]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/buffer.c
direct-io: don't read inode->i_blkbits multiple times
[people/arne_f/kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
7eaceacc 57static int sleep_on_buffer(void *word)
1da177e4 58{
1da177e4
LT
59 io_schedule();
60 return 0;
61}
62
fc9b52cd 63void __lock_buffer(struct buffer_head *bh)
1da177e4 64{
7eaceacc 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
1da177e4
LT
66 TASK_UNINTERRUPTIBLE);
67}
68EXPORT_SYMBOL(__lock_buffer);
69
fc9b52cd 70void unlock_buffer(struct buffer_head *bh)
1da177e4 71{
51b07fc3 72 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
75}
1fe72eaa 76EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
77
78/*
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
82 */
83void __wait_on_buffer(struct buffer_head * bh)
84{
7eaceacc 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
1da177e4 86}
1fe72eaa 87EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
88
89static void
90__clear_page_buffers(struct page *page)
91{
92 ClearPagePrivate(page);
4c21e2f2 93 set_page_private(page, 0);
1da177e4
LT
94 page_cache_release(page);
95}
96
08bafc03
KM
97
98static int quiet_error(struct buffer_head *bh)
99{
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
103}
104
105
1da177e4
LT
106static void buffer_io_error(struct buffer_head *bh)
107{
108 char b[BDEVNAME_SIZE];
1da177e4
LT
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
112}
113
114/*
68671f35
DM
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
1da177e4 121 */
68671f35 122static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
123{
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
129 }
130 unlock_buffer(bh);
68671f35
DM
131}
132
133/*
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
136 */
137void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138{
139 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
140 put_bh(bh);
141}
1fe72eaa 142EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
143
144void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145{
146 char b[BDEVNAME_SIZE];
147
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
0edd55fa 151 if (!quiet_error(bh)) {
1da177e4
LT
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
156 }
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 put_bh(bh);
162}
1fe72eaa 163EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 164
1da177e4
LT
165/*
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
170 *
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
175 */
176static struct buffer_head *
385fd4c5 177__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
178{
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
187
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
192
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
97f76d3d
NK
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
1da177e4
LT
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
205 }
1da177e4
LT
206 bh = bh->b_this_page;
207 } while (bh != head);
208
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
213 */
214 if (all_mapped) {
72a2ebd8
TM
215 char b[BDEVNAME_SIZE];
216
1da177e4
LT
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
219 (unsigned long long)block,
220 (unsigned long long)bh->b_blocknr);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh->b_state, bh->b_size);
72a2ebd8
TM
223 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 1 << bd_inode->i_blkbits);
1da177e4
LT
225 }
226out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229out:
230 return ret;
231}
232
1da177e4 233/*
5b0830cb 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
235 */
236static void free_more_memory(void)
237{
19770b32 238 struct zone *zone;
0e88460d 239 int nid;
1da177e4 240
0e175a18 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
242 yield();
243
0e88460d 244 for_each_online_node(nid) {
19770b32
MG
245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 gfp_zone(GFP_NOFS), NULL,
247 &zone);
248 if (zone)
54a6eb5c 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 250 GFP_NOFS, NULL);
1da177e4
LT
251 }
252}
253
254/*
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
257 */
258static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259{
1da177e4 260 unsigned long flags;
a3972203 261 struct buffer_head *first;
1da177e4
LT
262 struct buffer_head *tmp;
263 struct page *page;
264 int page_uptodate = 1;
265
266 BUG_ON(!buffer_async_read(bh));
267
268 page = bh->b_page;
269 if (uptodate) {
270 set_buffer_uptodate(bh);
271 } else {
272 clear_buffer_uptodate(bh);
08bafc03 273 if (!quiet_error(bh))
1da177e4
LT
274 buffer_io_error(bh);
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
a3972203
NP
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
a3972203
NP
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
1da177e4
LT
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310still_busy:
a3972203
NP
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
1da177e4
LT
313 return;
314}
315
316/*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
35c80d5f 320void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
321{
322 char b[BDEVNAME_SIZE];
1da177e4 323 unsigned long flags;
a3972203 324 struct buffer_head *first;
1da177e4
LT
325 struct buffer_head *tmp;
326 struct page *page;
327
328 BUG_ON(!buffer_async_write(bh));
329
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
08bafc03 334 if (!quiet_error(bh)) {
1da177e4
LT
335 buffer_io_error(bh);
336 printk(KERN_WARNING "lost page write due to "
337 "I/O error on %s\n",
338 bdevname(bh->b_bdev, b));
339 }
340 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 341 set_buffer_write_io_error(bh);
1da177e4
LT
342 clear_buffer_uptodate(bh);
343 SetPageError(page);
344 }
345
a3972203
NP
346 first = page_buffers(page);
347 local_irq_save(flags);
348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349
1da177e4
LT
350 clear_buffer_async_write(bh);
351 unlock_buffer(bh);
352 tmp = bh->b_this_page;
353 while (tmp != bh) {
354 if (buffer_async_write(tmp)) {
355 BUG_ON(!buffer_locked(tmp));
356 goto still_busy;
357 }
358 tmp = tmp->b_this_page;
359 }
a3972203
NP
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
1da177e4
LT
362 end_page_writeback(page);
363 return;
364
365still_busy:
a3972203
NP
366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 local_irq_restore(flags);
1da177e4
LT
368 return;
369}
1fe72eaa 370EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
371
372/*
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
380 *
381 * The page comes unlocked when it has no locked buffer_async buffers
382 * left.
383 *
384 * PageLocked prevents anyone starting new async I/O reads any of
385 * the buffers.
386 *
387 * PageWriteback is used to prevent simultaneous writeout of the same
388 * page.
389 *
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
392 */
393static void mark_buffer_async_read(struct buffer_head *bh)
394{
395 bh->b_end_io = end_buffer_async_read;
396 set_buffer_async_read(bh);
397}
398
1fe72eaa
HS
399static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 bh_end_io_t *handler)
1da177e4 401{
35c80d5f 402 bh->b_end_io = handler;
1da177e4
LT
403 set_buffer_async_write(bh);
404}
35c80d5f
CM
405
406void mark_buffer_async_write(struct buffer_head *bh)
407{
408 mark_buffer_async_write_endio(bh, end_buffer_async_write);
409}
1da177e4
LT
410EXPORT_SYMBOL(mark_buffer_async_write);
411
412
413/*
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
419 *
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
423 *
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
433 * ->private_lock.
434 *
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
437 *
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
442 *
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
446 *
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450 * queued up.
451 *
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
459 * b_inode back.
460 */
461
462/*
463 * The buffer's backing address_space's private_lock must be held
464 */
dbacefc9 465static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
466{
467 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
468 WARN_ON(!bh->b_assoc_map);
469 if (buffer_write_io_error(bh))
470 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 bh->b_assoc_map = NULL;
1da177e4
LT
472}
473
474int inode_has_buffers(struct inode *inode)
475{
476 return !list_empty(&inode->i_data.private_list);
477}
478
479/*
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
483 *
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
488 */
489static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490{
491 struct buffer_head *bh;
492 struct list_head *p;
493 int err = 0;
494
495 spin_lock(lock);
496repeat:
497 list_for_each_prev(p, list) {
498 bh = BH_ENTRY(p);
499 if (buffer_locked(bh)) {
500 get_bh(bh);
501 spin_unlock(lock);
502 wait_on_buffer(bh);
503 if (!buffer_uptodate(bh))
504 err = -EIO;
505 brelse(bh);
506 spin_lock(lock);
507 goto repeat;
508 }
509 }
510 spin_unlock(lock);
511 return err;
512}
513
01a05b33 514static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 515{
c2d75438 516 char b[BDEVNAME_SIZE];
01a05b33
AV
517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 printk(KERN_WARNING "Emergency Thaw on %s\n",
519 bdevname(sb->s_bdev, b));
520}
c2d75438 521
01a05b33
AV
522static void do_thaw_all(struct work_struct *work)
523{
524 iterate_supers(do_thaw_one, NULL);
053c525f 525 kfree(work);
c2d75438
ES
526 printk(KERN_WARNING "Emergency Thaw complete\n");
527}
528
529/**
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 *
532 * Used for emergency unfreeze of all filesystems via SysRq
533 */
534void emergency_thaw_all(void)
535{
053c525f
JA
536 struct work_struct *work;
537
538 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 if (work) {
540 INIT_WORK(work, do_thaw_all);
541 schedule_work(work);
542 }
c2d75438
ES
543}
544
1da177e4 545/**
78a4a50a 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 547 * @mapping: the mapping which wants those buffers written
1da177e4
LT
548 *
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
551 *
67be2dd1
MW
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
1da177e4
LT
555 */
556int sync_mapping_buffers(struct address_space *mapping)
557{
558 struct address_space *buffer_mapping = mapping->assoc_mapping;
559
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
562
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
565}
566EXPORT_SYMBOL(sync_mapping_buffers);
567
568/*
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 */
574void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
576{
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(WRITE, 1, &bh);
581 put_bh(bh);
582 }
583}
584
585void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586{
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
589
590 mark_buffer_dirty(bh);
591 if (!mapping->assoc_mapping) {
592 mapping->assoc_mapping = buffer_mapping;
593 } else {
e827f923 594 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 595 }
535ee2fb 596 if (!bh->b_assoc_map) {
1da177e4
LT
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
58ff407b 600 bh->b_assoc_map = mapping;
1da177e4
LT
601 spin_unlock(&buffer_mapping->private_lock);
602 }
603}
604EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
787d2214
NP
606/*
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608 * dirty.
609 *
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
612 */
a8e7d49a 613static void __set_page_dirty(struct page *page,
787d2214
NP
614 struct address_space *mapping, int warn)
615{
19fd6231 616 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
617 if (page->mapping) { /* Race with truncate? */
618 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 619 account_page_dirtied(page, mapping);
787d2214
NP
620 radix_tree_tag_set(&mapping->page_tree,
621 page_index(page), PAGECACHE_TAG_DIRTY);
622 }
19fd6231 623 spin_unlock_irq(&mapping->tree_lock);
787d2214 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
625}
626
1da177e4
LT
627/*
628 * Add a page to the dirty page list.
629 *
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
632 *
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
636 * dirty.
