]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/buffer.c
fs: buffer: do not use unnecessary atomic operations when discarding buffers
[people/arne_f/kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
7eaceacc 64static int sleep_on_buffer(void *word)
1da177e4 65{
1da177e4
LT
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
7eaceacc 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
1da177e4
LT
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
51b07fc3 79 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 80 smp_mb__after_atomic();
1da177e4
LT
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
1fe72eaa 83EXPORT_SYMBOL(unlock_buffer);
1da177e4 84
b4597226
MG
85/*
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
89 */
90void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
92{
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
96
97 BUG_ON(!PageLocked(page));
98
99 if (!page_has_buffers(page))
100 return;
101
102 if (PageWriteback(page))
103 *writeback = true;
104
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
110
111 if (buffer_dirty(bh))
112 *dirty = true;
113
114 bh = bh->b_this_page;
115 } while (bh != head);
116}
117EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
1da177e4
LT
119/*
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
123 */
124void __wait_on_buffer(struct buffer_head * bh)
125{
7eaceacc 126 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
1da177e4 127}
1fe72eaa 128EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
129
130static void
131__clear_page_buffers(struct page *page)
132{
133 ClearPagePrivate(page);
4c21e2f2 134 set_page_private(page, 0);
1da177e4
LT
135 page_cache_release(page);
136}
137
08bafc03
KM
138
139static int quiet_error(struct buffer_head *bh)
140{
141 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 return 0;
143 return 1;
144}
145
146
1da177e4
LT
147static void buffer_io_error(struct buffer_head *bh)
148{
149 char b[BDEVNAME_SIZE];
1da177e4
LT
150 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 bdevname(bh->b_bdev, b),
152 (unsigned long long)bh->b_blocknr);
153}
154
155/*
68671f35
DM
156 * End-of-IO handler helper function which does not touch the bh after
157 * unlocking it.
158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159 * a race there is benign: unlock_buffer() only use the bh's address for
160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
161 * itself.
1da177e4 162 */
68671f35 163static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
164{
165 if (uptodate) {
166 set_buffer_uptodate(bh);
167 } else {
168 /* This happens, due to failed READA attempts. */
169 clear_buffer_uptodate(bh);
170 }
171 unlock_buffer(bh);
68671f35
DM
172}
173
174/*
175 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
176 * unlock the buffer. This is what ll_rw_block uses too.
177 */
178void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179{
180 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
181 put_bh(bh);
182}
1fe72eaa 183EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
184
185void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186{
187 char b[BDEVNAME_SIZE];
188
189 if (uptodate) {
190 set_buffer_uptodate(bh);
191 } else {
0edd55fa 192 if (!quiet_error(bh)) {
1da177e4
LT
193 buffer_io_error(bh);
194 printk(KERN_WARNING "lost page write due to "
195 "I/O error on %s\n",
196 bdevname(bh->b_bdev, b));
197 }
198 set_buffer_write_io_error(bh);
199 clear_buffer_uptodate(bh);
200 }
201 unlock_buffer(bh);
202 put_bh(bh);
203}
1fe72eaa 204EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 205
1da177e4
LT
206/*
207 * Various filesystems appear to want __find_get_block to be non-blocking.
208 * But it's the page lock which protects the buffers. To get around this,
209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
210 * private_lock.
211 *
212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213 * may be quite high. This code could TryLock the page, and if that
214 * succeeds, there is no need to take private_lock. (But if
215 * private_lock is contended then so is mapping->tree_lock).
216 */
217static struct buffer_head *
385fd4c5 218__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
219{
220 struct inode *bd_inode = bdev->bd_inode;
221 struct address_space *bd_mapping = bd_inode->i_mapping;
222 struct buffer_head *ret = NULL;
223 pgoff_t index;
224 struct buffer_head *bh;
225 struct buffer_head *head;
226 struct page *page;
227 int all_mapped = 1;
228
229 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 page = find_get_page(bd_mapping, index);
231 if (!page)
232 goto out;
233
234 spin_lock(&bd_mapping->private_lock);
235 if (!page_has_buffers(page))
236 goto out_unlock;
237 head = page_buffers(page);
238 bh = head;
239 do {
97f76d3d
NK
240 if (!buffer_mapped(bh))
241 all_mapped = 0;
242 else if (bh->b_blocknr == block) {
1da177e4
LT
243 ret = bh;
244 get_bh(bh);
245 goto out_unlock;
246 }
1da177e4
LT
247 bh = bh->b_this_page;
248 } while (bh != head);
249
250 /* we might be here because some of the buffers on this page are
251 * not mapped. This is due to various races between
252 * file io on the block device and getblk. It gets dealt with
253 * elsewhere, don't buffer_error if we had some unmapped buffers
254 */
255 if (all_mapped) {
72a2ebd8
TM
256 char b[BDEVNAME_SIZE];
257
1da177e4
LT
258 printk("__find_get_block_slow() failed. "
259 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
260 (unsigned long long)block,
261 (unsigned long long)bh->b_blocknr);
262 printk("b_state=0x%08lx, b_size=%zu\n",
263 bh->b_state, bh->b_size);
72a2ebd8
TM
264 printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 1 << bd_inode->i_blkbits);
1da177e4
LT
266 }
267out_unlock:
268 spin_unlock(&bd_mapping->private_lock);
269 page_cache_release(page);
270out:
271 return ret;
272}
273
1da177e4 274/*
5b0830cb 275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
276 */
277static void free_more_memory(void)
278{
19770b32 279 struct zone *zone;
0e88460d 280 int nid;
1da177e4 281
0e175a18 282 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
283 yield();
284
0e88460d 285 for_each_online_node(nid) {
19770b32
MG
286 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 gfp_zone(GFP_NOFS), NULL,
288 &zone);
289 if (zone)
54a6eb5c 290 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 291 GFP_NOFS, NULL);
1da177e4
LT
292 }
293}
294
295/*
296 * I/O completion handler for block_read_full_page() - pages
297 * which come unlocked at the end of I/O.
298 */
299static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300{
1da177e4 301 unsigned long flags;
a3972203 302 struct buffer_head *first;
1da177e4
LT
303 struct buffer_head *tmp;
304 struct page *page;
305 int page_uptodate = 1;
306
307 BUG_ON(!buffer_async_read(bh));
308
309 page = bh->b_page;
310 if (uptodate) {
311 set_buffer_uptodate(bh);
312 } else {
313 clear_buffer_uptodate(bh);
08bafc03 314 if (!quiet_error(bh))
1da177e4
LT
315 buffer_io_error(bh);
316 SetPageError(page);
317 }
318
319 /*
320 * Be _very_ careful from here on. Bad things can happen if
321 * two buffer heads end IO at almost the same time and both
322 * decide that the page is now completely done.
323 */
a3972203
NP
324 first = page_buffers(page);
325 local_irq_save(flags);
326 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
327 clear_buffer_async_read(bh);
328 unlock_buffer(bh);
329 tmp = bh;
330 do {
331 if (!buffer_uptodate(tmp))
332 page_uptodate = 0;
333 if (buffer_async_read(tmp)) {
334 BUG_ON(!buffer_locked(tmp));
335 goto still_busy;
336 }
337 tmp = tmp->b_this_page;
338 } while (tmp != bh);
a3972203
NP
339 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 local_irq_restore(flags);
1da177e4
LT
341
342 /*
343 * If none of the buffers had errors and they are all
344 * uptodate then we can set the page uptodate.
345 */
346 if (page_uptodate && !PageError(page))
347 SetPageUptodate(page);
348 unlock_page(page);
349 return;
350
351still_busy:
a3972203
NP
352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 local_irq_restore(flags);
1da177e4
LT
354 return;
355}
356
357/*
358 * Completion handler for block_write_full_page() - pages which are unlocked
359 * during I/O, and which have PageWriteback cleared upon I/O completion.
360 */
35c80d5f 361void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
362{
363 char b[BDEVNAME_SIZE];
1da177e4 364 unsigned long flags;
a3972203 365 struct buffer_head *first;
1da177e4
LT
366 struct buffer_head *tmp;
367 struct page *page;
368
369 BUG_ON(!buffer_async_write(bh));
370
371 page = bh->b_page;
372 if (uptodate) {
373 set_buffer_uptodate(bh);
374 } else {
08bafc03 375 if (!quiet_error(bh)) {
1da177e4
LT
376 buffer_io_error(bh);
377 printk(KERN_WARNING "lost page write due to "
378 "I/O error on %s\n",
379 bdevname(bh->b_bdev, b));
380 }
381 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 382 set_buffer_write_io_error(bh);
1da177e4
LT
383 clear_buffer_uptodate(bh);
384 SetPageError(page);
385 }
386
a3972203
NP
387 first = page_buffers(page);
388 local_irq_save(flags);
389 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390
1da177e4
LT
391 clear_buffer_async_write(bh);
392 unlock_buffer(bh);
393 tmp = bh->b_this_page;
394 while (tmp != bh) {
395 if (buffer_async_write(tmp)) {
396 BUG_ON(!buffer_locked(tmp));
397 goto still_busy;
398 }
399 tmp = tmp->b_this_page;
400 }
a3972203
NP
401 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 local_irq_restore(flags);
1da177e4
LT
403 end_page_writeback(page);
404 return;
405
406still_busy:
a3972203
NP
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
1da177e4
LT
409 return;
410}
1fe72eaa 411EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
412
413/*
414 * If a page's buffers are under async readin (end_buffer_async_read
415 * completion) then there is a possibility that another thread of
416 * control could lock one of the buffers after it has completed
417 * but while some of the other buffers have not completed. This
418 * locked buffer would confuse end_buffer_async_read() into not unlocking
419 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
420 * that this buffer is not under async I/O.
421 *
422 * The page comes unlocked when it has no locked buffer_async buffers
423 * left.
424 *
425 * PageLocked prevents anyone starting new async I/O reads any of
426 * the buffers.
427 *
428 * PageWriteback is used to prevent simultaneous writeout of the same
429 * page.
430 *
431 * PageLocked prevents anyone from starting writeback of a page which is
432 * under read I/O (PageWriteback is only ever set against a locked page).
433 */
434static void mark_buffer_async_read(struct buffer_head *bh)
435{
436 bh->b_end_io = end_buffer_async_read;
437 set_buffer_async_read(bh);
438}
439
1fe72eaa
HS
440static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 bh_end_io_t *handler)
1da177e4 442{
35c80d5f 443 bh->b_end_io = handler;
1da177e4
LT
444 set_buffer_async_write(bh);
445}
35c80d5f
CM
446
447void mark_buffer_async_write(struct buffer_head *bh)
448{
449 mark_buffer_async_write_endio(bh, end_buffer_async_write);
450}
1da177e4
LT
451EXPORT_SYMBOL(mark_buffer_async_write);
452
453
454/*
455 * fs/buffer.c contains helper functions for buffer-backed address space's
456 * fsync functions. A common requirement for buffer-based filesystems is
457 * that certain data from the backing blockdev needs to be written out for
458 * a successful fsync(). For example, ext2 indirect blocks need to be
459 * written back and waited upon before fsync() returns.
460 *
461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463 * management of a list of dependent buffers at ->i_mapping->private_list.
464 *
465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
466 * from their controlling inode's queue when they are being freed. But
467 * try_to_free_buffers() will be operating against the *blockdev* mapping
468 * at the time, not against the S_ISREG file which depends on those buffers.
469 * So the locking for private_list is via the private_lock in the address_space
470 * which backs the buffers. Which is different from the address_space
471 * against which the buffers are listed. So for a particular address_space,
472 * mapping->private_lock does *not* protect mapping->private_list! In fact,
473 * mapping->private_list will always be protected by the backing blockdev's
474 * ->private_lock.
475 *
476 * Which introduces a requirement: all buffers on an address_space's
477 * ->private_list must be from the same address_space: the blockdev's.
478 *
479 * address_spaces which do not place buffers at ->private_list via these
480 * utility functions are free to use private_lock and private_list for
481 * whatever they want. The only requirement is that list_empty(private_list)
482 * be true at clear_inode() time.
483 *
484 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
485 * filesystems should do that. invalidate_inode_buffers() should just go
486 * BUG_ON(!list_empty).
487 *
488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
489 * take an address_space, not an inode. And it should be called
490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491 * queued up.
492 *
493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494 * list if it is already on a list. Because if the buffer is on a list,
495 * it *must* already be on the right one. If not, the filesystem is being
496 * silly. This will save a ton of locking. But first we have to ensure
497 * that buffers are taken *off* the old inode's list when they are freed
498 * (presumably in truncate). That requires careful auditing of all
499 * filesystems (do it inside bforget()). It could also be done by bringing
500 * b_inode back.
501 */
502
503/*
504 * The buffer's backing address_space's private_lock must be held
505 */
dbacefc9 506static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
507{
508 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
509 WARN_ON(!bh->b_assoc_map);
510 if (buffer_write_io_error(bh))
511 set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 bh->b_assoc_map = NULL;
1da177e4
LT
513}
514
515int inode_has_buffers(struct inode *inode)
516{
517 return !list_empty(&inode->i_data.private_list);
518}
519
520/*
521 * osync is designed to support O_SYNC io. It waits synchronously for
522 * all already-submitted IO to complete, but does not queue any new
523 * writes to the disk.
524 *
525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526 * you dirty the buffers, and then use osync_inode_buffers to wait for
527 * completion. Any other dirty buffers which are not yet queued for
528 * write will not be flushed to disk by the osync.
