]> git.ipfire.org Git - people/ms/linux.git/blame - fs/ext4/inode.c
new helper: file_inode(file)
[people/ms/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
f5ab0d1f 486/*
e35fd660 487 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 488 * and returns if the blocks are already mapped.
f5ab0d1f 489 *
f5ab0d1f
MC
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
492 * mapped.
493 *
e35fd660
TT
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
496 * based files
497 *
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 504 * that case, buffer head is unmapped
f5ab0d1f
MC
505 *
506 * It returns the error in case of allocation failure.
507 */
e35fd660
TT
508int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
510{
511 int retval;
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
4df3d265 517 /*
b920c755
TT
518 * Try to see if we can get the block without requesting a new
519 * file system block.
4df3d265 520 */
729f52c6
ZL
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 526 } else {
a4e5d88b
DM
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 }
729f52c6
ZL
530 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 532
e35fd660 533 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
534 int ret;
535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
539 */
540 down_write((&EXT4_I(inode)->i_data_sem));
541 goto delayed_mapped;
542 }
543 ret = check_block_validity(inode, map);
6fd058f7
TT
544 if (ret != 0)
545 return ret;
546 }
547
f5ab0d1f 548 /* If it is only a block(s) look up */
c2177057 549 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
550 return retval;
551
552 /*
553 * Returns if the blocks have already allocated
554 *
555 * Note that if blocks have been preallocated
df3ab170 556 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
557 * with buffer head unmapped.
558 */
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
560 return retval;
561
2a8964d6
AK
562 /*
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
571 */
e35fd660 572 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 573
4df3d265 574 /*
f5ab0d1f
MC
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
4df3d265
AK
579 */
580 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
581
582 /*
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
587 */
c2177057 588 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 589 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
12e9b892 594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 596 } else {
e35fd660 597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 598
e35fd660 599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
19f5fb7a 605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 606 }
d2a17637 607
5f634d06
AK
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
1296cc85 615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
5356f261 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 619 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 620
51865fda
ZL
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 int ret;
51865fda
ZL
623delayed_mapped:
624 /* delayed allocation blocks has been allocated */
625 ret = ext4_es_remove_extent(inode, map->m_lblk,
626 map->m_len);
627 if (ret < 0)
628 retval = ret;
629 }
5356f261
AK
630 }
631
4df3d265 632 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 634 int ret = check_block_validity(inode, map);
6fd058f7
TT
635 if (ret != 0)
636 return ret;
637 }
0e855ac8
AK
638 return retval;
639}
640
f3bd1f3f
MC
641/* Maximum number of blocks we map for direct IO at once. */
642#define DIO_MAX_BLOCKS 4096
643
2ed88685
TT
644static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 struct buffer_head *bh, int flags)
ac27a0ec 646{
3e4fdaf8 647 handle_t *handle = ext4_journal_current_handle();
2ed88685 648 struct ext4_map_blocks map;
7fb5409d 649 int ret = 0, started = 0;
f3bd1f3f 650 int dio_credits;
ac27a0ec 651
46c7f254
TM
652 if (ext4_has_inline_data(inode))
653 return -ERANGE;
654
2ed88685
TT
655 map.m_lblk = iblock;
656 map.m_len = bh->b_size >> inode->i_blkbits;
657
8b0f165f 658 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 659 /* Direct IO write... */
2ed88685
TT
660 if (map.m_len > DIO_MAX_BLOCKS)
661 map.m_len = DIO_MAX_BLOCKS;
662 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 663 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
2ed88685
TT
710 if (err < 0)
711 *errp = err;
712 if (err <= 0)
713 return NULL;
2ed88685
TT
714
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
716 if (!bh) {
717 *errp = -EIO;
718 return NULL;
ac27a0ec 719 }
2ed88685
TT
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
ac27a0ec 723
2ed88685
TT
724 /*
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
729 * problem.
730 */
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
ac27a0ec 737 }
2ed88685
TT
738 unlock_buffer(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
741 if (!fatal)
742 fatal = err;
743 } else {
744 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 745 }
2ed88685
TT
746 if (fatal) {
747 *errp = fatal;
748 brelse(bh);
749 bh = NULL;
750 }
751 return bh;
ac27a0ec
DK
752}
753
617ba13b 754struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *err)
ac27a0ec 756{
af5bc92d 757 struct buffer_head *bh;
ac27a0ec 758
617ba13b 759 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
760 if (!bh)
761 return bh;
762 if (buffer_uptodate(bh))
763 return bh;
65299a3b 764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
765 wait_on_buffer(bh);
766 if (buffer_uptodate(bh))
767 return bh;
768 put_bh(bh);
769 *err = -EIO;
770 return NULL;
771}
772
f19d5870
TM
773int ext4_walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
775 unsigned from,
776 unsigned to,
777 int *partial,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
ac27a0ec
DK
780{
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
784 int err, ret = 0;
785 struct buffer_head *next;
786
af5bc92d
TT
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
de9a55b8 789 block_start = block_end, bh = next) {
ac27a0ec
DK
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
794 *partial = 1;
795 continue;
796 }
797 err = (*fn)(handle, bh);
798 if (!ret)
799 ret = err;
800 }
801 return ret;
802}
803
804/*
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
617ba13b 807 * close off a transaction and start a new one between the ext4_get_block()
dab291af 808 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
809 * prepare_write() is the right place.
810 *
617ba13b
MC
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
815 * be PF_MEMALLOC.
816 *
617ba13b 817 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
822 * violation.
823 *
dab291af 824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
827 * write.
828 */
f19d5870
TM
829int do_journal_get_write_access(handle_t *handle,
830 struct buffer_head *bh)
ac27a0ec 831{
56d35a4c
JK
832 int dirty = buffer_dirty(bh);
833 int ret;
834
ac27a0ec
DK
835 if (!buffer_mapped(bh) || buffer_freed(bh))
836 return 0;
56d35a4c 837 /*
ebdec241 838 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 841 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
844 */
845 if (dirty)
846 clear_buffer_dirty(bh);
847 ret = ext4_journal_get_write_access(handle, bh);
848 if (!ret && dirty)
849 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 return ret;
ac27a0ec
DK
851}
852
8b0f165f
AP
853static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh_result, int create);
bfc1af65 855static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
856 loff_t pos, unsigned len, unsigned flags,
857 struct page **pagep, void **fsdata)
ac27a0ec 858{
af5bc92d 859 struct inode *inode = mapping->host;
1938a150 860 int ret, needed_blocks;
ac27a0ec
DK
861 handle_t *handle;
862 int retries = 0;
af5bc92d 863 struct page *page;
de9a55b8 864 pgoff_t index;
af5bc92d 865 unsigned from, to;
bfc1af65 866
9bffad1e 867 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
868 /*
869 * Reserve one block more for addition to orphan list in case
870 * we allocate blocks but write fails for some reason
871 */
872 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 873 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
874 from = pos & (PAGE_CACHE_SIZE - 1);
875 to = from + len;
ac27a0ec 876
f19d5870
TM
877 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879 flags, pagep);
880 if (ret < 0)
881 goto out;
882 if (ret == 1) {
883 ret = 0;
884 goto out;
885 }
886 }
887
ac27a0ec 888retry:
af5bc92d
TT
889 handle = ext4_journal_start(inode, needed_blocks);
890 if (IS_ERR(handle)) {
891 ret = PTR_ERR(handle);
892 goto out;
7479d2b9 893 }
ac27a0ec 894
ebd3610b
JK
895 /* We cannot recurse into the filesystem as the transaction is already
896 * started */
897 flags |= AOP_FLAG_NOFS;
898
54566b2c 899 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
900 if (!page) {
901 ext4_journal_stop(handle);
902 ret = -ENOMEM;
903 goto out;
904 }
f19d5870 905
cf108bca
JK
906 *pagep = page;
907
744692dc 908 if (ext4_should_dioread_nolock(inode))
6e1db88d 909 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 910 else
6e1db88d 911 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
912
913 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
914 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915 from, to, NULL,
916 do_journal_get_write_access);
ac27a0ec 917 }
bfc1af65
NP
918
919 if (ret) {
af5bc92d 920 unlock_page(page);
af5bc92d 921 page_cache_release(page);
ae4d5372 922 /*
6e1db88d 923 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
924 * outside i_size. Trim these off again. Don't need
925 * i_size_read because we hold i_mutex.
1938a150
AK
926 *
927 * Add inode to orphan list in case we crash before
928 * truncate finishes
ae4d5372 929 */
ffacfa7a 930 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
931 ext4_orphan_add(handle, inode);
932
933 ext4_journal_stop(handle);
934 if (pos + len > inode->i_size) {
b9a4207d 935 ext4_truncate_failed_write(inode);
de9a55b8 936 /*
ffacfa7a 937 * If truncate failed early the inode might
1938a150
AK
938 * still be on the orphan list; we need to
939 * make sure the inode is removed from the
940 * orphan list in that case.
941 */
942 if (inode->i_nlink)
943 ext4_orphan_del(NULL, inode);
944 }
bfc1af65
NP
945 }
946
617ba13b 947 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 948 goto retry;
7479d2b9 949out:
ac27a0ec
DK
950 return ret;
951}
952
bfc1af65
NP
953/* For write_end() in data=journal mode */
954static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
955{
956 if (!buffer_mapped(bh) || buffer_freed(bh))
957 return 0;
958 set_buffer_uptodate(bh);
0390131b 959 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
960}
961
f8514083 962static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
963 struct address_space *mapping,
964 loff_t pos, unsigned len, unsigned copied,
965 struct page *page, void *fsdata)
f8514083
AK
966{
967 int i_size_changed = 0;
968 struct inode *inode = mapping->host;
969 handle_t *handle = ext4_journal_current_handle();
970
f19d5870
TM
971 if (ext4_has_inline_data(inode))
972 copied = ext4_write_inline_data_end(inode, pos, len,
973 copied, page);
974 else
975 copied = block_write_end(file, mapping, pos,
976 len, copied, page, fsdata);
f8514083
AK
977
978 /*
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
981 *
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
984 */
985 if (pos + copied > inode->i_size) {
986 i_size_write(inode, pos + copied);
987 i_size_changed = 1;
988 }
989
990 if (pos + copied > EXT4_I(inode)->i_disksize) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
994 */
995 ext4_update_i_disksize(inode, (pos + copied));
996 i_size_changed = 1;
997 }
998 unlock_page(page);
999 page_cache_release(page);
1000
1001 /*
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1005 * filesystems.
1006 */
1007 if (i_size_changed)
1008 ext4_mark_inode_dirty(handle, inode);
1009
1010 return copied;
1011}
1012
ac27a0ec
DK
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
617ba13b 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1018 * buffers are managed internally.
1019 */
bfc1af65 1020static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
ac27a0ec 1024{
617ba13b 1025 handle_t *handle = ext4_journal_current_handle();
cf108bca 1026 struct inode *inode = mapping->host;
ac27a0ec
DK
1027 int ret = 0, ret2;
1028
9bffad1e 1029 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1030 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1031
1032 if (ret == 0) {
f8514083 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1034 page, fsdata);
f8a87d89 1035 copied = ret2;
ffacfa7a 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1040 */
1041 ext4_orphan_add(handle, inode);
f8a87d89
RK
1042 if (ret2 < 0)
1043 ret = ret2;
09e0834f
AF
1044 } else {
1045 unlock_page(page);
1046 page_cache_release(page);
ac27a0ec 1047 }
09e0834f 1048
617ba13b 1049 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1050 if (!ret)
1051 ret = ret2;
bfc1af65 1052
f8514083 1053 if (pos + len > inode->i_size) {
b9a4207d 1054 ext4_truncate_failed_write(inode);
de9a55b8 1055 /*
ffacfa7a 1056 * If truncate failed early the inode might still be
f8514083
AK
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1059 */
1060 if (inode->i_nlink)
1061 ext4_orphan_del(NULL, inode);
1062 }
1063
1064
bfc1af65 1065 return ret ? ret : copied;
ac27a0ec
DK
1066}
1067
bfc1af65 1068static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1069 struct address_space *mapping,
1070 loff_t pos, unsigned len, unsigned copied,
1071 struct page *page, void *fsdata)
ac27a0ec 1072{
617ba13b 1073 handle_t *handle = ext4_journal_current_handle();
cf108bca 1074 struct inode *inode = mapping->host;
ac27a0ec 1075 int ret = 0, ret2;
ac27a0ec 1076
9bffad1e 1077 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1079 page, fsdata);
f8a87d89 1080 copied = ret2;
ffacfa7a 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
f8a87d89
RK
1088 if (ret2 < 0)
1089 ret = ret2;
ac27a0ec 1090
617ba13b 1091 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1092 if (!ret)
1093 ret = ret2;
bfc1af65 1094
f8514083 1095 if (pos + len > inode->i_size) {
b9a4207d 1096 ext4_truncate_failed_write(inode);
de9a55b8 1097 /*
ffacfa7a 1098 * If truncate failed early the inode might still be
f8514083
AK
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
1105
bfc1af65 1106 return ret ? ret : copied;
ac27a0ec
DK
1107}
1108
bfc1af65 1109static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
ac27a0ec 1113{
617ba13b 1114 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1115 struct inode *inode = mapping->host;
ac27a0ec
DK
1116 int ret = 0, ret2;
1117 int partial = 0;
bfc1af65 1118 unsigned from, to;
cf17fea6 1119 loff_t new_i_size;
ac27a0ec 1120
9bffad1e 1121 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1122 from = pos & (PAGE_CACHE_SIZE - 1);
1123 to = from + len;
1124
441c8508
CW
1125 BUG_ON(!ext4_handle_valid(handle));
1126
3fdcfb66
TM
1127 if (ext4_has_inline_data(inode))
1128 copied = ext4_write_inline_data_end(inode, pos, len,
1129 copied, page);
1130 else {
1131 if (copied < len) {
1132 if (!PageUptodate(page))
1133 copied = 0;
1134 page_zero_new_buffers(page, from+copied, to);
1135 }
ac27a0ec 1136
3fdcfb66
TM
1137 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138 to, &partial, write_end_fn);
1139 if (!partial)
1140 SetPageUptodate(page);
1141 }
cf17fea6
AK
1142 new_i_size = pos + copied;
1143 if (new_i_size > inode->i_size)
bfc1af65 1144 i_size_write(inode, pos+copied);
19f5fb7a 1145 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1146 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1147 if (new_i_size > EXT4_I(inode)->i_disksize) {
1148 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1149 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1150 if (!ret)
1151 ret = ret2;
1152 }
bfc1af65 1153
cf108bca 1154 unlock_page(page);
f8514083 1155 page_cache_release(page);
ffacfa7a 1156 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1157 /* if we have allocated more blocks and copied
1158 * less. We will have blocks allocated outside
1159 * inode->i_size. So truncate them
1160 */
1161 ext4_orphan_add(handle, inode);
1162
617ba13b 1163 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1164 if (!ret)
1165 ret = ret2;
f8514083 1166 if (pos + len > inode->i_size) {
b9a4207d 1167 ext4_truncate_failed_write(inode);
de9a55b8 1168 /*
ffacfa7a 1169 * If truncate failed early the inode might still be
f8514083
AK
1170 * on the orphan list; we need to make sure the inode
1171 * is removed from the orphan list in that case.
1172 */
1173 if (inode->i_nlink)
1174 ext4_orphan_del(NULL, inode);
1175 }
bfc1af65
NP
1176
1177 return ret ? ret : copied;
ac27a0ec 1178}
d2a17637 1179
9d0be502 1180/*
7b415bf6 1181 * Reserve a single cluster located at lblock
9d0be502 1182 */
01f49d0b 1183static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1184{
030ba6bc 1185 int retries = 0;
60e58e0f 1186 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1187 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1188 unsigned int md_needed;
5dd4056d 1189 int ret;
03179fe9
TT
1190 ext4_lblk_t save_last_lblock;
1191 int save_len;
1192
1193 /*
1194 * We will charge metadata quota at writeout time; this saves
1195 * us from metadata over-estimation, though we may go over by
1196 * a small amount in the end. Here we just reserve for data.
1197 */
1198 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199 if (ret)
1200 return ret;
d2a17637
MC
1201
1202 /*
1203 * recalculate the amount of metadata blocks to reserve
1204 * in order to allocate nrblocks
1205 * worse case is one extent per block
1206 */
030ba6bc 1207repeat:
0637c6f4 1208 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1209 /*
1210 * ext4_calc_metadata_amount() has side effects, which we have
1211 * to be prepared undo if we fail to claim space.
1212 */
1213 save_len = ei->i_da_metadata_calc_len;
1214 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1215 md_needed = EXT4_NUM_B2C(sbi,
1216 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1217 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1218
72b8ab9d
ES
1219 /*
1220 * We do still charge estimated metadata to the sb though;
1221 * we cannot afford to run out of free blocks.