637 *
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
644 *
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
648 *
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
651 */
652int __set_page_dirty_buffers(struct page *page)
653{
a8e7d49a 654 int newly_dirty;
787d2214 655 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
656
657 if (unlikely(!mapping))
658 return !TestSetPageDirty(page);
1da177e4
LT
659
660 spin_lock(&mapping->private_lock);
661 if (page_has_buffers(page)) {
662 struct buffer_head *head = page_buffers(page);
663 struct buffer_head *bh = head;
664
665 do {
666 set_buffer_dirty(bh);
667 bh = bh->b_this_page;
668 } while (bh != head);
669 }
a8e7d49a 670 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
671 spin_unlock(&mapping->private_lock);
672
a8e7d49a
LT
673 if (newly_dirty)
674 __set_page_dirty(page, mapping, 1);
675 return newly_dirty;
1da177e4
LT
676}
677EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679/*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699{
700 struct buffer_head *bh;
701 struct list_head tmp;
7eaceacc 702 struct address_space *mapping;
1da177e4 703 int err = 0, err2;
4ee2491e 704 struct blk_plug plug;
1da177e4
LT
705
706 INIT_LIST_HEAD(&tmp);
4ee2491e 707 blk_start_plug(&plug);
1da177e4
LT
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
535ee2fb 712 mapping = bh->b_assoc_map;
58ff407b 713 __remove_assoc_queue(bh);
535ee2fb
JK
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
1da177e4
LT
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 719 bh->b_assoc_map = mapping;
1da177e4
LT
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
9cb569d6
CH
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
1da177e4 729 */
721a9602 730 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
1da177e4
LT
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
4ee2491e
JA
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
1da177e4
LT
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
1da177e4 750 get_bh(bh);
535ee2fb
JK
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
e3892296 758 &mapping->private_list);
535ee2fb
JK
759 bh->b_assoc_map = mapping;
760 }
1da177e4
LT
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775}
776
777/*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786void invalidate_inode_buffers(struct inode *inode)
787{
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->assoc_mapping;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798}
52b19ac9 799EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
800
801/*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807int remove_inode_buffers(struct inode *inode)
808{
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->assoc_mapping;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828}
829
830/*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 int retry)
841{
842 struct buffer_head *bh, *head;
843 long offset;
844
845try_again:
846 head = NULL;
847 offset = PAGE_SIZE;
848 while ((offset -= size) >= 0) {
849 bh = alloc_buffer_head(GFP_NOFS);
850 if (!bh)
851 goto no_grow;
852
853 bh->b_bdev = NULL;
854 bh->b_this_page = head;
855 bh->b_blocknr = -1;
856 head = bh;
857
858 bh->b_state = 0;
859 atomic_set(&bh->b_count, 0);
860 bh->b_size = size;
861
862 /* Link the buffer to its page */
863 set_bh_page(bh, page, offset);
864
01ffe339 865 init_buffer(bh, NULL, NULL);
1da177e4
LT
866 }
867 return head;
868/*
869 * In case anything failed, we just free everything we got.
870 */
871no_grow:
872 if (head) {
873 do {
874 bh = head;
875 head = head->b_this_page;
876 free_buffer_head(bh);
877 } while (head);
878 }
879
880 /*
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
885 */
886 if (!retry)
887 return NULL;
888
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
894 */
895 free_more_memory();
896 goto try_again;
897}
898EXPORT_SYMBOL_GPL(alloc_page_buffers);
899
900static inline void
901link_dev_buffers(struct page *page, struct buffer_head *head)
902{
903 struct buffer_head *bh, *tail;
904
905 bh = head;
906 do {
907 tail = bh;
908 bh = bh->b_this_page;
909 } while (bh);
910 tail->b_this_page = head;
911 attach_page_buffers(page, head);
912}
913
914/*
915 * Initialise the state of a blockdev page's buffers.
916 */
676ce6d5 917static sector_t
1da177e4
LT
918init_page_buffers(struct page *page, struct block_device *bdev,
919 sector_t block, int size)
920{
921 struct buffer_head *head = page_buffers(page);
922 struct buffer_head *bh = head;
923 int uptodate = PageUptodate(page);
080399aa 924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
1da177e4
LT
925
926 do {
927 if (!buffer_mapped(bh)) {
928 init_buffer(bh, NULL, NULL);
929 bh->b_bdev = bdev;
930 bh->b_blocknr = block;
931 if (uptodate)
932 set_buffer_uptodate(bh);
080399aa
JM
933 if (block < end_block)
934 set_buffer_mapped(bh);
1da177e4
LT
935 }
936 block++;
937 bh = bh->b_this_page;
938 } while (bh != head);
676ce6d5
HD
939
940 /*
941 * Caller needs to validate requested block against end of device.
942 */
943 return end_block;
1da177e4
LT
944}
945
946/*
947 * Create the page-cache page that contains the requested block.
948 *
676ce6d5 949 * This is used purely for blockdev mappings.
1da177e4 950 */
676ce6d5 951static int
1da177e4 952grow_dev_page(struct block_device *bdev, sector_t block,
676ce6d5 953 pgoff_t index, int size, int sizebits)
1da177e4
LT
954{
955 struct inode *inode = bdev->bd_inode;
956 struct page *page;
957 struct buffer_head *bh;
676ce6d5
HD
958 sector_t end_block;
959 int ret = 0; /* Will call free_more_memory() */
1da177e4 960
ea125892 961 page = find_or_create_page(inode->i_mapping, index,
769848c0 962 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4 963 if (!page)
676ce6d5 964 return ret;
1da177e4 965
e827f923 966 BUG_ON(!PageLocked(page));
1da177e4
LT
967
968 if (page_has_buffers(page)) {
969 bh = page_buffers(page);
970 if (bh->b_size == size) {
676ce6d5
HD
971 end_block = init_page_buffers(page, bdev,
972 index << sizebits, size);
973 goto done;
1da177e4
LT
974 }
975 if (!try_to_free_buffers(page))
976 goto failed;
977 }
978
979 /*
980 * Allocate some buffers for this page
981 */
982 bh = alloc_page_buffers(page, size, 0);
983 if (!bh)
984 goto failed;
985
986 /*
987 * Link the page to the buffers and initialise them. Take the
988 * lock to be atomic wrt __find_get_block(), which does not
989 * run under the page lock.
990 */
991 spin_lock(&inode->i_mapping->private_lock);
992 link_dev_buffers(page, bh);
676ce6d5 993 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1da177e4 994 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
995done:
996 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 997failed:
1da177e4
LT
998 unlock_page(page);
999 page_cache_release(page);
676ce6d5 1000 return ret;
1da177e4
LT
1001}
1002
1003/*
1004 * Create buffers for the specified block device block's page. If
1005 * that page was dirty, the buffers are set dirty also.
1da177e4 1006 */
858119e1 1007static int
1da177e4
LT
1008grow_buffers(struct block_device *bdev, sector_t block, int size)
1009{
1da177e4
LT
1010 pgoff_t index;
1011 int sizebits;
1012
1013 sizebits = -1;
1014 do {
1015 sizebits++;
1016 } while ((size << sizebits) < PAGE_SIZE);
1017
1018 index = block >> sizebits;
1da177e4 1019
e5657933
AM
1020 /*
1021 * Check for a block which wants to lie outside our maximum possible
1022 * pagecache index. (this comparison is done using sector_t types).
1023 */
1024 if (unlikely(index != block >> sizebits)) {
1025 char b[BDEVNAME_SIZE];
1026
1027 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1028 "device %s\n",
8e24eea7 1029 __func__, (unsigned long long)block,
e5657933
AM
1030 bdevname(bdev, b));
1031 return -EIO;
1032 }
676ce6d5 1033
1da177e4 1034 /* Create a page with the proper size buffers.. */
676ce6d5 1035 return grow_dev_page(bdev, block, index, size, sizebits);
1da177e4
LT
1036}
1037
75c96f85 1038static struct buffer_head *
1da177e4
LT
1039__getblk_slow(struct block_device *bdev, sector_t block, int size)
1040{
1041 /* Size must be multiple of hard sectorsize */
e1defc4f 1042 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1043 (size < 512 || size > PAGE_SIZE))) {
1044 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1045 size);
e1defc4f
MP
1046 printk(KERN_ERR "logical block size: %d\n",
1047 bdev_logical_block_size(bdev));
1da177e4
LT
1048
1049 dump_stack();
1050 return NULL;
1051 }
1052
676ce6d5
HD
1053 for (;;) {
1054 struct buffer_head *bh;
1055 int ret;
1da177e4
LT
1056
1057 bh = __find_get_block(bdev, block, size);
1058 if (bh)
1059 return bh;
676ce6d5
HD
1060
1061 ret = grow_buffers(bdev, block, size);
1062 if (ret < 0)
1063 return NULL;
1064 if (ret == 0)
1065 free_more_memory();
1da177e4
LT
1066 }
1067}
1068
1069/*
1070 * The relationship between dirty buffers and dirty pages:
1071 *
1072 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1073 * the page is tagged dirty in its radix tree.
1074 *
1075 * At all times, the dirtiness of the buffers represents the dirtiness of
1076 * subsections of the page. If the page has buffers, the page dirty bit is
1077 * merely a hint about the true dirty state.
1078 *
1079 * When a page is set dirty in its entirety, all its buffers are marked dirty
1080 * (if the page has buffers).
1081 *
1082 * When a buffer is marked dirty, its page is dirtied, but the page's other
1083 * buffers are not.
1084 *
1085 * Also. When blockdev buffers are explicitly read with bread(), they
1086 * individually become uptodate. But their backing page remains not
1087 * uptodate - even if all of its buffers are uptodate. A subsequent
1088 * block_read_full_page() against that page will discover all the uptodate
1089 * buffers, will set the page uptodate and will perform no I/O.
1090 */
1091
1092/**
1093 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1094 * @bh: the buffer_head to mark dirty
1da177e4
LT
1095 *
1096 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1097 * backing page dirty, then tag the page as dirty in its address_space's radix
1098 * tree and then attach the address_space's inode to its superblock's dirty
1099 * inode list.
1100 *
1101 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1102 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1103 */
fc9b52cd 1104void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1105{
787d2214 1106 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1107
1108 /*
1109 * Very *carefully* optimize the it-is-already-dirty case.
1110 *
1111 * Don't let the final "is it dirty" escape to before we
1112 * perhaps modified the buffer.
1113 */
1114 if (buffer_dirty(bh)) {
1115 smp_mb();
1116 if (buffer_dirty(bh))
1117 return;
1118 }
1119
a8e7d49a
LT
1120 if (!test_set_buffer_dirty(bh)) {
1121 struct page *page = bh->b_page;
8e9d78ed
LT
1122 if (!TestSetPageDirty(page)) {
1123 struct address_space *mapping = page_mapping(page);
1124 if (mapping)
1125 __set_page_dirty(page, mapping, 0);
1126 }
a8e7d49a 1127 }
1da177e4 1128}
1fe72eaa 1129EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1130
1131/*
1132 * Decrement a buffer_head's reference count. If all buffers against a page
1133 * have zero reference count, are clean and unlocked, and if the page is clean
1134 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136 * a page but it ends up not being freed, and buffers may later be reattached).
1137 */
1138void __brelse(struct buffer_head * buf)
1139{
1140 if (atomic_read(&buf->b_count)) {
1141 put_bh(buf);
1142 return;
1143 }
5c752ad9 1144 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1145}
1fe72eaa 1146EXPORT_SYMBOL(__brelse);
1da177e4
LT
1147
1148/*
1149 * bforget() is like brelse(), except it discards any
1150 * potentially dirty data.
1151 */
1152void __bforget(struct buffer_head *bh)
1153{
1154 clear_buffer_dirty(bh);
535ee2fb 1155 if (bh->b_assoc_map) {
1da177e4
LT
1156 struct address_space *buffer_mapping = bh->b_page->mapping;
1157
1158 spin_lock(&buffer_mapping->private_lock);
1159 list_del_init(&bh->b_assoc_buffers);
58ff407b 1160 bh->b_assoc_map = NULL;
1da177e4
LT
1161 spin_unlock(&buffer_mapping->private_lock);
1162 }
1163 __brelse(bh);
1164}
1fe72eaa 1165EXPORT_SYMBOL(__bforget);
1da177e4
LT
1166
1167static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168{
1169 lock_buffer(bh);
1170 if (buffer_uptodate(bh)) {
1171 unlock_buffer(bh);
1172 return bh;
1173 } else {
1174 get_bh(bh);
1175 bh->b_end_io = end_buffer_read_sync;
1176 submit_bh(READ, bh);
1177 wait_on_buffer(bh);
1178 if (buffer_uptodate(bh))
1179 return bh;
1180 }
1181 brelse(bh);
1182 return NULL;
1183}
1184
1185/*
1186 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1187 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1188 * refcount elevated by one when they're in an LRU. A buffer can only appear
1189 * once in a particular CPU's LRU. A single buffer can be present in multiple
1190 * CPU's LRUs at the same time.
