page()
1752 */
1753 clear_buffer_dirty(bh);
1754 set_buffer_uptodate(bh);
29a814d2
AT
1755 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1756 buffer_dirty(bh)) {
b0cf2321 1757 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1758 err = get_block(inode, block, bh, 1);
1759 if (err)
1760 goto recover;
29a814d2 1761 clear_buffer_delay(bh);
1da177e4
LT
1762 if (buffer_new(bh)) {
1763 /* blockdev mappings never come here */
1764 clear_buffer_new(bh);
e64855c6 1765 clean_bdev_bh_alias(bh);
1da177e4
LT
1766 }
1767 }
1768 bh = bh->b_this_page;
1769 block++;
1770 } while (bh != head);
1771
1772 do {
1da177e4
LT
1773 if (!buffer_mapped(bh))
1774 continue;
1775 /*
1776 * If it's a fully non-blocking write attempt and we cannot
1777 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1778 * potentially cause a busy-wait loop from writeback threads
1779 * and kswapd activity, but those code paths have their own
1780 * higher-level throttling.
1da177e4 1781 */
1b430bee 1782 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1783 lock_buffer(bh);
ca5de404 1784 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1785 redirty_page_for_writepage(wbc, page);
1786 continue;
1787 }
1788 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1789 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1790 } else {
1791 unlock_buffer(bh);
1792 }
1793 } while ((bh = bh->b_this_page) != head);
1794
1795 /*
1796 * The page and its buffers are protected by PageWriteback(), so we can
1797 * drop the bh refcounts early.
1798 */
1799 BUG_ON(PageWriteback(page));
1800 set_page_writeback(page);
1da177e4
LT
1801
1802 do {
1803 struct buffer_head *next = bh->b_this_page;
1804 if (buffer_async_write(bh)) {
8e8f9298
JA
1805 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1806 inode->i_write_hint, wbc);
1da177e4
LT
1807 nr_underway++;
1808 }
1da177e4
LT
1809 bh = next;
1810 } while (bh != head);
05937baa 1811 unlock_page(page);
1da177e4
LT
1812
1813 err = 0;
1814done:
1815 if (nr_underway == 0) {
1816 /*
1817 * The page was marked dirty, but the buffers were
1818 * clean. Someone wrote them back by hand with
1819 * ll_rw_block/submit_bh. A rare case.
1820 */
1da177e4 1821 end_page_writeback(page);
3d67f2d7 1822
1da177e4
LT
1823 /*
1824 * The page and buffer_heads can be released at any time from
1825 * here on.
1826 */
1da177e4
LT
1827 }
1828 return err;
1829
1830recover:
1831 /*
1832 * ENOSPC, or some other error. We may already have added some
1833 * blocks to the file, so we need to write these out to avoid
1834 * exposing stale data.
1835 * The page is currently locked and not marked for writeback
1836 */
1837 bh = head;
1838 /* Recovery: lock and submit the mapped buffers */
1839 do {
29a814d2
AT
1840 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1841 !buffer_delay(bh)) {
1da177e4 1842 lock_buffer(bh);
35c80d5f 1843 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1844 } else {
1845 /*
1846 * The buffer may have been set dirty during
1847 * attachment to a dirty page.
1848 */
1849 clear_buffer_dirty(bh);
1850 }
1851 } while ((bh = bh->b_this_page) != head);
1852 SetPageError(page);
1853 BUG_ON(PageWriteback(page));
7e4c3690 1854 mapping_set_error(page->mapping, err);
1da177e4 1855 set_page_writeback(page);
1da177e4
LT
1856 do {
1857 struct buffer_head *next = bh->b_this_page;
1858 if (buffer_async_write(bh)) {
1859 clear_buffer_dirty(bh);
8e8f9298
JA
1860 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1861 inode->i_write_hint, wbc);
1da177e4
LT
1862 nr_underway++;
1863 }
1da177e4
LT
1864 bh = next;
1865 } while (bh != head);
ffda9d30 1866 unlock_page(page);
1da177e4
LT
1867 goto done;
1868}
b4bba389 1869EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1870
afddba49
NP
1871/*
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1875 */
1876void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877{
1878 unsigned int block_start, block_end;
1879 struct buffer_head *head, *bh;
1880
1881 BUG_ON(!PageLocked(page));
1882 if (!page_has_buffers(page))
1883 return;
1884
1885 bh = head = page_buffers(page);
1886 block_start = 0;
1887 do {
1888 block_end = block_start + bh->b_size;
1889
1890 if (buffer_new(bh)) {
1891 if (block_end > from && block_start < to) {
1892 if (!PageUptodate(page)) {
1893 unsigned start, size;
1894
1895 start = max(from, block_start);
1896 size = min(to, block_end) - start;
1897
eebd2aa3 1898 zero_user(page, start, size);
afddba49
NP
1899 set_buffer_uptodate(bh);
1900 }
1901
1902 clear_buffer_new(bh);
1903 mark_buffer_dirty(bh);
1904 }
1905 }
1906
1907 block_start = block_end;
1908 bh = bh->b_this_page;
1909 } while (bh != head);
1910}
1911EXPORT_SYMBOL(page_zero_new_buffers);
1912
ae259a9c
CH
1913static void
1914iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915 struct iomap *iomap)
1916{
1917 loff_t offset = block << inode->i_blkbits;
1918
1919 bh->b_bdev = iomap->bdev;
1920
1921 /*
1922 * Block points to offset in file we need to map, iomap contains
1923 * the offset at which the map starts. If the map ends before the
1924 * current block, then do not map the buffer and let the caller
1925 * handle it.
1926 */
1927 BUG_ON(offset >= iomap->offset + iomap->length);
1928
1929 switch (iomap->type) {
1930 case IOMAP_HOLE:
1931 /*
1932 * If the buffer is not up to date or beyond the current EOF,
1933 * we need to mark it as new to ensure sub-block zeroing is
1934 * executed if necessary.
1935 */
1936 if (!buffer_uptodate(bh) ||
1937 (offset >= i_size_read(inode)))
1938 set_buffer_new(bh);
1939 break;
1940 case IOMAP_DELALLOC:
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1943 set_buffer_new(bh);
1944 set_buffer_uptodate(bh);
1945 set_buffer_mapped(bh);
1946 set_buffer_delay(bh);
1947 break;
1948 case IOMAP_UNWRITTEN:
1949 /*
3d7b6b21
AG
1950 * For unwritten regions, we always need to ensure that regions
1951 * in the block we are not writing to are zeroed. Mark the
1952 * buffer as new to ensure this.
