]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/dcache.c
smb: client: fix parsing of SMB3.1.1 POSIX create context
[thirdparty/linux.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
2fd6b7f5
NP
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
194 { }
195};
196
197static int __init init_fs_dcache_sysctls(void)
198{
199 register_sysctl_init("fs", fs_dcache_sysctls);
200 return 0;
201}
202fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
203#endif
204
5483f18e
LT
205/*
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
208 */
e419b4cc
LT
209#ifdef CONFIG_DCACHE_WORD_ACCESS
210
211#include <asm/word-at-a-time.h>
212/*
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
217 *
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
220 */
94753db5 221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 222{
bfcfaa77 223 unsigned long a,b,mask;
bfcfaa77
LT
224
225 for (;;) {
bfe7aa6c 226 a = read_word_at_a_time(cs);
e419b4cc 227 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
228 if (tcount < sizeof(unsigned long))
229 break;
230 if (unlikely(a != b))
231 return 1;
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
235 if (!tcount)
236 return 0;
237 }
a5c21dce 238 mask = bytemask_from_count(tcount);
bfcfaa77 239 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
240}
241
bfcfaa77 242#else
e419b4cc 243
94753db5 244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 245{
5483f18e
LT
246 do {
247 if (*cs != *ct)
248 return 1;
249 cs++;
250 ct++;
251 tcount--;
252 } while (tcount);
253 return 0;
254}
255
e419b4cc
LT
256#endif
257
94753db5
LT
258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259{
94753db5
LT
260 /*
261 * Be careful about RCU walk racing with rename:
506458ef 262 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
263 *
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
271 *
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
275 */
506458ef 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 277
6326c71f 278 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
279}
280
8d85b484
AV
281struct external_name {
282 union {
283 atomic_t count;
284 struct rcu_head head;
285 } u;
286 unsigned char name[];
287};
288
289static inline struct external_name *external_name(struct dentry *dentry)
290{
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
292}
293
9c82ab9c 294static void __d_free(struct rcu_head *head)
1da177e4 295{
9c82ab9c
CH
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
8d85b484
AV
298 kmem_cache_free(dentry_cache, dentry);
299}
300
301static void __d_free_external(struct rcu_head *head)
302{
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 304 kfree(external_name(dentry));
f1782c9b 305 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
306}
307
810bb172
AV
308static inline int dname_external(const struct dentry *dentry)
309{
310 return dentry->d_name.name != dentry->d_iname;
311}
312
49d31c2f
AV
313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314{
315 spin_lock(&dentry->d_lock);
230c6402 316 name->name = dentry->d_name;
49d31c2f 317 if (unlikely(dname_external(dentry))) {
230c6402 318 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 319 } else {
6cd00a01
TH
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
230c6402 322 name->name.name = name->inline_name;
49d31c2f 323 }
230c6402 324 spin_unlock(&dentry->d_lock);
49d31c2f
AV
325}
326EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328void release_dentry_name_snapshot(struct name_snapshot *name)
329{
230c6402 330 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 331 struct external_name *p;
230c6402 332 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 333 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 334 kfree_rcu(p, u.head);
49d31c2f
AV
335 }
336}
337EXPORT_SYMBOL(release_dentry_name_snapshot);
338
4bf46a27
DH
339static inline void __d_set_inode_and_type(struct dentry *dentry,
340 struct inode *inode,
341 unsigned type_flags)
342{
343 unsigned flags;
344
345 dentry->d_inode = inode;
4bf46a27
DH
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 flags |= type_flags;
2fa6b1e0 349 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
350}
351
4bf46a27
DH
352static inline void __d_clear_type_and_inode(struct dentry *dentry)
353{
354 unsigned flags = READ_ONCE(dentry->d_flags);
355
356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 358 dentry->d_inode = NULL;
af0c9af1
WL
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
361}
362
b4f0354e
AV
363static void dentry_free(struct dentry *dentry)
364{
946e51f2 365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 return;
371 }
372 }
b4f0354e 373 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 374 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
375 __d_free(&dentry->d_u.d_rcu);
376 else
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
378}
379
1da177e4
LT
380/*
381 * Release the dentry's inode, using the filesystem
550dce01 382 * d_iput() operation if defined.
31e6b01f
NP
383 */
384static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
873feea0 386 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
387{
388 struct inode *inode = dentry->d_inode;
a528aca7 389
4c0d7cd5 390 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 391 __d_clear_type_and_inode(dentry);
946e51f2 392 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 393 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 394 spin_unlock(&dentry->d_lock);
873feea0 395 spin_unlock(&inode->i_lock);
31e6b01f
NP
396 if (!inode->i_nlink)
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
400 else
401 iput(inode);
402}
403
89dc77bc
LT
404/*
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 *
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
411 *
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
414 *
af0c9af1
WL
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
419 *
89dc77bc
LT
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
422 */
423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424static void d_lru_add(struct dentry *dentry)
425{
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
0a97c01c
NP
431 WARN_ON_ONCE(!list_lru_add_obj(
432 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
433}
434
435static void d_lru_del(struct dentry *dentry)
436{
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags &= ~DCACHE_LRU_LIST;
439 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
440 if (d_is_negative(dentry))
441 this_cpu_dec(nr_dentry_negative);
0a97c01c
NP
442 WARN_ON_ONCE(!list_lru_del_obj(
443 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
444}
445
446static void d_shrink_del(struct dentry *dentry)
447{
448 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 list_del_init(&dentry->d_lru);
450 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
451 this_cpu_dec(nr_dentry_unused);
452}
453
454static void d_shrink_add(struct dentry *dentry, struct list_head *list)
455{
456 D_FLAG_VERIFY(dentry, 0);
457 list_add(&dentry->d_lru, list);
458 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
459 this_cpu_inc(nr_dentry_unused);
460}
461
462/*
463 * These can only be called under the global LRU lock, ie during the
464 * callback for freeing the LRU list. "isolate" removes it from the
465 * LRU lists entirely, while shrink_move moves it to the indicated
466 * private list.
467 */
3f97b163 468static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
469{
470 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
471 dentry->d_flags &= ~DCACHE_LRU_LIST;
472 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
473 if (d_is_negative(dentry))
474 this_cpu_dec(nr_dentry_negative);
3f97b163 475 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
476}
477
3f97b163
VD
478static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
479 struct list_head *list)
89dc77bc
LT
480{
481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
483 if (d_is_negative(dentry))
484 this_cpu_dec(nr_dentry_negative);
3f97b163 485 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
486}
487
61647823 488static void ___d_drop(struct dentry *dentry)
789680d1 489{
0632a9ac
AV
490 struct hlist_bl_head *b;
491 /*
492 * Hashed dentries are normally on the dentry hashtable,
493 * with the exception of those newly allocated by
494 * d_obtain_root, which are always IS_ROOT:
495 */
496 if (unlikely(IS_ROOT(dentry)))
497 b = &dentry->d_sb->s_roots;
498 else
499 b = d_hash(dentry->d_name.hash);
b61625d2 500
0632a9ac
AV
501 hlist_bl_lock(b);
502 __hlist_bl_del(&dentry->d_hash);
503 hlist_bl_unlock(b);
789680d1 504}
61647823
N
505
506void __d_drop(struct dentry *dentry)
507{
0632a9ac
AV
508 if (!d_unhashed(dentry)) {
509 ___d_drop(dentry);
510 dentry->d_hash.pprev = NULL;
511 write_seqcount_invalidate(&dentry->d_seq);
512 }
61647823 513}
789680d1
NP
514EXPORT_SYMBOL(__d_drop);
515
961f3c89
MCC
516/**
517 * d_drop - drop a dentry
518 * @dentry: dentry to drop
519 *
520 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
521 * be found through a VFS lookup any more. Note that this is different from
522 * deleting the dentry - d_delete will try to mark the dentry negative if
523 * possible, giving a successful _negative_ lookup, while d_drop will
524 * just make the cache lookup fail.
525 *
526 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
527 * reason (NFS timeouts or autofs deletes).
528 *
529 * __d_drop requires dentry->d_lock
530 *
531 * ___d_drop doesn't mark dentry as "unhashed"
532 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
533 */
789680d1
NP
534void d_drop(struct dentry *dentry)
535{
789680d1
NP
536 spin_lock(&dentry->d_lock);
537 __d_drop(dentry);
538 spin_unlock(&dentry->d_lock);
789680d1
NP
539}
540EXPORT_SYMBOL(d_drop);
541
ba65dc5e
AV
542static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
543{
544 struct dentry *next;
545 /*
546 * Inform d_walk() and shrink_dentry_list() that we are no longer
547 * attached to the dentry tree
548 */
549 dentry->d_flags |= DCACHE_DENTRY_KILLED;
550 if (unlikely(list_empty(&dentry->d_child)))
551 return;
552 __list_del_entry(&dentry->d_child);
553 /*
554 * Cursors can move around the list of children. While we'd been
555 * a normal list member, it didn't matter - ->d_child.next would've
556 * been updated. However, from now on it won't be and for the
557 * things like d_walk() it might end up with a nasty surprise.
558 * Normally d_walk() doesn't care about cursors moving around -
559 * ->d_lock on parent prevents that and since a cursor has no children
560 * of its own, we get through it without ever unlocking the parent.
561 * There is one exception, though - if we ascend from a child that
562 * gets killed as soon as we unlock it, the next sibling is found
563 * using the value left in its ->d_child.next. And if _that_
564 * pointed to a cursor, and cursor got moved (e.g. by lseek())
565 * before d_walk() regains parent->d_lock, we'll end up skipping
566 * everything the cursor had been moved past.
567 *
568 * Solution: make sure that the pointer left behind in ->d_child.next
569 * points to something that won't be moving around. I.e. skip the
570 * cursors.
571 */
572 while (dentry->d_child.next != &parent->d_subdirs) {
573 next = list_entry(dentry->d_child.next, struct dentry, d_child);
574 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
575 break;
576 dentry->d_child.next = next->d_child.next;
577 }
578}
579
e55fd011 580static void __dentry_kill(struct dentry *dentry)
77812a1e 581{
41edf278
AV
582 struct dentry *parent = NULL;
583 bool can_free = true;
41edf278 584 if (!IS_ROOT(dentry))
77812a1e 585 parent = dentry->d_parent;
31e6b01f 586
0d98439e
LT
587 /*
588 * The dentry is now unrecoverably dead to the world.
589 */
590 lockref_mark_dead(&dentry->d_lockref);
591
f0023bc6 592 /*
f0023bc6
SW
593 * inform the fs via d_prune that this dentry is about to be
594 * unhashed and destroyed.
595 */
29266201 596 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
597 dentry->d_op->d_prune(dentry);
598
01b60351
AV
599 if (dentry->d_flags & DCACHE_LRU_LIST) {
600 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
601 d_lru_del(dentry);
01b60351 602 }
77812a1e
NP
603 /* if it was on the hash then remove it */
604 __d_drop(dentry);
ba65dc5e 605 dentry_unlist(dentry, parent);
03b3b889
AV
606 if (parent)
607 spin_unlock(&parent->d_lock);
550dce01
AV
608 if (dentry->d_inode)
609 dentry_unlink_inode(dentry);
610 else
611 spin_unlock(&dentry->d_lock);
03b3b889
AV
612 this_cpu_dec(nr_dentry);
613 if (dentry->d_op && dentry->d_op->d_release)
614 dentry->d_op->d_release(dentry);
615
41edf278
AV
616 spin_lock(&dentry->d_lock);
617 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
618 dentry->d_flags |= DCACHE_MAY_FREE;
619 can_free = false;
620 }
621 spin_unlock(&dentry->d_lock);
41edf278
AV
622 if (likely(can_free))
623 dentry_free(dentry);
9c5f1d30 624 cond_resched();
e55fd011
AV
625}
626
8b987a46 627static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 628{
8b987a46 629 struct dentry *parent;
046b961b 630 rcu_read_lock();
c2338f2d 631 spin_unlock(&dentry->d_lock);
046b961b 632again:
66702eb5 633 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
634 spin_lock(&parent->d_lock);
635 /*
636 * We can't blindly lock dentry until we are sure
637 * that we won't violate the locking order.
638 * Any changes of dentry->d_parent must have
639 * been done with parent->d_lock held, so
640 * spin_lock() above is enough of a barrier
641 * for checking if it's still our child.
642 */
643 if (unlikely(parent != dentry->d_parent)) {
644 spin_unlock(&parent->d_lock);
645 goto again;
646 }
65d8eb5a
AV
647 rcu_read_unlock();
648 if (parent != dentry)
9f12600f 649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 650 else
046b961b
AV
651 parent = NULL;
652 return parent;
653}
654
8b987a46
AV
655static inline struct dentry *lock_parent(struct dentry *dentry)
656{
657 struct dentry *parent = dentry->d_parent;
658 if (IS_ROOT(dentry))
659 return NULL;
660 if (likely(spin_trylock(&parent->d_lock)))
661 return parent;
662 return __lock_parent(dentry);
663}
664
a338579f
AV
665static inline bool retain_dentry(struct dentry *dentry)
666{
667 WARN_ON(d_in_lookup(dentry));
668
669 /* Unreachable? Get rid of it */
670 if (unlikely(d_unhashed(dentry)))
671 return false;
672
673 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
674 return false;
675
676 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
677 if (dentry->d_op->d_delete(dentry))
678 return false;
679 }
2c567af4
IW
680
681 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
682 return false;
683
62d9956c
AV
684 /* retain; LRU fodder */
685 dentry->d_lockref.count--;
686 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
687 d_lru_add(dentry);
688 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
689 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
690 return true;
691}
692
2c567af4
IW
693void d_mark_dontcache(struct inode *inode)
694{
695 struct dentry *de;
696
697 spin_lock(&inode->i_lock);
698 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
699 spin_lock(&de->d_lock);
700 de->d_flags |= DCACHE_DONTCACHE;
701 spin_unlock(&de->d_lock);
702 }
703 inode->i_state |= I_DONTCACHE;
704 spin_unlock(&inode->i_lock);
705}
706EXPORT_SYMBOL(d_mark_dontcache);
707
c1d0c1a2
JO
708/*
709 * Finish off a dentry we've decided to kill.
