]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/direct-io.c
Merge tag 'drm-misc-fixes-2019-06-05' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/kernel/linux.git] / fs / direct-io.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
e1f8e874 9 * 04Jul2002 Andrew Morton
1da177e4
LT
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
e1f8e874 13 * 29Oct2002 Andrew Morton
1da177e4
LT
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/pagemap.h>
98c4d57d 31#include <linux/task_io_accounting_ops.h>
1da177e4
LT
32#include <linux/bio.h>
33#include <linux/wait.h>
34#include <linux/err.h>
35#include <linux/blkdev.h>
36#include <linux/buffer_head.h>
37#include <linux/rwsem.h>
38#include <linux/uio.h>
60063497 39#include <linux/atomic.h>
65dd2aa9 40#include <linux/prefetch.h>
1da177e4
LT
41
42/*
43 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 44 * the size of a structure in the slab cache
1da177e4
LT
45 */
46#define DIO_PAGES 64
47
ffe51f01
LC
48/*
49 * Flags for dio_complete()
50 */
51#define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
52#define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
53
1da177e4
LT
54/*
55 * This code generally works in units of "dio_blocks". A dio_block is
56 * somewhere between the hard sector size and the filesystem block size. it
57 * is determined on a per-invocation basis. When talking to the filesystem
58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
60 * to bio_block quantities by shifting left by blkfactor.
61 *
62 * If blkfactor is zero then the user's request was aligned to the filesystem's
63 * blocksize.
1da177e4
LT
64 */
65
eb28be2b
AK
66/* dio_state only used in the submission path */
67
68struct dio_submit {
1da177e4 69 struct bio *bio; /* bio under assembly */
1da177e4
LT
70 unsigned blkbits; /* doesn't change */
71 unsigned blkfactor; /* When we're using an alignment which
72 is finer than the filesystem's soft
73 blocksize, this specifies how much
74 finer. blkfactor=2 means 1/4-block
75 alignment. Does not change */
76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
77 been performed at the start of a
78 write */
79 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
80 sector_t block_in_file; /* Current offset into the underlying
81 file in dio_block units. */
82 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 83 int reap_counter; /* rate limit reaping */
1da177e4 84 sector_t final_block_in_request;/* doesn't change */
1da177e4 85 int boundary; /* prev block is at a boundary */
1d8fa7a2 86 get_block_t *get_block; /* block mapping function */
facd07b0 87 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 88
facd07b0 89 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
90 sector_t final_block_in_bio; /* current final block in bio + 1 */
91 sector_t next_block_for_io; /* next block to be put under IO,
92 in dio_blocks units */
1da177e4
LT
93
94 /*
95 * Deferred addition of a page to the dio. These variables are
96 * private to dio_send_cur_page(), submit_page_section() and
97 * dio_bio_add_page().
98 */
99 struct page *cur_page; /* The page */
100 unsigned cur_page_offset; /* Offset into it, in bytes */
101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
102 sector_t cur_page_block; /* Where it starts */
facd07b0 103 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 104
7b2c99d1 105 struct iov_iter *iter;
1da177e4
LT
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
1da177e4
LT
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
7b2c99d1 112 size_t from, to;
eb28be2b
AK
113};
114
115/* dio_state communicated between submission path and end_io */
116struct dio {
117 int flags; /* doesn't change */
8a4c1e42
MC
118 int op;
119 int op_flags;
15c4f638 120 blk_qc_t bio_cookie;
74d46992 121 struct gendisk *bio_disk;
0dc2bc49 122 struct inode *inode;
eb28be2b
AK
123 loff_t i_size; /* i_size when submitted */
124 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 125
18772641 126 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
127
128 /* BIO completion state */
129 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
130 int page_errors; /* errno from get_user_pages() */
131 int is_async; /* is IO async ? */
7b7a8665 132 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 133 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 134 int io_error; /* IO error in completion path */
eb28be2b
AK
135 unsigned long refcount; /* direct_io_worker() and bios */
136 struct bio *bio_list; /* singly linked via bi_private */
137 struct task_struct *waiter; /* waiting task (NULL if none) */
138
139 /* AIO related stuff */
140 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
141 ssize_t result; /* IO result */
142
23aee091
JM
143 /*
144 * pages[] (and any fields placed after it) are not zeroed out at
145 * allocation time. Don't add new fields after pages[] unless you
146 * wish that they not be zeroed.
147 */
7b7a8665
CH
148 union {
149 struct page *pages[DIO_PAGES]; /* page buffer */
150 struct work_struct complete_work;/* deferred AIO completion */
151 };
6e8267f5
AK
152} ____cacheline_aligned_in_smp;
153
154static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
155
156/*
157 * How many pages are in the queue?
158 */
eb28be2b 159static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 160{
eb28be2b 161 return sdio->tail - sdio->head;
1da177e4
LT
162}
163
164/*
165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 */
ba253fbf 167static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 168{
7b2c99d1 169 ssize_t ret;
1da177e4 170
2c80929c 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 172 &sdio->from);
1da177e4 173
8a4c1e42 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
557ed1fa 175 struct page *page = ZERO_PAGE(0);
1da177e4
LT
176 /*
177 * A memory fault, but the filesystem has some outstanding
178 * mapped blocks. We need to use those blocks up to avoid
179 * leaking stale data in the file.
180 */
181 if (dio->page_errors == 0)
182 dio->page_errors = ret;
09cbfeaf 183 get_page(page);
b5810039 184 dio->pages[0] = page;
eb28be2b
AK
185 sdio->head = 0;
186 sdio->tail = 1;
7b2c99d1
AV
187 sdio->from = 0;
188 sdio->to = PAGE_SIZE;
189 return 0;
1da177e4
LT
190 }
191
192 if (ret >= 0) {
7b2c99d1
AV
193 iov_iter_advance(sdio->iter, ret);
194 ret += sdio->from;
eb28be2b 195 sdio->head = 0;
7b2c99d1
AV
196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 return 0;
1da177e4 199 }
1da177e4
LT
200 return ret;
201}
202
203/*
204 * Get another userspace page. Returns an ERR_PTR on error. Pages are
205 * buffered inside the dio so that we can call get_user_pages() against a
206 * decent number of pages, less frequently. To provide nicer use of the
207 * L1 cache.
