]> git.ipfire.org Git - people/ms/linux.git/blame - fs/buffer.c
fs: fsnotify: account fsnotify metadata to kmemcg
[people/ms/linux.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4 21#include <linux/kernel.h>
f361bf4a 22#include <linux/sched/signal.h>
1da177e4
LT
23#include <linux/syscalls.h>
24#include <linux/fs.h>
ae259a9c 25#include <linux/iomap.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
630d9c47 34#include <linux/export.h>
bafc0dba 35#include <linux/backing-dev.h>
1da177e4
LT
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
55e829af 40#include <linux/task_io_accounting_ops.h>
1da177e4
LT
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
5305cb83 48#include <trace/events/block.h>
1da177e4
LT
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 52 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
f0059afd
TH
56inline void touch_buffer(struct buffer_head *bh)
57{
5305cb83 58 trace_block_touch_buffer(bh);
f0059afd
TH
59 mark_page_accessed(bh->b_page);
60}
61EXPORT_SYMBOL(touch_buffer);
62
fc9b52cd 63void __lock_buffer(struct buffer_head *bh)
1da177e4 64{
74316201 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
66}
67EXPORT_SYMBOL(__lock_buffer);
68
fc9b52cd 69void unlock_buffer(struct buffer_head *bh)
1da177e4 70{
51b07fc3 71 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 72 smp_mb__after_atomic();
1da177e4
LT
73 wake_up_bit(&bh->b_state, BH_Lock);
74}
1fe72eaa 75EXPORT_SYMBOL(unlock_buffer);
1da177e4 76
b4597226
MG
77/*
78 * Returns if the page has dirty or writeback buffers. If all the buffers
79 * are unlocked and clean then the PageDirty information is stale. If
80 * any of the pages are locked, it is assumed they are locked for IO.
81 */
82void buffer_check_dirty_writeback(struct page *page,
83 bool *dirty, bool *writeback)
84{
85 struct buffer_head *head, *bh;
86 *dirty = false;
87 *writeback = false;
88
89 BUG_ON(!PageLocked(page));
90
91 if (!page_has_buffers(page))
92 return;
93
94 if (PageWriteback(page))
95 *writeback = true;
96
97 head = page_buffers(page);
98 bh = head;
99 do {
100 if (buffer_locked(bh))
101 *writeback = true;
102
103 if (buffer_dirty(bh))
104 *dirty = true;
105
106 bh = bh->b_this_page;
107 } while (bh != head);
108}
109EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
1da177e4
LT
111/*
112 * Block until a buffer comes unlocked. This doesn't stop it
113 * from becoming locked again - you have to lock it yourself
114 * if you want to preserve its state.
115 */
116void __wait_on_buffer(struct buffer_head * bh)
117{
74316201 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 119}
1fe72eaa 120EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
121
122static void
123__clear_page_buffers(struct page *page)
124{
125 ClearPagePrivate(page);
4c21e2f2 126 set_page_private(page, 0);
09cbfeaf 127 put_page(page);
1da177e4
LT
128}
129
b744c2ac 130static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 131{
432f16e6
RE
132 if (!test_bit(BH_Quiet, &bh->b_state))
133 printk_ratelimited(KERN_ERR
a1c6f057
DM
134 "Buffer I/O error on dev %pg, logical block %llu%s\n",
135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
136}
137
138/*
68671f35
DM
139 * End-of-IO handler helper function which does not touch the bh after
140 * unlocking it.
141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142 * a race there is benign: unlock_buffer() only use the bh's address for
143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
144 * itself.
1da177e4 145 */
68671f35 146static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
147{
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
70246286 151 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
152 clear_buffer_uptodate(bh);
153 }
154 unlock_buffer(bh);
68671f35
DM
155}
156
157/*
158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
159 * unlock the buffer. This is what ll_rw_block uses too.
160 */
161void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162{
163 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
164 put_bh(bh);
165}
1fe72eaa 166EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
167
168void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169{
1da177e4
LT
170 if (uptodate) {
171 set_buffer_uptodate(bh);
172 } else {
432f16e6 173 buffer_io_error(bh, ", lost sync page write");
87354e5d 174 mark_buffer_write_io_error(bh);
1da177e4
LT
175 clear_buffer_uptodate(bh);
176 }
177 unlock_buffer(bh);
178 put_bh(bh);
179}
1fe72eaa 180EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 181
1da177e4
LT
182/*
183 * Various filesystems appear to want __find_get_block to be non-blocking.
184 * But it's the page lock which protects the buffers. To get around this,
185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
186 * private_lock.
187 *
b93b0163 188 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 189 * may be quite high. This code could TryLock the page, and if that
b93b0163 190 * succeeds, there is no need to take private_lock.
1da177e4
LT
191 */
192static struct buffer_head *
385fd4c5 193__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
194{
195 struct inode *bd_inode = bdev->bd_inode;
196 struct address_space *bd_mapping = bd_inode->i_mapping;
197 struct buffer_head *ret = NULL;
198 pgoff_t index;
199 struct buffer_head *bh;
200 struct buffer_head *head;
201 struct page *page;
202 int all_mapped = 1;
203
09cbfeaf 204 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 205 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
206 if (!page)
207 goto out;
208
209 spin_lock(&bd_mapping->private_lock);
210 if (!page_has_buffers(page))
211 goto out_unlock;
212 head = page_buffers(page);
213 bh = head;
214 do {
97f76d3d
NK
215 if (!buffer_mapped(bh))
216 all_mapped = 0;
217 else if (bh->b_blocknr == block) {
1da177e4
LT
218 ret = bh;
219 get_bh(bh);
220 goto out_unlock;
221 }
1da177e4
LT
222 bh = bh->b_this_page;
223 } while (bh != head);
224
225 /* we might be here because some of the buffers on this page are
226 * not mapped. This is due to various races between
227 * file io on the block device and getblk. It gets dealt with
228 * elsewhere, don't buffer_error if we had some unmapped buffers
229 */
230 if (all_mapped) {
231 printk("__find_get_block_slow() failed. "
232 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr);
235 printk("b_state=0x%08lx, b_size=%zu\n",
236 bh->b_state, bh->b_size);
a1c6f057 237 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 238 1 << bd_inode->i_blkbits);
1da177e4
LT
239 }
240out_unlock:
241 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 242 put_page(page);
1da177e4
LT
243out:
244 return ret;
245}
246
1da177e4
LT
247/*
248 * I/O completion handler for block_read_full_page() - pages
249 * which come unlocked at the end of I/O.
250 */
251static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252{
1da177e4 253 unsigned long flags;
a3972203 254 struct buffer_head *first;
1da177e4
LT
255 struct buffer_head *tmp;
256 struct page *page;
257 int page_uptodate = 1;
258
259 BUG_ON(!buffer_async_read(bh));
260
261 page = bh->b_page;
262 if (uptodate) {
263 set_buffer_uptodate(bh);
264 } else {
265 clear_buffer_uptodate(bh);
432f16e6 266 buffer_io_error(bh, ", async page read");
1da177e4
LT
267 SetPageError(page);
268 }
269
270 /*
271 * Be _very_ careful from here on. Bad things can happen if
272 * two buffer heads end IO at almost the same time and both
273 * decide that the page is now completely done.
274 */
a3972203
NP
275 first = page_buffers(page);
276 local_irq_save(flags);
277 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
278 clear_buffer_async_read(bh);
279 unlock_buffer(bh);
280 tmp = bh;
281 do {
282 if (!buffer_uptodate(tmp))
283 page_uptodate = 0;
284 if (buffer_async_read(tmp)) {
285 BUG_ON(!buffer_locked(tmp));
286 goto still_busy;
287 }
288 tmp = tmp->b_this_page;
289 } while (tmp != bh);
a3972203
NP
290 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291 local_irq_restore(flags);
1da177e4
LT
292
293 /*
294 * If none of the buffers had errors and they are all
295 * uptodate then we can set the page uptodate.
296 */
297 if (page_uptodate && !PageError(page))
298 SetPageUptodate(page);
299 unlock_page(page);
300 return;
301
302still_busy:
a3972203
NP
303 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304 local_irq_restore(flags);
1da177e4
LT
305 return;
306}
307
308/*
309 * Completion handler for block_write_full_page() - pages which are unlocked
310 * during I/O, and which have PageWriteback cleared upon I/O completion.
311 */
35c80d5f 312void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 313{
1da177e4 314 unsigned long flags;
a3972203 315 struct buffer_head *first;
1da177e4
LT
316 struct buffer_head *tmp;
317 struct page *page;
318
319 BUG_ON(!buffer_async_write(bh));
320
321 page = bh->b_page;
322 if (uptodate) {
323 set_buffer_uptodate(bh);
324 } else {
432f16e6 325 buffer_io_error(bh, ", lost async page write");
87354e5d 326 mark_buffer_write_io_error(bh);
1da177e4
LT
327 clear_buffer_uptodate(bh);
328 SetPageError(page);
329 }
330
a3972203
NP
331 first = page_buffers(page);
332 local_irq_save(flags);
333 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334
1da177e4
LT
335 clear_buffer_async_write(bh);
336 unlock_buffer(bh);
337 tmp = bh->b_this_page;
338 while (tmp != bh) {
339 if (buffer_async_write(tmp)) {
340 BUG_ON(!buffer_locked(tmp));
341 goto still_busy;
342 }
343 tmp = tmp->b_this_page;
344 }
a3972203
NP
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
1da177e4
LT
347 end_page_writeback(page);
348 return;
349
350still_busy:
a3972203
NP
351 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352 local_irq_restore(flags);
1da177e4
LT
353 return;
354}
1fe72eaa 355EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
356
357/*
358 * If a page's buffers are under async readin (end_buffer_async_read
359 * completion) then there is a possibility that another thread of
360 * control could lock one of the buffers after it has completed
361 * but while some of the other buffers have not completed. This
362 * locked buffer would confuse end_buffer_async_read() into not unlocking
363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
364 * that this buffer is not under async I/O.
365 *
366 * The page comes unlocked when it has no locked buffer_async buffers
367 * left.
368 *
369 * PageLocked prevents anyone starting new async I/O reads any of
370 * the buffers.
371 *
372 * PageWriteback is used to prevent simultaneous writeout of the same
373 * page.
374 *
375 * PageLocked prevents anyone from starting writeback of a page which is
376 * under read I/O (PageWriteback is only ever set against a locked page).
377 */
378static void mark_buffer_async_read(struct buffer_head *bh)
379{
380 bh->b_end_io = end_buffer_async_read;
381 set_buffer_async_read(bh);
382}
383
1fe72eaa
HS
384static void mark_buffer_async_write_endio(struct buffer_head *bh,
385 bh_end_io_t *handler)
1da177e4 386{
35c80d5f 387 bh->b_end_io = handler;
1da177e4
LT
388 set_buffer_async_write(bh);
389}
35c80d5f
CM
390
391void mark_buffer_async_write(struct buffer_head *bh)
392{
393 mark_buffer_async_write_endio(bh, end_buffer_async_write);
394}
1da177e4
LT
395EXPORT_SYMBOL(mark_buffer_async_write);
396
397
398/*
399 * fs/buffer.c contains helper functions for buffer-backed address space's
400 * fsync functions. A common requirement for buffer-based filesystems is
401 * that certain data from the backing blockdev needs to be written out for
402 * a successful fsync(). For example, ext2 indirect blocks need to be
403 * written back and waited upon before fsync() returns.
404 *
405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407 * management of a list of dependent buffers at ->i_mapping->private_list.
408 *
409 * Locking is a little subtle: try_to_free_buffers() will remove buffers
410 * from their controlling inode's queue when they are being freed. But
411 * try_to_free_buffers() will be operating against the *blockdev* mapping
412 * at the time, not against the S_ISREG file which depends on those buffers.
413 * So the locking for private_list is via the private_lock in the address_space
414 * which backs the buffers. Which is different from the address_space
415 * against which the buffers are listed. So for a particular address_space,
416 * mapping->private_lock does *not* protect mapping->private_list! In fact,
417 * mapping->private_list will always be protected by the backing blockdev's
418 * ->private_lock.
419 *
420 * Which introduces a requirement: all buffers on an address_space's
421 * ->private_list must be from the same address_space: the blockdev's.
422 *
423 * address_spaces which do not place buffers at ->private_list via these
424 * utility functions are free to use private_lock and private_list for
425 * whatever they want. The only requirement is that list_empty(private_list)
426 * be true at clear_inode() time.
427 *
428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
429 * filesystems should do that. invalidate_inode_buffers() should just go
430 * BUG_ON(!list_empty).
431 *
432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
433 * take an address_space, not an inode. And it should be called
434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435 * queued up.
436 *
437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438 * list if it is already on a list. Because if the buffer is on a list,
439 * it *must* already be on the right one. If not, the filesystem is being
440 * silly. This will save a ton of locking. But first we have to ensure
441 * that buffers are taken *off* the old inode's list when they are freed
442 * (presumably in truncate). That requires careful auditing of all
443 * filesystems (do it inside bforget()). It could also be done by bringing
444 * b_inode back.
445 */
446
447/*
448 * The buffer's backing address_space's private_lock must be held
449 */
dbacefc9 450static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
451{
452 list_del_init(&bh->b_assoc_buffers);
58ff407b 453 WARN_ON(!bh->b_assoc_map);
58ff407b 454 bh->b_assoc_map = NULL;
1da177e4
LT
455}
456
457int inode_has_buffers(struct inode *inode)
458{
459 return !list_empty(&inode->i_data.private_list);
460}
461
462/*
463 * osync is designed to support O_SYNC io. It waits synchronously for
464 * all already-submitted IO to complete, but does not queue any new
465 * writes to the disk.
466 *
467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468 * you dirty the buffers, and then use osync_inode_buffers to wait for
469 * completion. Any other dirty buffers which are not yet queued for
470 * write will not be flushed to disk by the osync.