ae259a9c
CH
1953 */
1954 set_buffer_new(bh);
1955 set_buffer_unwritten(bh);
1956 /* FALLTHRU */
1957 case IOMAP_MAPPED:
3d7b6b21
AG
1958 if ((iomap->flags & IOMAP_F_NEW) ||
1959 offset >= i_size_read(inode))
ae259a9c 1960 set_buffer_new(bh);
19fe5f64
AG
1961 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962 inode->i_blkbits;
ae259a9c
CH
1963 set_buffer_mapped(bh);
1964 break;
1965 }
1966}
1967
1968int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1969 get_block_t *get_block, struct iomap *iomap)
1da177e4 1970{
09cbfeaf 1971 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1972 unsigned to = from + len;
6e1db88d 1973 struct inode *inode = page->mapping->host;
1da177e4
LT
1974 unsigned block_start, block_end;
1975 sector_t block;
1976 int err = 0;
1977 unsigned blocksize, bbits;
1978 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979
1980 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1981 BUG_ON(from > PAGE_SIZE);
1982 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1983 BUG_ON(from > to);
1984
45bce8f3
LT
1985 head = create_page_buffers(page, inode, 0);
1986 blocksize = head->b_size;
1987 bbits = block_size_bits(blocksize);
1da177e4 1988
09cbfeaf 1989 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
1990
1991 for(bh = head, block_start = 0; bh != head || !block_start;
1992 block++, block_start=block_end, bh = bh->b_this_page) {
1993 block_end = block_start + blocksize;
1994 if (block_end <= from || block_start >= to) {
1995 if (PageUptodate(page)) {
1996 if (!buffer_uptodate(bh))
1997 set_buffer_uptodate(bh);
1998 }
1999 continue;
2000 }
2001 if (buffer_new(bh))
2002 clear_buffer_new(bh);
2003 if (!buffer_mapped(bh)) {
b0cf2321 2004 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2005 if (get_block) {
2006 err = get_block(inode, block, bh, 1);
2007 if (err)
2008 break;
2009 } else {
2010 iomap_to_bh(inode, block, bh, iomap);
2011 }
2012
1da177e4 2013 if (buffer_new(bh)) {
e64855c6 2014 clean_bdev_bh_alias(bh);
1da177e4 2015 if (PageUptodate(page)) {
637aff46 2016 clear_buffer_new(bh);
1da177e4 2017 set_buffer_uptodate(bh);
637aff46 2018 mark_buffer_dirty(bh);
1da177e4
LT
2019 continue;
2020 }
eebd2aa3
CL
2021 if (block_end > to || block_start < from)
2022 zero_user_segments(page,
2023 to, block_end,
2024 block_start, from);
1da177e4
LT
2025 continue;
2026 }
2027 }
2028 if (PageUptodate(page)) {
2029 if (!buffer_uptodate(bh))
2030 set_buffer_uptodate(bh);
2031 continue;
2032 }
2033 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2034 !buffer_unwritten(bh) &&
1da177e4 2035 (block_start < from || block_end > to)) {
dfec8a14 2036 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2037 *wait_bh++=bh;
2038 }
2039 }
2040 /*
2041 * If we issued read requests - let them complete.
2042 */
2043 while(wait_bh > wait) {
2044 wait_on_buffer(*--wait_bh);
2045 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2046 err = -EIO;
1da177e4 2047 }
f9f07b6c 2048 if (unlikely(err))
afddba49 2049 page_zero_new_buffers(page, from, to);
1da177e4
LT
2050 return err;
2051}
ae259a9c
CH
2052
2053int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 get_block_t *get_block)
2055{
2056 return __block_write_begin_int(page, pos, len, get_block, NULL);
2057}
ebdec241 2058EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2059
2060static int __block_commit_write(struct inode *inode, struct page *page,
2061 unsigned from, unsigned to)
2062{
2063 unsigned block_start, block_end;
2064 int partial = 0;
2065 unsigned blocksize;
2066 struct buffer_head *bh, *head;
2067
45bce8f3
LT
2068 bh = head = page_buffers(page);
2069 blocksize = bh->b_size;
1da177e4 2070
45bce8f3
LT
2071 block_start = 0;
2072 do {
1da177e4
LT
2073 block_end = block_start + blocksize;
2074 if (block_end <= from || block_start >= to) {
2075 if (!buffer_uptodate(bh))
2076 partial = 1;
2077 } else {
2078 set_buffer_uptodate(bh);
2079 mark_buffer_dirty(bh);
2080 }
afddba49 2081 clear_buffer_new(bh);
45bce8f3
LT
2082
2083 block_start = block_end;
2084 bh = bh->b_this_page;
2085 } while (bh != head);
1da177e4
LT
2086
2087 /*
2088 * If this is a partial write which happened to make all buffers
2089 * uptodate then we can optimize away a bogus readpage() for
2090 * the next read(). Here we 'discover' whether the page went
2091 * uptodate as a result of this (potentially partial) write.
2092 */
2093 if (!partial)
2094 SetPageUptodate(page);
2095 return 0;
2096}
2097
afddba49 2098/*
155130a4
CH
2099 * block_write_begin takes care of the basic task of block allocation and
2100 * bringing partial write blocks uptodate first.
2101 *
7bb46a67 2102 * The filesystem needs to handle block truncation upon failure.
afddba49 2103 */
155130a4
CH
2104int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2105 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2106{
09cbfeaf 2107 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2108 struct page *page;
6e1db88d 2109 int status;
afddba49 2110
6e1db88d
CH
2111 page = grab_cache_page_write_begin(mapping, index, flags);
2112 if (!page)
2113 return -ENOMEM;
afddba49 2114
6e1db88d 2115 status = __block_write_begin(page, pos, len, get_block);
afddba49 2116 if (unlikely(status)) {
6e1db88d 2117 unlock_page(page);
09cbfeaf 2118 put_page(page);
6e1db88d 2119 page = NULL;
afddba49
NP
2120 }
2121
6e1db88d 2122 *pagep = page;
afddba49
NP
2123 return status;
2124}
2125EXPORT_SYMBOL(block_write_begin);
2126
2127int block_write_end(struct file *file, struct address_space *mapping,
2128 loff_t pos, unsigned len, unsigned copied,
2129 struct page *page, void *fsdata)
2130{
2131 struct inode *inode = mapping->host;
2132 unsigned start;
2133
09cbfeaf 2134 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2135
2136 if (unlikely(copied < len)) {
2137 /*
2138 * The buffers that were written will now be uptodate, so we
2139 * don't have to worry about a readpage reading them and
2140 * overwriting a partial write. However if we have encountered
2141 * a short write and only partially written into a buffer, it
2142 * will not be marked uptodate, so a readpage might come in and
2143 * destroy our partial write.
2144 *
2145 * Do the simplest thing, and just treat any short write to a
2146 * non uptodate page as a zero-length write, and force the
2147 * caller to redo the whole thing.
2148 */
2149 if (!PageUptodate(page))
2150 copied = 0;
2151
2152 page_zero_new_buffers(page, start+copied, start+len);
2153 }
2154 flush_dcache_page(page);
2155
2156 /* This could be a short (even 0-length) commit */
2157 __block_commit_write(inode, page, start, start+copied);
2158
2159 return copied;
2160}
2161EXPORT_SYMBOL(block_write_end);
2162
2163int generic_write_end(struct file *file, struct address_space *mapping,
2164 loff_t pos, unsigned len, unsigned copied,
2165 struct page *page, void *fsdata)
2166{
8af54f29
CH
2167 struct inode *inode = mapping->host;
2168 loff_t old_size = inode->i_size;
2169 bool i_size_changed = false;
2170
afddba49 2171 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2172
2173 /*
2174 * No need to use i_size_read() here, the i_size cannot change under us
2175 * because we hold i_rwsem.
2176 *
2177 * But it's important to update i_size while still holding page lock:
2178 * page writeout could otherwise come in and zero beyond i_size.