1191 *
1192 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193 * sb_find_get_block().
1194 *
1195 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1196 * a local interrupt disable for that.
1197 */
1198
1199#define BH_LRU_SIZE 8
1200
1201struct bh_lru {
1202 struct buffer_head *bhs[BH_LRU_SIZE];
1203};
1204
1205static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206
1207#ifdef CONFIG_SMP
1208#define bh_lru_lock() local_irq_disable()
1209#define bh_lru_unlock() local_irq_enable()
1210#else
1211#define bh_lru_lock() preempt_disable()
1212#define bh_lru_unlock() preempt_enable()
1213#endif
1214
1215static inline void check_irqs_on(void)
1216{
1217#ifdef irqs_disabled
1218 BUG_ON(irqs_disabled());
1219#endif
1220}
1221
1222/*
1223 * The LRU management algorithm is dopey-but-simple. Sorry.
1224 */
1225static void bh_lru_install(struct buffer_head *bh)
1226{
1227 struct buffer_head *evictee = NULL;
1da177e4
LT
1228
1229 check_irqs_on();
1230 bh_lru_lock();
c7b92516 1231 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1232 struct buffer_head *bhs[BH_LRU_SIZE];
1233 int in;
1234 int out = 0;
1235
1236 get_bh(bh);
1237 bhs[out++] = bh;
1238 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1239 struct buffer_head *bh2 =
1240 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1241
1242 if (bh2 == bh) {
1243 __brelse(bh2);
1244 } else {
1245 if (out >= BH_LRU_SIZE) {
1246 BUG_ON(evictee != NULL);
1247 evictee = bh2;
1248 } else {
1249 bhs[out++] = bh2;
1250 }
1251 }
1252 }
1253 while (out < BH_LRU_SIZE)
1254 bhs[out++] = NULL;
c7b92516 1255 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1256 }
1257 bh_lru_unlock();
1258
1259 if (evictee)
1260 __brelse(evictee);
1261}
1262
1263/*
1264 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1265 */
858119e1 1266static struct buffer_head *
3991d3bd 1267lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1268{
1269 struct buffer_head *ret = NULL;
3991d3bd 1270 unsigned int i;
1da177e4
LT
1271
1272 check_irqs_on();
1273 bh_lru_lock();
1da177e4 1274 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1275 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1276
1277 if (bh && bh->b_bdev == bdev &&
1278 bh->b_blocknr == block && bh->b_size == size) {
1279 if (i) {
1280 while (i) {
c7b92516
CL
1281 __this_cpu_write(bh_lrus.bhs[i],
1282 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1283 i--;
1284 }
c7b92516 1285 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1286 }
1287 get_bh(bh);
1288 ret = bh;
1289 break;
1290 }
1291 }
1292 bh_lru_unlock();
1293 return ret;
1294}
1295
1296/*
1297 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1298 * it in the LRU and mark it as accessed. If it is not present then return
1299 * NULL
1300 */
1301struct buffer_head *
3991d3bd 1302__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1303{
1304 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305
1306 if (bh == NULL) {
385fd4c5 1307 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1308 if (bh)
1309 bh_lru_install(bh);
1310 }
1311 if (bh)
1312 touch_buffer(bh);
1313 return bh;
1314}
1315EXPORT_SYMBOL(__find_get_block);
1316
1317/*
1318 * __getblk will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1321 *
1da177e4
LT
1322 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1323 * attempt is failing. FIXME, perhaps?
1324 */
1325struct buffer_head *
3991d3bd 1326__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1327{
1328 struct buffer_head *bh = __find_get_block(bdev, block, size);
1329
1330 might_sleep();
1331 if (bh == NULL)
1332 bh = __getblk_slow(bdev, block, size);
1333 return bh;
1334}
1335EXPORT_SYMBOL(__getblk);
1336
1337/*
1338 * Do async read-ahead on a buffer..
1339 */
3991d3bd 1340void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1341{
1342 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1343 if (likely(bh)) {
1344 ll_rw_block(READA, 1, &bh);
1345 brelse(bh);
1346 }
1da177e4
LT
1347}
1348EXPORT_SYMBOL(__breadahead);
1349
1350/**
1351 * __bread() - reads a specified block and returns the bh
67be2dd1 1352 * @bdev: the block_device to read from
1da177e4
LT
1353 * @block: number of block
1354 * @size: size (in bytes) to read
1355 *
1356 * Reads a specified block, and returns buffer head that contains it.
1357 * It returns NULL if the block was unreadable.
1358 */
1359struct buffer_head *
3991d3bd 1360__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1361{
1362 struct buffer_head *bh = __getblk(bdev, block, size);
1363
a3e713b5 1364 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1365 bh = __bread_slow(bh);
1366 return bh;
1367}
1368EXPORT_SYMBOL(__bread);
1369
1370/*
1371 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1372 * This doesn't race because it runs in each cpu either in irq
1373 * or with preempt disabled.
1374 */
1375static void invalidate_bh_lru(void *arg)
1376{
1377 struct bh_lru *b = &get_cpu_var(bh_lrus);
1378 int i;
1379
1380 for (i = 0; i < BH_LRU_SIZE; i++) {
1381 brelse(b->bhs[i]);
1382 b->bhs[i] = NULL;
1383 }
1384 put_cpu_var(bh_lrus);
1385}
42be35d0
GBY
1386
1387static bool has_bh_in_lru(int cpu, void *dummy)
1388{
1389 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1390 int i;
1da177e4 1391
42be35d0
GBY
1392 for (i = 0; i < BH_LRU_SIZE; i++) {
1393 if (b->bhs[i])
1394 return 1;
1395 }
1396
1397 return 0;
1398}
1399
f9a14399 1400void invalidate_bh_lrus(void)
1da177e4 1401{
42be35d0 1402 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1403}
9db5579b 1404EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1405
1406void set_bh_page(struct buffer_head *bh,
1407 struct page *page, unsigned long offset)
1408{
1409 bh->b_page = page;
e827f923 1410 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1411 if (PageHighMem(page))
1412 /*
1413 * This catches illegal uses and preserves the offset:
1414 */
1415 bh->b_data = (char *)(0 + offset);
1416 else
1417 bh->b_data = page_address(page) + offset;
1418}
1419EXPORT_SYMBOL(set_bh_page);
1420
1421/*
1422 * Called when truncating a buffer on a page completely.
1423 */
858119e1 1424static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1425{
1426 lock_buffer(bh);
1427 clear_buffer_dirty(bh);
1428 bh->b_bdev = NULL;
1429 clear_buffer_mapped(bh);
1430 clear_buffer_req(bh);
1431 clear_buffer_new(bh);
1432 clear_buffer_delay(bh);
33a266dd 1433 clear_buffer_unwritten(bh);
1da177e4
LT
1434 unlock_buffer(bh);
1435}
1436
1da177e4 1437/**
814e1d25 1438 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1439 *
1440 * @page: the page which is affected
1441 * @offset: the index of the truncation point
1442 *
1443 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1444 * invalidated by a truncate operation.
1da177e4
LT
1445 *
1446 * block_invalidatepage() does not have to release all buffers, but it must
1447 * ensure that no dirty buffer is left outside @offset and that no I/O
1448 * is underway against any of the blocks which are outside the truncation
1449 * point. Because the caller is about to free (and possibly reuse) those
1450 * blocks on-disk.
1451 */
2ff28e22 1452void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1453{
1454 struct buffer_head *head, *bh, *next;
1455 unsigned int curr_off = 0;
1da177e4
LT
1456
1457 BUG_ON(!PageLocked(page));
1458 if (!page_has_buffers(page))
1459 goto out;
1460
1461 head = page_buffers(page);
1462 bh = head;
1463 do {
1464 unsigned int next_off = curr_off + bh->b_size;
1465 next = bh->b_this_page;
1466
1467 /*
1468 * is this block fully invalidated?
1469 */
1470 if (offset <= curr_off)
1471 discard_buffer(bh);
1472 curr_off = next_off;
1473 bh = next;
1474 } while (bh != head);
1475
1476 /*
1477 * We release buffers only if the entire page is being invalidated.
1478 * The get_block cached value has been unconditionally invalidated,
1479 * so real IO is not possible anymore.
1480 */
1481 if (offset == 0)
2ff28e22 1482 try_to_release_page(page, 0);
1da177e4 1483out:
2ff28e22 1484 return;
1da177e4
LT
1485}
1486EXPORT_SYMBOL(block_invalidatepage);
1487
1488/*
1489 * We attach and possibly dirty the buffers atomically wrt
1490 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1491 * is already excluded via the page lock.
1492 */
1493void create_empty_buffers(struct page *page,
1494 unsigned long blocksize, unsigned long b_state)
1495{
1496 struct buffer_head *bh, *head, *tail;
1497
1498 head = alloc_page_buffers(page, blocksize, 1);
1499 bh = head;
1500 do {
1501 bh->b_state |= b_state;
1502 tail = bh;
1503 bh = bh->b_this_page;
1504 } while (bh);
1505 tail->b_this_page = head;
1506
1507 spin_lock(&page->mapping->private_lock);
1508 if (PageUptodate(page) || PageDirty(page)) {
1509 bh = head;
1510 do {
1511 if (PageDirty(page))
1512 set_buffer_dirty(bh);
1513 if (PageUptodate(page))
1514 set_buffer_uptodate(bh);
1515 bh = bh->b_this_page;
1516 } while (bh != head);
1517 }
1518 attach_page_buffers(page, head);
1519 spin_unlock(&page->mapping->private_lock);
1520}
1521EXPORT_SYMBOL(create_empty_buffers);
1522
1523/*
1524 * We are taking a block for data and we don't want any output from any
1525 * buffer-cache aliases starting from return from that function and
1526 * until the moment when something will explicitly mark the buffer
1527 * dirty (hopefully that will not happen until we will free that block ;-)
1528 * We don't even need to mark it not-uptodate - nobody can expect
1529 * anything from a newly allocated buffer anyway. We used to used
1530 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1531 * don't want to mark the alias unmapped, for example - it would confuse
1532 * anyone who might pick it with bread() afterwards...
1533 *
1534 * Also.. Note that bforget() doesn't lock the buffer. So there can
1535 * be writeout I/O going on against recently-freed buffers. We don't
1536 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1537 * only if we really need to. That happens here.
1538 */
1539void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1540{
1541 struct buffer_head *old_bh;
1542
1543 might_sleep();
1544
385fd4c5 1545 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1546 if (old_bh) {
1547 clear_buffer_dirty(old_bh);
1548 wait_on_buffer(old_bh);
1549 clear_buffer_req(old_bh);
1550 __brelse(old_bh);
1551 }
1552}
1553EXPORT_SYMBOL(unmap_underlying_metadata);
1554
45bce8f3
LT
1555/*
1556 * Size is a power-of-two in the range 512..PAGE_SIZE,
1557 * and the case we care about most is PAGE_SIZE.
1558 *
1559 * So this *could* possibly be written with those
1560 * constraints in mind (relevant mostly if some
1561 * architecture has a slow bit-scan instruction)
1562 */
1563static inline int block_size_bits(unsigned int blocksize)
1564{
1565 return ilog2(blocksize);
1566}
1567
1568static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1569{
1570 BUG_ON(!PageLocked(page));
1571
1572 if (!page_has_buffers(page))
1573 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1574 return page_buffers(page);
1575}
1576
1da177e4
LT
1577/*
1578 * NOTE! All mapped/uptodate combinations are valid:
1579 *
1580 * Mapped Uptodate Meaning
1581 *
1582 * No No "unknown" - must do get_block()
1583 * No Yes "hole" - zero-filled
1584 * Yes No "allocated" - allocated on disk, not read in
1585 * Yes Yes "valid" - allocated and up-to-date in memory.