471 */
472static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473{
474 struct buffer_head *bh;
475 struct list_head *p;
476 int err = 0;
477
478 spin_lock(lock);
479repeat:
480 list_for_each_prev(p, list) {
481 bh = BH_ENTRY(p);
482 if (buffer_locked(bh)) {
483 get_bh(bh);
484 spin_unlock(lock);
485 wait_on_buffer(bh);
486 if (!buffer_uptodate(bh))
487 err = -EIO;
488 brelse(bh);
489 spin_lock(lock);
490 goto repeat;
491 }
492 }
493 spin_unlock(lock);
494 return err;
495}
496
08fdc8a0 497void emergency_thaw_bdev(struct super_block *sb)
c2d75438 498{
01a05b33 499 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 500 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 501}
c2d75438 502
1da177e4 503/**
78a4a50a 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 505 * @mapping: the mapping which wants those buffers written
1da177e4
LT
506 *
507 * Starts I/O against the buffers at mapping->private_list, and waits upon
508 * that I/O.
509 *
67be2dd1
MW
510 * Basically, this is a convenience function for fsync().
511 * @mapping is a file or directory which needs those buffers to be written for
512 * a successful fsync().
1da177e4
LT
513 */
514int sync_mapping_buffers(struct address_space *mapping)
515{
252aa6f5 516 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
517
518 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519 return 0;
520
521 return fsync_buffers_list(&buffer_mapping->private_lock,
522 &mapping->private_list);
523}
524EXPORT_SYMBOL(sync_mapping_buffers);
525
526/*
527 * Called when we've recently written block `bblock', and it is known that
528 * `bblock' was for a buffer_boundary() buffer. This means that the block at
529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
530 * dirty, schedule it for IO. So that indirects merge nicely with their data.
531 */
532void write_boundary_block(struct block_device *bdev,
533 sector_t bblock, unsigned blocksize)
534{
535 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536 if (bh) {
537 if (buffer_dirty(bh))
dfec8a14 538 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
539 put_bh(bh);
540 }
541}
542
543void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544{
545 struct address_space *mapping = inode->i_mapping;
546 struct address_space *buffer_mapping = bh->b_page->mapping;
547
548 mark_buffer_dirty(bh);
252aa6f5
RA
549 if (!mapping->private_data) {
550 mapping->private_data = buffer_mapping;
1da177e4 551 } else {
252aa6f5 552 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 553 }
535ee2fb 554 if (!bh->b_assoc_map) {
1da177e4
LT
555 spin_lock(&buffer_mapping->private_lock);
556 list_move_tail(&bh->b_assoc_buffers,
557 &mapping->private_list);
58ff407b 558 bh->b_assoc_map = mapping;
1da177e4
LT
559 spin_unlock(&buffer_mapping->private_lock);
560 }
561}
562EXPORT_SYMBOL(mark_buffer_dirty_inode);
563
787d2214
NP
564/*
565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
566 * dirty.
567 *
568 * If warn is true, then emit a warning if the page is not uptodate and has
569 * not been truncated.
c4843a75 570 *
81f8c3a4 571 * The caller must hold lock_page_memcg().
787d2214 572 */
f82b3764 573void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 574 int warn)
787d2214 575{
227d53b3
KM
576 unsigned long flags;
577
b93b0163 578 xa_lock_irqsave(&mapping->i_pages, flags);
787d2214
NP
579 if (page->mapping) { /* Race with truncate? */
580 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 581 account_page_dirtied(page, mapping);
b93b0163 582 radix_tree_tag_set(&mapping->i_pages,
787d2214
NP
583 page_index(page), PAGECACHE_TAG_DIRTY);
584 }
b93b0163 585 xa_unlock_irqrestore(&mapping->i_pages, flags);
787d2214 586}
f82b3764 587EXPORT_SYMBOL_GPL(__set_page_dirty);
787d2214 588
1da177e4
LT
589/*
590 * Add a page to the dirty page list.
591 *
592 * It is a sad fact of life that this function is called from several places
593 * deeply under spinlocking. It may not sleep.
594 *
595 * If the page has buffers, the uptodate buffers are set dirty, to preserve
596 * dirty-state coherency between the page and the buffers. It the page does
597 * not have buffers then when they are later attached they will all be set
598 * dirty.
599 *
600 * The buffers are dirtied before the page is dirtied. There's a small race
601 * window in which a writepage caller may see the page cleanness but not the
602 * buffer dirtiness. That's fine. If this code were to set the page dirty
603 * before the buffers, a concurrent writepage caller could clear the page dirty
604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605 * page on the dirty page list.
606 *
607 * We use private_lock to lock against try_to_free_buffers while using the
608 * page's buffer list. Also use this to protect against clean buffers being
609 * added to the page after it was set dirty.
610 *
611 * FIXME: may need to call ->reservepage here as well. That's rather up to the
612 * address_space though.
613 */
614int __set_page_dirty_buffers(struct page *page)
615{
a8e7d49a 616 int newly_dirty;
787d2214 617 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
618
619 if (unlikely(!mapping))
620 return !TestSetPageDirty(page);
1da177e4
LT
621
622 spin_lock(&mapping->private_lock);
623 if (page_has_buffers(page)) {
624 struct buffer_head *head = page_buffers(page);
625 struct buffer_head *bh = head;
626
627 do {
628 set_buffer_dirty(bh);
629 bh = bh->b_this_page;
630 } while (bh != head);
631 }
c4843a75 632 /*
81f8c3a4
JW
633 * Lock out page->mem_cgroup migration to keep PageDirty
634 * synchronized with per-memcg dirty page counters.
c4843a75 635 */
62cccb8c 636 lock_page_memcg(page);
a8e7d49a 637 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
638 spin_unlock(&mapping->private_lock);
639
a8e7d49a 640 if (newly_dirty)
62cccb8c 641 __set_page_dirty(page, mapping, 1);
c4843a75 642
62cccb8c 643 unlock_page_memcg(page);
c4843a75
GT
644
645 if (newly_dirty)
646 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647
a8e7d49a 648 return newly_dirty;
1da177e4
LT
649}
650EXPORT_SYMBOL(__set_page_dirty_buffers);
651
652/*
653 * Write out and wait upon a list of buffers.
654 *
655 * We have conflicting pressures: we want to make sure that all
656 * initially dirty buffers get waited on, but that any subsequently
657 * dirtied buffers don't. After all, we don't want fsync to last
658 * forever if somebody is actively writing to the file.
659 *
660 * Do this in two main stages: first we copy dirty buffers to a
661 * temporary inode list, queueing the writes as we go. Then we clean
662 * up, waiting for those writes to complete.
663 *
664 * During this second stage, any subsequent updates to the file may end
665 * up refiling the buffer on the original inode's dirty list again, so
666 * there is a chance we will end up with a buffer queued for write but
667 * not yet completed on that list. So, as a final cleanup we go through
668 * the osync code to catch these locked, dirty buffers without requeuing
669 * any newly dirty buffers for write.
670 */
671static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672{
673 struct buffer_head *bh;
674 struct list_head tmp;
7eaceacc 675 struct address_space *mapping;
1da177e4 676 int err = 0, err2;
4ee2491e 677 struct blk_plug plug;
1da177e4
LT
678
679 INIT_LIST_HEAD(&tmp);
4ee2491e 680 blk_start_plug(&plug);
1da177e4
LT
681
682 spin_lock(lock);
683 while (!list_empty(list)) {
684 bh = BH_ENTRY(list->next);
535ee2fb 685 mapping = bh->b_assoc_map;
58ff407b 686 __remove_assoc_queue(bh);
535ee2fb
JK
687 /* Avoid race with mark_buffer_dirty_inode() which does
688 * a lockless check and we rely on seeing the dirty bit */
689 smp_mb();
1da177e4
LT
690 if (buffer_dirty(bh) || buffer_locked(bh)) {
691 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 692 bh->b_assoc_map = mapping;
1da177e4
LT
693 if (buffer_dirty(bh)) {
694 get_bh(bh);
695 spin_unlock(lock);
696 /*
697 * Ensure any pending I/O completes so that
9cb569d6
CH
698 * write_dirty_buffer() actually writes the
699 * current contents - it is a noop if I/O is
700 * still in flight on potentially older
701 * contents.
1da177e4 702 */
70fd7614 703 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
704
705 /*
706 * Kick off IO for the previous mapping. Note
707 * that we will not run the very last mapping,
708 * wait_on_buffer() will do that for us
709 * through sync_buffer().
710 */
1da177e4
LT
711 brelse(bh);
712 spin_lock(lock);
713 }
714 }
715 }
716
4ee2491e
JA
717 spin_unlock(lock);
718 blk_finish_plug(&plug);
719 spin_lock(lock);
720
1da177e4
LT
721 while (!list_empty(&tmp)) {
722 bh = BH_ENTRY(tmp.prev);
1da177e4 723 get_bh(bh);
535ee2fb
JK
724 mapping = bh->b_assoc_map;
725 __remove_assoc_queue(bh);
726 /* Avoid race with mark_buffer_dirty_inode() which does
727 * a lockless check and we rely on seeing the dirty bit */
728 smp_mb();
729 if (buffer_dirty(bh)) {
730 list_add(&bh->b_assoc_buffers,
e3892296 731 &mapping->private_list);
535ee2fb
JK
732 bh->b_assoc_map = mapping;
733 }
1da177e4
LT
734 spin_unlock(lock);
735 wait_on_buffer(bh);
736 if (!buffer_uptodate(bh))
737 err = -EIO;
738 brelse(bh);
739 spin_lock(lock);
740 }
741
742 spin_unlock(lock);
743 err2 = osync_buffers_list(lock, list);
744 if (err)
745 return err;
746 else
747 return err2;
748}
749
750/*
751 * Invalidate any and all dirty buffers on a given inode. We are
752 * probably unmounting the fs, but that doesn't mean we have already
753 * done a sync(). Just drop the buffers from the inode list.
754 *
755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
756 * assumes that all the buffers are against the blockdev. Not true
757 * for reiserfs.
758 */
759void invalidate_inode_buffers(struct inode *inode)
760{
761 if (inode_has_buffers(inode)) {
762 struct address_space *mapping = &inode->i_data;
763 struct list_head *list = &mapping->private_list;
252aa6f5 764 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
765
766 spin_lock(&buffer_mapping->private_lock);
767 while (!list_empty(list))
768 __remove_assoc_queue(BH_ENTRY(list->next));
769 spin_unlock(&buffer_mapping->private_lock);
770 }
771}
52b19ac9 772EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
773
774/*
775 * Remove any clean buffers from the inode's buffer list. This is called
776 * when we're trying to free the inode itself. Those buffers can pin it.
777 *
778 * Returns true if all buffers were removed.
779 */
780int remove_inode_buffers(struct inode *inode)
781{
782 int ret = 1;
783
784 if (inode_has_buffers(inode)) {
785 struct address_space *mapping = &inode->i_data;
786 struct list_head *list = &mapping->private_list;
252aa6f5 787 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
788
789 spin_lock(&buffer_mapping->private_lock);
790 while (!list_empty(list)) {
791 struct buffer_head *bh = BH_ENTRY(list->next);
792 if (buffer_dirty(bh)) {
793 ret = 0;
794 break;
795 }
796 __remove_assoc_queue(bh);
797 }
798 spin_unlock(&buffer_mapping->private_lock);
799 }
800 return ret;
801}
802
803/*
804 * Create the appropriate buffers when given a page for data area and
805 * the size of each buffer.. Use the bh->b_this_page linked list to
806 * follow the buffers created. Return NULL if unable to create more
807 * buffers.
808 *
809 * The retry flag is used to differentiate async IO (paging, swapping)
810 * which may not fail from ordinary buffer allocations.
811 */
812struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 813 bool retry)
1da177e4
LT
814{
815 struct buffer_head *bh, *head;
640ab98f 816 gfp_t gfp = GFP_NOFS;
1da177e4
LT
817 long offset;
818
640ab98f
JA
819 if (retry)
820 gfp |= __GFP_NOFAIL;
821
1da177e4
LT
822 head = NULL;
823 offset = PAGE_SIZE;
824 while ((offset -= size) >= 0) {
640ab98f 825 bh = alloc_buffer_head(gfp);
1da177e4
LT
826 if (!bh)
827 goto no_grow;
828
1da177e4
LT
829 bh->b_this_page = head;
830 bh->b_blocknr = -1;
831 head = bh;
832
1da177e4
LT
833 bh->b_size = size;
834
835 /* Link the buffer to its page */
836 set_bh_page(bh, page, offset);
1da177e4
LT
837 }
838 return head;
839/*
840 * In case anything failed, we just free everything we got.
841 */
842no_grow:
843 if (head) {
844 do {
845 bh = head;
846 head = head->b_this_page;
847 free_buffer_head(bh);
848 } while (head);
849 }
850
640ab98f 851 return NULL;
1da177e4
LT
852}
853EXPORT_SYMBOL_GPL(alloc_page_buffers);
854
855static inline void
856link_dev_buffers(struct page *page, struct buffer_head *head)
857{
858 struct buffer_head *bh, *tail;
859
860 bh = head;
861 do {
862 tail = bh;
863 bh = bh->b_this_page;
864 } while (bh);
865 tail->b_this_page = head;
866 attach_page_buffers(page, head);
867}
868
bbec0270
LT
869static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
870{
871 sector_t retval = ~((sector_t)0);
872 loff_t sz = i_size_read(bdev->bd_inode);
873
874 if (sz) {
875 unsigned int sizebits = blksize_bits(size);
876 retval = (sz >> sizebits);
877 }
878 return retval;
879}
880
1da177e4
LT
881/*
882 * Initialise the state of a blockdev page's buffers.
883 */
676ce6d5 884static sector_t
1da177e4
LT
885init_page_buffers(struct page *page, struct block_device *bdev,
886 sector_t block, int size)
887{
888 struct buffer_head *head = page_buffers(page);
889 struct buffer_head *bh = head;
890 int uptodate = PageUptodate(page);
bbec0270 891 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
892
893 do {
894 if (!buffer_mapped(bh)) {
01950a34
EB
895 bh->b_end_io = NULL;
896 bh->b_private = NULL;
1da177e4
LT
897 bh->b_bdev = bdev;
898 bh->b_blocknr = block;
899 if (uptodate)
900 set_buffer_uptodate(bh);
080399aa
JM
901 if (block < end_block)
902 set_buffer_mapped(bh);
1da177e4
LT
903 }
904 block++;
905 bh = bh->b_this_page;
906 } while (bh != head);
676ce6d5
HD
907
908 /*
909 * Caller needs to validate requested block against end of device.