1222 */
e7d5f315 1223 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1224 ei->i_da_metadata_calc_len = save_len;
1225 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1227 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228 yield();
1229 goto repeat;
1230 }
03179fe9 1231 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1232 return -ENOSPC;
1233 }
9d0be502 1234 ei->i_reserved_data_blocks++;
0637c6f4
TT
1235 ei->i_reserved_meta_blocks += md_needed;
1236 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1237
d2a17637
MC
1238 return 0; /* success */
1239}
1240
12219aea 1241static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1242{
1243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1244 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1245
cd213226
MC
1246 if (!to_free)
1247 return; /* Nothing to release, exit */
1248
d2a17637 1249 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1250
5a58ec87 1251 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1252 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1253 /*
0637c6f4
TT
1254 * if there aren't enough reserved blocks, then the
1255 * counter is messed up somewhere. Since this
1256 * function is called from invalidate page, it's
1257 * harmless to return without any action.
cd213226 1258 */
0637c6f4
TT
1259 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260 "ino %lu, to_free %d with only %d reserved "
1084f252 1261 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1262 ei->i_reserved_data_blocks);
1263 WARN_ON(1);
1264 to_free = ei->i_reserved_data_blocks;
cd213226 1265 }
0637c6f4 1266 ei->i_reserved_data_blocks -= to_free;
cd213226 1267
0637c6f4
TT
1268 if (ei->i_reserved_data_blocks == 0) {
1269 /*
1270 * We can release all of the reserved metadata blocks
1271 * only when we have written all of the delayed
1272 * allocation blocks.
7b415bf6
AK
1273 * Note that in case of bigalloc, i_reserved_meta_blocks,
1274 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1275 */
57042651 1276 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1277 ei->i_reserved_meta_blocks);
ee5f4d9c 1278 ei->i_reserved_meta_blocks = 0;
9d0be502 1279 ei->i_da_metadata_calc_len = 0;
0637c6f4 1280 }
d2a17637 1281
72b8ab9d 1282 /* update fs dirty data blocks counter */
57042651 1283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1284
d2a17637 1285 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1286
7b415bf6 1287 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1288}
1289
1290static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1291 unsigned long offset)
d2a17637
MC
1292{
1293 int to_release = 0;
1294 struct buffer_head *head, *bh;
1295 unsigned int curr_off = 0;
7b415bf6
AK
1296 struct inode *inode = page->mapping->host;
1297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298 int num_clusters;
51865fda 1299 ext4_fsblk_t lblk;
d2a17637
MC
1300
1301 head = page_buffers(page);
1302 bh = head;
1303 do {
1304 unsigned int next_off = curr_off + bh->b_size;
1305
1306 if ((offset <= curr_off) && (buffer_delay(bh))) {
1307 to_release++;
1308 clear_buffer_delay(bh);
1309 }
1310 curr_off = next_off;
1311 } while ((bh = bh->b_this_page) != head);
7b415bf6 1312
51865fda
ZL
1313 if (to_release) {
1314 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 ext4_es_remove_extent(inode, lblk, to_release);
1316 }
1317
7b415bf6
AK
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 while (num_clusters > 0) {
7b415bf6
AK
1322 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323 ((num_clusters - 1) << sbi->s_cluster_bits);
1324 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1325 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1326 ext4_da_release_space(inode, 1);
1327
1328 num_clusters--;
1329 }
d2a17637 1330}
ac27a0ec 1331
64769240
AT
1332/*
1333 * Delayed allocation stuff
1334 */
1335
64769240
AT
1336/*
1337 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1338 * them with writepage() call back
64769240
AT
1339 *
1340 * @mpd->inode: inode
1341 * @mpd->first_page: first page of the extent
1342 * @mpd->next_page: page after the last page of the extent
64769240
AT
1343 *
1344 * By the time mpage_da_submit_io() is called we expect all blocks
1345 * to be allocated. this may be wrong if allocation failed.
1346 *
1347 * As pages are already locked by write_cache_pages(), we can't use it
1348 */
1de3e3df
TT
1349static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350 struct ext4_map_blocks *map)
64769240 1351{
791b7f08
AK
1352 struct pagevec pvec;
1353 unsigned long index, end;
1354 int ret = 0, err, nr_pages, i;
1355 struct inode *inode = mpd->inode;
1356 struct address_space *mapping = inode->i_mapping;
cb20d518 1357 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1358 unsigned int len, block_start;
1359 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1360 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1361 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1362 struct ext4_io_submit io_submit;
64769240
AT
1363
1364 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1365 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1366 /*
1367 * We need to start from the first_page to the next_page - 1
1368 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1369 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1370 * at the currently mapped buffer_heads.
1371 */
64769240
AT
1372 index = mpd->first_page;
1373 end = mpd->next_page - 1;
1374
791b7f08 1375 pagevec_init(&pvec, 0);
64769240 1376 while (index <= end) {
791b7f08 1377 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1378 if (nr_pages == 0)
1379 break;
1380 for (i = 0; i < nr_pages; i++) {
97498956 1381 int commit_write = 0, skip_page = 0;
64769240
AT
1382 struct page *page = pvec.pages[i];
1383
791b7f08
AK
1384 index = page->index;
1385 if (index > end)
1386 break;
cb20d518
TT
1387
1388 if (index == size >> PAGE_CACHE_SHIFT)
1389 len = size & ~PAGE_CACHE_MASK;
1390 else
1391 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1392 if (map) {
1393 cur_logical = index << (PAGE_CACHE_SHIFT -
1394 inode->i_blkbits);
1395 pblock = map->m_pblk + (cur_logical -
1396 map->m_lblk);
1397 }
791b7f08
AK
1398 index++;
1399
1400 BUG_ON(!PageLocked(page));
1401 BUG_ON(PageWriteback(page));
1402
64769240 1403 /*
cb20d518
TT
1404 * If the page does not have buffers (for
1405 * whatever reason), try to create them using
a107e5a3 1406 * __block_write_begin. If this fails,
97498956 1407 * skip the page and move on.
64769240 1408 */
cb20d518 1409 if (!page_has_buffers(page)) {
a107e5a3 1410 if (__block_write_begin(page, 0, len,
cb20d518 1411 noalloc_get_block_write)) {
97498956 1412 skip_page:
cb20d518
TT
1413 unlock_page(page);
1414 continue;
1415 }
1416 commit_write = 1;
1417 }
64769240 1418
3ecdb3a1
TT
1419 bh = page_bufs = page_buffers(page);
1420 block_start = 0;
64769240 1421 do {
1de3e3df 1422 if (!bh)
97498956 1423 goto skip_page;
1de3e3df
TT
1424 if (map && (cur_logical >= map->m_lblk) &&
1425 (cur_logical <= (map->m_lblk +
1426 (map->m_len - 1)))) {
29fa89d0
AK
1427 if (buffer_delay(bh)) {
1428 clear_buffer_delay(bh);
1429 bh->b_blocknr = pblock;
29fa89d0 1430 }
1de3e3df
TT
1431 if (buffer_unwritten(bh) ||
1432 buffer_mapped(bh))
1433 BUG_ON(bh->b_blocknr != pblock);
1434 if (map->m_flags & EXT4_MAP_UNINIT)
1435 set_buffer_uninit(bh);
1436 clear_buffer_unwritten(bh);
1437 }
29fa89d0 1438
13a79a47
YY
1439 /*
1440 * skip page if block allocation undone and
1441 * block is dirty
1442 */
1443 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1444 skip_page = 1;
3ecdb3a1
TT
1445 bh = bh->b_this_page;
1446 block_start += bh->b_size;
64769240
AT
1447 cur_logical++;
1448 pblock++;
1de3e3df
TT
1449 } while (bh != page_bufs);
1450
97498956
TT
1451 if (skip_page)
1452 goto skip_page;
cb20d518
TT
1453
1454 if (commit_write)
1455 /* mark the buffer_heads as dirty & uptodate */
1456 block_commit_write(page, 0, len);
1457
97498956 1458 clear_page_dirty_for_io(page);
bd2d0210
TT
1459 /*
1460 * Delalloc doesn't support data journalling,
1461 * but eventually maybe we'll lift this
1462 * restriction.
1463 */
1464 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1465 err = __ext4_journalled_writepage(page, len);
1449032b 1466 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1467 err = ext4_bio_write_page(&io_submit, page,
1468 len, mpd->wbc);
9dd75f1f
TT
1469 else if (buffer_uninit(page_bufs)) {
1470 ext4_set_bh_endio(page_bufs, inode);
1471 err = block_write_full_page_endio(page,
1472 noalloc_get_block_write,
1473 mpd->wbc, ext4_end_io_buffer_write);
1474 } else
1449032b
TT
1475 err = block_write_full_page(page,
1476 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1477
1478 if (!err)
a1d6cc56 1479 mpd->pages_written++;
64769240
AT
1480 /*
1481 * In error case, we have to continue because
1482 * remaining pages are still locked
64769240
AT
1483 */
1484 if (ret == 0)
1485 ret = err;
64769240
AT
1486 }
1487 pagevec_release(&pvec);
1488 }
bd2d0210 1489 ext4_io_submit(&io_submit);
64769240 1490 return ret;
64769240
AT
1491}
1492
c7f5938a 1493static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1494{
1495 int nr_pages, i;
1496 pgoff_t index, end;
1497 struct pagevec pvec;
1498 struct inode *inode = mpd->inode;
1499 struct address_space *mapping = inode->i_mapping;
51865fda 1500 ext4_lblk_t start, last;
c4a0c46e 1501
c7f5938a
CW
1502 index = mpd->first_page;
1503 end = mpd->next_page - 1;
51865fda
ZL
1504
1505 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 ext4_es_remove_extent(inode, start, last - start + 1);
1508
66bea92c 1509 pagevec_init(&pvec, 0);
c4a0c46e
AK
1510 while (index <= end) {
1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 if (nr_pages == 0)
1513 break;
1514 for (i = 0; i < nr_pages; i++) {
1515 struct page *page = pvec.pages[i];
9b1d0998 1516 if (page->index > end)
c4a0c46e 1517 break;
c4a0c46e
AK
1518 BUG_ON(!PageLocked(page));
1519 BUG_ON(PageWriteback(page));
1520 block_invalidatepage(page, 0);
1521 ClearPageUptodate(page);
1522 unlock_page(page);
1523 }
9b1d0998
JK
1524 index = pvec.pages[nr_pages - 1]->index + 1;
1525 pagevec_release(&pvec);
c4a0c46e
AK
1526 }
1527 return;
1528}
1529
df22291f
AK
1530static void ext4_print_free_blocks(struct inode *inode)
1531{
1532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1533 struct super_block *sb = inode->i_sb;
1534
1535 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1536 EXT4_C2B(EXT4_SB(inode->i_sb),
1537 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1538 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1540 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1542 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1543 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1545 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 EXT4_I(inode)->i_reserved_data_blocks);
1548 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1549 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1550 return;
1551}
1552
64769240 1553/*
5a87b7a5
TT
1554 * mpage_da_map_and_submit - go through given space, map them
1555 * if necessary, and then submit them for I/O
64769240 1556 *
8dc207c0 1557 * @mpd - bh describing space
64769240
AT
1558 *
1559 * The function skips space we know is already mapped to disk blocks.
1560 *
64769240 1561 */
5a87b7a5 1562static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1563{
2ac3b6e0 1564 int err, blks, get_blocks_flags;
1de3e3df 1565 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1566 sector_t next = mpd->b_blocknr;
1567 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 handle_t *handle = NULL;
64769240
AT
1570
1571 /*
5a87b7a5
TT
1572 * If the blocks are mapped already, or we couldn't accumulate
1573 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1574 */
5a87b7a5
TT
1575 if ((mpd->b_size == 0) ||
1576 ((mpd->b_state & (1 << BH_Mapped)) &&
1577 !(mpd->b_state & (1 << BH_Delay)) &&
1578 !(mpd->b_state & (1 << BH_Unwritten))))
1579 goto submit_io;
2fa3cdfb
TT
1580
1581 handle = ext4_journal_current_handle();
1582 BUG_ON(!handle);
1583
79ffab34 1584 /*
79e83036 1585 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1586 * blocks, or to convert an uninitialized extent to be
1587 * initialized (in the case where we have written into
1588 * one or more preallocated blocks).
1589 *
1590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 * indicate that we are on the delayed allocation path. This
1592 * affects functions in many different parts of the allocation
1593 * call path. This flag exists primarily because we don't
79e83036 1594 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1595 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1596 * inode's allocation semaphore is taken.
1597 *
1598 * If the blocks in questions were delalloc blocks, set
1599 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 * variables are updated after the blocks have been allocated.
79ffab34 1601 */
2ed88685
TT
1602 map.m_lblk = next;
1603 map.m_len = max_blocks;
1296cc85 1604 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1605 if (ext4_should_dioread_nolock(mpd->inode))
1606 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1607 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1608 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
2ed88685 1610 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1611 if (blks < 0) {
e3570639
ES
1612 struct super_block *sb = mpd->inode->i_sb;
1613
2fa3cdfb 1614 err = blks;
ed5bde0b 1615 /*
5a87b7a5 1616 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1617 * appears to be free blocks we will just let
1618 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1619 */
1620 if (err == -EAGAIN)
5a87b7a5 1621 goto submit_io;
df22291f 1622
5dee5437 1623 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1624 mpd->retval = err;
5a87b7a5 1625 goto submit_io;
df22291f
AK
1626 }
1627
c4a0c46e 1628 /*
ed5bde0b
TT
1629 * get block failure will cause us to loop in
1630 * writepages, because a_ops->writepage won't be able
1631 * to make progress. The page will be redirtied by
1632 * writepage and writepages will again try to write
1633 * the same.
c4a0c46e 1634 */
e3570639
ES
1635 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 ext4_msg(sb, KERN_CRIT,
1637 "delayed block allocation failed for inode %lu "
1638 "at logical offset %llu with max blocks %zd "
1639 "with error %d", mpd->inode->i_ino,
1640 (unsigned long long) next,
1641 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 ext4_msg(sb, KERN_CRIT,
1643 "This should not happen!! Data will be lost\n");
1644 if (err == -ENOSPC)
1645 ext4_print_free_blocks(mpd->inode);
030ba6bc 1646 }
2fa3cdfb 1647 /* invalidate all the pages */
c7f5938a 1648 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1649
1650 /* Mark this page range as having been completed */
1651 mpd->io_done = 1;
5a87b7a5 1652 return;
c4a0c46e 1653 }
2fa3cdfb
TT
1654 BUG_ON(blks == 0);
1655
1de3e3df 1656 mapp = &map;
2ed88685
TT
1657 if (map.m_flags & EXT4_MAP_NEW) {
1658 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 int i;
64769240 1660
2ed88685
TT
1661 for (i = 0; i < map.m_len; i++)
1662 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1663 }
1664
1665 /*
03f5d8bc 1666 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1667 */
1668 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 if (disksize > i_size_read(mpd->inode))
1670 disksize = i_size_read(mpd->inode);
1671 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1673 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 if (err)
1675 ext4_error(mpd->inode->i_sb,
1676 "Failed to mark inode %lu dirty",
1677 mpd->inode->i_ino);
2fa3cdfb
TT
1678 }
1679
5a87b7a5 1680submit_io:
1de3e3df 1681 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1682 mpd->io_done = 1;
64769240
AT
1683}
1684
bf068ee2
AK
1685#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1687
1688/*
1689 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690 *
1691 * @mpd->lbh - extent of blocks
1692 * @logical - logical number of the block in the file
1693 * @bh - bh of the block (used to access block's state)
1694 *
1695 * the function is used to collect contig. blocks in same state
1696 */
1697static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1698 sector_t logical, size_t b_size,
1699 unsigned long b_state)
64769240 1700{
64769240 1701 sector_t next;
8dc207c0 1702 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1703
c445e3e0
ES
1704 /*
1705 * XXX Don't go larger than mballoc is willing to allocate
1706 * This is a stopgap solution. We eventually need to fold
1707 * mpage_da_submit_io() into this function and then call
79e83036 1708 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1709 */
1710 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711 goto flush_it;
1712
525f4ed8 1713 /* check if thereserved journal credits might overflow */
12e9b892 1714 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1715 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 /*
1717 * With non-extent format we are limited by the journal
1718 * credit available. Total credit needed to insert
1719 * nrblocks contiguous blocks is dependent on the
1720 * nrblocks. So limit nrblocks.
1721 */
1722 goto flush_it;
1723 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724 EXT4_MAX_TRANS_DATA) {
1725 /*
1726 * Adding the new buffer_head would make it cross the
1727 * allowed limit for which we have journal credit
1728 * reserved. So limit the new bh->b_size
1729 */
1730 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731 mpd->inode->i_blkbits;
1732 /* we will do mpage_da_submit_io in the next loop */
1733 }
1734 }
64769240
AT
1735 /*
1736 * First block in the extent
1737 */
8dc207c0
TT
1738 if (mpd->b_size == 0) {
1739 mpd->b_blocknr = logical;
1740 mpd->b_size = b_size;
1741 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1742 return;
1743 }
1744
8dc207c0 1745 next = mpd->b_blocknr + nrblocks;
64769240
AT
1746 /*
1747 * Can we merge the block to our big extent?