2179 */
2180 if (pos + copied > inode->i_size) {
2181 i_size_write(inode, pos + copied);
2182 i_size_changed = true;
2183 }
2184
2185 unlock_page(page);
7a77dad7 2186 put_page(page);
8af54f29
CH
2187
2188 if (old_size < pos)
2189 pagecache_isize_extended(inode, old_size, pos);
2190 /*
2191 * Don't mark the inode dirty under page lock. First, it unnecessarily
2192 * makes the holding time of page lock longer. Second, it forces lock
2193 * ordering of page lock and transaction start for journaling
2194 * filesystems.
2195 */
2196 if (i_size_changed)
2197 mark_inode_dirty(inode);
26ddb1f4 2198 return copied;
afddba49
NP
2199}
2200EXPORT_SYMBOL(generic_write_end);
2201
8ab22b9a
HH
2202/*
2203 * block_is_partially_uptodate checks whether buffers within a page are
2204 * uptodate or not.
2205 *
2206 * Returns true if all buffers which correspond to a file portion
2207 * we want to read are uptodate.
2208 */
c186afb4
AV
2209int block_is_partially_uptodate(struct page *page, unsigned long from,
2210 unsigned long count)
8ab22b9a 2211{
8ab22b9a
HH
2212 unsigned block_start, block_end, blocksize;
2213 unsigned to;
2214 struct buffer_head *bh, *head;
2215 int ret = 1;
2216
2217 if (!page_has_buffers(page))
2218 return 0;
2219
45bce8f3
LT
2220 head = page_buffers(page);
2221 blocksize = head->b_size;
09cbfeaf 2222 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2223 to = from + to;
09cbfeaf 2224 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2225 return 0;
2226
8ab22b9a
HH
2227 bh = head;
2228 block_start = 0;
2229 do {
2230 block_end = block_start + blocksize;
2231 if (block_end > from && block_start < to) {
2232 if (!buffer_uptodate(bh)) {
2233 ret = 0;
2234 break;
2235 }
2236 if (block_end >= to)
2237 break;
2238 }
2239 block_start = block_end;
2240 bh = bh->b_this_page;
2241 } while (bh != head);
2242
2243 return ret;
2244}
2245EXPORT_SYMBOL(block_is_partially_uptodate);
2246
1da177e4
LT
2247/*
2248 * Generic "read page" function for block devices that have the normal
2249 * get_block functionality. This is most of the block device filesystems.
2250 * Reads the page asynchronously --- the unlock_buffer() and
2251 * set/clear_buffer_uptodate() functions propagate buffer state into the
2252 * page struct once IO has completed.
2253 */
2254int block_read_full_page(struct page *page, get_block_t *get_block)
2255{
2256 struct inode *inode = page->mapping->host;
2257 sector_t iblock, lblock;
2258 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2259 unsigned int blocksize, bbits;
1da177e4
LT
2260 int nr, i;
2261 int fully_mapped = 1;
2262
45bce8f3
LT
2263 head = create_page_buffers(page, inode, 0);
2264 blocksize = head->b_size;
2265 bbits = block_size_bits(blocksize);
1da177e4 2266
09cbfeaf 2267 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2268 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2269 bh = head;
2270 nr = 0;
2271 i = 0;
2272
2273 do {
2274 if (buffer_uptodate(bh))
2275 continue;
2276
2277 if (!buffer_mapped(bh)) {
c64610ba
AM
2278 int err = 0;
2279
1da177e4
LT
2280 fully_mapped = 0;
2281 if (iblock < lblock) {
b0cf2321 2282 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2283 err = get_block(inode, iblock, bh, 0);
2284 if (err)
1da177e4
LT
2285 SetPageError(page);
2286 }
2287 if (!buffer_mapped(bh)) {
eebd2aa3 2288 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2289 if (!err)
2290 set_buffer_uptodate(bh);
1da177e4
LT
2291 continue;
2292 }
2293 /*
2294 * get_block() might have updated the buffer
2295 * synchronously
2296 */
2297 if (buffer_uptodate(bh))
2298 continue;
2299 }
2300 arr[nr++] = bh;
2301 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2302
2303 if (fully_mapped)
2304 SetPageMappedToDisk(page);
2305
2306 if (!nr) {
2307 /*
2308 * All buffers are uptodate - we can set the page uptodate
2309 * as well. But not if get_block() returned an error.
2310 */
2311 if (!PageError(page))
2312 SetPageUptodate(page);
2313 unlock_page(page);
2314 return 0;
2315 }
2316
2317 /* Stage two: lock the buffers */
2318 for (i = 0; i < nr; i++) {
2319 bh = arr[i];
2320 lock_buffer(bh);
2321 mark_buffer_async_read(bh);
2322 }
2323
2324 /*
2325 * Stage 3: start the IO. Check for uptodateness
2326 * inside the buffer lock in case another process reading
2327 * the underlying blockdev brought it uptodate (the sct fix).
2328 */
2329 for (i = 0; i < nr; i++) {
2330 bh = arr[i];
2331 if (buffer_uptodate(bh))
2332 end_buffer_async_read(bh, 1);
2333 else
2a222ca9 2334 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2335 }
2336 return 0;
2337}
1fe72eaa 2338EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2339
2340/* utility function for filesystems that need to do work on expanding
89e10787 2341 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2342 * deal with the hole.
2343 */
89e10787 2344int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2345{
2346 struct address_space *mapping = inode->i_mapping;
2347 struct page *page;
89e10787 2348 void *fsdata;
1da177e4
LT
2349 int err;
2350
c08d3b0e
NP
2351 err = inode_newsize_ok(inode, size);
2352 if (err)
1da177e4
LT
2353 goto out;
2354
89e10787 2355 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2356 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2357 if (err)
05eb0b51 2358 goto out;
05eb0b51 2359
89e10787
NP
2360 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2361 BUG_ON(err > 0);
05eb0b51 2362
1da177e4
LT
2363out:
2364 return err;
2365}
1fe72eaa 2366EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2367
f1e3af72
AB
2368static int cont_expand_zero(struct file *file, struct address_space *mapping,
2369 loff_t pos, loff_t *bytes)
1da177e4 2370{
1da177e4 2371 struct inode *inode = mapping->host;
93407472 2372 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2373 struct page *page;
2374 void *fsdata;
2375 pgoff_t index, curidx;
2376 loff_t curpos;
2377 unsigned zerofrom, offset, len;
2378 int err = 0;
1da177e4 2379
09cbfeaf
KS
2380 index = pos >> PAGE_SHIFT;
2381 offset = pos & ~PAGE_MASK;
89e10787 2382
09cbfeaf
KS
2383 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2384 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2385 if (zerofrom & (blocksize-1)) {
2386 *bytes |= (blocksize-1);
2387 (*bytes)++;
2388 }
09cbfeaf 2389 len = PAGE_SIZE - zerofrom;
1da177e4 2390
c718a975
TH
2391 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2392 &page, &fsdata);
89e10787
NP
2393 if (err)
2394 goto out;
eebd2aa3 2395 zero_user(page, zerofrom, len);
89e10787
NP
2396 err = pagecache_write_end(file, mapping, curpos, len, len,
2397 page, fsdata);
2398 if (err < 0)
2399 goto out;
2400 BUG_ON(err != len);
2401 err = 0;
061e9746
OH
2402
2403 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2404
08d405c8 2405 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2406 err = -EINTR;
2407 goto out;
2408 }
89e10787 2409 }
1da177e4 2410
89e10787
NP
2411 /* page covers the boundary, find the boundary offset */
2412 if (index == curidx) {
09cbfeaf 2413 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2414 /* if we will expand the thing last block will be filled */
89e10787
NP
2415 if (offset <= zerofrom) {
2416 goto out;
2417 }
2418 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2419 *bytes |= (blocksize-1);
2420 (*bytes)++;
2421 }
89e10787 2422 len = offset - zerofrom;
1da177e4 2423
c718a975
TH
2424 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425 &page, &fsdata);
89e10787
NP
2426 if (err)
2427 goto out;
eebd2aa3 2428 zero_user(page, zerofrom, len);
89e10787
NP
2429 err = pagecache_write_end(file, mapping, curpos, len, len,
2430 page, fsdata);
2431 if (err < 0)
2432 goto out;
2433 BUG_ON(err != len);
2434 err = 0;
1da177e4 2435 }
89e10787
NP
2436out:
2437 return err;
2438}
2439
2440/*
2441 * For moronic filesystems that do not allow holes in file.