529 */
530static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531{
532 struct buffer_head *bh;
533 struct list_head *p;
534 int err = 0;
535
536 spin_lock(lock);
537repeat:
538 list_for_each_prev(p, list) {
539 bh = BH_ENTRY(p);
540 if (buffer_locked(bh)) {
541 get_bh(bh);
542 spin_unlock(lock);
543 wait_on_buffer(bh);
544 if (!buffer_uptodate(bh))
545 err = -EIO;
546 brelse(bh);
547 spin_lock(lock);
548 goto repeat;
549 }
550 }
551 spin_unlock(lock);
552 return err;
553}
554
01a05b33 555static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 556{
c2d75438 557 char b[BDEVNAME_SIZE];
01a05b33
AV
558 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 printk(KERN_WARNING "Emergency Thaw on %s\n",
560 bdevname(sb->s_bdev, b));
561}
c2d75438 562
01a05b33
AV
563static void do_thaw_all(struct work_struct *work)
564{
565 iterate_supers(do_thaw_one, NULL);
053c525f 566 kfree(work);
c2d75438
ES
567 printk(KERN_WARNING "Emergency Thaw complete\n");
568}
569
570/**
571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
572 *
573 * Used for emergency unfreeze of all filesystems via SysRq
574 */
575void emergency_thaw_all(void)
576{
053c525f
JA
577 struct work_struct *work;
578
579 work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 if (work) {
581 INIT_WORK(work, do_thaw_all);
582 schedule_work(work);
583 }
c2d75438
ES
584}
585
1da177e4 586/**
78a4a50a 587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 588 * @mapping: the mapping which wants those buffers written
1da177e4
LT
589 *
590 * Starts I/O against the buffers at mapping->private_list, and waits upon
591 * that I/O.
592 *
67be2dd1
MW
593 * Basically, this is a convenience function for fsync().
594 * @mapping is a file or directory which needs those buffers to be written for
595 * a successful fsync().
1da177e4
LT
596 */
597int sync_mapping_buffers(struct address_space *mapping)
598{
252aa6f5 599 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
600
601 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 return 0;
603
604 return fsync_buffers_list(&buffer_mapping->private_lock,
605 &mapping->private_list);
606}
607EXPORT_SYMBOL(sync_mapping_buffers);
608
609/*
610 * Called when we've recently written block `bblock', and it is known that
611 * `bblock' was for a buffer_boundary() buffer. This means that the block at
612 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
613 * dirty, schedule it for IO. So that indirects merge nicely with their data.
614 */
615void write_boundary_block(struct block_device *bdev,
616 sector_t bblock, unsigned blocksize)
617{
618 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 if (bh) {
620 if (buffer_dirty(bh))
621 ll_rw_block(WRITE, 1, &bh);
622 put_bh(bh);
623 }
624}
625
626void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627{
628 struct address_space *mapping = inode->i_mapping;
629 struct address_space *buffer_mapping = bh->b_page->mapping;
630
631 mark_buffer_dirty(bh);
252aa6f5
RA
632 if (!mapping->private_data) {
633 mapping->private_data = buffer_mapping;
1da177e4 634 } else {
252aa6f5 635 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 636 }
535ee2fb 637 if (!bh->b_assoc_map) {
1da177e4
LT
638 spin_lock(&buffer_mapping->private_lock);
639 list_move_tail(&bh->b_assoc_buffers,
640 &mapping->private_list);
58ff407b 641 bh->b_assoc_map = mapping;
1da177e4
LT
642 spin_unlock(&buffer_mapping->private_lock);
643 }
644}
645EXPORT_SYMBOL(mark_buffer_dirty_inode);
646
787d2214
NP
647/*
648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649 * dirty.
650 *
651 * If warn is true, then emit a warning if the page is not uptodate and has
652 * not been truncated.
653 */
a8e7d49a 654static void __set_page_dirty(struct page *page,
787d2214
NP
655 struct address_space *mapping, int warn)
656{
227d53b3
KM
657 unsigned long flags;
658
659 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
660 if (page->mapping) { /* Race with truncate? */
661 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 662 account_page_dirtied(page, mapping);
787d2214
NP
663 radix_tree_tag_set(&mapping->page_tree,
664 page_index(page), PAGECACHE_TAG_DIRTY);
665 }
227d53b3 666 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 667 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
668}
669
1da177e4
LT
670/*
671 * Add a page to the dirty page list.
672 *
673 * It is a sad fact of life that this function is called from several places
674 * deeply under spinlocking. It may not sleep.
675 *
676 * If the page has buffers, the uptodate buffers are set dirty, to preserve
677 * dirty-state coherency between the page and the buffers. It the page does
678 * not have buffers then when they are later attached they will all be set
679 * dirty.
680 *
681 * The buffers are dirtied before the page is dirtied. There's a small race
682 * window in which a writepage caller may see the page cleanness but not the
683 * buffer dirtiness. That's fine. If this code were to set the page dirty
684 * before the buffers, a concurrent writepage caller could clear the page dirty
685 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686 * page on the dirty page list.
687 *
688 * We use private_lock to lock against try_to_free_buffers while using the
689 * page's buffer list. Also use this to protect against clean buffers being
690 * added to the page after it was set dirty.
691 *
692 * FIXME: may need to call ->reservepage here as well. That's rather up to the
693 * address_space though.
694 */
695int __set_page_dirty_buffers(struct page *page)
696{
a8e7d49a 697 int newly_dirty;
787d2214 698 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
699
700 if (unlikely(!mapping))
701 return !TestSetPageDirty(page);
1da177e4
LT
702
703 spin_lock(&mapping->private_lock);
704 if (page_has_buffers(page)) {
705 struct buffer_head *head = page_buffers(page);
706 struct buffer_head *bh = head;
707
708 do {
709 set_buffer_dirty(bh);
710 bh = bh->b_this_page;
711 } while (bh != head);
712 }
a8e7d49a 713 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
714 spin_unlock(&mapping->private_lock);
715
a8e7d49a
LT
716 if (newly_dirty)
717 __set_page_dirty(page, mapping, 1);
718 return newly_dirty;
1da177e4
LT
719}
720EXPORT_SYMBOL(__set_page_dirty_buffers);
721
722/*
723 * Write out and wait upon a list of buffers.
724 *
725 * We have conflicting pressures: we want to make sure that all
726 * initially dirty buffers get waited on, but that any subsequently
727 * dirtied buffers don't. After all, we don't want fsync to last
728 * forever if somebody is actively writing to the file.
729 *
730 * Do this in two main stages: first we copy dirty buffers to a
731 * temporary inode list, queueing the writes as we go. Then we clean
732 * up, waiting for those writes to complete.
733 *
734 * During this second stage, any subsequent updates to the file may end
735 * up refiling the buffer on the original inode's dirty list again, so
736 * there is a chance we will end up with a buffer queued for write but
737 * not yet completed on that list. So, as a final cleanup we go through
738 * the osync code to catch these locked, dirty buffers without requeuing
739 * any newly dirty buffers for write.
740 */
741static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
742{
743 struct buffer_head *bh;
744 struct list_head tmp;
7eaceacc 745 struct address_space *mapping;
1da177e4 746 int err = 0, err2;
4ee2491e 747 struct blk_plug plug;
1da177e4
LT
748
749 INIT_LIST_HEAD(&tmp);
4ee2491e 750 blk_start_plug(&plug);
1da177e4
LT
751
752 spin_lock(lock);
753 while (!list_empty(list)) {
754 bh = BH_ENTRY(list->next);
535ee2fb 755 mapping = bh->b_assoc_map;
58ff407b 756 __remove_assoc_queue(bh);
535ee2fb
JK
757 /* Avoid race with mark_buffer_dirty_inode() which does
758 * a lockless check and we rely on seeing the dirty bit */
759 smp_mb();
1da177e4
LT
760 if (buffer_dirty(bh) || buffer_locked(bh)) {
761 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 762 bh->b_assoc_map = mapping;
1da177e4
LT
763 if (buffer_dirty(bh)) {
764 get_bh(bh);
765 spin_unlock(lock);
766 /*
767 * Ensure any pending I/O completes so that
9cb569d6
CH
768 * write_dirty_buffer() actually writes the
769 * current contents - it is a noop if I/O is
770 * still in flight on potentially older
771 * contents.
1da177e4 772 */
721a9602 773 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
774
775 /*
776 * Kick off IO for the previous mapping. Note
777 * that we will not run the very last mapping,
778 * wait_on_buffer() will do that for us
779 * through sync_buffer().
780 */
1da177e4
LT
781 brelse(bh);
782 spin_lock(lock);
783 }
784 }
785 }
786
4ee2491e
JA
787 spin_unlock(lock);
788 blk_finish_plug(&plug);
789 spin_lock(lock);
790
1da177e4
LT
791 while (!list_empty(&tmp)) {
792 bh = BH_ENTRY(tmp.prev);
1da177e4 793 get_bh(bh);
535ee2fb
JK
794 mapping = bh->b_assoc_map;
795 __remove_assoc_queue(bh);
796 /* Avoid race with mark_buffer_dirty_inode() which does
797 * a lockless check and we rely on seeing the dirty bit */
798 smp_mb();
799 if (buffer_dirty(bh)) {
800 list_add(&bh->b_assoc_buffers,
e3892296 801 &mapping->private_list);
535ee2fb
JK
802 bh->b_assoc_map = mapping;
803 }
1da177e4
LT
804 spin_unlock(lock);
805 wait_on_buffer(bh);
806 if (!buffer_uptodate(bh))
807 err = -EIO;
808 brelse(bh);
809 spin_lock(lock);
810 }
811
812 spin_unlock(lock);
813 err2 = osync_buffers_list(lock, list);
814 if (err)
815 return err;
816 else
817 return err2;
818}
819
820/*
821 * Invalidate any and all dirty buffers on a given inode. We are
822 * probably unmounting the fs, but that doesn't mean we have already
823 * done a sync(). Just drop the buffers from the inode list.
824 *
825 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
826 * assumes that all the buffers are against the blockdev. Not true
827 * for reiserfs.
828 */
829void invalidate_inode_buffers(struct inode *inode)
830{
831 if (inode_has_buffers(inode)) {
832 struct address_space *mapping = &inode->i_data;
833 struct list_head *list = &mapping->private_list;
252aa6f5 834 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
835
836 spin_lock(&buffer_mapping->private_lock);
837 while (!list_empty(list))
838 __remove_assoc_queue(BH_ENTRY(list->next));
839 spin_unlock(&buffer_mapping->private_lock);
840 }
841}
52b19ac9 842EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
843
844/*
845 * Remove any clean buffers from the inode's buffer list. This is called
846 * when we're trying to free the inode itself. Those buffers can pin it.
847 *
848 * Returns true if all buffers were removed.
849 */
850int remove_inode_buffers(struct inode *inode)
851{
852 int ret = 1;
853
854 if (inode_has_buffers(inode)) {
855 struct address_space *mapping = &inode->i_data;
856 struct list_head *list = &mapping->private_list;
252aa6f5 857 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
858
859 spin_lock(&buffer_mapping->private_lock);
860 while (!list_empty(list)) {
861 struct buffer_head *bh = BH_ENTRY(list->next);
862 if (buffer_dirty(bh)) {
863 ret = 0;
864 break;
865 }
866 __remove_assoc_queue(bh);
867 }
868 spin_unlock(&buffer_mapping->private_lock);
869 }
870 return ret;
871}
872
873/*
874 * Create the appropriate buffers when given a page for data area and
875 * the size of each buffer.. Use the bh->b_this_page linked list to
876 * follow the buffers created. Return NULL if unable to create more
877 * buffers.
878 *
879 * The retry flag is used to differentiate async IO (paging, swapping)
880 * which may not fail from ordinary buffer allocations.
881 */
882struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
883 int retry)
884{
885 struct buffer_head *bh, *head;
886 long offset;
887
888try_again:
889 head = NULL;
890 offset = PAGE_SIZE;
891 while ((offset -= size) >= 0) {
892 bh = alloc_buffer_head(GFP_NOFS);
893 if (!bh)
894 goto no_grow;
895
1da177e4
LT
896 bh->b_this_page = head;
897 bh->b_blocknr = -1;
898 head = bh;
899
1da177e4
LT
900 bh->b_size = size;
901
902 /* Link the buffer to its page */
903 set_bh_page(bh, page, offset);
1da177e4
LT
904 }
905 return head;
906/*
907 * In case anything failed, we just free everything we got.
908 */
909no_grow:
910 if (head) {
911 do {
912 bh = head;
913 head = head->b_this_page;
914 free_buffer_head(bh);
915 } while (head);
916 }
917
918 /*
919 * Return failure for non-async IO requests. Async IO requests
920 * are not allowed to fail, so we have to wait until buffer heads
921 * become available. But we don't want tasks sleeping with
922 * partially complete buffers, so all were released above.
923 */
924 if (!retry)
925 return NULL;
926
927 /* We're _really_ low on memory. Now we just
928 * wait for old buffer heads to become free due to
929 * finishing IO. Since this is an async request and
930 * the reserve list is empty, we're sure there are
931 * async buffer heads in use.
932 */
933 free_more_memory();
934 goto try_again;
935}
936EXPORT_SYMBOL_GPL(alloc_page_buffers);
937
938static inline void
939link_dev_buffers(struct page *page, struct buffer_head *head)
940{
941 struct buffer_head *bh, *tail;
942
943 bh = head;
944 do {
945 tail = bh;
946 bh = bh->b_this_page;
947 } while (bh);
948 tail->b_this_page = head;
949 attach_page_buffers(page, head);
950}
951
bbec0270
LT
952static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
953{
954 sector_t retval = ~((sector_t)0);
955 loff_t sz = i_size_read(bdev->bd_inode);
956
957 if (sz) {
958 unsigned int sizebits = blksize_bits(size);
959 retval = (sz >> sizebits);
960 }
961 return retval;
962}
963
1da177e4
LT
964/*
965 * Initialise the state of a blockdev page's buffers.