1748 */
8dc207c0
TT
1749 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750 mpd->b_size += b_size;
64769240
AT
1751 return;
1752 }
1753
525f4ed8 1754flush_it:
64769240
AT
1755 /*
1756 * We couldn't merge the block to our extent, so we
1757 * need to flush current extent and start new one
1758 */
5a87b7a5 1759 mpage_da_map_and_submit(mpd);
a1d6cc56 1760 return;
64769240
AT
1761}
1762
c364b22c 1763static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1764{
c364b22c 1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1766}
1767
5356f261
AK
1768/*
1769 * This function is grabs code from the very beginning of
1770 * ext4_map_blocks, but assumes that the caller is from delayed write
1771 * time. This function looks up the requested blocks and sets the
1772 * buffer delay bit under the protection of i_data_sem.
1773 */
1774static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775 struct ext4_map_blocks *map,
1776 struct buffer_head *bh)
1777{
1778 int retval;
1779 sector_t invalid_block = ~((sector_t) 0xffff);
1780
1781 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782 invalid_block = ~0;
1783
1784 map->m_flags = 0;
1785 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786 "logical block %lu\n", inode->i_ino, map->m_len,
1787 (unsigned long) map->m_lblk);
1788 /*
1789 * Try to see if we can get the block without requesting a new
1790 * file system block.
1791 */
1792 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1793 if (ext4_has_inline_data(inode)) {
1794 /*
1795 * We will soon create blocks for this page, and let
1796 * us pretend as if the blocks aren't allocated yet.
1797 * In case of clusters, we have to handle the work
1798 * of mapping from cluster so that the reserved space
1799 * is calculated properly.
1800 */
1801 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1802 ext4_find_delalloc_cluster(inode, map->m_lblk))
1803 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1804 retval = 0;
1805 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5356f261
AK
1806 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1807 else
1808 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1809
1810 if (retval == 0) {
1811 /*
1812 * XXX: __block_prepare_write() unmaps passed block,
1813 * is it OK?
1814 */
1815 /* If the block was allocated from previously allocated cluster,
1816 * then we dont need to reserve it again. */
1817 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1818 retval = ext4_da_reserve_space(inode, iblock);
1819 if (retval)
1820 /* not enough space to reserve */
1821 goto out_unlock;
1822 }
1823
51865fda
ZL
1824 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1825 if (retval)
1826 goto out_unlock;
1827
5356f261
AK
1828 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829 * and it should not appear on the bh->b_state.
1830 */
1831 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1832
1833 map_bh(bh, inode->i_sb, invalid_block);
1834 set_buffer_new(bh);
1835 set_buffer_delay(bh);
1836 }
1837
1838out_unlock:
1839 up_read((&EXT4_I(inode)->i_data_sem));
1840
1841 return retval;
1842}
1843
64769240 1844/*
b920c755
TT
1845 * This is a special get_blocks_t callback which is used by
1846 * ext4_da_write_begin(). It will either return mapped block or
1847 * reserve space for a single block.
29fa89d0
AK
1848 *
1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850 * We also have b_blocknr = -1 and b_bdev initialized properly
1851 *
1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854 * initialized properly.
64769240 1855 */
9c3569b5
TM
1856int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 struct buffer_head *bh, int create)
64769240 1858{
2ed88685 1859 struct ext4_map_blocks map;
64769240
AT
1860 int ret = 0;
1861
1862 BUG_ON(create == 0);
2ed88685
TT
1863 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
64769240
AT
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
5356f261
AK
1873 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 if (ret <= 0)
2ed88685 1875 return ret;
64769240 1876
2ed88685
TT
1877 map_bh(bh, inode->i_sb, map.m_pblk);
1878 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1879
1880 if (buffer_unwritten(bh)) {
1881 /* A delayed write to unwritten bh should be marked
1882 * new and mapped. Mapped ensures that we don't do
1883 * get_block multiple times when we write to the same
1884 * offset and new ensures that we do proper zero out
1885 * for partial write.
1886 */
1887 set_buffer_new(bh);
c8205636 1888 set_buffer_mapped(bh);
2ed88685
TT
1889 }
1890 return 0;
64769240 1891}
61628a3f 1892
b920c755
TT
1893/*
1894 * This function is used as a standard get_block_t calback function
1895 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1896 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1897 * These functions should only try to map a single block at a time.
b920c755
TT
1898 *
1899 * Since this function doesn't do block allocations even if the caller
1900 * requests it by passing in create=1, it is critically important that
1901 * any caller checks to make sure that any buffer heads are returned
1902 * by this function are either all already mapped or marked for
206f7ab4
CH
1903 * delayed allocation before calling block_write_full_page(). Otherwise,
1904 * b_blocknr could be left unitialized, and the page write functions will
1905 * be taken by surprise.
b920c755
TT
1906 */
1907static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1908 struct buffer_head *bh_result, int create)
1909{
a2dc52b5 1910 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1911 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1912}
1913
62e086be
AK
1914static int bget_one(handle_t *handle, struct buffer_head *bh)
1915{
1916 get_bh(bh);
1917 return 0;
1918}
1919
1920static int bput_one(handle_t *handle, struct buffer_head *bh)
1921{
1922 put_bh(bh);
1923 return 0;
1924}
1925
1926static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1927 unsigned int len)
1928{
1929 struct address_space *mapping = page->mapping;
1930 struct inode *inode = mapping->host;
3fdcfb66 1931 struct buffer_head *page_bufs = NULL;
62e086be 1932 handle_t *handle = NULL;
3fdcfb66
TM
1933 int ret = 0, err = 0;
1934 int inline_data = ext4_has_inline_data(inode);
1935 struct buffer_head *inode_bh = NULL;
62e086be 1936
cb20d518 1937 ClearPageChecked(page);
3fdcfb66
TM
1938
1939 if (inline_data) {
1940 BUG_ON(page->index != 0);
1941 BUG_ON(len > ext4_get_max_inline_size(inode));
1942 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1943 if (inode_bh == NULL)
1944 goto out;
1945 } else {
1946 page_bufs = page_buffers(page);
1947 if (!page_bufs) {
1948 BUG();
1949 goto out;
1950 }
1951 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1952 NULL, bget_one);
1953 }
62e086be
AK
1954 /* As soon as we unlock the page, it can go away, but we have
1955 * references to buffers so we are safe */
1956 unlock_page(page);
1957
1958 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1959 if (IS_ERR(handle)) {
1960 ret = PTR_ERR(handle);
1961 goto out;
1962 }
1963
441c8508
CW
1964 BUG_ON(!ext4_handle_valid(handle));
1965
3fdcfb66
TM
1966 if (inline_data) {
1967 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1968
3fdcfb66
TM
1969 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1970
1971 } else {
1972 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1973 do_journal_get_write_access);
1974
1975 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1976 write_end_fn);
1977 }
62e086be
AK
1978 if (ret == 0)
1979 ret = err;
2d859db3 1980 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1981 err = ext4_journal_stop(handle);
1982 if (!ret)
1983 ret = err;
1984
3fdcfb66
TM
1985 if (!ext4_has_inline_data(inode))
1986 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1987 NULL, bput_one);
19f5fb7a 1988 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1989out:
3fdcfb66 1990 brelse(inode_bh);
62e086be
AK
1991 return ret;
1992}
1993
61628a3f 1994/*
43ce1d23
AK
1995 * Note that we don't need to start a transaction unless we're journaling data
1996 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997 * need to file the inode to the transaction's list in ordered mode because if
1998 * we are writing back data added by write(), the inode is already there and if
25985edc 1999 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2000 * transaction the data will hit the disk. In case we are journaling data, we
2001 * cannot start transaction directly because transaction start ranks above page
2002 * lock so we have to do some magic.
2003 *
b920c755
TT
2004 * This function can get called via...
2005 * - ext4_da_writepages after taking page lock (have journal handle)
2006 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2007 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2008 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2009 *
2010 * We don't do any block allocation in this function. If we have page with
2011 * multiple blocks we need to write those buffer_heads that are mapped. This
2012 * is important for mmaped based write. So if we do with blocksize 1K
2013 * truncate(f, 1024);
2014 * a = mmap(f, 0, 4096);
2015 * a[0] = 'a';
2016 * truncate(f, 4096);
2017 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2018 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2019 * do_wp_page). So writepage should write the first block. If we modify
2020 * the mmap area beyond 1024 we will again get a page_fault and the
2021 * page_mkwrite callback will do the block allocation and mark the
2022 * buffer_heads mapped.
2023 *
2024 * We redirty the page if we have any buffer_heads that is either delay or
2025 * unwritten in the page.
2026 *
2027 * We can get recursively called as show below.
2028 *
2029 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2030 * ext4_writepage()
2031 *
2032 * But since we don't do any block allocation we should not deadlock.
2033 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2034 */
43ce1d23 2035static int ext4_writepage(struct page *page,
62e086be 2036 struct writeback_control *wbc)
64769240 2037{
a42afc5f 2038 int ret = 0, commit_write = 0;
61628a3f 2039 loff_t size;
498e5f24 2040 unsigned int len;
744692dc 2041 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2042 struct inode *inode = page->mapping->host;
2043
a9c667f8 2044 trace_ext4_writepage(page);
f0e6c985
AK
2045 size = i_size_read(inode);
2046 if (page->index == size >> PAGE_CACHE_SHIFT)
2047 len = size & ~PAGE_CACHE_MASK;
2048 else
2049 len = PAGE_CACHE_SIZE;
64769240 2050
a42afc5f
TT
2051 /*
2052 * If the page does not have buffers (for whatever reason),
a107e5a3 2053 * try to create them using __block_write_begin. If this
a42afc5f
TT
2054 * fails, redirty the page and move on.
2055 */
b1142e8f 2056 if (!page_has_buffers(page)) {
a107e5a3 2057 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2058 noalloc_get_block_write)) {
2059 redirty_page:
f0e6c985
AK
2060 redirty_page_for_writepage(wbc, page);
2061 unlock_page(page);
2062 return 0;
2063 }
a42afc5f
TT
2064 commit_write = 1;
2065 }
2066 page_bufs = page_buffers(page);
f19d5870
TM
2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 ext4_bh_delay_or_unwritten)) {
f0e6c985 2069 /*
b1142e8f
TT
2070 * We don't want to do block allocation, so redirty
2071 * the page and return. We may reach here when we do
2072 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2073 * We can also reach here via shrink_page_list but it
2074 * should never be for direct reclaim so warn if that
2075 * happens
f0e6c985 2076 */
966dbde2
MG
2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2078 PF_MEMALLOC);
a42afc5f
TT
2079 goto redirty_page;
2080 }
2081 if (commit_write)
ed9b3e33 2082 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2083 block_commit_write(page, 0, len);
64769240 2084
cb20d518 2085 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2086 /*
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2089 */
3f0ca309 2090 return __ext4_journalled_writepage(page, len);
43ce1d23 2091
a42afc5f 2092 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2093 ext4_set_bh_endio(page_bufs, inode);
2094 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2095 wbc, ext4_end_io_buffer_write);
2096 } else
b920c755
TT
2097 ret = block_write_full_page(page, noalloc_get_block_write,
2098 wbc);
64769240 2099
64769240
AT
2100 return ret;
2101}
2102
61628a3f 2103/*
525f4ed8 2104 * This is called via ext4_da_writepages() to
25985edc 2105 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2106 * a single extent allocation into a single transaction,
2107 * ext4_da_writpeages() will loop calling this before
2108 * the block allocation.
61628a3f 2109 */
525f4ed8
MC
2110
2111static int ext4_da_writepages_trans_blocks(struct inode *inode)
2112{
2113 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2114
2115 /*
2116 * With non-extent format the journal credit needed to
2117 * insert nrblocks contiguous block is dependent on
2118 * number of contiguous block. So we will limit
2119 * number of contiguous block to a sane value
2120 */
12e9b892 2121 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2122 (max_blocks > EXT4_MAX_TRANS_DATA))
2123 max_blocks = EXT4_MAX_TRANS_DATA;
2124
2125 return ext4_chunk_trans_blocks(inode, max_blocks);
2126}
61628a3f 2127
8e48dcfb
TT
2128/*
2129 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2130 * address space and accumulate pages that need writing, and call
168fc022
TT
2131 * mpage_da_map_and_submit to map a single contiguous memory region
2132 * and then write them.
8e48dcfb 2133 */
9c3569b5
TM
2134static int write_cache_pages_da(handle_t *handle,
2135 struct address_space *mapping,
8e48dcfb 2136 struct writeback_control *wbc,
72f84e65
ES
2137 struct mpage_da_data *mpd,
2138 pgoff_t *done_index)
8e48dcfb 2139{
4f01b02c 2140 struct buffer_head *bh, *head;
168fc022 2141 struct inode *inode = mapping->host;
4f01b02c
TT
2142 struct pagevec pvec;
2143 unsigned int nr_pages;
2144 sector_t logical;
2145 pgoff_t index, end;
2146 long nr_to_write = wbc->nr_to_write;
2147 int i, tag, ret = 0;
8e48dcfb 2148
168fc022
TT
2149 memset(mpd, 0, sizeof(struct mpage_da_data));
2150 mpd->wbc = wbc;
2151 mpd->inode = inode;
8e48dcfb
TT
2152 pagevec_init(&pvec, 0);
2153 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2154 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2155
6e6938b6 2156 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2157 tag = PAGECACHE_TAG_TOWRITE;
2158 else
2159 tag = PAGECACHE_TAG_DIRTY;
2160
72f84e65 2161 *done_index = index;
4f01b02c 2162 while (index <= end) {
5b41d924 2163 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2164 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2165 if (nr_pages == 0)
4f01b02c 2166 return 0;
8e48dcfb
TT
2167
2168 for (i = 0; i < nr_pages; i++) {
2169 struct page *page = pvec.pages[i];
2170
2171 /*
2172 * At this point, the page may be truncated or
2173 * invalidated (changing page->mapping to NULL), or
2174 * even swizzled back from swapper_space to tmpfs file
2175 * mapping. However, page->index will not change
2176 * because we have a reference on the page.
2177 */
4f01b02c
TT
2178 if (page->index > end)
2179 goto out;
8e48dcfb 2180
72f84e65
ES
2181 *done_index = page->index + 1;
2182
78aaced3
TT
2183 /*
2184 * If we can't merge this page, and we have
2185 * accumulated an contiguous region, write it
2186 */
2187 if ((mpd->next_page != page->index) &&
2188 (mpd->next_page != mpd->first_page)) {
2189 mpage_da_map_and_submit(mpd);
2190 goto ret_extent_tail;
2191 }
2192
8e48dcfb
TT
2193 lock_page(page);
2194
2195 /*
4f01b02c
TT
2196 * If the page is no longer dirty, or its
2197 * mapping no longer corresponds to inode we
2198 * are writing (which means it has been
2199 * truncated or invalidated), or the page is
2200 * already under writeback and we are not
2201 * doing a data integrity writeback, skip the page
8e48dcfb 2202 */
4f01b02c
TT
2203 if (!PageDirty(page) ||
2204 (PageWriteback(page) &&
2205 (wbc->sync_mode == WB_SYNC_NONE)) ||
2206 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2207 unlock_page(page);
2208 continue;
2209 }
2210
7cb1a535 2211 wait_on_page_writeback(page);
8e48dcfb 2212 BUG_ON(PageWriteback(page));
8e48dcfb 2213
9c3569b5
TM
2214 /*
2215 * If we have inline data and arrive here, it means that
2216 * we will soon create the block for the 1st page, so
2217 * we'd better clear the inline data here.
2218 */
2219 if (ext4_has_inline_data(inode)) {
2220 BUG_ON(ext4_test_inode_state(inode,
2221 EXT4_STATE_MAY_INLINE_DATA));
2222 ext4_destroy_inline_data(handle, inode);
2223 }
2224
168fc022 2225 if (mpd->next_page != page->index)
8eb9e5ce 2226 mpd->first_page = page->index;
8eb9e5ce
TT
2227 mpd->next_page = page->index + 1;
2228 logical = (sector_t) page->index <<
2229 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230
2231 if (!page_has_buffers(page)) {
4f01b02c
TT
2232 mpage_add_bh_to_extent(mpd, logical,
2233 PAGE_CACHE_SIZE,
8eb9e5ce 2234 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2235 if (mpd->io_done)
2236 goto ret_extent_tail;
8eb9e5ce
TT
2237 } else {
2238 /*
4f01b02c
TT
2239 * Page with regular buffer heads,
2240 * just add all dirty ones
8eb9e5ce
TT
2241 */
2242 head = page_buffers(page);
2243 bh = head;
2244 do {
2245 BUG_ON(buffer_locked(bh));
2246 /*
2247 * We need to try to allocate
2248 * unmapped blocks in the same page.