2442 * We may have to extend the file.
2443 */
282dc178 2444int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2445 loff_t pos, unsigned len, unsigned flags,
2446 struct page **pagep, void **fsdata,
2447 get_block_t *get_block, loff_t *bytes)
2448{
2449 struct inode *inode = mapping->host;
93407472
FF
2450 unsigned int blocksize = i_blocksize(inode);
2451 unsigned int zerofrom;
89e10787
NP
2452 int err;
2453
2454 err = cont_expand_zero(file, mapping, pos, bytes);
2455 if (err)
155130a4 2456 return err;
89e10787 2457
09cbfeaf 2458 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2459 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2460 *bytes |= (blocksize-1);
2461 (*bytes)++;
1da177e4 2462 }
1da177e4 2463
155130a4 2464 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2465}
1fe72eaa 2466EXPORT_SYMBOL(cont_write_begin);
1da177e4 2467
1da177e4
LT
2468int block_commit_write(struct page *page, unsigned from, unsigned to)
2469{
2470 struct inode *inode = page->mapping->host;
2471 __block_commit_write(inode,page,from,to);
2472 return 0;
2473}
1fe72eaa 2474EXPORT_SYMBOL(block_commit_write);
1da177e4 2475
54171690
DC
2476/*
2477 * block_page_mkwrite() is not allowed to change the file size as it gets
2478 * called from a page fault handler when a page is first dirtied. Hence we must
2479 * be careful to check for EOF conditions here. We set the page up correctly
2480 * for a written page which means we get ENOSPC checking when writing into
2481 * holes and correct delalloc and unwritten extent mapping on filesystems that
2482 * support these features.
2483 *
2484 * We are not allowed to take the i_mutex here so we have to play games to
2485 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2486 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2487 * page lock we can determine safely if the page is beyond EOF. If it is not
2488 * beyond EOF, then the page is guaranteed safe against truncation until we
2489 * unlock the page.
ea13a864 2490 *
14da9200 2491 * Direct callers of this function should protect against filesystem freezing
5c500029 2492 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2493 */
5c500029 2494int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2495 get_block_t get_block)
54171690 2496{
c2ec175c 2497 struct page *page = vmf->page;
496ad9aa 2498 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2499 unsigned long end;
2500 loff_t size;
24da4fab 2501 int ret;
54171690
DC
2502
2503 lock_page(page);
2504 size = i_size_read(inode);
2505 if ((page->mapping != inode->i_mapping) ||
18336338 2506 (page_offset(page) > size)) {
24da4fab
JK
2507 /* We overload EFAULT to mean page got truncated */
2508 ret = -EFAULT;
2509 goto out_unlock;
54171690
DC
2510 }
2511
2512 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2513 if (((page->index + 1) << PAGE_SHIFT) > size)
2514 end = size & ~PAGE_MASK;
54171690 2515 else
09cbfeaf 2516 end = PAGE_SIZE;
54171690 2517
ebdec241 2518 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2519 if (!ret)
2520 ret = block_commit_write(page, 0, end);
2521
24da4fab
JK
2522 if (unlikely(ret < 0))
2523 goto out_unlock;
ea13a864 2524 set_page_dirty(page);
1d1d1a76 2525 wait_for_stable_page(page);
24da4fab
JK
2526 return 0;
2527out_unlock:
2528 unlock_page(page);
54171690 2529 return ret;
24da4fab 2530}
1fe72eaa 2531EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2532
2533/*
03158cd7 2534 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2535 * immediately, while under the page lock. So it needs a special end_io
2536 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2537 */
2538static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2539{
68671f35 2540 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2541}
2542
03158cd7
NP
2543/*
2544 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2545 * the page (converting it to circular linked list and taking care of page
2546 * dirty races).
2547 */
2548static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2549{
2550 struct buffer_head *bh;
2551
2552 BUG_ON(!PageLocked(page));
2553
2554 spin_lock(&page->mapping->private_lock);
2555 bh = head;
2556 do {
2557 if (PageDirty(page))
2558 set_buffer_dirty(bh);
2559 if (!bh->b_this_page)
2560 bh->b_this_page = head;
2561 bh = bh->b_this_page;
2562 } while (bh != head);
2563 attach_page_buffers(page, head);
2564 spin_unlock(&page->mapping->private_lock);
2565}
2566
1da177e4 2567/*
ea0f04e5
CH
2568 * On entry, the page is fully not uptodate.
2569 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2570 * The filesystem needs to handle block truncation upon failure.
1da177e4 2571 */
ea0f04e5 2572int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2573 loff_t pos, unsigned len, unsigned flags,
2574 struct page **pagep, void **fsdata,
1da177e4
LT
2575 get_block_t *get_block)
2576{
03158cd7 2577 struct inode *inode = mapping->host;
1da177e4
LT
2578 const unsigned blkbits = inode->i_blkbits;
2579 const unsigned blocksize = 1 << blkbits;
a4b0672d 2580 struct buffer_head *head, *bh;
03158cd7
NP
2581 struct page *page;
2582 pgoff_t index;
2583 unsigned from, to;
1da177e4 2584 unsigned block_in_page;
a4b0672d 2585 unsigned block_start, block_end;
1da177e4 2586 sector_t block_in_file;
1da177e4 2587 int nr_reads = 0;
1da177e4
LT
2588 int ret = 0;
2589 int is_mapped_to_disk = 1;
1da177e4 2590
09cbfeaf
KS
2591 index = pos >> PAGE_SHIFT;
2592 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2593 to = from + len;
2594
54566b2c 2595 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2596 if (!page)
2597 return -ENOMEM;
2598 *pagep = page;
2599 *fsdata = NULL;
2600
2601 if (page_has_buffers(page)) {
309f77ad
NK
2602 ret = __block_write_begin(page, pos, len, get_block);
2603 if (unlikely(ret))
2604 goto out_release;
2605 return ret;
03158cd7 2606 }
a4b0672d 2607
1da177e4
LT
2608 if (PageMappedToDisk(page))
2609 return 0;
2610
a4b0672d
NP
2611 /*
2612 * Allocate buffers so that we can keep track of state, and potentially
2613 * attach them to the page if an error occurs. In the common case of
2614 * no error, they will just be freed again without ever being attached
2615 * to the page (which is all OK, because we're under the page lock).
2616 *
2617 * Be careful: the buffer linked list is a NULL terminated one, rather
2618 * than the circular one we're used to.