966 */
676ce6d5 967static sector_t
1da177e4
LT
968init_page_buffers(struct page *page, struct block_device *bdev,
969 sector_t block, int size)
970{
971 struct buffer_head *head = page_buffers(page);
972 struct buffer_head *bh = head;
973 int uptodate = PageUptodate(page);
bbec0270 974 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
975
976 do {
977 if (!buffer_mapped(bh)) {
978 init_buffer(bh, NULL, NULL);
979 bh->b_bdev = bdev;
980 bh->b_blocknr = block;
981 if (uptodate)
982 set_buffer_uptodate(bh);
080399aa
JM
983 if (block < end_block)
984 set_buffer_mapped(bh);
1da177e4
LT
985 }
986 block++;
987 bh = bh->b_this_page;
988 } while (bh != head);
676ce6d5
HD
989
990 /*
991 * Caller needs to validate requested block against end of device.
992 */
993 return end_block;
1da177e4
LT
994}
995
996/*
997 * Create the page-cache page that contains the requested block.
998 *
676ce6d5 999 * This is used purely for blockdev mappings.
1da177e4 1000 */
676ce6d5 1001static int
1da177e4 1002grow_dev_page(struct block_device *bdev, sector_t block,
676ce6d5 1003 pgoff_t index, int size, int sizebits)
1da177e4
LT
1004{
1005 struct inode *inode = bdev->bd_inode;
1006 struct page *page;
1007 struct buffer_head *bh;
676ce6d5
HD
1008 sector_t end_block;
1009 int ret = 0; /* Will call free_more_memory() */
84235de3 1010 gfp_t gfp_mask;
1da177e4 1011
84235de3
JW
1012 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013 gfp_mask |= __GFP_MOVABLE;
1014 /*
1015 * XXX: __getblk_slow() can not really deal with failure and
1016 * will endlessly loop on improvised global reclaim. Prefer
1017 * looping in the allocator rather than here, at least that
1018 * code knows what it's doing.
1019 */
1020 gfp_mask |= __GFP_NOFAIL;
1021
1022 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1023 if (!page)
676ce6d5 1024 return ret;
1da177e4 1025
e827f923 1026 BUG_ON(!PageLocked(page));
1da177e4
LT
1027
1028 if (page_has_buffers(page)) {
1029 bh = page_buffers(page);
1030 if (bh->b_size == size) {
676ce6d5
HD
1031 end_block = init_page_buffers(page, bdev,
1032 index << sizebits, size);
1033 goto done;
1da177e4
LT
1034 }
1035 if (!try_to_free_buffers(page))
1036 goto failed;
1037 }
1038
1039 /*
1040 * Allocate some buffers for this page
1041 */
1042 bh = alloc_page_buffers(page, size, 0);
1043 if (!bh)
1044 goto failed;
1045
1046 /*
1047 * Link the page to the buffers and initialise them. Take the
1048 * lock to be atomic wrt __find_get_block(), which does not
1049 * run under the page lock.
1050 */
1051 spin_lock(&inode->i_mapping->private_lock);
1052 link_dev_buffers(page, bh);
676ce6d5 1053 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1da177e4 1054 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1055done:
1056 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1057failed:
1da177e4
LT
1058 unlock_page(page);
1059 page_cache_release(page);
676ce6d5 1060 return ret;
1da177e4
LT
1061}
1062
1063/*
1064 * Create buffers for the specified block device block's page. If
1065 * that page was dirty, the buffers are set dirty also.
1da177e4 1066 */
858119e1 1067static int
1da177e4
LT
1068grow_buffers(struct block_device *bdev, sector_t block, int size)
1069{
1da177e4
LT
1070 pgoff_t index;
1071 int sizebits;
1072
1073 sizebits = -1;
1074 do {
1075 sizebits++;
1076 } while ((size << sizebits) < PAGE_SIZE);
1077
1078 index = block >> sizebits;
1da177e4 1079
e5657933
AM
1080 /*
1081 * Check for a block which wants to lie outside our maximum possible
1082 * pagecache index. (this comparison is done using sector_t types).
1083 */
1084 if (unlikely(index != block >> sizebits)) {
1085 char b[BDEVNAME_SIZE];
1086
1087 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088 "device %s\n",
8e24eea7 1089 __func__, (unsigned long long)block,
e5657933
AM
1090 bdevname(bdev, b));
1091 return -EIO;
1092 }
676ce6d5 1093
1da177e4 1094 /* Create a page with the proper size buffers.. */
676ce6d5 1095 return grow_dev_page(bdev, block, index, size, sizebits);
1da177e4
LT
1096}
1097
75c96f85 1098static struct buffer_head *
1da177e4
LT
1099__getblk_slow(struct block_device *bdev, sector_t block, int size)
1100{
1101 /* Size must be multiple of hard sectorsize */
e1defc4f 1102 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1103 (size < 512 || size > PAGE_SIZE))) {
1104 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105 size);
e1defc4f
MP
1106 printk(KERN_ERR "logical block size: %d\n",
1107 bdev_logical_block_size(bdev));
1da177e4
LT
1108
1109 dump_stack();
1110 return NULL;
1111 }
1112
676ce6d5
HD
1113 for (;;) {
1114 struct buffer_head *bh;
1115 int ret;
1da177e4
LT
1116
1117 bh = __find_get_block(bdev, block, size);
1118 if (bh)
1119 return bh;
676ce6d5
HD
1120
1121 ret = grow_buffers(bdev, block, size);
1122 if (ret < 0)
1123 return NULL;
1124 if (ret == 0)
1125 free_more_memory();
1da177e4
LT
1126 }
1127}
1128
1129/*
1130 * The relationship between dirty buffers and dirty pages:
1131 *
1132 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133 * the page is tagged dirty in its radix tree.
1134 *
1135 * At all times, the dirtiness of the buffers represents the dirtiness of
1136 * subsections of the page. If the page has buffers, the page dirty bit is
1137 * merely a hint about the true dirty state.
1138 *
1139 * When a page is set dirty in its entirety, all its buffers are marked dirty
1140 * (if the page has buffers).
1141 *
1142 * When a buffer is marked dirty, its page is dirtied, but the page's other
1143 * buffers are not.
1144 *
1145 * Also. When blockdev buffers are explicitly read with bread(), they
1146 * individually become uptodate. But their backing page remains not
1147 * uptodate - even if all of its buffers are uptodate. A subsequent
1148 * block_read_full_page() against that page will discover all the uptodate
1149 * buffers, will set the page uptodate and will perform no I/O.
1150 */
1151
1152/**
1153 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1154 * @bh: the buffer_head to mark dirty
1da177e4
LT
1155 *
1156 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157 * backing page dirty, then tag the page as dirty in its address_space's radix
1158 * tree and then attach the address_space's inode to its superblock's dirty
1159 * inode list.
1160 *
1161 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1162 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1163 */
fc9b52cd 1164void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1165{
787d2214 1166 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1167
5305cb83
TH
1168 trace_block_dirty_buffer(bh);
1169
1be62dc1
LT
1170 /*
1171 * Very *carefully* optimize the it-is-already-dirty case.
1172 *
1173 * Don't let the final "is it dirty" escape to before we
1174 * perhaps modified the buffer.
1175 */
1176 if (buffer_dirty(bh)) {
1177 smp_mb();
1178 if (buffer_dirty(bh))
1179 return;
1180 }
1181
a8e7d49a
LT
1182 if (!test_set_buffer_dirty(bh)) {
1183 struct page *page = bh->b_page;
8e9d78ed
LT
1184 if (!TestSetPageDirty(page)) {
1185 struct address_space *mapping = page_mapping(page);
1186 if (mapping)
1187 __set_page_dirty(page, mapping, 0);
1188 }
a8e7d49a 1189 }
1da177e4 1190}
1fe72eaa 1191EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1192
1193/*
1194 * Decrement a buffer_head's reference count. If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1199 */
1200void __brelse(struct buffer_head * buf)
1201{
1202 if (atomic_read(&buf->b_count)) {
1203 put_bh(buf);
1204 return;
1205 }
5c752ad9 1206 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1207}
1fe72eaa 1208EXPORT_SYMBOL(__brelse);
1da177e4
LT
1209
1210/*
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1213 */
1214void __bforget(struct buffer_head *bh)
1215{
1216 clear_buffer_dirty(bh);
535ee2fb 1217 if (bh->b_assoc_map) {
1da177e4
LT
1218 struct address_space *buffer_mapping = bh->b_page->mapping;
1219
1220 spin_lock(&buffer_mapping->private_lock);
1221 list_del_init(&bh->b_assoc_buffers);
58ff407b 1222 bh->b_assoc_map = NULL;
1da177e4
LT
1223 spin_unlock(&buffer_mapping->private_lock);
1224 }
1225 __brelse(bh);
1226}
1fe72eaa 1227EXPORT_SYMBOL(__bforget);
1da177e4
LT
1228
1229static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230{
1231 lock_buffer(bh);
1232 if (buffer_uptodate(bh)) {
1233 unlock_buffer(bh);
1234 return bh;
1235 } else {
1236 get_bh(bh);
1237 bh->b_end_io = end_buffer_read_sync;
1238 submit_bh(READ, bh);
1239 wait_on_buffer(bh);
1240 if (buffer_uptodate(bh))
1241 return bh;
1242 }
1243 brelse(bh);
1244 return NULL;
1245}
1246
1247/*
1248 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1250 * refcount elevated by one when they're in an LRU. A buffer can only appear
1251 * once in a particular CPU's LRU. A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1253 *
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1256 *
1257 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1258 * a local interrupt disable for that.
1259 */
1260
1261#define BH_LRU_SIZE 8
1262
1263struct bh_lru {
1264 struct buffer_head *bhs[BH_LRU_SIZE];
1265};
1266
1267static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268
1269#ifdef CONFIG_SMP
1270#define bh_lru_lock() local_irq_disable()
1271#define bh_lru_unlock() local_irq_enable()
1272#else
1273#define bh_lru_lock() preempt_disable()
1274#define bh_lru_unlock() preempt_enable()
1275#endif
1276
1277static inline void check_irqs_on(void)
1278{
1279#ifdef irqs_disabled
1280 BUG_ON(irqs_disabled());
1281#endif
1282}
1283
1284/*
1285 * The LRU management algorithm is dopey-but-simple. Sorry.
1286 */
1287static void bh_lru_install(struct buffer_head *bh)
1288{
1289 struct buffer_head *evictee = NULL;
1da177e4
LT
1290
1291 check_irqs_on();
1292 bh_lru_lock();
c7b92516 1293 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1294 struct buffer_head *bhs[BH_LRU_SIZE];
1295 int in;
1296 int out = 0;
1297
1298 get_bh(bh);
1299 bhs[out++] = bh;
1300 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1301 struct buffer_head *bh2 =
1302 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1303
1304 if (bh2 == bh) {
1305 __brelse(bh2);
1306 } else {
1307 if (out >= BH_LRU_SIZE) {
1308 BUG_ON(evictee != NULL);
1309 evictee = bh2;
1310 } else {
1311 bhs[out++] = bh2;
1312 }
1313 }
1314 }
1315 while (out < BH_LRU_SIZE)
1316 bhs[out++] = NULL;
ca6673b0 1317 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1318 }
1319 bh_lru_unlock();
1320
1321 if (evictee)
1322 __brelse(evictee);
1323}
1324
1325/*
1326 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1327 */
858119e1 1328static struct buffer_head *
3991d3bd 1329lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1330{
1331 struct buffer_head *ret = NULL;
3991d3bd 1332 unsigned int i;
1da177e4
LT
1333
1334 check_irqs_on();
1335 bh_lru_lock();
1da177e4 1336 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1337 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1338
1339 if (bh && bh->b_bdev == bdev &&
1340 bh->b_blocknr == block && bh->b_size == size) {
1341 if (i) {
1342 while (i) {
c7b92516
CL
1343 __this_cpu_write(bh_lrus.bhs[i],
1344 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1345 i--;
1346 }
c7b92516 1347 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1348 }
1349 get_bh(bh);
1350 ret = bh;
1351 break;
1352 }
1353 }
1354 bh_lru_unlock();
1355 return ret;
1356}
1357
1358/*
1359 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1360 * it in the LRU and mark it as accessed. If it is not present then return
1361 * NULL
1362 */
1363struct buffer_head *
3991d3bd 1364__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1365{
1366 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1367
1368 if (bh == NULL) {
385fd4c5 1369 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1370 if (bh)
1371 bh_lru_install(bh);
1372 }
1373 if (bh)
1374 touch_buffer(bh);
1375 return bh;
1376}
1377EXPORT_SYMBOL(__find_get_block);
1378
1379/*
1380 * __getblk will locate (and, if necessary, create) the buffer_head
1381 * which corresponds to the passed block_device, block and size. The
1382 * returned buffer has its reference count incremented.
1383 *
1da177e4
LT
1384 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1385 * attempt is failing. FIXME, perhaps?
1386 */
1387struct buffer_head *
3991d3bd 1388__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1389{
1390 struct buffer_head *bh = __find_get_block(bdev, block, size);
1391
1392 might_sleep();
1393 if (bh == NULL)
1394 bh = __getblk_slow(bdev, block, size);
1395 return bh;
1396}
1397EXPORT_SYMBOL(__getblk);
1398
1399/*
1400 * Do async read-ahead on a buffer..