208 */
ba253fbf 209static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 210 struct dio_submit *sdio)
1da177e4 211{
eb28be2b 212 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
213 int ret;
214
eb28be2b 215 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
216 if (ret)
217 return ERR_PTR(ret);
eb28be2b 218 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 219 }
6fcc5420 220 return dio->pages[sdio->head];
1da177e4
LT
221}
222
5a9d929d
DW
223/*
224 * Warn about a page cache invalidation failure during a direct io write.
225 */
226void dio_warn_stale_pagecache(struct file *filp)
227{
228 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
229 char pathname[128];
230 struct inode *inode = file_inode(filp);
231 char *path;
232
233 errseq_set(&inode->i_mapping->wb_err, -EIO);
234 if (__ratelimit(&_rs)) {
235 path = file_path(filp, pathname, sizeof(pathname));
236 if (IS_ERR(path))
237 path = "(unknown)";
238 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
239 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
240 current->comm);
241 }
242}
243
6d544bb4
ZB
244/**
245 * dio_complete() - called when all DIO BIO I/O has been completed
246 * @offset: the byte offset in the file of the completed operation
247 *
7b7a8665
CH
248 * This drops i_dio_count, lets interested parties know that a DIO operation
249 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
250 *
251 * It lets the filesystem know if it registered an interest earlier via
252 * get_block. Pass the private field of the map buffer_head so that
253 * filesystems can use it to hold additional state between get_block calls and
254 * dio_complete.
1da177e4 255 */
ffe51f01 256static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
1da177e4 257{
716b9bc0 258 loff_t offset = dio->iocb->ki_pos;
6d544bb4 259 ssize_t transferred = 0;
332391a9 260 int err;
6d544bb4 261
8459d86a
ZB
262 /*
263 * AIO submission can race with bio completion to get here while
264 * expecting to have the last io completed by bio completion.
265 * In that case -EIOCBQUEUED is in fact not an error we want
266 * to preserve through this call.
267 */
268 if (ret == -EIOCBQUEUED)
269 ret = 0;
270
6d544bb4
ZB
271 if (dio->result) {
272 transferred = dio->result;
273
274 /* Check for short read case */
8a4c1e42
MC
275 if ((dio->op == REQ_OP_READ) &&
276 ((offset + transferred) > dio->i_size))
6d544bb4 277 transferred = dio->i_size - offset;
4038acdb
AV
278 /* ignore EFAULT if some IO has been done */
279 if (unlikely(ret == -EFAULT) && transferred)
280 ret = 0;
6d544bb4
ZB
281 }
282
6d544bb4
ZB
283 if (ret == 0)
284 ret = dio->page_errors;
285 if (ret == 0)
286 ret = dio->io_error;
287 if (ret == 0)
288 ret = transferred;
289
5e25c269
EG
290 if (dio->end_io) {
291 // XXX: ki_pos??
292 err = dio->end_io(dio->iocb, offset, ret, dio->private);
293 if (err)
294 ret = err;
295 }
296
332391a9
LC
297 /*
298 * Try again to invalidate clean pages which might have been cached by
299 * non-direct readahead, or faulted in by get_user_pages() if the source
300 * of the write was an mmap'ed region of the file we're writing. Either
301 * one is a pretty crazy thing to do, so we don't support it 100%. If
302 * this invalidation fails, tough, the write still worked...
5e25c269
EG
303 *
304 * And this page cache invalidation has to be after dio->end_io(), as
305 * some filesystems convert unwritten extents to real allocations in
306 * end_io() when necessary, otherwise a racing buffer read would cache
307 * zeros from unwritten extents.
332391a9 308 */
ffe51f01
LC
309 if (flags & DIO_COMPLETE_INVALIDATE &&
310 ret > 0 && dio->op == REQ_OP_WRITE &&
332391a9
LC
311 dio->inode->i_mapping->nrpages) {
312 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
313 offset >> PAGE_SHIFT,
314 (offset + ret - 1) >> PAGE_SHIFT);
5a9d929d
DW
315 if (err)
316 dio_warn_stale_pagecache(dio->iocb->ki_filp);
332391a9
LC
317 }
318
ce3077ee 319 inode_dio_end(dio->inode);
fe0f07d0 320
ffe51f01 321 if (flags & DIO_COMPLETE_ASYNC) {
e2592217
CH
322 /*
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
325 * synchronous I/O.
326 */
327 dio->iocb->ki_pos += transferred;
02afc27f 328
41e817bc
MH
329 if (ret > 0 && dio->op == REQ_OP_WRITE)
330 ret = generic_write_sync(dio->iocb, ret);
04b2fa9f 331 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 332 }
40e2e973 333
7b7a8665 334 kmem_cache_free(dio_cache, dio);
6d544bb4 335 return ret;
1da177e4
LT
336}
337
7b7a8665
CH
338static void dio_aio_complete_work(struct work_struct *work)
339{
340 struct dio *dio = container_of(work, struct dio, complete_work);
341
ffe51f01 342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
7b7a8665
CH
343}
344
4e4cbee9 345static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 346
1da177e4
LT
347/*
348 * Asynchronous IO callback.
349 */
4246a0b6 350static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
351{
352 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
353 unsigned long remaining;
354 unsigned long flags;
332391a9 355 bool defer_completion = false;
1da177e4 356
1da177e4
LT
357 /* cleanup the bio */
358 dio_bio_complete(dio, bio);
0273201e 359
5eb6c7a2
ZB
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 remaining = --dio->refcount;
362 if (remaining == 1 && dio->waiter)
20258b2b 363 wake_up_process(dio->waiter);
5eb6c7a2 364 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 365
8459d86a 366 if (remaining == 0) {
332391a9
LC
367 /*
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
373 * same region.
