]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/dcache.c
dcache: d_obtain_alias callers don't all want DISCONNECTED
[people/arne_f/kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
1f7e0616 153int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
789680d1
NP
398/**
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
401 *
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
407 *
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
410 *
411 * __d_drop requires dentry->d_lock.
412 */
413void __d_drop(struct dentry *dentry)
414{
dea3667b 415 if (!d_unhashed(dentry)) {
b61625d2 416 struct hlist_bl_head *b;
7632e465
BF
417 /*
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
421 */
422 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
426
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
dea3667b 431 dentry_rcuwalk_barrier(dentry);
789680d1
NP
432 }
433}
434EXPORT_SYMBOL(__d_drop);
435
436void d_drop(struct dentry *dentry)
437{
789680d1
NP
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
789680d1
NP
441}
442EXPORT_SYMBOL(d_drop);
443
e55fd011 444static void __dentry_kill(struct dentry *dentry)
77812a1e 445{
41edf278
AV
446 struct dentry *parent = NULL;
447 bool can_free = true;
41edf278 448 if (!IS_ROOT(dentry))
77812a1e 449 parent = dentry->d_parent;
31e6b01f 450
0d98439e
LT
451 /*
452 * The dentry is now unrecoverably dead to the world.
453 */
454 lockref_mark_dead(&dentry->d_lockref);
455
f0023bc6 456 /*
f0023bc6
SW
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
459 */
590fb51f 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
461 dentry->d_op->d_prune(dentry);
462
01b60351
AV
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
01b60351 466 }
77812a1e
NP
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
03b3b889
AV
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
486
41edf278
AV
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
491 }
492 spin_unlock(&dentry->d_lock);
41edf278
AV
493 if (likely(can_free))
494 dentry_free(dentry);
e55fd011
AV
495}
496
497/*
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
502 */
8cbf74da 503static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
504 __releases(dentry->d_lock)
505{
506 struct inode *inode = dentry->d_inode;
507 struct dentry *parent = NULL;
508
509 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 goto failed;
511
512 if (!IS_ROOT(dentry)) {
513 parent = dentry->d_parent;
514 if (unlikely(!spin_trylock(&parent->d_lock))) {
515 if (inode)
516 spin_unlock(&inode->i_lock);
517 goto failed;
518 }
519 }
520
521 __dentry_kill(dentry);
03b3b889 522 return parent;
e55fd011
AV
523
524failed:
8cbf74da
AV
525 spin_unlock(&dentry->d_lock);
526 cpu_relax();
e55fd011 527 return dentry; /* try again with same dentry */
77812a1e
NP
528}
529
046b961b
AV
530static inline struct dentry *lock_parent(struct dentry *dentry)
531{
532 struct dentry *parent = dentry->d_parent;
533 if (IS_ROOT(dentry))
534 return NULL;
c2338f2d
AV
535 if (unlikely((int)dentry->d_lockref.count < 0))
536 return NULL;
046b961b
AV
537 if (likely(spin_trylock(&parent->d_lock)))
538 return parent;
046b961b 539 rcu_read_lock();
c2338f2d 540 spin_unlock(&dentry->d_lock);
046b961b
AV
541again:
542 parent = ACCESS_ONCE(dentry->d_parent);
543 spin_lock(&parent->d_lock);
544 /*
545 * We can't blindly lock dentry until we are sure
546 * that we won't violate the locking order.
547 * Any changes of dentry->d_parent must have
548 * been done with parent->d_lock held, so
549 * spin_lock() above is enough of a barrier
550 * for checking if it's still our child.
551 */
552 if (unlikely(parent != dentry->d_parent)) {
553 spin_unlock(&parent->d_lock);
554 goto again;
555 }
556 rcu_read_unlock();
557 if (parent != dentry)
9f12600f 558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
559 else
560 parent = NULL;
561 return parent;
562}
563
1da177e4
LT
564/*
565 * This is dput
566 *
567 * This is complicated by the fact that we do not want to put
568 * dentries that are no longer on any hash chain on the unused
569 * list: we'd much rather just get rid of them immediately.
570 *
571 * However, that implies that we have to traverse the dentry
572 * tree upwards to the parents which might _also_ now be
573 * scheduled for deletion (it may have been only waiting for
574 * its last child to go away).
575 *
576 * This tail recursion is done by hand as we don't want to depend
577 * on the compiler to always get this right (gcc generally doesn't).
578 * Real recursion would eat up our stack space.
579 */
580
581/*
582 * dput - release a dentry
583 * @dentry: dentry to release
584 *
585 * Release a dentry. This will drop the usage count and if appropriate
586 * call the dentry unlink method as well as removing it from the queues and
587 * releasing its resources. If the parent dentries were scheduled for release
588 * they too may now get deleted.
1da177e4 589 */
1da177e4
LT
590void dput(struct dentry *dentry)
591{
8aab6a27 592 if (unlikely(!dentry))
1da177e4
LT
593 return;
594
595repeat:
98474236 596 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 597 return;
1da177e4 598
8aab6a27
LT
599 /* Unreachable? Get rid of it */
600 if (unlikely(d_unhashed(dentry)))
601 goto kill_it;
602
603 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 604 if (dentry->d_op->d_delete(dentry))
61f3dee4 605 goto kill_it;
1da177e4 606 }
265ac902 607
358eec18
LT
608 if (!(dentry->d_flags & DCACHE_REFERENCED))
609 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 610 dentry_lru_add(dentry);
265ac902 611
98474236 612 dentry->d_lockref.count--;
61f3dee4 613 spin_unlock(&dentry->d_lock);
1da177e4
LT
614 return;
615
d52b9086 616kill_it:
8cbf74da 617 dentry = dentry_kill(dentry);
d52b9086
MS
618 if (dentry)
619 goto repeat;
1da177e4 620}
ec4f8605 621EXPORT_SYMBOL(dput);
1da177e4
LT
622
623/**
624 * d_invalidate - invalidate a dentry
625 * @dentry: dentry to invalidate
626 *
627 * Try to invalidate the dentry if it turns out to be
628 * possible. If there are other dentries that can be
629 * reached through this one we can't delete it and we
630 * return -EBUSY. On success we return 0.
631 *
632 * no dcache lock.
633 */
634
635int d_invalidate(struct dentry * dentry)
636{
637 /*
638 * If it's already been dropped, return OK.
639 */
da502956 640 spin_lock(&dentry->d_lock);
1da177e4 641 if (d_unhashed(dentry)) {
da502956 642 spin_unlock(&dentry->d_lock);
1da177e4
LT
643 return 0;
644 }
645 /*
646 * Check whether to do a partial shrink_dcache
647 * to get rid of unused child entries.
648 */
649 if (!list_empty(&dentry->d_subdirs)) {
da502956 650 spin_unlock(&dentry->d_lock);
1da177e4 651 shrink_dcache_parent(dentry);
da502956 652 spin_lock(&dentry->d_lock);
1da177e4
LT
653 }
654
655 /*
656 * Somebody else still using it?
657 *
658 * If it's a directory, we can't drop it
659 * for fear of somebody re-populating it
660 * with children (even though dropping it
661 * would make it unreachable from the root,
662 * we might still populate it if it was a
663 * working directory or similar).
50e69630
AV
664 * We also need to leave mountpoints alone,
665 * directory or not.
1da177e4 666 */
98474236 667 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 668 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 669 spin_unlock(&dentry->d_lock);
1da177e4
LT
670 return -EBUSY;
671 }
672 }
673
674 __d_drop(dentry);
675 spin_unlock(&dentry->d_lock);
1da177e4
LT
676 return 0;
677}
ec4f8605 678EXPORT_SYMBOL(d_invalidate);
1da177e4 679
b5c84bf6 680/* This must be called with d_lock held */
dc0474be 681static inline void __dget_dlock(struct dentry *dentry)
23044507 682{
98474236 683 dentry->d_lockref.count++;
23044507
NP
684}
685
dc0474be 686static inline void __dget(struct dentry *dentry)
1da177e4 687{
98474236 688 lockref_get(&dentry->d_lockref);
1da177e4
LT
689}
690
b7ab39f6
NP
691struct dentry *dget_parent(struct dentry *dentry)
692{
df3d0bbc 693 int gotref;
b7ab39f6
NP
694 struct dentry *ret;
695
df3d0bbc
WL
696 /*
697 * Do optimistic parent lookup without any
698 * locking.
699 */
700 rcu_read_lock();
701 ret = ACCESS_ONCE(dentry->d_parent);
702 gotref = lockref_get_not_zero(&ret->d_lockref);
703 rcu_read_unlock();
704 if (likely(gotref)) {
705 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
706 return ret;
707 dput(ret);
708 }
709
b7ab39f6 710repeat:
a734eb45
NP
711 /*
712 * Don't need rcu_dereference because we re-check it was correct under
713 * the lock.
714 */
715 rcu_read_lock();
b7ab39f6 716 ret = dentry->d_parent;
a734eb45
NP
717 spin_lock(&ret->d_lock);
718 if (unlikely(ret != dentry->d_parent)) {
719 spin_unlock(&ret->d_lock);
720 rcu_read_unlock();
b7ab39f6
NP
721 goto repeat;
722 }
a734eb45 723 rcu_read_unlock();
98474236
WL
724 BUG_ON(!ret->d_lockref.count);
725 ret->d_lockref.count++;
b7ab39f6 726 spin_unlock(&ret->d_lock);
b7ab39f6
NP
727 return ret;
728}
729EXPORT_SYMBOL(dget_parent);
730
1da177e4
LT
731/**
732 * d_find_alias - grab a hashed alias of inode
733 * @inode: inode in question
32ba9c3f
LT
734 * @want_discon: flag, used by d_splice_alias, to request
735 * that only a DISCONNECTED alias be returned.
1da177e4
LT
736 *
737 * If inode has a hashed alias, or is a directory and has any alias,
738 * acquire the reference to alias and return it. Otherwise return NULL.
739 * Notice that if inode is a directory there can be only one alias and
740 * it can be unhashed only if it has no children, or if it is the root
741 * of a filesystem.
742 *
21c0d8fd 743 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
744 * any other hashed alias over that one unless @want_discon is set,
745 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 746 */
32ba9c3f 747static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 748{
da502956 749 struct dentry *alias, *discon_alias;
1da177e4 750
da502956
NP
751again:
752 discon_alias = NULL;
b67bfe0d 753 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 754 spin_lock(&alias->d_lock);
1da177e4 755 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 756 if (IS_ROOT(alias) &&
da502956 757 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 758 discon_alias = alias;
32ba9c3f 759 } else if (!want_discon) {
dc0474be 760 __dget_dlock(alias);
da502956
NP
761 spin_unlock(&alias->d_lock);
762 return alias;
763 }
764 }
765 spin_unlock(&alias->d_lock);
766 }
767 if (discon_alias) {
768 alias = discon_alias;
769 spin_lock(&alias->d_lock);
770 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
771 if (IS_ROOT(alias) &&
772 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 773 __dget_dlock(alias);
da502956 774 spin_unlock(&alias->d_lock);
1da177e4
LT
775 return alias;
776 }
777 }
da502956
NP
778 spin_unlock(&alias->d_lock);
779 goto again;
1da177e4 780 }
da502956 781 return NULL;
1da177e4
LT
782}
783
da502956 784struct dentry *d_find_alias(struct inode *inode)
1da177e4 785{
214fda1f
DH
786 struct dentry *de = NULL;
787
b3d9b7a3 788 if (!hlist_empty(&inode->i_dentry)) {
873feea0 789 spin_lock(&inode->i_lock);
32ba9c3f 790 de = __d_find_alias(inode, 0);
873feea0 791 spin_unlock(&inode->i_lock);
214fda1f 792 }
1da177e4
LT
793 return de;
794}
ec4f8605 795EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
796
797/*
798 * Try to kill dentries associated with this inode.
799 * WARNING: you must own a reference to inode.
800 */
801void d_prune_aliases(struct inode *inode)
802{
0cdca3f9 803 struct dentry *dentry;
1da177e4 804restart:
873feea0 805 spin_lock(&inode->i_lock);
b67bfe0d 806 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 807 spin_lock(&dentry->d_lock);
98474236 808 if (!dentry->d_lockref.count) {
590fb51f
YZ
809 /*
810 * inform the fs via d_prune that this dentry
811 * is about to be unhashed and destroyed.