2619 */
640ab98f 2620 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2621 if (!head) {
2622 ret = -ENOMEM;
2623 goto out_release;
2624 }
a4b0672d 2625
09cbfeaf 2626 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2627
2628 /*
2629 * We loop across all blocks in the page, whether or not they are
2630 * part of the affected region. This is so we can discover if the
2631 * page is fully mapped-to-disk.
2632 */
a4b0672d 2633 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2634 block_start < PAGE_SIZE;
a4b0672d 2635 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2636 int create;
2637
a4b0672d
NP
2638 block_end = block_start + blocksize;
2639 bh->b_state = 0;
1da177e4
LT
2640 create = 1;
2641 if (block_start >= to)
2642 create = 0;
2643 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2644 bh, create);
1da177e4
LT
2645 if (ret)
2646 goto failed;
a4b0672d 2647 if (!buffer_mapped(bh))
1da177e4 2648 is_mapped_to_disk = 0;
a4b0672d 2649 if (buffer_new(bh))
e64855c6 2650 clean_bdev_bh_alias(bh);
a4b0672d
NP
2651 if (PageUptodate(page)) {
2652 set_buffer_uptodate(bh);
1da177e4 2653 continue;
a4b0672d
NP
2654 }
2655 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2656 zero_user_segments(page, block_start, from,
2657 to, block_end);
1da177e4
LT
2658 continue;
2659 }
a4b0672d 2660 if (buffer_uptodate(bh))
1da177e4
LT
2661 continue; /* reiserfs does this */
2662 if (block_start < from || block_end > to) {
a4b0672d
NP
2663 lock_buffer(bh);
2664 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2665 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2666 nr_reads++;
1da177e4
LT
2667 }
2668 }
2669
2670 if (nr_reads) {
1da177e4
LT
2671 /*
2672 * The page is locked, so these buffers are protected from
2673 * any VM or truncate activity. Hence we don't need to care
2674 * for the buffer_head refcounts.
2675 */
a4b0672d 2676 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2677 wait_on_buffer(bh);
2678 if (!buffer_uptodate(bh))
2679 ret = -EIO;
1da177e4
LT
2680 }
2681 if (ret)
2682 goto failed;
2683 }
2684
2685 if (is_mapped_to_disk)
2686 SetPageMappedToDisk(page);
1da177e4 2687
03158cd7 2688 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2689
1da177e4
LT
2690 return 0;
2691
2692failed:
03158cd7 2693 BUG_ON(!ret);
1da177e4 2694 /*
a4b0672d
NP
2695 * Error recovery is a bit difficult. We need to zero out blocks that
2696 * were newly allocated, and dirty them to ensure they get written out.
2697 * Buffers need to be attached to the page at this point, otherwise
2698 * the handling of potential IO errors during writeout would be hard
2699 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2700 */
03158cd7
NP
2701 attach_nobh_buffers(page, head);
2702 page_zero_new_buffers(page, from, to);
a4b0672d 2703
03158cd7
NP
2704out_release:
2705 unlock_page(page);
09cbfeaf 2706 put_page(page);
03158cd7 2707 *pagep = NULL;
a4b0672d 2708
7bb46a67
NP
2709 return ret;
2710}
03158cd7 2711EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2712
03158cd7
NP
2713int nobh_write_end(struct file *file, struct address_space *mapping,
2714 loff_t pos, unsigned len, unsigned copied,
2715 struct page *page, void *fsdata)
1da177e4
LT
2716{
2717 struct inode *inode = page->mapping->host;
efdc3131 2718 struct buffer_head *head = fsdata;
03158cd7 2719 struct buffer_head *bh;
5b41e74a 2720 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2721
d4cf109f 2722 if (unlikely(copied < len) && head)
5b41e74a
DM
2723 attach_nobh_buffers(page, head);
2724 if (page_has_buffers(page))
2725 return generic_write_end(file, mapping, pos, len,
2726 copied, page, fsdata);
a4b0672d 2727
22c8ca78 2728 SetPageUptodate(page);
1da177e4 2729 set_page_dirty(page);
03158cd7
NP
2730 if (pos+copied > inode->i_size) {
2731 i_size_write(inode, pos+copied);
1da177e4
LT
2732 mark_inode_dirty(inode);
2733 }
03158cd7
NP
2734
2735 unlock_page(page);
09cbfeaf 2736 put_page(page);
03158cd7 2737
03158cd7
NP
2738 while (head) {
2739 bh = head;
2740 head = head->b_this_page;
2741 free_buffer_head(bh);
2742 }
2743
2744 return copied;
1da177e4 2745}
03158cd7 2746EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2747
2748/*
2749 * nobh_writepage() - based on block_full_write_page() except
2750 * that it tries to operate without attaching bufferheads to
2751 * the page.
2752 */
2753int nobh_writepage(struct page *page, get_block_t *get_block,
2754 struct writeback_control *wbc)
2755{
2756 struct inode * const inode = page->mapping->host;
2757 loff_t i_size = i_size_read(inode);
09cbfeaf 2758 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2759 unsigned offset;
1da177e4
LT
2760 int ret;
2761
2762 /* Is the page fully inside i_size? */
2763 if (page->index < end_index)
2764 goto out;
2765
2766 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2767 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2768 if (page->index >= end_index+1 || !offset) {
2769 /*
2770 * The page may have dirty, unmapped buffers. For example,
2771 * they may have been added in ext3_writepage(). Make them
2772 * freeable here, so the page does not leak.
2773 */
2774#if 0
2775 /* Not really sure about this - do we need this ? */
2776 if (page->mapping->a_ops->invalidatepage)
2777 page->mapping->a_ops->invalidatepage(page, offset);
2778#endif
2779 unlock_page(page);
2780 return 0; /* don't care */
2781 }
2782
2783 /*
2784 * The page straddles i_size. It must be zeroed out on each and every
2785 * writepage invocation because it may be mmapped. "A file is mapped
2786 * in multiples of the page size. For a file that is not a multiple of
2787 * the page size, the remaining memory is zeroed when mapped, and
2788 * writes to that region are not written out to the file."