710 * dentry->d_lock must be held, returns with it unlocked.
711 * Returns dentry requiring refcount drop, or NULL if we're done.
712 */
713static struct dentry *dentry_kill(struct dentry *dentry)
714 __releases(dentry->d_lock)
715{
716 struct inode *inode = dentry->d_inode;
717 struct dentry *parent = NULL;
718
719 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 720 goto slow_positive;
c1d0c1a2
JO
721
722 if (!IS_ROOT(dentry)) {
723 parent = dentry->d_parent;
724 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
725 parent = __lock_parent(dentry);
726 if (likely(inode || !dentry->d_inode))
727 goto got_locks;
728 /* negative that became positive */
729 if (parent)
730 spin_unlock(&parent->d_lock);
731 inode = dentry->d_inode;
732 goto slow_positive;
c1d0c1a2
JO
733 }
734 }
c1d0c1a2
JO
735 __dentry_kill(dentry);
736 return parent;
737
f657a666
AV
738slow_positive:
739 spin_unlock(&dentry->d_lock);
740 spin_lock(&inode->i_lock);
741 spin_lock(&dentry->d_lock);
742 parent = lock_parent(dentry);
743got_locks:
744 if (unlikely(dentry->d_lockref.count != 1)) {
745 dentry->d_lockref.count--;
746 } else if (likely(!retain_dentry(dentry))) {
747 __dentry_kill(dentry);
748 return parent;
749 }
750 /* we are keeping it, after all */
751 if (inode)
752 spin_unlock(&inode->i_lock);
753 if (parent)
754 spin_unlock(&parent->d_lock);
c1d0c1a2 755 spin_unlock(&dentry->d_lock);
f657a666 756 return NULL;
c1d0c1a2
JO
757}
758
360f5479
LT
759/*
760 * Try to do a lockless dput(), and return whether that was successful.
761 *
762 * If unsuccessful, we return false, having already taken the dentry lock.
763 *
764 * The caller needs to hold the RCU read lock, so that the dentry is
765 * guaranteed to stay around even if the refcount goes down to zero!
766 */
767static inline bool fast_dput(struct dentry *dentry)
768{
769 int ret;
770 unsigned int d_flags;
771
772 /*
773 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 774 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
775 */
776 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
777 return lockref_put_or_lock(&dentry->d_lockref);
778
779 /*
780 * .. otherwise, we can try to just decrement the
781 * lockref optimistically.
782 */
783 ret = lockref_put_return(&dentry->d_lockref);
784
785 /*
786 * If the lockref_put_return() failed due to the lock being held
787 * by somebody else, the fast path has failed. We will need to
788 * get the lock, and then check the count again.
789 */
790 if (unlikely(ret < 0)) {
791 spin_lock(&dentry->d_lock);
792 if (dentry->d_lockref.count > 1) {
793 dentry->d_lockref.count--;
794 spin_unlock(&dentry->d_lock);
7964410f 795 return true;
360f5479 796 }
7964410f 797 return false;
360f5479
LT
798 }
799
800 /*
801 * If we weren't the last ref, we're done.
802 */
803 if (ret)
7964410f 804 return true;
360f5479
LT
805
806 /*
807 * Careful, careful. The reference count went down
808 * to zero, but we don't hold the dentry lock, so
809 * somebody else could get it again, and do another
810 * dput(), and we need to not race with that.
811 *
812 * However, there is a very special and common case
813 * where we don't care, because there is nothing to
814 * do: the dentry is still hashed, it does not have
815 * a 'delete' op, and it's referenced and already on
816 * the LRU list.
817 *
818 * NOTE! Since we aren't locked, these values are
819 * not "stable". However, it is sufficient that at
820 * some point after we dropped the reference the
821 * dentry was hashed and the flags had the proper
822 * value. Other dentry users may have re-gotten
823 * a reference to the dentry and change that, but
824 * our work is done - we can leave the dentry
825 * around with a zero refcount.
77573fa3
HL
826 *
827 * Nevertheless, there are two cases that we should kill
828 * the dentry anyway.
829 * 1. free disconnected dentries as soon as their refcount
830 * reached zero.
831 * 2. free dentries if they should not be cached.
360f5479
LT
832 */
833 smp_rmb();
66702eb5 834 d_flags = READ_ONCE(dentry->d_flags);
77573fa3
HL
835 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
836 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
360f5479
LT
837
838 /* Nothing to do? Dropping the reference was all we needed? */
839 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 840 return true;
360f5479
LT
841
842 /*
843 * Not the fast normal case? Get the lock. We've already decremented
844 * the refcount, but we'll need to re-check the situation after
845 * getting the lock.
846 */
847 spin_lock(&dentry->d_lock);
848
849 /*
850 * Did somebody else grab a reference to it in the meantime, and
851 * we're no longer the last user after all? Alternatively, somebody
852 * else could have killed it and marked it dead. Either way, we
853 * don't need to do anything else.
854 */
855 if (dentry->d_lockref.count) {
856 spin_unlock(&dentry->d_lock);
7964410f 857 return true;
360f5479
LT
858 }
859
860 /*
861 * Re-get the reference we optimistically dropped. We hold the
862 * lock, and we just tested that it was zero, so we can just
863 * set it to 1.
864 */
865 dentry->d_lockref.count = 1;
7964410f 866 return false;
360f5479
LT
867}
868
869
1da177e4
LT
870/*
871 * This is dput
872 *
873 * This is complicated by the fact that we do not want to put
874 * dentries that are no longer on any hash chain on the unused
875 * list: we'd much rather just get rid of them immediately.
876 *
877 * However, that implies that we have to traverse the dentry
878 * tree upwards to the parents which might _also_ now be
879 * scheduled for deletion (it may have been only waiting for
880 * its last child to go away).
881 *
882 * This tail recursion is done by hand as we don't want to depend
883 * on the compiler to always get this right (gcc generally doesn't).
884 * Real recursion would eat up our stack space.
885 */
886
887/*
888 * dput - release a dentry
889 * @dentry: dentry to release
890 *
891 * Release a dentry. This will drop the usage count and if appropriate
892 * call the dentry unlink method as well as removing it from the queues and
893 * releasing its resources. If the parent dentries were scheduled for release
894 * they too may now get deleted.
1da177e4 895 */
1da177e4
LT
896void dput(struct dentry *dentry)
897{
1088a640
AV
898 while (dentry) {
899 might_sleep();
1da177e4 900
1088a640
AV
901 rcu_read_lock();
902 if (likely(fast_dput(dentry))) {
903 rcu_read_unlock();
904 return;
905 }
47be6184 906
1088a640 907 /* Slow case: now with the dentry lock held */
360f5479 908 rcu_read_unlock();
360f5479 909
1088a640
AV
910 if (likely(retain_dentry(dentry))) {
911 spin_unlock(&dentry->d_lock);
912 return;
913 }
265ac902 914
1088a640 915 dentry = dentry_kill(dentry);
47be6184 916 }
1da177e4 917}
ec4f8605 918EXPORT_SYMBOL(dput);
1da177e4 919
9bdebc2b
AV
920static void __dput_to_list(struct dentry *dentry, struct list_head *list)
921__must_hold(&dentry->d_lock)
922{
923 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
924 /* let the owner of the list it's on deal with it */
925 --dentry->d_lockref.count;
926 } else {
927 if (dentry->d_flags & DCACHE_LRU_LIST)
928 d_lru_del(dentry);
929 if (!--dentry->d_lockref.count)
930 d_shrink_add(dentry, list);
931 }
932}
933
934void dput_to_list(struct dentry *dentry, struct list_head *list)
935{
936 rcu_read_lock();
937 if (likely(fast_dput(dentry))) {
938 rcu_read_unlock();
939 return;
940 }
941 rcu_read_unlock();
942 if (!retain_dentry(dentry))
943 __dput_to_list(dentry, list);
944 spin_unlock(&dentry->d_lock);
945}
1da177e4 946
b5c84bf6 947/* This must be called with d_lock held */
dc0474be 948static inline void __dget_dlock(struct dentry *dentry)
23044507 949{
98474236 950 dentry->d_lockref.count++;
23044507
NP
951}
952
dc0474be 953static inline void __dget(struct dentry *dentry)
1da177e4 954{
98474236 955 lockref_get(&dentry->d_lockref);
1da177e4
LT
956}
957
b7ab39f6
NP
958struct dentry *dget_parent(struct dentry *dentry)
959{
df3d0bbc 960 int gotref;
b7ab39f6 961 struct dentry *ret;
e8400933 962 unsigned seq;
b7ab39f6 963
df3d0bbc
WL
964 /*
965 * Do optimistic parent lookup without any
966 * locking.
967 */
968 rcu_read_lock();
e8400933 969 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 970 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
971 gotref = lockref_get_not_zero(&ret->d_lockref);
972 rcu_read_unlock();
973 if (likely(gotref)) {
e8400933 974 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
975 return ret;
976 dput(ret);
977 }
978
b7ab39f6 979repeat:
a734eb45
NP
980 /*
981 * Don't need rcu_dereference because we re-check it was correct under
982 * the lock.
983 */
984 rcu_read_lock();
b7ab39f6 985 ret = dentry->d_parent;
a734eb45
NP
986 spin_lock(&ret->d_lock);
987 if (unlikely(ret != dentry->d_parent)) {
988 spin_unlock(&ret->d_lock);
989 rcu_read_unlock();
b7ab39f6
NP
990 goto repeat;
991 }
a734eb45 992 rcu_read_unlock();
98474236
WL
993 BUG_ON(!ret->d_lockref.count);
994 ret->d_lockref.count++;
b7ab39f6 995 spin_unlock(&ret->d_lock);
b7ab39f6
NP
996 return ret;
997}
998EXPORT_SYMBOL(dget_parent);
999
61fec493
AV
1000static struct dentry * __d_find_any_alias(struct inode *inode)
1001{
1002 struct dentry *alias;
1003
1004 if (hlist_empty(&inode->i_dentry))
1005 return NULL;
1006 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1007 __dget(alias);
1008 return alias;
1009}
1010
1011/**
1012 * d_find_any_alias - find any alias for a given inode
1013 * @inode: inode to find an alias for
1014 *
1015 * If any aliases exist for the given inode, take and return a
1016 * reference for one of them. If no aliases exist, return %NULL.
1017 */
1018struct dentry *d_find_any_alias(struct inode *inode)
1019{
1020 struct dentry *de;
1021
1022 spin_lock(&inode->i_lock);
1023 de = __d_find_any_alias(inode);
1024 spin_unlock(&inode->i_lock);
1025 return de;
1026}
1027EXPORT_SYMBOL(d_find_any_alias);
1028
52ed46f0 1029static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 1030{
61fec493
AV
1031 struct dentry *alias;
1032
1033 if (S_ISDIR(inode->i_mode))
1034 return __d_find_any_alias(inode);
1da177e4 1035
946e51f2 1036 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 1037 spin_lock(&alias->d_lock);
61fec493 1038 if (!d_unhashed(alias)) {
8d80d7da
BF
1039 __dget_dlock(alias);
1040 spin_unlock(&alias->d_lock);
1041 return alias;
1da177e4 1042 }
da502956 1043 spin_unlock(&alias->d_lock);
1da177e4 1044 }
da502956 1045 return NULL;
1da177e4
LT
1046}
1047
961f3c89
MCC
1048/**
1049 * d_find_alias - grab a hashed alias of inode
1050 * @inode: inode in question
1051 *
1052 * If inode has a hashed alias, or is a directory and has any alias,
1053 * acquire the reference to alias and return it. Otherwise return NULL.
1054 * Notice that if inode is a directory there can be only one alias and
1055 * it can be unhashed only if it has no children, or if it is the root
1056 * of a filesystem, or if the directory was renamed and d_revalidate
1057 * was the first vfs operation to notice.
1058 *
1059 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1060 * any other hashed alias over that one.
1061 */
da502956 1062struct dentry *d_find_alias(struct inode *inode)
1da177e4 1063{
214fda1f
DH
1064 struct dentry *de = NULL;
1065
b3d9b7a3 1066 if (!hlist_empty(&inode->i_dentry)) {
873feea0 1067 spin_lock(&inode->i_lock);
52ed46f0 1068 de = __d_find_alias(inode);
873feea0 1069 spin_unlock(&inode->i_lock);
214fda1f 1070 }
1da177e4
LT
1071 return de;
1072}
ec4f8605 1073EXPORT_SYMBOL(d_find_alias);
1da177e4 1074
bca585d2
AV
1075/*
1076 * Caller MUST be holding rcu_read_lock() and be guaranteed
1077 * that inode won't get freed until rcu_read_unlock().