374 */
375 if (dio->result)
376 defer_completion = dio->defer_completion ||
377 (dio->op == REQ_OP_WRITE &&
378 dio->inode->i_mapping->nrpages);
379 if (defer_completion) {
7b7a8665
CH
380 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 queue_work(dio->inode->i_sb->s_dio_done_wq,
382 &dio->complete_work);
383 } else {
ffe51f01 384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
7b7a8665 385 }
8459d86a 386 }
1da177e4
LT
387}
388
389/*
390 * The BIO completion handler simply queues the BIO up for the process-context
391 * handler.
392 *
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
395 */
4246a0b6 396static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
397{
398 struct dio *dio = bio->bi_private;
399 unsigned long flags;
400
1da177e4
LT
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 bio->bi_private = dio->bio_list;
403 dio->bio_list = bio;
5eb6c7a2 404 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
405 wake_up_process(dio->waiter);
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
407}
408
facd07b0
JB
409/**
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
facd07b0
JB
412 *
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
416 */
4055351c 417void dio_end_io(struct bio *bio)
facd07b0
JB
418{
419 struct dio *dio = bio->bi_private;
420
421 if (dio->is_async)
4246a0b6 422 dio_bio_end_aio(bio);
facd07b0 423 else
4246a0b6 424 dio_bio_end_io(bio);
facd07b0
JB
425}
426EXPORT_SYMBOL_GPL(dio_end_io);
427
ba253fbf 428static inline void
eb28be2b
AK
429dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 struct block_device *bdev,
431 sector_t first_sector, int nr_vecs)
1da177e4
LT
432{
433 struct bio *bio;
434
20d9600c 435 /*
0eb0b63c
CH
436 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
437 * we request a valid number of vectors.
20d9600c 438 */
1da177e4 439 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4 440
74d46992 441 bio_set_dev(bio, bdev);
4f024f37 442 bio->bi_iter.bi_sector = first_sector;
8a4c1e42 443 bio_set_op_attrs(bio, dio->op, dio->op_flags);
1da177e4
LT
444 if (dio->is_async)
445 bio->bi_end_io = dio_bio_end_aio;
446 else
447 bio->bi_end_io = dio_bio_end_io;
448
45d06cf7
JA
449 bio->bi_write_hint = dio->iocb->ki_hint;
450
eb28be2b
AK
451 sdio->bio = bio;
452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
453}
454
455/*
456 * In the AIO read case we speculatively dirty the pages before starting IO.
457 * During IO completion, any of these pages which happen to have been written
458 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
459 *
460 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 461 */
ba253fbf 462static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 463{
eb28be2b 464 struct bio *bio = sdio->bio;
5eb6c7a2 465 unsigned long flags;
1da177e4
LT
466
467 bio->bi_private = dio;
5eb6c7a2
ZB
468
469 spin_lock_irqsave(&dio->bio_lock, flags);
470 dio->refcount++;
471 spin_unlock_irqrestore(&dio->bio_lock, flags);
472
8a4c1e42 473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
1da177e4 474 bio_set_pages_dirty(bio);
5eb6c7a2 475
74d46992 476 dio->bio_disk = bio->bi_disk;
c1c53460 477
15c4f638 478 if (sdio->submit_io) {
8a4c1e42 479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
15c4f638 480 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 481 } else
4e49ea4a 482 dio->bio_cookie = submit_bio(bio);
1da177e4 483
eb28be2b
AK
484 sdio->bio = NULL;
485 sdio->boundary = 0;
486 sdio->logical_offset_in_bio = 0;
1da177e4
LT
487}
488
489/*
490 * Release any resources in case of a failure
491 */
ba253fbf 492static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 493{
7b2c99d1 494 while (sdio->head < sdio->tail)
09cbfeaf 495 put_page(dio->pages[sdio->head++]);
1da177e4
LT
496}
497
498/*
0273201e
ZB
499 * Wait for the next BIO to complete. Remove it and return it. NULL is
500 * returned once all BIOs have been completed. This must only be called once
501 * all bios have been issued so that dio->refcount can only decrease. This
502 * requires that that the caller hold a reference on the dio.
1da177e4
LT
503 */
504static struct bio *dio_await_one(struct dio *dio)
505{
506 unsigned long flags;
0273201e 507 struct bio *bio = NULL;
1da177e4
LT
508
509 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
510
511 /*
512 * Wait as long as the list is empty and there are bios in flight. bio
513 * completion drops the count, maybe adds to the list, and wakes while
514 * holding the bio_lock so we don't need set_current_state()'s barrier
515 * and can call it after testing our condition.
516 */
517 while (dio->refcount > 1 && dio->bio_list == NULL) {
518 __set_current_state(TASK_UNINTERRUPTIBLE);
519 dio->waiter = current;
520 spin_unlock_irqrestore(&dio->bio_lock, flags);
c43c83a2 521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
0a1b8b87 522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
15c4f638 523 io_schedule();
5eb6c7a2
ZB
524 /* wake up sets us TASK_RUNNING */
525 spin_lock_irqsave(&dio->bio_lock, flags);
526 dio->waiter = NULL;
1da177e4 527 }
0273201e
ZB
528 if (dio->bio_list) {
529 bio = dio->bio_list;
530 dio->bio_list = bio->bi_private;
531 }
1da177e4
LT
532 spin_unlock_irqrestore(&dio->bio_lock, flags);
533 return bio;
534}
535
536/*
537 * Process one completed BIO. No locks are held.
538 */
4e4cbee9 539static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
1da177e4 540{
cb34e057 541 struct bio_vec *bvec;
4e4cbee9 542 blk_status_t err = bio->bi_status;
1da177e4 543
03a07c92
GR
544 if (err) {
545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
546 dio->io_error = -EAGAIN;
547 else
548 dio->io_error = -EIO;
549 }
1da177e4 550
8a4c1e42 551 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
7ddc971f 552 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 553 } else {
6dc4f100
ML
554 struct bvec_iter_all iter_all;
555
2b070cfe 556 bio_for_each_segment_all(bvec, bio, iter_all) {
cb34e057 557 struct page *page = bvec->bv_page;
1da177e4 558
8a4c1e42 559 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
53cbf3b1 560 dio->should_dirty)
1da177e4 561 set_page_dirty_lock(page);
09cbfeaf 562 put_page(page);
1da177e4
LT
563 }
564 bio_put(bio);
565 }
9b81c842 566 return err;
1da177e4
LT
567}
568
569/*
0273201e
ZB
570 * Wait on and process all in-flight BIOs. This must only be called once
571 * all bios have been issued so that the refcount can only decrease.