910 */
911 return end_block;
1da177e4
LT
912}
913
914/*
915 * Create the page-cache page that contains the requested block.
916 *
676ce6d5 917 * This is used purely for blockdev mappings.
1da177e4 918 */
676ce6d5 919static int
1da177e4 920grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 921 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
922{
923 struct inode *inode = bdev->bd_inode;
924 struct page *page;
925 struct buffer_head *bh;
676ce6d5
HD
926 sector_t end_block;
927 int ret = 0; /* Will call free_more_memory() */
84235de3 928 gfp_t gfp_mask;
1da177e4 929
c62d2555 930 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 931
84235de3
JW
932 /*
933 * XXX: __getblk_slow() can not really deal with failure and
934 * will endlessly loop on improvised global reclaim. Prefer
935 * looping in the allocator rather than here, at least that
936 * code knows what it's doing.
937 */
938 gfp_mask |= __GFP_NOFAIL;
939
940 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 941
e827f923 942 BUG_ON(!PageLocked(page));
1da177e4
LT
943
944 if (page_has_buffers(page)) {
945 bh = page_buffers(page);
946 if (bh->b_size == size) {
676ce6d5 947 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
948 (sector_t)index << sizebits,
949 size);
676ce6d5 950 goto done;
1da177e4
LT
951 }
952 if (!try_to_free_buffers(page))
953 goto failed;
954 }
955
956 /*
957 * Allocate some buffers for this page
958 */
94dc24c0 959 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
960
961 /*
962 * Link the page to the buffers and initialise them. Take the
963 * lock to be atomic wrt __find_get_block(), which does not
964 * run under the page lock.
965 */
966 spin_lock(&inode->i_mapping->private_lock);
967 link_dev_buffers(page, bh);
f2d5a944
AA
968 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
969 size);
1da177e4 970 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
971done:
972 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 973failed:
1da177e4 974 unlock_page(page);
09cbfeaf 975 put_page(page);
676ce6d5 976 return ret;
1da177e4
LT
977}
978
979/*
980 * Create buffers for the specified block device block's page. If
981 * that page was dirty, the buffers are set dirty also.
1da177e4 982 */
858119e1 983static int
3b5e6454 984grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 985{
1da177e4
LT
986 pgoff_t index;
987 int sizebits;
988
989 sizebits = -1;
990 do {
991 sizebits++;
992 } while ((size << sizebits) < PAGE_SIZE);
993
994 index = block >> sizebits;
1da177e4 995
e5657933
AM
996 /*
997 * Check for a block which wants to lie outside our maximum possible
998 * pagecache index. (this comparison is done using sector_t types).
999 */
1000 if (unlikely(index != block >> sizebits)) {
e5657933 1001 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1002 "device %pg\n",
8e24eea7 1003 __func__, (unsigned long long)block,
a1c6f057 1004 bdev);
e5657933
AM
1005 return -EIO;
1006 }
676ce6d5 1007
1da177e4 1008 /* Create a page with the proper size buffers.. */
3b5e6454 1009 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1010}
1011
0026ba40 1012static struct buffer_head *
3b5e6454
GK
1013__getblk_slow(struct block_device *bdev, sector_t block,
1014 unsigned size, gfp_t gfp)
1da177e4
LT
1015{
1016 /* Size must be multiple of hard sectorsize */
e1defc4f 1017 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1018 (size < 512 || size > PAGE_SIZE))) {
1019 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1020 size);
e1defc4f
MP
1021 printk(KERN_ERR "logical block size: %d\n",
1022 bdev_logical_block_size(bdev));
1da177e4
LT
1023
1024 dump_stack();
1025 return NULL;
1026 }
1027
676ce6d5
HD
1028 for (;;) {
1029 struct buffer_head *bh;
1030 int ret;
1da177e4
LT
1031
1032 bh = __find_get_block(bdev, block, size);
1033 if (bh)
1034 return bh;
676ce6d5 1035
3b5e6454 1036 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1037 if (ret < 0)
1038 return NULL;
1da177e4
LT
1039 }
1040}
1041
1042/*
1043 * The relationship between dirty buffers and dirty pages:
1044 *
1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046 * the page is tagged dirty in its radix tree.
1047 *
1048 * At all times, the dirtiness of the buffers represents the dirtiness of
1049 * subsections of the page. If the page has buffers, the page dirty bit is
1050 * merely a hint about the true dirty state.
1051 *
1052 * When a page is set dirty in its entirety, all its buffers are marked dirty
1053 * (if the page has buffers).
1054 *
1055 * When a buffer is marked dirty, its page is dirtied, but the page's other
1056 * buffers are not.
1057 *
1058 * Also. When blockdev buffers are explicitly read with bread(), they
1059 * individually become uptodate. But their backing page remains not
1060 * uptodate - even if all of its buffers are uptodate. A subsequent
1061 * block_read_full_page() against that page will discover all the uptodate
1062 * buffers, will set the page uptodate and will perform no I/O.
1063 */
1064
1065/**
1066 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1067 * @bh: the buffer_head to mark dirty
1da177e4
LT
1068 *
1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070 * backing page dirty, then tag the page as dirty in its address_space's radix
1071 * tree and then attach the address_space's inode to its superblock's dirty
1072 * inode list.
1073 *
1074 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1075 * i_pages lock and mapping->host->i_lock.
1da177e4 1076 */
fc9b52cd 1077void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1078{
787d2214 1079 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1080
5305cb83
TH
1081 trace_block_dirty_buffer(bh);
1082
1be62dc1
LT
1083 /*
1084 * Very *carefully* optimize the it-is-already-dirty case.
1085 *
1086 * Don't let the final "is it dirty" escape to before we
1087 * perhaps modified the buffer.
1088 */
1089 if (buffer_dirty(bh)) {
1090 smp_mb();
1091 if (buffer_dirty(bh))
1092 return;
1093 }
1094
a8e7d49a
LT
1095 if (!test_set_buffer_dirty(bh)) {
1096 struct page *page = bh->b_page;
c4843a75 1097 struct address_space *mapping = NULL;
c4843a75 1098
62cccb8c 1099 lock_page_memcg(page);
8e9d78ed 1100 if (!TestSetPageDirty(page)) {
c4843a75 1101 mapping = page_mapping(page);
8e9d78ed 1102 if (mapping)
62cccb8c 1103 __set_page_dirty(page, mapping, 0);
8e9d78ed 1104 }
62cccb8c 1105 unlock_page_memcg(page);
c4843a75
GT
1106 if (mapping)
1107 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1108 }
1da177e4 1109}
1fe72eaa 1110EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1111
87354e5d
JL
1112void mark_buffer_write_io_error(struct buffer_head *bh)
1113{
1114 set_buffer_write_io_error(bh);
1115 /* FIXME: do we need to set this in both places? */
1116 if (bh->b_page && bh->b_page->mapping)
1117 mapping_set_error(bh->b_page->mapping, -EIO);
1118 if (bh->b_assoc_map)
1119 mapping_set_error(bh->b_assoc_map, -EIO);
1120}
1121EXPORT_SYMBOL(mark_buffer_write_io_error);
1122
1da177e4
LT
1123/*
1124 * Decrement a buffer_head's reference count. If all buffers against a page
1125 * have zero reference count, are clean and unlocked, and if the page is clean
1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128 * a page but it ends up not being freed, and buffers may later be reattached).
1129 */
1130void __brelse(struct buffer_head * buf)
1131{
1132 if (atomic_read(&buf->b_count)) {
1133 put_bh(buf);
1134 return;
1135 }
5c752ad9 1136 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1137}
1fe72eaa 1138EXPORT_SYMBOL(__brelse);
1da177e4
LT
1139
1140/*
1141 * bforget() is like brelse(), except it discards any
1142 * potentially dirty data.
1143 */
1144void __bforget(struct buffer_head *bh)
1145{
1146 clear_buffer_dirty(bh);
535ee2fb 1147 if (bh->b_assoc_map) {
1da177e4
LT
1148 struct address_space *buffer_mapping = bh->b_page->mapping;
1149
1150 spin_lock(&buffer_mapping->private_lock);
1151 list_del_init(&bh->b_assoc_buffers);
58ff407b 1152 bh->b_assoc_map = NULL;
1da177e4
LT
1153 spin_unlock(&buffer_mapping->private_lock);
1154 }
1155 __brelse(bh);
1156}
1fe72eaa 1157EXPORT_SYMBOL(__bforget);
1da177e4
LT
1158
1159static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160{
1161 lock_buffer(bh);
1162 if (buffer_uptodate(bh)) {
1163 unlock_buffer(bh);
1164 return bh;
1165 } else {
1166 get_bh(bh);
1167 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1168 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1169 wait_on_buffer(bh);
1170 if (buffer_uptodate(bh))
1171 return bh;
1172 }
1173 brelse(bh);
1174 return NULL;
1175}
1176
1177/*
1178 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1179 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1180 * refcount elevated by one when they're in an LRU. A buffer can only appear
1181 * once in a particular CPU's LRU. A single buffer can be present in multiple
1182 * CPU's LRUs at the same time.
1183 *
1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185 * sb_find_get_block().
1186 *
1187 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1188 * a local interrupt disable for that.
1189 */
1190
86cf78d7 1191#define BH_LRU_SIZE 16
1da177e4
LT
1192
1193struct bh_lru {
1194 struct buffer_head *bhs[BH_LRU_SIZE];
1195};
1196
1197static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198
1199#ifdef CONFIG_SMP
1200#define bh_lru_lock() local_irq_disable()
1201#define bh_lru_unlock() local_irq_enable()
1202#else
1203#define bh_lru_lock() preempt_disable()
1204#define bh_lru_unlock() preempt_enable()
1205#endif
1206
1207static inline void check_irqs_on(void)
1208{
1209#ifdef irqs_disabled
1210 BUG_ON(irqs_disabled());
1211#endif
1212}
1213
1214/*
241f01fb
EB
1215 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1216 * inserted at the front, and the buffer_head at the back if any is evicted.
1217 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1218 */
1219static void bh_lru_install(struct buffer_head *bh)
1220{
241f01fb
EB
1221 struct buffer_head *evictee = bh;
1222 struct bh_lru *b;
1223 int i;
1da177e4
LT
1224
1225 check_irqs_on();
1226 bh_lru_lock();
1da177e4 1227
241f01fb
EB
1228 b = this_cpu_ptr(&bh_lrus);
1229 for (i = 0; i < BH_LRU_SIZE; i++) {
1230 swap(evictee, b->bhs[i]);
1231 if (evictee == bh) {
1232 bh_lru_unlock();
1233 return;
1da177e4 1234 }
1da177e4 1235 }
1da177e4 1236
241f01fb
EB
1237 get_bh(bh);
1238 bh_lru_unlock();
1239 brelse(evictee);
1da177e4
LT
1240}
1241
1242/*
1243 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1244 */
858119e1 1245static struct buffer_head *
3991d3bd 1246lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1247{
1248 struct buffer_head *ret = NULL;
3991d3bd 1249 unsigned int i;
1da177e4
LT
1250
1251 check_irqs_on();
1252 bh_lru_lock();
1da177e4 1253 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1254 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1255
9470dd5d
ZB
1256 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1257 bh->b_size == size) {
1da177e4
LT
1258 if (i) {
1259 while (i) {
c7b92516
CL
1260 __this_cpu_write(bh_lrus.bhs[i],
1261 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1262 i--;
1263 }
c7b92516 1264 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1265 }
1266 get_bh(bh);
1267 ret = bh;
1268 break;
1269 }
1270 }
1271 bh_lru_unlock();
1272 return ret;
1273}
1274
1275/*
1276 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1277 * it in the LRU and mark it as accessed. If it is not present then return
1278 * NULL
1279 */
1280struct buffer_head *
3991d3bd 1281__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1282{
1283 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1284
1285 if (bh == NULL) {
2457aec6 1286 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1287 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1288 if (bh)
1289 bh_lru_install(bh);
2457aec6 1290 } else
1da177e4 1291 touch_buffer(bh);
2457aec6 1292
1da177e4
LT
1293 return bh;
1294}
1295EXPORT_SYMBOL(__find_get_block);
1296
1297/*
3b5e6454 1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1299 * which corresponds to the passed block_device, block and size. The
1300 * returned buffer has its reference count incremented.
1301 *
3b5e6454
GK
1302 * __getblk_gfp() will lock up the machine if grow_dev_page's
1303 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1304 */
1305struct buffer_head *
3b5e6454
GK
1306__getblk_gfp(struct block_device *bdev, sector_t block,
1307 unsigned size, gfp_t gfp)
1da177e4
LT
1308{
1309 struct buffer_head *bh = __find_get_block(bdev, block, size);
1310
1311 might_sleep();
1312 if (bh == NULL)
3b5e6454 1313 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1314 return bh;
1315}
3b5e6454 1316EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1317
1318/*
1319 * Do async read-ahead on a buffer..
1320 */
3991d3bd 1321void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1322{
1323 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1324 if (likely(bh)) {
70246286 1325 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1326 brelse(bh);
1327 }
1da177e4
LT
1328}
1329EXPORT_SYMBOL(__breadahead);
1330
1331/**
3b5e6454 1332 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1333 * @bdev: the block_device to read from
1da177e4
LT
1334 * @block: number of block
1335 * @size: size (in bytes) to read
3b5e6454
GK
1336 * @gfp: page allocation flag
1337 *
1da177e4 1338 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1339 * The page cache can be allocated from non-movable area
1340 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1341 * It returns NULL if the block was unreadable.