812 */
813 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
814 !d_unhashed(dentry))
815 dentry->d_op->d_prune(dentry);
816
dc0474be 817 __dget_dlock(dentry);
1da177e4
LT
818 __d_drop(dentry);
819 spin_unlock(&dentry->d_lock);
873feea0 820 spin_unlock(&inode->i_lock);
1da177e4
LT
821 dput(dentry);
822 goto restart;
823 }
824 spin_unlock(&dentry->d_lock);
825 }
873feea0 826 spin_unlock(&inode->i_lock);
1da177e4 827}
ec4f8605 828EXPORT_SYMBOL(d_prune_aliases);
1da177e4 829
3049cfe2 830static void shrink_dentry_list(struct list_head *list)
1da177e4 831{
5c47e6d0 832 struct dentry *dentry, *parent;
da3bbdd4 833
60942f2f 834 while (!list_empty(list)) {
ff2fde99 835 struct inode *inode;
60942f2f 836 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 837 spin_lock(&dentry->d_lock);
046b961b
AV
838 parent = lock_parent(dentry);
839
dd1f6b2e
DC
840 /*
841 * The dispose list is isolated and dentries are not accounted
842 * to the LRU here, so we can simply remove it from the list
843 * here regardless of whether it is referenced or not.
844 */
89dc77bc 845 d_shrink_del(dentry);
dd1f6b2e 846
1da177e4
LT
847 /*
848 * We found an inuse dentry which was not removed from
dd1f6b2e 849 * the LRU because of laziness during lookup. Do not free it.
1da177e4 850 */
41edf278 851 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 852 spin_unlock(&dentry->d_lock);
046b961b
AV
853 if (parent)
854 spin_unlock(&parent->d_lock);
1da177e4
LT
855 continue;
856 }
77812a1e 857
64fd72e0
AV
858
859 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
860 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
861 spin_unlock(&dentry->d_lock);
046b961b
AV
862 if (parent)
863 spin_unlock(&parent->d_lock);
64fd72e0
AV
864 if (can_free)
865 dentry_free(dentry);
866 continue;
867 }
868
ff2fde99
AV
869 inode = dentry->d_inode;
870 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 871 d_shrink_add(dentry, list);
dd1f6b2e 872 spin_unlock(&dentry->d_lock);
046b961b
AV
873 if (parent)
874 spin_unlock(&parent->d_lock);
5c47e6d0 875 continue;
dd1f6b2e 876 }
ff2fde99 877
ff2fde99 878 __dentry_kill(dentry);
046b961b 879
5c47e6d0
AV
880 /*
881 * We need to prune ancestors too. This is necessary to prevent
882 * quadratic behavior of shrink_dcache_parent(), but is also
883 * expected to be beneficial in reducing dentry cache
884 * fragmentation.
885 */
886 dentry = parent;
b2b80195
AV
887 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
888 parent = lock_parent(dentry);
889 if (dentry->d_lockref.count != 1) {
890 dentry->d_lockref.count--;
891 spin_unlock(&dentry->d_lock);
892 if (parent)
893 spin_unlock(&parent->d_lock);
894 break;
895 }
896 inode = dentry->d_inode; /* can't be NULL */
897 if (unlikely(!spin_trylock(&inode->i_lock))) {
898 spin_unlock(&dentry->d_lock);
899 if (parent)
900 spin_unlock(&parent->d_lock);
901 cpu_relax();
902 continue;
903 }
904 __dentry_kill(dentry);
905 dentry = parent;
906 }
da3bbdd4 907 }
3049cfe2
CH
908}
909
f6041567
DC
910static enum lru_status
911dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
912{
913 struct list_head *freeable = arg;
914 struct dentry *dentry = container_of(item, struct dentry, d_lru);
915
916
917 /*
918 * we are inverting the lru lock/dentry->d_lock here,
919 * so use a trylock. If we fail to get the lock, just skip
920 * it
921 */
922 if (!spin_trylock(&dentry->d_lock))
923 return LRU_SKIP;
924
925 /*
926 * Referenced dentries are still in use. If they have active
927 * counts, just remove them from the LRU. Otherwise give them
928 * another pass through the LRU.
929 */
930 if (dentry->d_lockref.count) {
89dc77bc 931 d_lru_isolate(dentry);
f6041567
DC
932 spin_unlock(&dentry->d_lock);
933 return LRU_REMOVED;
934 }
935
936 if (dentry->d_flags & DCACHE_REFERENCED) {
937 dentry->d_flags &= ~DCACHE_REFERENCED;
938 spin_unlock(&dentry->d_lock);
939
940 /*
941 * The list move itself will be made by the common LRU code. At
942 * this point, we've dropped the dentry->d_lock but keep the
943 * lru lock. This is safe to do, since every list movement is
944 * protected by the lru lock even if both locks are held.
945 *
946 * This is guaranteed by the fact that all LRU management
947 * functions are intermediated by the LRU API calls like
948 * list_lru_add and list_lru_del. List movement in this file
949 * only ever occur through this functions or through callbacks
950 * like this one, that are called from the LRU API.
951 *
952 * The only exceptions to this are functions like
953 * shrink_dentry_list, and code that first checks for the
954 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
955 * operating only with stack provided lists after they are
956 * properly isolated from the main list. It is thus, always a
957 * local access.
958 */
959 return LRU_ROTATE;
960 }
961
89dc77bc 962 d_lru_shrink_move(dentry, freeable);
f6041567
DC
963 spin_unlock(&dentry->d_lock);
964
965 return LRU_REMOVED;
966}
967
3049cfe2 968/**
b48f03b3
DC
969 * prune_dcache_sb - shrink the dcache
970 * @sb: superblock
f6041567 971 * @nr_to_scan : number of entries to try to free
9b17c623 972 * @nid: which node to scan for freeable entities
b48f03b3 973 *
f6041567 974 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
975 * done when we need more memory an called from the superblock shrinker
976 * function.
3049cfe2 977 *
b48f03b3
DC
978 * This function may fail to free any resources if all the dentries are in
979 * use.
3049cfe2 980 */
9b17c623
DC
981long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
982 int nid)
3049cfe2 983{
f6041567
DC
984 LIST_HEAD(dispose);
985 long freed;
3049cfe2 986
9b17c623
DC
987 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
988 &dispose, &nr_to_scan);
f6041567 989 shrink_dentry_list(&dispose);
0a234c6d 990 return freed;
da3bbdd4 991}
23044507 992
4e717f5c
GC
993static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
994 spinlock_t *lru_lock, void *arg)
dd1f6b2e 995{
4e717f5c
GC
996 struct list_head *freeable = arg;
997 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 998
4e717f5c
GC
999 /*
1000 * we are inverting the lru lock/dentry->d_lock here,
1001 * so use a trylock. If we fail to get the lock, just skip
1002 * it
1003 */
1004 if (!spin_trylock(&dentry->d_lock))
1005 return LRU_SKIP;
1006
89dc77bc 1007 d_lru_shrink_move(dentry, freeable);
4e717f5c 1008 spin_unlock(&dentry->d_lock);
ec33679d 1009
4e717f5c 1010 return LRU_REMOVED;
da3bbdd4
KM
1011}
1012
4e717f5c 1013
1da177e4
LT
1014/**
1015 * shrink_dcache_sb - shrink dcache for a superblock
1016 * @sb: superblock
1017 *
3049cfe2
CH
1018 * Shrink the dcache for the specified super block. This is used to free
1019 * the dcache before unmounting a file system.
1da177e4 1020 */
3049cfe2 1021void shrink_dcache_sb(struct super_block *sb)
1da177e4 1022{
4e717f5c
GC
1023 long freed;
1024
1025 do {
1026 LIST_HEAD(dispose);
1027
1028 freed = list_lru_walk(&sb->s_dentry_lru,
1029 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1030
4e717f5c
GC
1031 this_cpu_sub(nr_dentry_unused, freed);
1032 shrink_dentry_list(&dispose);
1033 } while (freed > 0);
1da177e4 1034}
ec4f8605 1035EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1036
db14fc3a
MS
1037/**
1038 * enum d_walk_ret - action to talke during tree walk
1039 * @D_WALK_CONTINUE: contrinue walk
1040 * @D_WALK_QUIT: quit walk
1041 * @D_WALK_NORETRY: quit when retry is needed
1042 * @D_WALK_SKIP: skip this dentry and its children
1043 */
1044enum d_walk_ret {
1045 D_WALK_CONTINUE,
1046 D_WALK_QUIT,
1047 D_WALK_NORETRY,
1048 D_WALK_SKIP,
1049};
c826cb7d 1050
1da177e4 1051/**
db14fc3a
MS
1052 * d_walk - walk the dentry tree
1053 * @parent: start of walk
1054 * @data: data passed to @enter() and @finish()
1055 * @enter: callback when first entering the dentry
1056 * @finish: callback when successfully finished the walk
1da177e4 1057 *
db14fc3a 1058 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1059 */
db14fc3a
MS
1060static void d_walk(struct dentry *parent, void *data,
1061 enum d_walk_ret (*enter)(void *, struct dentry *),
1062 void (*finish)(void *))
1da177e4 1063{
949854d0 1064 struct dentry *this_parent;
1da177e4 1065 struct list_head *next;
48f5ec21 1066 unsigned seq = 0;
db14fc3a
MS
1067 enum d_walk_ret ret;
1068 bool retry = true;
949854d0 1069
58db63d0 1070again:
48f5ec21 1071 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1072 this_parent = parent;
2fd6b7f5 1073 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1074
1075 ret = enter(data, this_parent);
1076 switch (ret) {
1077 case D_WALK_CONTINUE:
1078 break;
1079 case D_WALK_QUIT:
1080 case D_WALK_SKIP:
1081 goto out_unlock;
1082 case D_WALK_NORETRY:
1083 retry = false;
1084 break;
1085 }
1da177e4
LT
1086repeat:
1087 next = this_parent->d_subdirs.next;
1088resume:
1089 while (next != &this_parent->d_subdirs) {
1090 struct list_head *tmp = next;
5160ee6f 1091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1092 next = tmp->next;
2fd6b7f5
NP
1093
1094 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1095
1096 ret = enter(data, dentry);
1097 switch (ret) {
1098 case D_WALK_CONTINUE:
1099 break;
1100 case D_WALK_QUIT:
2fd6b7f5 1101 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1102 goto out_unlock;
1103 case D_WALK_NORETRY:
1104 retry = false;
1105 break;
1106 case D_WALK_SKIP:
1107 spin_unlock(&dentry->d_lock);
1108 continue;
2fd6b7f5 1109 }
db14fc3a 1110
1da177e4 1111 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1112 spin_unlock(&this_parent->d_lock);
1113 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1114 this_parent = dentry;
2fd6b7f5 1115 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1116 goto repeat;
1117 }
2fd6b7f5 1118 spin_unlock(&dentry->d_lock);
1da177e4
LT
1119 }
1120 /*
1121 * All done at this level ... ascend and resume the search.
1122 */
1123 if (this_parent != parent) {
c826cb7d 1124 struct dentry *child = this_parent;
31dec132
AV
1125 this_parent = child->d_parent;
1126
1127 rcu_read_lock();
1128 spin_unlock(&child->d_lock);
1129 spin_lock(&this_parent->d_lock);
1130
1131 /*
1132 * might go back up the wrong parent if we have had a rename
1133 * or deletion
1134 */
1135 if (this_parent != child->d_parent ||
1136 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1137 need_seqretry(&rename_lock, seq)) {
1138 spin_unlock(&this_parent->d_lock);
1139 rcu_read_unlock();
949854d0 1140 goto rename_retry;
31dec132
AV
1141 }
1142 rcu_read_unlock();
949854d0 1143 next = child->d_u.d_child.next;
1da177e4
LT
1144 goto resume;
1145 }
48f5ec21 1146 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1147 spin_unlock(&this_parent->d_lock);
949854d0 1148 goto rename_retry;
db14fc3a
MS
1149 }
1150 if (finish)
1151 finish(data);
1152
1153out_unlock:
1154 spin_unlock(&this_parent->d_lock);
48f5ec21 1155 done_seqretry(&rename_lock, seq);
db14fc3a 1156 return;
58db63d0
NP
1157
1158rename_retry:
db14fc3a
MS
1159 if (!retry)
1160 return;
48f5ec21 1161 seq = 1;
58db63d0 1162 goto again;
1da177e4 1163}
db14fc3a
MS
1164
1165/*
1166 * Search for at least 1 mount point in the dentry's subdirs.
1167 * We descend to the next level whenever the d_subdirs
1168 * list is non-empty and continue searching.
1169 */
1170
db14fc3a
MS
1171static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1172{
1173 int *ret = data;
1174 if (d_mountpoint(dentry)) {
1175 *ret = 1;
1176 return D_WALK_QUIT;
1177 }
1178 return D_WALK_CONTINUE;
1179}
1180
69c88dc7
RD
1181/**
1182 * have_submounts - check for mounts over a dentry
1183 * @parent: dentry to check.