2789 */
09cbfeaf 2790 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2791out:
2792 ret = mpage_writepage(page, get_block, wbc);
2793 if (ret == -EAGAIN)
35c80d5f
CM
2794 ret = __block_write_full_page(inode, page, get_block, wbc,
2795 end_buffer_async_write);
1da177e4
LT
2796 return ret;
2797}
2798EXPORT_SYMBOL(nobh_writepage);
2799
03158cd7
NP
2800int nobh_truncate_page(struct address_space *mapping,
2801 loff_t from, get_block_t *get_block)
1da177e4 2802{
09cbfeaf
KS
2803 pgoff_t index = from >> PAGE_SHIFT;
2804 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2805 unsigned blocksize;
2806 sector_t iblock;
2807 unsigned length, pos;
2808 struct inode *inode = mapping->host;
1da177e4 2809 struct page *page;
03158cd7
NP
2810 struct buffer_head map_bh;
2811 int err;
1da177e4 2812
93407472 2813 blocksize = i_blocksize(inode);
03158cd7
NP
2814 length = offset & (blocksize - 1);
2815
2816 /* Block boundary? Nothing to do */
2817 if (!length)
2818 return 0;
2819
2820 length = blocksize - length;
09cbfeaf 2821 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2822
1da177e4 2823 page = grab_cache_page(mapping, index);
03158cd7 2824 err = -ENOMEM;
1da177e4
LT
2825 if (!page)
2826 goto out;
2827
03158cd7
NP
2828 if (page_has_buffers(page)) {
2829has_buffers:
2830 unlock_page(page);
09cbfeaf 2831 put_page(page);
03158cd7
NP
2832 return block_truncate_page(mapping, from, get_block);
2833 }
2834
2835 /* Find the buffer that contains "offset" */
2836 pos = blocksize;
2837 while (offset >= pos) {
2838 iblock++;
2839 pos += blocksize;
2840 }
2841
460bcf57
TT
2842 map_bh.b_size = blocksize;
2843 map_bh.b_state = 0;
03158cd7
NP
2844 err = get_block(inode, iblock, &map_bh, 0);
2845 if (err)
2846 goto unlock;
2847 /* unmapped? It's a hole - nothing to do */
2848 if (!buffer_mapped(&map_bh))
2849 goto unlock;
2850
2851 /* Ok, it's mapped. Make sure it's up-to-date */
2852 if (!PageUptodate(page)) {
2853 err = mapping->a_ops->readpage(NULL, page);
2854 if (err) {
09cbfeaf 2855 put_page(page);
03158cd7
NP
2856 goto out;
2857 }
2858 lock_page(page);
2859 if (!PageUptodate(page)) {
2860 err = -EIO;
2861 goto unlock;
2862 }
2863 if (page_has_buffers(page))
2864 goto has_buffers;
1da177e4 2865 }
eebd2aa3 2866 zero_user(page, offset, length);
03158cd7
NP
2867 set_page_dirty(page);
2868 err = 0;
2869
2870unlock:
1da177e4 2871 unlock_page(page);
09cbfeaf 2872 put_page(page);
1da177e4 2873out:
03158cd7 2874 return err;
1da177e4
LT
2875}
2876EXPORT_SYMBOL(nobh_truncate_page);
2877
2878int block_truncate_page(struct address_space *mapping,
2879 loff_t from, get_block_t *get_block)
2880{
09cbfeaf
KS
2881 pgoff_t index = from >> PAGE_SHIFT;
2882 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2883 unsigned blocksize;
54b21a79 2884 sector_t iblock;
1da177e4
LT
2885 unsigned length, pos;
2886 struct inode *inode = mapping->host;
2887 struct page *page;
2888 struct buffer_head *bh;
1da177e4
LT
2889 int err;
2890
93407472 2891 blocksize = i_blocksize(inode);
1da177e4
LT
2892 length = offset & (blocksize - 1);
2893
2894 /* Block boundary? Nothing to do */
2895 if (!length)
2896 return 0;
2897
2898 length = blocksize - length;
09cbfeaf 2899 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2900
2901 page = grab_cache_page(mapping, index);
2902 err = -ENOMEM;
2903 if (!page)
2904 goto out;
2905
2906 if (!page_has_buffers(page))
2907 create_empty_buffers(page, blocksize, 0);
2908
2909 /* Find the buffer that contains "offset" */
2910 bh = page_buffers(page);
2911 pos = blocksize;
2912 while (offset >= pos) {
2913 bh = bh->b_this_page;
2914 iblock++;
2915 pos += blocksize;
2916 }
2917
2918 err = 0;
2919 if (!buffer_mapped(bh)) {
b0cf2321 2920 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2921 err = get_block(inode, iblock, bh, 0);
2922 if (err)
2923 goto unlock;
2924 /* unmapped? It's a hole - nothing to do */
2925 if (!buffer_mapped(bh))
2926 goto unlock;
2927 }
2928
2929 /* Ok, it's mapped. Make sure it's up-to-date */
2930 if (PageUptodate(page))
2931 set_buffer_uptodate(bh);
2932
33a266dd 2933 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2934 err = -EIO;
dfec8a14 2935 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2936 wait_on_buffer(bh);
2937 /* Uhhuh. Read error. Complain and punt. */
2938 if (!buffer_uptodate(bh))
2939 goto unlock;
2940 }
2941
eebd2aa3 2942 zero_user(page, offset, length);
1da177e4
LT
2943 mark_buffer_dirty(bh);
2944 err = 0;
2945
2946unlock:
2947 unlock_page(page);
09cbfeaf 2948 put_page(page);
1da177e4
LT
2949out:
2950 return err;
2951}
1fe72eaa 2952EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2953
2954/*
2955 * The generic ->writepage function for buffer-backed address_spaces
2956 */
1b938c08
MW
2957int block_write_full_page(struct page *page, get_block_t *get_block,
2958 struct writeback_control *wbc)
1da177e4
LT
2959{
2960 struct inode * const inode = page->mapping->host;
2961 loff_t i_size = i_size_read(inode);
09cbfeaf 2962 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2963 unsigned offset;
1da177e4
LT
2964
2965 /* Is the page fully inside i_size? */
2966 if (page->index < end_index)
35c80d5f 2967 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2968 end_buffer_async_write);
1da177e4
LT
2969
2970 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2971 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2972 if (page->index >= end_index+1 || !offset) {
2973 /*
2974 * The page may have dirty, unmapped buffers. For example,
2975 * they may have been added in ext3_writepage(). Make them
2976 * freeable here, so the page does not leak.
2977 */
09cbfeaf 2978 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
2979 unlock_page(page);
2980 return 0; /* don't care */
2981 }
2982
2983 /*
2984 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2985 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2986 * in multiples of the page size. For a file that is not a multiple of
2987 * the page size, the remaining memory is zeroed when mapped, and
2988 * writes to that region are not written out to the file."
2989 */
09cbfeaf 2990 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
2991 return __block_write_full_page(inode, page, get_block, wbc,
2992 end_buffer_async_write);
35c80d5f 2993}
1fe72eaa 2994EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2995
1da177e4
LT
2996sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2997 get_block_t *get_block)
2998{
1da177e4 2999 struct inode *inode = mapping->host;
2a527d68
AP
3000 struct buffer_head tmp = {
3001 .b_size = i_blocksize(inode),
3002 };
3003
1da177e4
LT
3004 get_block(inode, block, &tmp, 0);
3005 return tmp.b_blocknr;
3006}
1fe72eaa 3007EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3008
4246a0b6 3009static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3010{
3011 struct buffer_head *bh = bio->bi_private;
3012
b7c44ed9 3013 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3014 set_bit(BH_Quiet, &bh->b_state);
3015
4e4cbee9 3016 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3017 bio_put(bio);
1da177e4
LT
3018}
3019
57302e0d
LT
3020/*
3021 * This allows us to do IO even on the odd last sectors
59d43914 3022 * of a device, even if the block size is some multiple
57302e0d
LT
3023 * of the physical sector size.
3024 *
3025 * We'll just truncate the bio to the size of the device,
3026 * and clear the end of the buffer head manually.
3027 *
3028 * Truly out-of-range accesses will turn into actual IO
3029 * errors, this only handles the "we need to be able to
3030 * do IO at the final sector" case.
3031 */
2a222ca9 3032void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3033{
3034 sector_t maxsector;
c45a8f2d 3035 struct bio_vec *bvec = bio_last_bvec_all(bio);
59d43914 3036 unsigned truncated_bytes;
67f2519f
GE
3037 struct hd_struct *part;
3038
3039 rcu_read_lock();
3040 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3041 if (part)
3042 maxsector = part_nr_sects_read(part);
3043 else
3044 maxsector = get_capacity(bio->bi_disk);
3045 rcu_read_unlock();
57302e0d 3046
57302e0d
LT
3047 if (!maxsector)
3048 return;
3049
3050 /*
3051 * If the *whole* IO is past the end of the device,
3052 * let it through, and the IO layer will turn it into
3053 * an EIO.