1586 *
1587 * "Dirty" is valid only with the last case (mapped+uptodate).
1588 */
1589
1590/*
1591 * While block_write_full_page is writing back the dirty buffers under
1592 * the page lock, whoever dirtied the buffers may decide to clean them
1593 * again at any time. We handle that by only looking at the buffer
1594 * state inside lock_buffer().
1595 *
1596 * If block_write_full_page() is called for regular writeback
1597 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1598 * locked buffer. This only can happen if someone has written the buffer
1599 * directly, with submit_bh(). At the address_space level PageWriteback
1600 * prevents this contention from occurring.
6e34eedd
TT
1601 *
1602 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1603 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1604 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1605 */
1606static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1607 get_block_t *get_block, struct writeback_control *wbc,
1608 bh_end_io_t *handler)
1da177e4
LT
1609{
1610 int err;
1611 sector_t block;
1612 sector_t last_block;
f0fbd5fc 1613 struct buffer_head *bh, *head;
45bce8f3 1614 unsigned int blocksize, bbits;
1da177e4 1615 int nr_underway = 0;
6e34eedd 1616 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1617 WRITE_SYNC : WRITE);
1da177e4 1618
45bce8f3 1619 head = create_page_buffers(page, inode,
1da177e4 1620 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1621
1622 /*
1623 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1624 * here, and the (potentially unmapped) buffers may become dirty at
1625 * any time. If a buffer becomes dirty here after we've inspected it
1626 * then we just miss that fact, and the page stays dirty.
1627 *
1628 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1629 * handle that here by just cleaning them.
1630 */
1631
1da177e4 1632 bh = head;
45bce8f3
LT
1633 blocksize = bh->b_size;
1634 bbits = block_size_bits(blocksize);
1635
1636 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1637 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1638
1639 /*
1640 * Get all the dirty buffers mapped to disk addresses and
1641 * handle any aliases from the underlying blockdev's mapping.
1642 */
1643 do {
1644 if (block > last_block) {
1645 /*
1646 * mapped buffers outside i_size will occur, because
1647 * this page can be outside i_size when there is a
1648 * truncate in progress.
1649 */
1650 /*
1651 * The buffer was zeroed by block_write_full_page()
1652 */
1653 clear_buffer_dirty(bh);
1654 set_buffer_uptodate(bh);
29a814d2
AT
1655 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1656 buffer_dirty(bh)) {
b0cf2321 1657 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1658 err = get_block(inode, block, bh, 1);
1659 if (err)
1660 goto recover;
29a814d2 1661 clear_buffer_delay(bh);
1da177e4
LT
1662 if (buffer_new(bh)) {
1663 /* blockdev mappings never come here */
1664 clear_buffer_new(bh);
1665 unmap_underlying_metadata(bh->b_bdev,
1666 bh->b_blocknr);
1667 }
1668 }
1669 bh = bh->b_this_page;
1670 block++;
1671 } while (bh != head);
1672
1673 do {
1da177e4
LT
1674 if (!buffer_mapped(bh))
1675 continue;
1676 /*
1677 * If it's a fully non-blocking write attempt and we cannot
1678 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1679 * potentially cause a busy-wait loop from writeback threads
1680 * and kswapd activity, but those code paths have their own
1681 * higher-level throttling.
1da177e4 1682 */
1b430bee 1683 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1684 lock_buffer(bh);
ca5de404 1685 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1686 redirty_page_for_writepage(wbc, page);
1687 continue;
1688 }
1689 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1690 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1691 } else {
1692 unlock_buffer(bh);
1693 }
1694 } while ((bh = bh->b_this_page) != head);
1695
1696 /*
1697 * The page and its buffers are protected by PageWriteback(), so we can
1698 * drop the bh refcounts early.
1699 */
1700 BUG_ON(PageWriteback(page));
1701 set_page_writeback(page);
1da177e4
LT
1702
1703 do {
1704 struct buffer_head *next = bh->b_this_page;
1705 if (buffer_async_write(bh)) {
a64c8610 1706 submit_bh(write_op, bh);
1da177e4
LT
1707 nr_underway++;
1708 }
1da177e4
LT
1709 bh = next;
1710 } while (bh != head);
05937baa 1711 unlock_page(page);
1da177e4
LT
1712
1713 err = 0;
1714done:
1715 if (nr_underway == 0) {
1716 /*
1717 * The page was marked dirty, but the buffers were
1718 * clean. Someone wrote them back by hand with
1719 * ll_rw_block/submit_bh. A rare case.
1720 */
1da177e4 1721 end_page_writeback(page);
3d67f2d7 1722
1da177e4
LT
1723 /*
1724 * The page and buffer_heads can be released at any time from
1725 * here on.
1726 */
1da177e4
LT
1727 }
1728 return err;
1729
1730recover:
1731 /*
1732 * ENOSPC, or some other error. We may already have added some
1733 * blocks to the file, so we need to write these out to avoid
1734 * exposing stale data.
1735 * The page is currently locked and not marked for writeback
1736 */
1737 bh = head;
1738 /* Recovery: lock and submit the mapped buffers */
1739 do {
29a814d2
AT
1740 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1741 !buffer_delay(bh)) {
1da177e4 1742 lock_buffer(bh);
35c80d5f 1743 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1744 } else {
1745 /*
1746 * The buffer may have been set dirty during
1747 * attachment to a dirty page.
1748 */
1749 clear_buffer_dirty(bh);
1750 }
1751 } while ((bh = bh->b_this_page) != head);
1752 SetPageError(page);
1753 BUG_ON(PageWriteback(page));
7e4c3690 1754 mapping_set_error(page->mapping, err);
1da177e4 1755 set_page_writeback(page);
1da177e4
LT
1756 do {
1757 struct buffer_head *next = bh->b_this_page;
1758 if (buffer_async_write(bh)) {
1759 clear_buffer_dirty(bh);
a64c8610 1760 submit_bh(write_op, bh);
1da177e4
LT
1761 nr_underway++;
1762 }
1da177e4
LT
1763 bh = next;
1764 } while (bh != head);
ffda9d30 1765 unlock_page(page);
1da177e4
LT
1766 goto done;
1767}
1768
afddba49
NP
1769/*
1770 * If a page has any new buffers, zero them out here, and mark them uptodate
1771 * and dirty so they'll be written out (in order to prevent uninitialised
1772 * block data from leaking). And clear the new bit.
1773 */
1774void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1775{
1776 unsigned int block_start, block_end;
1777 struct buffer_head *head, *bh;
1778
1779 BUG_ON(!PageLocked(page));
1780 if (!page_has_buffers(page))
1781 return;
1782
1783 bh = head = page_buffers(page);
1784 block_start = 0;
1785 do {
1786 block_end = block_start + bh->b_size;
1787
1788 if (buffer_new(bh)) {
1789 if (block_end > from && block_start < to) {
1790 if (!PageUptodate(page)) {
1791 unsigned start, size;
1792
1793 start = max(from, block_start);
1794 size = min(to, block_end) - start;
1795
eebd2aa3 1796 zero_user(page, start, size);
afddba49
NP
1797 set_buffer_uptodate(bh);
1798 }
1799
1800 clear_buffer_new(bh);
1801 mark_buffer_dirty(bh);
1802 }
1803 }
1804
1805 block_start = block_end;
1806 bh = bh->b_this_page;
1807 } while (bh != head);
1808}
1809EXPORT_SYMBOL(page_zero_new_buffers);
1810
ebdec241 1811int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1812 get_block_t *get_block)
1da177e4 1813{
ebdec241
CH
1814 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1815 unsigned to = from + len;
6e1db88d 1816 struct inode *inode = page->mapping->host;
1da177e4
LT
1817 unsigned block_start, block_end;
1818 sector_t block;
1819 int err = 0;
1820 unsigned blocksize, bbits;
1821 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1822
1823 BUG_ON(!PageLocked(page));
1824 BUG_ON(from > PAGE_CACHE_SIZE);
1825 BUG_ON(to > PAGE_CACHE_SIZE);
1826 BUG_ON(from > to);
1827
45bce8f3
LT
1828 head = create_page_buffers(page, inode, 0);
1829 blocksize = head->b_size;
1830 bbits = block_size_bits(blocksize);
1da177e4 1831
1da177e4
LT
1832 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1833
1834 for(bh = head, block_start = 0; bh != head || !block_start;
1835 block++, block_start=block_end, bh = bh->b_this_page) {
1836 block_end = block_start + blocksize;
1837 if (block_end <= from || block_start >= to) {
1838 if (PageUptodate(page)) {
1839 if (!buffer_uptodate(bh))
1840 set_buffer_uptodate(bh);
1841 }
1842 continue;
1843 }
1844 if (buffer_new(bh))
1845 clear_buffer_new(bh);
1846 if (!buffer_mapped(bh)) {
b0cf2321 1847 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1848 err = get_block(inode, block, bh, 1);
1849 if (err)
f3ddbdc6 1850 break;
1da177e4 1851 if (buffer_new(bh)) {
1da177e4
LT
1852 unmap_underlying_metadata(bh->b_bdev,
1853 bh->b_blocknr);
1854 if (PageUptodate(page)) {
637aff46 1855 clear_buffer_new(bh);
1da177e4 1856 set_buffer_uptodate(bh);
637aff46 1857 mark_buffer_dirty(bh);
1da177e4
LT
1858 continue;
1859 }
eebd2aa3
CL
1860 if (block_end > to || block_start < from)
1861 zero_user_segments(page,
1862 to, block_end,
1863 block_start, from);
1da177e4
LT
1864 continue;
1865 }
1866 }
1867 if (PageUptodate(page)) {
1868 if (!buffer_uptodate(bh))
1869 set_buffer_uptodate(bh);
1870 continue;
1871 }
1872 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1873 !buffer_unwritten(bh) &&
1da177e4
LT
1874 (block_start < from || block_end > to)) {
1875 ll_rw_block(READ, 1, &bh);
1876 *wait_bh++=bh;
1877 }
1878 }
1879 /*
1880 * If we issued read requests - let them complete.
1881 */
1882 while(wait_bh > wait) {
1883 wait_on_buffer(*--wait_bh);
1884 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1885 err = -EIO;
1da177e4 1886 }
f9f07b6c 1887 if (unlikely(err))
afddba49 1888 page_zero_new_buffers(page, from, to);
1da177e4
LT
1889 return err;
1890}
ebdec241 1891EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1892
1893static int __block_commit_write(struct inode *inode, struct page *page,
1894 unsigned from, unsigned to)
1895{
1896 unsigned block_start, block_end;
1897 int partial = 0;
1898 unsigned blocksize;
1899 struct buffer_head *bh, *head;
1900
45bce8f3
LT
1901 bh = head = page_buffers(page);
1902 blocksize = bh->b_size;
1da177e4 1903
45bce8f3
LT
1904 block_start = 0;
1905 do {
1da177e4
LT
1906 block_end = block_start + blocksize;
1907 if (block_end <= from || block_start >= to) {
1908 if (!buffer_uptodate(bh))
1909 partial = 1;
1910 } else {
1911 set_buffer_uptodate(bh);
1912 mark_buffer_dirty(bh);
1913 }
afddba49 1914 clear_buffer_new(bh);
45bce8f3
LT
1915
1916 block_start = block_end;
1917 bh = bh->b_this_page;
1918 } while (bh != head);
1da177e4
LT
1919
1920 /*
1921 * If this is a partial write which happened to make all buffers
1922 * uptodate then we can optimize away a bogus readpage() for
1923 * the next read(). Here we 'discover' whether the page went
1924 * uptodate as a result of this (potentially partial) write.