1342 */
1343struct buffer_head *
3b5e6454
GK
1344__bread_gfp(struct block_device *bdev, sector_t block,
1345 unsigned size, gfp_t gfp)
1da177e4 1346{
3b5e6454 1347 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1348
a3e713b5 1349 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1350 bh = __bread_slow(bh);
1351 return bh;
1352}
3b5e6454 1353EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1354
1355/*
1356 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357 * This doesn't race because it runs in each cpu either in irq
1358 * or with preempt disabled.
1359 */
1360static void invalidate_bh_lru(void *arg)
1361{
1362 struct bh_lru *b = &get_cpu_var(bh_lrus);
1363 int i;
1364
1365 for (i = 0; i < BH_LRU_SIZE; i++) {
1366 brelse(b->bhs[i]);
1367 b->bhs[i] = NULL;
1368 }
1369 put_cpu_var(bh_lrus);
1370}
42be35d0
GBY
1371
1372static bool has_bh_in_lru(int cpu, void *dummy)
1373{
1374 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1375 int i;
1da177e4 1376
42be35d0
GBY
1377 for (i = 0; i < BH_LRU_SIZE; i++) {
1378 if (b->bhs[i])
1379 return 1;
1380 }
1381
1382 return 0;
1383}
1384
f9a14399 1385void invalidate_bh_lrus(void)
1da177e4 1386{
42be35d0 1387 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1388}
9db5579b 1389EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1390
1391void set_bh_page(struct buffer_head *bh,
1392 struct page *page, unsigned long offset)
1393{
1394 bh->b_page = page;
e827f923 1395 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1396 if (PageHighMem(page))
1397 /*
1398 * This catches illegal uses and preserves the offset:
1399 */
1400 bh->b_data = (char *)(0 + offset);
1401 else
1402 bh->b_data = page_address(page) + offset;
1403}
1404EXPORT_SYMBOL(set_bh_page);
1405
1406/*
1407 * Called when truncating a buffer on a page completely.
1408 */
e7470ee8
MG
1409
1410/* Bits that are cleared during an invalidate */
1411#define BUFFER_FLAGS_DISCARD \
1412 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413 1 << BH_Delay | 1 << BH_Unwritten)
1414
858119e1 1415static void discard_buffer(struct buffer_head * bh)
1da177e4 1416{
e7470ee8
MG
1417 unsigned long b_state, b_state_old;
1418
1da177e4
LT
1419 lock_buffer(bh);
1420 clear_buffer_dirty(bh);
1421 bh->b_bdev = NULL;
e7470ee8
MG
1422 b_state = bh->b_state;
1423 for (;;) {
1424 b_state_old = cmpxchg(&bh->b_state, b_state,
1425 (b_state & ~BUFFER_FLAGS_DISCARD));
1426 if (b_state_old == b_state)
1427 break;
1428 b_state = b_state_old;
1429 }
1da177e4
LT
1430 unlock_buffer(bh);
1431}
1432
1da177e4 1433/**
814e1d25 1434 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1435 *
1436 * @page: the page which is affected
d47992f8
LC
1437 * @offset: start of the range to invalidate
1438 * @length: length of the range to invalidate
1da177e4
LT
1439 *
1440 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1441 * invalidated by a truncate operation.
1da177e4
LT
1442 *
1443 * block_invalidatepage() does not have to release all buffers, but it must
1444 * ensure that no dirty buffer is left outside @offset and that no I/O
1445 * is underway against any of the blocks which are outside the truncation
1446 * point. Because the caller is about to free (and possibly reuse) those
1447 * blocks on-disk.
1448 */
d47992f8
LC
1449void block_invalidatepage(struct page *page, unsigned int offset,
1450 unsigned int length)
1da177e4
LT
1451{
1452 struct buffer_head *head, *bh, *next;
1453 unsigned int curr_off = 0;
d47992f8 1454 unsigned int stop = length + offset;
1da177e4
LT
1455
1456 BUG_ON(!PageLocked(page));
1457 if (!page_has_buffers(page))
1458 goto out;
1459
d47992f8
LC
1460 /*
1461 * Check for overflow
1462 */
09cbfeaf 1463 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1464
1da177e4
LT
1465 head = page_buffers(page);
1466 bh = head;
1467 do {
1468 unsigned int next_off = curr_off + bh->b_size;
1469 next = bh->b_this_page;
1470
d47992f8
LC
1471 /*
1472 * Are we still fully in range ?
1473 */
1474 if (next_off > stop)
1475 goto out;
1476
1da177e4
LT
1477 /*
1478 * is this block fully invalidated?
1479 */
1480 if (offset <= curr_off)
1481 discard_buffer(bh);
1482 curr_off = next_off;
1483 bh = next;
1484 } while (bh != head);
1485
1486 /*
1487 * We release buffers only if the entire page is being invalidated.
1488 * The get_block cached value has been unconditionally invalidated,
1489 * so real IO is not possible anymore.
1490 */
3172485f 1491 if (length == PAGE_SIZE)
2ff28e22 1492 try_to_release_page(page, 0);
1da177e4 1493out:
2ff28e22 1494 return;
1da177e4
LT
1495}
1496EXPORT_SYMBOL(block_invalidatepage);
1497
d47992f8 1498
1da177e4
LT
1499/*
1500 * We attach and possibly dirty the buffers atomically wrt
1501 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1502 * is already excluded via the page lock.
1503 */
1504void create_empty_buffers(struct page *page,
1505 unsigned long blocksize, unsigned long b_state)
1506{
1507 struct buffer_head *bh, *head, *tail;
1508
640ab98f 1509 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1510 bh = head;
1511 do {
1512 bh->b_state |= b_state;
1513 tail = bh;
1514 bh = bh->b_this_page;
1515 } while (bh);
1516 tail->b_this_page = head;
1517
1518 spin_lock(&page->mapping->private_lock);
1519 if (PageUptodate(page) || PageDirty(page)) {
1520 bh = head;
1521 do {
1522 if (PageDirty(page))
1523 set_buffer_dirty(bh);
1524 if (PageUptodate(page))
1525 set_buffer_uptodate(bh);
1526 bh = bh->b_this_page;
1527 } while (bh != head);
1528 }
1529 attach_page_buffers(page, head);
1530 spin_unlock(&page->mapping->private_lock);
1531}
1532EXPORT_SYMBOL(create_empty_buffers);
1533
29f3ad7d
JK
1534/**
1535 * clean_bdev_aliases: clean a range of buffers in block device
1536 * @bdev: Block device to clean buffers in
1537 * @block: Start of a range of blocks to clean
1538 * @len: Number of blocks to clean
1da177e4 1539 *
29f3ad7d
JK
1540 * We are taking a range of blocks for data and we don't want writeback of any
1541 * buffer-cache aliases starting from return from this function and until the
1542 * moment when something will explicitly mark the buffer dirty (hopefully that
1543 * will not happen until we will free that block ;-) We don't even need to mark
1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547 * would confuse anyone who might pick it with bread() afterwards...
1548 *
1549 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1550 * writeout I/O going on against recently-freed buffers. We don't wait on that
1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552 * need to. That happens here.
1da177e4 1553 */
29f3ad7d 1554void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1555{
29f3ad7d
JK
1556 struct inode *bd_inode = bdev->bd_inode;
1557 struct address_space *bd_mapping = bd_inode->i_mapping;
1558 struct pagevec pvec;
1559 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1560 pgoff_t end;
c10f778d 1561 int i, count;
29f3ad7d
JK
1562 struct buffer_head *bh;
1563 struct buffer_head *head;
1da177e4 1564
29f3ad7d 1565 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
86679820 1566 pagevec_init(&pvec);
397162ff 1567 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1568 count = pagevec_count(&pvec);
1569 for (i = 0; i < count; i++) {
29f3ad7d 1570 struct page *page = pvec.pages[i];
1da177e4 1571
29f3ad7d
JK
1572 if (!page_has_buffers(page))
1573 continue;
1574 /*
1575 * We use page lock instead of bd_mapping->private_lock
1576 * to pin buffers here since we can afford to sleep and
1577 * it scales better than a global spinlock lock.
1578 */
1579 lock_page(page);
1580 /* Recheck when the page is locked which pins bhs */
1581 if (!page_has_buffers(page))
1582 goto unlock_page;
1583 head = page_buffers(page);
1584 bh = head;
1585 do {
6c006a9d 1586 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1587 goto next;
1588 if (bh->b_blocknr >= block + len)
1589 break;
1590 clear_buffer_dirty(bh);
1591 wait_on_buffer(bh);
1592 clear_buffer_req(bh);
1593next:
1594 bh = bh->b_this_page;
1595 } while (bh != head);
1596unlock_page:
1597 unlock_page(page);
1598 }
1599 pagevec_release(&pvec);
1600 cond_resched();
c10f778d
JK
1601 /* End of range already reached? */
1602 if (index > end || !index)
1603 break;
1da177e4
LT
1604 }
1605}
29f3ad7d 1606EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1607
45bce8f3
LT
1608/*
1609 * Size is a power-of-two in the range 512..PAGE_SIZE,
1610 * and the case we care about most is PAGE_SIZE.
1611 *
1612 * So this *could* possibly be written with those
1613 * constraints in mind (relevant mostly if some
1614 * architecture has a slow bit-scan instruction)
1615 */
1616static inline int block_size_bits(unsigned int blocksize)
1617{
1618 return ilog2(blocksize);
1619}
1620
1621static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1622{
1623 BUG_ON(!PageLocked(page));
1624
1625 if (!page_has_buffers(page))
6aa7de05
MR
1626 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1627 b_state);
45bce8f3
LT
1628 return page_buffers(page);
1629}
1630
1da177e4
LT
1631/*
1632 * NOTE! All mapped/uptodate combinations are valid:
1633 *
1634 * Mapped Uptodate Meaning
1635 *
1636 * No No "unknown" - must do get_block()
1637 * No Yes "hole" - zero-filled
1638 * Yes No "allocated" - allocated on disk, not read in
1639 * Yes Yes "valid" - allocated and up-to-date in memory.
1640 *
1641 * "Dirty" is valid only with the last case (mapped+uptodate).
1642 */
1643
1644/*
1645 * While block_write_full_page is writing back the dirty buffers under
1646 * the page lock, whoever dirtied the buffers may decide to clean them
1647 * again at any time. We handle that by only looking at the buffer
1648 * state inside lock_buffer().
1649 *
1650 * If block_write_full_page() is called for regular writeback
1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652 * locked buffer. This only can happen if someone has written the buffer
1653 * directly, with submit_bh(). At the address_space level PageWriteback
1654 * prevents this contention from occurring.
6e34eedd
TT
1655 *
1656 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1658 * causes the writes to be flagged as synchronous writes.
1da177e4 1659 */
b4bba389 1660int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1661 get_block_t *get_block, struct writeback_control *wbc,
1662 bh_end_io_t *handler)
1da177e4
LT
1663{
1664 int err;
1665 sector_t block;
1666 sector_t last_block;
f0fbd5fc 1667 struct buffer_head *bh, *head;
45bce8f3 1668 unsigned int blocksize, bbits;
1da177e4 1669 int nr_underway = 0;
7637241e 1670 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1671
45bce8f3 1672 head = create_page_buffers(page, inode,
1da177e4 1673 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1674
1675 /*
1676 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1677 * here, and the (potentially unmapped) buffers may become dirty at
1678 * any time. If a buffer becomes dirty here after we've inspected it
1679 * then we just miss that fact, and the page stays dirty.
1680 *
1681 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682 * handle that here by just cleaning them.
1683 */
1684
1da177e4 1685 bh = head;
45bce8f3
LT
1686 blocksize = bh->b_size;
1687 bbits = block_size_bits(blocksize);
1688
09cbfeaf 1689 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1690 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1691
1692 /*
1693 * Get all the dirty buffers mapped to disk addresses and
1694 * handle any aliases from the underlying blockdev's mapping.
1695 */
1696 do {
1697 if (block > last_block) {
1698 /*
1699 * mapped buffers outside i_size will occur, because
1700 * this page can be outside i_size when there is a
1701 * truncate in progress.
1702 */
1703 /*
1704 * The buffer was zeroed by block_write_full_page()
1705 */
1706 clear_buffer_dirty(bh);
1707 set_buffer_uptodate(bh);
29a814d2
AT
1708 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1709 buffer_dirty(bh)) {
b0cf2321 1710 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1711 err = get_block(inode, block, bh, 1);
1712 if (err)
1713 goto recover;
29a814d2 1714 clear_buffer_delay(bh);
1da177e4
LT
1715 if (buffer_new(bh)) {
1716 /* blockdev mappings never come here */
1717 clear_buffer_new(bh);
e64855c6 1718 clean_bdev_bh_alias(bh);
1da177e4
LT
1719 }
1720 }
1721 bh = bh->b_this_page;
1722 block++;
1723 } while (bh != head);
1724
1725 do {
1da177e4
LT
1726 if (!buffer_mapped(bh))
1727 continue;
1728 /*
1729 * If it's a fully non-blocking write attempt and we cannot
1730 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1731 * potentially cause a busy-wait loop from writeback threads
1732 * and kswapd activity, but those code paths have their own
1733 * higher-level throttling.
1da177e4 1734 */
1b430bee 1735 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1736 lock_buffer(bh);
ca5de404 1737 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1738 redirty_page_for_writepage(wbc, page);
1739 continue;
1740 }
1741 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1742 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1743 } else {
1744 unlock_buffer(bh);
1745 }
1746 } while ((bh = bh->b_this_page) != head);
1747
1748 /*
1749 * The page and its buffers are protected by PageWriteback(), so we can
1750 * drop the bh refcounts early.
1751 */
1752 BUG_ON(PageWriteback(page));
1753 set_page_writeback(page);
1da177e4
LT
1754
1755 do {
1756 struct buffer_head *next = bh->b_this_page;
1757 if (buffer_async_write(bh)) {
8e8f9298
JA
1758 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1759 inode->i_write_hint, wbc);
1da177e4
LT
1760 nr_underway++;
1761 }
1da177e4
LT
1762 bh = next;
1763 } while (bh != head);
05937baa 1764 unlock_page(page);
1da177e4
LT
1765
1766 err = 0;
1767done:
1768 if (nr_underway == 0) {
1769 /*
1770 * The page was marked dirty, but the buffers were
1771 * clean. Someone wrote them back by hand with
1772 * ll_rw_block/submit_bh. A rare case.