1078 */
1079struct dentry *d_find_alias_rcu(struct inode *inode)
1080{
1081 struct hlist_head *l = &inode->i_dentry;
1082 struct dentry *de = NULL;
1083
1084 spin_lock(&inode->i_lock);
1085 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1086 // used without having I_FREEING set, which means no aliases left
1087 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1088 if (S_ISDIR(inode->i_mode)) {
1089 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1090 } else {
1091 hlist_for_each_entry(de, l, d_u.d_alias)
1092 if (!d_unhashed(de))
1093 break;
1094 }
1095 }
1096 spin_unlock(&inode->i_lock);
1097 return de;
1098}
1099
1da177e4
LT
1100/*
1101 * Try to kill dentries associated with this inode.
1102 * WARNING: you must own a reference to inode.
1103 */
1104void d_prune_aliases(struct inode *inode)
1105{
0cdca3f9 1106 struct dentry *dentry;
1da177e4 1107restart:
873feea0 1108 spin_lock(&inode->i_lock);
946e51f2 1109 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1110 spin_lock(&dentry->d_lock);
98474236 1111 if (!dentry->d_lockref.count) {
29355c39
AV
1112 struct dentry *parent = lock_parent(dentry);
1113 if (likely(!dentry->d_lockref.count)) {
1114 __dentry_kill(dentry);
4a7795d3 1115 dput(parent);
29355c39
AV
1116 goto restart;
1117 }
1118 if (parent)
1119 spin_unlock(&parent->d_lock);
1da177e4
LT
1120 }
1121 spin_unlock(&dentry->d_lock);
1122 }
873feea0 1123 spin_unlock(&inode->i_lock);
1da177e4 1124}
ec4f8605 1125EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1126
3b3f09f4
AV
1127/*
1128 * Lock a dentry from shrink list.
8f04da2a
JO
1129 * Called under rcu_read_lock() and dentry->d_lock; the former
1130 * guarantees that nothing we access will be freed under us.
3b3f09f4 1131 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1132 * d_delete(), etc.
1133 *
3b3f09f4
AV
1134 * Return false if dentry has been disrupted or grabbed, leaving
1135 * the caller to kick it off-list. Otherwise, return true and have
1136 * that dentry's inode and parent both locked.
1137 */
1138static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1139{
3b3f09f4
AV
1140 struct inode *inode;
1141 struct dentry *parent;
da3bbdd4 1142
3b3f09f4
AV
1143 if (dentry->d_lockref.count)
1144 return false;
1145
1146 inode = dentry->d_inode;
1147 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1148 spin_unlock(&dentry->d_lock);
1149 spin_lock(&inode->i_lock);
ec33679d 1150 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1151 if (unlikely(dentry->d_lockref.count))
1152 goto out;
1153 /* changed inode means that somebody had grabbed it */
1154 if (unlikely(inode != dentry->d_inode))
1155 goto out;
3b3f09f4 1156 }
046b961b 1157
3b3f09f4
AV
1158 parent = dentry->d_parent;
1159 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1160 return true;
dd1f6b2e 1161
3b3f09f4 1162 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1163 spin_lock(&parent->d_lock);
1164 if (unlikely(parent != dentry->d_parent)) {
1165 spin_unlock(&parent->d_lock);
1166 spin_lock(&dentry->d_lock);
1167 goto out;
1168 }
1169 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1170 if (likely(!dentry->d_lockref.count))
3b3f09f4 1171 return true;
3b3f09f4
AV
1172 spin_unlock(&parent->d_lock);
1173out:
1174 if (inode)
1175 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1176 return false;
1177}
77812a1e 1178
9bdebc2b 1179void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1180{
1181 while (!list_empty(list)) {
1182 struct dentry *dentry, *parent;
64fd72e0 1183
3b3f09f4
AV
1184 dentry = list_entry(list->prev, struct dentry, d_lru);
1185 spin_lock(&dentry->d_lock);
8f04da2a 1186 rcu_read_lock();
3b3f09f4
AV
1187 if (!shrink_lock_dentry(dentry)) {
1188 bool can_free = false;
8f04da2a 1189 rcu_read_unlock();
3b3f09f4
AV
1190 d_shrink_del(dentry);
1191 if (dentry->d_lockref.count < 0)
1192 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1193 spin_unlock(&dentry->d_lock);
1194 if (can_free)
1195 dentry_free(dentry);
1196 continue;
1197 }
8f04da2a 1198 rcu_read_unlock();
3b3f09f4
AV
1199 d_shrink_del(dentry);
1200 parent = dentry->d_parent;
9bdebc2b
AV
1201 if (parent != dentry)
1202 __dput_to_list(parent, list);
ff2fde99 1203 __dentry_kill(dentry);
da3bbdd4 1204 }
3049cfe2
CH
1205}
1206
3f97b163
VD
1207static enum lru_status dentry_lru_isolate(struct list_head *item,
1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1209{
1210 struct list_head *freeable = arg;
1211 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1212
1213
1214 /*
1215 * we are inverting the lru lock/dentry->d_lock here,
1216 * so use a trylock. If we fail to get the lock, just skip
1217 * it
1218 */
1219 if (!spin_trylock(&dentry->d_lock))
1220 return LRU_SKIP;
1221
1222 /*
1223 * Referenced dentries are still in use. If they have active
1224 * counts, just remove them from the LRU. Otherwise give them
1225 * another pass through the LRU.
1226 */
1227 if (dentry->d_lockref.count) {
3f97b163 1228 d_lru_isolate(lru, dentry);
f6041567
DC
1229 spin_unlock(&dentry->d_lock);
1230 return LRU_REMOVED;
1231 }
1232
1233 if (dentry->d_flags & DCACHE_REFERENCED) {
1234 dentry->d_flags &= ~DCACHE_REFERENCED;
1235 spin_unlock(&dentry->d_lock);
1236
1237 /*
1238 * The list move itself will be made by the common LRU code. At
1239 * this point, we've dropped the dentry->d_lock but keep the
1240 * lru lock. This is safe to do, since every list movement is
1241 * protected by the lru lock even if both locks are held.
1242 *
1243 * This is guaranteed by the fact that all LRU management
1244 * functions are intermediated by the LRU API calls like
0a97c01c 1245 * list_lru_add_obj and list_lru_del_obj. List movement in this file
f6041567
DC
1246 * only ever occur through this functions or through callbacks
1247 * like this one, that are called from the LRU API.
1248 *
1249 * The only exceptions to this are functions like
1250 * shrink_dentry_list, and code that first checks for the
1251 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1252 * operating only with stack provided lists after they are
1253 * properly isolated from the main list. It is thus, always a
1254 * local access.
1255 */
1256 return LRU_ROTATE;
1257 }
1258
3f97b163 1259 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1260 spin_unlock(&dentry->d_lock);
1261
1262 return LRU_REMOVED;
1263}
1264
3049cfe2 1265/**
b48f03b3
DC
1266 * prune_dcache_sb - shrink the dcache
1267 * @sb: superblock
503c358c 1268 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1269 *
503c358c
VD
1270 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1271 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1272 * function.
3049cfe2 1273 *
b48f03b3
DC
1274 * This function may fail to free any resources if all the dentries are in
1275 * use.
3049cfe2 1276 */
503c358c 1277long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1278{
f6041567
DC
1279 LIST_HEAD(dispose);
1280 long freed;
3049cfe2 1281
503c358c
VD
1282 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1283 dentry_lru_isolate, &dispose);
f6041567 1284 shrink_dentry_list(&dispose);
0a234c6d 1285 return freed;
da3bbdd4 1286}
23044507 1287
4e717f5c 1288static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1289 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1290{
4e717f5c
GC
1291 struct list_head *freeable = arg;
1292 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1293
4e717f5c
GC
1294 /*
1295 * we are inverting the lru lock/dentry->d_lock here,
1296 * so use a trylock. If we fail to get the lock, just skip
1297 * it
1298 */
1299 if (!spin_trylock(&dentry->d_lock))
1300 return LRU_SKIP;
1301
3f97b163 1302 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1303 spin_unlock(&dentry->d_lock);
ec33679d 1304
4e717f5c 1305 return LRU_REMOVED;
da3bbdd4
KM
1306}
1307
4e717f5c 1308
1da177e4
LT
1309/**
1310 * shrink_dcache_sb - shrink dcache for a superblock
1311 * @sb: superblock
1312 *
3049cfe2
CH
1313 * Shrink the dcache for the specified super block. This is used to free
1314 * the dcache before unmounting a file system.
1da177e4 1315 */
3049cfe2 1316void shrink_dcache_sb(struct super_block *sb)
1da177e4 1317{
4e717f5c
GC
1318 do {
1319 LIST_HEAD(dispose);
1320
1dbd449c 1321 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1322 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1323 shrink_dentry_list(&dispose);
b17c070f 1324 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1325}
ec4f8605 1326EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1327
db14fc3a
MS
1328/**
1329 * enum d_walk_ret - action to talke during tree walk
1330 * @D_WALK_CONTINUE: contrinue walk
1331 * @D_WALK_QUIT: quit walk
1332 * @D_WALK_NORETRY: quit when retry is needed
1333 * @D_WALK_SKIP: skip this dentry and its children
1334 */
1335enum d_walk_ret {
1336 D_WALK_CONTINUE,
1337 D_WALK_QUIT,
1338 D_WALK_NORETRY,
1339 D_WALK_SKIP,
1340};
c826cb7d 1341
1da177e4 1342/**
db14fc3a
MS
1343 * d_walk - walk the dentry tree
1344 * @parent: start of walk
1345 * @data: data passed to @enter() and @finish()
1346 * @enter: callback when first entering the dentry
1da177e4 1347 *
3a8e3611 1348 * The @enter() callbacks are called with d_lock held.
1da177e4 1349 */
db14fc3a 1350static void d_walk(struct dentry *parent, void *data,
3a8e3611 1351 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1352{
949854d0 1353 struct dentry *this_parent;
1da177e4 1354 struct list_head *next;
48f5ec21 1355 unsigned seq = 0;
db14fc3a
MS
1356 enum d_walk_ret ret;
1357 bool retry = true;
949854d0 1358
58db63d0 1359again:
48f5ec21 1360 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1361 this_parent = parent;
2fd6b7f5 1362 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1363
1364 ret = enter(data, this_parent);
1365 switch (ret) {
1366 case D_WALK_CONTINUE:
1367 break;
1368 case D_WALK_QUIT:
1369 case D_WALK_SKIP:
1370 goto out_unlock;
1371 case D_WALK_NORETRY:
1372 retry = false;
1373 break;
1374 }
1da177e4
LT
1375repeat:
1376 next = this_parent->d_subdirs.next;
1377resume:
1378 while (next != &this_parent->d_subdirs) {
1379 struct list_head *tmp = next;
946e51f2 1380 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1381 next = tmp->next;
2fd6b7f5 1382
ba65dc5e
AV
1383 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1384 continue;
1385
2fd6b7f5 1386 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1387
1388 ret = enter(data, dentry);
1389 switch (ret) {
1390 case D_WALK_CONTINUE:
1391 break;
1392 case D_WALK_QUIT:
2fd6b7f5 1393 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1394 goto out_unlock;
1395 case D_WALK_NORETRY:
1396 retry = false;
1397 break;
1398 case D_WALK_SKIP:
1399 spin_unlock(&dentry->d_lock);
1400 continue;
2fd6b7f5 1401 }
db14fc3a 1402
1da177e4 1403 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5 1404 spin_unlock(&this_parent->d_lock);
5facae4f 1405 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1406 this_parent = dentry;
2fd6b7f5 1407 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1408 goto repeat;
1409 }
2fd6b7f5 1410 spin_unlock(&dentry->d_lock);
1da177e4
LT
1411 }
1412 /*
1413 * All done at this level ... ascend and resume the search.
1414 */
ca5358ef
AV
1415 rcu_read_lock();
1416ascend:
1da177e4 1417 if (this_parent != parent) {
c826cb7d 1418 struct dentry *child = this_parent;
31dec132
AV
1419 this_parent = child->d_parent;
1420
31dec132
AV
1421 spin_unlock(&child->d_lock);
1422 spin_lock(&this_parent->d_lock);
1423
ca5358ef
AV
1424 /* might go back up the wrong parent if we have had a rename. */
1425 if (need_seqretry(&rename_lock, seq))
949854d0 1426 goto rename_retry;
2159184e
AV
1427 /* go into the first sibling still alive */
1428 do {
1429 next = child->d_child.next;
ca5358ef
AV
1430 if (next == &this_parent->d_subdirs)
1431 goto ascend;
1432 child = list_entry(next, struct dentry, d_child);
2159184e 1433 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1434 rcu_read_unlock();
1da177e4
LT
1435 goto resume;
1436 }
ca5358ef 1437 if (need_seqretry(&rename_lock, seq))
949854d0 1438 goto rename_retry;
ca5358ef 1439 rcu_read_unlock();
db14fc3a
MS
1440
1441out_unlock:
1442 spin_unlock(&this_parent->d_lock);
48f5ec21 1443 done_seqretry(&rename_lock, seq);
db14fc3a 1444 return;
58db63d0
NP
1445
1446rename_retry:
ca5358ef
AV
1447 spin_unlock(&this_parent->d_lock);
1448 rcu_read_unlock();
1449 BUG_ON(seq & 1);
db14fc3a
MS
1450 if (!retry)
1451 return;
48f5ec21 1452 seq = 1;
58db63d0 1453 goto again;
1da177e4 1454}
db14fc3a 1455
01619491
IK
1456struct check_mount {
1457 struct vfsmount *mnt;
1458 unsigned int mounted;
1459};
1460
1461static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1462{
1463 struct check_mount *info = data;
1464 struct path path = { .mnt = info->mnt, .dentry = dentry };
1465
1466 if (likely(!d_mountpoint(dentry)))
1467 return D_WALK_CONTINUE;
1468 if (__path_is_mountpoint(&path)) {
1469 info->mounted = 1;
1470 return D_WALK_QUIT;
1471 }
1472 return D_WALK_CONTINUE;
1473}
1474
1475/**
1476 * path_has_submounts - check for mounts over a dentry in the
1477 * current namespace.