572 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 573 * errors are propagated through dio->io_error and should be propagated via
0273201e 574 * dio_complete().
1da177e4 575 */
6d544bb4 576static void dio_await_completion(struct dio *dio)
1da177e4 577{
0273201e
ZB
578 struct bio *bio;
579 do {
580 bio = dio_await_one(dio);
581 if (bio)
582 dio_bio_complete(dio, bio);
583 } while (bio);
1da177e4
LT
584}
585
586/*
587 * A really large O_DIRECT read or write can generate a lot of BIOs. So
588 * to keep the memory consumption sane we periodically reap any completed BIOs
589 * during the BIO generation phase.
590 *
591 * This also helps to limit the peak amount of pinned userspace memory.
592 */
ba253fbf 593static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
594{
595 int ret = 0;
596
eb28be2b 597 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
598 while (dio->bio_list) {
599 unsigned long flags;
600 struct bio *bio;
601 int ret2;
602
603 spin_lock_irqsave(&dio->bio_lock, flags);
604 bio = dio->bio_list;
605 dio->bio_list = bio->bi_private;
606 spin_unlock_irqrestore(&dio->bio_lock, flags);
4e4cbee9 607 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
1da177e4
LT
608 if (ret == 0)
609 ret = ret2;
610 }
eb28be2b 611 sdio->reap_counter = 0;
1da177e4
LT
612 }
613 return ret;
614}
615
7b7a8665
CH
616/*
617 * Create workqueue for deferred direct IO completions. We allocate the
618 * workqueue when it's first needed. This avoids creating workqueue for
619 * filesystems that don't need it and also allows us to create the workqueue
620 * late enough so the we can include s_id in the name of the workqueue.
621 */
ec1b8260 622int sb_init_dio_done_wq(struct super_block *sb)
7b7a8665 623{
45150c43 624 struct workqueue_struct *old;
7b7a8665
CH
625 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
626 WQ_MEM_RECLAIM, 0,
627 sb->s_id);
628 if (!wq)
629 return -ENOMEM;
630 /*
631 * This has to be atomic as more DIOs can race to create the workqueue
632 */
45150c43 633 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 634 /* Someone created workqueue before us? Free ours... */
45150c43 635 if (old)
7b7a8665
CH
636 destroy_workqueue(wq);
637 return 0;
638}
639
640static int dio_set_defer_completion(struct dio *dio)
641{
642 struct super_block *sb = dio->inode->i_sb;
643
644 if (dio->defer_completion)
645 return 0;
646 dio->defer_completion = true;
647 if (!sb->s_dio_done_wq)
648 return sb_init_dio_done_wq(sb);
649 return 0;
650}
651
1da177e4
LT
652/*
653 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 654 * of available blocks at sdio->blocks_available. These are in units of the
93407472 655 * fs blocksize, i_blocksize(inode).
1da177e4
LT
656 *
657 * The fs is allowed to map lots of blocks at once. If it wants to do that,
658 * it uses the passed inode-relative block number as the file offset, as usual.
659 *
1d8fa7a2 660 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
661 * has remaining to do. The fs should not map more than this number of blocks.
662 *
663 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
664 * indicate how much contiguous disk space has been made available at
665 * bh->b_blocknr.
666 *
667 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
668 * This isn't very efficient...
669 *
670 * In the case of filesystem holes: the fs may return an arbitrarily-large
671 * hole by returning an appropriate value in b_size and by clearing
672 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 673 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 674 */
18772641
AK
675static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
676 struct buffer_head *map_bh)
1da177e4
LT
677{
678 int ret;
1da177e4 679 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 680 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 681 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 682 int create;
ab73857e 683 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
8b9433eb 684 loff_t i_size;
1da177e4
LT
685
686 /*
687 * If there was a memory error and we've overwritten all the
688 * mapped blocks then we can now return that memory error
689 */
690 ret = dio->page_errors;
691 if (ret == 0) {
eb28be2b
AK
692 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
693 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
694 fs_endblk = (sdio->final_block_in_request - 1) >>
695 sdio->blkfactor;
696 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 697
3c674e74 698 map_bh->b_state = 0;
ab73857e 699 map_bh->b_size = fs_count << i_blkbits;
3c674e74 700
5fe878ae 701 /*
9ecd10b7
EG
702 * For writes that could fill holes inside i_size on a
703 * DIO_SKIP_HOLES filesystem we forbid block creations: only
704 * overwrites are permitted. We will return early to the caller
705 * once we see an unmapped buffer head returned, and the caller
706 * will fall back to buffered I/O.
5fe878ae
CH
707 *
708 * Otherwise the decision is left to the get_blocks method,
709 * which may decide to handle it or also return an unmapped
710 * buffer head.
711 */
8a4c1e42 712 create = dio->op == REQ_OP_WRITE;
5fe878ae 713 if (dio->flags & DIO_SKIP_HOLES) {
8b9433eb
EF
714 i_size = i_size_read(dio->inode);
715 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
1da177e4 716 create = 0;
1da177e4 717 }
3c674e74 718
eb28be2b 719 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 720 map_bh, create);
18772641
AK
721
722 /* Store for completion */
723 dio->private = map_bh->b_private;
7b7a8665
CH
724
725 if (ret == 0 && buffer_defer_completion(map_bh))
726 ret = dio_set_defer_completion(dio);
1da177e4
LT
727 }
728 return ret;
729}
730
731/*
732 * There is no bio. Make one now.
733 */
ba253fbf
AK
734static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
735 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
736{
737 sector_t sector;
738 int ret, nr_pages;
739
eb28be2b 740 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
741 if (ret)
742 goto out;
eb28be2b 743 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 744 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 745 BUG_ON(nr_pages <= 0);
18772641 746 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 747 sdio->boundary = 0;
1da177e4
LT
748out:
749 return ret;
750}
751
752/*
753 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
754 * that was successful then update final_block_in_bio and take a ref against
755 * the just-added page.