1184 *
1185 * Return true if the parent or its subdirectories contain
1186 * a mount point
1187 */
db14fc3a
MS
1188int have_submounts(struct dentry *parent)
1189{
1190 int ret = 0;
1191
1192 d_walk(parent, &ret, check_mount, NULL);
1193
1194 return ret;
1195}
ec4f8605 1196EXPORT_SYMBOL(have_submounts);
1da177e4 1197
eed81007
MS
1198/*
1199 * Called by mount code to set a mountpoint and check if the mountpoint is
1200 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1201 * subtree can become unreachable).
1202 *
1203 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1204 * this reason take rename_lock and d_lock on dentry and ancestors.
1205 */
1206int d_set_mounted(struct dentry *dentry)
1207{
1208 struct dentry *p;
1209 int ret = -ENOENT;
1210 write_seqlock(&rename_lock);
1211 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1212 /* Need exclusion wrt. check_submounts_and_drop() */
1213 spin_lock(&p->d_lock);
1214 if (unlikely(d_unhashed(p))) {
1215 spin_unlock(&p->d_lock);
1216 goto out;
1217 }
1218 spin_unlock(&p->d_lock);
1219 }
1220 spin_lock(&dentry->d_lock);
1221 if (!d_unlinked(dentry)) {
1222 dentry->d_flags |= DCACHE_MOUNTED;
1223 ret = 0;
1224 }
1225 spin_unlock(&dentry->d_lock);
1226out:
1227 write_sequnlock(&rename_lock);
1228 return ret;
1229}
1230
1da177e4 1231/*
fd517909 1232 * Search the dentry child list of the specified parent,
1da177e4
LT
1233 * and move any unused dentries to the end of the unused
1234 * list for prune_dcache(). We descend to the next level
1235 * whenever the d_subdirs list is non-empty and continue
1236 * searching.
1237 *
1238 * It returns zero iff there are no unused children,
1239 * otherwise it returns the number of children moved to
1240 * the end of the unused list. This may not be the total
1241 * number of unused children, because select_parent can
1242 * drop the lock and return early due to latency
1243 * constraints.
1244 */
1da177e4 1245
db14fc3a
MS
1246struct select_data {
1247 struct dentry *start;
1248 struct list_head dispose;
1249 int found;
1250};
23044507 1251
db14fc3a
MS
1252static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1253{
1254 struct select_data *data = _data;
1255 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1256
db14fc3a
MS
1257 if (data->start == dentry)
1258 goto out;
2fd6b7f5 1259
fe91522a 1260 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1261 data->found++;
fe91522a
AV
1262 } else {
1263 if (dentry->d_flags & DCACHE_LRU_LIST)
1264 d_lru_del(dentry);
1265 if (!dentry->d_lockref.count) {
1266 d_shrink_add(dentry, &data->dispose);
1267 data->found++;
1268 }
1da177e4 1269 }
db14fc3a
MS
1270 /*
1271 * We can return to the caller if we have found some (this
1272 * ensures forward progress). We'll be coming back to find
1273 * the rest.
1274 */
fe91522a
AV
1275 if (!list_empty(&data->dispose))
1276 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1277out:
db14fc3a 1278 return ret;
1da177e4
LT
1279}
1280
1281/**
1282 * shrink_dcache_parent - prune dcache
1283 * @parent: parent of entries to prune
1284 *
1285 * Prune the dcache to remove unused children of the parent dentry.
1286 */
db14fc3a 1287void shrink_dcache_parent(struct dentry *parent)
1da177e4 1288{
db14fc3a
MS
1289 for (;;) {
1290 struct select_data data;
1da177e4 1291
db14fc3a
MS
1292 INIT_LIST_HEAD(&data.dispose);
1293 data.start = parent;
1294 data.found = 0;
1295
1296 d_walk(parent, &data, select_collect, NULL);
1297 if (!data.found)
1298 break;
1299
1300 shrink_dentry_list(&data.dispose);
421348f1
GT
1301 cond_resched();
1302 }
1da177e4 1303}
ec4f8605 1304EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1305
9c8c10e2 1306static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1307{
9c8c10e2
AV
1308 /* it has busy descendents; complain about those instead */
1309 if (!list_empty(&dentry->d_subdirs))
1310 return D_WALK_CONTINUE;
42c32608 1311
9c8c10e2
AV
1312 /* root with refcount 1 is fine */
1313 if (dentry == _data && dentry->d_lockref.count == 1)
1314 return D_WALK_CONTINUE;
1315
1316 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1317 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1318 dentry,
1319 dentry->d_inode ?
1320 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1321 dentry,
42c32608
AV
1322 dentry->d_lockref.count,
1323 dentry->d_sb->s_type->name,
1324 dentry->d_sb->s_id);
9c8c10e2
AV
1325 WARN_ON(1);
1326 return D_WALK_CONTINUE;
1327}
1328
1329static void do_one_tree(struct dentry *dentry)
1330{
1331 shrink_dcache_parent(dentry);
1332 d_walk(dentry, dentry, umount_check, NULL);
1333 d_drop(dentry);
1334 dput(dentry);
42c32608
AV
1335}
1336
1337/*
1338 * destroy the dentries attached to a superblock on unmounting
1339 */
1340void shrink_dcache_for_umount(struct super_block *sb)
1341{
1342 struct dentry *dentry;
1343
9c8c10e2 1344 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1345
1346 dentry = sb->s_root;
1347 sb->s_root = NULL;
9c8c10e2 1348 do_one_tree(dentry);
42c32608
AV
1349
1350 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1351 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1352 do_one_tree(dentry);
42c32608
AV
1353 }
1354}
1355
848ac114
MS
1356static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1357{
1358 struct select_data *data = _data;
1359
1360 if (d_mountpoint(dentry)) {
1361 data->found = -EBUSY;
1362 return D_WALK_QUIT;
1363 }
1364
1365 return select_collect(_data, dentry);
1366}
1367
1368static void check_and_drop(void *_data)
1369{
1370 struct select_data *data = _data;
1371
1372 if (d_mountpoint(data->start))
1373 data->found = -EBUSY;
1374 if (!data->found)
1375 __d_drop(data->start);
1376}
1377
1378/**
1379 * check_submounts_and_drop - prune dcache, check for submounts and drop
1380 *
1381 * All done as a single atomic operation relative to has_unlinked_ancestor().
1382 * Returns 0 if successfully unhashed @parent. If there were submounts then
1383 * return -EBUSY.
1384 *
1385 * @dentry: dentry to prune and drop
1386 */
1387int check_submounts_and_drop(struct dentry *dentry)
1388{
1389 int ret = 0;
1390
1391 /* Negative dentries can be dropped without further checks */
1392 if (!dentry->d_inode) {
1393 d_drop(dentry);
1394 goto out;
1395 }
1396
1397 for (;;) {
1398 struct select_data data;
1399
1400 INIT_LIST_HEAD(&data.dispose);
1401 data.start = dentry;
1402 data.found = 0;
1403
1404 d_walk(dentry, &data, check_and_collect, check_and_drop);
1405 ret = data.found;
1406
1407 if (!list_empty(&data.dispose))
1408 shrink_dentry_list(&data.dispose);
1409
1410 if (ret <= 0)
1411 break;
1412
1413 cond_resched();
1414 }
1415
1416out:
1417 return ret;
1418}
1419EXPORT_SYMBOL(check_submounts_and_drop);
1420
1da177e4 1421/**
a4464dbc
AV
1422 * __d_alloc - allocate a dcache entry
1423 * @sb: filesystem it will belong to
1da177e4
LT
1424 * @name: qstr of the name
1425 *
1426 * Allocates a dentry. It returns %NULL if there is insufficient memory
1427 * available. On a success the dentry is returned. The name passed in is
1428 * copied and the copy passed in may be reused after this call.
1429 */
1430
a4464dbc 1431struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1432{
1433 struct dentry *dentry;
1434 char *dname;
1435
e12ba74d 1436 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1437 if (!dentry)
1438 return NULL;
1439
6326c71f
LT
1440 /*
1441 * We guarantee that the inline name is always NUL-terminated.
1442 * This way the memcpy() done by the name switching in rename
1443 * will still always have a NUL at the end, even if we might
1444 * be overwriting an internal NUL character
1445 */
1446 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1447 if (name->len > DNAME_INLINE_LEN-1) {
1448 dname = kmalloc(name->len + 1, GFP_KERNEL);
1449 if (!dname) {
1450 kmem_cache_free(dentry_cache, dentry);
1451 return NULL;
1452 }
1453 } else {
1454 dname = dentry->d_iname;
1455 }
1da177e4
LT
1456
1457 dentry->d_name.len = name->len;
1458 dentry->d_name.hash = name->hash;
1459 memcpy(dname, name->name, name->len);
1460 dname[name->len] = 0;
1461
6326c71f
LT
1462 /* Make sure we always see the terminating NUL character */
1463 smp_wmb();
1464 dentry->d_name.name = dname;
1465
98474236 1466 dentry->d_lockref.count = 1;
dea3667b 1467 dentry->d_flags = 0;
1da177e4 1468 spin_lock_init(&dentry->d_lock);
31e6b01f 1469 seqcount_init(&dentry->d_seq);
1da177e4 1470 dentry->d_inode = NULL;
a4464dbc
AV
1471 dentry->d_parent = dentry;
1472 dentry->d_sb = sb;
1da177e4
LT
1473 dentry->d_op = NULL;
1474 dentry->d_fsdata = NULL;
ceb5bdc2 1475 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1476 INIT_LIST_HEAD(&dentry->d_lru);
1477 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1478 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1479 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1480 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1481
3e880fb5 1482 this_cpu_inc(nr_dentry);
312d3ca8 1483
1da177e4
LT
1484 return dentry;
1485}
a4464dbc
AV
1486
1487/**
1488 * d_alloc - allocate a dcache entry
1489 * @parent: parent of entry to allocate
1490 * @name: qstr of the name
1491 *
1492 * Allocates a dentry. It returns %NULL if there is insufficient memory
1493 * available. On a success the dentry is returned. The name passed in is
1494 * copied and the copy passed in may be reused after this call.
1495 */
1496struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1497{
1498 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1499 if (!dentry)
1500 return NULL;
1501
1502 spin_lock(&parent->d_lock);
1503 /*
1504 * don't need child lock because it is not subject
1505 * to concurrency here
1506 */
1507 __dget_dlock(parent);
1508 dentry->d_parent = parent;
1509 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1510 spin_unlock(&parent->d_lock);
1511
1512 return dentry;
1513}
ec4f8605 1514EXPORT_SYMBOL(d_alloc);
1da177e4 1515
e1a24bb0
BF
1516/**
1517 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1518 * @sb: the superblock
1519 * @name: qstr of the name
1520 *
1521 * For a filesystem that just pins its dentries in memory and never
1522 * performs lookups at all, return an unhashed IS_ROOT dentry.
1523 */
4b936885
NP
1524struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1525{
e1a24bb0 1526 return __d_alloc(sb, name);
4b936885
NP
1527}
1528EXPORT_SYMBOL(d_alloc_pseudo);
1529
1da177e4
LT
1530struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1531{
1532 struct qstr q;
1533
1534 q.name = name;
1535 q.len = strlen(name);
1536 q.hash = full_name_hash(q.name, q.len);
1537 return d_alloc(parent, &q);
1538}
ef26ca97 1539EXPORT_SYMBOL(d_alloc_name);
1da177e4 1540
fb045adb
NP
1541void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1542{
6f7f7caa
LT
1543 WARN_ON_ONCE(dentry->d_op);
1544 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1545 DCACHE_OP_COMPARE |
1546 DCACHE_OP_REVALIDATE |
ecf3d1f1 1547 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1548 DCACHE_OP_DELETE ));
1549 dentry->d_op = op;
1550 if (!op)
1551 return;
1552 if (op->d_hash)
1553 dentry->d_flags |= DCACHE_OP_HASH;
1554 if (op->d_compare)
1555 dentry->d_flags |= DCACHE_OP_COMPARE;
1556 if (op->d_revalidate)
1557 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1558 if (op->d_weak_revalidate)
1559 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1560 if (op->d_delete)
1561 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1562 if (op->d_prune)
1563 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1564
1565}
1566EXPORT_SYMBOL(d_set_d_op);
1567
b18825a7
DH
1568static unsigned d_flags_for_inode(struct inode *inode)
1569{
1570 unsigned add_flags = DCACHE_FILE_TYPE;
1571
1572 if (!inode)
1573 return DCACHE_MISS_TYPE;
1574
1575 if (S_ISDIR(inode->i_mode)) {
1576 add_flags = DCACHE_DIRECTORY_TYPE;
1577 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1578 if (unlikely(!inode->i_op->lookup))
1579 add_flags = DCACHE_AUTODIR_TYPE;
1580 else
1581 inode->i_opflags |= IOP_LOOKUP;
1582 }
1583 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1584 if (unlikely(inode->i_op->follow_link))
1585 add_flags = DCACHE_SYMLINK_TYPE;
1586 else
1587 inode->i_opflags |= IOP_NOFOLLOW;
1588 }
1589
1590 if (unlikely(IS_AUTOMOUNT(inode)))
1591 add_flags |= DCACHE_NEED_AUTOMOUNT;
1592 return add_flags;
1593}
1594
360da900
OH
1595static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1596{
b18825a7
DH
1597 unsigned add_flags = d_flags_for_inode(inode);
1598
b23fb0a6 1599 spin_lock(&dentry->d_lock);
22213318 1600 __d_set_type(dentry, add_flags);
b18825a7 1601 if (inode)
b3d9b7a3 1602 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1603 dentry->d_inode = inode;
31e6b01f 1604 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1605 spin_unlock(&dentry->d_lock);
360da900
OH
1606 fsnotify_d_instantiate(dentry, inode);
1607}
1608
1da177e4
LT
1609/**
1610 * d_instantiate - fill in inode information for a dentry
1611 * @entry: dentry to complete
1612 * @inode: inode to attach to this dentry
1613 *
1614 * Fill in inode information in the entry.