1401 */
3991d3bd 1402void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1403{
1404 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1405 if (likely(bh)) {
1406 ll_rw_block(READA, 1, &bh);
1407 brelse(bh);
1408 }
1da177e4
LT
1409}
1410EXPORT_SYMBOL(__breadahead);
1411
1412/**
1413 * __bread() - reads a specified block and returns the bh
67be2dd1 1414 * @bdev: the block_device to read from
1da177e4
LT
1415 * @block: number of block
1416 * @size: size (in bytes) to read
1417 *
1418 * Reads a specified block, and returns buffer head that contains it.
1419 * It returns NULL if the block was unreadable.
1420 */
1421struct buffer_head *
3991d3bd 1422__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1423{
1424 struct buffer_head *bh = __getblk(bdev, block, size);
1425
a3e713b5 1426 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1427 bh = __bread_slow(bh);
1428 return bh;
1429}
1430EXPORT_SYMBOL(__bread);
1431
1432/*
1433 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434 * This doesn't race because it runs in each cpu either in irq
1435 * or with preempt disabled.
1436 */
1437static void invalidate_bh_lru(void *arg)
1438{
1439 struct bh_lru *b = &get_cpu_var(bh_lrus);
1440 int i;
1441
1442 for (i = 0; i < BH_LRU_SIZE; i++) {
1443 brelse(b->bhs[i]);
1444 b->bhs[i] = NULL;
1445 }
1446 put_cpu_var(bh_lrus);
1447}
42be35d0
GBY
1448
1449static bool has_bh_in_lru(int cpu, void *dummy)
1450{
1451 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1452 int i;
1da177e4 1453
42be35d0
GBY
1454 for (i = 0; i < BH_LRU_SIZE; i++) {
1455 if (b->bhs[i])
1456 return 1;
1457 }
1458
1459 return 0;
1460}
1461
f9a14399 1462void invalidate_bh_lrus(void)
1da177e4 1463{
42be35d0 1464 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1465}
9db5579b 1466EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1467
1468void set_bh_page(struct buffer_head *bh,
1469 struct page *page, unsigned long offset)
1470{
1471 bh->b_page = page;
e827f923 1472 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1473 if (PageHighMem(page))
1474 /*
1475 * This catches illegal uses and preserves the offset:
1476 */
1477 bh->b_data = (char *)(0 + offset);
1478 else
1479 bh->b_data = page_address(page) + offset;
1480}
1481EXPORT_SYMBOL(set_bh_page);
1482
1483/*
1484 * Called when truncating a buffer on a page completely.
1485 */
e7470ee8
MG
1486
1487/* Bits that are cleared during an invalidate */
1488#define BUFFER_FLAGS_DISCARD \
1489 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1490 1 << BH_Delay | 1 << BH_Unwritten)
1491
858119e1 1492static void discard_buffer(struct buffer_head * bh)
1da177e4 1493{
e7470ee8
MG
1494 unsigned long b_state, b_state_old;
1495
1da177e4
LT
1496 lock_buffer(bh);
1497 clear_buffer_dirty(bh);
1498 bh->b_bdev = NULL;
e7470ee8
MG
1499 b_state = bh->b_state;
1500 for (;;) {
1501 b_state_old = cmpxchg(&bh->b_state, b_state,
1502 (b_state & ~BUFFER_FLAGS_DISCARD));
1503 if (b_state_old == b_state)
1504 break;
1505 b_state = b_state_old;
1506 }
1da177e4
LT
1507 unlock_buffer(bh);
1508}
1509
1da177e4 1510/**
814e1d25 1511 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1512 *
1513 * @page: the page which is affected
d47992f8
LC
1514 * @offset: start of the range to invalidate
1515 * @length: length of the range to invalidate
1da177e4
LT
1516 *
1517 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1518 * invalidated by a truncate operation.
1da177e4
LT
1519 *
1520 * block_invalidatepage() does not have to release all buffers, but it must
1521 * ensure that no dirty buffer is left outside @offset and that no I/O
1522 * is underway against any of the blocks which are outside the truncation
1523 * point. Because the caller is about to free (and possibly reuse) those
1524 * blocks on-disk.
1525 */
d47992f8
LC
1526void block_invalidatepage(struct page *page, unsigned int offset,
1527 unsigned int length)
1da177e4
LT
1528{
1529 struct buffer_head *head, *bh, *next;
1530 unsigned int curr_off = 0;
d47992f8 1531 unsigned int stop = length + offset;
1da177e4
LT
1532
1533 BUG_ON(!PageLocked(page));
1534 if (!page_has_buffers(page))
1535 goto out;
1536
d47992f8
LC
1537 /*
1538 * Check for overflow
1539 */
1540 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1541
1da177e4
LT
1542 head = page_buffers(page);
1543 bh = head;
1544 do {
1545 unsigned int next_off = curr_off + bh->b_size;
1546 next = bh->b_this_page;
1547
d47992f8
LC
1548 /*
1549 * Are we still fully in range ?
1550 */
1551 if (next_off > stop)
1552 goto out;
1553
1da177e4
LT
1554 /*
1555 * is this block fully invalidated?
1556 */
1557 if (offset <= curr_off)
1558 discard_buffer(bh);
1559 curr_off = next_off;
1560 bh = next;
1561 } while (bh != head);
1562
1563 /*
1564 * We release buffers only if the entire page is being invalidated.
1565 * The get_block cached value has been unconditionally invalidated,
1566 * so real IO is not possible anymore.
1567 */
1568 if (offset == 0)
2ff28e22 1569 try_to_release_page(page, 0);
1da177e4 1570out:
2ff28e22 1571 return;
1da177e4
LT
1572}
1573EXPORT_SYMBOL(block_invalidatepage);
1574
d47992f8 1575
1da177e4
LT
1576/*
1577 * We attach and possibly dirty the buffers atomically wrt
1578 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1579 * is already excluded via the page lock.
1580 */
1581void create_empty_buffers(struct page *page,
1582 unsigned long blocksize, unsigned long b_state)
1583{
1584 struct buffer_head *bh, *head, *tail;
1585
1586 head = alloc_page_buffers(page, blocksize, 1);
1587 bh = head;
1588 do {
1589 bh->b_state |= b_state;
1590 tail = bh;
1591 bh = bh->b_this_page;
1592 } while (bh);
1593 tail->b_this_page = head;
1594
1595 spin_lock(&page->mapping->private_lock);
1596 if (PageUptodate(page) || PageDirty(page)) {
1597 bh = head;
1598 do {
1599 if (PageDirty(page))
1600 set_buffer_dirty(bh);
1601 if (PageUptodate(page))
1602 set_buffer_uptodate(bh);
1603 bh = bh->b_this_page;
1604 } while (bh != head);
1605 }
1606 attach_page_buffers(page, head);
1607 spin_unlock(&page->mapping->private_lock);
1608}
1609EXPORT_SYMBOL(create_empty_buffers);
1610
1611/*
1612 * We are taking a block for data and we don't want any output from any
1613 * buffer-cache aliases starting from return from that function and
1614 * until the moment when something will explicitly mark the buffer
1615 * dirty (hopefully that will not happen until we will free that block ;-)
1616 * We don't even need to mark it not-uptodate - nobody can expect
1617 * anything from a newly allocated buffer anyway. We used to used
1618 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1619 * don't want to mark the alias unmapped, for example - it would confuse
1620 * anyone who might pick it with bread() afterwards...
1621 *
1622 * Also.. Note that bforget() doesn't lock the buffer. So there can
1623 * be writeout I/O going on against recently-freed buffers. We don't
1624 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1625 * only if we really need to. That happens here.
1626 */
1627void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1628{
1629 struct buffer_head *old_bh;
1630
1631 might_sleep();
1632
385fd4c5 1633 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1634 if (old_bh) {
1635 clear_buffer_dirty(old_bh);
1636 wait_on_buffer(old_bh);
1637 clear_buffer_req(old_bh);
1638 __brelse(old_bh);
1639 }
1640}
1641EXPORT_SYMBOL(unmap_underlying_metadata);
1642
45bce8f3
LT
1643/*
1644 * Size is a power-of-two in the range 512..PAGE_SIZE,
1645 * and the case we care about most is PAGE_SIZE.
1646 *
1647 * So this *could* possibly be written with those
1648 * constraints in mind (relevant mostly if some
1649 * architecture has a slow bit-scan instruction)
1650 */
1651static inline int block_size_bits(unsigned int blocksize)
1652{
1653 return ilog2(blocksize);
1654}
1655
1656static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1657{
1658 BUG_ON(!PageLocked(page));
1659
1660 if (!page_has_buffers(page))
1661 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1662 return page_buffers(page);
1663}
1664
1da177e4
LT
1665/*
1666 * NOTE! All mapped/uptodate combinations are valid:
1667 *
1668 * Mapped Uptodate Meaning
1669 *
1670 * No No "unknown" - must do get_block()
1671 * No Yes "hole" - zero-filled
1672 * Yes No "allocated" - allocated on disk, not read in
1673 * Yes Yes "valid" - allocated and up-to-date in memory.
1674 *
1675 * "Dirty" is valid only with the last case (mapped+uptodate).
1676 */
1677
1678/*
1679 * While block_write_full_page is writing back the dirty buffers under
1680 * the page lock, whoever dirtied the buffers may decide to clean them
1681 * again at any time. We handle that by only looking at the buffer
1682 * state inside lock_buffer().
1683 *
1684 * If block_write_full_page() is called for regular writeback
1685 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1686 * locked buffer. This only can happen if someone has written the buffer
1687 * directly, with submit_bh(). At the address_space level PageWriteback
1688 * prevents this contention from occurring.
6e34eedd
TT
1689 *
1690 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1691 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1692 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1693 */
1694static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1695 get_block_t *get_block, struct writeback_control *wbc,
1696 bh_end_io_t *handler)
1da177e4
LT
1697{
1698 int err;
1699 sector_t block;
1700 sector_t last_block;
f0fbd5fc 1701 struct buffer_head *bh, *head;
45bce8f3 1702 unsigned int blocksize, bbits;
1da177e4 1703 int nr_underway = 0;
6e34eedd 1704 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1705 WRITE_SYNC : WRITE);
1da177e4 1706
45bce8f3 1707 head = create_page_buffers(page, inode,
1da177e4 1708 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1709
1710 /*
1711 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1712 * here, and the (potentially unmapped) buffers may become dirty at
1713 * any time. If a buffer becomes dirty here after we've inspected it
1714 * then we just miss that fact, and the page stays dirty.
1715 *
1716 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1717 * handle that here by just cleaning them.
1718 */
1719
1da177e4 1720 bh = head;
45bce8f3
LT
1721 blocksize = bh->b_size;
1722 bbits = block_size_bits(blocksize);
1723
1724 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1725 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1726
1727 /*
1728 * Get all the dirty buffers mapped to disk addresses and
1729 * handle any aliases from the underlying blockdev's mapping.
1730 */
1731 do {
1732 if (block > last_block) {
1733 /*
1734 * mapped buffers outside i_size will occur, because
1735 * this page can be outside i_size when there is a
1736 * truncate in progress.
1737 */
1738 /*
1739 * The buffer was zeroed by block_write_full_page()
1740 */
1741 clear_buffer_dirty(bh);
1742 set_buffer_uptodate(bh);
29a814d2
AT
1743 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1744 buffer_dirty(bh)) {
b0cf2321 1745 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1746 err = get_block(inode, block, bh, 1);
1747 if (err)
1748 goto recover;
29a814d2 1749 clear_buffer_delay(bh);
1da177e4
LT
1750 if (buffer_new(bh)) {
1751 /* blockdev mappings never come here */
1752 clear_buffer_new(bh);
1753 unmap_underlying_metadata(bh->b_bdev,
1754 bh->b_blocknr);
1755 }
1756 }
1757 bh = bh->b_this_page;
1758 block++;
1759 } while (bh != head);
1760
1761 do {
1da177e4
LT
1762 if (!buffer_mapped(bh))
1763 continue;
1764 /*
1765 * If it's a fully non-blocking write attempt and we cannot
1766 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1767 * potentially cause a busy-wait loop from writeback threads
1768 * and kswapd activity, but those code paths have their own
1769 * higher-level throttling.
1da177e4 1770 */
1b430bee 1771 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1772 lock_buffer(bh);
ca5de404 1773 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1774 redirty_page_for_writepage(wbc, page);
1775 continue;
1776 }
1777 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1778 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1779 } else {
1780 unlock_buffer(bh);
1781 }
1782 } while ((bh = bh->b_this_page) != head);
1783
1784 /*
1785 * The page and its buffers are protected by PageWriteback(), so we can
1786 * drop the bh refcounts early.
1787 */
1788 BUG_ON(PageWriteback(page));
1789 set_page_writeback(page);
1da177e4
LT
1790
1791 do {
1792 struct buffer_head *next = bh->b_this_page;
1793 if (buffer_async_write(bh)) {
a64c8610 1794 submit_bh(write_op, bh);
1da177e4
LT
1795 nr_underway++;
1796 }
1da177e4
LT
1797 bh = next;
1798 } while (bh != head);
05937baa 1799 unlock_page(page);
1da177e4
LT
1800
1801 err = 0;
1802done:
1803 if (nr_underway == 0) {
1804 /*
1805 * The page was marked dirty, but the buffers were
1806 * clean. Someone wrote them back by hand with
1807 * ll_rw_block/submit_bh. A rare case.
1808 */
1da177e4 1809 end_page_writeback(page);
3d67f2d7 1810
1da177e4
LT
1811 /*
1812 * The page and buffer_heads can be released at any time from
1813 * here on.
1814 */
1da177e4
LT
1815 }
1816 return err;
1817
1818recover:
1819 /*
1820 * ENOSPC, or some other error. We may already have added some
1821 * blocks to the file, so we need to write these out to avoid
1822 * exposing stale data.