756 *
757 * Return zero on success. Non-zero means the caller needs to start a new BIO.
758 */
ba253fbf 759static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
760{
761 int ret;
762
eb28be2b
AK
763 ret = bio_add_page(sdio->bio, sdio->cur_page,
764 sdio->cur_page_len, sdio->cur_page_offset);
765 if (ret == sdio->cur_page_len) {
1da177e4
LT
766 /*
767 * Decrement count only, if we are done with this page
768 */
eb28be2b
AK
769 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
770 sdio->pages_in_io--;
09cbfeaf 771 get_page(sdio->cur_page);
eb28be2b
AK
772 sdio->final_block_in_bio = sdio->cur_page_block +
773 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
774 ret = 0;
775 } else {
776 ret = 1;
777 }
778 return ret;
779}
780
781/*
782 * Put cur_page under IO. The section of cur_page which is described by
783 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
784 * starts on-disk at cur_page_block.
785 *
786 * We take a ref against the page here (on behalf of its presence in the bio).
787 *
788 * The caller of this function is responsible for removing cur_page from the
789 * dio, and for dropping the refcount which came from that presence.
790 */
ba253fbf
AK
791static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
792 struct buffer_head *map_bh)
1da177e4
LT
793{
794 int ret = 0;
795
eb28be2b
AK
796 if (sdio->bio) {
797 loff_t cur_offset = sdio->cur_page_fs_offset;
798 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 799 sdio->bio->bi_iter.bi_size;
c2c6ca41 800
1da177e4 801 /*
c2c6ca41
JB
802 * See whether this new request is contiguous with the old.
803 *
f0940cee
NK
804 * Btrfs cannot handle having logically non-contiguous requests
805 * submitted. For example if you have
c2c6ca41
JB
806 *
807 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 808 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
809 *
810 * We cannot submit those pages together as one BIO. So if our
811 * current logical offset in the file does not equal what would
812 * be the next logical offset in the bio, submit the bio we
813 * have.
1da177e4 814 */
eb28be2b 815 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 816 cur_offset != bio_next_offset)
eb28be2b 817 dio_bio_submit(dio, sdio);
1da177e4
LT
818 }
819
eb28be2b 820 if (sdio->bio == NULL) {
18772641 821 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
822 if (ret)
823 goto out;
824 }
825
eb28be2b
AK
826 if (dio_bio_add_page(sdio) != 0) {
827 dio_bio_submit(dio, sdio);
18772641 828 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 829 if (ret == 0) {
eb28be2b 830 ret = dio_bio_add_page(sdio);
1da177e4
LT
831 BUG_ON(ret != 0);
832 }
833 }
834out:
835 return ret;
836}
837
838/*
839 * An autonomous function to put a chunk of a page under deferred IO.
840 *
841 * The caller doesn't actually know (or care) whether this piece of page is in
842 * a BIO, or is under IO or whatever. We just take care of all possible
843 * situations here. The separation between the logic of do_direct_IO() and
844 * that of submit_page_section() is important for clarity. Please don't break.
845 *
846 * The chunk of page starts on-disk at blocknr.
847 *
848 * We perform deferred IO, by recording the last-submitted page inside our
849 * private part of the dio structure. If possible, we just expand the IO
850 * across that page here.
851 *
852 * If that doesn't work out then we put the old page into the bio and add this
853 * page to the dio instead.
854 */
ba253fbf 855static inline int
eb28be2b 856submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
857 unsigned offset, unsigned len, sector_t blocknr,
858 struct buffer_head *map_bh)
1da177e4
LT
859{
860 int ret = 0;
861
8a4c1e42 862 if (dio->op == REQ_OP_WRITE) {
98c4d57d
AM
863 /*
864 * Read accounting is performed in submit_bio()
865 */
866 task_io_account_write(len);
867 }
868
1da177e4
LT
869 /*
870 * Can we just grow the current page's presence in the dio?
871 */
eb28be2b
AK
872 if (sdio->cur_page == page &&
873 sdio->cur_page_offset + sdio->cur_page_len == offset &&
874 sdio->cur_page_block +
875 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
876 sdio->cur_page_len += len;
1da177e4
LT
877 goto out;
878 }
879
880 /*
881 * If there's a deferred page already there then send it.
882 */
eb28be2b 883 if (sdio->cur_page) {
18772641 884 ret = dio_send_cur_page(dio, sdio, map_bh);
09cbfeaf 885 put_page(sdio->cur_page);
eb28be2b 886 sdio->cur_page = NULL;
1da177e4 887 if (ret)
b1058b98 888 return ret;
1da177e4
LT
889 }
890
09cbfeaf 891 get_page(page); /* It is in dio */
eb28be2b
AK
892 sdio->cur_page = page;
893 sdio->cur_page_offset = offset;
894 sdio->cur_page_len = len;
895 sdio->cur_page_block = blocknr;
896 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 897out:
b1058b98
JK
898 /*
899 * If sdio->boundary then we want to schedule the IO now to
900 * avoid metadata seeks.
901 */
902 if (sdio->boundary) {
903 ret = dio_send_cur_page(dio, sdio, map_bh);
899f0429
AG
904 if (sdio->bio)
905 dio_bio_submit(dio, sdio);
09cbfeaf 906 put_page(sdio->cur_page);
b1058b98
JK
907 sdio->cur_page = NULL;
908 }
1da177e4
LT
909 return ret;
910}
911
1da177e4
LT
912/*
913 * If we are not writing the entire block and get_block() allocated
914 * the block for us, we need to fill-in the unused portion of the
915 * block with zeros. This happens only if user-buffer, fileoffset or
916 * io length is not filesystem block-size multiple.
917 *
918 * `end' is zero if we're doing the start of the IO, 1 at the end of the
919 * IO.
920 */
ba253fbf
AK
921static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
922 int end, struct buffer_head *map_bh)
1da177e4
LT
923{
924 unsigned dio_blocks_per_fs_block;
925 unsigned this_chunk_blocks; /* In dio_blocks */
926 unsigned this_chunk_bytes;
927 struct page *page;
928
eb28be2b 929 sdio->start_zero_done = 1;
18772641 930 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
931 return;
932
eb28be2b
AK
933 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
934 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
935
936 if (!this_chunk_blocks)
937 return;
938
939 /*
940 * We need to zero out part of an fs block. It is either at the
941 * beginning or the end of the fs block.