3054 */
4f024f37 3055 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3056 return;
3057
4f024f37 3058 maxsector -= bio->bi_iter.bi_sector;
59d43914 3059 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3060 return;
3061
59d43914
AM
3062 /* Uhhuh. We've got a bio that straddles the device size! */
3063 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d 3064
dce30ca9
CM
3065 /*
3066 * The bio contains more than one segment which spans EOD, just return
3067 * and let IO layer turn it into an EIO
3068 */
3069 if (truncated_bytes > bvec->bv_len)
3070 return;
3071
57302e0d 3072 /* Truncate the bio.. */
59d43914
AM
3073 bio->bi_iter.bi_size -= truncated_bytes;
3074 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3075
3076 /* ..and clear the end of the buffer for reads */
2a222ca9 3077 if (op == REQ_OP_READ) {
f70f4464
ML
3078 struct bio_vec bv;
3079
3080 mp_bvec_last_segment(bvec, &bv);
3081 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
59d43914 3082 truncated_bytes);
57302e0d
LT
3083 }
3084}
3085
2a222ca9 3086static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3087 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3088{
3089 struct bio *bio;
1da177e4
LT
3090
3091 BUG_ON(!buffer_locked(bh));
3092 BUG_ON(!buffer_mapped(bh));
3093 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3094 BUG_ON(buffer_delay(bh));
3095 BUG_ON(buffer_unwritten(bh));
1da177e4 3096
1da177e4 3097 /*
48fd4f93 3098 * Only clear out a write error when rewriting
1da177e4 3099 */
2a222ca9 3100 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3101 clear_buffer_write_io_error(bh);
3102
3103 /*
3104 * from here on down, it's all bio -- do the initial mapping,
3105 * submit_bio -> generic_make_request may further map this bio around
3106 */
3107 bio = bio_alloc(GFP_NOIO, 1);
3108
4f024f37 3109 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3110 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3111 bio->bi_write_hint = write_hint;
1da177e4 3112
6cf66b4c
KO
3113 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3114 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3115
3116 bio->bi_end_io = end_bio_bh_io_sync;
3117 bio->bi_private = bh;
3118
57302e0d 3119 /* Take care of bh's that straddle the end of the device */
2a222ca9 3120 guard_bio_eod(op, bio);
57302e0d 3121
877f962c 3122 if (buffer_meta(bh))
2a222ca9 3123 op_flags |= REQ_META;
877f962c 3124 if (buffer_prio(bh))
2a222ca9
MC
3125 op_flags |= REQ_PRIO;
3126 bio_set_op_attrs(bio, op, op_flags);
877f962c 3127
fd42df30
DZ
3128 if (wbc) {
3129 wbc_init_bio(wbc, bio);
34e51a5e 3130 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
3131 }
3132
4e49ea4a 3133 submit_bio(bio);
f6454b04 3134 return 0;
1da177e4 3135}
bafc0dba 3136
020c2833 3137int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3138{
8e8f9298 3139 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3140}
1fe72eaa 3141EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3142
3143/**
3144 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3145 * @op: whether to %READ or %WRITE
ef295ecf 3146 * @op_flags: req_flag_bits
1da177e4
LT
3147 * @nr: number of &struct buffer_heads in the array
3148 * @bhs: array of pointers to &struct buffer_head
3149 *
a7662236 3150 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3151 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3152 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3153 * %REQ_RAHEAD.
1da177e4
LT
3154 *
3155 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3156 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3157 * request, and any buffer that appears to be up-to-date when doing read
3158 * request. Further it marks as clean buffers that are processed for
3159 * writing (the buffer cache won't assume that they are actually clean
3160 * until the buffer gets unlocked).
1da177e4
LT
3161 *
3162 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3163 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3164 * any waiters.
3165 *
3166 * All of the buffers must be for the same device, and must also be a
3167 * multiple of the current approved size for the device.
3168 */
dfec8a14 3169void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3170{
3171 int i;
3172
3173 for (i = 0; i < nr; i++) {
3174 struct buffer_head *bh = bhs[i];
3175
9cb569d6 3176 if (!trylock_buffer(bh))
1da177e4 3177 continue;
dfec8a14 3178 if (op == WRITE) {
1da177e4 3179 if (test_clear_buffer_dirty(bh)) {
76c3073a 3180 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3181 get_bh(bh);
dfec8a14 3182 submit_bh(op, op_flags, bh);
1da177e4
LT
3183 continue;
3184 }
3185 } else {
1da177e4 3186 if (!buffer_uptodate(bh)) {
76c3073a 3187 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3188 get_bh(bh);
dfec8a14 3189 submit_bh(op, op_flags, bh);
1da177e4
LT
3190 continue;
3191 }
3192 }
3193 unlock_buffer(bh);
1da177e4
LT
3194 }
3195}
1fe72eaa 3196EXPORT_SYMBOL(ll_rw_block);
1da177e4 3197
2a222ca9 3198void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3199{
3200 lock_buffer(bh);
3201 if (!test_clear_buffer_dirty(bh)) {
3202 unlock_buffer(bh);
3203 return;
3204 }
3205 bh->b_end_io = end_buffer_write_sync;
3206 get_bh(bh);
2a222ca9 3207 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3208}
3209EXPORT_SYMBOL(write_dirty_buffer);
3210
1da177e4
LT
3211/*
3212 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3213 * and then start new I/O and then wait upon it. The caller must have a ref on
3214 * the buffer_head.
3215 */
2a222ca9 3216int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3217{
3218 int ret = 0;
3219
3220 WARN_ON(atomic_read(&bh->b_count) < 1);
3221 lock_buffer(bh);
3222 if (test_clear_buffer_dirty(bh)) {
3223 get_bh(bh);
3224 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3225 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3226 wait_on_buffer(bh);
1da177e4
LT
3227 if (!ret && !buffer_uptodate(bh))
3228 ret = -EIO;
3229 } else {
3230 unlock_buffer(bh);
3231 }
3232 return ret;
3233}
87e99511
CH
3234EXPORT_SYMBOL(__sync_dirty_buffer);
3235
3236int sync_dirty_buffer(struct buffer_head *bh)
3237{
70fd7614 3238 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3239}
1fe72eaa 3240EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3241
3242/*
3243 * try_to_free_buffers() checks if all the buffers on this particular page
3244 * are unused, and releases them if so.
3245 *
3246 * Exclusion against try_to_free_buffers may be obtained by either
3247 * locking the page or by holding its mapping's private_lock.
3248 *
3249 * If the page is dirty but all the buffers are clean then we need to
3250 * be sure to mark the page clean as well. This is because the page
3251 * may be against a block device, and a later reattachment of buffers
3252 * to a dirty page will set *all* buffers dirty. Which would corrupt
3253 * filesystem data on the same device.
3254 *
3255 * The same applies to regular filesystem pages: if all the buffers are
3256 * clean then we set the page clean and proceed. To do that, we require
3257 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3258 * private_lock.
3259 *
3260 * try_to_free_buffers() is non-blocking.