1823 * The page is currently locked and not marked for writeback
1824 */
1825 bh = head;
1826 /* Recovery: lock and submit the mapped buffers */
1827 do {
29a814d2
AT
1828 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1829 !buffer_delay(bh)) {
1da177e4 1830 lock_buffer(bh);
35c80d5f 1831 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1832 } else {
1833 /*
1834 * The buffer may have been set dirty during
1835 * attachment to a dirty page.
1836 */
1837 clear_buffer_dirty(bh);
1838 }
1839 } while ((bh = bh->b_this_page) != head);
1840 SetPageError(page);
1841 BUG_ON(PageWriteback(page));
7e4c3690 1842 mapping_set_error(page->mapping, err);
1da177e4 1843 set_page_writeback(page);
1da177e4
LT
1844 do {
1845 struct buffer_head *next = bh->b_this_page;
1846 if (buffer_async_write(bh)) {
1847 clear_buffer_dirty(bh);
a64c8610 1848 submit_bh(write_op, bh);
1da177e4
LT
1849 nr_underway++;
1850 }
1da177e4
LT
1851 bh = next;
1852 } while (bh != head);
ffda9d30 1853 unlock_page(page);
1da177e4
LT
1854 goto done;
1855}
1856
afddba49
NP
1857/*
1858 * If a page has any new buffers, zero them out here, and mark them uptodate
1859 * and dirty so they'll be written out (in order to prevent uninitialised
1860 * block data from leaking). And clear the new bit.
1861 */
1862void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1863{
1864 unsigned int block_start, block_end;
1865 struct buffer_head *head, *bh;
1866
1867 BUG_ON(!PageLocked(page));
1868 if (!page_has_buffers(page))
1869 return;
1870
1871 bh = head = page_buffers(page);
1872 block_start = 0;
1873 do {
1874 block_end = block_start + bh->b_size;
1875
1876 if (buffer_new(bh)) {
1877 if (block_end > from && block_start < to) {
1878 if (!PageUptodate(page)) {
1879 unsigned start, size;
1880
1881 start = max(from, block_start);
1882 size = min(to, block_end) - start;
1883
eebd2aa3 1884 zero_user(page, start, size);
afddba49
NP
1885 set_buffer_uptodate(bh);
1886 }
1887
1888 clear_buffer_new(bh);
1889 mark_buffer_dirty(bh);
1890 }
1891 }
1892
1893 block_start = block_end;
1894 bh = bh->b_this_page;
1895 } while (bh != head);
1896}
1897EXPORT_SYMBOL(page_zero_new_buffers);
1898
ebdec241 1899int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1900 get_block_t *get_block)
1da177e4 1901{
ebdec241
CH
1902 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1903 unsigned to = from + len;
6e1db88d 1904 struct inode *inode = page->mapping->host;
1da177e4
LT
1905 unsigned block_start, block_end;
1906 sector_t block;
1907 int err = 0;
1908 unsigned blocksize, bbits;
1909 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1910
1911 BUG_ON(!PageLocked(page));
1912 BUG_ON(from > PAGE_CACHE_SIZE);
1913 BUG_ON(to > PAGE_CACHE_SIZE);
1914 BUG_ON(from > to);
1915
45bce8f3
LT
1916 head = create_page_buffers(page, inode, 0);
1917 blocksize = head->b_size;
1918 bbits = block_size_bits(blocksize);
1da177e4 1919
1da177e4
LT
1920 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1921
1922 for(bh = head, block_start = 0; bh != head || !block_start;
1923 block++, block_start=block_end, bh = bh->b_this_page) {
1924 block_end = block_start + blocksize;
1925 if (block_end <= from || block_start >= to) {
1926 if (PageUptodate(page)) {
1927 if (!buffer_uptodate(bh))
1928 set_buffer_uptodate(bh);
1929 }
1930 continue;
1931 }
1932 if (buffer_new(bh))
1933 clear_buffer_new(bh);
1934 if (!buffer_mapped(bh)) {
b0cf2321 1935 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1936 err = get_block(inode, block, bh, 1);
1937 if (err)
f3ddbdc6 1938 break;
1da177e4 1939 if (buffer_new(bh)) {
1da177e4
LT
1940 unmap_underlying_metadata(bh->b_bdev,
1941 bh->b_blocknr);
1942 if (PageUptodate(page)) {
637aff46 1943 clear_buffer_new(bh);
1da177e4 1944 set_buffer_uptodate(bh);
637aff46 1945 mark_buffer_dirty(bh);
1da177e4
LT
1946 continue;
1947 }
eebd2aa3
CL
1948 if (block_end > to || block_start < from)
1949 zero_user_segments(page,
1950 to, block_end,
1951 block_start, from);
1da177e4
LT
1952 continue;
1953 }
1954 }
1955 if (PageUptodate(page)) {
1956 if (!buffer_uptodate(bh))
1957 set_buffer_uptodate(bh);
1958 continue;
1959 }
1960 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1961 !buffer_unwritten(bh) &&
1da177e4
LT
1962 (block_start < from || block_end > to)) {
1963 ll_rw_block(READ, 1, &bh);
1964 *wait_bh++=bh;
1965 }
1966 }
1967 /*
1968 * If we issued read requests - let them complete.
1969 */
1970 while(wait_bh > wait) {
1971 wait_on_buffer(*--wait_bh);
1972 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1973 err = -EIO;
1da177e4 1974 }
f9f07b6c 1975 if (unlikely(err))
afddba49 1976 page_zero_new_buffers(page, from, to);
1da177e4
LT
1977 return err;
1978}
ebdec241 1979EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1980
1981static int __block_commit_write(struct inode *inode, struct page *page,
1982 unsigned from, unsigned to)
1983{
1984 unsigned block_start, block_end;
1985 int partial = 0;
1986 unsigned blocksize;
1987 struct buffer_head *bh, *head;
1988
45bce8f3
LT
1989 bh = head = page_buffers(page);
1990 blocksize = bh->b_size;
1da177e4 1991
45bce8f3
LT
1992 block_start = 0;
1993 do {
1da177e4
LT
1994 block_end = block_start + blocksize;
1995 if (block_end <= from || block_start >= to) {
1996 if (!buffer_uptodate(bh))
1997 partial = 1;
1998 } else {
1999 set_buffer_uptodate(bh);
2000 mark_buffer_dirty(bh);
2001 }
afddba49 2002 clear_buffer_new(bh);
45bce8f3
LT
2003
2004 block_start = block_end;
2005 bh = bh->b_this_page;
2006 } while (bh != head);
1da177e4
LT
2007
2008 /*
2009 * If this is a partial write which happened to make all buffers
2010 * uptodate then we can optimize away a bogus readpage() for
2011 * the next read(). Here we 'discover' whether the page went
2012 * uptodate as a result of this (potentially partial) write.
2013 */
2014 if (!partial)
2015 SetPageUptodate(page);
2016 return 0;
2017}
2018
afddba49 2019/*
155130a4
CH
2020 * block_write_begin takes care of the basic task of block allocation and
2021 * bringing partial write blocks uptodate first.
2022 *
7bb46a67 2023 * The filesystem needs to handle block truncation upon failure.
afddba49 2024 */
155130a4
CH
2025int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2026 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2027{
6e1db88d 2028 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 2029 struct page *page;
6e1db88d 2030 int status;
afddba49 2031
6e1db88d
CH
2032 page = grab_cache_page_write_begin(mapping, index, flags);
2033 if (!page)
2034 return -ENOMEM;
afddba49 2035
6e1db88d 2036 status = __block_write_begin(page, pos, len, get_block);
afddba49 2037 if (unlikely(status)) {
6e1db88d
CH
2038 unlock_page(page);
2039 page_cache_release(page);
2040 page = NULL;
afddba49
NP
2041 }
2042
6e1db88d 2043 *pagep = page;
afddba49
NP
2044 return status;
2045}
2046EXPORT_SYMBOL(block_write_begin);
2047
2048int block_write_end(struct file *file, struct address_space *mapping,
2049 loff_t pos, unsigned len, unsigned copied,
2050 struct page *page, void *fsdata)
2051{
2052 struct inode *inode = mapping->host;
2053 unsigned start;
2054
2055 start = pos & (PAGE_CACHE_SIZE - 1);
2056
2057 if (unlikely(copied < len)) {
2058 /*
2059 * The buffers that were written will now be uptodate, so we
2060 * don't have to worry about a readpage reading them and
2061 * overwriting a partial write. However if we have encountered
2062 * a short write and only partially written into a buffer, it
2063 * will not be marked uptodate, so a readpage might come in and
2064 * destroy our partial write.
2065 *
2066 * Do the simplest thing, and just treat any short write to a
2067 * non uptodate page as a zero-length write, and force the
2068 * caller to redo the whole thing.
2069 */
2070 if (!PageUptodate(page))
2071 copied = 0;
2072
2073 page_zero_new_buffers(page, start+copied, start+len);
2074 }
2075 flush_dcache_page(page);
2076
2077 /* This could be a short (even 0-length) commit */
2078 __block_commit_write(inode, page, start, start+copied);
2079
2080 return copied;
2081}
2082EXPORT_SYMBOL(block_write_end);
2083
2084int generic_write_end(struct file *file, struct address_space *mapping,
2085 loff_t pos, unsigned len, unsigned copied,
2086 struct page *page, void *fsdata)
2087{
2088 struct inode *inode = mapping->host;
c7d206b3 2089 int i_size_changed = 0;
afddba49
NP
2090
2091 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2092
2093 /*
2094 * No need to use i_size_read() here, the i_size
2095 * cannot change under us because we hold i_mutex.
2096 *
2097 * But it's important to update i_size while still holding page lock:
2098 * page writeout could otherwise come in and zero beyond i_size.
2099 */
2100 if (pos+copied > inode->i_size) {
2101 i_size_write(inode, pos+copied);
c7d206b3 2102 i_size_changed = 1;
afddba49
NP
2103 }
2104
2105 unlock_page(page);
2106 page_cache_release(page);
2107
c7d206b3
JK
2108 /*
2109 * Don't mark the inode dirty under page lock. First, it unnecessarily
2110 * makes the holding time of page lock longer. Second, it forces lock
2111 * ordering of page lock and transaction start for journaling
2112 * filesystems.
2113 */
2114 if (i_size_changed)
2115 mark_inode_dirty(inode);
2116
afddba49
NP
2117 return copied;
2118}
2119EXPORT_SYMBOL(generic_write_end);
2120
8ab22b9a
HH
2121/*
2122 * block_is_partially_uptodate checks whether buffers within a page are
2123 * uptodate or not.
2124 *
2125 * Returns true if all buffers which correspond to a file portion
2126 * we want to read are uptodate.
2127 */
c186afb4
AV
2128int block_is_partially_uptodate(struct page *page, unsigned long from,
2129 unsigned long count)
8ab22b9a 2130{
8ab22b9a
HH
2131 unsigned block_start, block_end, blocksize;
2132 unsigned to;
2133 struct buffer_head *bh, *head;
2134 int ret = 1;
2135
2136 if (!page_has_buffers(page))
2137 return 0;
2138
45bce8f3
LT
2139 head = page_buffers(page);
2140 blocksize = head->b_size;
c186afb4 2141 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
8ab22b9a
HH
2142 to = from + to;
2143 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2144 return 0;
2145
8ab22b9a
HH
2146 bh = head;
2147 block_start = 0;
2148 do {
2149 block_end = block_start + blocksize;
2150 if (block_end > from && block_start < to) {
2151 if (!buffer_uptodate(bh)) {
2152 ret = 0;
2153 break;
2154 }
2155 if (block_end >= to)
2156 break;
2157 }
2158 block_start = block_end;
2159 bh = bh->b_this_page;
2160 } while (bh != head);
2161
2162 return ret;
2163}
2164EXPORT_SYMBOL(block_is_partially_uptodate);
2165
1da177e4
LT
2166/*
2167 * Generic "read page" function for block devices that have the normal
2168 * get_block functionality. This is most of the block device filesystems.
2169 * Reads the page asynchronously --- the unlock_buffer() and
2170 * set/clear_buffer_uptodate() functions propagate buffer state into the
2171 * page struct once IO has completed.
2172 */
2173int block_read_full_page(struct page *page, get_block_t *get_block)
2174{
2175 struct inode *inode = page->mapping->host;
2176 sector_t iblock, lblock;
2177 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2178 unsigned int blocksize, bbits;
1da177e4
LT
2179 int nr, i;
2180 int fully_mapped = 1;
2181
45bce8f3
LT
2182 head = create_page_buffers(page, inode, 0);
2183 blocksize = head->b_size;
2184 bbits = block_size_bits(blocksize);
1da177e4 2185
45bce8f3
LT
2186 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2187 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2188 bh = head;
2189 nr = 0;
2190 i = 0;
2191
2192 do {
2193 if (buffer_uptodate(bh))
2194 continue;
2195
2196 if (!buffer_mapped(bh)) {
c64610ba
AM
2197 int err = 0;
2198
1da177e4
LT
2199 fully_mapped = 0;
2200 if (iblock < lblock) {
b0cf2321 2201 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2202 err = get_block(inode, iblock, bh, 0);
2203 if (err)
1da177e4
LT
2204 SetPageError(page);
2205 }
2206 if (!buffer_mapped(bh)) {
eebd2aa3 2207 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2208 if (!err)
2209 set_buffer_uptodate(bh);
1da177e4
LT
2210 continue;
2211 }
2212 /*
2213 * get_block() might have updated the buffer
2214 * synchronously
2215 */
2216 if (buffer_uptodate(bh))
2217 continue;
2218 }
2219 arr[nr++] = bh;
2220 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2221
2222 if (fully_mapped)
2223 SetPageMappedToDisk(page);
2224
2225 if (!nr) {
2226 /*
2227 * All buffers are uptodate - we can set the page uptodate
2228 * as well. But not if get_block() returned an error.