2249 * Otherwise we won't make progress
2250 * with the page in ext4_writepage
2251 */
2252 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2253 mpage_add_bh_to_extent(mpd, logical,
2254 bh->b_size,
2255 bh->b_state);
4f01b02c
TT
2256 if (mpd->io_done)
2257 goto ret_extent_tail;
8eb9e5ce
TT
2258 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2259 /*
4f01b02c
TT
2260 * mapped dirty buffer. We need
2261 * to update the b_state
2262 * because we look at b_state
2263 * in mpage_da_map_blocks. We
2264 * don't update b_size because
2265 * if we find an unmapped
2266 * buffer_head later we need to
2267 * use the b_state flag of that
2268 * buffer_head.
8eb9e5ce
TT
2269 */
2270 if (mpd->b_size == 0)
2271 mpd->b_state = bh->b_state & BH_FLAGS;
2272 }
2273 logical++;
2274 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2275 }
2276
2277 if (nr_to_write > 0) {
2278 nr_to_write--;
2279 if (nr_to_write == 0 &&
4f01b02c 2280 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2281 /*
2282 * We stop writing back only if we are
2283 * not doing integrity sync. In case of
2284 * integrity sync we have to keep going
2285 * because someone may be concurrently
2286 * dirtying pages, and we might have
2287 * synced a lot of newly appeared dirty
2288 * pages, but have not synced all of the
2289 * old dirty pages.
2290 */
4f01b02c 2291 goto out;
8e48dcfb
TT
2292 }
2293 }
2294 pagevec_release(&pvec);
2295 cond_resched();
2296 }
4f01b02c
TT
2297 return 0;
2298ret_extent_tail:
2299 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2300out:
2301 pagevec_release(&pvec);
2302 cond_resched();
8e48dcfb
TT
2303 return ret;
2304}
2305
2306
64769240 2307static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2308 struct writeback_control *wbc)
64769240 2309{
22208ded
AK
2310 pgoff_t index;
2311 int range_whole = 0;
61628a3f 2312 handle_t *handle = NULL;
df22291f 2313 struct mpage_da_data mpd;
5e745b04 2314 struct inode *inode = mapping->host;
498e5f24 2315 int pages_written = 0;
55138e0b 2316 unsigned int max_pages;
2acf2c26 2317 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2318 int needed_blocks, ret = 0;
2319 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2320 loff_t range_start = wbc->range_start;
5e745b04 2321 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2322 pgoff_t done_index = 0;
5b41d924 2323 pgoff_t end;
1bce63d1 2324 struct blk_plug plug;
61628a3f 2325
9bffad1e 2326 trace_ext4_da_writepages(inode, wbc);
ba80b101 2327
61628a3f
MC
2328 /*
2329 * No pages to write? This is mainly a kludge to avoid starting
2330 * a transaction for special inodes like journal inode on last iput()
2331 * because that could violate lock ordering on umount
2332 */
a1d6cc56 2333 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2334 return 0;
2a21e37e
TT
2335
2336 /*
2337 * If the filesystem has aborted, it is read-only, so return
2338 * right away instead of dumping stack traces later on that
2339 * will obscure the real source of the problem. We test
4ab2f15b 2340 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2341 * the latter could be true if the filesystem is mounted
2342 * read-only, and in that case, ext4_da_writepages should
2343 * *never* be called, so if that ever happens, we would want
2344 * the stack trace.
2345 */
4ab2f15b 2346 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2347 return -EROFS;
2348
22208ded
AK
2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 range_whole = 1;
61628a3f 2351
2acf2c26
AK
2352 range_cyclic = wbc->range_cyclic;
2353 if (wbc->range_cyclic) {
22208ded 2354 index = mapping->writeback_index;
2acf2c26
AK
2355 if (index)
2356 cycled = 0;
2357 wbc->range_start = index << PAGE_CACHE_SHIFT;
2358 wbc->range_end = LLONG_MAX;
2359 wbc->range_cyclic = 0;
5b41d924
ES
2360 end = -1;
2361 } else {
22208ded 2362 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2363 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2364 }
a1d6cc56 2365
55138e0b
TT
2366 /*
2367 * This works around two forms of stupidity. The first is in
2368 * the writeback code, which caps the maximum number of pages
2369 * written to be 1024 pages. This is wrong on multiple
2370 * levels; different architectues have a different page size,
2371 * which changes the maximum amount of data which gets
2372 * written. Secondly, 4 megabytes is way too small. XFS
2373 * forces this value to be 16 megabytes by multiplying
2374 * nr_to_write parameter by four, and then relies on its
2375 * allocator to allocate larger extents to make them
2376 * contiguous. Unfortunately this brings us to the second
2377 * stupidity, which is that ext4's mballoc code only allocates
2378 * at most 2048 blocks. So we force contiguous writes up to
2379 * the number of dirty blocks in the inode, or
2380 * sbi->max_writeback_mb_bump whichever is smaller.
2381 */
2382 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2383 if (!range_cyclic && range_whole) {
2384 if (wbc->nr_to_write == LONG_MAX)
2385 desired_nr_to_write = wbc->nr_to_write;
2386 else
2387 desired_nr_to_write = wbc->nr_to_write * 8;
2388 } else
55138e0b
TT
2389 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2390 max_pages);
2391 if (desired_nr_to_write > max_pages)
2392 desired_nr_to_write = max_pages;
2393
2394 if (wbc->nr_to_write < desired_nr_to_write) {
2395 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2396 wbc->nr_to_write = desired_nr_to_write;
2397 }
2398
2acf2c26 2399retry:
6e6938b6 2400 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2401 tag_pages_for_writeback(mapping, index, end);
2402
1bce63d1 2403 blk_start_plug(&plug);
22208ded 2404 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2405
2406 /*
2407 * we insert one extent at a time. So we need
2408 * credit needed for single extent allocation.
2409 * journalled mode is currently not supported
2410 * by delalloc
2411 */
2412 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2413 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2414
61628a3f
MC
2415 /* start a new transaction*/
2416 handle = ext4_journal_start(inode, needed_blocks);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
1693918e 2419 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2420 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2421 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2422 blk_finish_plug(&plug);
61628a3f
MC
2423 goto out_writepages;
2424 }
f63e6005
TT
2425
2426 /*
8eb9e5ce 2427 * Now call write_cache_pages_da() to find the next
f63e6005 2428 * contiguous region of logical blocks that need
8eb9e5ce 2429 * blocks to be allocated by ext4 and submit them.
f63e6005 2430 */
9c3569b5
TM
2431 ret = write_cache_pages_da(handle, mapping,
2432 wbc, &mpd, &done_index);
f63e6005 2433 /*
af901ca1 2434 * If we have a contiguous extent of pages and we
f63e6005
TT
2435 * haven't done the I/O yet, map the blocks and submit
2436 * them for I/O.
2437 */
2438 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2439 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2440 ret = MPAGE_DA_EXTENT_TAIL;
2441 }
b3a3ca8c 2442 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2443 wbc->nr_to_write -= mpd.pages_written;
df22291f 2444
61628a3f 2445 ext4_journal_stop(handle);
df22291f 2446
8f64b32e 2447 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2448 /* commit the transaction which would
2449 * free blocks released in the transaction
2450 * and try again
2451 */
df22291f 2452 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2453 ret = 0;
2454 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2455 /*
8de49e67
KM
2456 * Got one extent now try with rest of the pages.
2457 * If mpd.retval is set -EIO, journal is aborted.
2458 * So we don't need to write any more.
a1d6cc56 2459 */
22208ded 2460 pages_written += mpd.pages_written;
8de49e67 2461 ret = mpd.retval;
2acf2c26 2462 io_done = 1;
22208ded 2463 } else if (wbc->nr_to_write)
61628a3f
MC
2464 /*
2465 * There is no more writeout needed
2466 * or we requested for a noblocking writeout
2467 * and we found the device congested
2468 */
61628a3f 2469 break;
a1d6cc56 2470 }
1bce63d1 2471 blk_finish_plug(&plug);
2acf2c26
AK
2472 if (!io_done && !cycled) {
2473 cycled = 1;
2474 index = 0;
2475 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 wbc->range_end = mapping->writeback_index - 1;
2477 goto retry;
2478 }
22208ded
AK
2479
2480 /* Update index */
2acf2c26 2481 wbc->range_cyclic = range_cyclic;
22208ded
AK
2482 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483 /*
2484 * set the writeback_index so that range_cyclic
2485 * mode will write it back later
2486 */
72f84e65 2487 mapping->writeback_index = done_index;
a1d6cc56 2488
61628a3f 2489out_writepages:
2faf2e19 2490 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2491 wbc->range_start = range_start;
9bffad1e 2492 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2493 return ret;
64769240
AT
2494}
2495
79f0be8d
AK
2496static int ext4_nonda_switch(struct super_block *sb)
2497{
2498 s64 free_blocks, dirty_blocks;
2499 struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501 /*
2502 * switch to non delalloc mode if we are running low
2503 * on free block. The free block accounting via percpu
179f7ebf 2504 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2505 * accumulated on each CPU without updating global counters
2506 * Delalloc need an accurate free block accounting. So switch
2507 * to non delalloc when we are near to error range.
2508 */
57042651
TT
2509 free_blocks = EXT4_C2B(sbi,
2510 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2512 /*
2513 * Start pushing delalloc when 1/2 of free blocks are dirty.
2514 */
2515 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516 !writeback_in_progress(sb->s_bdi) &&
2517 down_read_trylock(&sb->s_umount)) {
2518 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519 up_read(&sb->s_umount);
2520 }
2521
79f0be8d 2522 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2523 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2524 /*
c8afb446
ES
2525 * free block count is less than 150% of dirty blocks
2526 * or free blocks is less than watermark
79f0be8d
AK
2527 */
2528 return 1;
2529 }
2530 return 0;
2531}
2532
64769240 2533static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2534 loff_t pos, unsigned len, unsigned flags,
2535 struct page **pagep, void **fsdata)
64769240 2536{
72b8ab9d 2537 int ret, retries = 0;
64769240
AT
2538 struct page *page;
2539 pgoff_t index;
64769240
AT
2540 struct inode *inode = mapping->host;
2541 handle_t *handle;
2542
2543 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2544
2545 if (ext4_nonda_switch(inode->i_sb)) {
2546 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547 return ext4_write_begin(file, mapping, pos,
2548 len, flags, pagep, fsdata);
2549 }
2550 *fsdata = (void *)0;
9bffad1e 2551 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2552
2553 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554 ret = ext4_da_write_inline_data_begin(mapping, inode,
2555 pos, len, flags,
2556 pagep, fsdata);
2557 if (ret < 0)
2558 goto out;
2559 if (ret == 1) {
2560 ret = 0;
2561 goto out;
2562 }
2563 }
2564
d2a17637 2565retry:
64769240
AT
2566 /*
2567 * With delayed allocation, we don't log the i_disksize update
2568 * if there is delayed block allocation. But we still need
2569 * to journalling the i_disksize update if writes to the end
2570 * of file which has an already mapped buffer.
2571 */
2572 handle = ext4_journal_start(inode, 1);
2573 if (IS_ERR(handle)) {
2574 ret = PTR_ERR(handle);
2575 goto out;
2576 }
ebd3610b
JK
2577 /* We cannot recurse into the filesystem as the transaction is already
2578 * started */
2579 flags |= AOP_FLAG_NOFS;
64769240 2580
54566b2c 2581 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2582 if (!page) {
2583 ext4_journal_stop(handle);
2584 ret = -ENOMEM;
2585 goto out;
2586 }
64769240
AT
2587 *pagep = page;
2588
6e1db88d 2589 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2590 if (ret < 0) {
2591 unlock_page(page);
2592 ext4_journal_stop(handle);
2593 page_cache_release(page);
ae4d5372
AK
2594 /*
2595 * block_write_begin may have instantiated a few blocks
2596 * outside i_size. Trim these off again. Don't need
2597 * i_size_read because we hold i_mutex.
2598 */
2599 if (pos + len > inode->i_size)
b9a4207d 2600 ext4_truncate_failed_write(inode);
64769240
AT
2601 }
2602
d2a17637
MC
2603 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2604 goto retry;
64769240
AT
2605out:
2606 return ret;
2607}
2608
632eaeab
MC
2609/*
2610 * Check if we should update i_disksize
2611 * when write to the end of file but not require block allocation
2612 */
2613static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2614 unsigned long offset)
632eaeab
MC
2615{
2616 struct buffer_head *bh;
2617 struct inode *inode = page->mapping->host;
2618 unsigned int idx;
2619 int i;
2620
2621 bh = page_buffers(page);
2622 idx = offset >> inode->i_blkbits;
2623
af5bc92d 2624 for (i = 0; i < idx; i++)
632eaeab
MC
2625 bh = bh->b_this_page;
2626
29fa89d0 2627 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2628 return 0;
2629 return 1;
2630}
2631
64769240 2632static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2633 struct address_space *mapping,
2634 loff_t pos, unsigned len, unsigned copied,
2635 struct page *page, void *fsdata)
64769240
AT
2636{
2637 struct inode *inode = mapping->host;
2638 int ret = 0, ret2;
2639 handle_t *handle = ext4_journal_current_handle();
2640 loff_t new_i_size;
632eaeab 2641 unsigned long start, end;
79f0be8d
AK
2642 int write_mode = (int)(unsigned long)fsdata;
2643
2644 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2645 switch (ext4_inode_journal_mode(inode)) {
2646 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2647 return ext4_ordered_write_end(file, mapping, pos,
2648 len, copied, page, fsdata);
3d2b1582 2649 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2650 return ext4_writeback_write_end(file, mapping, pos,
2651 len, copied, page, fsdata);
3d2b1582 2652 default:
79f0be8d
AK
2653 BUG();
2654 }
2655 }
632eaeab 2656
9bffad1e 2657 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2658 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2659 end = start + copied - 1;
64769240
AT
2660
2661 /*
2662 * generic_write_end() will run mark_inode_dirty() if i_size
2663 * changes. So let's piggyback the i_disksize mark_inode_dirty
2664 * into that.
2665 */
64769240 2666 new_i_size = pos + copied;
ea51d132 2667 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2668 if (ext4_has_inline_data(inode) ||
2669 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2670 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2671 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2672 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2673 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2674 /* We need to mark inode dirty even if
2675 * new_i_size is less that inode->i_size
2676 * bu greater than i_disksize.(hint delalloc)
2677 */
2678 ext4_mark_inode_dirty(handle, inode);
64769240 2679 }
632eaeab 2680 }
9c3569b5
TM
2681
2682 if (write_mode != CONVERT_INLINE_DATA &&
2683 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2684 ext4_has_inline_data(inode))
2685 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2686 page);
2687 else
2688 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2689 page, fsdata);
9c3569b5 2690
64769240
AT
2691 copied = ret2;
2692 if (ret2 < 0)
2693 ret = ret2;
2694 ret2 = ext4_journal_stop(handle);
2695 if (!ret)
2696 ret = ret2;
2697
2698 return ret ? ret : copied;
2699}
2700
2701static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2702{
64769240
AT
2703 /*
2704 * Drop reserved blocks
2705 */
2706 BUG_ON(!PageLocked(page));
2707 if (!page_has_buffers(page))
2708 goto out;
2709
d2a17637 2710 ext4_da_page_release_reservation(page, offset);
64769240
AT
2711
2712out:
2713 ext4_invalidatepage(page, offset);
2714
2715 return;
2716}
2717
ccd2506b
TT
2718/*
2719 * Force all delayed allocation blocks to be allocated for a given inode.
2720 */
2721int ext4_alloc_da_blocks(struct inode *inode)
2722{
fb40ba0d
TT
2723 trace_ext4_alloc_da_blocks(inode);
2724
ccd2506b
TT
2725 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2726 !EXT4_I(inode)->i_reserved_meta_blocks)
2727 return 0;
2728
2729 /*
2730 * We do something simple for now. The filemap_flush() will
2731 * also start triggering a write of the data blocks, which is
2732 * not strictly speaking necessary (and for users of
2733 * laptop_mode, not even desirable). However, to do otherwise
2734 * would require replicating code paths in:
de9a55b8 2735 *
ccd2506b
TT
2736 * ext4_da_writepages() ->
2737 * write_cache_pages() ---> (via passed in callback function)
2738 * __mpage_da_writepage() -->
2739 * mpage_add_bh_to_extent()
2740 * mpage_da_map_blocks()
2741 *
2742 * The problem is that write_cache_pages(), located in
2743 * mm/page-writeback.c, marks pages clean in preparation for
2744 * doing I/O, which is not desirable if we're not planning on
2745 * doing I/O at all.