1615 *
1616 * This turns negative dentries into productive full members
1617 * of society.
1618 *
1619 * NOTE! This assumes that the inode count has been incremented
1620 * (or otherwise set) by the caller to indicate that it is now
1621 * in use by the dcache.
1622 */
1623
1624void d_instantiate(struct dentry *entry, struct inode * inode)
1625{
b3d9b7a3 1626 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1627 if (inode)
1628 spin_lock(&inode->i_lock);
360da900 1629 __d_instantiate(entry, inode);
873feea0
NP
1630 if (inode)
1631 spin_unlock(&inode->i_lock);
1da177e4
LT
1632 security_d_instantiate(entry, inode);
1633}
ec4f8605 1634EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1635
1636/**
1637 * d_instantiate_unique - instantiate a non-aliased dentry
1638 * @entry: dentry to instantiate
1639 * @inode: inode to attach to this dentry
1640 *
1641 * Fill in inode information in the entry. On success, it returns NULL.
1642 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1643 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1644 *
1645 * Note that in order to avoid conflicts with rename() etc, the caller
1646 * had better be holding the parent directory semaphore.
e866cfa9
OD
1647 *
1648 * This also assumes that the inode count has been incremented
1649 * (or otherwise set) by the caller to indicate that it is now
1650 * in use by the dcache.
1da177e4 1651 */
770bfad8
DH
1652static struct dentry *__d_instantiate_unique(struct dentry *entry,
1653 struct inode *inode)
1da177e4
LT
1654{
1655 struct dentry *alias;
1656 int len = entry->d_name.len;
1657 const char *name = entry->d_name.name;
1658 unsigned int hash = entry->d_name.hash;
1659
770bfad8 1660 if (!inode) {
360da900 1661 __d_instantiate(entry, NULL);
770bfad8
DH
1662 return NULL;
1663 }
1664
b67bfe0d 1665 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1666 /*
1667 * Don't need alias->d_lock here, because aliases with
1668 * d_parent == entry->d_parent are not subject to name or
1669 * parent changes, because the parent inode i_mutex is held.
1670 */
12f8ad4b 1671 if (alias->d_name.hash != hash)
1da177e4
LT
1672 continue;
1673 if (alias->d_parent != entry->d_parent)
1674 continue;
ee983e89
LT
1675 if (alias->d_name.len != len)
1676 continue;
12f8ad4b 1677 if (dentry_cmp(alias, name, len))
1da177e4 1678 continue;
dc0474be 1679 __dget(alias);
1da177e4
LT
1680 return alias;
1681 }
770bfad8 1682
360da900 1683 __d_instantiate(entry, inode);
1da177e4
LT
1684 return NULL;
1685}
770bfad8
DH
1686
1687struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1688{
1689 struct dentry *result;
1690
b3d9b7a3 1691 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1692
873feea0
NP
1693 if (inode)
1694 spin_lock(&inode->i_lock);
770bfad8 1695 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1696 if (inode)
1697 spin_unlock(&inode->i_lock);
770bfad8
DH
1698
1699 if (!result) {
1700 security_d_instantiate(entry, inode);
1701 return NULL;
1702 }
1703
1704 BUG_ON(!d_unhashed(result));
1705 iput(inode);
1706 return result;
1707}
1708
1da177e4
LT
1709EXPORT_SYMBOL(d_instantiate_unique);
1710
b70a80e7
MS
1711/**
1712 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1713 * @entry: dentry to complete
1714 * @inode: inode to attach to this dentry
1715 *
1716 * Fill in inode information in the entry. If a directory alias is found, then
1717 * return an error (and drop inode). Together with d_materialise_unique() this
1718 * guarantees that a directory inode may never have more than one alias.
1719 */
1720int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1721{
1722 BUG_ON(!hlist_unhashed(&entry->d_alias));
1723
1724 spin_lock(&inode->i_lock);
1725 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1726 spin_unlock(&inode->i_lock);
1727 iput(inode);
1728 return -EBUSY;
1729 }
1730 __d_instantiate(entry, inode);
1731 spin_unlock(&inode->i_lock);
1732 security_d_instantiate(entry, inode);
1733
1734 return 0;
1735}
1736EXPORT_SYMBOL(d_instantiate_no_diralias);
1737
adc0e91a
AV
1738struct dentry *d_make_root(struct inode *root_inode)
1739{
1740 struct dentry *res = NULL;
1741
1742 if (root_inode) {
26fe5750 1743 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1744
1745 res = __d_alloc(root_inode->i_sb, &name);
1746 if (res)
1747 d_instantiate(res, root_inode);
1748 else
1749 iput(root_inode);
1750 }
1751 return res;
1752}
1753EXPORT_SYMBOL(d_make_root);
1754
d891eedb
BF
1755static struct dentry * __d_find_any_alias(struct inode *inode)
1756{
1757 struct dentry *alias;
1758
b3d9b7a3 1759 if (hlist_empty(&inode->i_dentry))
d891eedb 1760 return NULL;
b3d9b7a3 1761 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1762 __dget(alias);
1763 return alias;
1764}
1765
46f72b34
SW
1766/**
1767 * d_find_any_alias - find any alias for a given inode
1768 * @inode: inode to find an alias for
1769 *
1770 * If any aliases exist for the given inode, take and return a
1771 * reference for one of them. If no aliases exist, return %NULL.
1772 */
1773struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1774{
1775 struct dentry *de;
1776
1777 spin_lock(&inode->i_lock);
1778 de = __d_find_any_alias(inode);
1779 spin_unlock(&inode->i_lock);
1780 return de;
1781}
46f72b34 1782EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1783
1a0a397e 1784struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1785{
b911a6bd 1786 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1787 struct dentry *tmp;
1788 struct dentry *res;
b18825a7 1789 unsigned add_flags;
4ea3ada2
CH
1790
1791 if (!inode)
44003728 1792 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1793 if (IS_ERR(inode))
1794 return ERR_CAST(inode);
1795
d891eedb 1796 res = d_find_any_alias(inode);
9308a612
CH
1797 if (res)
1798 goto out_iput;
1799
a4464dbc 1800 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1801 if (!tmp) {
1802 res = ERR_PTR(-ENOMEM);
1803 goto out_iput;
4ea3ada2 1804 }
b5c84bf6 1805
873feea0 1806 spin_lock(&inode->i_lock);
d891eedb 1807 res = __d_find_any_alias(inode);
9308a612 1808 if (res) {
873feea0 1809 spin_unlock(&inode->i_lock);
9308a612
CH
1810 dput(tmp);
1811 goto out_iput;
1812 }
1813
1814 /* attach a disconnected dentry */
1a0a397e
BF
1815 add_flags = d_flags_for_inode(inode);
1816
1817 if (disconnected)
1818 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1819
9308a612 1820 spin_lock(&tmp->d_lock);
9308a612 1821 tmp->d_inode = inode;
b18825a7 1822 tmp->d_flags |= add_flags;
b3d9b7a3 1823 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1824 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1825 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1826 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1827 spin_unlock(&tmp->d_lock);
873feea0 1828 spin_unlock(&inode->i_lock);
24ff6663 1829 security_d_instantiate(tmp, inode);
9308a612 1830
9308a612
CH
1831 return tmp;
1832
1833 out_iput:
24ff6663
JB
1834 if (res && !IS_ERR(res))
1835 security_d_instantiate(res, inode);
9308a612
CH
1836 iput(inode);
1837 return res;
4ea3ada2 1838}
1a0a397e
BF
1839
1840/**
1841 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1842 * @inode: inode to allocate the dentry for
1843 *
1844 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1845 * similar open by handle operations. The returned dentry may be anonymous,
1846 * or may have a full name (if the inode was already in the cache).
1847 *
1848 * When called on a directory inode, we must ensure that the inode only ever
1849 * has one dentry. If a dentry is found, that is returned instead of
1850 * allocating a new one.
1851 *
1852 * On successful return, the reference to the inode has been transferred
1853 * to the dentry. In case of an error the reference on the inode is released.
1854 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1855 * be passed in and the error will be propagated to the return value,
1856 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1857 */
1858struct dentry *d_obtain_alias(struct inode *inode)
1859{
1860 return __d_obtain_alias(inode, 1);
1861}
adc48720 1862EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1863
1a0a397e
BF
1864/**
1865 * d_obtain_root - find or allocate a dentry for a given inode
1866 * @inode: inode to allocate the dentry for
1867 *
1868 * Obtain an IS_ROOT dentry for the root of a filesystem.
1869 *
1870 * We must ensure that directory inodes only ever have one dentry. If a
1871 * dentry is found, that is returned instead of allocating a new one.
1872 *
1873 * On successful return, the reference to the inode has been transferred
1874 * to the dentry. In case of an error the reference on the inode is
1875 * released. A %NULL or IS_ERR inode may be passed in and will be the
1876 * error will be propagate to the return value, with a %NULL @inode
1877 * replaced by ERR_PTR(-ESTALE).
1878 */
1879struct dentry *d_obtain_root(struct inode *inode)
1880{
1881 return __d_obtain_alias(inode, 0);
1882}
1883EXPORT_SYMBOL(d_obtain_root);
1884
9403540c
BN
1885/**
1886 * d_add_ci - lookup or allocate new dentry with case-exact name
1887 * @inode: the inode case-insensitive lookup has found
1888 * @dentry: the negative dentry that was passed to the parent's lookup func
1889 * @name: the case-exact name to be associated with the returned dentry
1890 *
1891 * This is to avoid filling the dcache with case-insensitive names to the
1892 * same inode, only the actual correct case is stored in the dcache for
1893 * case-insensitive filesystems.
1894 *
1895 * For a case-insensitive lookup match and if the the case-exact dentry
1896 * already exists in in the dcache, use it and return it.
1897 *
1898 * If no entry exists with the exact case name, allocate new dentry with
1899 * the exact case, and return the spliced entry.
1900 */
e45b590b 1901struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1902 struct qstr *name)
1903{
9403540c
BN
1904 struct dentry *found;
1905 struct dentry *new;
1906
b6520c81
CH
1907 /*
1908 * First check if a dentry matching the name already exists,
1909 * if not go ahead and create it now.
1910 */
9403540c 1911 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1912 if (unlikely(IS_ERR(found)))
1913 goto err_out;
9403540c
BN
1914 if (!found) {
1915 new = d_alloc(dentry->d_parent, name);
1916 if (!new) {
4f522a24 1917 found = ERR_PTR(-ENOMEM);
9403540c
BN
1918 goto err_out;
1919 }
b6520c81 1920
9403540c
BN
1921 found = d_splice_alias(inode, new);
1922 if (found) {
1923 dput(new);
1924 return found;
1925 }
1926 return new;
1927 }
b6520c81
CH
1928
1929 /*
1930 * If a matching dentry exists, and it's not negative use it.
1931 *
1932 * Decrement the reference count to balance the iget() done
1933 * earlier on.
1934 */
9403540c
BN
1935 if (found->d_inode) {
1936 if (unlikely(found->d_inode != inode)) {
1937 /* This can't happen because bad inodes are unhashed. */
1938 BUG_ON(!is_bad_inode(inode));
1939 BUG_ON(!is_bad_inode(found->d_inode));
1940 }
9403540c
BN
1941 iput(inode);
1942 return found;
1943 }
b6520c81 1944
9403540c 1945 /*
9403540c 1946 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1947 * already has a dentry.
9403540c 1948 */
4513d899
AV
1949 new = d_splice_alias(inode, found);
1950 if (new) {
1951 dput(found);
1952 found = new;
9403540c 1953 }
4513d899 1954 return found;
9403540c
BN
1955
1956err_out:
1957 iput(inode);
4f522a24 1958 return found;
9403540c 1959}
ec4f8605 1960EXPORT_SYMBOL(d_add_ci);
1da177e4 1961
12f8ad4b
LT
1962/*
1963 * Do the slow-case of the dentry name compare.