2229 */
2230 if (!PageError(page))
2231 SetPageUptodate(page);
2232 unlock_page(page);
2233 return 0;
2234 }
2235
2236 /* Stage two: lock the buffers */
2237 for (i = 0; i < nr; i++) {
2238 bh = arr[i];
2239 lock_buffer(bh);
2240 mark_buffer_async_read(bh);
2241 }
2242
2243 /*
2244 * Stage 3: start the IO. Check for uptodateness
2245 * inside the buffer lock in case another process reading
2246 * the underlying blockdev brought it uptodate (the sct fix).
2247 */
2248 for (i = 0; i < nr; i++) {
2249 bh = arr[i];
2250 if (buffer_uptodate(bh))
2251 end_buffer_async_read(bh, 1);
2252 else
2253 submit_bh(READ, bh);
2254 }
2255 return 0;
2256}
1fe72eaa 2257EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2258
2259/* utility function for filesystems that need to do work on expanding
89e10787 2260 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2261 * deal with the hole.
2262 */
89e10787 2263int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2264{
2265 struct address_space *mapping = inode->i_mapping;
2266 struct page *page;
89e10787 2267 void *fsdata;
1da177e4
LT
2268 int err;
2269
c08d3b0e 2270 err = inode_newsize_ok(inode, size);
2271 if (err)
1da177e4
LT
2272 goto out;
2273
89e10787
NP
2274 err = pagecache_write_begin(NULL, mapping, size, 0,
2275 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2276 &page, &fsdata);
2277 if (err)
05eb0b51 2278 goto out;
05eb0b51 2279
89e10787
NP
2280 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2281 BUG_ON(err > 0);
05eb0b51 2282
1da177e4
LT
2283out:
2284 return err;
2285}
1fe72eaa 2286EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2287
f1e3af72
AB
2288static int cont_expand_zero(struct file *file, struct address_space *mapping,
2289 loff_t pos, loff_t *bytes)
1da177e4 2290{
1da177e4 2291 struct inode *inode = mapping->host;
1da177e4 2292 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2293 struct page *page;
2294 void *fsdata;
2295 pgoff_t index, curidx;
2296 loff_t curpos;
2297 unsigned zerofrom, offset, len;
2298 int err = 0;
1da177e4 2299
89e10787
NP
2300 index = pos >> PAGE_CACHE_SHIFT;
2301 offset = pos & ~PAGE_CACHE_MASK;
2302
2303 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2304 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2305 if (zerofrom & (blocksize-1)) {
2306 *bytes |= (blocksize-1);
2307 (*bytes)++;
2308 }
89e10787 2309 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2310
89e10787
NP
2311 err = pagecache_write_begin(file, mapping, curpos, len,
2312 AOP_FLAG_UNINTERRUPTIBLE,
2313 &page, &fsdata);
2314 if (err)
2315 goto out;
eebd2aa3 2316 zero_user(page, zerofrom, len);
89e10787
NP
2317 err = pagecache_write_end(file, mapping, curpos, len, len,
2318 page, fsdata);
2319 if (err < 0)
2320 goto out;
2321 BUG_ON(err != len);
2322 err = 0;
061e9746
OH
2323
2324 balance_dirty_pages_ratelimited(mapping);
89e10787 2325 }
1da177e4 2326
89e10787
NP
2327 /* page covers the boundary, find the boundary offset */
2328 if (index == curidx) {
2329 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2330 /* if we will expand the thing last block will be filled */
89e10787
NP
2331 if (offset <= zerofrom) {
2332 goto out;
2333 }
2334 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2335 *bytes |= (blocksize-1);
2336 (*bytes)++;
2337 }
89e10787 2338 len = offset - zerofrom;
1da177e4 2339
89e10787
NP
2340 err = pagecache_write_begin(file, mapping, curpos, len,
2341 AOP_FLAG_UNINTERRUPTIBLE,
2342 &page, &fsdata);
2343 if (err)
2344 goto out;
eebd2aa3 2345 zero_user(page, zerofrom, len);
89e10787
NP
2346 err = pagecache_write_end(file, mapping, curpos, len, len,
2347 page, fsdata);
2348 if (err < 0)
2349 goto out;
2350 BUG_ON(err != len);
2351 err = 0;
1da177e4 2352 }
89e10787
NP
2353out:
2354 return err;
2355}
2356
2357/*
2358 * For moronic filesystems that do not allow holes in file.
2359 * We may have to extend the file.
2360 */
282dc178 2361int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2362 loff_t pos, unsigned len, unsigned flags,
2363 struct page **pagep, void **fsdata,
2364 get_block_t *get_block, loff_t *bytes)
2365{
2366 struct inode *inode = mapping->host;
2367 unsigned blocksize = 1 << inode->i_blkbits;
2368 unsigned zerofrom;
2369 int err;
2370
2371 err = cont_expand_zero(file, mapping, pos, bytes);
2372 if (err)
155130a4 2373 return err;
89e10787
NP
2374
2375 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2376 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2377 *bytes |= (blocksize-1);
2378 (*bytes)++;
1da177e4 2379 }
1da177e4 2380
155130a4 2381 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2382}
1fe72eaa 2383EXPORT_SYMBOL(cont_write_begin);
1da177e4 2384
1da177e4
LT
2385int block_commit_write(struct page *page, unsigned from, unsigned to)
2386{
2387 struct inode *inode = page->mapping->host;
2388 __block_commit_write(inode,page,from,to);
2389 return 0;
2390}
1fe72eaa 2391EXPORT_SYMBOL(block_commit_write);
1da177e4 2392
54171690
DC
2393/*
2394 * block_page_mkwrite() is not allowed to change the file size as it gets
2395 * called from a page fault handler when a page is first dirtied. Hence we must
2396 * be careful to check for EOF conditions here. We set the page up correctly
2397 * for a written page which means we get ENOSPC checking when writing into
2398 * holes and correct delalloc and unwritten extent mapping on filesystems that
2399 * support these features.
2400 *
2401 * We are not allowed to take the i_mutex here so we have to play games to
2402 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2403 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2404 * page lock we can determine safely if the page is beyond EOF. If it is not
2405 * beyond EOF, then the page is guaranteed safe against truncation until we
2406 * unlock the page.
ea13a864 2407 *
14da9200
JK
2408 * Direct callers of this function should protect against filesystem freezing
2409 * using sb_start_write() - sb_end_write() functions.
54171690 2410 */
24da4fab
JK
2411int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2412 get_block_t get_block)
54171690 2413{
c2ec175c 2414 struct page *page = vmf->page;
496ad9aa 2415 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2416 unsigned long end;
2417 loff_t size;
24da4fab 2418 int ret;
54171690
DC
2419
2420 lock_page(page);
2421 size = i_size_read(inode);
2422 if ((page->mapping != inode->i_mapping) ||
18336338 2423 (page_offset(page) > size)) {
24da4fab
JK
2424 /* We overload EFAULT to mean page got truncated */
2425 ret = -EFAULT;
2426 goto out_unlock;
54171690
DC
2427 }
2428
2429 /* page is wholly or partially inside EOF */
2430 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2431 end = size & ~PAGE_CACHE_MASK;
2432 else
2433 end = PAGE_CACHE_SIZE;
2434
ebdec241 2435 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2436 if (!ret)
2437 ret = block_commit_write(page, 0, end);
2438
24da4fab
JK
2439 if (unlikely(ret < 0))
2440 goto out_unlock;
ea13a864 2441 set_page_dirty(page);
1d1d1a76 2442 wait_for_stable_page(page);
24da4fab
JK
2443 return 0;
2444out_unlock:
2445 unlock_page(page);
54171690 2446 return ret;
24da4fab
JK
2447}
2448EXPORT_SYMBOL(__block_page_mkwrite);
2449
2450int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2451 get_block_t get_block)
2452{
ea13a864 2453 int ret;
496ad9aa 2454 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2455
14da9200 2456 sb_start_pagefault(sb);
041bbb6d
TT
2457
2458 /*
2459 * Update file times before taking page lock. We may end up failing the
2460 * fault so this update may be superfluous but who really cares...
2461 */
2462 file_update_time(vma->vm_file);
2463
ea13a864 2464 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2465 sb_end_pagefault(sb);
24da4fab 2466 return block_page_mkwrite_return(ret);
54171690 2467}
1fe72eaa 2468EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2469
2470/*
03158cd7 2471 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2472 * immediately, while under the page lock. So it needs a special end_io
2473 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2474 */
2475static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2476{
68671f35 2477 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2478}
2479
03158cd7
NP
2480/*
2481 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2482 * the page (converting it to circular linked list and taking care of page
2483 * dirty races).
2484 */
2485static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2486{
2487 struct buffer_head *bh;
2488
2489 BUG_ON(!PageLocked(page));
2490
2491 spin_lock(&page->mapping->private_lock);
2492 bh = head;
2493 do {
2494 if (PageDirty(page))
2495 set_buffer_dirty(bh);
2496 if (!bh->b_this_page)
2497 bh->b_this_page = head;
2498 bh = bh->b_this_page;
2499 } while (bh != head);
2500 attach_page_buffers(page, head);
2501 spin_unlock(&page->mapping->private_lock);
2502}
2503
1da177e4 2504/*
ea0f04e5
CH
2505 * On entry, the page is fully not uptodate.
2506 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2507 * The filesystem needs to handle block truncation upon failure.
1da177e4 2508 */
ea0f04e5 2509int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2510 loff_t pos, unsigned len, unsigned flags,
2511 struct page **pagep, void **fsdata,
1da177e4
LT
2512 get_block_t *get_block)
2513{
03158cd7 2514 struct inode *inode = mapping->host;
1da177e4
LT
2515 const unsigned blkbits = inode->i_blkbits;
2516 const unsigned blocksize = 1 << blkbits;
a4b0672d 2517 struct buffer_head *head, *bh;
03158cd7
NP
2518 struct page *page;
2519 pgoff_t index;
2520 unsigned from, to;
1da177e4 2521 unsigned block_in_page;
a4b0672d 2522 unsigned block_start, block_end;
1da177e4 2523 sector_t block_in_file;
1da177e4 2524 int nr_reads = 0;
1da177e4
LT
2525 int ret = 0;
2526 int is_mapped_to_disk = 1;
1da177e4 2527
03158cd7
NP
2528 index = pos >> PAGE_CACHE_SHIFT;
2529 from = pos & (PAGE_CACHE_SIZE - 1);
2530 to = from + len;
2531
54566b2c 2532 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2533 if (!page)
2534 return -ENOMEM;
2535 *pagep = page;
2536 *fsdata = NULL;
2537
2538 if (page_has_buffers(page)) {
309f77ad
NK
2539 ret = __block_write_begin(page, pos, len, get_block);
2540 if (unlikely(ret))
2541 goto out_release;
2542 return ret;
03158cd7 2543 }
a4b0672d 2544
1da177e4
LT
2545 if (PageMappedToDisk(page))
2546 return 0;
2547
a4b0672d
NP
2548 /*
2549 * Allocate buffers so that we can keep track of state, and potentially
2550 * attach them to the page if an error occurs. In the common case of
2551 * no error, they will just be freed again without ever being attached
2552 * to the page (which is all OK, because we're under the page lock).
2553 *
2554 * Be careful: the buffer linked list is a NULL terminated one, rather
2555 * than the circular one we're used to.
2556 */
2557 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2558 if (!head) {
2559 ret = -ENOMEM;
2560 goto out_release;
2561 }
a4b0672d 2562
1da177e4 2563 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2564
2565 /*
2566 * We loop across all blocks in the page, whether or not they are
2567 * part of the affected region. This is so we can discover if the
2568 * page is fully mapped-to-disk.
2569 */
a4b0672d 2570 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2571 block_start < PAGE_CACHE_SIZE;
a4b0672d 2572 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2573 int create;
2574
a4b0672d
NP
2575 block_end = block_start + blocksize;
2576 bh->b_state = 0;
1da177e4
LT
2577 create = 1;
2578 if (block_start >= to)
2579 create = 0;
2580 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2581 bh, create);
1da177e4
LT
2582 if (ret)
2583 goto failed;
a4b0672d 2584 if (!buffer_mapped(bh))
1da177e4 2585 is_mapped_to_disk = 0;
a4b0672d
NP
2586 if (buffer_new(bh))
2587 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2588 if (PageUptodate(page)) {
2589 set_buffer_uptodate(bh);
1da177e4 2590 continue;
a4b0672d
NP
2591 }
2592 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2593 zero_user_segments(page, block_start, from,
2594 to, block_end);
1da177e4
LT
2595 continue;
2596 }
a4b0672d 2597 if (buffer_uptodate(bh))
1da177e4
LT
2598 continue; /* reiserfs does this */
2599 if (block_start < from || block_end > to) {
a4b0672d
NP
2600 lock_buffer(bh);
2601 bh->b_end_io = end_buffer_read_nobh;
2602 submit_bh(READ, bh);
2603 nr_reads++;
1da177e4
LT
2604 }
2605 }
2606
2607 if (nr_reads) {
1da177e4
LT
2608 /*
2609 * The page is locked, so these buffers are protected from
2610 * any VM or truncate activity. Hence we don't need to care
2611 * for the buffer_head refcounts.