2746 *
2747 * We could call write_cache_pages(), and then redirty all of
380cf090 2748 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2749 * would be ugly in the extreme. So instead we would need to
2750 * replicate parts of the code in the above functions,
25985edc 2751 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2752 * write out the pages, but rather only collect contiguous
2753 * logical block extents, call the multi-block allocator, and
2754 * then update the buffer heads with the block allocations.
de9a55b8 2755 *
ccd2506b
TT
2756 * For now, though, we'll cheat by calling filemap_flush(),
2757 * which will map the blocks, and start the I/O, but not
2758 * actually wait for the I/O to complete.
2759 */
2760 return filemap_flush(inode->i_mapping);
2761}
64769240 2762
ac27a0ec
DK
2763/*
2764 * bmap() is special. It gets used by applications such as lilo and by
2765 * the swapper to find the on-disk block of a specific piece of data.
2766 *
2767 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2768 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2769 * filesystem and enables swap, then they may get a nasty shock when the
2770 * data getting swapped to that swapfile suddenly gets overwritten by
2771 * the original zero's written out previously to the journal and
2772 * awaiting writeback in the kernel's buffer cache.
2773 *
2774 * So, if we see any bmap calls here on a modified, data-journaled file,
2775 * take extra steps to flush any blocks which might be in the cache.
2776 */
617ba13b 2777static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2778{
2779 struct inode *inode = mapping->host;
2780 journal_t *journal;
2781 int err;
2782
46c7f254
TM
2783 /*
2784 * We can get here for an inline file via the FIBMAP ioctl
2785 */
2786 if (ext4_has_inline_data(inode))
2787 return 0;
2788
64769240
AT
2789 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2790 test_opt(inode->i_sb, DELALLOC)) {
2791 /*
2792 * With delalloc we want to sync the file
2793 * so that we can make sure we allocate
2794 * blocks for file
2795 */
2796 filemap_write_and_wait(mapping);
2797 }
2798
19f5fb7a
TT
2799 if (EXT4_JOURNAL(inode) &&
2800 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2801 /*
2802 * This is a REALLY heavyweight approach, but the use of
2803 * bmap on dirty files is expected to be extremely rare:
2804 * only if we run lilo or swapon on a freshly made file
2805 * do we expect this to happen.
2806 *
2807 * (bmap requires CAP_SYS_RAWIO so this does not
2808 * represent an unprivileged user DOS attack --- we'd be
2809 * in trouble if mortal users could trigger this path at
2810 * will.)
2811 *
617ba13b 2812 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2813 * regular files. If somebody wants to bmap a directory
2814 * or symlink and gets confused because the buffer
2815 * hasn't yet been flushed to disk, they deserve
2816 * everything they get.
2817 */
2818
19f5fb7a 2819 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2820 journal = EXT4_JOURNAL(inode);
dab291af
MC
2821 jbd2_journal_lock_updates(journal);
2822 err = jbd2_journal_flush(journal);
2823 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2824
2825 if (err)
2826 return 0;
2827 }
2828
af5bc92d 2829 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2830}
2831
617ba13b 2832static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2833{
46c7f254
TM
2834 int ret = -EAGAIN;
2835 struct inode *inode = page->mapping->host;
2836
0562e0ba 2837 trace_ext4_readpage(page);
46c7f254
TM
2838
2839 if (ext4_has_inline_data(inode))
2840 ret = ext4_readpage_inline(inode, page);
2841
2842 if (ret == -EAGAIN)
2843 return mpage_readpage(page, ext4_get_block);
2844
2845 return ret;
ac27a0ec
DK
2846}
2847
2848static int
617ba13b 2849ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2850 struct list_head *pages, unsigned nr_pages)
2851{
46c7f254
TM
2852 struct inode *inode = mapping->host;
2853
2854 /* If the file has inline data, no need to do readpages. */
2855 if (ext4_has_inline_data(inode))
2856 return 0;
2857
617ba13b 2858 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2859}
2860
744692dc
JZ
2861static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2862{
2863 struct buffer_head *head, *bh;
2864 unsigned int curr_off = 0;
2865
2866 if (!page_has_buffers(page))
2867 return;
2868 head = bh = page_buffers(page);
2869 do {
2870 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2871 && bh->b_private) {
2872 ext4_free_io_end(bh->b_private);
2873 bh->b_private = NULL;
2874 bh->b_end_io = NULL;
2875 }
2876 curr_off = curr_off + bh->b_size;
2877 bh = bh->b_this_page;
2878 } while (bh != head);
2879}
2880
617ba13b 2881static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2882{
0562e0ba
JZ
2883 trace_ext4_invalidatepage(page, offset);
2884
744692dc
JZ
2885 /*
2886 * free any io_end structure allocated for buffers to be discarded
2887 */
2888 if (ext4_should_dioread_nolock(page->mapping->host))
2889 ext4_invalidatepage_free_endio(page, offset);
4520fb3c
JK
2890
2891 /* No journalling happens on data buffers when this function is used */
2892 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2893
2894 block_invalidatepage(page, offset);
2895}
2896
53e87268
JK
2897static int __ext4_journalled_invalidatepage(struct page *page,
2898 unsigned long offset)
4520fb3c
JK
2899{
2900 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2901
2902 trace_ext4_journalled_invalidatepage(page, offset);
2903
ac27a0ec
DK
2904 /*
2905 * If it's a full truncate we just forget about the pending dirtying
2906 */
2907 if (offset == 0)
2908 ClearPageChecked(page);
2909
53e87268
JK
2910 return jbd2_journal_invalidatepage(journal, page, offset);
2911}
2912
2913/* Wrapper for aops... */
2914static void ext4_journalled_invalidatepage(struct page *page,
2915 unsigned long offset)
2916{
2917 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
2918}
2919
617ba13b 2920static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2921{
617ba13b 2922 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2923
0562e0ba
JZ
2924 trace_ext4_releasepage(page);
2925
ac27a0ec
DK
2926 WARN_ON(PageChecked(page));
2927 if (!page_has_buffers(page))
2928 return 0;
0390131b
FM
2929 if (journal)
2930 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2931 else
2932 return try_to_free_buffers(page);
ac27a0ec
DK
2933}
2934
2ed88685
TT
2935/*
2936 * ext4_get_block used when preparing for a DIO write or buffer write.
2937 * We allocate an uinitialized extent if blocks haven't been allocated.
2938 * The extent will be converted to initialized after the IO is complete.
2939 */
f19d5870 2940int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2941 struct buffer_head *bh_result, int create)
2942{
c7064ef1 2943 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2944 inode->i_ino, create);
2ed88685
TT
2945 return _ext4_get_block(inode, iblock, bh_result,
2946 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2947}
2948
729f52c6 2949static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2950 struct buffer_head *bh_result, int create)
729f52c6 2951{
8b0f165f
AP
2952 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2953 inode->i_ino, create);
2954 return _ext4_get_block(inode, iblock, bh_result,
2955 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2956}
2957
4c0425ff 2958static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2959 ssize_t size, void *private, int ret,
2960 bool is_async)
4c0425ff 2961{
496ad9aa 2962 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2963 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2964
4b70df18
M
2965 /* if not async direct IO or dio with 0 bytes write, just return */
2966 if (!io_end || !size)
552ef802 2967 goto out;
4b70df18 2968
88635ca2 2969 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2970 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2971 iocb->private, io_end->inode->i_ino, iocb, offset,
2972 size);
8d5d02e6 2973
b5a7e970
TT
2974 iocb->private = NULL;
2975
8d5d02e6 2976 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2977 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2978 ext4_free_io_end(io_end);
5b3ff237
JZ
2979out:
2980 if (is_async)
2981 aio_complete(iocb, ret, 0);
72c5052d 2982 inode_dio_done(inode);
5b3ff237 2983 return;
8d5d02e6
MC
2984 }
2985
4c0425ff
MC
2986 io_end->offset = offset;
2987 io_end->size = size;
5b3ff237
JZ
2988 if (is_async) {
2989 io_end->iocb = iocb;
2990 io_end->result = ret;
2991 }
4c0425ff 2992
28a535f9 2993 ext4_add_complete_io(io_end);
4c0425ff 2994}
c7064ef1 2995
744692dc
JZ
2996static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2997{
2998 ext4_io_end_t *io_end = bh->b_private;
744692dc 2999 struct inode *inode;
744692dc
JZ
3000
3001 if (!test_clear_buffer_uninit(bh) || !io_end)
3002 goto out;
3003
3004 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
3005 ext4_msg(io_end->inode->i_sb, KERN_INFO,
3006 "sb umounted, discard end_io request for inode %lu",
3007 io_end->inode->i_ino);
744692dc
JZ
3008 ext4_free_io_end(io_end);
3009 goto out;
3010 }
3011
32c80b32
TM
3012 /*
3013 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3014 * but being more careful is always safe for the future change.
3015 */
744692dc 3016 inode = io_end->inode;
0edeb71d 3017 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 3018 ext4_add_complete_io(io_end);
744692dc
JZ
3019out:
3020 bh->b_private = NULL;
3021 bh->b_end_io = NULL;
3022 clear_buffer_uninit(bh);
3023 end_buffer_async_write(bh, uptodate);
3024}
3025
3026static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3027{
3028 ext4_io_end_t *io_end;
3029 struct page *page = bh->b_page;
3030 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3031 size_t size = bh->b_size;
3032
3033retry:
3034 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3035 if (!io_end) {
6db26ffc 3036 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
3037 schedule();
3038 goto retry;
3039 }
3040 io_end->offset = offset;
3041 io_end->size = size;
3042 /*
3043 * We need to hold a reference to the page to make sure it
3044 * doesn't get evicted before ext4_end_io_work() has a chance
3045 * to convert the extent from written to unwritten.
3046 */
3047 io_end->page = page;
3048 get_page(io_end->page);
3049
3050 bh->b_private = io_end;
3051 bh->b_end_io = ext4_end_io_buffer_write;
3052 return 0;
3053}
3054
4c0425ff
MC
3055/*
3056 * For ext4 extent files, ext4 will do direct-io write to holes,
3057 * preallocated extents, and those write extend the file, no need to
3058 * fall back to buffered IO.
3059 *
b595076a 3060 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3061 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3062 * still keep the range to write as uninitialized.
4c0425ff 3063 *
69c499d1 3064 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3065 * For async direct IO, since the IO may still pending when return, we
25985edc 3066 * set up an end_io call back function, which will do the conversion
8d5d02e6 3067 * when async direct IO completed.
4c0425ff
MC
3068 *
3069 * If the O_DIRECT write will extend the file then add this inode to the
3070 * orphan list. So recovery will truncate it back to the original size
3071 * if the machine crashes during the write.
3072 *
3073 */
3074static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3075 const struct iovec *iov, loff_t offset,
3076 unsigned long nr_segs)
3077{
3078 struct file *file = iocb->ki_filp;
3079 struct inode *inode = file->f_mapping->host;
3080 ssize_t ret;
3081 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3082 int overwrite = 0;
3083 get_block_t *get_block_func = NULL;
3084 int dio_flags = 0;
4c0425ff 3085 loff_t final_size = offset + count;
729f52c6 3086
69c499d1
TT
3087 /* Use the old path for reads and writes beyond i_size. */
3088 if (rw != WRITE || final_size > inode->i_size)
3089 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3090
69c499d1 3091 BUG_ON(iocb->private == NULL);
4bd809db 3092
69c499d1
TT
3093 /* If we do a overwrite dio, i_mutex locking can be released */
3094 overwrite = *((int *)iocb->private);
4bd809db 3095
69c499d1
TT
3096 if (overwrite) {
3097 atomic_inc(&inode->i_dio_count);
3098 down_read(&EXT4_I(inode)->i_data_sem);
3099 mutex_unlock(&inode->i_mutex);
3100 }
8d5d02e6 3101
69c499d1
TT
3102 /*
3103 * We could direct write to holes and fallocate.
3104 *
3105 * Allocated blocks to fill the hole are marked as
3106 * uninitialized to prevent parallel buffered read to expose
3107 * the stale data before DIO complete the data IO.
3108 *
3109 * As to previously fallocated extents, ext4 get_block will
3110 * just simply mark the buffer mapped but still keep the
3111 * extents uninitialized.
3112 *
3113 * For non AIO case, we will convert those unwritten extents
3114 * to written after return back from blockdev_direct_IO.
3115 *
3116 * For async DIO, the conversion needs to be deferred when the
3117 * IO is completed. The ext4 end_io callback function will be
3118 * called to take care of the conversion work. Here for async
3119 * case, we allocate an io_end structure to hook to the iocb.
3120 */
3121 iocb->private = NULL;
3122 ext4_inode_aio_set(inode, NULL);
3123 if (!is_sync_kiocb(iocb)) {
3124 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3125 if (!io_end) {
3126 ret = -ENOMEM;
3127 goto retake_lock;
8b0f165f 3128 }
69c499d1
TT
3129 io_end->flag |= EXT4_IO_END_DIRECT;
3130 iocb->private = io_end;
8d5d02e6 3131 /*
69c499d1
TT
3132 * we save the io structure for current async direct
3133 * IO, so that later ext4_map_blocks() could flag the
3134 * io structure whether there is a unwritten extents
3135 * needs to be converted when IO is completed.
8d5d02e6 3136 */
69c499d1
TT
3137 ext4_inode_aio_set(inode, io_end);
3138 }
4bd809db 3139
69c499d1
TT
3140 if (overwrite) {
3141 get_block_func = ext4_get_block_write_nolock;
3142 } else {
3143 get_block_func = ext4_get_block_write;
3144 dio_flags = DIO_LOCKING;
3145 }
3146 ret = __blockdev_direct_IO(rw, iocb, inode,
3147 inode->i_sb->s_bdev, iov,
3148 offset, nr_segs,
3149 get_block_func,
3150 ext4_end_io_dio,
3151 NULL,
3152 dio_flags);
3153
3154 if (iocb->private)
3155 ext4_inode_aio_set(inode, NULL);
3156 /*
3157 * The io_end structure takes a reference to the inode, that
3158 * structure needs to be destroyed and the reference to the
3159 * inode need to be dropped, when IO is complete, even with 0
3160 * byte write, or failed.
3161 *
3162 * In the successful AIO DIO case, the io_end structure will
3163 * be destroyed and the reference to the inode will be dropped
3164 * after the end_io call back function is called.
3165 *
3166 * In the case there is 0 byte write, or error case, since VFS
3167 * direct IO won't invoke the end_io call back function, we
3168 * need to free the end_io structure here.
3169 */
3170 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3171 ext4_free_io_end(iocb->private);
3172 iocb->private = NULL;
3173 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3174 EXT4_STATE_DIO_UNWRITTEN)) {
3175 int err;
3176 /*
3177 * for non AIO case, since the IO is already
3178 * completed, we could do the conversion right here
3179 */
3180 err = ext4_convert_unwritten_extents(inode,
3181 offset, ret);
3182 if (err < 0)
3183 ret = err;
3184 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3185 }
4bd809db 3186
69c499d1
TT
3187retake_lock:
3188 /* take i_mutex locking again if we do a ovewrite dio */
3189 if (overwrite) {
3190 inode_dio_done(inode);
3191 up_read(&EXT4_I(inode)->i_data_sem);
3192 mutex_lock(&inode->i_mutex);
4c0425ff 3193 }
8d5d02e6 3194
69c499d1 3195 return ret;
4c0425ff
MC
3196}
3197
3198static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199 const struct iovec *iov, loff_t offset,
3200 unsigned long nr_segs)
3201{
3202 struct file *file = iocb->ki_filp;
3203 struct inode *inode = file->f_mapping->host;
0562e0ba 3204 ssize_t ret;
4c0425ff 3205
84ebd795
TT
3206 /*
3207 * If we are doing data journalling we don't support O_DIRECT
3208 */
3209 if (ext4_should_journal_data(inode))
3210 return 0;
3211
46c7f254
TM
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
0562e0ba 3216 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3218 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219 else
3220 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221 trace_ext4_direct_IO_exit(inode, offset,
3222 iov_length(iov, nr_segs), rw, ret);
3223 return ret;
4c0425ff
MC
3224}
3225
ac27a0ec 3226/*
617ba13b 3227 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3228 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3229 * much here because ->set_page_dirty is called under VFS locks. The page is
3230 * not necessarily locked.
3231 *
3232 * We cannot just dirty the page and leave attached buffers clean, because the
3233 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3234 * or jbddirty because all the journalling code will explode.
3235 *
3236 * So what we do is to mark the page "pending dirty" and next time writepage
3237 * is called, propagate that into the buffers appropriately.