942 */
943 if (end)
944 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
945
eb28be2b 946 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 947
557ed1fa 948 page = ZERO_PAGE(0);
eb28be2b 949 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 950 sdio->next_block_for_io, map_bh))
1da177e4
LT
951 return;
952
eb28be2b 953 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
954}
955
956/*
957 * Walk the user pages, and the file, mapping blocks to disk and generating
958 * a sequence of (page,offset,len,block) mappings. These mappings are injected
959 * into submit_page_section(), which takes care of the next stage of submission
960 *
961 * Direct IO against a blockdev is different from a file. Because we can
962 * happily perform page-sized but 512-byte aligned IOs. It is important that
963 * blockdev IO be able to have fine alignment and large sizes.
964 *
1d8fa7a2 965 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
966 * with the size of IO which is permitted at this offset and this i_blkbits.
967 *
968 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 969 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
970 * fine alignment but still allows this function to work in PAGE_SIZE units.
971 */
18772641
AK
972static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
973 struct buffer_head *map_bh)
1da177e4 974{
eb28be2b 975 const unsigned blkbits = sdio->blkbits;
dd545b52 976 const unsigned i_blkbits = blkbits + sdio->blkfactor;
1da177e4
LT
977 int ret = 0;
978
eb28be2b 979 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
980 struct page *page;
981 size_t from, to;
6fcc5420
BH
982
983 page = dio_get_page(dio, sdio);
1da177e4
LT
984 if (IS_ERR(page)) {
985 ret = PTR_ERR(page);
986 goto out;
987 }
6fcc5420
BH
988 from = sdio->head ? 0 : sdio->from;
989 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
990 sdio->head++;
1da177e4 991
7b2c99d1 992 while (from < to) {
1da177e4
LT
993 unsigned this_chunk_bytes; /* # of bytes mapped */
994 unsigned this_chunk_blocks; /* # of blocks */
995 unsigned u;
996
eb28be2b 997 if (sdio->blocks_available == 0) {
1da177e4
LT
998 /*
999 * Need to go and map some more disk
1000 */
1001 unsigned long blkmask;
1002 unsigned long dio_remainder;
1003
18772641 1004 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4 1005 if (ret) {
09cbfeaf 1006 put_page(page);
1da177e4
LT
1007 goto out;
1008 }
1009 if (!buffer_mapped(map_bh))
1010 goto do_holes;
1011
eb28be2b 1012 sdio->blocks_available =
f734c89c 1013 map_bh->b_size >> blkbits;
eb28be2b
AK
1014 sdio->next_block_for_io =
1015 map_bh->b_blocknr << sdio->blkfactor;
f734c89c
JK
1016 if (buffer_new(map_bh)) {
1017 clean_bdev_aliases(
1018 map_bh->b_bdev,
1019 map_bh->b_blocknr,
dd545b52 1020 map_bh->b_size >> i_blkbits);
f734c89c 1021 }
1da177e4 1022
eb28be2b 1023 if (!sdio->blkfactor)
1da177e4
LT
1024 goto do_holes;
1025
eb28be2b
AK
1026 blkmask = (1 << sdio->blkfactor) - 1;
1027 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
1028
1029 /*
1030 * If we are at the start of IO and that IO
1031 * starts partway into a fs-block,
1032 * dio_remainder will be non-zero. If the IO
1033 * is a read then we can simply advance the IO
1034 * cursor to the first block which is to be
1035 * read. But if the IO is a write and the
1036 * block was newly allocated we cannot do that;
1037 * the start of the fs block must be zeroed out
1038 * on-disk
1039 */
1040 if (!buffer_new(map_bh))
eb28be2b
AK
1041 sdio->next_block_for_io += dio_remainder;
1042 sdio->blocks_available -= dio_remainder;
1da177e4
LT
1043 }
1044do_holes:
1045 /* Handle holes */
1046 if (!buffer_mapped(map_bh)) {
35dc8161 1047 loff_t i_size_aligned;
1da177e4
LT
1048
1049 /* AKPM: eargh, -ENOTBLK is a hack */
8a4c1e42 1050 if (dio->op == REQ_OP_WRITE) {
09cbfeaf 1051 put_page(page);
1da177e4
LT
1052 return -ENOTBLK;
1053 }
1054
35dc8161
JM
1055 /*
1056 * Be sure to account for a partial block as the
1057 * last block in the file
1058 */
1059 i_size_aligned = ALIGN(i_size_read(dio->inode),
1060 1 << blkbits);
eb28be2b 1061 if (sdio->block_in_file >=
35dc8161 1062 i_size_aligned >> blkbits) {
1da177e4 1063 /* We hit eof */
09cbfeaf 1064 put_page(page);
1da177e4
LT
1065 goto out;
1066 }
7b2c99d1 1067 zero_user(page, from, 1 << blkbits);
eb28be2b 1068 sdio->block_in_file++;
7b2c99d1 1069 from += 1 << blkbits;
3320c60b 1070 dio->result += 1 << blkbits;
1da177e4
LT
1071 goto next_block;
1072 }
1073
1074 /*
1075 * If we're performing IO which has an alignment which
1076 * is finer than the underlying fs, go check to see if
1077 * we must zero out the start of this block.