2612 */
a4b0672d 2613 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2614 wait_on_buffer(bh);
2615 if (!buffer_uptodate(bh))
2616 ret = -EIO;
1da177e4
LT
2617 }
2618 if (ret)
2619 goto failed;
2620 }
2621
2622 if (is_mapped_to_disk)
2623 SetPageMappedToDisk(page);
1da177e4 2624
03158cd7 2625 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2626
1da177e4
LT
2627 return 0;
2628
2629failed:
03158cd7 2630 BUG_ON(!ret);
1da177e4 2631 /*
a4b0672d
NP
2632 * Error recovery is a bit difficult. We need to zero out blocks that
2633 * were newly allocated, and dirty them to ensure they get written out.
2634 * Buffers need to be attached to the page at this point, otherwise
2635 * the handling of potential IO errors during writeout would be hard
2636 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2637 */
03158cd7
NP
2638 attach_nobh_buffers(page, head);
2639 page_zero_new_buffers(page, from, to);
a4b0672d 2640
03158cd7
NP
2641out_release:
2642 unlock_page(page);
2643 page_cache_release(page);
2644 *pagep = NULL;
a4b0672d 2645
7bb46a67 2646 return ret;
2647}
03158cd7 2648EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2649
03158cd7
NP
2650int nobh_write_end(struct file *file, struct address_space *mapping,
2651 loff_t pos, unsigned len, unsigned copied,
2652 struct page *page, void *fsdata)
1da177e4
LT
2653{
2654 struct inode *inode = page->mapping->host;
efdc3131 2655 struct buffer_head *head = fsdata;
03158cd7 2656 struct buffer_head *bh;
5b41e74a 2657 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2658
d4cf109f 2659 if (unlikely(copied < len) && head)
5b41e74a
DM
2660 attach_nobh_buffers(page, head);
2661 if (page_has_buffers(page))
2662 return generic_write_end(file, mapping, pos, len,
2663 copied, page, fsdata);
a4b0672d 2664
22c8ca78 2665 SetPageUptodate(page);
1da177e4 2666 set_page_dirty(page);
03158cd7
NP
2667 if (pos+copied > inode->i_size) {
2668 i_size_write(inode, pos+copied);
1da177e4
LT
2669 mark_inode_dirty(inode);
2670 }
03158cd7
NP
2671
2672 unlock_page(page);
2673 page_cache_release(page);
2674
03158cd7
NP
2675 while (head) {
2676 bh = head;
2677 head = head->b_this_page;
2678 free_buffer_head(bh);
2679 }
2680
2681 return copied;
1da177e4 2682}
03158cd7 2683EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2684
2685/*
2686 * nobh_writepage() - based on block_full_write_page() except
2687 * that it tries to operate without attaching bufferheads to
2688 * the page.
2689 */
2690int nobh_writepage(struct page *page, get_block_t *get_block,
2691 struct writeback_control *wbc)
2692{
2693 struct inode * const inode = page->mapping->host;
2694 loff_t i_size = i_size_read(inode);
2695 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2696 unsigned offset;
1da177e4
LT
2697 int ret;
2698
2699 /* Is the page fully inside i_size? */
2700 if (page->index < end_index)
2701 goto out;
2702
2703 /* Is the page fully outside i_size? (truncate in progress) */
2704 offset = i_size & (PAGE_CACHE_SIZE-1);
2705 if (page->index >= end_index+1 || !offset) {
2706 /*
2707 * The page may have dirty, unmapped buffers. For example,
2708 * they may have been added in ext3_writepage(). Make them
2709 * freeable here, so the page does not leak.
2710 */
2711#if 0
2712 /* Not really sure about this - do we need this ? */
2713 if (page->mapping->a_ops->invalidatepage)
2714 page->mapping->a_ops->invalidatepage(page, offset);
2715#endif
2716 unlock_page(page);
2717 return 0; /* don't care */
2718 }
2719
2720 /*
2721 * The page straddles i_size. It must be zeroed out on each and every
2722 * writepage invocation because it may be mmapped. "A file is mapped
2723 * in multiples of the page size. For a file that is not a multiple of
2724 * the page size, the remaining memory is zeroed when mapped, and
2725 * writes to that region are not written out to the file."
2726 */
eebd2aa3 2727 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2728out:
2729 ret = mpage_writepage(page, get_block, wbc);
2730 if (ret == -EAGAIN)
35c80d5f
CM
2731 ret = __block_write_full_page(inode, page, get_block, wbc,
2732 end_buffer_async_write);
1da177e4
LT
2733 return ret;
2734}
2735EXPORT_SYMBOL(nobh_writepage);
2736
03158cd7
NP
2737int nobh_truncate_page(struct address_space *mapping,
2738 loff_t from, get_block_t *get_block)
1da177e4 2739{
1da177e4
LT
2740 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2742 unsigned blocksize;
2743 sector_t iblock;
2744 unsigned length, pos;
2745 struct inode *inode = mapping->host;
1da177e4 2746 struct page *page;
03158cd7
NP
2747 struct buffer_head map_bh;
2748 int err;
1da177e4 2749
03158cd7
NP
2750 blocksize = 1 << inode->i_blkbits;
2751 length = offset & (blocksize - 1);
2752
2753 /* Block boundary? Nothing to do */
2754 if (!length)
2755 return 0;
2756
2757 length = blocksize - length;
2758 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2759
1da177e4 2760 page = grab_cache_page(mapping, index);
03158cd7 2761 err = -ENOMEM;
1da177e4
LT
2762 if (!page)
2763 goto out;
2764
03158cd7
NP
2765 if (page_has_buffers(page)) {
2766has_buffers:
2767 unlock_page(page);
2768 page_cache_release(page);
2769 return block_truncate_page(mapping, from, get_block);
2770 }
2771
2772 /* Find the buffer that contains "offset" */
2773 pos = blocksize;
2774 while (offset >= pos) {
2775 iblock++;
2776 pos += blocksize;
2777 }
2778
460bcf57
TT
2779 map_bh.b_size = blocksize;
2780 map_bh.b_state = 0;
03158cd7
NP
2781 err = get_block(inode, iblock, &map_bh, 0);
2782 if (err)
2783 goto unlock;
2784 /* unmapped? It's a hole - nothing to do */
2785 if (!buffer_mapped(&map_bh))
2786 goto unlock;
2787
2788 /* Ok, it's mapped. Make sure it's up-to-date */
2789 if (!PageUptodate(page)) {
2790 err = mapping->a_ops->readpage(NULL, page);
2791 if (err) {
2792 page_cache_release(page);
2793 goto out;
2794 }
2795 lock_page(page);
2796 if (!PageUptodate(page)) {
2797 err = -EIO;
2798 goto unlock;
2799 }
2800 if (page_has_buffers(page))
2801 goto has_buffers;
1da177e4 2802 }
eebd2aa3 2803 zero_user(page, offset, length);
03158cd7
NP
2804 set_page_dirty(page);
2805 err = 0;
2806
2807unlock:
1da177e4
LT
2808 unlock_page(page);
2809 page_cache_release(page);
2810out:
03158cd7 2811 return err;
1da177e4
LT
2812}
2813EXPORT_SYMBOL(nobh_truncate_page);
2814
2815int block_truncate_page(struct address_space *mapping,
2816 loff_t from, get_block_t *get_block)
2817{
2818 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2819 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2820 unsigned blocksize;
54b21a79 2821 sector_t iblock;
1da177e4
LT
2822 unsigned length, pos;
2823 struct inode *inode = mapping->host;
2824 struct page *page;
2825 struct buffer_head *bh;
1da177e4
LT
2826 int err;
2827
2828 blocksize = 1 << inode->i_blkbits;
2829 length = offset & (blocksize - 1);
2830
2831 /* Block boundary? Nothing to do */
2832 if (!length)
2833 return 0;
2834
2835 length = blocksize - length;
54b21a79 2836 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2837
2838 page = grab_cache_page(mapping, index);
2839 err = -ENOMEM;
2840 if (!page)
2841 goto out;
2842
2843 if (!page_has_buffers(page))
2844 create_empty_buffers(page, blocksize, 0);
2845
2846 /* Find the buffer that contains "offset" */
2847 bh = page_buffers(page);
2848 pos = blocksize;
2849 while (offset >= pos) {
2850 bh = bh->b_this_page;
2851 iblock++;
2852 pos += blocksize;
2853 }
2854
2855 err = 0;
2856 if (!buffer_mapped(bh)) {
b0cf2321 2857 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2858 err = get_block(inode, iblock, bh, 0);
2859 if (err)
2860 goto unlock;
2861 /* unmapped? It's a hole - nothing to do */
2862 if (!buffer_mapped(bh))
2863 goto unlock;
2864 }
2865
2866 /* Ok, it's mapped. Make sure it's up-to-date */
2867 if (PageUptodate(page))
2868 set_buffer_uptodate(bh);
2869
33a266dd 2870 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2871 err = -EIO;
2872 ll_rw_block(READ, 1, &bh);
2873 wait_on_buffer(bh);
2874 /* Uhhuh. Read error. Complain and punt. */
2875 if (!buffer_uptodate(bh))
2876 goto unlock;
2877 }
2878
eebd2aa3 2879 zero_user(page, offset, length);
1da177e4
LT
2880 mark_buffer_dirty(bh);
2881 err = 0;
2882
2883unlock:
2884 unlock_page(page);
2885 page_cache_release(page);
2886out:
2887 return err;
2888}
1fe72eaa 2889EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2890
2891/*
2892 * The generic ->writepage function for buffer-backed address_spaces
2893 */
1b938c08
MW
2894int block_write_full_page(struct page *page, get_block_t *get_block,
2895 struct writeback_control *wbc)
1da177e4
LT
2896{
2897 struct inode * const inode = page->mapping->host;
2898 loff_t i_size = i_size_read(inode);
2899 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2900 unsigned offset;
1da177e4
LT
2901
2902 /* Is the page fully inside i_size? */
2903 if (page->index < end_index)
35c80d5f 2904 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2905 end_buffer_async_write);
1da177e4
LT
2906
2907 /* Is the page fully outside i_size? (truncate in progress) */
2908 offset = i_size & (PAGE_CACHE_SIZE-1);
2909 if (page->index >= end_index+1 || !offset) {
2910 /*
2911 * The page may have dirty, unmapped buffers. For example,
2912 * they may have been added in ext3_writepage(). Make them
2913 * freeable here, so the page does not leak.
2914 */
d47992f8 2915 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4
LT
2916 unlock_page(page);
2917 return 0; /* don't care */
2918 }
2919
2920 /*
2921 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2922 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2923 * in multiples of the page size. For a file that is not a multiple of
2924 * the page size, the remaining memory is zeroed when mapped, and
2925 * writes to that region are not written out to the file."
2926 */
eebd2aa3 2927 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1b938c08
MW
2928 return __block_write_full_page(inode, page, get_block, wbc,
2929 end_buffer_async_write);
35c80d5f 2930}
1fe72eaa 2931EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2932
1da177e4
LT
2933sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2934 get_block_t *get_block)
2935{
2936 struct buffer_head tmp;
2937 struct inode *inode = mapping->host;
2938 tmp.b_state = 0;
2939 tmp.b_blocknr = 0;
b0cf2321 2940 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2941 get_block(inode, block, &tmp, 0);
2942 return tmp.b_blocknr;
2943}
1fe72eaa 2944EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2945
6712ecf8 2946static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2947{
2948 struct buffer_head *bh = bio->bi_private;
2949
1da177e4
LT
2950 if (err == -EOPNOTSUPP) {
2951 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2952 }
2953
08bafc03
KM
2954 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2955 set_bit(BH_Quiet, &bh->b_state);
2956
1da177e4
LT
2957 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958 bio_put(bio);
1da177e4
LT
2959}
2960
57302e0d
LT
2961/*
2962 * This allows us to do IO even on the odd last sectors
2963 * of a device, even if the bh block size is some multiple
2964 * of the physical sector size.
2965 *
2966 * We'll just truncate the bio to the size of the device,
2967 * and clear the end of the buffer head manually.
2968 *
2969 * Truly out-of-range accesses will turn into actual IO
2970 * errors, this only handles the "we need to be able to
2971 * do IO at the final sector" case.
2972 */
2973static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2974{
2975 sector_t maxsector;
2976 unsigned bytes;
2977
2978 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2979 if (!maxsector)
2980 return;
2981
2982 /*
2983 * If the *whole* IO is past the end of the device,
2984 * let it through, and the IO layer will turn it into
2985 * an EIO.