1478 * @parent: path to check.
1479 *
1480 * Return true if the parent or its subdirectories contain
1481 * a mount point in the current namespace.
1482 */
1483int path_has_submounts(const struct path *parent)
1484{
1485 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1486
1487 read_seqlock_excl(&mount_lock);
3a8e3611 1488 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1489 read_sequnlock_excl(&mount_lock);
1490
1491 return data.mounted;
1492}
1493EXPORT_SYMBOL(path_has_submounts);
1494
eed81007
MS
1495/*
1496 * Called by mount code to set a mountpoint and check if the mountpoint is
1497 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1498 * subtree can become unreachable).
1499 *
1ffe46d1 1500 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1501 * this reason take rename_lock and d_lock on dentry and ancestors.
1502 */
1503int d_set_mounted(struct dentry *dentry)
1504{
1505 struct dentry *p;
1506 int ret = -ENOENT;
1507 write_seqlock(&rename_lock);
1508 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1509 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1510 spin_lock(&p->d_lock);
1511 if (unlikely(d_unhashed(p))) {
1512 spin_unlock(&p->d_lock);
1513 goto out;
1514 }
1515 spin_unlock(&p->d_lock);
1516 }
1517 spin_lock(&dentry->d_lock);
1518 if (!d_unlinked(dentry)) {
3895dbf8
EB
1519 ret = -EBUSY;
1520 if (!d_mountpoint(dentry)) {
1521 dentry->d_flags |= DCACHE_MOUNTED;
1522 ret = 0;
1523 }
eed81007
MS
1524 }
1525 spin_unlock(&dentry->d_lock);
1526out:
1527 write_sequnlock(&rename_lock);
1528 return ret;
1529}
1530
1da177e4 1531/*
fd517909 1532 * Search the dentry child list of the specified parent,
1da177e4
LT
1533 * and move any unused dentries to the end of the unused
1534 * list for prune_dcache(). We descend to the next level
1535 * whenever the d_subdirs list is non-empty and continue
1536 * searching.
1537 *
1538 * It returns zero iff there are no unused children,
1539 * otherwise it returns the number of children moved to
1540 * the end of the unused list. This may not be the total
1541 * number of unused children, because select_parent can
1542 * drop the lock and return early due to latency
1543 * constraints.
1544 */
1da177e4 1545
db14fc3a
MS
1546struct select_data {
1547 struct dentry *start;
9bdebc2b
AV
1548 union {
1549 long found;
1550 struct dentry *victim;
1551 };
db14fc3a 1552 struct list_head dispose;
db14fc3a 1553};
23044507 1554
db14fc3a
MS
1555static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1556{
1557 struct select_data *data = _data;
1558 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1559
db14fc3a
MS
1560 if (data->start == dentry)
1561 goto out;
2fd6b7f5 1562
fe91522a 1563 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1564 data->found++;
fe91522a
AV
1565 } else {
1566 if (dentry->d_flags & DCACHE_LRU_LIST)
1567 d_lru_del(dentry);
1568 if (!dentry->d_lockref.count) {
1569 d_shrink_add(dentry, &data->dispose);
1570 data->found++;
1571 }
1da177e4 1572 }
db14fc3a
MS
1573 /*
1574 * We can return to the caller if we have found some (this
1575 * ensures forward progress). We'll be coming back to find
1576 * the rest.
1577 */
fe91522a
AV
1578 if (!list_empty(&data->dispose))
1579 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1580out:
db14fc3a 1581 return ret;
1da177e4
LT
1582}
1583
9bdebc2b
AV
1584static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1585{
1586 struct select_data *data = _data;
1587 enum d_walk_ret ret = D_WALK_CONTINUE;
1588
1589 if (data->start == dentry)
1590 goto out;
1591
1592 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1593 if (!dentry->d_lockref.count) {
1594 rcu_read_lock();
1595 data->victim = dentry;
1596 return D_WALK_QUIT;
1597 }
1598 } else {
1599 if (dentry->d_flags & DCACHE_LRU_LIST)
1600 d_lru_del(dentry);
1601 if (!dentry->d_lockref.count)
1602 d_shrink_add(dentry, &data->dispose);
1603 }
1604 /*
1605 * We can return to the caller if we have found some (this
1606 * ensures forward progress). We'll be coming back to find
1607 * the rest.
1608 */
1609 if (!list_empty(&data->dispose))
1610 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1611out:
1612 return ret;
1613}
1614
1da177e4
LT
1615/**
1616 * shrink_dcache_parent - prune dcache
1617 * @parent: parent of entries to prune
1618 *
1619 * Prune the dcache to remove unused children of the parent dentry.
1620 */
db14fc3a 1621void shrink_dcache_parent(struct dentry *parent)
1da177e4 1622{
db14fc3a 1623 for (;;) {
9bdebc2b 1624 struct select_data data = {.start = parent};
1da177e4 1625
db14fc3a 1626 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1627 d_walk(parent, &data, select_collect);
4fb48871
AV
1628
1629 if (!list_empty(&data.dispose)) {
1630 shrink_dentry_list(&data.dispose);
1631 continue;
1632 }
1633
1634 cond_resched();
db14fc3a
MS
1635 if (!data.found)
1636 break;
9bdebc2b
AV
1637 data.victim = NULL;
1638 d_walk(parent, &data, select_collect2);
1639 if (data.victim) {
1640 struct dentry *parent;
1641 spin_lock(&data.victim->d_lock);
1642 if (!shrink_lock_dentry(data.victim)) {
1643 spin_unlock(&data.victim->d_lock);
1644 rcu_read_unlock();
1645 } else {
1646 rcu_read_unlock();
1647 parent = data.victim->d_parent;
1648 if (parent != data.victim)
1649 __dput_to_list(parent, &data.dispose);
1650 __dentry_kill(data.victim);
1651 }
1652 }
1653 if (!list_empty(&data.dispose))
1654 shrink_dentry_list(&data.dispose);
421348f1 1655 }
1da177e4 1656}
ec4f8605 1657EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1658
9c8c10e2 1659static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1660{
9c8c10e2
AV
1661 /* it has busy descendents; complain about those instead */
1662 if (!list_empty(&dentry->d_subdirs))
1663 return D_WALK_CONTINUE;
42c32608 1664
9c8c10e2
AV
1665 /* root with refcount 1 is fine */
1666 if (dentry == _data && dentry->d_lockref.count == 1)
1667 return D_WALK_CONTINUE;
1668
8c8e7dba 1669 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1670 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1671 dentry,
1672 dentry->d_inode ?
1673 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1674 dentry,
42c32608
AV
1675 dentry->d_lockref.count,
1676 dentry->d_sb->s_type->name,
1677 dentry->d_sb->s_id);
9c8c10e2
AV
1678 return D_WALK_CONTINUE;
1679}
1680
1681static void do_one_tree(struct dentry *dentry)
1682{
1683 shrink_dcache_parent(dentry);
3a8e3611 1684 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1685 d_drop(dentry);
1686 dput(dentry);
42c32608
AV
1687}
1688
1689/*
1690 * destroy the dentries attached to a superblock on unmounting
1691 */
1692void shrink_dcache_for_umount(struct super_block *sb)
1693{
1694 struct dentry *dentry;
1695
9c8c10e2 1696 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1697
1698 dentry = sb->s_root;
1699 sb->s_root = NULL;
9c8c10e2 1700 do_one_tree(dentry);
42c32608 1701
f1ee6162
N
1702 while (!hlist_bl_empty(&sb->s_roots)) {
1703 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1704 do_one_tree(dentry);
42c32608
AV
1705 }
1706}
1707
ff17fa56 1708static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1709{
ff17fa56 1710 struct dentry **victim = _data;
848ac114 1711 if (d_mountpoint(dentry)) {
8ed936b5 1712 __dget_dlock(dentry);
ff17fa56 1713 *victim = dentry;
848ac114
MS
1714 return D_WALK_QUIT;
1715 }
ff17fa56 1716 return D_WALK_CONTINUE;
848ac114
MS
1717}
1718
1719/**
1ffe46d1
EB
1720 * d_invalidate - detach submounts, prune dcache, and drop
1721 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1722 */
5542aa2f 1723void d_invalidate(struct dentry *dentry)
848ac114 1724{
ff17fa56 1725 bool had_submounts = false;
1ffe46d1
EB
1726 spin_lock(&dentry->d_lock);
1727 if (d_unhashed(dentry)) {
1728 spin_unlock(&dentry->d_lock);
5542aa2f 1729 return;
1ffe46d1 1730 }
ff17fa56 1731 __d_drop(dentry);
1ffe46d1
EB
1732 spin_unlock(&dentry->d_lock);
1733
848ac114 1734 /* Negative dentries can be dropped without further checks */
ff17fa56 1735 if (!dentry->d_inode)
5542aa2f 1736 return;
848ac114 1737
ff17fa56 1738 shrink_dcache_parent(dentry);
848ac114 1739 for (;;) {
ff17fa56 1740 struct dentry *victim = NULL;
3a8e3611 1741 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1742 if (!victim) {
1743 if (had_submounts)
1744 shrink_dcache_parent(dentry);
81be24d2 1745 return;
8ed936b5 1746 }
ff17fa56
AV
1747 had_submounts = true;
1748 detach_mounts(victim);
1749 dput(victim);
848ac114 1750 }
848ac114 1751}
1ffe46d1 1752EXPORT_SYMBOL(d_invalidate);
848ac114 1753
1da177e4 1754/**
a4464dbc
AV
1755 * __d_alloc - allocate a dcache entry
1756 * @sb: filesystem it will belong to
1da177e4
LT
1757 * @name: qstr of the name
1758 *
1759 * Allocates a dentry. It returns %NULL if there is insufficient memory
1760 * available. On a success the dentry is returned. The name passed in is
1761 * copied and the copy passed in may be reused after this call.
1762 */
1763
5c8b0dfc 1764static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1765{
1766 struct dentry *dentry;
1767 char *dname;
285b102d 1768 int err;
1da177e4 1769
f53bf711
MS
1770 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1771 GFP_KERNEL);
1da177e4
LT
1772 if (!dentry)
1773 return NULL;
1774
6326c71f
LT
1775 /*
1776 * We guarantee that the inline name is always NUL-terminated.
1777 * This way the memcpy() done by the name switching in rename
1778 * will still always have a NUL at the end, even if we might
1779 * be overwriting an internal NUL character
1780 */
1781 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1782 if (unlikely(!name)) {
cdf01226 1783 name = &slash_name;
798434bd
AV
1784 dname = dentry->d_iname;
1785 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1786 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1787 struct external_name *p = kmalloc(size + name->len,
1788 GFP_KERNEL_ACCOUNT |
1789 __GFP_RECLAIMABLE);
1790 if (!p) {
1da177e4
LT
1791 kmem_cache_free(dentry_cache, dentry);
1792 return NULL;
1793 }
2e03b4bc
VB
1794 atomic_set(&p->u.count, 1);
1795 dname = p->name;
1da177e4
LT
1796 } else {
1797 dname = dentry->d_iname;
1798 }
1da177e4
LT
1799
1800 dentry->d_name.len = name->len;
1801 dentry->d_name.hash = name->hash;
1802 memcpy(dname, name->name, name->len);
1803 dname[name->len] = 0;
1804
6326c71f 1805 /* Make sure we always see the terminating NUL character */
7088efa9 1806 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1807
98474236 1808 dentry->d_lockref.count = 1;
dea3667b 1809 dentry->d_flags = 0;
1da177e4 1810 spin_lock_init(&dentry->d_lock);
26475371 1811 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1812 dentry->d_inode = NULL;
a4464dbc
AV
1813 dentry->d_parent = dentry;
1814 dentry->d_sb = sb;
1da177e4
LT
1815 dentry->d_op = NULL;
1816 dentry->d_fsdata = NULL;
ceb5bdc2 1817 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1818 INIT_LIST_HEAD(&dentry->d_lru);
1819 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1820 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1821 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1822 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1823
285b102d
MS
1824 if (dentry->d_op && dentry->d_op->d_init) {
1825 err = dentry->d_op->d_init(dentry);
1826 if (err) {
1827 if (dname_external(dentry))
1828 kfree(external_name(dentry));
1829 kmem_cache_free(dentry_cache, dentry);
1830 return NULL;
1831 }
1832 }
1833
3e880fb5 1834 this_cpu_inc(nr_dentry);
312d3ca8 1835
1da177e4
LT
1836 return dentry;
1837}
a4464dbc
AV
1838
1839/**
1840 * d_alloc - allocate a dcache entry
1841 * @parent: parent of entry to allocate
1842 * @name: qstr of the name
1843 *
1844 * Allocates a dentry. It returns %NULL if there is insufficient memory
1845 * available. On a success the dentry is returned. The name passed in is
1846 * copied and the copy passed in may be reused after this call.