1078 */
eb28be2b 1079 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1080 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1081
1082 /*
1083 * Work out, in this_chunk_blocks, how much disk we
1084 * can add to this page
1085 */
eb28be2b 1086 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1087 u = (to - from) >> blkbits;
1da177e4
LT
1088 if (this_chunk_blocks > u)
1089 this_chunk_blocks = u;
eb28be2b 1090 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1091 if (this_chunk_blocks > u)
1092 this_chunk_blocks = u;
1093 this_chunk_bytes = this_chunk_blocks << blkbits;
1094 BUG_ON(this_chunk_bytes == 0);
1095
092c8d46
JK
1096 if (this_chunk_blocks == sdio->blocks_available)
1097 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1098 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1099 from,
eb28be2b 1100 this_chunk_bytes,
18772641
AK
1101 sdio->next_block_for_io,
1102 map_bh);
1da177e4 1103 if (ret) {
09cbfeaf 1104 put_page(page);
1da177e4
LT
1105 goto out;
1106 }
eb28be2b 1107 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1108
eb28be2b 1109 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1110 from += this_chunk_bytes;
1111 dio->result += this_chunk_bytes;
eb28be2b 1112 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1113next_block:
eb28be2b
AK
1114 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1115 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1116 break;
1117 }
1118
1119 /* Drop the ref which was taken in get_user_pages() */
09cbfeaf 1120 put_page(page);
1da177e4
LT
1121 }
1122out:
1123 return ret;
1124}
1125
847cc637 1126static inline int drop_refcount(struct dio *dio)
1da177e4 1127{
847cc637 1128 int ret2;
5eb6c7a2 1129 unsigned long flags;
1da177e4 1130
8459d86a
ZB
1131 /*
1132 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1133 * operation. AIO can if it was a broken operation described above or
1134 * in fact if all the bios race to complete before we get here. In
1135 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1136 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1137 *
1138 * This is managed by the bio_lock instead of being an atomic_t so that
1139 * completion paths can drop their ref and use the remaining count to
1140 * decide to wake the submission path atomically.
8459d86a 1141 */
5eb6c7a2
ZB
1142 spin_lock_irqsave(&dio->bio_lock, flags);
1143 ret2 = --dio->refcount;
1144 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1145 return ret2;
1da177e4
LT
1146}
1147
eafdc7d1
CH
1148/*
1149 * This is a library function for use by filesystem drivers.
1150 *
1151 * The locking rules are governed by the flags parameter:
1152 * - if the flags value contains DIO_LOCKING we use a fancy locking
1153 * scheme for dumb filesystems.
1154 * For writes this function is called under i_mutex and returns with
1155 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1156 * taken and dropped again before returning.
eafdc7d1
CH
1157 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1158 * internal locking but rather rely on the filesystem to synchronize
1159 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1160 *
1161 * To help with locking against truncate we incremented the i_dio_count
1162 * counter before starting direct I/O, and decrement it once we are done.
1163 * Truncate can wait for it to reach zero to provide exclusion. It is
1164 * expected that filesystem provide exclusion between new direct I/O
1165 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1166 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1167 *
1168 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1169 * is always inlined. Otherwise gcc is unable to split the structure into
1170 * individual fields and will generate much worse code. This is important
1171 * for the whole file.
eafdc7d1 1172 */
65dd2aa9 1173static inline ssize_t
17f8c842
OS
1174do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1175 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1176 get_block_t get_block, dio_iodone_t end_io,
17f8c842 1177 dio_submit_t submit_io, int flags)
1da177e4 1178{
6aa7de05 1179 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
ab73857e 1180 unsigned blkbits = i_blkbits;
1da177e4
LT
1181 unsigned blocksize_mask = (1 << blkbits) - 1;
1182 ssize_t retval = -EINVAL;
1c0ff0f1 1183 const size_t count = iov_iter_count(iter);
c8b8e32d 1184 loff_t offset = iocb->ki_pos;
1c0ff0f1 1185 const loff_t end = offset + count;
1da177e4 1186 struct dio *dio;
eb28be2b 1187 struct dio_submit sdio = { 0, };
847cc637 1188 struct buffer_head map_bh = { 0, };
647d1e4c 1189 struct blk_plug plug;
886a3911 1190 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1191
65dd2aa9
AK
1192 /*
1193 * Avoid references to bdev if not absolutely needed to give
1194 * the early prefetch in the caller enough time.
1195 */
1da177e4 1196
886a3911 1197 if (align & blocksize_mask) {
1da177e4 1198 if (bdev)
65dd2aa9 1199 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1200 blocksize_mask = (1 << blkbits) - 1;
886a3911 1201 if (align & blocksize_mask)
1da177e4
LT
1202 goto out;
1203 }
1204
f9b5570d 1205 /* watch out for a 0 len io from a tricksy fs */
1c0ff0f1 1206 if (iov_iter_rw(iter) == READ && !count)
f9b5570d
CH
1207 return 0;
1208
6e8267f5 1209 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1210 retval = -ENOMEM;
1211 if (!dio)
1212 goto out;
23aee091
JM
1213 /*
1214 * Believe it or not, zeroing out the page array caused a .5%
1215 * performance regression in a database benchmark. So, we take
1216 * care to only zero out what's needed.
1217 */
1218 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1219
5fe878ae
CH
1220 dio->flags = flags;
1221 if (dio->flags & DIO_LOCKING) {
17f8c842 1222 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1223 struct address_space *mapping =
1224 iocb->ki_filp->f_mapping;
1da177e4 1225
5fe878ae 1226 /* will be released by direct_io_worker */
5955102c 1227 inode_lock(inode);
1da177e4
LT
1228
1229 retval = filemap_write_and_wait_range(mapping, offset,
1230 end - 1);
1231 if (retval) {
5955102c 1232 inode_unlock(inode);
6e8267f5 1233 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1234 goto out;
1235 }
1da177e4 1236 }
1da177e4
LT
1237 }
1238
74cedf9b
JK
1239 /* Once we sampled i_size check for reads beyond EOF */
1240 dio->i_size = i_size_read(inode);
1241 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1242 if (dio->flags & DIO_LOCKING)
5955102c 1243 inode_unlock(inode);
74cedf9b 1244 kmem_cache_free(dio_cache, dio);
2d4594ac 1245 retval = 0;
74cedf9b
JK
1246 goto out;
1247 }
1248
1da177e4 1249 /*
60392573
CH
1250 * For file extending writes updating i_size before data writeouts
1251 * complete can expose uninitialized blocks in dumb filesystems.
1252 * In that case we need to wait for I/O completion even if asked
1253 * for an asynchronous write.