3238 */
617ba13b 3239static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3240{
3241 SetPageChecked(page);
3242 return __set_page_dirty_nobuffers(page);
3243}
3244
617ba13b 3245static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3246 .readpage = ext4_readpage,
3247 .readpages = ext4_readpages,
43ce1d23 3248 .writepage = ext4_writepage,
8ab22b9a
HH
3249 .write_begin = ext4_write_begin,
3250 .write_end = ext4_ordered_write_end,
3251 .bmap = ext4_bmap,
3252 .invalidatepage = ext4_invalidatepage,
3253 .releasepage = ext4_releasepage,
3254 .direct_IO = ext4_direct_IO,
3255 .migratepage = buffer_migrate_page,
3256 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3257 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3258};
3259
617ba13b 3260static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3261 .readpage = ext4_readpage,
3262 .readpages = ext4_readpages,
43ce1d23 3263 .writepage = ext4_writepage,
8ab22b9a
HH
3264 .write_begin = ext4_write_begin,
3265 .write_end = ext4_writeback_write_end,
3266 .bmap = ext4_bmap,
3267 .invalidatepage = ext4_invalidatepage,
3268 .releasepage = ext4_releasepage,
3269 .direct_IO = ext4_direct_IO,
3270 .migratepage = buffer_migrate_page,
3271 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3272 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3273};
3274
617ba13b 3275static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3276 .readpage = ext4_readpage,
3277 .readpages = ext4_readpages,
43ce1d23 3278 .writepage = ext4_writepage,
8ab22b9a
HH
3279 .write_begin = ext4_write_begin,
3280 .write_end = ext4_journalled_write_end,
3281 .set_page_dirty = ext4_journalled_set_page_dirty,
3282 .bmap = ext4_bmap,
4520fb3c 3283 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3284 .releasepage = ext4_releasepage,
84ebd795 3285 .direct_IO = ext4_direct_IO,
8ab22b9a 3286 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3287 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3288};
3289
64769240 3290static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3291 .readpage = ext4_readpage,
3292 .readpages = ext4_readpages,
43ce1d23 3293 .writepage = ext4_writepage,
8ab22b9a 3294 .writepages = ext4_da_writepages,
8ab22b9a
HH
3295 .write_begin = ext4_da_write_begin,
3296 .write_end = ext4_da_write_end,
3297 .bmap = ext4_bmap,
3298 .invalidatepage = ext4_da_invalidatepage,
3299 .releasepage = ext4_releasepage,
3300 .direct_IO = ext4_direct_IO,
3301 .migratepage = buffer_migrate_page,
3302 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3303 .error_remove_page = generic_error_remove_page,
64769240
AT
3304};
3305
617ba13b 3306void ext4_set_aops(struct inode *inode)
ac27a0ec 3307{
3d2b1582
LC
3308 switch (ext4_inode_journal_mode(inode)) {
3309 case EXT4_INODE_ORDERED_DATA_MODE:
3310 if (test_opt(inode->i_sb, DELALLOC))
3311 inode->i_mapping->a_ops = &ext4_da_aops;
3312 else
3313 inode->i_mapping->a_ops = &ext4_ordered_aops;
3314 break;
3315 case EXT4_INODE_WRITEBACK_DATA_MODE:
3316 if (test_opt(inode->i_sb, DELALLOC))
3317 inode->i_mapping->a_ops = &ext4_da_aops;
3318 else
3319 inode->i_mapping->a_ops = &ext4_writeback_aops;
3320 break;
3321 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3322 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3323 break;
3324 default:
3325 BUG();
3326 }
ac27a0ec
DK
3327}
3328
4e96b2db
AH
3329
3330/*
3331 * ext4_discard_partial_page_buffers()
3332 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3333 * This function finds and locks the page containing the offset
3334 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3335 * Calling functions that already have the page locked should call
3336 * ext4_discard_partial_page_buffers_no_lock directly.
3337 */
3338int ext4_discard_partial_page_buffers(handle_t *handle,
3339 struct address_space *mapping, loff_t from,
3340 loff_t length, int flags)
3341{
3342 struct inode *inode = mapping->host;
3343 struct page *page;
3344 int err = 0;
3345
3346 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3347 mapping_gfp_mask(mapping) & ~__GFP_FS);
3348 if (!page)
5129d05f 3349 return -ENOMEM;
4e96b2db
AH
3350
3351 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3352 from, length, flags);
3353
3354 unlock_page(page);
3355 page_cache_release(page);
3356 return err;
3357}
3358
3359/*
3360 * ext4_discard_partial_page_buffers_no_lock()
3361 * Zeros a page range of length 'length' starting from offset 'from'.
3362 * Buffer heads that correspond to the block aligned regions of the
3363 * zeroed range will be unmapped. Unblock aligned regions
3364 * will have the corresponding buffer head mapped if needed so that
3365 * that region of the page can be updated with the partial zero out.
3366 *
3367 * This function assumes that the page has already been locked. The
3368 * The range to be discarded must be contained with in the given page.
3369 * If the specified range exceeds the end of the page it will be shortened
3370 * to the end of the page that corresponds to 'from'. This function is
3371 * appropriate for updating a page and it buffer heads to be unmapped and
3372 * zeroed for blocks that have been either released, or are going to be
3373 * released.
3374 *
3375 * handle: The journal handle
3376 * inode: The files inode
3377 * page: A locked page that contains the offset "from"
4907cb7b 3378 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3379 * to begin discarding
3380 * len: The length of bytes to discard
3381 * flags: Optional flags that may be used:
3382 *
3383 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3384 * Only zero the regions of the page whose buffer heads
3385 * have already been unmapped. This flag is appropriate
4907cb7b 3386 * for updating the contents of a page whose blocks may
4e96b2db
AH
3387 * have already been released, and we only want to zero
3388 * out the regions that correspond to those released blocks.
3389 *
4907cb7b 3390 * Returns zero on success or negative on failure.
4e96b2db 3391 */
5f163cc7 3392static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3393 struct inode *inode, struct page *page, loff_t from,
3394 loff_t length, int flags)
3395{
3396 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3397 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3398 unsigned int blocksize, max, pos;
4e96b2db
AH
3399 ext4_lblk_t iblock;
3400 struct buffer_head *bh;
3401 int err = 0;
3402
3403 blocksize = inode->i_sb->s_blocksize;
3404 max = PAGE_CACHE_SIZE - offset;
3405
3406 if (index != page->index)
3407 return -EINVAL;
3408
3409 /*
3410 * correct length if it does not fall between
3411 * 'from' and the end of the page
3412 */
3413 if (length > max || length < 0)
3414 length = max;
3415
3416 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3417
093e6e36
YY
3418 if (!page_has_buffers(page))
3419 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3420
3421 /* Find the buffer that contains "offset" */
3422 bh = page_buffers(page);
3423 pos = blocksize;
3424 while (offset >= pos) {
3425 bh = bh->b_this_page;
3426 iblock++;
3427 pos += blocksize;
3428 }
3429
3430 pos = offset;
3431 while (pos < offset + length) {
e260daf2
YY
3432 unsigned int end_of_block, range_to_discard;
3433
4e96b2db
AH
3434 err = 0;
3435
3436 /* The length of space left to zero and unmap */
3437 range_to_discard = offset + length - pos;
3438
3439 /* The length of space until the end of the block */
3440 end_of_block = blocksize - (pos & (blocksize-1));
3441
3442 /*
3443 * Do not unmap or zero past end of block
3444 * for this buffer head
3445 */
3446 if (range_to_discard > end_of_block)
3447 range_to_discard = end_of_block;
3448
3449
3450 /*
3451 * Skip this buffer head if we are only zeroing unampped
3452 * regions of the page
3453 */
3454 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3455 buffer_mapped(bh))
3456 goto next;
3457
3458 /* If the range is block aligned, unmap */
3459 if (range_to_discard == blocksize) {
3460 clear_buffer_dirty(bh);
3461 bh->b_bdev = NULL;
3462 clear_buffer_mapped(bh);
3463 clear_buffer_req(bh);
3464 clear_buffer_new(bh);
3465 clear_buffer_delay(bh);
3466 clear_buffer_unwritten(bh);
3467 clear_buffer_uptodate(bh);
3468 zero_user(page, pos, range_to_discard);
3469 BUFFER_TRACE(bh, "Buffer discarded");
3470 goto next;
3471 }
3472
3473 /*
3474 * If this block is not completely contained in the range
3475 * to be discarded, then it is not going to be released. Because
3476 * we need to keep this block, we need to make sure this part
3477 * of the page is uptodate before we modify it by writeing
3478 * partial zeros on it.
3479 */
3480 if (!buffer_mapped(bh)) {
3481 /*
3482 * Buffer head must be mapped before we can read
3483 * from the block
3484 */
3485 BUFFER_TRACE(bh, "unmapped");
3486 ext4_get_block(inode, iblock, bh, 0);
3487 /* unmapped? It's a hole - nothing to do */
3488 if (!buffer_mapped(bh)) {
3489 BUFFER_TRACE(bh, "still unmapped");
3490 goto next;
3491 }
3492 }
3493
3494 /* Ok, it's mapped. Make sure it's up-to-date */
3495 if (PageUptodate(page))
3496 set_buffer_uptodate(bh);
3497
3498 if (!buffer_uptodate(bh)) {
3499 err = -EIO;
3500 ll_rw_block(READ, 1, &bh);
3501 wait_on_buffer(bh);
3502 /* Uhhuh. Read error. Complain and punt.*/
3503 if (!buffer_uptodate(bh))
3504 goto next;
3505 }
3506
3507 if (ext4_should_journal_data(inode)) {
3508 BUFFER_TRACE(bh, "get write access");
3509 err = ext4_journal_get_write_access(handle, bh);
3510 if (err)
3511 goto next;
3512 }
3513
3514 zero_user(page, pos, range_to_discard);
3515
3516 err = 0;
3517 if (ext4_should_journal_data(inode)) {
3518 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3519 } else
4e96b2db 3520 mark_buffer_dirty(bh);
4e96b2db
AH
3521
3522 BUFFER_TRACE(bh, "Partial buffer zeroed");
3523next:
3524 bh = bh->b_this_page;
3525 iblock++;
3526 pos += range_to_discard;
3527 }
3528
3529 return err;
3530}
3531
91ef4caf
DG
3532int ext4_can_truncate(struct inode *inode)
3533{
91ef4caf
DG
3534 if (S_ISREG(inode->i_mode))
3535 return 1;
3536 if (S_ISDIR(inode->i_mode))
3537 return 1;
3538 if (S_ISLNK(inode->i_mode))
3539 return !ext4_inode_is_fast_symlink(inode);
3540 return 0;
3541}
3542
a4bb6b64
AH
3543/*
3544 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3545 * associated with the given offset and length
3546 *
3547 * @inode: File inode
3548 * @offset: The offset where the hole will begin
3549 * @len: The length of the hole
3550 *
4907cb7b 3551 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3552 */
3553
3554int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3555{
496ad9aa 3556 struct inode *inode = file_inode(file);
a4bb6b64 3557 if (!S_ISREG(inode->i_mode))
73355192 3558 return -EOPNOTSUPP;
a4bb6b64
AH
3559
3560 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3561 /* TODO: Add support for non extent hole punching */
73355192 3562 return -EOPNOTSUPP;
a4bb6b64
AH
3563 }
3564
bab08ab9
TT
3565 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3566 /* TODO: Add support for bigalloc file systems */
73355192 3567 return -EOPNOTSUPP;
bab08ab9
TT
3568 }
3569
a4bb6b64
AH
3570 return ext4_ext_punch_hole(file, offset, length);
3571}
3572
ac27a0ec 3573/*
617ba13b 3574 * ext4_truncate()
ac27a0ec 3575 *
617ba13b
MC
3576 * We block out ext4_get_block() block instantiations across the entire
3577 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3578 * simultaneously on behalf of the same inode.
3579 *
42b2aa86 3580 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3581 * is one core, guiding principle: the file's tree must always be consistent on
3582 * disk. We must be able to restart the truncate after a crash.
3583 *
3584 * The file's tree may be transiently inconsistent in memory (although it
3585 * probably isn't), but whenever we close off and commit a journal transaction,
3586 * the contents of (the filesystem + the journal) must be consistent and
3587 * restartable. It's pretty simple, really: bottom up, right to left (although
3588 * left-to-right works OK too).
3589 *
3590 * Note that at recovery time, journal replay occurs *before* the restart of
3591 * truncate against the orphan inode list.
3592 *
3593 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3594 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3595 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3596 * ext4_truncate() to have another go. So there will be instantiated blocks
3597 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3598 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3599 * ext4_truncate() run will find them and release them.
ac27a0ec 3600 */
617ba13b 3601void ext4_truncate(struct inode *inode)
ac27a0ec 3602{
0562e0ba
JZ
3603 trace_ext4_truncate_enter(inode);
3604
91ef4caf 3605 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3606 return;
3607
12e9b892 3608 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3609
5534fb5b 3610 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3611 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3612
aef1c851
TM
3613 if (ext4_has_inline_data(inode)) {
3614 int has_inline = 1;
3615
3616 ext4_inline_data_truncate(inode, &has_inline);
3617 if (has_inline)
3618 return;
3619 }
3620
ff9893dc 3621 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3622 ext4_ext_truncate(inode);
ff9893dc
AG
3623 else
3624 ext4_ind_truncate(inode);
ac27a0ec 3625
0562e0ba 3626 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3627}
3628
ac27a0ec 3629/*
617ba13b 3630 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3631 * underlying buffer_head on success. If 'in_mem' is true, we have all
3632 * data in memory that is needed to recreate the on-disk version of this
3633 * inode.
3634 */
617ba13b
MC
3635static int __ext4_get_inode_loc(struct inode *inode,
3636 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3637{
240799cd
TT
3638 struct ext4_group_desc *gdp;
3639 struct buffer_head *bh;
3640 struct super_block *sb = inode->i_sb;
3641 ext4_fsblk_t block;
3642 int inodes_per_block, inode_offset;
3643
3a06d778 3644 iloc->bh = NULL;
240799cd
TT
3645 if (!ext4_valid_inum(sb, inode->i_ino))
3646 return -EIO;
ac27a0ec 3647
240799cd
TT
3648 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3649 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3650 if (!gdp)
ac27a0ec
DK
3651 return -EIO;
3652
240799cd
TT
3653 /*
3654 * Figure out the offset within the block group inode table
3655 */
00d09882 3656 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3657 inode_offset = ((inode->i_ino - 1) %
3658 EXT4_INODES_PER_GROUP(sb));
3659 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3660 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3661
3662 bh = sb_getblk(sb, block);
ac27a0ec 3663 if (!bh) {
c398eda0
TT
3664 EXT4_ERROR_INODE_BLOCK(inode, block,
3665 "unable to read itable block");
ac27a0ec
DK
3666 return -EIO;
3667 }
3668 if (!buffer_uptodate(bh)) {
3669 lock_buffer(bh);
9c83a923
HK
3670
3671 /*
3672 * If the buffer has the write error flag, we have failed
3673 * to write out another inode in the same block. In this
3674 * case, we don't have to read the block because we may
3675 * read the old inode data successfully.
3676 */
3677 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3678 set_buffer_uptodate(bh);
3679
ac27a0ec
DK
3680 if (buffer_uptodate(bh)) {
3681 /* someone brought it uptodate while we waited */
3682 unlock_buffer(bh);
3683 goto has_buffer;
3684 }
3685
3686 /*
3687 * If we have all information of the inode in memory and this
3688 * is the only valid inode in the block, we need not read the
3689 * block.
3690 */
3691 if (in_mem) {
3692 struct buffer_head *bitmap_bh;
240799cd 3693 int i, start;
ac27a0ec 3694
240799cd 3695 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3696
240799cd
TT
3697 /* Is the inode bitmap in cache? */
3698 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3699 if (!bitmap_bh)
3700 goto make_io;
3701
3702 /*
3703 * If the inode bitmap isn't in cache then the
3704 * optimisation may end up performing two reads instead
3705 * of one, so skip it.
3706 */
3707 if (!buffer_uptodate(bitmap_bh)) {
3708 brelse(bitmap_bh);
3709 goto make_io;
3710 }
240799cd 3711 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3712 if (i == inode_offset)
3713 continue;
617ba13b 3714 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3715 break;
3716 }
3717 brelse(bitmap_bh);
240799cd 3718 if (i == start + inodes_per_block) {
ac27a0ec
DK
3719 /* all other inodes are free, so skip I/O */
3720 memset(bh->b_data, 0, bh->b_size);
3721 set_buffer_uptodate(bh);
3722 unlock_buffer(bh);
3723 goto has_buffer;
3724 }
3725 }
3726
3727make_io:
240799cd
TT
3728 /*
3729 * If we need to do any I/O, try to pre-readahead extra
3730 * blocks from the inode table.
3731 */
3732 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3733 ext4_fsblk_t b, end, table;
3734 unsigned num;
3735
3736 table = ext4_inode_table(sb, gdp);
b713a5ec 3737 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3738 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3739 if (table > b)
3740 b = table;
3741 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3742 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3743 if (ext4_has_group_desc_csum(sb))
560671a0 3744 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3745 table += num / inodes_per_block;
3746 if (end > table)
3747 end = table;
3748 while (b <= end)
3749 sb_breadahead(sb, b++);
3750 }
3751
ac27a0ec
DK
3752 /*
3753 * There are other valid inodes in the buffer, this inode
3754 * has in-inode xattrs, or we don't have this inode in memory.