1964 *
1965 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1966 * load the name and length information, so that the
12f8ad4b
LT
1967 * filesystem can rely on them, and can use the 'name' and
1968 * 'len' information without worrying about walking off the
1969 * end of memory etc.
1970 *
1971 * Thus the read_seqcount_retry() and the "duplicate" info
1972 * in arguments (the low-level filesystem should not look
1973 * at the dentry inode or name contents directly, since
1974 * rename can change them while we're in RCU mode).
1975 */
1976enum slow_d_compare {
1977 D_COMP_OK,
1978 D_COMP_NOMATCH,
1979 D_COMP_SEQRETRY,
1980};
1981
1982static noinline enum slow_d_compare slow_dentry_cmp(
1983 const struct dentry *parent,
12f8ad4b
LT
1984 struct dentry *dentry,
1985 unsigned int seq,
1986 const struct qstr *name)
1987{
1988 int tlen = dentry->d_name.len;
1989 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1990
1991 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1992 cpu_relax();
1993 return D_COMP_SEQRETRY;
1994 }
da53be12 1995 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1996 return D_COMP_NOMATCH;
1997 return D_COMP_OK;
1998}
1999
31e6b01f
NP
2000/**
2001 * __d_lookup_rcu - search for a dentry (racy, store-free)
2002 * @parent: parent dentry
2003 * @name: qstr of name we wish to find
1f1e6e52 2004 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2005 * Returns: dentry, or NULL
2006 *
2007 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2008 * resolution (store-free path walking) design described in
2009 * Documentation/filesystems/path-lookup.txt.
2010 *
2011 * This is not to be used outside core vfs.
2012 *
2013 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2014 * held, and rcu_read_lock held. The returned dentry must not be stored into
2015 * without taking d_lock and checking d_seq sequence count against @seq
2016 * returned here.
2017 *
15570086 2018 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2019 * function.
2020 *
2021 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2022 * the returned dentry, so long as its parent's seqlock is checked after the
2023 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2024 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2025 *
2026 * NOTE! The caller *has* to check the resulting dentry against the sequence
2027 * number we've returned before using any of the resulting dentry state!
31e6b01f 2028 */
8966be90
LT
2029struct dentry *__d_lookup_rcu(const struct dentry *parent,
2030 const struct qstr *name,
da53be12 2031 unsigned *seqp)
31e6b01f 2032{
26fe5750 2033 u64 hashlen = name->hash_len;
31e6b01f 2034 const unsigned char *str = name->name;
26fe5750 2035 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2036 struct hlist_bl_node *node;
31e6b01f
NP
2037 struct dentry *dentry;
2038
2039 /*
2040 * Note: There is significant duplication with __d_lookup_rcu which is
2041 * required to prevent single threaded performance regressions
2042 * especially on architectures where smp_rmb (in seqcounts) are costly.
2043 * Keep the two functions in sync.
2044 */
2045
2046 /*
2047 * The hash list is protected using RCU.
2048 *
2049 * Carefully use d_seq when comparing a candidate dentry, to avoid
2050 * races with d_move().
2051 *
2052 * It is possible that concurrent renames can mess up our list
2053 * walk here and result in missing our dentry, resulting in the
2054 * false-negative result. d_lookup() protects against concurrent
2055 * renames using rename_lock seqlock.
2056 *
b0a4bb83 2057 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2058 */
b07ad996 2059 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2060 unsigned seq;
31e6b01f 2061
31e6b01f 2062seqretry:
12f8ad4b
LT
2063 /*
2064 * The dentry sequence count protects us from concurrent
da53be12 2065 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2066 *
2067 * The caller must perform a seqcount check in order
da53be12 2068 * to do anything useful with the returned dentry.
12f8ad4b
LT
2069 *
2070 * NOTE! We do a "raw" seqcount_begin here. That means that
2071 * we don't wait for the sequence count to stabilize if it
2072 * is in the middle of a sequence change. If we do the slow
2073 * dentry compare, we will do seqretries until it is stable,
2074 * and if we end up with a successful lookup, we actually
2075 * want to exit RCU lookup anyway.
2076 */
2077 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2078 if (dentry->d_parent != parent)
2079 continue;
2e321806
LT
2080 if (d_unhashed(dentry))
2081 continue;
12f8ad4b 2082
830c0f0e 2083 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2084 if (dentry->d_name.hash != hashlen_hash(hashlen))
2085 continue;
da53be12
LT
2086 *seqp = seq;
2087 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2088 case D_COMP_OK:
2089 return dentry;
2090 case D_COMP_NOMATCH:
31e6b01f 2091 continue;
12f8ad4b
LT
2092 default:
2093 goto seqretry;
2094 }
31e6b01f 2095 }
12f8ad4b 2096
26fe5750 2097 if (dentry->d_name.hash_len != hashlen)
ee983e89 2098 continue;
da53be12 2099 *seqp = seq;
26fe5750 2100 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2101 return dentry;
31e6b01f
NP
2102 }
2103 return NULL;
2104}
2105
1da177e4
LT
2106/**
2107 * d_lookup - search for a dentry
2108 * @parent: parent dentry
2109 * @name: qstr of name we wish to find
b04f784e 2110 * Returns: dentry, or NULL
1da177e4 2111 *
b04f784e
NP
2112 * d_lookup searches the children of the parent dentry for the name in
2113 * question. If the dentry is found its reference count is incremented and the
2114 * dentry is returned. The caller must use dput to free the entry when it has
2115 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2116 */
da2d8455 2117struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2118{
31e6b01f 2119 struct dentry *dentry;
949854d0 2120 unsigned seq;
1da177e4
LT
2121
2122 do {
2123 seq = read_seqbegin(&rename_lock);
2124 dentry = __d_lookup(parent, name);
2125 if (dentry)
2126 break;
2127 } while (read_seqretry(&rename_lock, seq));
2128 return dentry;
2129}
ec4f8605 2130EXPORT_SYMBOL(d_lookup);
1da177e4 2131
31e6b01f 2132/**
b04f784e
NP
2133 * __d_lookup - search for a dentry (racy)
2134 * @parent: parent dentry
2135 * @name: qstr of name we wish to find
2136 * Returns: dentry, or NULL
2137 *
2138 * __d_lookup is like d_lookup, however it may (rarely) return a
2139 * false-negative result due to unrelated rename activity.
2140 *
2141 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2142 * however it must be used carefully, eg. with a following d_lookup in
2143 * the case of failure.
2144 *
2145 * __d_lookup callers must be commented.
2146 */
a713ca2a 2147struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2148{
2149 unsigned int len = name->len;
2150 unsigned int hash = name->hash;
2151 const unsigned char *str = name->name;
b07ad996 2152 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2153 struct hlist_bl_node *node;
31e6b01f 2154 struct dentry *found = NULL;
665a7583 2155 struct dentry *dentry;
1da177e4 2156
31e6b01f
NP
2157 /*
2158 * Note: There is significant duplication with __d_lookup_rcu which is
2159 * required to prevent single threaded performance regressions
2160 * especially on architectures where smp_rmb (in seqcounts) are costly.
2161 * Keep the two functions in sync.
2162 */
2163
b04f784e
NP
2164 /*
2165 * The hash list is protected using RCU.
2166 *
2167 * Take d_lock when comparing a candidate dentry, to avoid races
2168 * with d_move().
2169 *
2170 * It is possible that concurrent renames can mess up our list
2171 * walk here and result in missing our dentry, resulting in the
2172 * false-negative result. d_lookup() protects against concurrent
2173 * renames using rename_lock seqlock.
2174 *
b0a4bb83 2175 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2176 */
1da177e4
LT
2177 rcu_read_lock();
2178
b07ad996 2179 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2180
1da177e4
LT
2181 if (dentry->d_name.hash != hash)
2182 continue;
1da177e4
LT
2183
2184 spin_lock(&dentry->d_lock);
1da177e4
LT
2185 if (dentry->d_parent != parent)
2186 goto next;
d0185c08
LT
2187 if (d_unhashed(dentry))
2188 goto next;
2189
1da177e4
LT
2190 /*
2191 * It is safe to compare names since d_move() cannot
2192 * change the qstr (protected by d_lock).
2193 */
fb045adb 2194 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2195 int tlen = dentry->d_name.len;
2196 const char *tname = dentry->d_name.name;
da53be12 2197 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2198 goto next;
2199 } else {
ee983e89
LT
2200 if (dentry->d_name.len != len)
2201 goto next;
12f8ad4b 2202 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2203 goto next;
2204 }
2205
98474236 2206 dentry->d_lockref.count++;
d0185c08 2207 found = dentry;
1da177e4
LT
2208 spin_unlock(&dentry->d_lock);
2209 break;
2210next:
2211 spin_unlock(&dentry->d_lock);
2212 }
2213 rcu_read_unlock();
2214
2215 return found;
2216}
2217
3e7e241f
EB
2218/**
2219 * d_hash_and_lookup - hash the qstr then search for a dentry
2220 * @dir: Directory to search in
2221 * @name: qstr of name we wish to find
2222 *
4f522a24 2223 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2224 */
2225struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2226{
3e7e241f
EB
2227 /*
2228 * Check for a fs-specific hash function. Note that we must
2229 * calculate the standard hash first, as the d_op->d_hash()
2230 * routine may choose to leave the hash value unchanged.
2231 */
2232 name->hash = full_name_hash(name->name, name->len);
fb045adb 2233 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2234 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2235 if (unlikely(err < 0))
2236 return ERR_PTR(err);
3e7e241f 2237 }
4f522a24 2238 return d_lookup(dir, name);
3e7e241f 2239}
4f522a24 2240EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2241
1da177e4 2242/**
786a5e15 2243 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2244 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2245 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2246 *
2247 * An insecure source has sent us a dentry, here we verify it and dget() it.
2248 * This is used by ncpfs in its readdir implementation.
2249 * Zero is returned in the dentry is invalid.
786a5e15
NP
2250 *
2251 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2252 */
d3a23e16 2253int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2254{
786a5e15 2255 struct dentry *child;
d3a23e16 2256
2fd6b7f5 2257 spin_lock(&dparent->d_lock);
786a5e15
NP
2258 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2259 if (dentry == child) {
2fd6b7f5 2260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2261 __dget_dlock(dentry);
2fd6b7f5
NP
2262 spin_unlock(&dentry->d_lock);
2263 spin_unlock(&dparent->d_lock);
1da177e4
LT
2264 return 1;
2265 }
2266 }
2fd6b7f5 2267 spin_unlock(&dparent->d_lock);
786a5e15 2268
1da177e4
LT
2269 return 0;
2270}
ec4f8605 2271EXPORT_SYMBOL(d_validate);
1da177e4
LT
2272
2273/*
2274 * When a file is deleted, we have two options:
2275 * - turn this dentry into a negative dentry
2276 * - unhash this dentry and free it.
2277 *
2278 * Usually, we want to just turn this into
2279 * a negative dentry, but if anybody else is
2280 * currently using the dentry or the inode
2281 * we can't do that and we fall back on removing
2282 * it from the hash queues and waiting for
2283 * it to be deleted later when it has no users
2284 */
2285
2286/**
2287 * d_delete - delete a dentry
2288 * @dentry: The dentry to delete
2289 *
2290 * Turn the dentry into a negative dentry if possible, otherwise
2291 * remove it from the hash queues so it can be deleted later
2292 */
2293
2294void d_delete(struct dentry * dentry)
2295{
873feea0 2296 struct inode *inode;
7a91bf7f 2297 int isdir = 0;
1da177e4
LT
2298 /*
2299 * Are we the only user?
2300 */
357f8e65 2301again:
1da177e4 2302 spin_lock(&dentry->d_lock);
873feea0
NP
2303 inode = dentry->d_inode;
2304 isdir = S_ISDIR(inode->i_mode);
98474236 2305 if (dentry->d_lockref.count == 1) {
1fe0c023 2306 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2307 spin_unlock(&dentry->d_lock);
2308 cpu_relax();
2309 goto again;
2310 }
13e3c5e5 2311 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2312 dentry_unlink_inode(dentry);
7a91bf7f 2313 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2314 return;
2315 }
2316
2317 if (!d_unhashed(dentry))
2318 __d_drop(dentry);
2319
2320 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2321
2322 fsnotify_nameremove(dentry, isdir);
1da177e4 2323}
ec4f8605 2324EXPORT_SYMBOL(d_delete);
1da177e4 2325
b07ad996 2326static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2327{
ceb5bdc2 2328 BUG_ON(!d_unhashed(entry));
1879fd6a 2329 hlist_bl_lock(b);
dea3667b 2330 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2331 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2332 hlist_bl_unlock(b);
1da177e4
LT
2333}
2334
770bfad8
DH
2335static void _d_rehash(struct dentry * entry)
2336{
2337 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2338}
2339
1da177e4
LT
2340/**
2341 * d_rehash - add an entry back to the hash
2342 * @entry: dentry to add to the hash
2343 *
2344 * Adds a dentry to the hash according to its name.