1925 */
1926 if (!partial)
1927 SetPageUptodate(page);
1928 return 0;
1929}
1930
afddba49 1931/*
155130a4
CH
1932 * block_write_begin takes care of the basic task of block allocation and
1933 * bringing partial write blocks uptodate first.
1934 *
7bb46a67 1935 * The filesystem needs to handle block truncation upon failure.
afddba49 1936 */
155130a4
CH
1937int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1938 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 1939{
6e1db88d 1940 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 1941 struct page *page;
6e1db88d 1942 int status;
afddba49 1943
6e1db88d
CH
1944 page = grab_cache_page_write_begin(mapping, index, flags);
1945 if (!page)
1946 return -ENOMEM;
afddba49 1947
6e1db88d 1948 status = __block_write_begin(page, pos, len, get_block);
afddba49 1949 if (unlikely(status)) {
6e1db88d
CH
1950 unlock_page(page);
1951 page_cache_release(page);
1952 page = NULL;
afddba49
NP
1953 }
1954
6e1db88d 1955 *pagep = page;
afddba49
NP
1956 return status;
1957}
1958EXPORT_SYMBOL(block_write_begin);
1959
1960int block_write_end(struct file *file, struct address_space *mapping,
1961 loff_t pos, unsigned len, unsigned copied,
1962 struct page *page, void *fsdata)
1963{
1964 struct inode *inode = mapping->host;
1965 unsigned start;
1966
1967 start = pos & (PAGE_CACHE_SIZE - 1);
1968
1969 if (unlikely(copied < len)) {
1970 /*
1971 * The buffers that were written will now be uptodate, so we
1972 * don't have to worry about a readpage reading them and
1973 * overwriting a partial write. However if we have encountered
1974 * a short write and only partially written into a buffer, it
1975 * will not be marked uptodate, so a readpage might come in and
1976 * destroy our partial write.
1977 *
1978 * Do the simplest thing, and just treat any short write to a
1979 * non uptodate page as a zero-length write, and force the
1980 * caller to redo the whole thing.
1981 */
1982 if (!PageUptodate(page))
1983 copied = 0;
1984
1985 page_zero_new_buffers(page, start+copied, start+len);
1986 }
1987 flush_dcache_page(page);
1988
1989 /* This could be a short (even 0-length) commit */
1990 __block_commit_write(inode, page, start, start+copied);
1991
1992 return copied;
1993}
1994EXPORT_SYMBOL(block_write_end);
1995
1996int generic_write_end(struct file *file, struct address_space *mapping,
1997 loff_t pos, unsigned len, unsigned copied,
1998 struct page *page, void *fsdata)
1999{
2000 struct inode *inode = mapping->host;
c7d206b3 2001 int i_size_changed = 0;
afddba49
NP
2002
2003 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2004
2005 /*
2006 * No need to use i_size_read() here, the i_size
2007 * cannot change under us because we hold i_mutex.
2008 *
2009 * But it's important to update i_size while still holding page lock:
2010 * page writeout could otherwise come in and zero beyond i_size.
2011 */
2012 if (pos+copied > inode->i_size) {
2013 i_size_write(inode, pos+copied);
c7d206b3 2014 i_size_changed = 1;
afddba49
NP
2015 }
2016
2017 unlock_page(page);
2018 page_cache_release(page);
2019
c7d206b3
JK
2020 /*
2021 * Don't mark the inode dirty under page lock. First, it unnecessarily
2022 * makes the holding time of page lock longer. Second, it forces lock
2023 * ordering of page lock and transaction start for journaling
2024 * filesystems.
2025 */
2026 if (i_size_changed)
2027 mark_inode_dirty(inode);
2028
afddba49
NP
2029 return copied;
2030}
2031EXPORT_SYMBOL(generic_write_end);
2032
8ab22b9a
HH
2033/*
2034 * block_is_partially_uptodate checks whether buffers within a page are
2035 * uptodate or not.
2036 *
2037 * Returns true if all buffers which correspond to a file portion
2038 * we want to read are uptodate.
2039 */
2040int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2041 unsigned long from)
2042{
8ab22b9a
HH
2043 unsigned block_start, block_end, blocksize;
2044 unsigned to;
2045 struct buffer_head *bh, *head;
2046 int ret = 1;
2047
2048 if (!page_has_buffers(page))
2049 return 0;
2050
45bce8f3
LT
2051 head = page_buffers(page);
2052 blocksize = head->b_size;
8ab22b9a
HH
2053 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2054 to = from + to;
2055 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2056 return 0;
2057
8ab22b9a
HH
2058 bh = head;
2059 block_start = 0;
2060 do {
2061 block_end = block_start + blocksize;
2062 if (block_end > from && block_start < to) {
2063 if (!buffer_uptodate(bh)) {
2064 ret = 0;
2065 break;
2066 }
2067 if (block_end >= to)
2068 break;
2069 }
2070 block_start = block_end;
2071 bh = bh->b_this_page;
2072 } while (bh != head);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL(block_is_partially_uptodate);
2077
1da177e4
LT
2078/*
2079 * Generic "read page" function for block devices that have the normal
2080 * get_block functionality. This is most of the block device filesystems.
2081 * Reads the page asynchronously --- the unlock_buffer() and
2082 * set/clear_buffer_uptodate() functions propagate buffer state into the
2083 * page struct once IO has completed.
2084 */
2085int block_read_full_page(struct page *page, get_block_t *get_block)
2086{
2087 struct inode *inode = page->mapping->host;
2088 sector_t iblock, lblock;
2089 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2090 unsigned int blocksize, bbits;
1da177e4
LT
2091 int nr, i;
2092 int fully_mapped = 1;
2093
45bce8f3
LT
2094 head = create_page_buffers(page, inode, 0);
2095 blocksize = head->b_size;
2096 bbits = block_size_bits(blocksize);
1da177e4 2097
45bce8f3
LT
2098 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2099 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2100 bh = head;
2101 nr = 0;
2102 i = 0;
2103
2104 do {
2105 if (buffer_uptodate(bh))
2106 continue;
2107
2108 if (!buffer_mapped(bh)) {
c64610ba
AM
2109 int err = 0;
2110
1da177e4
LT
2111 fully_mapped = 0;
2112 if (iblock < lblock) {
b0cf2321 2113 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2114 err = get_block(inode, iblock, bh, 0);
2115 if (err)
1da177e4
LT
2116 SetPageError(page);
2117 }
2118 if (!buffer_mapped(bh)) {
eebd2aa3 2119 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2120 if (!err)
2121 set_buffer_uptodate(bh);
1da177e4
LT
2122 continue;
2123 }
2124 /*
2125 * get_block() might have updated the buffer
2126 * synchronously
2127 */
2128 if (buffer_uptodate(bh))
2129 continue;
2130 }
2131 arr[nr++] = bh;
2132 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2133
2134 if (fully_mapped)
2135 SetPageMappedToDisk(page);
2136
2137 if (!nr) {
2138 /*
2139 * All buffers are uptodate - we can set the page uptodate
2140 * as well. But not if get_block() returned an error.
2141 */
2142 if (!PageError(page))
2143 SetPageUptodate(page);
2144 unlock_page(page);
2145 return 0;
2146 }
2147
2148 /* Stage two: lock the buffers */
2149 for (i = 0; i < nr; i++) {
2150 bh = arr[i];
2151 lock_buffer(bh);
2152 mark_buffer_async_read(bh);
2153 }
2154
2155 /*
2156 * Stage 3: start the IO. Check for uptodateness
2157 * inside the buffer lock in case another process reading
2158 * the underlying blockdev brought it uptodate (the sct fix).
2159 */
2160 for (i = 0; i < nr; i++) {
2161 bh = arr[i];
2162 if (buffer_uptodate(bh))
2163 end_buffer_async_read(bh, 1);
2164 else
2165 submit_bh(READ, bh);
2166 }
2167 return 0;
2168}
1fe72eaa 2169EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2170
2171/* utility function for filesystems that need to do work on expanding
89e10787 2172 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2173 * deal with the hole.
2174 */
89e10787 2175int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2176{
2177 struct address_space *mapping = inode->i_mapping;
2178 struct page *page;
89e10787 2179 void *fsdata;
1da177e4
LT
2180 int err;
2181
c08d3b0e 2182 err = inode_newsize_ok(inode, size);
2183 if (err)
1da177e4
LT
2184 goto out;
2185
89e10787
NP
2186 err = pagecache_write_begin(NULL, mapping, size, 0,
2187 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2188 &page, &fsdata);
2189 if (err)
05eb0b51 2190 goto out;
05eb0b51 2191
89e10787
NP
2192 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2193 BUG_ON(err > 0);
05eb0b51 2194
1da177e4
LT
2195out:
2196 return err;
2197}
1fe72eaa 2198EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2199
f1e3af72
AB
2200static int cont_expand_zero(struct file *file, struct address_space *mapping,
2201 loff_t pos, loff_t *bytes)
1da177e4 2202{
1da177e4 2203 struct inode *inode = mapping->host;
1da177e4 2204 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2205 struct page *page;
2206 void *fsdata;
2207 pgoff_t index, curidx;
2208 loff_t curpos;
2209 unsigned zerofrom, offset, len;
2210 int err = 0;
1da177e4 2211
89e10787
NP
2212 index = pos >> PAGE_CACHE_SHIFT;
2213 offset = pos & ~PAGE_CACHE_MASK;
2214
2215 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2216 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2217 if (zerofrom & (blocksize-1)) {
2218 *bytes |= (blocksize-1);
2219 (*bytes)++;
2220 }
89e10787 2221 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2222
89e10787
NP
2223 err = pagecache_write_begin(file, mapping, curpos, len,
2224 AOP_FLAG_UNINTERRUPTIBLE,
2225 &page, &fsdata);
2226 if (err)
2227 goto out;
eebd2aa3 2228 zero_user(page, zerofrom, len);
89e10787
NP
2229 err = pagecache_write_end(file, mapping, curpos, len, len,
2230 page, fsdata);
2231 if (err < 0)
2232 goto out;
2233 BUG_ON(err != len);
2234 err = 0;
061e9746
OH
2235
2236 balance_dirty_pages_ratelimited(mapping);
89e10787 2237 }
1da177e4 2238
89e10787
NP
2239 /* page covers the boundary, find the boundary offset */
2240 if (index == curidx) {
2241 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2242 /* if we will expand the thing last block will be filled */
89e10787
NP
2243 if (offset <= zerofrom) {
2244 goto out;
2245 }
2246 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2247 *bytes |= (blocksize-1);
2248 (*bytes)++;
2249 }
89e10787 2250 len = offset - zerofrom;
1da177e4 2251
89e10787
NP
2252 err = pagecache_write_begin(file, mapping, curpos, len,
2253 AOP_FLAG_UNINTERRUPTIBLE,
2254 &page, &fsdata);
2255 if (err)
2256 goto out;
eebd2aa3 2257 zero_user(page, zerofrom, len);
89e10787
NP
2258 err = pagecache_write_end(file, mapping, curpos, len, len,
2259 page, fsdata);
2260 if (err < 0)
2261 goto out;
2262 BUG_ON(err != len);
2263 err = 0;
1da177e4 2264 }
89e10787
NP
2265out:
2266 return err;
2267}
2268
2269/*
2270 * For moronic filesystems that do not allow holes in file.