1847 */
1848struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1849{
1850 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1851 if (!dentry)
1852 return NULL;
a4464dbc
AV
1853 spin_lock(&parent->d_lock);
1854 /*
1855 * don't need child lock because it is not subject
1856 * to concurrency here
1857 */
1858 __dget_dlock(parent);
1859 dentry->d_parent = parent;
946e51f2 1860 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1861 spin_unlock(&parent->d_lock);
1862
1863 return dentry;
1864}
ec4f8605 1865EXPORT_SYMBOL(d_alloc);
1da177e4 1866
f9c34674
MS
1867struct dentry *d_alloc_anon(struct super_block *sb)
1868{
1869 return __d_alloc(sb, NULL);
1870}
1871EXPORT_SYMBOL(d_alloc_anon);
1872
ba65dc5e
AV
1873struct dentry *d_alloc_cursor(struct dentry * parent)
1874{
f9c34674 1875 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1876 if (dentry) {
5467a68c 1877 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1878 dentry->d_parent = dget(parent);
1879 }
1880 return dentry;
1881}
1882
e1a24bb0
BF
1883/**
1884 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1885 * @sb: the superblock
1886 * @name: qstr of the name
1887 *
1888 * For a filesystem that just pins its dentries in memory and never
1889 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1890 * This is used for pipes, sockets et.al. - the stuff that should
1891 * never be anyone's children or parents. Unlike all other
1892 * dentries, these will not have RCU delay between dropping the
1893 * last reference and freeing them.
ab1152dd
AV
1894 *
1895 * The only user is alloc_file_pseudo() and that's what should
1896 * be considered a public interface. Don't use directly.
e1a24bb0 1897 */
4b936885
NP
1898struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1899{
5467a68c
AV
1900 struct dentry *dentry = __d_alloc(sb, name);
1901 if (likely(dentry))
1902 dentry->d_flags |= DCACHE_NORCU;
1903 return dentry;
4b936885 1904}
4b936885 1905
1da177e4
LT
1906struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1907{
1908 struct qstr q;
1909
1910 q.name = name;
8387ff25 1911 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1912 return d_alloc(parent, &q);
1913}
ef26ca97 1914EXPORT_SYMBOL(d_alloc_name);
1da177e4 1915
fb045adb
NP
1916void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1917{
6f7f7caa
LT
1918 WARN_ON_ONCE(dentry->d_op);
1919 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1920 DCACHE_OP_COMPARE |
1921 DCACHE_OP_REVALIDATE |
ecf3d1f1 1922 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1923 DCACHE_OP_DELETE |
d101a125 1924 DCACHE_OP_REAL));
fb045adb
NP
1925 dentry->d_op = op;
1926 if (!op)
1927 return;
1928 if (op->d_hash)
1929 dentry->d_flags |= DCACHE_OP_HASH;
1930 if (op->d_compare)
1931 dentry->d_flags |= DCACHE_OP_COMPARE;
1932 if (op->d_revalidate)
1933 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1934 if (op->d_weak_revalidate)
1935 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1936 if (op->d_delete)
1937 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1938 if (op->d_prune)
1939 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1940 if (op->d_real)
1941 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1942
1943}
1944EXPORT_SYMBOL(d_set_d_op);
1945
df1a085a
DH
1946
1947/*
1948 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1949 * @dentry - The dentry to mark
1950 *
1951 * Mark a dentry as falling through to the lower layer (as set with
1952 * d_pin_lower()). This flag may be recorded on the medium.
1953 */
1954void d_set_fallthru(struct dentry *dentry)
1955{
1956 spin_lock(&dentry->d_lock);
1957 dentry->d_flags |= DCACHE_FALLTHRU;
1958 spin_unlock(&dentry->d_lock);
1959}
1960EXPORT_SYMBOL(d_set_fallthru);
1961
b18825a7
DH
1962static unsigned d_flags_for_inode(struct inode *inode)
1963{
44bdb5e5 1964 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1965
1966 if (!inode)
1967 return DCACHE_MISS_TYPE;
1968
1969 if (S_ISDIR(inode->i_mode)) {
1970 add_flags = DCACHE_DIRECTORY_TYPE;
1971 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1972 if (unlikely(!inode->i_op->lookup))
1973 add_flags = DCACHE_AUTODIR_TYPE;
1974 else
1975 inode->i_opflags |= IOP_LOOKUP;
1976 }
44bdb5e5
DH
1977 goto type_determined;
1978 }
1979
1980 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1981 if (unlikely(inode->i_op->get_link)) {
b18825a7 1982 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1983 goto type_determined;
1984 }
1985 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1986 }
1987
44bdb5e5
DH
1988 if (unlikely(!S_ISREG(inode->i_mode)))
1989 add_flags = DCACHE_SPECIAL_TYPE;
1990
1991type_determined:
b18825a7
DH
1992 if (unlikely(IS_AUTOMOUNT(inode)))
1993 add_flags |= DCACHE_NEED_AUTOMOUNT;
1994 return add_flags;
1995}
1996
360da900
OH
1997static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1998{
b18825a7 1999 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 2000 WARN_ON(d_in_lookup(dentry));
b18825a7 2001
b23fb0a6 2002 spin_lock(&dentry->d_lock);
af0c9af1
WL
2003 /*
2004 * Decrement negative dentry count if it was in the LRU list.
2005 */
2006 if (dentry->d_flags & DCACHE_LRU_LIST)
2007 this_cpu_dec(nr_dentry_negative);
de689f5e 2008 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 2009 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 2010 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 2011 raw_write_seqcount_end(&dentry->d_seq);
affda484 2012 fsnotify_update_flags(dentry);
b23fb0a6 2013 spin_unlock(&dentry->d_lock);
360da900
OH
2014}
2015
1da177e4
LT
2016/**
2017 * d_instantiate - fill in inode information for a dentry
2018 * @entry: dentry to complete
2019 * @inode: inode to attach to this dentry
2020 *
2021 * Fill in inode information in the entry.
2022 *
2023 * This turns negative dentries into productive full members
2024 * of society.
2025 *
2026 * NOTE! This assumes that the inode count has been incremented
2027 * (or otherwise set) by the caller to indicate that it is now
2028 * in use by the dcache.
2029 */
2030
2031void d_instantiate(struct dentry *entry, struct inode * inode)
2032{
946e51f2 2033 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 2034 if (inode) {
b9680917 2035 security_d_instantiate(entry, inode);
873feea0 2036 spin_lock(&inode->i_lock);
de689f5e 2037 __d_instantiate(entry, inode);
873feea0 2038 spin_unlock(&inode->i_lock);
de689f5e 2039 }
1da177e4 2040}
ec4f8605 2041EXPORT_SYMBOL(d_instantiate);
1da177e4 2042
1e2e547a
AV
2043/*
2044 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2045 * with lockdep-related part of unlock_new_inode() done before
2046 * anything else. Use that instead of open-coding d_instantiate()/
2047 * unlock_new_inode() combinations.
2048 */
2049void d_instantiate_new(struct dentry *entry, struct inode *inode)
2050{
2051 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2052 BUG_ON(!inode);
2053 lockdep_annotate_inode_mutex_key(inode);
2054 security_d_instantiate(entry, inode);
2055 spin_lock(&inode->i_lock);
2056 __d_instantiate(entry, inode);
2057 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 2058 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
2059 smp_mb();
2060 wake_up_bit(&inode->i_state, __I_NEW);
2061 spin_unlock(&inode->i_lock);
2062}
2063EXPORT_SYMBOL(d_instantiate_new);
2064
adc0e91a
AV
2065struct dentry *d_make_root(struct inode *root_inode)
2066{
2067 struct dentry *res = NULL;
2068
2069 if (root_inode) {
f9c34674 2070 res = d_alloc_anon(root_inode->i_sb);
5467a68c 2071 if (res)
adc0e91a 2072 d_instantiate(res, root_inode);
5467a68c 2073 else
adc0e91a
AV
2074 iput(root_inode);
2075 }
2076 return res;
2077}
2078EXPORT_SYMBOL(d_make_root);
2079
f9c34674
MS
2080static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2081 struct inode *inode,
2082 bool disconnected)
4ea3ada2 2083{
9308a612 2084 struct dentry *res;
b18825a7 2085 unsigned add_flags;
4ea3ada2 2086
f9c34674 2087 security_d_instantiate(dentry, inode);
873feea0 2088 spin_lock(&inode->i_lock);
d891eedb 2089 res = __d_find_any_alias(inode);
9308a612 2090 if (res) {
873feea0 2091 spin_unlock(&inode->i_lock);
f9c34674 2092 dput(dentry);
9308a612
CH
2093 goto out_iput;
2094 }
2095
2096 /* attach a disconnected dentry */
1a0a397e
BF
2097 add_flags = d_flags_for_inode(inode);
2098
2099 if (disconnected)
2100 add_flags |= DCACHE_DISCONNECTED;
b18825a7 2101
f9c34674
MS
2102 spin_lock(&dentry->d_lock);
2103 __d_set_inode_and_type(dentry, inode, add_flags);
2104 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 2105 if (!disconnected) {
139351f1
LT
2106 hlist_bl_lock(&dentry->d_sb->s_roots);
2107 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2108 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 2109 }
f9c34674 2110 spin_unlock(&dentry->d_lock);
873feea0 2111 spin_unlock(&inode->i_lock);
9308a612 2112
f9c34674 2113 return dentry;
9308a612
CH
2114
2115 out_iput:
2116 iput(inode);
2117 return res;
4ea3ada2 2118}
1a0a397e 2119
f9c34674
MS
2120struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2121{
2122 return __d_instantiate_anon(dentry, inode, true);
2123}
2124EXPORT_SYMBOL(d_instantiate_anon);
2125
2126static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2127{
2128 struct dentry *tmp;
2129 struct dentry *res;
2130
2131 if (!inode)
2132 return ERR_PTR(-ESTALE);
2133 if (IS_ERR(inode))
2134 return ERR_CAST(inode);
2135
2136 res = d_find_any_alias(inode);
2137 if (res)
2138 goto out_iput;
2139
2140 tmp = d_alloc_anon(inode->i_sb);
2141 if (!tmp) {
2142 res = ERR_PTR(-ENOMEM);
2143 goto out_iput;
2144 }
2145
2146 return __d_instantiate_anon(tmp, inode, disconnected);
2147
2148out_iput:
2149 iput(inode);
2150 return res;
2151}
2152
1a0a397e
BF
2153/**
2154 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2155 * @inode: inode to allocate the dentry for
2156 *
2157 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2158 * similar open by handle operations. The returned dentry may be anonymous,
2159 * or may have a full name (if the inode was already in the cache).
2160 *
2161 * When called on a directory inode, we must ensure that the inode only ever
2162 * has one dentry. If a dentry is found, that is returned instead of
2163 * allocating a new one.
2164 *
2165 * On successful return, the reference to the inode has been transferred
2166 * to the dentry. In case of an error the reference on the inode is released.
2167 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2168 * be passed in and the error will be propagated to the return value,
2169 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2170 */
2171struct dentry *d_obtain_alias(struct inode *inode)
2172{
f9c34674 2173 return __d_obtain_alias(inode, true);
1a0a397e 2174}
adc48720 2175EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2176
1a0a397e
BF
2177/**
2178 * d_obtain_root - find or allocate a dentry for a given inode
2179 * @inode: inode to allocate the dentry for
2180 *
2181 * Obtain an IS_ROOT dentry for the root of a filesystem.
2182 *
2183 * We must ensure that directory inodes only ever have one dentry. If a
2184 * dentry is found, that is returned instead of allocating a new one.
2185 *
2186 * On successful return, the reference to the inode has been transferred
2187 * to the dentry. In case of an error the reference on the inode is
2188 * released. A %NULL or IS_ERR inode may be passed in and will be the
2189 * error will be propagate to the return value, with a %NULL @inode
2190 * replaced by ERR_PTR(-ESTALE).
2191 */
2192struct dentry *d_obtain_root(struct inode *inode)
2193{
f9c34674 2194 return __d_obtain_alias(inode, false);
1a0a397e
BF
2195}
2196EXPORT_SYMBOL(d_obtain_root);
2197
9403540c
BN
2198/**
2199 * d_add_ci - lookup or allocate new dentry with case-exact name
2200 * @inode: the inode case-insensitive lookup has found
2201 * @dentry: the negative dentry that was passed to the parent's lookup func
2202 * @name: the case-exact name to be associated with the returned dentry
2203 *
2204 * This is to avoid filling the dcache with case-insensitive names to the
2205 * same inode, only the actual correct case is stored in the dcache for
2206 * case-insensitive filesystems.
2207 *
3d742d4b
RD
2208 * For a case-insensitive lookup match and if the case-exact dentry
2209 * already exists in the dcache, use it and return it.
9403540c
BN
2210 *
2211 * If no entry exists with the exact case name, allocate new dentry with
2212 * the exact case, and return the spliced entry.
2213 */
e45b590b 2214struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2215 struct qstr *name)
2216{
d9171b93 2217 struct dentry *found, *res;
9403540c 2218
b6520c81
CH
2219 /*
2220 * First check if a dentry matching the name already exists,
2221 * if not go ahead and create it now.