3261 */
3262static inline int buffer_busy(struct buffer_head *bh)
3263{
3264 return atomic_read(&bh->b_count) |
3265 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3266}
3267
3268static int
3269drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3270{
3271 struct buffer_head *head = page_buffers(page);
3272 struct buffer_head *bh;
3273
3274 bh = head;
3275 do {
1da177e4
LT
3276 if (buffer_busy(bh))
3277 goto failed;
3278 bh = bh->b_this_page;
3279 } while (bh != head);
3280
3281 do {
3282 struct buffer_head *next = bh->b_this_page;
3283
535ee2fb 3284 if (bh->b_assoc_map)
1da177e4
LT
3285 __remove_assoc_queue(bh);
3286 bh = next;
3287 } while (bh != head);
3288 *buffers_to_free = head;
3289 __clear_page_buffers(page);
3290 return 1;
3291failed:
3292 return 0;
3293}
3294
3295int try_to_free_buffers(struct page *page)
3296{
3297 struct address_space * const mapping = page->mapping;
3298 struct buffer_head *buffers_to_free = NULL;
3299 int ret = 0;
3300
3301 BUG_ON(!PageLocked(page));
ecdfc978 3302 if (PageWriteback(page))
1da177e4
LT
3303 return 0;
3304
3305 if (mapping == NULL) { /* can this still happen? */
3306 ret = drop_buffers(page, &buffers_to_free);
3307 goto out;
3308 }
3309
3310 spin_lock(&mapping->private_lock);
3311 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3312
3313 /*
3314 * If the filesystem writes its buffers by hand (eg ext3)
3315 * then we can have clean buffers against a dirty page. We
3316 * clean the page here; otherwise the VM will never notice
3317 * that the filesystem did any IO at all.
3318 *
3319 * Also, during truncate, discard_buffer will have marked all
3320 * the page's buffers clean. We discover that here and clean
3321 * the page also.
87df7241
NP
3322 *
3323 * private_lock must be held over this entire operation in order
3324 * to synchronise against __set_page_dirty_buffers and prevent the
3325 * dirty bit from being lost.
ecdfc978 3326 */
11f81bec
TH
3327 if (ret)
3328 cancel_dirty_page(page);
87df7241 3329 spin_unlock(&mapping->private_lock);
1da177e4
LT
3330out:
3331 if (buffers_to_free) {
3332 struct buffer_head *bh = buffers_to_free;
3333
3334 do {
3335 struct buffer_head *next = bh->b_this_page;
3336 free_buffer_head(bh);
3337 bh = next;
3338 } while (bh != buffers_to_free);
3339 }
3340 return ret;
3341}
3342EXPORT_SYMBOL(try_to_free_buffers);
3343
1da177e4
LT
3344/*
3345 * There are no bdflush tunables left. But distributions are
3346 * still running obsolete flush daemons, so we terminate them here.
3347 *
3348 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3349 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3350 */
bdc480e3 3351SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3352{
3353 static int msg_count;
3354
3355 if (!capable(CAP_SYS_ADMIN))
3356 return -EPERM;
3357
3358 if (msg_count < 5) {
3359 msg_count++;
3360 printk(KERN_INFO
3361 "warning: process `%s' used the obsolete bdflush"
3362 " system call\n", current->comm);
3363 printk(KERN_INFO "Fix your initscripts?\n");
3364 }
3365
3366 if (func == 1)
3367 do_exit(0);
3368 return 0;
3369}
3370
3371/*
3372 * Buffer-head allocation
3373 */
a0a9b043 3374static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3375
3376/*
3377 * Once the number of bh's in the machine exceeds this level, we start
3378 * stripping them in writeback.
3379 */
43be594a 3380static unsigned long max_buffer_heads;
1da177e4
LT
3381
3382int buffer_heads_over_limit;
3383
3384struct bh_accounting {
3385 int nr; /* Number of live bh's */
3386 int ratelimit; /* Limit cacheline bouncing */
3387};
3388
3389static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3390
3391static void recalc_bh_state(void)
3392{
3393 int i;
3394 int tot = 0;
3395
ee1be862 3396 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3397 return;
c7b92516 3398 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3399 for_each_online_cpu(i)
1da177e4
LT
3400 tot += per_cpu(bh_accounting, i).nr;
3401 buffer_heads_over_limit = (tot > max_buffer_heads);
3402}
c7b92516 3403
dd0fc66f 3404struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3405{
019b4d12 3406 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3407 if (ret) {
a35afb83 3408 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3409 preempt_disable();
3410 __this_cpu_inc(bh_accounting.nr);
1da177e4 3411 recalc_bh_state();
c7b92516 3412 preempt_enable();
1da177e4
LT
3413 }
3414 return ret;
3415}
3416EXPORT_SYMBOL(alloc_buffer_head);
3417
3418void free_buffer_head(struct buffer_head *bh)
3419{
3420 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3421 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3422 preempt_disable();
3423 __this_cpu_dec(bh_accounting.nr);
1da177e4 3424 recalc_bh_state();
c7b92516 3425 preempt_enable();
1da177e4
LT
3426}
3427EXPORT_SYMBOL(free_buffer_head);
3428
fc4d24c9 3429static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3430{
3431 int i;
3432 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3433
3434 for (i = 0; i < BH_LRU_SIZE; i++) {
3435 brelse(b->bhs[i]);
3436 b->bhs[i] = NULL;
3437 }
c7b92516 3438 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3439 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3440 return 0;
1da177e4 3441}
1da177e4 3442
389d1b08 3443/**
a6b91919 3444 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3445 * @bh: struct buffer_head
3446 *
3447 * Return true if the buffer is up-to-date and false,
3448 * with the buffer locked, if not.
3449 */
3450int bh_uptodate_or_lock(struct buffer_head *bh)
3451{
3452 if (!buffer_uptodate(bh)) {
3453 lock_buffer(bh);
3454 if (!buffer_uptodate(bh))
3455 return 0;
3456 unlock_buffer(bh);
3457 }
3458 return 1;
3459}
3460EXPORT_SYMBOL(bh_uptodate_or_lock);
3461
3462/**
a6b91919 3463 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3464 * @bh: struct buffer_head
3465 *
3466 * Returns zero on success and -EIO on error.
3467 */
3468int bh_submit_read(struct buffer_head *bh)
3469{
3470 BUG_ON(!buffer_locked(bh));
3471
3472 if (buffer_uptodate(bh)) {
3473 unlock_buffer(bh);
3474 return 0;
3475 }
3476
3477 get_bh(bh);
3478 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3479 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3480 wait_on_buffer(bh);
3481 if (buffer_uptodate(bh))
3482 return 0;
3483 return -EIO;
3484}
3485EXPORT_SYMBOL(bh_submit_read);
3486
1da177e4
LT
3487void __init buffer_init(void)
3488{
43be594a 3489 unsigned long nrpages;
fc4d24c9 3490 int ret;
1da177e4 3491
b98938c3
CL
3492 bh_cachep = kmem_cache_create("buffer_head",
3493 sizeof(struct buffer_head), 0,
3494 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3495 SLAB_MEM_SPREAD),
019b4d12 3496 NULL);
1da177e4
LT
3497
3498 /*
3499 * Limit the bh occupancy to 10% of ZONE_NORMAL
3500 */
3501 nrpages = (nr_free_buffer_pages() * 10) / 100;
3502 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3503 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3504 NULL, buffer_exit_cpu_dead);
3505 WARN_ON(ret < 0);
1da177e4 3506}