2271 * We may have to extend the file.
2272 */
282dc178 2273int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2274 loff_t pos, unsigned len, unsigned flags,
2275 struct page **pagep, void **fsdata,
2276 get_block_t *get_block, loff_t *bytes)
2277{
2278 struct inode *inode = mapping->host;
2279 unsigned blocksize = 1 << inode->i_blkbits;
2280 unsigned zerofrom;
2281 int err;
2282
2283 err = cont_expand_zero(file, mapping, pos, bytes);
2284 if (err)
155130a4 2285 return err;
89e10787
NP
2286
2287 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2288 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2289 *bytes |= (blocksize-1);
2290 (*bytes)++;
1da177e4 2291 }
1da177e4 2292
155130a4 2293 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2294}
1fe72eaa 2295EXPORT_SYMBOL(cont_write_begin);
1da177e4 2296
1da177e4
LT
2297int block_commit_write(struct page *page, unsigned from, unsigned to)
2298{
2299 struct inode *inode = page->mapping->host;
2300 __block_commit_write(inode,page,from,to);
2301 return 0;
2302}
1fe72eaa 2303EXPORT_SYMBOL(block_commit_write);
1da177e4 2304
54171690
DC
2305/*
2306 * block_page_mkwrite() is not allowed to change the file size as it gets
2307 * called from a page fault handler when a page is first dirtied. Hence we must
2308 * be careful to check for EOF conditions here. We set the page up correctly
2309 * for a written page which means we get ENOSPC checking when writing into
2310 * holes and correct delalloc and unwritten extent mapping on filesystems that
2311 * support these features.
2312 *
2313 * We are not allowed to take the i_mutex here so we have to play games to
2314 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2315 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2316 * page lock we can determine safely if the page is beyond EOF. If it is not
2317 * beyond EOF, then the page is guaranteed safe against truncation until we
2318 * unlock the page.
ea13a864 2319 *
14da9200
JK
2320 * Direct callers of this function should protect against filesystem freezing
2321 * using sb_start_write() - sb_end_write() functions.
54171690 2322 */
24da4fab
JK
2323int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2324 get_block_t get_block)
54171690 2325{
c2ec175c 2326 struct page *page = vmf->page;
54171690
DC
2327 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2328 unsigned long end;
2329 loff_t size;
24da4fab 2330 int ret;
54171690
DC
2331
2332 lock_page(page);
2333 size = i_size_read(inode);
2334 if ((page->mapping != inode->i_mapping) ||
18336338 2335 (page_offset(page) > size)) {
24da4fab
JK
2336 /* We overload EFAULT to mean page got truncated */
2337 ret = -EFAULT;
2338 goto out_unlock;
54171690
DC
2339 }
2340
2341 /* page is wholly or partially inside EOF */
2342 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2343 end = size & ~PAGE_CACHE_MASK;
2344 else
2345 end = PAGE_CACHE_SIZE;
2346
ebdec241 2347 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2348 if (!ret)
2349 ret = block_commit_write(page, 0, end);
2350
24da4fab
JK
2351 if (unlikely(ret < 0))
2352 goto out_unlock;
ea13a864 2353 set_page_dirty(page);
d76ee18a 2354 wait_on_page_writeback(page);
24da4fab
JK
2355 return 0;
2356out_unlock:
2357 unlock_page(page);
54171690 2358 return ret;
24da4fab
JK
2359}
2360EXPORT_SYMBOL(__block_page_mkwrite);
2361
2362int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2363 get_block_t get_block)
2364{
ea13a864
JK
2365 int ret;
2366 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
24da4fab 2367
14da9200 2368 sb_start_pagefault(sb);
041bbb6d
TT
2369
2370 /*
2371 * Update file times before taking page lock. We may end up failing the
2372 * fault so this update may be superfluous but who really cares...
2373 */
2374 file_update_time(vma->vm_file);
2375
ea13a864 2376 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2377 sb_end_pagefault(sb);
24da4fab 2378 return block_page_mkwrite_return(ret);
54171690 2379}
1fe72eaa 2380EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2381
2382/*
03158cd7 2383 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2384 * immediately, while under the page lock. So it needs a special end_io
2385 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2386 */
2387static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2388{
68671f35 2389 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2390}
2391
03158cd7
NP
2392/*
2393 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2394 * the page (converting it to circular linked list and taking care of page
2395 * dirty races).
2396 */
2397static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2398{
2399 struct buffer_head *bh;
2400
2401 BUG_ON(!PageLocked(page));
2402
2403 spin_lock(&page->mapping->private_lock);
2404 bh = head;
2405 do {
2406 if (PageDirty(page))
2407 set_buffer_dirty(bh);
2408 if (!bh->b_this_page)
2409 bh->b_this_page = head;
2410 bh = bh->b_this_page;
2411 } while (bh != head);
2412 attach_page_buffers(page, head);
2413 spin_unlock(&page->mapping->private_lock);
2414}
2415
1da177e4 2416/*
ea0f04e5
CH
2417 * On entry, the page is fully not uptodate.
2418 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2419 * The filesystem needs to handle block truncation upon failure.
1da177e4 2420 */
ea0f04e5 2421int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2422 loff_t pos, unsigned len, unsigned flags,
2423 struct page **pagep, void **fsdata,
1da177e4
LT
2424 get_block_t *get_block)
2425{
03158cd7 2426 struct inode *inode = mapping->host;
1da177e4
LT
2427 const unsigned blkbits = inode->i_blkbits;
2428 const unsigned blocksize = 1 << blkbits;
a4b0672d 2429 struct buffer_head *head, *bh;
03158cd7
NP
2430 struct page *page;
2431 pgoff_t index;
2432 unsigned from, to;
1da177e4 2433 unsigned block_in_page;
a4b0672d 2434 unsigned block_start, block_end;
1da177e4 2435 sector_t block_in_file;
1da177e4 2436 int nr_reads = 0;
1da177e4
LT
2437 int ret = 0;
2438 int is_mapped_to_disk = 1;
1da177e4 2439
03158cd7
NP
2440 index = pos >> PAGE_CACHE_SHIFT;
2441 from = pos & (PAGE_CACHE_SIZE - 1);
2442 to = from + len;
2443
54566b2c 2444 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2445 if (!page)
2446 return -ENOMEM;
2447 *pagep = page;
2448 *fsdata = NULL;
2449
2450 if (page_has_buffers(page)) {
309f77ad
NK
2451 ret = __block_write_begin(page, pos, len, get_block);
2452 if (unlikely(ret))
2453 goto out_release;
2454 return ret;
03158cd7 2455 }
a4b0672d 2456
1da177e4
LT
2457 if (PageMappedToDisk(page))
2458 return 0;
2459
a4b0672d
NP
2460 /*
2461 * Allocate buffers so that we can keep track of state, and potentially
2462 * attach them to the page if an error occurs. In the common case of
2463 * no error, they will just be freed again without ever being attached
2464 * to the page (which is all OK, because we're under the page lock).
2465 *
2466 * Be careful: the buffer linked list is a NULL terminated one, rather
2467 * than the circular one we're used to.
2468 */
2469 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2470 if (!head) {
2471 ret = -ENOMEM;
2472 goto out_release;
2473 }
a4b0672d 2474
1da177e4 2475 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2476
2477 /*
2478 * We loop across all blocks in the page, whether or not they are
2479 * part of the affected region. This is so we can discover if the
2480 * page is fully mapped-to-disk.
2481 */
a4b0672d 2482 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2483 block_start < PAGE_CACHE_SIZE;
a4b0672d 2484 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2485 int create;
2486
a4b0672d
NP
2487 block_end = block_start + blocksize;
2488 bh->b_state = 0;
1da177e4
LT
2489 create = 1;
2490 if (block_start >= to)
2491 create = 0;
2492 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2493 bh, create);
1da177e4
LT
2494 if (ret)
2495 goto failed;
a4b0672d 2496 if (!buffer_mapped(bh))
1da177e4 2497 is_mapped_to_disk = 0;
a4b0672d
NP
2498 if (buffer_new(bh))
2499 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2500 if (PageUptodate(page)) {
2501 set_buffer_uptodate(bh);
1da177e4 2502 continue;
a4b0672d
NP
2503 }
2504 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2505 zero_user_segments(page, block_start, from,
2506 to, block_end);
1da177e4
LT
2507 continue;
2508 }
a4b0672d 2509 if (buffer_uptodate(bh))
1da177e4
LT
2510 continue; /* reiserfs does this */
2511 if (block_start < from || block_end > to) {
a4b0672d
NP
2512 lock_buffer(bh);
2513 bh->b_end_io = end_buffer_read_nobh;
2514 submit_bh(READ, bh);
2515 nr_reads++;
1da177e4
LT
2516 }
2517 }
2518
2519 if (nr_reads) {
1da177e4
LT
2520 /*
2521 * The page is locked, so these buffers are protected from
2522 * any VM or truncate activity. Hence we don't need to care
2523 * for the buffer_head refcounts.
2524 */
a4b0672d 2525 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2526 wait_on_buffer(bh);
2527 if (!buffer_uptodate(bh))
2528 ret = -EIO;
1da177e4
LT
2529 }
2530 if (ret)
2531 goto failed;
2532 }
2533
2534 if (is_mapped_to_disk)
2535 SetPageMappedToDisk(page);
1da177e4 2536
03158cd7 2537 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2538
1da177e4
LT
2539 return 0;
2540
2541failed:
03158cd7 2542 BUG_ON(!ret);
1da177e4 2543 /*
a4b0672d
NP
2544 * Error recovery is a bit difficult. We need to zero out blocks that
2545 * were newly allocated, and dirty them to ensure they get written out.
2546 * Buffers need to be attached to the page at this point, otherwise
2547 * the handling of potential IO errors during writeout would be hard
2548 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2549 */
03158cd7
NP
2550 attach_nobh_buffers(page, head);
2551 page_zero_new_buffers(page, from, to);
a4b0672d 2552
03158cd7
NP
2553out_release:
2554 unlock_page(page);
2555 page_cache_release(page);
2556 *pagep = NULL;
a4b0672d 2557
7bb46a67 2558 return ret;
2559}
03158cd7 2560EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2561
03158cd7
NP
2562int nobh_write_end(struct file *file, struct address_space *mapping,
2563 loff_t pos, unsigned len, unsigned copied,
2564 struct page *page, void *fsdata)
1da177e4
LT
2565{
2566 struct inode *inode = page->mapping->host;
efdc3131 2567 struct buffer_head *head = fsdata;
03158cd7 2568 struct buffer_head *bh;
5b41e74a 2569 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2570
d4cf109f 2571 if (unlikely(copied < len) && head)
5b41e74a
DM
2572 attach_nobh_buffers(page, head);
2573 if (page_has_buffers(page))
2574 return generic_write_end(file, mapping, pos, len,
2575 copied, page, fsdata);
a4b0672d 2576
22c8ca78 2577 SetPageUptodate(page);
1da177e4 2578 set_page_dirty(page);
03158cd7
NP
2579 if (pos+copied > inode->i_size) {
2580 i_size_write(inode, pos+copied);
1da177e4
LT
2581 mark_inode_dirty(inode);
2582 }
03158cd7
NP
2583
2584 unlock_page(page);
2585 page_cache_release(page);
2586
03158cd7
NP
2587 while (head) {
2588 bh = head;
2589 head = head->b_this_page;
2590 free_buffer_head(bh);
2591 }
2592
2593 return copied;
1da177e4 2594}
03158cd7 2595EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2596
2597/*
2598 * nobh_writepage() - based on block_full_write_page() except
2599 * that it tries to operate without attaching bufferheads to
2600 * the page.