2986 */
4f024f37 2987 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
2988 return;
2989
4f024f37
KO
2990 maxsector -= bio->bi_iter.bi_sector;
2991 bytes = bio->bi_iter.bi_size;
57302e0d
LT
2992 if (likely((bytes >> 9) <= maxsector))
2993 return;
2994
2995 /* Uhhuh. We've got a bh that straddles the device size! */
2996 bytes = maxsector << 9;
2997
2998 /* Truncate the bio.. */
4f024f37 2999 bio->bi_iter.bi_size = bytes;
57302e0d
LT
3000 bio->bi_io_vec[0].bv_len = bytes;
3001
3002 /* ..and clear the end of the buffer for reads */
27d7c2a0 3003 if ((rw & RW_MASK) == READ) {
57302e0d
LT
3004 void *kaddr = kmap_atomic(bh->b_page);
3005 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3006 kunmap_atomic(kaddr);
6d283dba 3007 flush_dcache_page(bh->b_page);
57302e0d
LT
3008 }
3009}
3010
71368511 3011int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
3012{
3013 struct bio *bio;
3014 int ret = 0;
3015
3016 BUG_ON(!buffer_locked(bh));
3017 BUG_ON(!buffer_mapped(bh));
3018 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3019 BUG_ON(buffer_delay(bh));
3020 BUG_ON(buffer_unwritten(bh));
1da177e4 3021
1da177e4 3022 /*
48fd4f93 3023 * Only clear out a write error when rewriting
1da177e4 3024 */
48fd4f93 3025 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
3026 clear_buffer_write_io_error(bh);
3027
3028 /*
3029 * from here on down, it's all bio -- do the initial mapping,
3030 * submit_bio -> generic_make_request may further map this bio around
3031 */
3032 bio = bio_alloc(GFP_NOIO, 1);
3033
4f024f37 3034 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4
LT
3035 bio->bi_bdev = bh->b_bdev;
3036 bio->bi_io_vec[0].bv_page = bh->b_page;
3037 bio->bi_io_vec[0].bv_len = bh->b_size;
3038 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3039
3040 bio->bi_vcnt = 1;
4f024f37 3041 bio->bi_iter.bi_size = bh->b_size;
1da177e4
LT
3042
3043 bio->bi_end_io = end_bio_bh_io_sync;
3044 bio->bi_private = bh;
71368511 3045 bio->bi_flags |= bio_flags;
1da177e4 3046
57302e0d
LT
3047 /* Take care of bh's that straddle the end of the device */
3048 guard_bh_eod(rw, bio, bh);
3049
877f962c
TT
3050 if (buffer_meta(bh))
3051 rw |= REQ_META;
3052 if (buffer_prio(bh))
3053 rw |= REQ_PRIO;
3054
1da177e4
LT
3055 bio_get(bio);
3056 submit_bio(rw, bio);
3057
3058 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3059 ret = -EOPNOTSUPP;
3060
3061 bio_put(bio);
3062 return ret;
3063}
71368511
DW
3064EXPORT_SYMBOL_GPL(_submit_bh);
3065
3066int submit_bh(int rw, struct buffer_head *bh)
3067{
3068 return _submit_bh(rw, bh, 0);
3069}
1fe72eaa 3070EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3071
3072/**
3073 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3074 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3075 * @nr: number of &struct buffer_heads in the array
3076 * @bhs: array of pointers to &struct buffer_head
3077 *
a7662236
JK
3078 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3079 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3080 * %READA option is described in the documentation for generic_make_request()
3081 * which ll_rw_block() calls.
1da177e4
LT
3082 *
3083 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3084 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3085 * request, and any buffer that appears to be up-to-date when doing read
3086 * request. Further it marks as clean buffers that are processed for
3087 * writing (the buffer cache won't assume that they are actually clean
3088 * until the buffer gets unlocked).
1da177e4
LT
3089 *
3090 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3091 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3092 * any waiters.
3093 *
3094 * All of the buffers must be for the same device, and must also be a
3095 * multiple of the current approved size for the device.
3096 */
3097void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3098{
3099 int i;
3100
3101 for (i = 0; i < nr; i++) {
3102 struct buffer_head *bh = bhs[i];
3103
9cb569d6 3104 if (!trylock_buffer(bh))
1da177e4 3105 continue;
9cb569d6 3106 if (rw == WRITE) {
1da177e4 3107 if (test_clear_buffer_dirty(bh)) {
76c3073a 3108 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3109 get_bh(bh);
9cb569d6 3110 submit_bh(WRITE, bh);
1da177e4
LT
3111 continue;
3112 }
3113 } else {
1da177e4 3114 if (!buffer_uptodate(bh)) {
76c3073a 3115 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3116 get_bh(bh);
1da177e4
LT
3117 submit_bh(rw, bh);
3118 continue;
3119 }
3120 }
3121 unlock_buffer(bh);
1da177e4
LT
3122 }
3123}
1fe72eaa 3124EXPORT_SYMBOL(ll_rw_block);
1da177e4 3125
9cb569d6
CH
3126void write_dirty_buffer(struct buffer_head *bh, int rw)
3127{
3128 lock_buffer(bh);
3129 if (!test_clear_buffer_dirty(bh)) {
3130 unlock_buffer(bh);
3131 return;
3132 }
3133 bh->b_end_io = end_buffer_write_sync;
3134 get_bh(bh);
3135 submit_bh(rw, bh);
3136}
3137EXPORT_SYMBOL(write_dirty_buffer);
3138
1da177e4
LT
3139/*
3140 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3141 * and then start new I/O and then wait upon it. The caller must have a ref on
3142 * the buffer_head.
3143 */
87e99511 3144int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3145{
3146 int ret = 0;
3147
3148 WARN_ON(atomic_read(&bh->b_count) < 1);
3149 lock_buffer(bh);
3150 if (test_clear_buffer_dirty(bh)) {
3151 get_bh(bh);
3152 bh->b_end_io = end_buffer_write_sync;
87e99511 3153 ret = submit_bh(rw, bh);
1da177e4 3154 wait_on_buffer(bh);
1da177e4
LT
3155 if (!ret && !buffer_uptodate(bh))
3156 ret = -EIO;
3157 } else {
3158 unlock_buffer(bh);
3159 }
3160 return ret;
3161}
87e99511
CH
3162EXPORT_SYMBOL(__sync_dirty_buffer);
3163
3164int sync_dirty_buffer(struct buffer_head *bh)
3165{
3166 return __sync_dirty_buffer(bh, WRITE_SYNC);
3167}
1fe72eaa 3168EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3169
3170/*
3171 * try_to_free_buffers() checks if all the buffers on this particular page
3172 * are unused, and releases them if so.
3173 *
3174 * Exclusion against try_to_free_buffers may be obtained by either
3175 * locking the page or by holding its mapping's private_lock.
3176 *
3177 * If the page is dirty but all the buffers are clean then we need to
3178 * be sure to mark the page clean as well. This is because the page
3179 * may be against a block device, and a later reattachment of buffers
3180 * to a dirty page will set *all* buffers dirty. Which would corrupt
3181 * filesystem data on the same device.
3182 *
3183 * The same applies to regular filesystem pages: if all the buffers are
3184 * clean then we set the page clean and proceed. To do that, we require
3185 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3186 * private_lock.
3187 *
3188 * try_to_free_buffers() is non-blocking.
3189 */
3190static inline int buffer_busy(struct buffer_head *bh)
3191{
3192 return atomic_read(&bh->b_count) |
3193 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3194}
3195
3196static int
3197drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3198{
3199 struct buffer_head *head = page_buffers(page);
3200 struct buffer_head *bh;
3201
3202 bh = head;
3203 do {
de7d5a3b 3204 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3205 set_bit(AS_EIO, &page->mapping->flags);
3206 if (buffer_busy(bh))
3207 goto failed;
3208 bh = bh->b_this_page;
3209 } while (bh != head);
3210
3211 do {
3212 struct buffer_head *next = bh->b_this_page;
3213
535ee2fb 3214 if (bh->b_assoc_map)
1da177e4
LT
3215 __remove_assoc_queue(bh);
3216 bh = next;
3217 } while (bh != head);
3218 *buffers_to_free = head;
3219 __clear_page_buffers(page);
3220 return 1;
3221failed:
3222 return 0;
3223}
3224
3225int try_to_free_buffers(struct page *page)
3226{
3227 struct address_space * const mapping = page->mapping;
3228 struct buffer_head *buffers_to_free = NULL;
3229 int ret = 0;
3230
3231 BUG_ON(!PageLocked(page));
ecdfc978 3232 if (PageWriteback(page))
1da177e4
LT
3233 return 0;
3234
3235 if (mapping == NULL) { /* can this still happen? */
3236 ret = drop_buffers(page, &buffers_to_free);
3237 goto out;
3238 }
3239
3240 spin_lock(&mapping->private_lock);
3241 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3242
3243 /*
3244 * If the filesystem writes its buffers by hand (eg ext3)
3245 * then we can have clean buffers against a dirty page. We
3246 * clean the page here; otherwise the VM will never notice
3247 * that the filesystem did any IO at all.
3248 *
3249 * Also, during truncate, discard_buffer will have marked all
3250 * the page's buffers clean. We discover that here and clean
3251 * the page also.
87df7241
NP
3252 *
3253 * private_lock must be held over this entire operation in order
3254 * to synchronise against __set_page_dirty_buffers and prevent the
3255 * dirty bit from being lost.
ecdfc978
LT
3256 */
3257 if (ret)
3258 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3259 spin_unlock(&mapping->private_lock);
1da177e4
LT
3260out:
3261 if (buffers_to_free) {
3262 struct buffer_head *bh = buffers_to_free;
3263
3264 do {
3265 struct buffer_head *next = bh->b_this_page;
3266 free_buffer_head(bh);
3267 bh = next;
3268 } while (bh != buffers_to_free);
3269 }
3270 return ret;
3271}
3272EXPORT_SYMBOL(try_to_free_buffers);
3273
1da177e4
LT
3274/*
3275 * There are no bdflush tunables left. But distributions are
3276 * still running obsolete flush daemons, so we terminate them here.
3277 *
3278 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3280 */
bdc480e3 3281SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3282{
3283 static int msg_count;
3284
3285 if (!capable(CAP_SYS_ADMIN))
3286 return -EPERM;
3287
3288 if (msg_count < 5) {
3289 msg_count++;
3290 printk(KERN_INFO
3291 "warning: process `%s' used the obsolete bdflush"
3292 " system call\n", current->comm);
3293 printk(KERN_INFO "Fix your initscripts?\n");
3294 }
3295
3296 if (func == 1)
3297 do_exit(0);
3298 return 0;
3299}
3300
3301/*
3302 * Buffer-head allocation
3303 */
a0a9b043 3304static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3305
3306/*
3307 * Once the number of bh's in the machine exceeds this level, we start
3308 * stripping them in writeback.
3309 */
43be594a 3310static unsigned long max_buffer_heads;
1da177e4
LT
3311
3312int buffer_heads_over_limit;
3313
3314struct bh_accounting {
3315 int nr; /* Number of live bh's */
3316 int ratelimit; /* Limit cacheline bouncing */
3317};
3318
3319static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320
3321static void recalc_bh_state(void)
3322{
3323 int i;
3324 int tot = 0;
3325
ee1be862 3326 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3327 return;
c7b92516 3328 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3329 for_each_online_cpu(i)
1da177e4
LT
3330 tot += per_cpu(bh_accounting, i).nr;
3331 buffer_heads_over_limit = (tot > max_buffer_heads);
3332}
c7b92516 3333
dd0fc66f 3334struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3335{
019b4d12 3336 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3337 if (ret) {
a35afb83 3338 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3339 preempt_disable();
3340 __this_cpu_inc(bh_accounting.nr);
1da177e4 3341 recalc_bh_state();
c7b92516 3342 preempt_enable();
1da177e4
LT
3343 }
3344 return ret;
3345}
3346EXPORT_SYMBOL(alloc_buffer_head);
3347
3348void free_buffer_head(struct buffer_head *bh)
3349{
3350 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3351 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3352 preempt_disable();
3353 __this_cpu_dec(bh_accounting.nr);
1da177e4 3354 recalc_bh_state();
c7b92516 3355 preempt_enable();
1da177e4
LT
3356}
3357EXPORT_SYMBOL(free_buffer_head);
3358
1da177e4
LT
3359static void buffer_exit_cpu(int cpu)
3360{
3361 int i;
3362 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3363
3364 for (i = 0; i < BH_LRU_SIZE; i++) {
3365 brelse(b->bhs[i]);
3366 b->bhs[i] = NULL;
3367 }
c7b92516 3368 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3369 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3370}
3371
3372static int buffer_cpu_notify(struct notifier_block *self,
3373 unsigned long action, void *hcpu)
3374{
8bb78442 3375 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3376 buffer_exit_cpu((unsigned long)hcpu);
3377 return NOTIFY_OK;
3378}
1da177e4 3379
389d1b08 3380/**
a6b91919 3381 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3382 * @bh: struct buffer_head
3383 *
3384 * Return true if the buffer is up-to-date and false,
3385 * with the buffer locked, if not.
3386 */
3387int bh_uptodate_or_lock(struct buffer_head *bh)
3388{
3389 if (!buffer_uptodate(bh)) {
3390 lock_buffer(bh);
3391 if (!buffer_uptodate(bh))
3392 return 0;
3393 unlock_buffer(bh);
3394 }
3395 return 1;
3396}
3397EXPORT_SYMBOL(bh_uptodate_or_lock);
3398
3399/**
a6b91919 3400 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3401 * @bh: struct buffer_head
3402 *
3403 * Returns zero on success and -EIO on error.
3404 */
3405int bh_submit_read(struct buffer_head *bh)
3406{
3407 BUG_ON(!buffer_locked(bh));
3408
3409 if (buffer_uptodate(bh)) {
3410 unlock_buffer(bh);
3411 return 0;
3412 }
3413
3414 get_bh(bh);
3415 bh->b_end_io = end_buffer_read_sync;
3416 submit_bh(READ, bh);
3417 wait_on_buffer(bh);
3418 if (buffer_uptodate(bh))
3419 return 0;
3420 return -EIO;
3421}
3422EXPORT_SYMBOL(bh_submit_read);
3423
1da177e4
LT
3424void __init buffer_init(void)
3425{
43be594a 3426 unsigned long nrpages;
1da177e4 3427
b98938c3
CL
3428 bh_cachep = kmem_cache_create("buffer_head",
3429 sizeof(struct buffer_head), 0,
3430 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3431 SLAB_MEM_SPREAD),
019b4d12 3432 NULL);
1da177e4
LT
3433
3434 /*
3435 * Limit the bh occupancy to 10% of ZONE_NORMAL
3436 */
3437 nrpages = (nr_free_buffer_pages() * 10) / 100;
3438 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3439 hotcpu_notifier(buffer_cpu_notify, 0);
3440}