1773 */
1da177e4 1774 end_page_writeback(page);
3d67f2d7 1775
1da177e4
LT
1776 /*
1777 * The page and buffer_heads can be released at any time from
1778 * here on.
1779 */
1da177e4
LT
1780 }
1781 return err;
1782
1783recover:
1784 /*
1785 * ENOSPC, or some other error. We may already have added some
1786 * blocks to the file, so we need to write these out to avoid
1787 * exposing stale data.
1788 * The page is currently locked and not marked for writeback
1789 */
1790 bh = head;
1791 /* Recovery: lock and submit the mapped buffers */
1792 do {
29a814d2
AT
1793 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1794 !buffer_delay(bh)) {
1da177e4 1795 lock_buffer(bh);
35c80d5f 1796 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1797 } else {
1798 /*
1799 * The buffer may have been set dirty during
1800 * attachment to a dirty page.
1801 */
1802 clear_buffer_dirty(bh);
1803 }
1804 } while ((bh = bh->b_this_page) != head);
1805 SetPageError(page);
1806 BUG_ON(PageWriteback(page));
7e4c3690 1807 mapping_set_error(page->mapping, err);
1da177e4 1808 set_page_writeback(page);
1da177e4
LT
1809 do {
1810 struct buffer_head *next = bh->b_this_page;
1811 if (buffer_async_write(bh)) {
1812 clear_buffer_dirty(bh);
8e8f9298
JA
1813 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814 inode->i_write_hint, wbc);
1da177e4
LT
1815 nr_underway++;
1816 }
1da177e4
LT
1817 bh = next;
1818 } while (bh != head);
ffda9d30 1819 unlock_page(page);
1da177e4
LT
1820 goto done;
1821}
b4bba389 1822EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1823
afddba49
NP
1824/*
1825 * If a page has any new buffers, zero them out here, and mark them uptodate
1826 * and dirty so they'll be written out (in order to prevent uninitialised
1827 * block data from leaking). And clear the new bit.
1828 */
1829void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1830{
1831 unsigned int block_start, block_end;
1832 struct buffer_head *head, *bh;
1833
1834 BUG_ON(!PageLocked(page));
1835 if (!page_has_buffers(page))
1836 return;
1837
1838 bh = head = page_buffers(page);
1839 block_start = 0;
1840 do {
1841 block_end = block_start + bh->b_size;
1842
1843 if (buffer_new(bh)) {
1844 if (block_end > from && block_start < to) {
1845 if (!PageUptodate(page)) {
1846 unsigned start, size;
1847
1848 start = max(from, block_start);
1849 size = min(to, block_end) - start;
1850
eebd2aa3 1851 zero_user(page, start, size);
afddba49
NP
1852 set_buffer_uptodate(bh);
1853 }
1854
1855 clear_buffer_new(bh);
1856 mark_buffer_dirty(bh);
1857 }
1858 }
1859
1860 block_start = block_end;
1861 bh = bh->b_this_page;
1862 } while (bh != head);
1863}
1864EXPORT_SYMBOL(page_zero_new_buffers);
1865
ae259a9c
CH
1866static void
1867iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1868 struct iomap *iomap)
1869{
1870 loff_t offset = block << inode->i_blkbits;
1871
1872 bh->b_bdev = iomap->bdev;
1873
1874 /*
1875 * Block points to offset in file we need to map, iomap contains
1876 * the offset at which the map starts. If the map ends before the
1877 * current block, then do not map the buffer and let the caller
1878 * handle it.
1879 */
1880 BUG_ON(offset >= iomap->offset + iomap->length);
1881
1882 switch (iomap->type) {
1883 case IOMAP_HOLE:
1884 /*
1885 * If the buffer is not up to date or beyond the current EOF,
1886 * we need to mark it as new to ensure sub-block zeroing is
1887 * executed if necessary.
1888 */
1889 if (!buffer_uptodate(bh) ||
1890 (offset >= i_size_read(inode)))
1891 set_buffer_new(bh);
1892 break;
1893 case IOMAP_DELALLOC:
1894 if (!buffer_uptodate(bh) ||
1895 (offset >= i_size_read(inode)))
1896 set_buffer_new(bh);
1897 set_buffer_uptodate(bh);
1898 set_buffer_mapped(bh);
1899 set_buffer_delay(bh);
1900 break;
1901 case IOMAP_UNWRITTEN:
1902 /*
3d7b6b21
AG
1903 * For unwritten regions, we always need to ensure that regions
1904 * in the block we are not writing to are zeroed. Mark the
1905 * buffer as new to ensure this.
ae259a9c
CH
1906 */
1907 set_buffer_new(bh);
1908 set_buffer_unwritten(bh);
1909 /* FALLTHRU */
1910 case IOMAP_MAPPED:
3d7b6b21
AG
1911 if ((iomap->flags & IOMAP_F_NEW) ||
1912 offset >= i_size_read(inode))
ae259a9c 1913 set_buffer_new(bh);
19fe5f64
AG
1914 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1915 inode->i_blkbits;
ae259a9c
CH
1916 set_buffer_mapped(bh);
1917 break;
1918 }
1919}
1920
1921int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1922 get_block_t *get_block, struct iomap *iomap)
1da177e4 1923{
09cbfeaf 1924 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1925 unsigned to = from + len;
6e1db88d 1926 struct inode *inode = page->mapping->host;
1da177e4
LT
1927 unsigned block_start, block_end;
1928 sector_t block;
1929 int err = 0;
1930 unsigned blocksize, bbits;
1931 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1932
1933 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1934 BUG_ON(from > PAGE_SIZE);
1935 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1936 BUG_ON(from > to);
1937
45bce8f3
LT
1938 head = create_page_buffers(page, inode, 0);
1939 blocksize = head->b_size;
1940 bbits = block_size_bits(blocksize);
1da177e4 1941
09cbfeaf 1942 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
1943
1944 for(bh = head, block_start = 0; bh != head || !block_start;
1945 block++, block_start=block_end, bh = bh->b_this_page) {
1946 block_end = block_start + blocksize;
1947 if (block_end <= from || block_start >= to) {
1948 if (PageUptodate(page)) {
1949 if (!buffer_uptodate(bh))
1950 set_buffer_uptodate(bh);
1951 }
1952 continue;
1953 }
1954 if (buffer_new(bh))
1955 clear_buffer_new(bh);
1956 if (!buffer_mapped(bh)) {
b0cf2321 1957 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
1958 if (get_block) {
1959 err = get_block(inode, block, bh, 1);
1960 if (err)
1961 break;
1962 } else {
1963 iomap_to_bh(inode, block, bh, iomap);
1964 }
1965
1da177e4 1966 if (buffer_new(bh)) {
e64855c6 1967 clean_bdev_bh_alias(bh);
1da177e4 1968 if (PageUptodate(page)) {
637aff46 1969 clear_buffer_new(bh);
1da177e4 1970 set_buffer_uptodate(bh);
637aff46 1971 mark_buffer_dirty(bh);
1da177e4
LT
1972 continue;
1973 }
eebd2aa3
CL
1974 if (block_end > to || block_start < from)
1975 zero_user_segments(page,
1976 to, block_end,
1977 block_start, from);
1da177e4
LT
1978 continue;
1979 }
1980 }
1981 if (PageUptodate(page)) {
1982 if (!buffer_uptodate(bh))
1983 set_buffer_uptodate(bh);
1984 continue;
1985 }
1986 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1987 !buffer_unwritten(bh) &&
1da177e4 1988 (block_start < from || block_end > to)) {
dfec8a14 1989 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
1990 *wait_bh++=bh;
1991 }
1992 }
1993 /*
1994 * If we issued read requests - let them complete.
1995 */
1996 while(wait_bh > wait) {
1997 wait_on_buffer(*--wait_bh);
1998 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1999 err = -EIO;
1da177e4 2000 }
f9f07b6c 2001 if (unlikely(err))
afddba49 2002 page_zero_new_buffers(page, from, to);
1da177e4
LT
2003 return err;
2004}
ae259a9c
CH
2005
2006int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2007 get_block_t *get_block)
2008{
2009 return __block_write_begin_int(page, pos, len, get_block, NULL);
2010}
ebdec241 2011EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2012
2013static int __block_commit_write(struct inode *inode, struct page *page,
2014 unsigned from, unsigned to)
2015{
2016 unsigned block_start, block_end;
2017 int partial = 0;
2018 unsigned blocksize;
2019 struct buffer_head *bh, *head;
2020
45bce8f3
LT
2021 bh = head = page_buffers(page);
2022 blocksize = bh->b_size;
1da177e4 2023
45bce8f3
LT
2024 block_start = 0;
2025 do {
1da177e4
LT
2026 block_end = block_start + blocksize;
2027 if (block_end <= from || block_start >= to) {
2028 if (!buffer_uptodate(bh))
2029 partial = 1;
2030 } else {
2031 set_buffer_uptodate(bh);
2032 mark_buffer_dirty(bh);
2033 }
afddba49 2034 clear_buffer_new(bh);
45bce8f3
LT
2035
2036 block_start = block_end;
2037 bh = bh->b_this_page;
2038 } while (bh != head);
1da177e4
LT
2039
2040 /*
2041 * If this is a partial write which happened to make all buffers
2042 * uptodate then we can optimize away a bogus readpage() for
2043 * the next read(). Here we 'discover' whether the page went
2044 * uptodate as a result of this (potentially partial) write.
2045 */
2046 if (!partial)
2047 SetPageUptodate(page);
2048 return 0;
2049}
2050
afddba49 2051/*
155130a4
CH
2052 * block_write_begin takes care of the basic task of block allocation and
2053 * bringing partial write blocks uptodate first.
2054 *
7bb46a67 2055 * The filesystem needs to handle block truncation upon failure.
afddba49 2056 */
155130a4
CH
2057int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2058 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2059{
09cbfeaf 2060 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2061 struct page *page;
6e1db88d 2062 int status;
afddba49 2063
6e1db88d
CH
2064 page = grab_cache_page_write_begin(mapping, index, flags);
2065 if (!page)
2066 return -ENOMEM;
afddba49 2067
6e1db88d 2068 status = __block_write_begin(page, pos, len, get_block);
afddba49 2069 if (unlikely(status)) {
6e1db88d 2070 unlock_page(page);
09cbfeaf 2071 put_page(page);
6e1db88d 2072 page = NULL;
afddba49
NP
2073 }
2074
6e1db88d 2075 *pagep = page;
afddba49
NP
2076 return status;
2077}
2078EXPORT_SYMBOL(block_write_begin);
2079
a6d639da
CH
2080int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2081 struct page *page)
2082{
2083 loff_t old_size = inode->i_size;
2084 bool i_size_changed = false;
2085
2086 /*
2087 * No need to use i_size_read() here, the i_size cannot change under us
2088 * because we hold i_rwsem.
2089 *
2090 * But it's important to update i_size while still holding page lock:
2091 * page writeout could otherwise come in and zero beyond i_size.
2092 */
2093 if (pos + copied > inode->i_size) {
2094 i_size_write(inode, pos + copied);
2095 i_size_changed = true;
2096 }
2097
2098 unlock_page(page);
2099 put_page(page);
2100
2101 if (old_size < pos)
2102 pagecache_isize_extended(inode, old_size, pos);
2103 /*
2104 * Don't mark the inode dirty under page lock. First, it unnecessarily
2105 * makes the holding time of page lock longer. Second, it forces lock
2106 * ordering of page lock and transaction start for journaling
2107 * filesystems.
2108 */
2109 if (i_size_changed)
2110 mark_inode_dirty(inode);
2111 return copied;
2112}
2113
afddba49
NP
2114int block_write_end(struct file *file, struct address_space *mapping,
2115 loff_t pos, unsigned len, unsigned copied,
2116 struct page *page, void *fsdata)
2117{
2118 struct inode *inode = mapping->host;
2119 unsigned start;
2120
09cbfeaf 2121 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2122
2123 if (unlikely(copied < len)) {
2124 /*
2125 * The buffers that were written will now be uptodate, so we
2126 * don't have to worry about a readpage reading them and
2127 * overwriting a partial write. However if we have encountered
2128 * a short write and only partially written into a buffer, it
2129 * will not be marked uptodate, so a readpage might come in and
2130 * destroy our partial write.
2131 *
2132 * Do the simplest thing, and just treat any short write to a
2133 * non uptodate page as a zero-length write, and force the
2134 * caller to redo the whole thing.
2135 */
2136 if (!PageUptodate(page))
2137 copied = 0;
2138
2139 page_zero_new_buffers(page, start+copied, start+len);
2140 }
2141 flush_dcache_page(page);
2142
2143 /* This could be a short (even 0-length) commit */
2144 __block_commit_write(inode, page, start, start+copied);
2145
2146 return copied;
2147}
2148EXPORT_SYMBOL(block_write_end);
2149
2150int generic_write_end(struct file *file, struct address_space *mapping,
2151 loff_t pos, unsigned len, unsigned copied,
2152 struct page *page, void *fsdata)
2153{
afddba49 2154 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
a6d639da 2155 return __generic_write_end(mapping->host, pos, copied, page);
afddba49
NP
2156}
2157EXPORT_SYMBOL(generic_write_end);
2158
8ab22b9a
HH
2159/*
2160 * block_is_partially_uptodate checks whether buffers within a page are
2161 * uptodate or not.
2162 *
2163 * Returns true if all buffers which correspond to a file portion
2164 * we want to read are uptodate.