3755 * Read the block from disk.
3756 */
0562e0ba 3757 trace_ext4_load_inode(inode);
ac27a0ec
DK
3758 get_bh(bh);
3759 bh->b_end_io = end_buffer_read_sync;
65299a3b 3760 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3761 wait_on_buffer(bh);
3762 if (!buffer_uptodate(bh)) {
c398eda0
TT
3763 EXT4_ERROR_INODE_BLOCK(inode, block,
3764 "unable to read itable block");
ac27a0ec
DK
3765 brelse(bh);
3766 return -EIO;
3767 }
3768 }
3769has_buffer:
3770 iloc->bh = bh;
3771 return 0;
3772}
3773
617ba13b 3774int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3775{
3776 /* We have all inode data except xattrs in memory here. */
617ba13b 3777 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3778 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3779}
3780
617ba13b 3781void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3782{
617ba13b 3783 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3784
3785 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3786 if (flags & EXT4_SYNC_FL)
ac27a0ec 3787 inode->i_flags |= S_SYNC;
617ba13b 3788 if (flags & EXT4_APPEND_FL)
ac27a0ec 3789 inode->i_flags |= S_APPEND;
617ba13b 3790 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3791 inode->i_flags |= S_IMMUTABLE;
617ba13b 3792 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3793 inode->i_flags |= S_NOATIME;
617ba13b 3794 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3795 inode->i_flags |= S_DIRSYNC;
3796}
3797
ff9ddf7e
JK
3798/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3799void ext4_get_inode_flags(struct ext4_inode_info *ei)
3800{
84a8dce2
DM
3801 unsigned int vfs_fl;
3802 unsigned long old_fl, new_fl;
3803
3804 do {
3805 vfs_fl = ei->vfs_inode.i_flags;
3806 old_fl = ei->i_flags;
3807 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3808 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3809 EXT4_DIRSYNC_FL);
3810 if (vfs_fl & S_SYNC)
3811 new_fl |= EXT4_SYNC_FL;
3812 if (vfs_fl & S_APPEND)
3813 new_fl |= EXT4_APPEND_FL;
3814 if (vfs_fl & S_IMMUTABLE)
3815 new_fl |= EXT4_IMMUTABLE_FL;
3816 if (vfs_fl & S_NOATIME)
3817 new_fl |= EXT4_NOATIME_FL;
3818 if (vfs_fl & S_DIRSYNC)
3819 new_fl |= EXT4_DIRSYNC_FL;
3820 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3821}
de9a55b8 3822
0fc1b451 3823static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3824 struct ext4_inode_info *ei)
0fc1b451
AK
3825{
3826 blkcnt_t i_blocks ;
8180a562
AK
3827 struct inode *inode = &(ei->vfs_inode);
3828 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3829
3830 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3831 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3832 /* we are using combined 48 bit field */
3833 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3834 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3835 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3836 /* i_blocks represent file system block size */
3837 return i_blocks << (inode->i_blkbits - 9);
3838 } else {
3839 return i_blocks;
3840 }
0fc1b451
AK
3841 } else {
3842 return le32_to_cpu(raw_inode->i_blocks_lo);
3843 }
3844}
ff9ddf7e 3845
152a7b0a
TM
3846static inline void ext4_iget_extra_inode(struct inode *inode,
3847 struct ext4_inode *raw_inode,
3848 struct ext4_inode_info *ei)
3849{
3850 __le32 *magic = (void *)raw_inode +
3851 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3852 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3853 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3854 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3855 } else
3856 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3857}
3858
1d1fe1ee 3859struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3860{
617ba13b
MC
3861 struct ext4_iloc iloc;
3862 struct ext4_inode *raw_inode;
1d1fe1ee 3863 struct ext4_inode_info *ei;
1d1fe1ee 3864 struct inode *inode;
b436b9be 3865 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3866 long ret;
ac27a0ec 3867 int block;
08cefc7a
EB
3868 uid_t i_uid;
3869 gid_t i_gid;
ac27a0ec 3870
1d1fe1ee
DH
3871 inode = iget_locked(sb, ino);
3872 if (!inode)
3873 return ERR_PTR(-ENOMEM);
3874 if (!(inode->i_state & I_NEW))
3875 return inode;
3876
3877 ei = EXT4_I(inode);
7dc57615 3878 iloc.bh = NULL;
ac27a0ec 3879
1d1fe1ee
DH
3880 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3881 if (ret < 0)
ac27a0ec 3882 goto bad_inode;
617ba13b 3883 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3884
3885 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3887 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3888 EXT4_INODE_SIZE(inode->i_sb)) {
3889 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3890 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3891 EXT4_INODE_SIZE(inode->i_sb));
3892 ret = -EIO;
3893 goto bad_inode;
3894 }
3895 } else
3896 ei->i_extra_isize = 0;
3897
3898 /* Precompute checksum seed for inode metadata */
3899 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3900 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3901 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3902 __u32 csum;
3903 __le32 inum = cpu_to_le32(inode->i_ino);
3904 __le32 gen = raw_inode->i_generation;
3905 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3906 sizeof(inum));
3907 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3908 sizeof(gen));
3909 }
3910
3911 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3912 EXT4_ERROR_INODE(inode, "checksum invalid");
3913 ret = -EIO;
3914 goto bad_inode;
3915 }
3916
ac27a0ec 3917 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3918 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3919 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3920 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3921 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3922 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3923 }
08cefc7a
EB
3924 i_uid_write(inode, i_uid);
3925 i_gid_write(inode, i_gid);
bfe86848 3926 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3927
353eb83c 3928 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3929 ei->i_inline_off = 0;
ac27a0ec
DK
3930 ei->i_dir_start_lookup = 0;
3931 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3932 /* We now have enough fields to check if the inode was active or not.
3933 * This is needed because nfsd might try to access dead inodes
3934 * the test is that same one that e2fsck uses
3935 * NeilBrown 1999oct15
3936 */
3937 if (inode->i_nlink == 0) {
3938 if (inode->i_mode == 0 ||
617ba13b 3939 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3940 /* this inode is deleted */
1d1fe1ee 3941 ret = -ESTALE;
ac27a0ec
DK
3942 goto bad_inode;
3943 }
3944 /* The only unlinked inodes we let through here have
3945 * valid i_mode and are being read by the orphan
3946 * recovery code: that's fine, we're about to complete
3947 * the process of deleting those. */
3948 }
ac27a0ec 3949 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3950 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3951 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3952 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3953 ei->i_file_acl |=
3954 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3955 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3956 ei->i_disksize = inode->i_size;
a9e7f447
DM
3957#ifdef CONFIG_QUOTA
3958 ei->i_reserved_quota = 0;
3959#endif
ac27a0ec
DK
3960 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3961 ei->i_block_group = iloc.block_group;
a4912123 3962 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3963 /*
3964 * NOTE! The in-memory inode i_data array is in little-endian order
3965 * even on big-endian machines: we do NOT byteswap the block numbers!
3966 */
617ba13b 3967 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3968 ei->i_data[block] = raw_inode->i_block[block];
3969 INIT_LIST_HEAD(&ei->i_orphan);
3970
b436b9be
JK
3971 /*
3972 * Set transaction id's of transactions that have to be committed
3973 * to finish f[data]sync. We set them to currently running transaction
3974 * as we cannot be sure that the inode or some of its metadata isn't
3975 * part of the transaction - the inode could have been reclaimed and
3976 * now it is reread from disk.
3977 */
3978 if (journal) {
3979 transaction_t *transaction;
3980 tid_t tid;
3981
a931da6a 3982 read_lock(&journal->j_state_lock);
b436b9be
JK
3983 if (journal->j_running_transaction)
3984 transaction = journal->j_running_transaction;
3985 else
3986 transaction = journal->j_committing_transaction;
3987 if (transaction)
3988 tid = transaction->t_tid;
3989 else
3990 tid = journal->j_commit_sequence;
a931da6a 3991 read_unlock(&journal->j_state_lock);
b436b9be
JK
3992 ei->i_sync_tid = tid;
3993 ei->i_datasync_tid = tid;
3994 }
3995
0040d987 3996 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3997 if (ei->i_extra_isize == 0) {
3998 /* The extra space is currently unused. Use it. */
617ba13b
MC
3999 ei->i_extra_isize = sizeof(struct ext4_inode) -
4000 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4001 } else {
152a7b0a 4002 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4003 }
814525f4 4004 }
ac27a0ec 4005
ef7f3835
KS
4006 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4007 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4008 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4009 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4010
25ec56b5
JNC
4011 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4012 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4013 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4014 inode->i_version |=
4015 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4016 }
4017
c4b5a614 4018 ret = 0;
485c26ec 4019 if (ei->i_file_acl &&
1032988c 4020 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4021 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4022 ei->i_file_acl);
485c26ec
TT
4023 ret = -EIO;
4024 goto bad_inode;
f19d5870
TM
4025 } else if (!ext4_has_inline_data(inode)) {
4026 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4027 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4028 (S_ISLNK(inode->i_mode) &&
4029 !ext4_inode_is_fast_symlink(inode))))
4030 /* Validate extent which is part of inode */
4031 ret = ext4_ext_check_inode(inode);
4032 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4033 (S_ISLNK(inode->i_mode) &&
4034 !ext4_inode_is_fast_symlink(inode))) {
4035 /* Validate block references which are part of inode */
4036 ret = ext4_ind_check_inode(inode);
4037 }
fe2c8191 4038 }
567f3e9a 4039 if (ret)
de9a55b8 4040 goto bad_inode;
7a262f7c 4041
ac27a0ec 4042 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4043 inode->i_op = &ext4_file_inode_operations;
4044 inode->i_fop = &ext4_file_operations;
4045 ext4_set_aops(inode);
ac27a0ec 4046 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4047 inode->i_op = &ext4_dir_inode_operations;
4048 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4049 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4050 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4051 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4052 nd_terminate_link(ei->i_data, inode->i_size,
4053 sizeof(ei->i_data) - 1);
4054 } else {
617ba13b
MC
4055 inode->i_op = &ext4_symlink_inode_operations;
4056 ext4_set_aops(inode);
ac27a0ec 4057 }
563bdd61
TT
4058 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4059 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4060 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4061 if (raw_inode->i_block[0])
4062 init_special_inode(inode, inode->i_mode,
4063 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4064 else
4065 init_special_inode(inode, inode->i_mode,
4066 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4067 } else {
563bdd61 4068 ret = -EIO;
24676da4 4069 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4070 goto bad_inode;
ac27a0ec 4071 }
af5bc92d 4072 brelse(iloc.bh);
617ba13b 4073 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4074 unlock_new_inode(inode);
4075 return inode;
ac27a0ec
DK
4076
4077bad_inode:
567f3e9a 4078 brelse(iloc.bh);
1d1fe1ee
DH
4079 iget_failed(inode);
4080 return ERR_PTR(ret);
ac27a0ec
DK
4081}
4082
0fc1b451
AK
4083static int ext4_inode_blocks_set(handle_t *handle,
4084 struct ext4_inode *raw_inode,
4085 struct ext4_inode_info *ei)
4086{
4087 struct inode *inode = &(ei->vfs_inode);
4088 u64 i_blocks = inode->i_blocks;
4089 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4090
4091 if (i_blocks <= ~0U) {
4092 /*
4907cb7b 4093 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4094 * as multiple of 512 bytes
4095 */
8180a562 4096 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4097 raw_inode->i_blocks_high = 0;
84a8dce2 4098 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4099 return 0;
4100 }
4101 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4102 return -EFBIG;
4103
4104 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4105 /*
4106 * i_blocks can be represented in a 48 bit variable
4107 * as multiple of 512 bytes
4108 */
8180a562 4109 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4110 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4111 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4112 } else {
84a8dce2 4113 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4114 /* i_block is stored in file system block size */
4115 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4116 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4117 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4118 }
f287a1a5 4119 return 0;
0fc1b451
AK
4120}
4121
ac27a0ec
DK
4122/*
4123 * Post the struct inode info into an on-disk inode location in the
4124 * buffer-cache. This gobbles the caller's reference to the
4125 * buffer_head in the inode location struct.
4126 *
4127 * The caller must have write access to iloc->bh.
4128 */
617ba13b 4129static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4130 struct inode *inode,
830156c7 4131 struct ext4_iloc *iloc)
ac27a0ec 4132{
617ba13b
MC
4133 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4134 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4135 struct buffer_head *bh = iloc->bh;
4136 int err = 0, rc, block;
b71fc079 4137 int need_datasync = 0;
08cefc7a
EB
4138 uid_t i_uid;
4139 gid_t i_gid;
ac27a0ec
DK
4140
4141 /* For fields not not tracking in the in-memory inode,
4142 * initialise them to zero for new inodes. */
19f5fb7a 4143 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4144 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4145
ff9ddf7e 4146 ext4_get_inode_flags(ei);
ac27a0ec 4147 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4148 i_uid = i_uid_read(inode);
4149 i_gid = i_gid_read(inode);
af5bc92d 4150 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4151 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4152 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4153/*
4154 * Fix up interoperability with old kernels. Otherwise, old inodes get
4155 * re-used with the upper 16 bits of the uid/gid intact
4156 */
af5bc92d 4157 if (!ei->i_dtime) {
ac27a0ec 4158 raw_inode->i_uid_high =
08cefc7a 4159 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4160 raw_inode->i_gid_high =
08cefc7a 4161 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4162 } else {
4163 raw_inode->i_uid_high = 0;
4164 raw_inode->i_gid_high = 0;
4165 }
4166 } else {
08cefc7a
EB
4167 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4168 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4169 raw_inode->i_uid_high = 0;
4170 raw_inode->i_gid_high = 0;
4171 }
4172 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4173
4174 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4175 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4176 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4177 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4178
0fc1b451
AK
4179 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4180 goto out_brelse;
ac27a0ec 4181 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4182 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4183 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4184 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4185 raw_inode->i_file_acl_high =
4186 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4187 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4188 if (ei->i_disksize != ext4_isize(raw_inode)) {
4189 ext4_isize_set(raw_inode, ei->i_disksize);
4190 need_datasync = 1;
4191 }
a48380f7
AK
4192 if (ei->i_disksize > 0x7fffffffULL) {
4193 struct super_block *sb = inode->i_sb;
4194 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4195 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4196 EXT4_SB(sb)->s_es->s_rev_level ==
4197 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4198 /* If this is the first large file
4199 * created, add a flag to the superblock.
4200 */
4201 err = ext4_journal_get_write_access(handle,
4202 EXT4_SB(sb)->s_sbh);
4203 if (err)
4204 goto out_brelse;
4205 ext4_update_dynamic_rev(sb);
4206 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4207 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4208 ext4_handle_sync(handle);
b50924c2 4209 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4210 }
4211 }
4212 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4213 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4214 if (old_valid_dev(inode->i_rdev)) {
4215 raw_inode->i_block[0] =
4216 cpu_to_le32(old_encode_dev(inode->i_rdev));
4217 raw_inode->i_block[1] = 0;
4218 } else {
4219 raw_inode->i_block[0] = 0;
4220 raw_inode->i_block[1] =
4221 cpu_to_le32(new_encode_dev(inode->i_rdev));
4222 raw_inode->i_block[2] = 0;
4223 }
f19d5870 4224 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4225 for (block = 0; block < EXT4_N_BLOCKS; block++)
4226 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4227 }
ac27a0ec 4228
25ec56b5
JNC
4229 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4230 if (ei->i_extra_isize) {
4231 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4232 raw_inode->i_version_hi =
4233 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4234 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4235 }
4236
814525f4
DW
4237 ext4_inode_csum_set(inode, raw_inode, ei);
4238
830156c7 4239 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4240 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4241 if (!err)
4242 err = rc;
19f5fb7a 4243 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4244
b71fc079 4245 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4246out_brelse:
af5bc92d 4247 brelse(bh);
617ba13b 4248 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4249 return err;
4250}
4251
4252/*
617ba13b 4253 * ext4_write_inode()
ac27a0ec
DK
4254 *
4255 * We are called from a few places:
4256 *
4257 * - Within generic_file_write() for O_SYNC files.
4258 * Here, there will be no transaction running. We wait for any running
4907cb7b 4259 * transaction to commit.
ac27a0ec
DK
4260 *
4261 * - Within sys_sync(), kupdate and such.
4262 * We wait on commit, if tol to.
4263 *
4264 * - Within prune_icache() (PF_MEMALLOC == true)
4265 * Here we simply return. We can't afford to block kswapd on the
4266 * journal commit.
4267 *
4268 * In all cases it is actually safe for us to return without doing anything,
4269 * because the inode has been copied into a raw inode buffer in
617ba13b 4270 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4271 * knfsd.
4272 *
4273 * Note that we are absolutely dependent upon all inode dirtiers doing the
4274 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4275 * which we are interested.