2345 */
2346
2347void d_rehash(struct dentry * entry)
2348{
1da177e4 2349 spin_lock(&entry->d_lock);
770bfad8 2350 _d_rehash(entry);
1da177e4 2351 spin_unlock(&entry->d_lock);
1da177e4 2352}
ec4f8605 2353EXPORT_SYMBOL(d_rehash);
1da177e4 2354
fb2d5b86
NP
2355/**
2356 * dentry_update_name_case - update case insensitive dentry with a new name
2357 * @dentry: dentry to be updated
2358 * @name: new name
2359 *
2360 * Update a case insensitive dentry with new case of name.
2361 *
2362 * dentry must have been returned by d_lookup with name @name. Old and new
2363 * name lengths must match (ie. no d_compare which allows mismatched name
2364 * lengths).
2365 *
2366 * Parent inode i_mutex must be held over d_lookup and into this call (to
2367 * keep renames and concurrent inserts, and readdir(2) away).
2368 */
2369void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2370{
7ebfa57f 2371 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2372 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2373
fb2d5b86 2374 spin_lock(&dentry->d_lock);
31e6b01f 2375 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2376 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2377 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2378 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2379}
2380EXPORT_SYMBOL(dentry_update_name_case);
2381
1da177e4
LT
2382static void switch_names(struct dentry *dentry, struct dentry *target)
2383{
2384 if (dname_external(target)) {
2385 if (dname_external(dentry)) {
2386 /*
2387 * Both external: swap the pointers
2388 */
9a8d5bb4 2389 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2390 } else {
2391 /*
2392 * dentry:internal, target:external. Steal target's
2393 * storage and make target internal.
2394 */
321bcf92
BF
2395 memcpy(target->d_iname, dentry->d_name.name,
2396 dentry->d_name.len + 1);
1da177e4
LT
2397 dentry->d_name.name = target->d_name.name;
2398 target->d_name.name = target->d_iname;
2399 }
2400 } else {
2401 if (dname_external(dentry)) {
2402 /*
2403 * dentry:external, target:internal. Give dentry's
2404 * storage to target and make dentry internal
2405 */
2406 memcpy(dentry->d_iname, target->d_name.name,
2407 target->d_name.len + 1);
2408 target->d_name.name = dentry->d_name.name;
2409 dentry->d_name.name = dentry->d_iname;
2410 } else {
2411 /*
da1ce067 2412 * Both are internal.
1da177e4 2413 */
da1ce067
MS
2414 unsigned int i;
2415 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2416 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2417 swap(((long *) &dentry->d_iname)[i],
2418 ((long *) &target->d_iname)[i]);
2419 }
1da177e4
LT
2420 }
2421 }
9a8d5bb4 2422 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2423}
2424
2fd6b7f5
NP
2425static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2426{
2427 /*
2428 * XXXX: do we really need to take target->d_lock?
2429 */
2430 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2431 spin_lock(&target->d_parent->d_lock);
2432 else {
2433 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2434 spin_lock(&dentry->d_parent->d_lock);
2435 spin_lock_nested(&target->d_parent->d_lock,
2436 DENTRY_D_LOCK_NESTED);
2437 } else {
2438 spin_lock(&target->d_parent->d_lock);
2439 spin_lock_nested(&dentry->d_parent->d_lock,
2440 DENTRY_D_LOCK_NESTED);
2441 }
2442 }
2443 if (target < dentry) {
2444 spin_lock_nested(&target->d_lock, 2);
2445 spin_lock_nested(&dentry->d_lock, 3);
2446 } else {
2447 spin_lock_nested(&dentry->d_lock, 2);
2448 spin_lock_nested(&target->d_lock, 3);
2449 }
2450}
2451
2452static void dentry_unlock_parents_for_move(struct dentry *dentry,
2453 struct dentry *target)
2454{
2455 if (target->d_parent != dentry->d_parent)
2456 spin_unlock(&dentry->d_parent->d_lock);
2457 if (target->d_parent != target)
2458 spin_unlock(&target->d_parent->d_lock);
2459}
2460
1da177e4 2461/*
2fd6b7f5
NP
2462 * When switching names, the actual string doesn't strictly have to
2463 * be preserved in the target - because we're dropping the target
2464 * anyway. As such, we can just do a simple memcpy() to copy over
2465 * the new name before we switch.
2466 *
2467 * Note that we have to be a lot more careful about getting the hash
2468 * switched - we have to switch the hash value properly even if it
2469 * then no longer matches the actual (corrupted) string of the target.
2470 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2471 */
9eaef27b 2472/*
18367501 2473 * __d_move - move a dentry
1da177e4
LT
2474 * @dentry: entry to move
2475 * @target: new dentry
da1ce067 2476 * @exchange: exchange the two dentries
1da177e4
LT
2477 *
2478 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2479 * dcache entries should not be moved in this way. Caller must hold
2480 * rename_lock, the i_mutex of the source and target directories,
2481 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2482 */
da1ce067
MS
2483static void __d_move(struct dentry *dentry, struct dentry *target,
2484 bool exchange)
1da177e4 2485{
1da177e4
LT
2486 if (!dentry->d_inode)
2487 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2488
2fd6b7f5
NP
2489 BUG_ON(d_ancestor(dentry, target));
2490 BUG_ON(d_ancestor(target, dentry));
2491
2fd6b7f5 2492 dentry_lock_for_move(dentry, target);
1da177e4 2493
31e6b01f 2494 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2495 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2496
ceb5bdc2
NP
2497 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2498
2499 /*
2500 * Move the dentry to the target hash queue. Don't bother checking
2501 * for the same hash queue because of how unlikely it is.
2502 */
2503 __d_drop(dentry);
789680d1 2504 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2505
da1ce067
MS
2506 /*
2507 * Unhash the target (d_delete() is not usable here). If exchanging
2508 * the two dentries, then rehash onto the other's hash queue.
2509 */
1da177e4 2510 __d_drop(target);
da1ce067
MS
2511 if (exchange) {
2512 __d_rehash(target,
2513 d_hash(dentry->d_parent, dentry->d_name.hash));
2514 }
1da177e4 2515
5160ee6f
ED
2516 list_del(&dentry->d_u.d_child);
2517 list_del(&target->d_u.d_child);
1da177e4
LT
2518
2519 /* Switch the names.. */
2520 switch_names(dentry, target);
9a8d5bb4 2521 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2522
2523 /* ... and switch the parents */
2524 if (IS_ROOT(dentry)) {
2525 dentry->d_parent = target->d_parent;
2526 target->d_parent = target;
5160ee6f 2527 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2528 } else {
9a8d5bb4 2529 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2530
2531 /* And add them back to the (new) parent lists */
5160ee6f 2532 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2533 }
2534
5160ee6f 2535 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2536
31e6b01f
NP
2537 write_seqcount_end(&target->d_seq);
2538 write_seqcount_end(&dentry->d_seq);
2539
2fd6b7f5 2540 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2541 if (exchange)
2542 fsnotify_d_move(target);
1da177e4 2543 spin_unlock(&target->d_lock);
c32ccd87 2544 fsnotify_d_move(dentry);
1da177e4 2545 spin_unlock(&dentry->d_lock);
18367501
AV
2546}
2547
2548/*
2549 * d_move - move a dentry
2550 * @dentry: entry to move
2551 * @target: new dentry
2552 *
2553 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2554 * dcache entries should not be moved in this way. See the locking
2555 * requirements for __d_move.
18367501
AV
2556 */
2557void d_move(struct dentry *dentry, struct dentry *target)
2558{
2559 write_seqlock(&rename_lock);
da1ce067 2560 __d_move(dentry, target, false);
1da177e4 2561 write_sequnlock(&rename_lock);
9eaef27b 2562}
ec4f8605 2563EXPORT_SYMBOL(d_move);
1da177e4 2564
da1ce067
MS
2565/*
2566 * d_exchange - exchange two dentries
2567 * @dentry1: first dentry
2568 * @dentry2: second dentry
2569 */
2570void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2571{
2572 write_seqlock(&rename_lock);
2573
2574 WARN_ON(!dentry1->d_inode);
2575 WARN_ON(!dentry2->d_inode);
2576 WARN_ON(IS_ROOT(dentry1));
2577 WARN_ON(IS_ROOT(dentry2));
2578
2579 __d_move(dentry1, dentry2, true);
2580
2581 write_sequnlock(&rename_lock);
2582}
2583
e2761a11
OH
2584/**
2585 * d_ancestor - search for an ancestor
2586 * @p1: ancestor dentry
2587 * @p2: child dentry
2588 *
2589 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2590 * an ancestor of p2, else NULL.
9eaef27b 2591 */
e2761a11 2592struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2593{
2594 struct dentry *p;
2595
871c0067 2596 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2597 if (p->d_parent == p1)
e2761a11 2598 return p;
9eaef27b 2599 }
e2761a11 2600 return NULL;
9eaef27b
TM
2601}
2602
2603/*
2604 * This helper attempts to cope with remotely renamed directories
2605 *
2606 * It assumes that the caller is already holding
18367501 2607 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2608 *
2609 * Note: If ever the locking in lock_rename() changes, then please
2610 * remember to update this too...
9eaef27b 2611 */
873feea0
NP
2612static struct dentry *__d_unalias(struct inode *inode,
2613 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2614{
2615 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2616 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2617
2618 /* If alias and dentry share a parent, then no extra locks required */
2619 if (alias->d_parent == dentry->d_parent)
2620 goto out_unalias;
2621
9eaef27b 2622 /* See lock_rename() */
9eaef27b
TM
2623 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2624 goto out_err;
2625 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2626 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2627 goto out_err;
2628 m2 = &alias->d_parent->d_inode->i_mutex;
2629out_unalias:
ee3efa91 2630 if (likely(!d_mountpoint(alias))) {
da1ce067 2631 __d_move(alias, dentry, false);
ee3efa91
AV
2632 ret = alias;
2633 }
9eaef27b 2634out_err:
873feea0 2635 spin_unlock(&inode->i_lock);
9eaef27b
TM
2636 if (m2)
2637 mutex_unlock(m2);
2638 if (m1)
2639 mutex_unlock(m1);
2640 return ret;
2641}
2642
770bfad8
DH
2643/*
2644 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2645 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2646 * returns with anon->d_lock held!
770bfad8
DH
2647 */
2648static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2649{
740da42e 2650 struct dentry *dparent;
770bfad8 2651
2fd6b7f5 2652 dentry_lock_for_move(anon, dentry);
770bfad8 2653
31e6b01f 2654 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2655 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2656
770bfad8 2657 dparent = dentry->d_parent;
770bfad8 2658
2fd6b7f5
NP
2659 switch_names(dentry, anon);
2660 swap(dentry->d_name.hash, anon->d_name.hash);
2661
740da42e
AV
2662 dentry->d_parent = dentry;
2663 list_del_init(&dentry->d_u.d_child);
2664 anon->d_parent = dparent;
9ed53b12 2665 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2666
31e6b01f
NP
2667 write_seqcount_end(&dentry->d_seq);
2668 write_seqcount_end(&anon->d_seq);
2669
2fd6b7f5
NP
2670 dentry_unlock_parents_for_move(anon, dentry);
2671 spin_unlock(&dentry->d_lock);
2672
2673 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2674}
2675
3f70bd51
BF
2676/**
2677 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2678 * @inode: the inode which may have a disconnected dentry
2679 * @dentry: a negative dentry which we want to point to the inode.
2680 *
da093a9b
BF
2681 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2682 * place of the given dentry and return it, else simply d_add the inode
2683 * to the dentry and return NULL.
3f70bd51 2684 *
908790fa
BF
2685 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2686 * we should error out: directories can't have multiple aliases.
2687 *
3f70bd51
BF
2688 * This is needed in the lookup routine of any filesystem that is exportable
2689 * (via knfsd) so that we can build dcache paths to directories effectively.
2690 *
2691 * If a dentry was found and moved, then it is returned. Otherwise NULL
2692 * is returned. This matches the expected return value of ->lookup.
2693 *
2694 * Cluster filesystems may call this function with a negative, hashed dentry.
2695 * In that case, we know that the inode will be a regular file, and also this
2696 * will only occur during atomic_open. So we need to check for the dentry
2697 * being already hashed only in the final case.