2165 */
c186afb4
AV
2166int block_is_partially_uptodate(struct page *page, unsigned long from,
2167 unsigned long count)
8ab22b9a 2168{
8ab22b9a
HH
2169 unsigned block_start, block_end, blocksize;
2170 unsigned to;
2171 struct buffer_head *bh, *head;
2172 int ret = 1;
2173
2174 if (!page_has_buffers(page))
2175 return 0;
2176
45bce8f3
LT
2177 head = page_buffers(page);
2178 blocksize = head->b_size;
09cbfeaf 2179 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2180 to = from + to;
09cbfeaf 2181 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2182 return 0;
2183
8ab22b9a
HH
2184 bh = head;
2185 block_start = 0;
2186 do {
2187 block_end = block_start + blocksize;
2188 if (block_end > from && block_start < to) {
2189 if (!buffer_uptodate(bh)) {
2190 ret = 0;
2191 break;
2192 }
2193 if (block_end >= to)
2194 break;
2195 }
2196 block_start = block_end;
2197 bh = bh->b_this_page;
2198 } while (bh != head);
2199
2200 return ret;
2201}
2202EXPORT_SYMBOL(block_is_partially_uptodate);
2203
1da177e4
LT
2204/*
2205 * Generic "read page" function for block devices that have the normal
2206 * get_block functionality. This is most of the block device filesystems.
2207 * Reads the page asynchronously --- the unlock_buffer() and
2208 * set/clear_buffer_uptodate() functions propagate buffer state into the
2209 * page struct once IO has completed.
2210 */
2211int block_read_full_page(struct page *page, get_block_t *get_block)
2212{
2213 struct inode *inode = page->mapping->host;
2214 sector_t iblock, lblock;
2215 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2216 unsigned int blocksize, bbits;
1da177e4
LT
2217 int nr, i;
2218 int fully_mapped = 1;
2219
45bce8f3
LT
2220 head = create_page_buffers(page, inode, 0);
2221 blocksize = head->b_size;
2222 bbits = block_size_bits(blocksize);
1da177e4 2223
09cbfeaf 2224 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2225 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2226 bh = head;
2227 nr = 0;
2228 i = 0;
2229
2230 do {
2231 if (buffer_uptodate(bh))
2232 continue;
2233
2234 if (!buffer_mapped(bh)) {
c64610ba
AM
2235 int err = 0;
2236
1da177e4
LT
2237 fully_mapped = 0;
2238 if (iblock < lblock) {
b0cf2321 2239 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2240 err = get_block(inode, iblock, bh, 0);
2241 if (err)
1da177e4
LT
2242 SetPageError(page);
2243 }
2244 if (!buffer_mapped(bh)) {
eebd2aa3 2245 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2246 if (!err)
2247 set_buffer_uptodate(bh);
1da177e4
LT
2248 continue;
2249 }
2250 /*
2251 * get_block() might have updated the buffer
2252 * synchronously
2253 */
2254 if (buffer_uptodate(bh))
2255 continue;
2256 }
2257 arr[nr++] = bh;
2258 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2259
2260 if (fully_mapped)
2261 SetPageMappedToDisk(page);
2262
2263 if (!nr) {
2264 /*
2265 * All buffers are uptodate - we can set the page uptodate
2266 * as well. But not if get_block() returned an error.
2267 */
2268 if (!PageError(page))
2269 SetPageUptodate(page);
2270 unlock_page(page);
2271 return 0;
2272 }
2273
2274 /* Stage two: lock the buffers */
2275 for (i = 0; i < nr; i++) {
2276 bh = arr[i];
2277 lock_buffer(bh);
2278 mark_buffer_async_read(bh);
2279 }
2280
2281 /*
2282 * Stage 3: start the IO. Check for uptodateness
2283 * inside the buffer lock in case another process reading
2284 * the underlying blockdev brought it uptodate (the sct fix).
2285 */
2286 for (i = 0; i < nr; i++) {
2287 bh = arr[i];
2288 if (buffer_uptodate(bh))
2289 end_buffer_async_read(bh, 1);
2290 else
2a222ca9 2291 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2292 }
2293 return 0;
2294}
1fe72eaa 2295EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2296
2297/* utility function for filesystems that need to do work on expanding
89e10787 2298 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2299 * deal with the hole.
2300 */
89e10787 2301int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2302{
2303 struct address_space *mapping = inode->i_mapping;
2304 struct page *page;
89e10787 2305 void *fsdata;
1da177e4
LT
2306 int err;
2307
c08d3b0e
NP
2308 err = inode_newsize_ok(inode, size);
2309 if (err)
1da177e4
LT
2310 goto out;
2311
89e10787 2312 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2313 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2314 if (err)
05eb0b51 2315 goto out;
05eb0b51 2316
89e10787
NP
2317 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2318 BUG_ON(err > 0);
05eb0b51 2319
1da177e4
LT
2320out:
2321 return err;
2322}
1fe72eaa 2323EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2324
f1e3af72
AB
2325static int cont_expand_zero(struct file *file, struct address_space *mapping,
2326 loff_t pos, loff_t *bytes)
1da177e4 2327{
1da177e4 2328 struct inode *inode = mapping->host;
93407472 2329 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2330 struct page *page;
2331 void *fsdata;
2332 pgoff_t index, curidx;
2333 loff_t curpos;
2334 unsigned zerofrom, offset, len;
2335 int err = 0;
1da177e4 2336
09cbfeaf
KS
2337 index = pos >> PAGE_SHIFT;
2338 offset = pos & ~PAGE_MASK;
89e10787 2339
09cbfeaf
KS
2340 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2341 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2342 if (zerofrom & (blocksize-1)) {
2343 *bytes |= (blocksize-1);
2344 (*bytes)++;
2345 }
09cbfeaf 2346 len = PAGE_SIZE - zerofrom;
1da177e4 2347
c718a975
TH
2348 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2349 &page, &fsdata);
89e10787
NP
2350 if (err)
2351 goto out;
eebd2aa3 2352 zero_user(page, zerofrom, len);
89e10787
NP
2353 err = pagecache_write_end(file, mapping, curpos, len, len,
2354 page, fsdata);
2355 if (err < 0)
2356 goto out;
2357 BUG_ON(err != len);
2358 err = 0;
061e9746
OH
2359
2360 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2361
2362 if (unlikely(fatal_signal_pending(current))) {
2363 err = -EINTR;
2364 goto out;
2365 }
89e10787 2366 }
1da177e4 2367
89e10787
NP
2368 /* page covers the boundary, find the boundary offset */
2369 if (index == curidx) {
09cbfeaf 2370 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2371 /* if we will expand the thing last block will be filled */
89e10787
NP
2372 if (offset <= zerofrom) {
2373 goto out;
2374 }
2375 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2376 *bytes |= (blocksize-1);
2377 (*bytes)++;
2378 }
89e10787 2379 len = offset - zerofrom;
1da177e4 2380
c718a975
TH
2381 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2382 &page, &fsdata);
89e10787
NP
2383 if (err)
2384 goto out;
eebd2aa3 2385 zero_user(page, zerofrom, len);
89e10787
NP
2386 err = pagecache_write_end(file, mapping, curpos, len, len,
2387 page, fsdata);
2388 if (err < 0)
2389 goto out;
2390 BUG_ON(err != len);
2391 err = 0;
1da177e4 2392 }
89e10787
NP
2393out:
2394 return err;
2395}
2396
2397/*
2398 * For moronic filesystems that do not allow holes in file.
2399 * We may have to extend the file.
2400 */
282dc178 2401int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2402 loff_t pos, unsigned len, unsigned flags,
2403 struct page **pagep, void **fsdata,
2404 get_block_t *get_block, loff_t *bytes)
2405{
2406 struct inode *inode = mapping->host;
93407472
FF
2407 unsigned int blocksize = i_blocksize(inode);
2408 unsigned int zerofrom;
89e10787
NP
2409 int err;
2410
2411 err = cont_expand_zero(file, mapping, pos, bytes);
2412 if (err)
155130a4 2413 return err;
89e10787 2414
09cbfeaf 2415 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2416 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2417 *bytes |= (blocksize-1);
2418 (*bytes)++;
1da177e4 2419 }
1da177e4 2420
155130a4 2421 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2422}
1fe72eaa 2423EXPORT_SYMBOL(cont_write_begin);
1da177e4 2424
1da177e4
LT
2425int block_commit_write(struct page *page, unsigned from, unsigned to)
2426{
2427 struct inode *inode = page->mapping->host;
2428 __block_commit_write(inode,page,from,to);
2429 return 0;
2430}
1fe72eaa 2431EXPORT_SYMBOL(block_commit_write);
1da177e4 2432
54171690
DC
2433/*
2434 * block_page_mkwrite() is not allowed to change the file size as it gets
2435 * called from a page fault handler when a page is first dirtied. Hence we must
2436 * be careful to check for EOF conditions here. We set the page up correctly
2437 * for a written page which means we get ENOSPC checking when writing into
2438 * holes and correct delalloc and unwritten extent mapping on filesystems that
2439 * support these features.
2440 *
2441 * We are not allowed to take the i_mutex here so we have to play games to
2442 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2443 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2444 * page lock we can determine safely if the page is beyond EOF. If it is not
2445 * beyond EOF, then the page is guaranteed safe against truncation until we
2446 * unlock the page.
ea13a864 2447 *
14da9200 2448 * Direct callers of this function should protect against filesystem freezing
5c500029 2449 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2450 */
5c500029 2451int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2452 get_block_t get_block)
54171690 2453{
c2ec175c 2454 struct page *page = vmf->page;
496ad9aa 2455 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2456 unsigned long end;
2457 loff_t size;
24da4fab 2458 int ret;
54171690
DC
2459
2460 lock_page(page);
2461 size = i_size_read(inode);
2462 if ((page->mapping != inode->i_mapping) ||
18336338 2463 (page_offset(page) > size)) {
24da4fab
JK
2464 /* We overload EFAULT to mean page got truncated */
2465 ret = -EFAULT;
2466 goto out_unlock;
54171690
DC
2467 }
2468
2469 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2470 if (((page->index + 1) << PAGE_SHIFT) > size)
2471 end = size & ~PAGE_MASK;
54171690 2472 else
09cbfeaf 2473 end = PAGE_SIZE;
54171690 2474
ebdec241 2475 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2476 if (!ret)
2477 ret = block_commit_write(page, 0, end);
2478
24da4fab
JK
2479 if (unlikely(ret < 0))
2480 goto out_unlock;
ea13a864 2481 set_page_dirty(page);
1d1d1a76 2482 wait_for_stable_page(page);
24da4fab
JK
2483 return 0;
2484out_unlock:
2485 unlock_page(page);
54171690 2486 return ret;
24da4fab 2487}
1fe72eaa 2488EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2489
2490/*
03158cd7 2491 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2492 * immediately, while under the page lock. So it needs a special end_io
2493 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2494 */
2495static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2496{
68671f35 2497 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2498}
2499
03158cd7
NP
2500/*
2501 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2502 * the page (converting it to circular linked list and taking care of page
2503 * dirty races).
2504 */
2505static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2506{
2507 struct buffer_head *bh;
2508
2509 BUG_ON(!PageLocked(page));
2510
2511 spin_lock(&page->mapping->private_lock);
2512 bh = head;
2513 do {
2514 if (PageDirty(page))
2515 set_buffer_dirty(bh);
2516 if (!bh->b_this_page)
2517 bh->b_this_page = head;
2518 bh = bh->b_this_page;
2519 } while (bh != head);
2520 attach_page_buffers(page, head);
2521 spin_unlock(&page->mapping->private_lock);
2522}
2523
1da177e4 2524/*
ea0f04e5
CH
2525 * On entry, the page is fully not uptodate.
2526 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2527 * The filesystem needs to handle block truncation upon failure.
1da177e4 2528 */
ea0f04e5 2529int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2530 loff_t pos, unsigned len, unsigned flags,
2531 struct page **pagep, void **fsdata,
1da177e4
LT
2532 get_block_t *get_block)
2533{
03158cd7 2534 struct inode *inode = mapping->host;
1da177e4
LT
2535 const unsigned blkbits = inode->i_blkbits;
2536 const unsigned blocksize = 1 << blkbits;
a4b0672d 2537 struct buffer_head *head, *bh;
03158cd7
NP
2538 struct page *page;
2539 pgoff_t index;
2540 unsigned from, to;
1da177e4 2541 unsigned block_in_page;
a4b0672d 2542 unsigned block_start, block_end;
1da177e4 2543 sector_t block_in_file;
1da177e4 2544 int nr_reads = 0;
1da177e4
LT
2545 int ret = 0;
2546 int is_mapped_to_disk = 1;
1da177e4 2547
09cbfeaf
KS
2548 index = pos >> PAGE_SHIFT;
2549 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2550 to = from + len;
2551
54566b2c 2552 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2553 if (!page)
2554 return -ENOMEM;
2555 *pagep = page;
2556 *fsdata = NULL;
2557
2558 if (page_has_buffers(page)) {
309f77ad
NK
2559 ret = __block_write_begin(page, pos, len, get_block);
2560 if (unlikely(ret))
2561 goto out_release;
2562 return ret;
03158cd7 2563 }
a4b0672d 2564
1da177e4
LT
2565 if (PageMappedToDisk(page))
2566 return 0;
2567
a4b0672d
NP
2568 /*
2569 * Allocate buffers so that we can keep track of state, and potentially
2570 * attach them to the page if an error occurs. In the common case of
2571 * no error, they will just be freed again without ever being attached
2572 * to the page (which is all OK, because we're under the page lock).
2573 *
2574 * Be careful: the buffer linked list is a NULL terminated one, rather
2575 * than the circular one we're used to.
2576 */
640ab98f 2577 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2578 if (!head) {
2579 ret = -ENOMEM;
2580 goto out_release;
2581 }
a4b0672d 2582
09cbfeaf 2583 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2584
2585 /*
2586 * We loop across all blocks in the page, whether or not they are
2587 * part of the affected region. This is so we can discover if the
2588 * page is fully mapped-to-disk.