2222 */
9403540c 2223 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2224 if (found) {
2225 iput(inode);
2226 return found;
2227 }
2228 if (d_in_lookup(dentry)) {
2229 found = d_alloc_parallel(dentry->d_parent, name,
2230 dentry->d_wait);
2231 if (IS_ERR(found) || !d_in_lookup(found)) {
2232 iput(inode);
2233 return found;
9403540c 2234 }
d9171b93
AV
2235 } else {
2236 found = d_alloc(dentry->d_parent, name);
2237 if (!found) {
2238 iput(inode);
2239 return ERR_PTR(-ENOMEM);
2240 }
2241 }
2242 res = d_splice_alias(inode, found);
2243 if (res) {
40a3cb0d 2244 d_lookup_done(found);
d9171b93
AV
2245 dput(found);
2246 return res;
9403540c 2247 }
4f522a24 2248 return found;
9403540c 2249}
ec4f8605 2250EXPORT_SYMBOL(d_add_ci);
1da177e4 2251
4f48d5da
XL
2252/**
2253 * d_same_name - compare dentry name with case-exact name
2254 * @parent: parent dentry
2255 * @dentry: the negative dentry that was passed to the parent's lookup func
2256 * @name: the case-exact name to be associated with the returned dentry
2257 *
2258 * Return: true if names are same, or false
2259 */
2260bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2261 const struct qstr *name)
12f8ad4b 2262{
d4c91a8f
AV
2263 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2264 if (dentry->d_name.len != name->len)
2265 return false;
2266 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2267 }
6fa67e70 2268 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2269 dentry->d_name.len, dentry->d_name.name,
2270 name) == 0;
12f8ad4b 2271}
4f48d5da 2272EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2273
ae2a8236
LT
2274/*
2275 * This is __d_lookup_rcu() when the parent dentry has
2276 * DCACHE_OP_COMPARE, which makes things much nastier.
2277 */
2278static noinline struct dentry *__d_lookup_rcu_op_compare(
2279 const struct dentry *parent,
2280 const struct qstr *name,
2281 unsigned *seqp)
2282{
2283 u64 hashlen = name->hash_len;
2284 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2285 struct hlist_bl_node *node;
2286 struct dentry *dentry;
2287
2288 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2289 int tlen;
2290 const char *tname;
2291 unsigned seq;
2292
2293seqretry:
2294 seq = raw_seqcount_begin(&dentry->d_seq);
2295 if (dentry->d_parent != parent)
2296 continue;
2297 if (d_unhashed(dentry))
2298 continue;
2299 if (dentry->d_name.hash != hashlen_hash(hashlen))
2300 continue;
2301 tlen = dentry->d_name.len;
2302 tname = dentry->d_name.name;
2303 /* we want a consistent (name,len) pair */
2304 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2305 cpu_relax();
2306 goto seqretry;
2307 }
2308 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2309 continue;
2310 *seqp = seq;
2311 return dentry;
2312 }
2313 return NULL;
2314}
2315
31e6b01f
NP
2316/**
2317 * __d_lookup_rcu - search for a dentry (racy, store-free)
2318 * @parent: parent dentry
2319 * @name: qstr of name we wish to find
1f1e6e52 2320 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2321 * Returns: dentry, or NULL
2322 *
2323 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2324 * resolution (store-free path walking) design described in
2325 * Documentation/filesystems/path-lookup.txt.
2326 *
2327 * This is not to be used outside core vfs.
2328 *
2329 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2330 * held, and rcu_read_lock held. The returned dentry must not be stored into
2331 * without taking d_lock and checking d_seq sequence count against @seq
2332 * returned here.
2333 *
15570086 2334 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2335 * function.
2336 *
2337 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2338 * the returned dentry, so long as its parent's seqlock is checked after the
2339 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2340 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2341 *
2342 * NOTE! The caller *has* to check the resulting dentry against the sequence
2343 * number we've returned before using any of the resulting dentry state!
31e6b01f 2344 */
8966be90
LT
2345struct dentry *__d_lookup_rcu(const struct dentry *parent,
2346 const struct qstr *name,
da53be12 2347 unsigned *seqp)
31e6b01f 2348{
26fe5750 2349 u64 hashlen = name->hash_len;
31e6b01f 2350 const unsigned char *str = name->name;
8387ff25 2351 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2352 struct hlist_bl_node *node;
31e6b01f
NP
2353 struct dentry *dentry;
2354
2355 /*
2356 * Note: There is significant duplication with __d_lookup_rcu which is
2357 * required to prevent single threaded performance regressions
2358 * especially on architectures where smp_rmb (in seqcounts) are costly.
2359 * Keep the two functions in sync.
2360 */
2361
ae2a8236
LT
2362 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2363 return __d_lookup_rcu_op_compare(parent, name, seqp);
2364
31e6b01f
NP
2365 /*
2366 * The hash list is protected using RCU.
2367 *
2368 * Carefully use d_seq when comparing a candidate dentry, to avoid
2369 * races with d_move().
2370 *
2371 * It is possible that concurrent renames can mess up our list
2372 * walk here and result in missing our dentry, resulting in the
2373 * false-negative result. d_lookup() protects against concurrent
2374 * renames using rename_lock seqlock.
2375 *
b0a4bb83 2376 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2377 */
b07ad996 2378 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2379 unsigned seq;
31e6b01f 2380
12f8ad4b
LT
2381 /*
2382 * The dentry sequence count protects us from concurrent
da53be12 2383 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2384 *
2385 * The caller must perform a seqcount check in order
da53be12 2386 * to do anything useful with the returned dentry.
12f8ad4b
LT
2387 *
2388 * NOTE! We do a "raw" seqcount_begin here. That means that
2389 * we don't wait for the sequence count to stabilize if it
2390 * is in the middle of a sequence change. If we do the slow
2391 * dentry compare, we will do seqretries until it is stable,
2392 * and if we end up with a successful lookup, we actually
2393 * want to exit RCU lookup anyway.
d4c91a8f
AV
2394 *
2395 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2396 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2397 */
2398 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2399 if (dentry->d_parent != parent)
2400 continue;
2e321806
LT
2401 if (d_unhashed(dentry))
2402 continue;
ae2a8236
LT
2403 if (dentry->d_name.hash_len != hashlen)
2404 continue;
2405 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2406 continue;
da53be12 2407 *seqp = seq;
d4c91a8f 2408 return dentry;
31e6b01f
NP
2409 }
2410 return NULL;
2411}
2412
1da177e4
LT
2413/**
2414 * d_lookup - search for a dentry
2415 * @parent: parent dentry
2416 * @name: qstr of name we wish to find
b04f784e 2417 * Returns: dentry, or NULL
1da177e4 2418 *
b04f784e
NP
2419 * d_lookup searches the children of the parent dentry for the name in
2420 * question. If the dentry is found its reference count is incremented and the
2421 * dentry is returned. The caller must use dput to free the entry when it has
2422 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2423 */
da2d8455 2424struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2425{
31e6b01f 2426 struct dentry *dentry;
949854d0 2427 unsigned seq;
1da177e4 2428
b8314f93
DY
2429 do {
2430 seq = read_seqbegin(&rename_lock);
2431 dentry = __d_lookup(parent, name);
2432 if (dentry)
1da177e4
LT
2433 break;
2434 } while (read_seqretry(&rename_lock, seq));
2435 return dentry;
2436}
ec4f8605 2437EXPORT_SYMBOL(d_lookup);
1da177e4 2438
31e6b01f 2439/**
b04f784e
NP
2440 * __d_lookup - search for a dentry (racy)
2441 * @parent: parent dentry
2442 * @name: qstr of name we wish to find
2443 * Returns: dentry, or NULL
2444 *
2445 * __d_lookup is like d_lookup, however it may (rarely) return a
2446 * false-negative result due to unrelated rename activity.
2447 *
2448 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2449 * however it must be used carefully, eg. with a following d_lookup in
2450 * the case of failure.
2451 *
2452 * __d_lookup callers must be commented.
2453 */
a713ca2a 2454struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2455{
1da177e4 2456 unsigned int hash = name->hash;
8387ff25 2457 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2458 struct hlist_bl_node *node;
31e6b01f 2459 struct dentry *found = NULL;
665a7583 2460 struct dentry *dentry;
1da177e4 2461
31e6b01f
NP
2462 /*
2463 * Note: There is significant duplication with __d_lookup_rcu which is
2464 * required to prevent single threaded performance regressions
2465 * especially on architectures where smp_rmb (in seqcounts) are costly.
2466 * Keep the two functions in sync.
2467 */
2468
b04f784e
NP
2469 /*
2470 * The hash list is protected using RCU.
2471 *
2472 * Take d_lock when comparing a candidate dentry, to avoid races
2473 * with d_move().
2474 *
2475 * It is possible that concurrent renames can mess up our list
2476 * walk here and result in missing our dentry, resulting in the
2477 * false-negative result. d_lookup() protects against concurrent
2478 * renames using rename_lock seqlock.
2479 *
b0a4bb83 2480 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2481 */
1da177e4
LT
2482 rcu_read_lock();
2483
b07ad996 2484 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2485
1da177e4
LT
2486 if (dentry->d_name.hash != hash)
2487 continue;
1da177e4
LT
2488
2489 spin_lock(&dentry->d_lock);
1da177e4
LT
2490 if (dentry->d_parent != parent)
2491 goto next;
d0185c08
LT
2492 if (d_unhashed(dentry))
2493 goto next;
2494
d4c91a8f
AV
2495 if (!d_same_name(dentry, parent, name))
2496 goto next;
1da177e4 2497
98474236 2498 dentry->d_lockref.count++;
d0185c08 2499 found = dentry;
1da177e4
LT
2500 spin_unlock(&dentry->d_lock);
2501 break;
2502next:
2503 spin_unlock(&dentry->d_lock);
2504 }
2505 rcu_read_unlock();
2506
2507 return found;
2508}
2509
3e7e241f
EB
2510/**
2511 * d_hash_and_lookup - hash the qstr then search for a dentry
2512 * @dir: Directory to search in
2513 * @name: qstr of name we wish to find
2514 *
4f522a24 2515 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2516 */
2517struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2518{
3e7e241f
EB
2519 /*
2520 * Check for a fs-specific hash function. Note that we must
2521 * calculate the standard hash first, as the d_op->d_hash()
2522 * routine may choose to leave the hash value unchanged.
2523 */
8387ff25 2524 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2525 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2526 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2527 if (unlikely(err < 0))
2528 return ERR_PTR(err);
3e7e241f 2529 }
4f522a24 2530 return d_lookup(dir, name);
3e7e241f 2531}
4f522a24 2532EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2533
1da177e4
LT
2534/*
2535 * When a file is deleted, we have two options:
2536 * - turn this dentry into a negative dentry
2537 * - unhash this dentry and free it.
2538 *
2539 * Usually, we want to just turn this into
2540 * a negative dentry, but if anybody else is
2541 * currently using the dentry or the inode
2542 * we can't do that and we fall back on removing
2543 * it from the hash queues and waiting for
2544 * it to be deleted later when it has no users
2545 */
2546
2547/**
2548 * d_delete - delete a dentry
2549 * @dentry: The dentry to delete
2550 *
2551 * Turn the dentry into a negative dentry if possible, otherwise
2552 * remove it from the hash queues so it can be deleted later
2553 */
2554
2555void d_delete(struct dentry * dentry)
2556{
c19457f0 2557 struct inode *inode = dentry->d_inode;
c19457f0
AV
2558
2559 spin_lock(&inode->i_lock);
2560 spin_lock(&dentry->d_lock);
1da177e4
LT
2561 /*
2562 * Are we the only user?
2563 */
98474236 2564 if (dentry->d_lockref.count == 1) {
13e3c5e5 2565 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2566 dentry_unlink_inode(dentry);
c19457f0 2567 } else {
1da177e4 2568 __d_drop(dentry);
c19457f0
AV
2569 spin_unlock(&dentry->d_lock);
2570 spin_unlock(&inode->i_lock);
2571 }
1da177e4 2572}
ec4f8605 2573EXPORT_SYMBOL(d_delete);
1da177e4 2574
15d3c589 2575static void __d_rehash(struct dentry *entry)
1da177e4 2576{
15d3c589 2577 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2578
1879fd6a 2579 hlist_bl_lock(b);
b07ad996 2580 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2581 hlist_bl_unlock(b);
1da177e4
LT
2582}
2583
2584/**
2585 * d_rehash - add an entry back to the hash
2586 * @entry: dentry to add to the hash
2587 *
2588 * Adds a dentry to the hash according to its name.