2698 */
2699struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2700{
2701 struct dentry *new = NULL;
2702
2703 if (IS_ERR(inode))
2704 return ERR_CAST(inode);
2705
2706 if (inode && S_ISDIR(inode->i_mode)) {
2707 spin_lock(&inode->i_lock);
908790fa 2708 new = __d_find_any_alias(inode);
3f70bd51 2709 if (new) {
da093a9b 2710 if (!IS_ROOT(new)) {
908790fa
BF
2711 spin_unlock(&inode->i_lock);
2712 dput(new);
2713 return ERR_PTR(-EIO);
2714 }
75a2352d
BF
2715 write_seqlock(&rename_lock);
2716 __d_materialise_dentry(dentry, new);
2717 write_sequnlock(&rename_lock);
2718 __d_drop(new);
2719 _d_rehash(new);
2720 spin_unlock(&new->d_lock);
3f70bd51
BF
2721 spin_unlock(&inode->i_lock);
2722 security_d_instantiate(new, inode);
3f70bd51
BF
2723 iput(inode);
2724 } else {
2725 /* already taking inode->i_lock, so d_add() by hand */
2726 __d_instantiate(dentry, inode);
2727 spin_unlock(&inode->i_lock);
2728 security_d_instantiate(dentry, inode);
2729 d_rehash(dentry);
2730 }
2731 } else {
2732 d_instantiate(dentry, inode);
2733 if (d_unhashed(dentry))
2734 d_rehash(dentry);
2735 }
2736 return new;
2737}
2738EXPORT_SYMBOL(d_splice_alias);
2739
770bfad8
DH
2740/**
2741 * d_materialise_unique - introduce an inode into the tree
2742 * @dentry: candidate dentry
2743 * @inode: inode to bind to the dentry, to which aliases may be attached
2744 *
2745 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2746 * root directory alias in its place if there is one. Caller must hold the
2747 * i_mutex of the parent directory.
770bfad8
DH
2748 */
2749struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2750{
9eaef27b 2751 struct dentry *actual;
770bfad8
DH
2752
2753 BUG_ON(!d_unhashed(dentry));
2754
770bfad8
DH
2755 if (!inode) {
2756 actual = dentry;
360da900 2757 __d_instantiate(dentry, NULL);
357f8e65
NP
2758 d_rehash(actual);
2759 goto out_nolock;
770bfad8
DH
2760 }
2761
873feea0 2762 spin_lock(&inode->i_lock);
357f8e65 2763
9eaef27b
TM
2764 if (S_ISDIR(inode->i_mode)) {
2765 struct dentry *alias;
2766
2767 /* Does an aliased dentry already exist? */
32ba9c3f 2768 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2769 if (alias) {
2770 actual = alias;
18367501
AV
2771 write_seqlock(&rename_lock);
2772
2773 if (d_ancestor(alias, dentry)) {
2774 /* Check for loops */
2775 actual = ERR_PTR(-ELOOP);
b18dafc8 2776 spin_unlock(&inode->i_lock);
18367501
AV
2777 } else if (IS_ROOT(alias)) {
2778 /* Is this an anonymous mountpoint that we
2779 * could splice into our tree? */
9eaef27b 2780 __d_materialise_dentry(dentry, alias);
18367501 2781 write_sequnlock(&rename_lock);
9eaef27b
TM
2782 __d_drop(alias);
2783 goto found;
18367501
AV
2784 } else {
2785 /* Nope, but we must(!) avoid directory
b18dafc8 2786 * aliasing. This drops inode->i_lock */
18367501 2787 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2788 }
18367501 2789 write_sequnlock(&rename_lock);
dd179946
DH
2790 if (IS_ERR(actual)) {
2791 if (PTR_ERR(actual) == -ELOOP)
2792 pr_warn_ratelimited(
2793 "VFS: Lookup of '%s' in %s %s"
2794 " would have caused loop\n",
2795 dentry->d_name.name,
2796 inode->i_sb->s_type->name,
2797 inode->i_sb->s_id);
9eaef27b 2798 dput(alias);
dd179946 2799 }
9eaef27b
TM
2800 goto out_nolock;
2801 }
770bfad8
DH
2802 }
2803
2804 /* Add a unique reference */
2805 actual = __d_instantiate_unique(dentry, inode);
2806 if (!actual)
2807 actual = dentry;
357f8e65
NP
2808 else
2809 BUG_ON(!d_unhashed(actual));
770bfad8 2810
770bfad8
DH
2811 spin_lock(&actual->d_lock);
2812found:
2813 _d_rehash(actual);
2814 spin_unlock(&actual->d_lock);
873feea0 2815 spin_unlock(&inode->i_lock);
9eaef27b 2816out_nolock:
770bfad8
DH
2817 if (actual == dentry) {
2818 security_d_instantiate(dentry, inode);
2819 return NULL;
2820 }
2821
2822 iput(inode);
2823 return actual;
770bfad8 2824}
ec4f8605 2825EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2826
cdd16d02 2827static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2828{
2829 *buflen -= namelen;
2830 if (*buflen < 0)
2831 return -ENAMETOOLONG;
2832 *buffer -= namelen;
2833 memcpy(*buffer, str, namelen);
2834 return 0;
2835}
2836
232d2d60
WL
2837/**
2838 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2839 * @buffer: buffer pointer
2840 * @buflen: allocated length of the buffer
2841 * @name: name string and length qstr structure
232d2d60
WL
2842 *
2843 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2844 * make sure that either the old or the new name pointer and length are
2845 * fetched. However, there may be mismatch between length and pointer.
2846 * The length cannot be trusted, we need to copy it byte-by-byte until
2847 * the length is reached or a null byte is found. It also prepends "/" at
2848 * the beginning of the name. The sequence number check at the caller will
2849 * retry it again when a d_move() does happen. So any garbage in the buffer
2850 * due to mismatched pointer and length will be discarded.
2851 */
cdd16d02
MS
2852static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2853{
232d2d60
WL
2854 const char *dname = ACCESS_ONCE(name->name);
2855 u32 dlen = ACCESS_ONCE(name->len);
2856 char *p;
2857
232d2d60 2858 *buflen -= dlen + 1;
e825196d
AV
2859 if (*buflen < 0)
2860 return -ENAMETOOLONG;
232d2d60
WL
2861 p = *buffer -= dlen + 1;
2862 *p++ = '/';
2863 while (dlen--) {
2864 char c = *dname++;
2865 if (!c)
2866 break;
2867 *p++ = c;
2868 }
2869 return 0;
cdd16d02
MS
2870}
2871
1da177e4 2872/**
208898c1 2873 * prepend_path - Prepend path string to a buffer
9d1bc601 2874 * @path: the dentry/vfsmount to report
02125a82 2875 * @root: root vfsmnt/dentry
f2eb6575
MS
2876 * @buffer: pointer to the end of the buffer
2877 * @buflen: pointer to buffer length
552ce544 2878 *
18129977
WL
2879 * The function will first try to write out the pathname without taking any
2880 * lock other than the RCU read lock to make sure that dentries won't go away.
2881 * It only checks the sequence number of the global rename_lock as any change
2882 * in the dentry's d_seq will be preceded by changes in the rename_lock
2883 * sequence number. If the sequence number had been changed, it will restart
2884 * the whole pathname back-tracing sequence again by taking the rename_lock.
2885 * In this case, there is no need to take the RCU read lock as the recursive
2886 * parent pointer references will keep the dentry chain alive as long as no
2887 * rename operation is performed.
1da177e4 2888 */
02125a82
AV
2889static int prepend_path(const struct path *path,
2890 const struct path *root,
f2eb6575 2891 char **buffer, int *buflen)
1da177e4 2892{
ede4cebc
AV
2893 struct dentry *dentry;
2894 struct vfsmount *vfsmnt;
2895 struct mount *mnt;
f2eb6575 2896 int error = 0;
48a066e7 2897 unsigned seq, m_seq = 0;
232d2d60
WL
2898 char *bptr;
2899 int blen;
6092d048 2900
48f5ec21 2901 rcu_read_lock();
48a066e7
AV
2902restart_mnt:
2903 read_seqbegin_or_lock(&mount_lock, &m_seq);
2904 seq = 0;
4ec6c2ae 2905 rcu_read_lock();
232d2d60
WL
2906restart:
2907 bptr = *buffer;
2908 blen = *buflen;
48a066e7 2909 error = 0;
ede4cebc
AV
2910 dentry = path->dentry;
2911 vfsmnt = path->mnt;
2912 mnt = real_mount(vfsmnt);
232d2d60 2913 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2914 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2915 struct dentry * parent;
2916
1da177e4 2917 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2918 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2919 /* Global root? */
48a066e7
AV
2920 if (mnt != parent) {
2921 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2922 mnt = parent;
232d2d60
WL
2923 vfsmnt = &mnt->mnt;
2924 continue;
2925 }
2926 /*
2927 * Filesystems needing to implement special "root names"
2928 * should do so with ->d_dname()
2929 */
2930 if (IS_ROOT(dentry) &&
2931 (dentry->d_name.len != 1 ||
2932 dentry->d_name.name[0] != '/')) {
2933 WARN(1, "Root dentry has weird name <%.*s>\n",
2934 (int) dentry->d_name.len,
2935 dentry->d_name.name);
2936 }
2937 if (!error)
2938 error = is_mounted(vfsmnt) ? 1 : 2;
2939 break;
1da177e4
LT
2940 }
2941 parent = dentry->d_parent;
2942 prefetch(parent);
232d2d60 2943 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2944 if (error)
2945 break;
2946
1da177e4
LT
2947 dentry = parent;
2948 }
48f5ec21
AV
2949 if (!(seq & 1))
2950 rcu_read_unlock();
2951 if (need_seqretry(&rename_lock, seq)) {
2952 seq = 1;
232d2d60 2953 goto restart;
48f5ec21
AV
2954 }
2955 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2956
2957 if (!(m_seq & 1))
2958 rcu_read_unlock();
48a066e7
AV
2959 if (need_seqretry(&mount_lock, m_seq)) {
2960 m_seq = 1;
2961 goto restart_mnt;
2962 }
2963 done_seqretry(&mount_lock, m_seq);
1da177e4 2964
232d2d60
WL
2965 if (error >= 0 && bptr == *buffer) {
2966 if (--blen < 0)
2967 error = -ENAMETOOLONG;
2968 else
2969 *--bptr = '/';
2970 }
2971 *buffer = bptr;
2972 *buflen = blen;
7ea600b5 2973 return error;
f2eb6575 2974}
be285c71 2975
f2eb6575
MS
2976/**
2977 * __d_path - return the path of a dentry
2978 * @path: the dentry/vfsmount to report
02125a82 2979 * @root: root vfsmnt/dentry
cd956a1c 2980 * @buf: buffer to return value in
f2eb6575
MS
2981 * @buflen: buffer length
2982 *
ffd1f4ed 2983 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2984 *
2985 * Returns a pointer into the buffer or an error code if the
2986 * path was too long.
2987 *
be148247 2988 * "buflen" should be positive.
f2eb6575 2989 *
02125a82 2990 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2991 */
02125a82
AV
2992char *__d_path(const struct path *path,
2993 const struct path *root,
f2eb6575
MS
2994 char *buf, int buflen)
2995{
2996 char *res = buf + buflen;
2997 int error;
2998
2999 prepend(&res, &buflen, "\0", 1);
f2eb6575 3000 error = prepend_path(path, root, &res, &buflen);
be148247 3001
02125a82
AV
3002 if (error < 0)
3003 return ERR_PTR(error);
3004 if (error > 0)
3005 return NULL;
3006 return res;
3007}
3008
3009char *d_absolute_path(const struct path *path,
3010 char *buf, int buflen)
3011{
3012 struct path root = {};
3013 char *res = buf + buflen;
3014 int error;
3015
3016 prepend(&res, &buflen, "\0", 1);
02125a82 3017 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3018
3019 if (error > 1)
3020 error = -EINVAL;
3021 if (error < 0)
f2eb6575 3022 return ERR_PTR(error);
f2eb6575 3023 return res;
1da177e4
LT
3024}
3025
ffd1f4ed
MS
3026/*
3027 * same as __d_path but appends "(deleted)" for unlinked files.
3028 */
02125a82
AV
3029static int path_with_deleted(const struct path *path,
3030 const struct path *root,
3031 char **buf, int *buflen)
ffd1f4ed
MS
3032{
3033 prepend(buf, buflen, "\0", 1);
3034 if (d_unlinked(path->dentry)) {
3035 int error = prepend(buf, buflen, " (deleted)", 10);
3036 if (error)
3037 return error;
3038 }
3039
3040 return prepend_path(path, root, buf, buflen);
3041}
3042
8df9d1a4
MS
3043static int prepend_unreachable(char **buffer, int *buflen)
3044{
3045 return prepend(buffer, buflen, "(unreachable)", 13);
3046}
3047
68f0d9d9
LT
3048static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3049{
3050 unsigned seq;
3051
3052 do {
3053 seq = read_seqcount_begin(&fs->seq);
3054 *root = fs->root;
3055 } while (read_seqcount_retry(&fs->seq, seq));
3056}
3057
a03a8a70
JB
3058/**
3059 * d_path - return the path of a dentry
cf28b486 3060 * @path: path to report
a03a8a70
JB
3061 * @buf: buffer to return value in
3062 * @buflen: buffer length
3063 *
3064 * Convert a dentry into an ASCII path name. If the entry has been deleted
3065 * the string " (deleted)" is appended. Note that this is ambiguous.