2589 */
a4b0672d 2590 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2591 block_start < PAGE_SIZE;
a4b0672d 2592 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2593 int create;
2594
a4b0672d
NP
2595 block_end = block_start + blocksize;
2596 bh->b_state = 0;
1da177e4
LT
2597 create = 1;
2598 if (block_start >= to)
2599 create = 0;
2600 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2601 bh, create);
1da177e4
LT
2602 if (ret)
2603 goto failed;
a4b0672d 2604 if (!buffer_mapped(bh))
1da177e4 2605 is_mapped_to_disk = 0;
a4b0672d 2606 if (buffer_new(bh))
e64855c6 2607 clean_bdev_bh_alias(bh);
a4b0672d
NP
2608 if (PageUptodate(page)) {
2609 set_buffer_uptodate(bh);
1da177e4 2610 continue;
a4b0672d
NP
2611 }
2612 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2613 zero_user_segments(page, block_start, from,
2614 to, block_end);
1da177e4
LT
2615 continue;
2616 }
a4b0672d 2617 if (buffer_uptodate(bh))
1da177e4
LT
2618 continue; /* reiserfs does this */
2619 if (block_start < from || block_end > to) {
a4b0672d
NP
2620 lock_buffer(bh);
2621 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2622 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2623 nr_reads++;
1da177e4
LT
2624 }
2625 }
2626
2627 if (nr_reads) {
1da177e4
LT
2628 /*
2629 * The page is locked, so these buffers are protected from
2630 * any VM or truncate activity. Hence we don't need to care
2631 * for the buffer_head refcounts.
2632 */
a4b0672d 2633 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2634 wait_on_buffer(bh);
2635 if (!buffer_uptodate(bh))
2636 ret = -EIO;
1da177e4
LT
2637 }
2638 if (ret)
2639 goto failed;
2640 }
2641
2642 if (is_mapped_to_disk)
2643 SetPageMappedToDisk(page);
1da177e4 2644
03158cd7 2645 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2646
1da177e4
LT
2647 return 0;
2648
2649failed:
03158cd7 2650 BUG_ON(!ret);
1da177e4 2651 /*
a4b0672d
NP
2652 * Error recovery is a bit difficult. We need to zero out blocks that
2653 * were newly allocated, and dirty them to ensure they get written out.
2654 * Buffers need to be attached to the page at this point, otherwise
2655 * the handling of potential IO errors during writeout would be hard
2656 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2657 */
03158cd7
NP
2658 attach_nobh_buffers(page, head);
2659 page_zero_new_buffers(page, from, to);
a4b0672d 2660
03158cd7
NP
2661out_release:
2662 unlock_page(page);
09cbfeaf 2663 put_page(page);
03158cd7 2664 *pagep = NULL;
a4b0672d 2665
7bb46a67
NP
2666 return ret;
2667}
03158cd7 2668EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2669
03158cd7
NP
2670int nobh_write_end(struct file *file, struct address_space *mapping,
2671 loff_t pos, unsigned len, unsigned copied,
2672 struct page *page, void *fsdata)
1da177e4
LT
2673{
2674 struct inode *inode = page->mapping->host;
efdc3131 2675 struct buffer_head *head = fsdata;
03158cd7 2676 struct buffer_head *bh;
5b41e74a 2677 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2678
d4cf109f 2679 if (unlikely(copied < len) && head)
5b41e74a
DM
2680 attach_nobh_buffers(page, head);
2681 if (page_has_buffers(page))
2682 return generic_write_end(file, mapping, pos, len,
2683 copied, page, fsdata);
a4b0672d 2684
22c8ca78 2685 SetPageUptodate(page);
1da177e4 2686 set_page_dirty(page);
03158cd7
NP
2687 if (pos+copied > inode->i_size) {
2688 i_size_write(inode, pos+copied);
1da177e4
LT
2689 mark_inode_dirty(inode);
2690 }
03158cd7
NP
2691
2692 unlock_page(page);
09cbfeaf 2693 put_page(page);
03158cd7 2694
03158cd7
NP
2695 while (head) {
2696 bh = head;
2697 head = head->b_this_page;
2698 free_buffer_head(bh);
2699 }
2700
2701 return copied;
1da177e4 2702}
03158cd7 2703EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2704
2705/*
2706 * nobh_writepage() - based on block_full_write_page() except
2707 * that it tries to operate without attaching bufferheads to
2708 * the page.
2709 */
2710int nobh_writepage(struct page *page, get_block_t *get_block,
2711 struct writeback_control *wbc)
2712{
2713 struct inode * const inode = page->mapping->host;
2714 loff_t i_size = i_size_read(inode);
09cbfeaf 2715 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2716 unsigned offset;
1da177e4
LT
2717 int ret;
2718
2719 /* Is the page fully inside i_size? */
2720 if (page->index < end_index)
2721 goto out;
2722
2723 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2724 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2725 if (page->index >= end_index+1 || !offset) {
2726 /*
2727 * The page may have dirty, unmapped buffers. For example,
2728 * they may have been added in ext3_writepage(). Make them
2729 * freeable here, so the page does not leak.
2730 */
2731#if 0
2732 /* Not really sure about this - do we need this ? */
2733 if (page->mapping->a_ops->invalidatepage)
2734 page->mapping->a_ops->invalidatepage(page, offset);
2735#endif
2736 unlock_page(page);
2737 return 0; /* don't care */
2738 }
2739
2740 /*
2741 * The page straddles i_size. It must be zeroed out on each and every
2742 * writepage invocation because it may be mmapped. "A file is mapped
2743 * in multiples of the page size. For a file that is not a multiple of
2744 * the page size, the remaining memory is zeroed when mapped, and
2745 * writes to that region are not written out to the file."
2746 */
09cbfeaf 2747 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2748out:
2749 ret = mpage_writepage(page, get_block, wbc);
2750 if (ret == -EAGAIN)
35c80d5f
CM
2751 ret = __block_write_full_page(inode, page, get_block, wbc,
2752 end_buffer_async_write);
1da177e4
LT
2753 return ret;
2754}
2755EXPORT_SYMBOL(nobh_writepage);
2756
03158cd7
NP
2757int nobh_truncate_page(struct address_space *mapping,
2758 loff_t from, get_block_t *get_block)
1da177e4 2759{
09cbfeaf
KS
2760 pgoff_t index = from >> PAGE_SHIFT;
2761 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2762 unsigned blocksize;
2763 sector_t iblock;
2764 unsigned length, pos;
2765 struct inode *inode = mapping->host;
1da177e4 2766 struct page *page;
03158cd7
NP
2767 struct buffer_head map_bh;
2768 int err;
1da177e4 2769
93407472 2770 blocksize = i_blocksize(inode);
03158cd7
NP
2771 length = offset & (blocksize - 1);
2772
2773 /* Block boundary? Nothing to do */
2774 if (!length)
2775 return 0;
2776
2777 length = blocksize - length;
09cbfeaf 2778 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2779
1da177e4 2780 page = grab_cache_page(mapping, index);
03158cd7 2781 err = -ENOMEM;
1da177e4
LT
2782 if (!page)
2783 goto out;
2784
03158cd7
NP
2785 if (page_has_buffers(page)) {
2786has_buffers:
2787 unlock_page(page);
09cbfeaf 2788 put_page(page);
03158cd7
NP
2789 return block_truncate_page(mapping, from, get_block);
2790 }
2791
2792 /* Find the buffer that contains "offset" */
2793 pos = blocksize;
2794 while (offset >= pos) {
2795 iblock++;
2796 pos += blocksize;
2797 }
2798
460bcf57
TT
2799 map_bh.b_size = blocksize;
2800 map_bh.b_state = 0;
03158cd7
NP
2801 err = get_block(inode, iblock, &map_bh, 0);
2802 if (err)
2803 goto unlock;
2804 /* unmapped? It's a hole - nothing to do */
2805 if (!buffer_mapped(&map_bh))
2806 goto unlock;
2807
2808 /* Ok, it's mapped. Make sure it's up-to-date */
2809 if (!PageUptodate(page)) {
2810 err = mapping->a_ops->readpage(NULL, page);
2811 if (err) {
09cbfeaf 2812 put_page(page);
03158cd7
NP
2813 goto out;
2814 }
2815 lock_page(page);
2816 if (!PageUptodate(page)) {
2817 err = -EIO;
2818 goto unlock;
2819 }
2820 if (page_has_buffers(page))
2821 goto has_buffers;
1da177e4 2822 }
eebd2aa3 2823 zero_user(page, offset, length);
03158cd7
NP
2824 set_page_dirty(page);
2825 err = 0;
2826
2827unlock:
1da177e4 2828 unlock_page(page);
09cbfeaf 2829 put_page(page);
1da177e4 2830out:
03158cd7 2831 return err;
1da177e4
LT
2832}
2833EXPORT_SYMBOL(nobh_truncate_page);
2834
2835int block_truncate_page(struct address_space *mapping,
2836 loff_t from, get_block_t *get_block)
2837{
09cbfeaf
KS
2838 pgoff_t index = from >> PAGE_SHIFT;
2839 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2840 unsigned blocksize;
54b21a79 2841 sector_t iblock;
1da177e4
LT
2842 unsigned length, pos;
2843 struct inode *inode = mapping->host;
2844 struct page *page;
2845 struct buffer_head *bh;
1da177e4
LT
2846 int err;
2847
93407472 2848 blocksize = i_blocksize(inode);
1da177e4
LT
2849 length = offset & (blocksize - 1);
2850
2851 /* Block boundary? Nothing to do */
2852 if (!length)
2853 return 0;
2854
2855 length = blocksize - length;
09cbfeaf 2856 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2857
2858 page = grab_cache_page(mapping, index);
2859 err = -ENOMEM;
2860 if (!page)
2861 goto out;
2862
2863 if (!page_has_buffers(page))
2864 create_empty_buffers(page, blocksize, 0);
2865
2866 /* Find the buffer that contains "offset" */
2867 bh = page_buffers(page);
2868 pos = blocksize;
2869 while (offset >= pos) {
2870 bh = bh->b_this_page;
2871 iblock++;
2872 pos += blocksize;
2873 }
2874
2875 err = 0;
2876 if (!buffer_mapped(bh)) {
b0cf2321 2877 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2878 err = get_block(inode, iblock, bh, 0);
2879 if (err)
2880 goto unlock;
2881 /* unmapped? It's a hole - nothing to do */
2882 if (!buffer_mapped(bh))
2883 goto unlock;
2884 }
2885
2886 /* Ok, it's mapped. Make sure it's up-to-date */
2887 if (PageUptodate(page))
2888 set_buffer_uptodate(bh);
2889
33a266dd 2890 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2891 err = -EIO;
dfec8a14 2892 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2893 wait_on_buffer(bh);
2894 /* Uhhuh. Read error. Complain and punt. */
2895 if (!buffer_uptodate(bh))
2896 goto unlock;
2897 }
2898
eebd2aa3 2899 zero_user(page, offset, length);
1da177e4
LT
2900 mark_buffer_dirty(bh);
2901 err = 0;
2902
2903unlock:
2904 unlock_page(page);
09cbfeaf 2905 put_page(page);
1da177e4
LT
2906out:
2907 return err;
2908}
1fe72eaa 2909EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2910
2911/*
2912 * The generic ->writepage function for buffer-backed address_spaces
2913 */
1b938c08
MW
2914int block_write_full_page(struct page *page, get_block_t *get_block,
2915 struct writeback_control *wbc)
1da177e4
LT
2916{
2917 struct inode * const inode = page->mapping->host;
2918 loff_t i_size = i_size_read(inode);
09cbfeaf 2919 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2920 unsigned offset;
1da177e4
LT
2921
2922 /* Is the page fully inside i_size? */
2923 if (page->index < end_index)
35c80d5f 2924 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2925 end_buffer_async_write);
1da177e4
LT
2926
2927 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2928 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2929 if (page->index >= end_index+1 || !offset) {
2930 /*
2931 * The page may have dirty, unmapped buffers. For example,
2932 * they may have been added in ext3_writepage(). Make them
2933 * freeable here, so the page does not leak.
2934 */
09cbfeaf 2935 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
2936 unlock_page(page);
2937 return 0; /* don't care */
2938 }
2939
2940 /*
2941 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2942 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2943 * in multiples of the page size. For a file that is not a multiple of
2944 * the page size, the remaining memory is zeroed when mapped, and
2945 * writes to that region are not written out to the file."
2946 */
09cbfeaf 2947 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
2948 return __block_write_full_page(inode, page, get_block, wbc,
2949 end_buffer_async_write);
35c80d5f 2950}
1fe72eaa 2951EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2952
1da177e4
LT
2953sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2954 get_block_t *get_block)
2955{
1da177e4 2956 struct inode *inode = mapping->host;
2a527d68
AP
2957 struct buffer_head tmp = {
2958 .b_size = i_blocksize(inode),
2959 };
2960
1da177e4
LT
2961 get_block(inode, block, &tmp, 0);
2962 return tmp.b_blocknr;
2963}
1fe72eaa 2964EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2965
4246a0b6 2966static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2967{
2968 struct buffer_head *bh = bio->bi_private;
2969
b7c44ed9 2970 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2971 set_bit(BH_Quiet, &bh->b_state);
2972
4e4cbee9 2973 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2974 bio_put(bio);
1da177e4
LT
2975}
2976
57302e0d
LT
2977/*
2978 * This allows us to do IO even on the odd last sectors
59d43914 2979 * of a device, even if the block size is some multiple
57302e0d
LT
2980 * of the physical sector size.
2981 *
2982 * We'll just truncate the bio to the size of the device,
2983 * and clear the end of the buffer head manually.
2984 *
2985 * Truly out-of-range accesses will turn into actual IO
2986 * errors, this only handles the "we need to be able to
2987 * do IO at the final sector" case.
2988 */
2a222ca9 2989void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
2990{
2991 sector_t maxsector;
c45a8f2d 2992 struct bio_vec *bvec = bio_last_bvec_all(bio);
59d43914 2993 unsigned truncated_bytes;
67f2519f
GE
2994 struct hd_struct *part;
2995
2996 rcu_read_lock();
2997 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2998 if (part)
2999 maxsector = part_nr_sects_read(part);
3000 else
3001 maxsector = get_capacity(bio->bi_disk);
3002 rcu_read_unlock();
57302e0d 3003
57302e0d
LT
3004 if (!maxsector)
3005 return;
3006
3007 /*
3008 * If the *whole* IO is past the end of the device,
3009 * let it through, and the IO layer will turn it into
3010 * an EIO.