2601 */
2602int nobh_writepage(struct page *page, get_block_t *get_block,
2603 struct writeback_control *wbc)
2604{
2605 struct inode * const inode = page->mapping->host;
2606 loff_t i_size = i_size_read(inode);
2607 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2608 unsigned offset;
1da177e4
LT
2609 int ret;
2610
2611 /* Is the page fully inside i_size? */
2612 if (page->index < end_index)
2613 goto out;
2614
2615 /* Is the page fully outside i_size? (truncate in progress) */
2616 offset = i_size & (PAGE_CACHE_SIZE-1);
2617 if (page->index >= end_index+1 || !offset) {
2618 /*
2619 * The page may have dirty, unmapped buffers. For example,
2620 * they may have been added in ext3_writepage(). Make them
2621 * freeable here, so the page does not leak.
2622 */
2623#if 0
2624 /* Not really sure about this - do we need this ? */
2625 if (page->mapping->a_ops->invalidatepage)
2626 page->mapping->a_ops->invalidatepage(page, offset);
2627#endif
2628 unlock_page(page);
2629 return 0; /* don't care */
2630 }
2631
2632 /*
2633 * The page straddles i_size. It must be zeroed out on each and every
2634 * writepage invocation because it may be mmapped. "A file is mapped
2635 * in multiples of the page size. For a file that is not a multiple of
2636 * the page size, the remaining memory is zeroed when mapped, and
2637 * writes to that region are not written out to the file."
2638 */
eebd2aa3 2639 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2640out:
2641 ret = mpage_writepage(page, get_block, wbc);
2642 if (ret == -EAGAIN)
35c80d5f
CM
2643 ret = __block_write_full_page(inode, page, get_block, wbc,
2644 end_buffer_async_write);
1da177e4
LT
2645 return ret;
2646}
2647EXPORT_SYMBOL(nobh_writepage);
2648
03158cd7
NP
2649int nobh_truncate_page(struct address_space *mapping,
2650 loff_t from, get_block_t *get_block)
1da177e4 2651{
1da177e4
LT
2652 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2653 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2654 unsigned blocksize;
2655 sector_t iblock;
2656 unsigned length, pos;
2657 struct inode *inode = mapping->host;
1da177e4 2658 struct page *page;
03158cd7
NP
2659 struct buffer_head map_bh;
2660 int err;
1da177e4 2661
03158cd7
NP
2662 blocksize = 1 << inode->i_blkbits;
2663 length = offset & (blocksize - 1);
2664
2665 /* Block boundary? Nothing to do */
2666 if (!length)
2667 return 0;
2668
2669 length = blocksize - length;
2670 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2671
1da177e4 2672 page = grab_cache_page(mapping, index);
03158cd7 2673 err = -ENOMEM;
1da177e4
LT
2674 if (!page)
2675 goto out;
2676
03158cd7
NP
2677 if (page_has_buffers(page)) {
2678has_buffers:
2679 unlock_page(page);
2680 page_cache_release(page);
2681 return block_truncate_page(mapping, from, get_block);
2682 }
2683
2684 /* Find the buffer that contains "offset" */
2685 pos = blocksize;
2686 while (offset >= pos) {
2687 iblock++;
2688 pos += blocksize;
2689 }
2690
460bcf57
TT
2691 map_bh.b_size = blocksize;
2692 map_bh.b_state = 0;
03158cd7
NP
2693 err = get_block(inode, iblock, &map_bh, 0);
2694 if (err)
2695 goto unlock;
2696 /* unmapped? It's a hole - nothing to do */
2697 if (!buffer_mapped(&map_bh))
2698 goto unlock;
2699
2700 /* Ok, it's mapped. Make sure it's up-to-date */
2701 if (!PageUptodate(page)) {
2702 err = mapping->a_ops->readpage(NULL, page);
2703 if (err) {
2704 page_cache_release(page);
2705 goto out;
2706 }
2707 lock_page(page);
2708 if (!PageUptodate(page)) {
2709 err = -EIO;
2710 goto unlock;
2711 }
2712 if (page_has_buffers(page))
2713 goto has_buffers;
1da177e4 2714 }
eebd2aa3 2715 zero_user(page, offset, length);
03158cd7
NP
2716 set_page_dirty(page);
2717 err = 0;
2718
2719unlock:
1da177e4
LT
2720 unlock_page(page);
2721 page_cache_release(page);
2722out:
03158cd7 2723 return err;
1da177e4
LT
2724}
2725EXPORT_SYMBOL(nobh_truncate_page);
2726
2727int block_truncate_page(struct address_space *mapping,
2728 loff_t from, get_block_t *get_block)
2729{
2730 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2731 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2732 unsigned blocksize;
54b21a79 2733 sector_t iblock;
1da177e4
LT
2734 unsigned length, pos;
2735 struct inode *inode = mapping->host;
2736 struct page *page;
2737 struct buffer_head *bh;
1da177e4
LT
2738 int err;
2739
2740 blocksize = 1 << inode->i_blkbits;
2741 length = offset & (blocksize - 1);
2742
2743 /* Block boundary? Nothing to do */
2744 if (!length)
2745 return 0;
2746
2747 length = blocksize - length;
54b21a79 2748 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2749
2750 page = grab_cache_page(mapping, index);
2751 err = -ENOMEM;
2752 if (!page)
2753 goto out;
2754
2755 if (!page_has_buffers(page))
2756 create_empty_buffers(page, blocksize, 0);
2757
2758 /* Find the buffer that contains "offset" */
2759 bh = page_buffers(page);
2760 pos = blocksize;
2761 while (offset >= pos) {
2762 bh = bh->b_this_page;
2763 iblock++;
2764 pos += blocksize;
2765 }
2766
2767 err = 0;
2768 if (!buffer_mapped(bh)) {
b0cf2321 2769 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2770 err = get_block(inode, iblock, bh, 0);
2771 if (err)
2772 goto unlock;
2773 /* unmapped? It's a hole - nothing to do */
2774 if (!buffer_mapped(bh))
2775 goto unlock;
2776 }
2777
2778 /* Ok, it's mapped. Make sure it's up-to-date */
2779 if (PageUptodate(page))
2780 set_buffer_uptodate(bh);
2781
33a266dd 2782 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2783 err = -EIO;
2784 ll_rw_block(READ, 1, &bh);
2785 wait_on_buffer(bh);
2786 /* Uhhuh. Read error. Complain and punt. */
2787 if (!buffer_uptodate(bh))
2788 goto unlock;
2789 }
2790
eebd2aa3 2791 zero_user(page, offset, length);
1da177e4
LT
2792 mark_buffer_dirty(bh);
2793 err = 0;
2794
2795unlock:
2796 unlock_page(page);
2797 page_cache_release(page);
2798out:
2799 return err;
2800}
1fe72eaa 2801EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2802
2803/*
2804 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2805 * this form passes in the end_io handler used to finish the IO.
1da177e4 2806 */
35c80d5f
CM
2807int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2808 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2809{
2810 struct inode * const inode = page->mapping->host;
2811 loff_t i_size = i_size_read(inode);
2812 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2813 unsigned offset;
1da177e4
LT
2814
2815 /* Is the page fully inside i_size? */
2816 if (page->index < end_index)
35c80d5f
CM
2817 return __block_write_full_page(inode, page, get_block, wbc,
2818 handler);
1da177e4
LT
2819
2820 /* Is the page fully outside i_size? (truncate in progress) */
2821 offset = i_size & (PAGE_CACHE_SIZE-1);
2822 if (page->index >= end_index+1 || !offset) {
2823 /*
2824 * The page may have dirty, unmapped buffers. For example,
2825 * they may have been added in ext3_writepage(). Make them
2826 * freeable here, so the page does not leak.
2827 */
aaa4059b 2828 do_invalidatepage(page, 0);
1da177e4
LT
2829 unlock_page(page);
2830 return 0; /* don't care */
2831 }
2832
2833 /*
2834 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2835 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2836 * in multiples of the page size. For a file that is not a multiple of
2837 * the page size, the remaining memory is zeroed when mapped, and
2838 * writes to that region are not written out to the file."
2839 */
eebd2aa3 2840 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2841 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2842}
1fe72eaa 2843EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2844
35c80d5f
CM
2845/*
2846 * The generic ->writepage function for buffer-backed address_spaces
2847 */
2848int block_write_full_page(struct page *page, get_block_t *get_block,
2849 struct writeback_control *wbc)
2850{
2851 return block_write_full_page_endio(page, get_block, wbc,
2852 end_buffer_async_write);
2853}
1fe72eaa 2854EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2855
1da177e4
LT
2856sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2857 get_block_t *get_block)
2858{
2859 struct buffer_head tmp;
2860 struct inode *inode = mapping->host;
2861 tmp.b_state = 0;
2862 tmp.b_blocknr = 0;
b0cf2321 2863 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2864 get_block(inode, block, &tmp, 0);
2865 return tmp.b_blocknr;
2866}
1fe72eaa 2867EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2868
6712ecf8 2869static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2870{
2871 struct buffer_head *bh = bio->bi_private;
2872
1da177e4
LT
2873 if (err == -EOPNOTSUPP) {
2874 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2875 }
2876
08bafc03
KM
2877 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2878 set_bit(BH_Quiet, &bh->b_state);
2879
1da177e4
LT
2880 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2881 bio_put(bio);
1da177e4
LT
2882}
2883
2884int submit_bh(int rw, struct buffer_head * bh)
2885{
2886 struct bio *bio;
2887 int ret = 0;
2888
2889 BUG_ON(!buffer_locked(bh));
2890 BUG_ON(!buffer_mapped(bh));
2891 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2892 BUG_ON(buffer_delay(bh));
2893 BUG_ON(buffer_unwritten(bh));
1da177e4 2894
1da177e4 2895 /*
48fd4f93 2896 * Only clear out a write error when rewriting
1da177e4 2897 */
48fd4f93 2898 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2899 clear_buffer_write_io_error(bh);
2900
2901 /*
2902 * from here on down, it's all bio -- do the initial mapping,
2903 * submit_bio -> generic_make_request may further map this bio around
2904 */
2905 bio = bio_alloc(GFP_NOIO, 1);
2906
2907 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2908 bio->bi_bdev = bh->b_bdev;
2909 bio->bi_io_vec[0].bv_page = bh->b_page;
2910 bio->bi_io_vec[0].bv_len = bh->b_size;
2911 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2912
2913 bio->bi_vcnt = 1;
2914 bio->bi_idx = 0;
2915 bio->bi_size = bh->b_size;
2916
2917 bio->bi_end_io = end_bio_bh_io_sync;
2918 bio->bi_private = bh;
2919
2920 bio_get(bio);
2921 submit_bio(rw, bio);
2922
2923 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2924 ret = -EOPNOTSUPP;
2925
2926 bio_put(bio);
2927 return ret;
2928}
1fe72eaa 2929EXPORT_SYMBOL(submit_bh);
1da177e4
LT
2930
2931/**
2932 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 2933 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
2934 * @nr: number of &struct buffer_heads in the array
2935 * @bhs: array of pointers to &struct buffer_head
2936 *
a7662236
JK
2937 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2938 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
2939 * %READA option is described in the documentation for generic_make_request()
2940 * which ll_rw_block() calls.