2589 */
2590
2591void d_rehash(struct dentry * entry)
2592{
1da177e4 2593 spin_lock(&entry->d_lock);
15d3c589 2594 __d_rehash(entry);
1da177e4 2595 spin_unlock(&entry->d_lock);
1da177e4 2596}
ec4f8605 2597EXPORT_SYMBOL(d_rehash);
1da177e4 2598
84e710da
AV
2599static inline unsigned start_dir_add(struct inode *dir)
2600{
93f6d4e1 2601 preempt_disable_nested();
84e710da
AV
2602 for (;;) {
2603 unsigned n = dir->i_dir_seq;
2604 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2605 return n;
2606 cpu_relax();
2607 }
2608}
2609
50417d22
SAS
2610static inline void end_dir_add(struct inode *dir, unsigned int n,
2611 wait_queue_head_t *d_wait)
84e710da
AV
2612{
2613 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2614 preempt_enable_nested();
50417d22 2615 wake_up_all(d_wait);
84e710da
AV
2616}
2617
d9171b93
AV
2618static void d_wait_lookup(struct dentry *dentry)
2619{
2620 if (d_in_lookup(dentry)) {
2621 DECLARE_WAITQUEUE(wait, current);
2622 add_wait_queue(dentry->d_wait, &wait);
2623 do {
2624 set_current_state(TASK_UNINTERRUPTIBLE);
2625 spin_unlock(&dentry->d_lock);
2626 schedule();
2627 spin_lock(&dentry->d_lock);
2628 } while (d_in_lookup(dentry));
2629 }
2630}
2631
94bdd655 2632struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2633 const struct qstr *name,
2634 wait_queue_head_t *wq)
94bdd655 2635{
94bdd655 2636 unsigned int hash = name->hash;
94bdd655
AV
2637 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2638 struct hlist_bl_node *node;
2639 struct dentry *new = d_alloc(parent, name);
2640 struct dentry *dentry;
2641 unsigned seq, r_seq, d_seq;
2642
2643 if (unlikely(!new))
2644 return ERR_PTR(-ENOMEM);
2645
2646retry:
2647 rcu_read_lock();
015555fd 2648 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2649 r_seq = read_seqbegin(&rename_lock);
2650 dentry = __d_lookup_rcu(parent, name, &d_seq);
2651 if (unlikely(dentry)) {
2652 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2653 rcu_read_unlock();
2654 goto retry;
2655 }
2656 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2657 rcu_read_unlock();
2658 dput(dentry);
2659 goto retry;
2660 }
2661 rcu_read_unlock();
2662 dput(new);
2663 return dentry;
2664 }
2665 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2666 rcu_read_unlock();
2667 goto retry;
2668 }
015555fd
WD
2669
2670 if (unlikely(seq & 1)) {
2671 rcu_read_unlock();
2672 goto retry;
2673 }
2674
94bdd655 2675 hlist_bl_lock(b);
8cc07c80 2676 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2677 hlist_bl_unlock(b);
2678 rcu_read_unlock();
2679 goto retry;
2680 }
94bdd655
AV
2681 /*
2682 * No changes for the parent since the beginning of d_lookup().
2683 * Since all removals from the chain happen with hlist_bl_lock(),
2684 * any potential in-lookup matches are going to stay here until
2685 * we unlock the chain. All fields are stable in everything
2686 * we encounter.
2687 */
2688 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2689 if (dentry->d_name.hash != hash)
2690 continue;
2691 if (dentry->d_parent != parent)
2692 continue;
d4c91a8f
AV
2693 if (!d_same_name(dentry, parent, name))
2694 continue;
94bdd655 2695 hlist_bl_unlock(b);
e7d6ef97
AV
2696 /* now we can try to grab a reference */
2697 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2698 rcu_read_unlock();
2699 goto retry;
2700 }
2701
2702 rcu_read_unlock();
2703 /*
2704 * somebody is likely to be still doing lookup for it;
2705 * wait for them to finish
2706 */
d9171b93
AV
2707 spin_lock(&dentry->d_lock);
2708 d_wait_lookup(dentry);
2709 /*
2710 * it's not in-lookup anymore; in principle we should repeat
2711 * everything from dcache lookup, but it's likely to be what
2712 * d_lookup() would've found anyway. If it is, just return it;
2713 * otherwise we really have to repeat the whole thing.
2714 */
2715 if (unlikely(dentry->d_name.hash != hash))
2716 goto mismatch;
2717 if (unlikely(dentry->d_parent != parent))
2718 goto mismatch;
2719 if (unlikely(d_unhashed(dentry)))
2720 goto mismatch;
d4c91a8f
AV
2721 if (unlikely(!d_same_name(dentry, parent, name)))
2722 goto mismatch;
d9171b93
AV
2723 /* OK, it *is* a hashed match; return it */
2724 spin_unlock(&dentry->d_lock);
94bdd655
AV
2725 dput(new);
2726 return dentry;
2727 }
e7d6ef97 2728 rcu_read_unlock();
94bdd655
AV
2729 /* we can't take ->d_lock here; it's OK, though. */
2730 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2731 new->d_wait = wq;
94bdd655
AV
2732 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2733 hlist_bl_unlock(b);
2734 return new;
d9171b93
AV
2735mismatch:
2736 spin_unlock(&dentry->d_lock);
2737 dput(dentry);
2738 goto retry;
94bdd655
AV
2739}
2740EXPORT_SYMBOL(d_alloc_parallel);
2741
45f78b0a
SAS
2742/*
2743 * - Unhash the dentry
2744 * - Retrieve and clear the waitqueue head in dentry
2745 * - Return the waitqueue head
2746 */
2747static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2748{
45f78b0a
SAS
2749 wait_queue_head_t *d_wait;
2750 struct hlist_bl_head *b;
2751
2752 lockdep_assert_held(&dentry->d_lock);
2753
2754 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2755 hlist_bl_lock(b);
85c7f810 2756 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2757 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2758 d_wait = dentry->d_wait;
d9171b93 2759 dentry->d_wait = NULL;
94bdd655
AV
2760 hlist_bl_unlock(b);
2761 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2762 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2763 return d_wait;
2764}
2765
2766void __d_lookup_unhash_wake(struct dentry *dentry)
2767{
2768 spin_lock(&dentry->d_lock);
2769 wake_up_all(__d_lookup_unhash(dentry));
2770 spin_unlock(&dentry->d_lock);
85c7f810 2771}
45f78b0a 2772EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2773
2774/* inode->i_lock held if inode is non-NULL */
2775
2776static inline void __d_add(struct dentry *dentry, struct inode *inode)
2777{
45f78b0a 2778 wait_queue_head_t *d_wait;
84e710da
AV
2779 struct inode *dir = NULL;
2780 unsigned n;
0568d705 2781 spin_lock(&dentry->d_lock);
84e710da
AV
2782 if (unlikely(d_in_lookup(dentry))) {
2783 dir = dentry->d_parent->d_inode;
2784 n = start_dir_add(dir);
45f78b0a 2785 d_wait = __d_lookup_unhash(dentry);
84e710da 2786 }
ed782b5a 2787 if (inode) {
0568d705
AV
2788 unsigned add_flags = d_flags_for_inode(inode);
2789 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2790 raw_write_seqcount_begin(&dentry->d_seq);
2791 __d_set_inode_and_type(dentry, inode, add_flags);
2792 raw_write_seqcount_end(&dentry->d_seq);
affda484 2793 fsnotify_update_flags(dentry);
ed782b5a 2794 }
15d3c589 2795 __d_rehash(dentry);
84e710da 2796 if (dir)
50417d22 2797 end_dir_add(dir, n, d_wait);
0568d705
AV
2798 spin_unlock(&dentry->d_lock);
2799 if (inode)
2800 spin_unlock(&inode->i_lock);
ed782b5a
AV
2801}
2802
34d0d19d
AV
2803/**
2804 * d_add - add dentry to hash queues
2805 * @entry: dentry to add
2806 * @inode: The inode to attach to this dentry
2807 *
2808 * This adds the entry to the hash queues and initializes @inode.
2809 * The entry was actually filled in earlier during d_alloc().
2810 */
2811
2812void d_add(struct dentry *entry, struct inode *inode)
2813{
b9680917
AV
2814 if (inode) {
2815 security_d_instantiate(entry, inode);
ed782b5a 2816 spin_lock(&inode->i_lock);
b9680917 2817 }
ed782b5a 2818 __d_add(entry, inode);
34d0d19d
AV
2819}
2820EXPORT_SYMBOL(d_add);
2821
668d0cd5
AV
2822/**
2823 * d_exact_alias - find and hash an exact unhashed alias
2824 * @entry: dentry to add
2825 * @inode: The inode to go with this dentry
2826 *
2827 * If an unhashed dentry with the same name/parent and desired
2828 * inode already exists, hash and return it. Otherwise, return
2829 * NULL.
2830 *
2831 * Parent directory should be locked.
2832 */
2833struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2834{
2835 struct dentry *alias;
668d0cd5
AV
2836 unsigned int hash = entry->d_name.hash;
2837
2838 spin_lock(&inode->i_lock);
2839 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2840 /*
2841 * Don't need alias->d_lock here, because aliases with
2842 * d_parent == entry->d_parent are not subject to name or
2843 * parent changes, because the parent inode i_mutex is held.
2844 */
2845 if (alias->d_name.hash != hash)
2846 continue;
2847 if (alias->d_parent != entry->d_parent)
2848 continue;
d4c91a8f 2849 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2850 continue;
2851 spin_lock(&alias->d_lock);
2852 if (!d_unhashed(alias)) {
2853 spin_unlock(&alias->d_lock);
2854 alias = NULL;
2855 } else {
2856 __dget_dlock(alias);
15d3c589 2857 __d_rehash(alias);
668d0cd5
AV
2858 spin_unlock(&alias->d_lock);
2859 }
2860 spin_unlock(&inode->i_lock);
2861 return alias;
2862 }
2863 spin_unlock(&inode->i_lock);
2864 return NULL;
2865}
2866EXPORT_SYMBOL(d_exact_alias);
2867
8d85b484 2868static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2869{
8d85b484
AV
2870 if (unlikely(dname_external(target))) {
2871 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2872 /*
2873 * Both external: swap the pointers
2874 */
9a8d5bb4 2875 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2876 } else {
2877 /*
2878 * dentry:internal, target:external. Steal target's
2879 * storage and make target internal.
2880 */
321bcf92
BF
2881 memcpy(target->d_iname, dentry->d_name.name,
2882 dentry->d_name.len + 1);
1da177e4
LT
2883 dentry->d_name.name = target->d_name.name;
2884 target->d_name.name = target->d_iname;
2885 }
2886 } else {
8d85b484 2887 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2888 /*
2889 * dentry:external, target:internal. Give dentry's
2890 * storage to target and make dentry internal
2891 */
2892 memcpy(dentry->d_iname, target->d_name.name,
2893 target->d_name.len + 1);
2894 target->d_name.name = dentry->d_name.name;
2895 dentry->d_name.name = dentry->d_iname;
2896 } else {
2897 /*
da1ce067 2898 * Both are internal.
1da177e4 2899 */
da1ce067
MS
2900 unsigned int i;
2901 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2902 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2903 swap(((long *) &dentry->d_iname)[i],
2904 ((long *) &target->d_iname)[i]);
2905 }
1da177e4
LT
2906 }
2907 }
a28ddb87 2908 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2909}
2910
8d85b484
AV
2911static void copy_name(struct dentry *dentry, struct dentry *target)
2912{
2913 struct external_name *old_name = NULL;
2914 if (unlikely(dname_external(dentry)))
2915 old_name = external_name(dentry);
2916 if (unlikely(dname_external(target))) {
2917 atomic_inc(&external_name(target)->u.count);
2918 dentry->d_name = target->d_name;
2919 } else {
2920 memcpy(dentry->d_iname, target->d_name.name,
2921 target->d_name.len + 1);
2922 dentry->d_name.name = dentry->d_iname;
2923 dentry->d_name.hash_len = target->d_name.hash_len;
2924 }
2925 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2926 kfree_rcu(old_name, u.head);
8d85b484
AV
2927}
2928
9eaef27b 2929/*
18367501 2930 * __d_move - move a dentry
1da177e4
LT
2931 * @dentry: entry to move
2932 * @target: new dentry
da1ce067 2933 * @exchange: exchange the two dentries
1da177e4
LT
2934 *
2935 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2936 * dcache entries should not be moved in this way. Caller must hold
2937 * rename_lock, the i_mutex of the source and target directories,
2938 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2939 */
da1ce067
MS
2940static void __d_move(struct dentry *dentry, struct dentry *target,
2941 bool exchange)
1da177e4 2942{
42177007 2943 struct dentry *old_parent, *p;
45f78b0a 2944 wait_queue_head_t *d_wait;
84e710da
AV
2945 struct inode *dir = NULL;
2946 unsigned n;
1da177e4 2947
42177007
AV
2948 WARN_ON(!dentry->d_inode);
2949 if (WARN_ON(dentry == target))
2950 return;
2951
2fd6b7f5 2952 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2953 old_parent = dentry->d_parent;
2954 p = d_ancestor(old_parent, target);
2955 if (IS_ROOT(dentry)) {
2956 BUG_ON(p);
2957 spin_lock(&target->d_parent->d_lock);
2958 } else if (!p) {
2959 /* target is not a descendent of dentry->d_parent */
2960 spin_lock(&target->d_parent->d_lock);
2961 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2962 } else {
2963 BUG_ON(p == dentry);
2964 spin_lock(&old_parent->d_lock);
2965 if (p != target)
2966 spin_lock_nested(&target->d_parent->d_lock,
2967 DENTRY_D_LOCK_NESTED);
2968 }
2969 spin_lock_nested(&dentry->d_lock, 2);
2970 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2971
84e710da
AV
2972 if (unlikely(d_in_lookup(target))) {
2973 dir = target->d_parent->d_inode;
2974 n = start_dir_add(dir);
45f78b0a 2975 d_wait = __d_lookup_unhash(target);
84e710da 2976 }
1da177e4 2977
31e6b01f 2978 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2979 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2980
15d3c589 2981 /* unhash both */
0632a9ac
AV
2982 if (!d_unhashed(dentry))
2983 ___d_drop(dentry);
2984 if (!d_unhashed(target))
2985 ___d_drop(target);
1da177e4 2986
076515fc
AV
2987 /* ... and switch them in the tree */
2988 dentry->d_parent = target->d_parent;
2989 if (!exchange) {
8d85b484 2990 copy_name(dentry, target);
61647823 2991 target->d_hash.pprev = NULL;
076515fc 2992 dentry->d_parent->d_lockref.count++;
5467a68c 2993 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2994 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2995 } else {
076515fc
AV
2996 target->d_parent = old_parent;
2997 swap_names(dentry, target);
946e51f2 2998 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2999 __d_rehash(target);
3000 fsnotify_update_flags(target);
1da177e4 3001 }
076515fc
AV
3002 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3003 __d_rehash(dentry);
3004 fsnotify_update_flags(dentry);
0bf3d5c1 3005 fscrypt_handle_d_move(dentry);
1da177e4 3006
31e6b01f
NP
3007 write_seqcount_end(&target->d_seq);
3008 write_seqcount_end(&dentry->d_seq);
3009
84e710da 3010 if (dir)
50417d22 3011 end_dir_add(dir, n, d_wait);
076515fc
AV
3012
3013 if (dentry->d_parent != old_parent)
3014 spin_unlock(&dentry->d_parent->d_lock);
3015 if (dentry != old_parent)
3016 spin_unlock(&old_parent->d_lock);
3017 spin_unlock(&target->d_lock);
3018 spin_unlock(&dentry->d_lock);
18367501
AV
3019}
3020
3021/*
3022 * d_move - move a dentry
3023 * @dentry: entry to move
3024 * @target: new dentry
3025 *
3026 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
3027 * dcache entries should not be moved in this way. See the locking
3028 * requirements for __d_move.