3011 */
4f024f37 3012 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3013 return;
3014
4f024f37 3015 maxsector -= bio->bi_iter.bi_sector;
59d43914 3016 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3017 return;
3018
59d43914
AM
3019 /* Uhhuh. We've got a bio that straddles the device size! */
3020 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3021
3022 /* Truncate the bio.. */
59d43914
AM
3023 bio->bi_iter.bi_size -= truncated_bytes;
3024 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3025
3026 /* ..and clear the end of the buffer for reads */
2a222ca9 3027 if (op == REQ_OP_READ) {
59d43914
AM
3028 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3029 truncated_bytes);
57302e0d
LT
3030 }
3031}
3032
2a222ca9 3033static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3034 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3035{
3036 struct bio *bio;
1da177e4
LT
3037
3038 BUG_ON(!buffer_locked(bh));
3039 BUG_ON(!buffer_mapped(bh));
3040 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3041 BUG_ON(buffer_delay(bh));
3042 BUG_ON(buffer_unwritten(bh));
1da177e4 3043
1da177e4 3044 /*
48fd4f93 3045 * Only clear out a write error when rewriting
1da177e4 3046 */
2a222ca9 3047 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3048 clear_buffer_write_io_error(bh);
3049
3050 /*
3051 * from here on down, it's all bio -- do the initial mapping,
3052 * submit_bio -> generic_make_request may further map this bio around
3053 */
3054 bio = bio_alloc(GFP_NOIO, 1);
3055
2a814908 3056 if (wbc) {
b16b1deb 3057 wbc_init_bio(wbc, bio);
2a814908
TH
3058 wbc_account_io(wbc, bh->b_page, bh->b_size);
3059 }
bafc0dba 3060
4f024f37 3061 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3062 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3063 bio->bi_write_hint = write_hint;
1da177e4 3064
6cf66b4c
KO
3065 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3066 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3067
3068 bio->bi_end_io = end_bio_bh_io_sync;
3069 bio->bi_private = bh;
3070
57302e0d 3071 /* Take care of bh's that straddle the end of the device */
2a222ca9 3072 guard_bio_eod(op, bio);
57302e0d 3073
877f962c 3074 if (buffer_meta(bh))
2a222ca9 3075 op_flags |= REQ_META;
877f962c 3076 if (buffer_prio(bh))
2a222ca9
MC
3077 op_flags |= REQ_PRIO;
3078 bio_set_op_attrs(bio, op, op_flags);
877f962c 3079
4e49ea4a 3080 submit_bio(bio);
f6454b04 3081 return 0;
1da177e4 3082}
bafc0dba 3083
020c2833 3084int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3085{
8e8f9298 3086 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3087}
1fe72eaa 3088EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3089
3090/**
3091 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3092 * @op: whether to %READ or %WRITE
ef295ecf 3093 * @op_flags: req_flag_bits
1da177e4
LT
3094 * @nr: number of &struct buffer_heads in the array
3095 * @bhs: array of pointers to &struct buffer_head
3096 *
a7662236 3097 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3098 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3099 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3100 * %REQ_RAHEAD.
1da177e4
LT
3101 *
3102 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3103 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3104 * request, and any buffer that appears to be up-to-date when doing read
3105 * request. Further it marks as clean buffers that are processed for
3106 * writing (the buffer cache won't assume that they are actually clean
3107 * until the buffer gets unlocked).
1da177e4
LT
3108 *
3109 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3110 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3111 * any waiters.
3112 *
3113 * All of the buffers must be for the same device, and must also be a
3114 * multiple of the current approved size for the device.
3115 */
dfec8a14 3116void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3117{
3118 int i;
3119
3120 for (i = 0; i < nr; i++) {
3121 struct buffer_head *bh = bhs[i];
3122
9cb569d6 3123 if (!trylock_buffer(bh))
1da177e4 3124 continue;
dfec8a14 3125 if (op == WRITE) {
1da177e4 3126 if (test_clear_buffer_dirty(bh)) {
76c3073a 3127 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3128 get_bh(bh);
dfec8a14 3129 submit_bh(op, op_flags, bh);
1da177e4
LT
3130 continue;
3131 }
3132 } else {
1da177e4 3133 if (!buffer_uptodate(bh)) {
76c3073a 3134 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3135 get_bh(bh);
dfec8a14 3136 submit_bh(op, op_flags, bh);
1da177e4
LT
3137 continue;
3138 }
3139 }
3140 unlock_buffer(bh);
1da177e4
LT
3141 }
3142}
1fe72eaa 3143EXPORT_SYMBOL(ll_rw_block);
1da177e4 3144
2a222ca9 3145void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3146{
3147 lock_buffer(bh);
3148 if (!test_clear_buffer_dirty(bh)) {
3149 unlock_buffer(bh);
3150 return;
3151 }
3152 bh->b_end_io = end_buffer_write_sync;
3153 get_bh(bh);
2a222ca9 3154 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3155}
3156EXPORT_SYMBOL(write_dirty_buffer);
3157
1da177e4
LT
3158/*
3159 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3160 * and then start new I/O and then wait upon it. The caller must have a ref on
3161 * the buffer_head.
3162 */
2a222ca9 3163int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3164{
3165 int ret = 0;
3166
3167 WARN_ON(atomic_read(&bh->b_count) < 1);
3168 lock_buffer(bh);
3169 if (test_clear_buffer_dirty(bh)) {
3170 get_bh(bh);
3171 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3172 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3173 wait_on_buffer(bh);
1da177e4
LT
3174 if (!ret && !buffer_uptodate(bh))
3175 ret = -EIO;
3176 } else {
3177 unlock_buffer(bh);
3178 }
3179 return ret;
3180}
87e99511
CH
3181EXPORT_SYMBOL(__sync_dirty_buffer);
3182
3183int sync_dirty_buffer(struct buffer_head *bh)
3184{
70fd7614 3185 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3186}
1fe72eaa 3187EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3188
3189/*
3190 * try_to_free_buffers() checks if all the buffers on this particular page
3191 * are unused, and releases them if so.
3192 *
3193 * Exclusion against try_to_free_buffers may be obtained by either
3194 * locking the page or by holding its mapping's private_lock.
3195 *
3196 * If the page is dirty but all the buffers are clean then we need to
3197 * be sure to mark the page clean as well. This is because the page
3198 * may be against a block device, and a later reattachment of buffers
3199 * to a dirty page will set *all* buffers dirty. Which would corrupt
3200 * filesystem data on the same device.
3201 *
3202 * The same applies to regular filesystem pages: if all the buffers are
3203 * clean then we set the page clean and proceed. To do that, we require
3204 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3205 * private_lock.
3206 *
3207 * try_to_free_buffers() is non-blocking.
3208 */
3209static inline int buffer_busy(struct buffer_head *bh)
3210{
3211 return atomic_read(&bh->b_count) |
3212 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3213}
3214
3215static int
3216drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3217{
3218 struct buffer_head *head = page_buffers(page);
3219 struct buffer_head *bh;
3220
3221 bh = head;
3222 do {
1da177e4
LT
3223 if (buffer_busy(bh))
3224 goto failed;
3225 bh = bh->b_this_page;
3226 } while (bh != head);
3227
3228 do {
3229 struct buffer_head *next = bh->b_this_page;
3230
535ee2fb 3231 if (bh->b_assoc_map)
1da177e4
LT
3232 __remove_assoc_queue(bh);
3233 bh = next;
3234 } while (bh != head);
3235 *buffers_to_free = head;
3236 __clear_page_buffers(page);
3237 return 1;
3238failed:
3239 return 0;
3240}
3241
3242int try_to_free_buffers(struct page *page)
3243{
3244 struct address_space * const mapping = page->mapping;
3245 struct buffer_head *buffers_to_free = NULL;
3246 int ret = 0;
3247
3248 BUG_ON(!PageLocked(page));
ecdfc978 3249 if (PageWriteback(page))
1da177e4
LT
3250 return 0;
3251
3252 if (mapping == NULL) { /* can this still happen? */
3253 ret = drop_buffers(page, &buffers_to_free);
3254 goto out;
3255 }
3256
3257 spin_lock(&mapping->private_lock);
3258 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3259
3260 /*
3261 * If the filesystem writes its buffers by hand (eg ext3)
3262 * then we can have clean buffers against a dirty page. We
3263 * clean the page here; otherwise the VM will never notice
3264 * that the filesystem did any IO at all.
3265 *
3266 * Also, during truncate, discard_buffer will have marked all
3267 * the page's buffers clean. We discover that here and clean
3268 * the page also.
87df7241
NP
3269 *
3270 * private_lock must be held over this entire operation in order
3271 * to synchronise against __set_page_dirty_buffers and prevent the
3272 * dirty bit from being lost.
ecdfc978 3273 */
11f81bec
TH
3274 if (ret)
3275 cancel_dirty_page(page);
87df7241 3276 spin_unlock(&mapping->private_lock);
1da177e4
LT
3277out:
3278 if (buffers_to_free) {
3279 struct buffer_head *bh = buffers_to_free;
3280
3281 do {
3282 struct buffer_head *next = bh->b_this_page;
3283 free_buffer_head(bh);
3284 bh = next;
3285 } while (bh != buffers_to_free);
3286 }
3287 return ret;
3288}
3289EXPORT_SYMBOL(try_to_free_buffers);
3290
1da177e4
LT
3291/*
3292 * There are no bdflush tunables left. But distributions are
3293 * still running obsolete flush daemons, so we terminate them here.
3294 *
3295 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3296 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3297 */
bdc480e3 3298SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3299{
3300 static int msg_count;
3301
3302 if (!capable(CAP_SYS_ADMIN))
3303 return -EPERM;
3304
3305 if (msg_count < 5) {
3306 msg_count++;
3307 printk(KERN_INFO
3308 "warning: process `%s' used the obsolete bdflush"
3309 " system call\n", current->comm);
3310 printk(KERN_INFO "Fix your initscripts?\n");
3311 }
3312
3313 if (func == 1)
3314 do_exit(0);
3315 return 0;
3316}
3317
3318/*
3319 * Buffer-head allocation
3320 */
a0a9b043 3321static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3322
3323/*
3324 * Once the number of bh's in the machine exceeds this level, we start
3325 * stripping them in writeback.
3326 */
43be594a 3327static unsigned long max_buffer_heads;
1da177e4
LT
3328
3329int buffer_heads_over_limit;
3330
3331struct bh_accounting {
3332 int nr; /* Number of live bh's */
3333 int ratelimit; /* Limit cacheline bouncing */
3334};
3335
3336static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3337
3338static void recalc_bh_state(void)
3339{
3340 int i;
3341 int tot = 0;
3342
ee1be862 3343 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3344 return;
c7b92516 3345 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3346 for_each_online_cpu(i)
1da177e4
LT
3347 tot += per_cpu(bh_accounting, i).nr;
3348 buffer_heads_over_limit = (tot > max_buffer_heads);
3349}
c7b92516 3350
dd0fc66f 3351struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3352{
019b4d12 3353 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3354 if (ret) {
a35afb83 3355 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3356 preempt_disable();
3357 __this_cpu_inc(bh_accounting.nr);
1da177e4 3358 recalc_bh_state();
c7b92516 3359 preempt_enable();
1da177e4
LT
3360 }
3361 return ret;
3362}
3363EXPORT_SYMBOL(alloc_buffer_head);
3364
3365void free_buffer_head(struct buffer_head *bh)
3366{
3367 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3368 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3369 preempt_disable();
3370 __this_cpu_dec(bh_accounting.nr);
1da177e4 3371 recalc_bh_state();
c7b92516 3372 preempt_enable();
1da177e4
LT
3373}
3374EXPORT_SYMBOL(free_buffer_head);
3375
fc4d24c9 3376static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3377{
3378 int i;
3379 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3380
3381 for (i = 0; i < BH_LRU_SIZE; i++) {
3382 brelse(b->bhs[i]);
3383 b->bhs[i] = NULL;
3384 }
c7b92516 3385 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3386 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3387 return 0;
1da177e4 3388}
1da177e4 3389
389d1b08 3390/**
a6b91919 3391 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3392 * @bh: struct buffer_head
3393 *
3394 * Return true if the buffer is up-to-date and false,
3395 * with the buffer locked, if not.
3396 */
3397int bh_uptodate_or_lock(struct buffer_head *bh)
3398{
3399 if (!buffer_uptodate(bh)) {
3400 lock_buffer(bh);
3401 if (!buffer_uptodate(bh))
3402 return 0;
3403 unlock_buffer(bh);
3404 }
3405 return 1;
3406}
3407EXPORT_SYMBOL(bh_uptodate_or_lock);
3408
3409/**
a6b91919 3410 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3411 * @bh: struct buffer_head
3412 *
3413 * Returns zero on success and -EIO on error.
3414 */
3415int bh_submit_read(struct buffer_head *bh)
3416{
3417 BUG_ON(!buffer_locked(bh));
3418
3419 if (buffer_uptodate(bh)) {
3420 unlock_buffer(bh);
3421 return 0;
3422 }
3423
3424 get_bh(bh);
3425 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3426 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3427 wait_on_buffer(bh);
3428 if (buffer_uptodate(bh))
3429 return 0;
3430 return -EIO;
3431}
3432EXPORT_SYMBOL(bh_submit_read);
3433
1da177e4
LT
3434void __init buffer_init(void)
3435{
43be594a 3436 unsigned long nrpages;
fc4d24c9 3437 int ret;
1da177e4 3438
b98938c3
CL
3439 bh_cachep = kmem_cache_create("buffer_head",
3440 sizeof(struct buffer_head), 0,
3441 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3442 SLAB_MEM_SPREAD),
019b4d12 3443 NULL);
1da177e4
LT
3444
3445 /*
3446 * Limit the bh occupancy to 10% of ZONE_NORMAL
3447 */
3448 nrpages = (nr_free_buffer_pages() * 10) / 100;
3449 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3450 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3451 NULL, buffer_exit_cpu_dead);
3452 WARN_ON(ret < 0);
1da177e4 3453}