1da177e4 1254 */
60392573
CH
1255 if (is_sync_kiocb(iocb))
1256 dio->is_async = false;
c8f4c36f 1257 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1258 dio->is_async = false;
1259 else
1260 dio->is_async = true;
1261
847cc637 1262 dio->inode = inode;
8a4c1e42
MC
1263 if (iov_iter_rw(iter) == WRITE) {
1264 dio->op = REQ_OP_WRITE;
70fd7614 1265 dio->op_flags = REQ_SYNC | REQ_IDLE;
03a07c92
GR
1266 if (iocb->ki_flags & IOCB_NOWAIT)
1267 dio->op_flags |= REQ_NOWAIT;
8a4c1e42
MC
1268 } else {
1269 dio->op = REQ_OP_READ;
1270 }
d1e36282
JA
1271 if (iocb->ki_flags & IOCB_HIPRI)
1272 dio->op_flags |= REQ_HIPRI;
02afc27f
CH
1273
1274 /*
1275 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1276 * so that we can call ->fsync.
1277 */
332391a9
LC
1278 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1279 retval = 0;
d9c10e5b 1280 if (iocb->ki_flags & IOCB_DSYNC)
332391a9
LC
1281 retval = dio_set_defer_completion(dio);
1282 else if (!dio->inode->i_sb->s_dio_done_wq) {
1283 /*
1284 * In case of AIO write racing with buffered read we
1285 * need to defer completion. We can't decide this now,
1286 * however the workqueue needs to be initialized here.
1287 */
1288 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1289 }
02afc27f
CH
1290 if (retval) {
1291 /*
1292 * We grab i_mutex only for reads so we don't have
1293 * to release it here
1294 */
1295 kmem_cache_free(dio_cache, dio);
1296 goto out;
1297 }
1298 }
1299
1300 /*
1301 * Will be decremented at I/O completion time.
1302 */
ce3077ee 1303 inode_dio_begin(inode);
02afc27f
CH
1304
1305 retval = 0;
847cc637 1306 sdio.blkbits = blkbits;
ab73857e 1307 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1308 sdio.block_in_file = offset >> blkbits;
1309
1310 sdio.get_block = get_block;
1311 dio->end_io = end_io;
1312 sdio.submit_io = submit_io;
1313 sdio.final_block_in_bio = -1;
1314 sdio.next_block_for_io = -1;
1315
1316 dio->iocb = iocb;
847cc637
AK
1317
1318 spin_lock_init(&dio->bio_lock);
1319 dio->refcount = 1;
1320
00e23707 1321 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
7b2c99d1 1322 sdio.iter = iter;
1c0ff0f1 1323 sdio.final_block_in_request = end >> blkbits;
7b2c99d1 1324
847cc637
AK
1325 /*
1326 * In case of non-aligned buffers, we may need 2 more
1327 * pages since we need to zero out first and last block.
1328 */
1329 if (unlikely(sdio.blkfactor))
1330 sdio.pages_in_io = 2;
1331
f67da30c 1332 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1333
647d1e4c
FW
1334 blk_start_plug(&plug);
1335
7b2c99d1
AV
1336 retval = do_direct_IO(dio, &sdio, &map_bh);
1337 if (retval)
1338 dio_cleanup(dio, &sdio);
847cc637
AK
1339
1340 if (retval == -ENOTBLK) {
1341 /*
1342 * The remaining part of the request will be
1343 * be handled by buffered I/O when we return
1344 */
1345 retval = 0;
1346 }
1347 /*
1348 * There may be some unwritten disk at the end of a part-written
1349 * fs-block-sized block. Go zero that now.
1350 */
1351 dio_zero_block(dio, &sdio, 1, &map_bh);
1352
1353 if (sdio.cur_page) {
1354 ssize_t ret2;
1355
1356 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1357 if (retval == 0)
1358 retval = ret2;
09cbfeaf 1359 put_page(sdio.cur_page);
847cc637
AK
1360 sdio.cur_page = NULL;
1361 }
1362 if (sdio.bio)
1363 dio_bio_submit(dio, &sdio);
1364
647d1e4c
FW
1365 blk_finish_plug(&plug);
1366
847cc637
AK
1367 /*
1368 * It is possible that, we return short IO due to end of file.
1369 * In that case, we need to release all the pages we got hold on.
1370 */
1371 dio_cleanup(dio, &sdio);
1372
1373 /*
1374 * All block lookups have been performed. For READ requests
1375 * we can let i_mutex go now that its achieved its purpose
1376 * of protecting us from looking up uninitialized blocks.
1377 */
17f8c842 1378 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
5955102c 1379 inode_unlock(dio->inode);
847cc637
AK
1380
1381 /*
1382 * The only time we want to leave bios in flight is when a successful
1383 * partial aio read or full aio write have been setup. In that case
1384 * bio completion will call aio_complete. The only time it's safe to
1385 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1386 * This had *better* be the only place that raises -EIOCBQUEUED.
1387 */
1388 BUG_ON(retval == -EIOCBQUEUED);
1389 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1390 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1391 retval = -EIOCBQUEUED;
af436472 1392 else
847cc637
AK
1393 dio_await_completion(dio);
1394
1395 if (drop_refcount(dio) == 0) {
ffe51f01 1396 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
847cc637
AK
1397 } else
1398 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1399
7bb46a67
NP
1400out:
1401 return retval;
1402}
65dd2aa9 1403
17f8c842
OS
1404ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1405 struct block_device *bdev, struct iov_iter *iter,
c8b8e32d 1406 get_block_t get_block,
17f8c842
OS
1407 dio_iodone_t end_io, dio_submit_t submit_io,
1408 int flags)
65dd2aa9
AK
1409{
1410 /*
1411 * The block device state is needed in the end to finally
1412 * submit everything. Since it's likely to be cache cold
1413 * prefetch it here as first thing to hide some of the
1414 * latency.
1415 *
1416 * Attempt to prefetch the pieces we likely need later.
1417 */
1418 prefetch(&bdev->bd_disk->part_tbl);
1419 prefetch(bdev->bd_queue);
1420 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1421
c8b8e32d 1422 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
17f8c842 1423 end_io, submit_io, flags);
65dd2aa9
AK
1424}
1425
1da177e4 1426EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1427
1428static __init int dio_init(void)
1429{
1430 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1431 return 0;
1432}
1433module_init(dio_init)