18367501
AV
3029 */
3030void d_move(struct dentry *dentry, struct dentry *target)
3031{
3032 write_seqlock(&rename_lock);
da1ce067 3033 __d_move(dentry, target, false);
1da177e4 3034 write_sequnlock(&rename_lock);
9eaef27b 3035}
ec4f8605 3036EXPORT_SYMBOL(d_move);
1da177e4 3037
da1ce067
MS
3038/*
3039 * d_exchange - exchange two dentries
3040 * @dentry1: first dentry
3041 * @dentry2: second dentry
3042 */
3043void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3044{
3045 write_seqlock(&rename_lock);
3046
3047 WARN_ON(!dentry1->d_inode);
3048 WARN_ON(!dentry2->d_inode);
3049 WARN_ON(IS_ROOT(dentry1));
3050 WARN_ON(IS_ROOT(dentry2));
3051
3052 __d_move(dentry1, dentry2, true);
3053
3054 write_sequnlock(&rename_lock);
3055}
3056
e2761a11
OH
3057/**
3058 * d_ancestor - search for an ancestor
3059 * @p1: ancestor dentry
3060 * @p2: child dentry
3061 *
3062 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3063 * an ancestor of p2, else NULL.
9eaef27b 3064 */
e2761a11 3065struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
3066{
3067 struct dentry *p;
3068
871c0067 3069 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 3070 if (p->d_parent == p1)
e2761a11 3071 return p;
9eaef27b 3072 }
e2761a11 3073 return NULL;
9eaef27b
TM
3074}
3075
3076/*
3077 * This helper attempts to cope with remotely renamed directories
3078 *
3079 * It assumes that the caller is already holding
a03e283b 3080 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
3081 *
3082 * Note: If ever the locking in lock_rename() changes, then please
3083 * remember to update this too...
9eaef27b 3084 */
b5ae6b15 3085static int __d_unalias(struct inode *inode,
873feea0 3086 struct dentry *dentry, struct dentry *alias)
9eaef27b 3087{
9902af79
AV
3088 struct mutex *m1 = NULL;
3089 struct rw_semaphore *m2 = NULL;
3d330dc1 3090 int ret = -ESTALE;
9eaef27b
TM
3091
3092 /* If alias and dentry share a parent, then no extra locks required */
3093 if (alias->d_parent == dentry->d_parent)
3094 goto out_unalias;
3095
9eaef27b 3096 /* See lock_rename() */
9eaef27b
TM
3097 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3098 goto out_err;
3099 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 3100 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 3101 goto out_err;
9902af79 3102 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 3103out_unalias:
8ed936b5 3104 __d_move(alias, dentry, false);
b5ae6b15 3105 ret = 0;
9eaef27b 3106out_err:
9eaef27b 3107 if (m2)
9902af79 3108 up_read(m2);
9eaef27b
TM
3109 if (m1)
3110 mutex_unlock(m1);
3111 return ret;
3112}
3113
3f70bd51
BF
3114/**
3115 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116 * @inode: the inode which may have a disconnected dentry
3117 * @dentry: a negative dentry which we want to point to the inode.
3118 *
da093a9b
BF
3119 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120 * place of the given dentry and return it, else simply d_add the inode
3121 * to the dentry and return NULL.
3f70bd51 3122 *
908790fa
BF
3123 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124 * we should error out: directories can't have multiple aliases.
3125 *
3f70bd51
BF
3126 * This is needed in the lookup routine of any filesystem that is exportable
3127 * (via knfsd) so that we can build dcache paths to directories effectively.
3128 *
3129 * If a dentry was found and moved, then it is returned. Otherwise NULL
3130 * is returned. This matches the expected return value of ->lookup.
3131 *
3132 * Cluster filesystems may call this function with a negative, hashed dentry.
3133 * In that case, we know that the inode will be a regular file, and also this
3134 * will only occur during atomic_open. So we need to check for the dentry
3135 * being already hashed only in the final case.
3136 */
3137struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138{
3f70bd51
BF
3139 if (IS_ERR(inode))
3140 return ERR_CAST(inode);
3141
770bfad8
DH
3142 BUG_ON(!d_unhashed(dentry));
3143
de689f5e 3144 if (!inode)
b5ae6b15 3145 goto out;
de689f5e 3146
b9680917 3147 security_d_instantiate(dentry, inode);
873feea0 3148 spin_lock(&inode->i_lock);
9eaef27b 3149 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
3150 struct dentry *new = __d_find_any_alias(inode);
3151 if (unlikely(new)) {
a03e283b
EB
3152 /* The reference to new ensures it remains an alias */
3153 spin_unlock(&inode->i_lock);
18367501 3154 write_seqlock(&rename_lock);
b5ae6b15
AV
3155 if (unlikely(d_ancestor(new, dentry))) {
3156 write_sequnlock(&rename_lock);
b5ae6b15
AV
3157 dput(new);
3158 new = ERR_PTR(-ELOOP);
3159 pr_warn_ratelimited(
3160 "VFS: Lookup of '%s' in %s %s"
3161 " would have caused loop\n",
3162 dentry->d_name.name,
3163 inode->i_sb->s_type->name,
3164 inode->i_sb->s_id);
3165 } else if (!IS_ROOT(new)) {
076515fc 3166 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 3167 int err = __d_unalias(inode, dentry, new);
18367501 3168 write_sequnlock(&rename_lock);
b5ae6b15
AV
3169 if (err) {
3170 dput(new);
3171 new = ERR_PTR(err);
3172 }
076515fc 3173 dput(old_parent);
18367501 3174 } else {
b5ae6b15
AV
3175 __d_move(new, dentry, false);
3176 write_sequnlock(&rename_lock);
dd179946 3177 }
b5ae6b15
AV
3178 iput(inode);
3179 return new;
9eaef27b 3180 }
770bfad8 3181 }
b5ae6b15 3182out:
ed782b5a 3183 __d_add(dentry, inode);
b5ae6b15 3184 return NULL;
770bfad8 3185}
b5ae6b15 3186EXPORT_SYMBOL(d_splice_alias);
770bfad8 3187
1da177e4
LT
3188/*
3189 * Test whether new_dentry is a subdirectory of old_dentry.
3190 *
3191 * Trivially implemented using the dcache structure
3192 */
3193
3194/**
3195 * is_subdir - is new dentry a subdirectory of old_dentry
3196 * @new_dentry: new dentry
3197 * @old_dentry: old dentry
3198 *
a6e5787f
YB
3199 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3200 * Returns false otherwise.
1da177e4
LT
3201 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3202 */
3203
a6e5787f 3204bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3205{
a6e5787f 3206 bool result;
949854d0 3207 unsigned seq;
1da177e4 3208
e2761a11 3209 if (new_dentry == old_dentry)
a6e5787f 3210 return true;
e2761a11 3211
e2761a11 3212 do {
1da177e4 3213 /* for restarting inner loop in case of seq retry */
1da177e4 3214 seq = read_seqbegin(&rename_lock);
949854d0
NP
3215 /*
3216 * Need rcu_readlock to protect against the d_parent trashing
3217 * due to d_move
3218 */
3219 rcu_read_lock();
e2761a11 3220 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3221 result = true;
e2761a11 3222 else
a6e5787f 3223 result = false;
949854d0 3224 rcu_read_unlock();
1da177e4 3225 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3226
3227 return result;
3228}
e8f9e5b7 3229EXPORT_SYMBOL(is_subdir);
1da177e4 3230
db14fc3a 3231static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3232{
db14fc3a
MS
3233 struct dentry *root = data;
3234 if (dentry != root) {
3235 if (d_unhashed(dentry) || !dentry->d_inode)
3236 return D_WALK_SKIP;
1da177e4 3237
01ddc4ed
MS
3238 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3239 dentry->d_flags |= DCACHE_GENOCIDE;
3240 dentry->d_lockref.count--;
3241 }
1da177e4 3242 }
db14fc3a
MS
3243 return D_WALK_CONTINUE;
3244}
58db63d0 3245
db14fc3a
MS
3246void d_genocide(struct dentry *parent)
3247{
3a8e3611 3248 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3249}
3250
771eb4fe 3251void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3252{
863f144f
MS
3253 struct dentry *dentry = file->f_path.dentry;
3254
60545d0d 3255 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3256 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3257 !d_unlinked(dentry));
3258 spin_lock(&dentry->d_parent->d_lock);
3259 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3260 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3261 (unsigned long long)inode->i_ino);
3262 spin_unlock(&dentry->d_lock);
3263 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3264}
3265EXPORT_SYMBOL(d_mark_tmpfile);
3266
3267void d_tmpfile(struct file *file, struct inode *inode)
3268{
3269 struct dentry *dentry = file->f_path.dentry;
3270
3271 inode_dec_link_count(inode);
3272 d_mark_tmpfile(file, inode);
60545d0d 3273 d_instantiate(dentry, inode);
1da177e4 3274}
60545d0d 3275EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3276
3277static __initdata unsigned long dhash_entries;
3278static int __init set_dhash_entries(char *str)
3279{
3280 if (!str)
3281 return 0;
3282 dhash_entries = simple_strtoul(str, &str, 0);
3283 return 1;
3284}
3285__setup("dhash_entries=", set_dhash_entries);
3286
3287static void __init dcache_init_early(void)
3288{
1da177e4
LT
3289 /* If hashes are distributed across NUMA nodes, defer
3290 * hash allocation until vmalloc space is available.
3291 */
3292 if (hashdist)
3293 return;
3294
3295 dentry_hashtable =
3296 alloc_large_system_hash("Dentry cache",
b07ad996 3297 sizeof(struct hlist_bl_head),
1da177e4
LT
3298 dhash_entries,
3299 13,
3d375d78 3300 HASH_EARLY | HASH_ZERO,
1da177e4 3301 &d_hash_shift,
b35d786b 3302 NULL,
31fe62b9 3303 0,
1da177e4 3304 0);
854d3e63 3305 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3306}
3307
74bf17cf 3308static void __init dcache_init(void)
1da177e4 3309{
3d375d78 3310 /*
1da177e4
LT
3311 * A constructor could be added for stable state like the lists,
3312 * but it is probably not worth it because of the cache nature
3d375d78 3313 * of the dcache.
1da177e4 3314 */
80344266
DW
3315 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3316 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3317 d_iname);
1da177e4
LT
3318
3319 /* Hash may have been set up in dcache_init_early */
3320 if (!hashdist)
3321 return;
3322
3323 dentry_hashtable =
3324 alloc_large_system_hash("Dentry cache",
b07ad996 3325 sizeof(struct hlist_bl_head),
1da177e4
LT
3326 dhash_entries,
3327 13,
3d375d78 3328 HASH_ZERO,
1da177e4 3329 &d_hash_shift,
b35d786b 3330 NULL,
31fe62b9 3331 0,
1da177e4 3332 0);
854d3e63 3333 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3334}
3335
3336/* SLAB cache for __getname() consumers */
68279f9c 3337struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3338EXPORT_SYMBOL(names_cachep);
1da177e4 3339
1da177e4
LT
3340void __init vfs_caches_init_early(void)
3341{
6916363f
SAS
3342 int i;
3343
3344 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3345 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3346
1da177e4
LT
3347 dcache_init_early();
3348 inode_init_early();
3349}
3350
4248b0da 3351void __init vfs_caches_init(void)
1da177e4 3352{
6a9b8820
DW
3353 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3354 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3355
74bf17cf
DC
3356 dcache_init();
3357 inode_init();
4248b0da
MG
3358 files_init();
3359 files_maxfiles_init();
74bf17cf 3360 mnt_init();
1da177e4
LT
3361 bdev_cache_init();
3362 chrdev_init();
3363}