1da177e4
LT
2941 *
2942 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
2943 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2944 * request, and any buffer that appears to be up-to-date when doing read
2945 * request. Further it marks as clean buffers that are processed for
2946 * writing (the buffer cache won't assume that they are actually clean
2947 * until the buffer gets unlocked).
1da177e4
LT
2948 *
2949 * ll_rw_block sets b_end_io to simple completion handler that marks
2950 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2951 * any waiters.
2952 *
2953 * All of the buffers must be for the same device, and must also be a
2954 * multiple of the current approved size for the device.
2955 */
2956void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2957{
2958 int i;
2959
2960 for (i = 0; i < nr; i++) {
2961 struct buffer_head *bh = bhs[i];
2962
9cb569d6 2963 if (!trylock_buffer(bh))
1da177e4 2964 continue;
9cb569d6 2965 if (rw == WRITE) {
1da177e4 2966 if (test_clear_buffer_dirty(bh)) {
76c3073a 2967 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2968 get_bh(bh);
9cb569d6 2969 submit_bh(WRITE, bh);
1da177e4
LT
2970 continue;
2971 }
2972 } else {
1da177e4 2973 if (!buffer_uptodate(bh)) {
76c3073a 2974 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2975 get_bh(bh);
1da177e4
LT
2976 submit_bh(rw, bh);
2977 continue;
2978 }
2979 }
2980 unlock_buffer(bh);
1da177e4
LT
2981 }
2982}
1fe72eaa 2983EXPORT_SYMBOL(ll_rw_block);
1da177e4 2984
9cb569d6
CH
2985void write_dirty_buffer(struct buffer_head *bh, int rw)
2986{
2987 lock_buffer(bh);
2988 if (!test_clear_buffer_dirty(bh)) {
2989 unlock_buffer(bh);
2990 return;
2991 }
2992 bh->b_end_io = end_buffer_write_sync;
2993 get_bh(bh);
2994 submit_bh(rw, bh);
2995}
2996EXPORT_SYMBOL(write_dirty_buffer);
2997
1da177e4
LT
2998/*
2999 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3000 * and then start new I/O and then wait upon it. The caller must have a ref on
3001 * the buffer_head.
3002 */
87e99511 3003int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3004{
3005 int ret = 0;
3006
3007 WARN_ON(atomic_read(&bh->b_count) < 1);
3008 lock_buffer(bh);
3009 if (test_clear_buffer_dirty(bh)) {
3010 get_bh(bh);
3011 bh->b_end_io = end_buffer_write_sync;
87e99511 3012 ret = submit_bh(rw, bh);
1da177e4 3013 wait_on_buffer(bh);
1da177e4
LT
3014 if (!ret && !buffer_uptodate(bh))
3015 ret = -EIO;
3016 } else {
3017 unlock_buffer(bh);
3018 }
3019 return ret;
3020}
87e99511
CH
3021EXPORT_SYMBOL(__sync_dirty_buffer);
3022
3023int sync_dirty_buffer(struct buffer_head *bh)
3024{
3025 return __sync_dirty_buffer(bh, WRITE_SYNC);
3026}
1fe72eaa 3027EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3028
3029/*
3030 * try_to_free_buffers() checks if all the buffers on this particular page
3031 * are unused, and releases them if so.
3032 *
3033 * Exclusion against try_to_free_buffers may be obtained by either
3034 * locking the page or by holding its mapping's private_lock.
3035 *
3036 * If the page is dirty but all the buffers are clean then we need to
3037 * be sure to mark the page clean as well. This is because the page
3038 * may be against a block device, and a later reattachment of buffers
3039 * to a dirty page will set *all* buffers dirty. Which would corrupt
3040 * filesystem data on the same device.
3041 *
3042 * The same applies to regular filesystem pages: if all the buffers are
3043 * clean then we set the page clean and proceed. To do that, we require
3044 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3045 * private_lock.
3046 *
3047 * try_to_free_buffers() is non-blocking.
3048 */
3049static inline int buffer_busy(struct buffer_head *bh)
3050{
3051 return atomic_read(&bh->b_count) |
3052 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3053}
3054
3055static int
3056drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3057{
3058 struct buffer_head *head = page_buffers(page);
3059 struct buffer_head *bh;
3060
3061 bh = head;
3062 do {
de7d5a3b 3063 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3064 set_bit(AS_EIO, &page->mapping->flags);
3065 if (buffer_busy(bh))
3066 goto failed;
3067 bh = bh->b_this_page;
3068 } while (bh != head);
3069
3070 do {
3071 struct buffer_head *next = bh->b_this_page;
3072
535ee2fb 3073 if (bh->b_assoc_map)
1da177e4
LT
3074 __remove_assoc_queue(bh);
3075 bh = next;
3076 } while (bh != head);
3077 *buffers_to_free = head;
3078 __clear_page_buffers(page);
3079 return 1;
3080failed:
3081 return 0;
3082}
3083
3084int try_to_free_buffers(struct page *page)
3085{
3086 struct address_space * const mapping = page->mapping;
3087 struct buffer_head *buffers_to_free = NULL;
3088 int ret = 0;
3089
3090 BUG_ON(!PageLocked(page));
ecdfc978 3091 if (PageWriteback(page))
1da177e4
LT
3092 return 0;
3093
3094 if (mapping == NULL) { /* can this still happen? */
3095 ret = drop_buffers(page, &buffers_to_free);
3096 goto out;
3097 }
3098
3099 spin_lock(&mapping->private_lock);
3100 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3101
3102 /*
3103 * If the filesystem writes its buffers by hand (eg ext3)
3104 * then we can have clean buffers against a dirty page. We
3105 * clean the page here; otherwise the VM will never notice
3106 * that the filesystem did any IO at all.
3107 *
3108 * Also, during truncate, discard_buffer will have marked all
3109 * the page's buffers clean. We discover that here and clean
3110 * the page also.
87df7241
NP
3111 *
3112 * private_lock must be held over this entire operation in order
3113 * to synchronise against __set_page_dirty_buffers and prevent the
3114 * dirty bit from being lost.
ecdfc978
LT
3115 */
3116 if (ret)
3117 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3118 spin_unlock(&mapping->private_lock);
1da177e4
LT
3119out:
3120 if (buffers_to_free) {
3121 struct buffer_head *bh = buffers_to_free;
3122
3123 do {
3124 struct buffer_head *next = bh->b_this_page;
3125 free_buffer_head(bh);
3126 bh = next;
3127 } while (bh != buffers_to_free);
3128 }
3129 return ret;
3130}
3131EXPORT_SYMBOL(try_to_free_buffers);
3132
1da177e4
LT
3133/*
3134 * There are no bdflush tunables left. But distributions are
3135 * still running obsolete flush daemons, so we terminate them here.
3136 *
3137 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3138 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3139 */
bdc480e3 3140SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3141{
3142 static int msg_count;
3143
3144 if (!capable(CAP_SYS_ADMIN))
3145 return -EPERM;
3146
3147 if (msg_count < 5) {
3148 msg_count++;
3149 printk(KERN_INFO
3150 "warning: process `%s' used the obsolete bdflush"
3151 " system call\n", current->comm);
3152 printk(KERN_INFO "Fix your initscripts?\n");
3153 }
3154
3155 if (func == 1)
3156 do_exit(0);
3157 return 0;
3158}
3159
3160/*
3161 * Buffer-head allocation
3162 */
a0a9b043 3163static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3164
3165/*
3166 * Once the number of bh's in the machine exceeds this level, we start
3167 * stripping them in writeback.
3168 */
3169static int max_buffer_heads;
3170
3171int buffer_heads_over_limit;
3172
3173struct bh_accounting {
3174 int nr; /* Number of live bh's */
3175 int ratelimit; /* Limit cacheline bouncing */
3176};
3177
3178static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3179
3180static void recalc_bh_state(void)
3181{
3182 int i;
3183 int tot = 0;
3184
ee1be862 3185 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3186 return;
c7b92516 3187 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3188 for_each_online_cpu(i)
1da177e4
LT
3189 tot += per_cpu(bh_accounting, i).nr;
3190 buffer_heads_over_limit = (tot > max_buffer_heads);
3191}
c7b92516 3192
dd0fc66f 3193struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3194{
019b4d12 3195 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3196 if (ret) {
a35afb83 3197 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3198 preempt_disable();
3199 __this_cpu_inc(bh_accounting.nr);
1da177e4 3200 recalc_bh_state();
c7b92516 3201 preempt_enable();
1da177e4
LT
3202 }
3203 return ret;
3204}
3205EXPORT_SYMBOL(alloc_buffer_head);
3206
3207void free_buffer_head(struct buffer_head *bh)
3208{
3209 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3210 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3211 preempt_disable();
3212 __this_cpu_dec(bh_accounting.nr);
1da177e4 3213 recalc_bh_state();
c7b92516 3214 preempt_enable();
1da177e4
LT
3215}
3216EXPORT_SYMBOL(free_buffer_head);
3217
1da177e4
LT
3218static void buffer_exit_cpu(int cpu)
3219{
3220 int i;
3221 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3222
3223 for (i = 0; i < BH_LRU_SIZE; i++) {
3224 brelse(b->bhs[i]);
3225 b->bhs[i] = NULL;
3226 }
c7b92516 3227 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3228 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3229}
3230
3231static int buffer_cpu_notify(struct notifier_block *self,
3232 unsigned long action, void *hcpu)
3233{
8bb78442 3234 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3235 buffer_exit_cpu((unsigned long)hcpu);
3236 return NOTIFY_OK;
3237}
1da177e4 3238
389d1b08 3239/**
a6b91919 3240 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3241 * @bh: struct buffer_head
3242 *
3243 * Return true if the buffer is up-to-date and false,
3244 * with the buffer locked, if not.
3245 */
3246int bh_uptodate_or_lock(struct buffer_head *bh)
3247{
3248 if (!buffer_uptodate(bh)) {
3249 lock_buffer(bh);
3250 if (!buffer_uptodate(bh))
3251 return 0;
3252 unlock_buffer(bh);
3253 }
3254 return 1;
3255}
3256EXPORT_SYMBOL(bh_uptodate_or_lock);
3257
3258/**
a6b91919 3259 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3260 * @bh: struct buffer_head
3261 *
3262 * Returns zero on success and -EIO on error.
3263 */
3264int bh_submit_read(struct buffer_head *bh)
3265{
3266 BUG_ON(!buffer_locked(bh));
3267
3268 if (buffer_uptodate(bh)) {
3269 unlock_buffer(bh);
3270 return 0;
3271 }
3272
3273 get_bh(bh);
3274 bh->b_end_io = end_buffer_read_sync;
3275 submit_bh(READ, bh);
3276 wait_on_buffer(bh);
3277 if (buffer_uptodate(bh))
3278 return 0;
3279 return -EIO;
3280}
3281EXPORT_SYMBOL(bh_submit_read);
3282
1da177e4
LT
3283void __init buffer_init(void)
3284{
3285 int nrpages;
3286
b98938c3
CL
3287 bh_cachep = kmem_cache_create("buffer_head",
3288 sizeof(struct buffer_head), 0,
3289 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3290 SLAB_MEM_SPREAD),
019b4d12 3291 NULL);
1da177e4
LT
3292
3293 /*
3294 * Limit the bh occupancy to 10% of ZONE_NORMAL
3295 */
3296 nrpages = (nr_free_buffer_pages() * 10) / 100;
3297 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3298 hotcpu_notifier(buffer_cpu_notify, 0);
3299}