3066 *
52afeefb
AV
3067 * Returns a pointer into the buffer or an error code if the path was
3068 * too long. Note: Callers should use the returned pointer, not the passed
3069 * in buffer, to use the name! The implementation often starts at an offset
3070 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3071 *
31f3e0b3 3072 * "buflen" should be positive.
a03a8a70 3073 */
20d4fdc1 3074char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3075{
ffd1f4ed 3076 char *res = buf + buflen;
6ac08c39 3077 struct path root;
ffd1f4ed 3078 int error;
1da177e4 3079
c23fbb6b
ED
3080 /*
3081 * We have various synthetic filesystems that never get mounted. On
3082 * these filesystems dentries are never used for lookup purposes, and
3083 * thus don't need to be hashed. They also don't need a name until a
3084 * user wants to identify the object in /proc/pid/fd/. The little hack
3085 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3086 *
3087 * Some pseudo inodes are mountable. When they are mounted
3088 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3089 * and instead have d_path return the mounted path.
c23fbb6b 3090 */
f48cfddc
EB
3091 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3092 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3093 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3094
68f0d9d9
LT
3095 rcu_read_lock();
3096 get_fs_root_rcu(current->fs, &root);
02125a82 3097 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3098 rcu_read_unlock();
3099
02125a82 3100 if (error < 0)
ffd1f4ed 3101 res = ERR_PTR(error);
1da177e4
LT
3102 return res;
3103}
ec4f8605 3104EXPORT_SYMBOL(d_path);
1da177e4 3105
c23fbb6b
ED
3106/*
3107 * Helper function for dentry_operations.d_dname() members
3108 */
3109char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3110 const char *fmt, ...)
3111{
3112 va_list args;
3113 char temp[64];
3114 int sz;
3115
3116 va_start(args, fmt);
3117 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3118 va_end(args);
3119
3120 if (sz > sizeof(temp) || sz > buflen)
3121 return ERR_PTR(-ENAMETOOLONG);
3122
3123 buffer += buflen - sz;
3124 return memcpy(buffer, temp, sz);
3125}
3126
118b2302
AV
3127char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3128{
3129 char *end = buffer + buflen;
3130 /* these dentries are never renamed, so d_lock is not needed */
3131 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3132 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3133 prepend(&end, &buflen, "/", 1))
3134 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3135 return end;
118b2302 3136}
31bbe16f 3137EXPORT_SYMBOL(simple_dname);
118b2302 3138
6092d048
RP
3139/*
3140 * Write full pathname from the root of the filesystem into the buffer.
3141 */
f6500801 3142static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3143{
f6500801 3144 struct dentry *dentry;
232d2d60
WL
3145 char *end, *retval;
3146 int len, seq = 0;
3147 int error = 0;
6092d048 3148
f6500801
AV
3149 if (buflen < 2)
3150 goto Elong;
3151
48f5ec21 3152 rcu_read_lock();
232d2d60 3153restart:
f6500801 3154 dentry = d;
232d2d60
WL
3155 end = buf + buflen;
3156 len = buflen;
3157 prepend(&end, &len, "\0", 1);
6092d048
RP
3158 /* Get '/' right */
3159 retval = end-1;
3160 *retval = '/';
232d2d60 3161 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3162 while (!IS_ROOT(dentry)) {
3163 struct dentry *parent = dentry->d_parent;
6092d048 3164
6092d048 3165 prefetch(parent);
232d2d60
WL
3166 error = prepend_name(&end, &len, &dentry->d_name);
3167 if (error)
3168 break;
6092d048
RP
3169
3170 retval = end;
3171 dentry = parent;
3172 }
48f5ec21
AV
3173 if (!(seq & 1))
3174 rcu_read_unlock();
3175 if (need_seqretry(&rename_lock, seq)) {
3176 seq = 1;
232d2d60 3177 goto restart;
48f5ec21
AV
3178 }
3179 done_seqretry(&rename_lock, seq);
232d2d60
WL
3180 if (error)
3181 goto Elong;
c103135c
AV
3182 return retval;
3183Elong:
3184 return ERR_PTR(-ENAMETOOLONG);
3185}
ec2447c2
NP
3186
3187char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3188{
232d2d60 3189 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3190}
3191EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3192
3193char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3194{
3195 char *p = NULL;
3196 char *retval;
3197
c103135c
AV
3198 if (d_unlinked(dentry)) {
3199 p = buf + buflen;
3200 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3201 goto Elong;
3202 buflen++;
3203 }
3204 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3205 if (!IS_ERR(retval) && p)
3206 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3207 return retval;
3208Elong:
6092d048
RP
3209 return ERR_PTR(-ENAMETOOLONG);
3210}
3211
8b19e341
LT
3212static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3213 struct path *pwd)
5762482f 3214{
8b19e341
LT
3215 unsigned seq;
3216
3217 do {
3218 seq = read_seqcount_begin(&fs->seq);
3219 *root = fs->root;
3220 *pwd = fs->pwd;
3221 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3222}
3223
1da177e4
LT
3224/*
3225 * NOTE! The user-level library version returns a
3226 * character pointer. The kernel system call just
3227 * returns the length of the buffer filled (which
3228 * includes the ending '\0' character), or a negative
3229 * error value. So libc would do something like
3230 *
3231 * char *getcwd(char * buf, size_t size)
3232 * {
3233 * int retval;
3234 *
3235 * retval = sys_getcwd(buf, size);
3236 * if (retval >= 0)
3237 * return buf;
3238 * errno = -retval;
3239 * return NULL;
3240 * }
3241 */
3cdad428 3242SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3243{
552ce544 3244 int error;
6ac08c39 3245 struct path pwd, root;
3272c544 3246 char *page = __getname();
1da177e4
LT
3247
3248 if (!page)
3249 return -ENOMEM;
3250
8b19e341
LT
3251 rcu_read_lock();
3252 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3253
552ce544 3254 error = -ENOENT;
f3da392e 3255 if (!d_unlinked(pwd.dentry)) {
552ce544 3256 unsigned long len;
3272c544
LT
3257 char *cwd = page + PATH_MAX;
3258 int buflen = PATH_MAX;
1da177e4 3259
8df9d1a4 3260 prepend(&cwd, &buflen, "\0", 1);
02125a82 3261 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3262 rcu_read_unlock();
552ce544 3263
02125a82 3264 if (error < 0)
552ce544
LT
3265 goto out;
3266
8df9d1a4 3267 /* Unreachable from current root */
02125a82 3268 if (error > 0) {
8df9d1a4
MS
3269 error = prepend_unreachable(&cwd, &buflen);
3270 if (error)
3271 goto out;
3272 }
3273
552ce544 3274 error = -ERANGE;
3272c544 3275 len = PATH_MAX + page - cwd;
552ce544
LT
3276 if (len <= size) {
3277 error = len;
3278 if (copy_to_user(buf, cwd, len))
3279 error = -EFAULT;
3280 }
949854d0 3281 } else {
ff812d72 3282 rcu_read_unlock();
949854d0 3283 }
1da177e4
LT
3284
3285out:
3272c544 3286 __putname(page);
1da177e4
LT
3287 return error;
3288}
3289
3290/*
3291 * Test whether new_dentry is a subdirectory of old_dentry.
3292 *
3293 * Trivially implemented using the dcache structure
3294 */
3295
3296/**
3297 * is_subdir - is new dentry a subdirectory of old_dentry
3298 * @new_dentry: new dentry
3299 * @old_dentry: old dentry
3300 *
3301 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3302 * Returns 0 otherwise.
3303 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3304 */
3305
e2761a11 3306int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3307{
3308 int result;
949854d0 3309 unsigned seq;
1da177e4 3310
e2761a11
OH
3311 if (new_dentry == old_dentry)
3312 return 1;
3313
e2761a11 3314 do {
1da177e4 3315 /* for restarting inner loop in case of seq retry */
1da177e4 3316 seq = read_seqbegin(&rename_lock);
949854d0
NP
3317 /*
3318 * Need rcu_readlock to protect against the d_parent trashing
3319 * due to d_move
3320 */
3321 rcu_read_lock();
e2761a11 3322 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3323 result = 1;
e2761a11
OH
3324 else
3325 result = 0;
949854d0 3326 rcu_read_unlock();
1da177e4 3327 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3328
3329 return result;
3330}
3331
db14fc3a 3332static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3333{
db14fc3a
MS
3334 struct dentry *root = data;
3335 if (dentry != root) {
3336 if (d_unhashed(dentry) || !dentry->d_inode)
3337 return D_WALK_SKIP;
1da177e4 3338
01ddc4ed
MS
3339 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3340 dentry->d_flags |= DCACHE_GENOCIDE;
3341 dentry->d_lockref.count--;
3342 }
1da177e4 3343 }
db14fc3a
MS
3344 return D_WALK_CONTINUE;
3345}
58db63d0 3346
db14fc3a
MS
3347void d_genocide(struct dentry *parent)
3348{
3349 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3350}
3351
60545d0d 3352void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3353{
60545d0d
AV
3354 inode_dec_link_count(inode);
3355 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3356 !hlist_unhashed(&dentry->d_alias) ||
3357 !d_unlinked(dentry));
3358 spin_lock(&dentry->d_parent->d_lock);
3359 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3360 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3361 (unsigned long long)inode->i_ino);
3362 spin_unlock(&dentry->d_lock);
3363 spin_unlock(&dentry->d_parent->d_lock);
3364 d_instantiate(dentry, inode);
1da177e4 3365}
60545d0d 3366EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3367
3368static __initdata unsigned long dhash_entries;
3369static int __init set_dhash_entries(char *str)
3370{
3371 if (!str)
3372 return 0;
3373 dhash_entries = simple_strtoul(str, &str, 0);
3374 return 1;
3375}
3376__setup("dhash_entries=", set_dhash_entries);
3377
3378static void __init dcache_init_early(void)
3379{
074b8517 3380 unsigned int loop;
1da177e4
LT
3381
3382 /* If hashes are distributed across NUMA nodes, defer
3383 * hash allocation until vmalloc space is available.
3384 */
3385 if (hashdist)
3386 return;
3387
3388 dentry_hashtable =
3389 alloc_large_system_hash("Dentry cache",
b07ad996 3390 sizeof(struct hlist_bl_head),
1da177e4
LT
3391 dhash_entries,
3392 13,
3393 HASH_EARLY,
3394 &d_hash_shift,
3395 &d_hash_mask,
31fe62b9 3396 0,
1da177e4
LT
3397 0);
3398
074b8517 3399 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3400 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3401}
3402
74bf17cf 3403static void __init dcache_init(void)
1da177e4 3404{
074b8517 3405 unsigned int loop;
1da177e4
LT
3406
3407 /*
3408 * A constructor could be added for stable state like the lists,
3409 * but it is probably not worth it because of the cache nature
3410 * of the dcache.
3411 */
0a31bd5f
CL
3412 dentry_cache = KMEM_CACHE(dentry,
3413 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3414
3415 /* Hash may have been set up in dcache_init_early */
3416 if (!hashdist)
3417 return;
3418
3419 dentry_hashtable =
3420 alloc_large_system_hash("Dentry cache",
b07ad996 3421 sizeof(struct hlist_bl_head),
1da177e4
LT
3422 dhash_entries,
3423 13,
3424 0,
3425 &d_hash_shift,
3426 &d_hash_mask,
31fe62b9 3427 0,
1da177e4
LT
3428 0);
3429
074b8517 3430 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3431 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3432}
3433
3434/* SLAB cache for __getname() consumers */
e18b890b 3435struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3436EXPORT_SYMBOL(names_cachep);
1da177e4 3437
1da177e4
LT
3438EXPORT_SYMBOL(d_genocide);
3439
1da177e4
LT
3440void __init vfs_caches_init_early(void)
3441{
3442 dcache_init_early();
3443 inode_init_early();
3444}
3445
3446void __init vfs_caches_init(unsigned long mempages)
3447{
3448 unsigned long reserve;
3449
3450 /* Base hash sizes on available memory, with a reserve equal to
3451 150% of current kernel size */
3452
3453 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3454 mempages -= reserve;
3455
3456 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3458
74bf17cf
DC
3459 dcache_init();
3460 inode_init();
1da177e4 3461 files_init(mempages);
74bf17cf 3462 mnt_init();
1da177e4
LT
3463 bdev_cache_init();
3464 chrdev_init();
3465}