4276 *
4277 * It would be a bug for them to not do this. The code:
4278 *
4279 * mark_inode_dirty(inode)
4280 * stuff();
4281 * inode->i_size = expr;
4282 *
4283 * is in error because a kswapd-driven write_inode() could occur while
4284 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4285 * will no longer be on the superblock's dirty inode list.
4286 */
a9185b41 4287int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4288{
91ac6f43
FM
4289 int err;
4290
ac27a0ec
DK
4291 if (current->flags & PF_MEMALLOC)
4292 return 0;
4293
91ac6f43
FM
4294 if (EXT4_SB(inode->i_sb)->s_journal) {
4295 if (ext4_journal_current_handle()) {
4296 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4297 dump_stack();
4298 return -EIO;
4299 }
ac27a0ec 4300
a9185b41 4301 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4302 return 0;
4303
4304 err = ext4_force_commit(inode->i_sb);
4305 } else {
4306 struct ext4_iloc iloc;
ac27a0ec 4307
8b472d73 4308 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4309 if (err)
4310 return err;
a9185b41 4311 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4312 sync_dirty_buffer(iloc.bh);
4313 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4314 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4315 "IO error syncing inode");
830156c7
FM
4316 err = -EIO;
4317 }
fd2dd9fb 4318 brelse(iloc.bh);
91ac6f43
FM
4319 }
4320 return err;
ac27a0ec
DK
4321}
4322
53e87268
JK
4323/*
4324 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4325 * buffers that are attached to a page stradding i_size and are undergoing
4326 * commit. In that case we have to wait for commit to finish and try again.
4327 */
4328static void ext4_wait_for_tail_page_commit(struct inode *inode)
4329{
4330 struct page *page;
4331 unsigned offset;
4332 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4333 tid_t commit_tid = 0;
4334 int ret;
4335
4336 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4337 /*
4338 * All buffers in the last page remain valid? Then there's nothing to
4339 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4340 * blocksize case
4341 */
4342 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4343 return;
4344 while (1) {
4345 page = find_lock_page(inode->i_mapping,
4346 inode->i_size >> PAGE_CACHE_SHIFT);
4347 if (!page)
4348 return;
4349 ret = __ext4_journalled_invalidatepage(page, offset);
4350 unlock_page(page);
4351 page_cache_release(page);
4352 if (ret != -EBUSY)
4353 return;
4354 commit_tid = 0;
4355 read_lock(&journal->j_state_lock);
4356 if (journal->j_committing_transaction)
4357 commit_tid = journal->j_committing_transaction->t_tid;
4358 read_unlock(&journal->j_state_lock);
4359 if (commit_tid)
4360 jbd2_log_wait_commit(journal, commit_tid);
4361 }
4362}
4363
ac27a0ec 4364/*
617ba13b 4365 * ext4_setattr()
ac27a0ec
DK
4366 *
4367 * Called from notify_change.
4368 *
4369 * We want to trap VFS attempts to truncate the file as soon as
4370 * possible. In particular, we want to make sure that when the VFS
4371 * shrinks i_size, we put the inode on the orphan list and modify
4372 * i_disksize immediately, so that during the subsequent flushing of
4373 * dirty pages and freeing of disk blocks, we can guarantee that any
4374 * commit will leave the blocks being flushed in an unused state on
4375 * disk. (On recovery, the inode will get truncated and the blocks will
4376 * be freed, so we have a strong guarantee that no future commit will
4377 * leave these blocks visible to the user.)
4378 *
678aaf48
JK
4379 * Another thing we have to assure is that if we are in ordered mode
4380 * and inode is still attached to the committing transaction, we must
4381 * we start writeout of all the dirty pages which are being truncated.
4382 * This way we are sure that all the data written in the previous
4383 * transaction are already on disk (truncate waits for pages under
4384 * writeback).
4385 *
4386 * Called with inode->i_mutex down.
ac27a0ec 4387 */
617ba13b 4388int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4389{
4390 struct inode *inode = dentry->d_inode;
4391 int error, rc = 0;
3d287de3 4392 int orphan = 0;
ac27a0ec
DK
4393 const unsigned int ia_valid = attr->ia_valid;
4394
4395 error = inode_change_ok(inode, attr);
4396 if (error)
4397 return error;
4398
12755627 4399 if (is_quota_modification(inode, attr))
871a2931 4400 dquot_initialize(inode);
08cefc7a
EB
4401 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4402 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4403 handle_t *handle;
4404
4405 /* (user+group)*(old+new) structure, inode write (sb,
4406 * inode block, ? - but truncate inode update has it) */
5aca07eb 4407 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4408 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4409 if (IS_ERR(handle)) {
4410 error = PTR_ERR(handle);
4411 goto err_out;
4412 }
b43fa828 4413 error = dquot_transfer(inode, attr);
ac27a0ec 4414 if (error) {
617ba13b 4415 ext4_journal_stop(handle);
ac27a0ec
DK
4416 return error;
4417 }
4418 /* Update corresponding info in inode so that everything is in
4419 * one transaction */
4420 if (attr->ia_valid & ATTR_UID)
4421 inode->i_uid = attr->ia_uid;
4422 if (attr->ia_valid & ATTR_GID)
4423 inode->i_gid = attr->ia_gid;
617ba13b
MC
4424 error = ext4_mark_inode_dirty(handle, inode);
4425 ext4_journal_stop(handle);
ac27a0ec
DK
4426 }
4427
e2b46574 4428 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4429
12e9b892 4430 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4431 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4432
0c095c7f
TT
4433 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4434 return -EFBIG;
e2b46574
ES
4435 }
4436 }
4437
ac27a0ec 4438 if (S_ISREG(inode->i_mode) &&
c8d46e41 4439 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4440 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4441 handle_t *handle;
4442
617ba13b 4443 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4444 if (IS_ERR(handle)) {
4445 error = PTR_ERR(handle);
4446 goto err_out;
4447 }
3d287de3
DM
4448 if (ext4_handle_valid(handle)) {
4449 error = ext4_orphan_add(handle, inode);
4450 orphan = 1;
4451 }
617ba13b
MC
4452 EXT4_I(inode)->i_disksize = attr->ia_size;
4453 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4454 if (!error)
4455 error = rc;
617ba13b 4456 ext4_journal_stop(handle);
678aaf48
JK
4457
4458 if (ext4_should_order_data(inode)) {
4459 error = ext4_begin_ordered_truncate(inode,
4460 attr->ia_size);
4461 if (error) {
4462 /* Do as much error cleanup as possible */
4463 handle = ext4_journal_start(inode, 3);
4464 if (IS_ERR(handle)) {
4465 ext4_orphan_del(NULL, inode);
4466 goto err_out;
4467 }
4468 ext4_orphan_del(handle, inode);
3d287de3 4469 orphan = 0;
678aaf48
JK
4470 ext4_journal_stop(handle);
4471 goto err_out;
4472 }
4473 }
ac27a0ec
DK
4474 }
4475
072bd7ea 4476 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4477 if (attr->ia_size != inode->i_size) {
4478 loff_t oldsize = inode->i_size;
4479
4480 i_size_write(inode, attr->ia_size);
4481 /*
4482 * Blocks are going to be removed from the inode. Wait
4483 * for dio in flight. Temporarily disable
4484 * dioread_nolock to prevent livelock.
4485 */
1b65007e 4486 if (orphan) {
53e87268
JK
4487 if (!ext4_should_journal_data(inode)) {
4488 ext4_inode_block_unlocked_dio(inode);
4489 inode_dio_wait(inode);
4490 ext4_inode_resume_unlocked_dio(inode);
4491 } else
4492 ext4_wait_for_tail_page_commit(inode);
1b65007e 4493 }
53e87268
JK
4494 /*
4495 * Truncate pagecache after we've waited for commit
4496 * in data=journal mode to make pages freeable.
4497 */
4498 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4499 }
afcff5d8 4500 ext4_truncate(inode);
072bd7ea 4501 }
ac27a0ec 4502
1025774c
CH
4503 if (!rc) {
4504 setattr_copy(inode, attr);
4505 mark_inode_dirty(inode);
4506 }
4507
4508 /*
4509 * If the call to ext4_truncate failed to get a transaction handle at
4510 * all, we need to clean up the in-core orphan list manually.
4511 */
3d287de3 4512 if (orphan && inode->i_nlink)
617ba13b 4513 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4514
4515 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4516 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4517
4518err_out:
617ba13b 4519 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4520 if (!error)
4521 error = rc;
4522 return error;
4523}
4524
3e3398a0
MC
4525int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4526 struct kstat *stat)
4527{
4528 struct inode *inode;
4529 unsigned long delalloc_blocks;
4530
4531 inode = dentry->d_inode;
4532 generic_fillattr(inode, stat);
4533
4534 /*
4535 * We can't update i_blocks if the block allocation is delayed
4536 * otherwise in the case of system crash before the real block
4537 * allocation is done, we will have i_blocks inconsistent with
4538 * on-disk file blocks.
4539 * We always keep i_blocks updated together with real
4540 * allocation. But to not confuse with user, stat
4541 * will return the blocks that include the delayed allocation
4542 * blocks for this file.
4543 */
96607551
TM
4544 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4545 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4546
4547 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4548 return 0;
4549}
ac27a0ec 4550
a02908f1
MC
4551static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4552{
12e9b892 4553 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4554 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4555 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4556}
ac51d837 4557
ac27a0ec 4558/*
a02908f1
MC
4559 * Account for index blocks, block groups bitmaps and block group
4560 * descriptor blocks if modify datablocks and index blocks
4561 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4562 *
a02908f1 4563 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4564 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4565 * they could still across block group boundary.
ac27a0ec 4566 *
a02908f1
MC
4567 * Also account for superblock, inode, quota and xattr blocks
4568 */
1f109d5a 4569static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4570{
8df9675f
TT
4571 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4572 int gdpblocks;
a02908f1
MC
4573 int idxblocks;
4574 int ret = 0;
4575
4576 /*
4577 * How many index blocks need to touch to modify nrblocks?
4578 * The "Chunk" flag indicating whether the nrblocks is
4579 * physically contiguous on disk
4580 *
4581 * For Direct IO and fallocate, they calls get_block to allocate
4582 * one single extent at a time, so they could set the "Chunk" flag
4583 */
4584 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4585
4586 ret = idxblocks;
4587
4588 /*
4589 * Now let's see how many group bitmaps and group descriptors need
4590 * to account
4591 */
4592 groups = idxblocks;
4593 if (chunk)
4594 groups += 1;
4595 else
4596 groups += nrblocks;
4597
4598 gdpblocks = groups;
8df9675f
TT
4599 if (groups > ngroups)
4600 groups = ngroups;
a02908f1
MC
4601 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4602 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4603
4604 /* bitmaps and block group descriptor blocks */
4605 ret += groups + gdpblocks;
4606
4607 /* Blocks for super block, inode, quota and xattr blocks */
4608 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4609
4610 return ret;
4611}
4612
4613/*
25985edc 4614 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4615 * the modification of a single pages into a single transaction,
4616 * which may include multiple chunks of block allocations.
ac27a0ec 4617 *
525f4ed8 4618 * This could be called via ext4_write_begin()
ac27a0ec 4619 *
525f4ed8 4620 * We need to consider the worse case, when
a02908f1 4621 * one new block per extent.
ac27a0ec 4622 */
a86c6181 4623int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4624{
617ba13b 4625 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4626 int ret;
4627
a02908f1 4628 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4629
a02908f1 4630 /* Account for data blocks for journalled mode */
617ba13b 4631 if (ext4_should_journal_data(inode))
a02908f1 4632 ret += bpp;
ac27a0ec
DK
4633 return ret;
4634}
f3bd1f3f
MC
4635
4636/*
4637 * Calculate the journal credits for a chunk of data modification.
4638 *
4639 * This is called from DIO, fallocate or whoever calling
79e83036 4640 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4641 *
4642 * journal buffers for data blocks are not included here, as DIO
4643 * and fallocate do no need to journal data buffers.
4644 */
4645int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4646{
4647 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4648}
4649
ac27a0ec 4650/*
617ba13b 4651 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4652 * Give this, we know that the caller already has write access to iloc->bh.
4653 */
617ba13b 4654int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4655 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4656{
4657 int err = 0;
4658
c64db50e 4659 if (IS_I_VERSION(inode))
25ec56b5
JNC
4660 inode_inc_iversion(inode);
4661
ac27a0ec
DK
4662 /* the do_update_inode consumes one bh->b_count */
4663 get_bh(iloc->bh);
4664
dab291af 4665 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4666 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4667 put_bh(iloc->bh);
4668 return err;
4669}
4670
4671/*
4672 * On success, We end up with an outstanding reference count against
4673 * iloc->bh. This _must_ be cleaned up later.
4674 */
4675
4676int
617ba13b
MC
4677ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4678 struct ext4_iloc *iloc)
ac27a0ec 4679{
0390131b
FM
4680 int err;
4681
4682 err = ext4_get_inode_loc(inode, iloc);
4683 if (!err) {
4684 BUFFER_TRACE(iloc->bh, "get_write_access");
4685 err = ext4_journal_get_write_access(handle, iloc->bh);
4686 if (err) {
4687 brelse(iloc->bh);
4688 iloc->bh = NULL;
ac27a0ec
DK
4689 }
4690 }
617ba13b 4691 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4692 return err;
4693}
4694
6dd4ee7c
KS
4695/*
4696 * Expand an inode by new_extra_isize bytes.
4697 * Returns 0 on success or negative error number on failure.
4698 */
1d03ec98
AK
4699static int ext4_expand_extra_isize(struct inode *inode,
4700 unsigned int new_extra_isize,
4701 struct ext4_iloc iloc,
4702 handle_t *handle)
6dd4ee7c
KS
4703{
4704 struct ext4_inode *raw_inode;
4705 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4706
4707 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4708 return 0;
4709
4710 raw_inode = ext4_raw_inode(&iloc);
4711
4712 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4713
4714 /* No extended attributes present */
19f5fb7a
TT
4715 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4716 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4717 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4718 new_extra_isize);
4719 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4720 return 0;
4721 }
4722
4723 /* try to expand with EAs present */
4724 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4725 raw_inode, handle);
4726}
4727
ac27a0ec
DK
4728/*
4729 * What we do here is to mark the in-core inode as clean with respect to inode
4730 * dirtiness (it may still be data-dirty).
4731 * This means that the in-core inode may be reaped by prune_icache
4732 * without having to perform any I/O. This is a very good thing,
4733 * because *any* task may call prune_icache - even ones which
4734 * have a transaction open against a different journal.
4735 *
4736 * Is this cheating? Not really. Sure, we haven't written the
4737 * inode out, but prune_icache isn't a user-visible syncing function.
4738 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4739 * we start and wait on commits.
ac27a0ec 4740 */
617ba13b 4741int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4742{
617ba13b 4743 struct ext4_iloc iloc;
6dd4ee7c
KS
4744 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4745 static unsigned int mnt_count;
4746 int err, ret;
ac27a0ec
DK
4747
4748 might_sleep();
7ff9c073 4749 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4750 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4751 if (ext4_handle_valid(handle) &&
4752 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4753 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4754 /*
4755 * We need extra buffer credits since we may write into EA block
4756 * with this same handle. If journal_extend fails, then it will
4757 * only result in a minor loss of functionality for that inode.
4758 * If this is felt to be critical, then e2fsck should be run to
4759 * force a large enough s_min_extra_isize.
4760 */
4761 if ((jbd2_journal_extend(handle,
4762 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4763 ret = ext4_expand_extra_isize(inode,
4764 sbi->s_want_extra_isize,
4765 iloc, handle);
4766 if (ret) {
19f5fb7a
TT
4767 ext4_set_inode_state(inode,
4768 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4769 if (mnt_count !=
4770 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4771 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4772 "Unable to expand inode %lu. Delete"
4773 " some EAs or run e2fsck.",
4774 inode->i_ino);
c1bddad9
AK
4775 mnt_count =
4776 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4777 }
4778 }
4779 }
4780 }
ac27a0ec 4781 if (!err)
617ba13b 4782 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4783 return err;
4784}
4785
4786/*
617ba13b 4787 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4788 *
4789 * We're really interested in the case where a file is being extended.
4790 * i_size has been changed by generic_commit_write() and we thus need
4791 * to include the updated inode in the current transaction.
4792 *
5dd4056d 4793 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4794 * are allocated to the file.
4795 *
4796 * If the inode is marked synchronous, we don't honour that here - doing
4797 * so would cause a commit on atime updates, which we don't bother doing.
4798 * We handle synchronous inodes at the highest possible level.
4799 */
aa385729 4800void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4801{
ac27a0ec
DK
4802 handle_t *handle;
4803
617ba13b 4804 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4805 if (IS_ERR(handle))
4806 goto out;
f3dc272f 4807
f3dc272f
CW
4808 ext4_mark_inode_dirty(handle, inode);
4809
617ba13b 4810 ext4_journal_stop(handle);
ac27a0ec
DK
4811out:
4812 return;
4813}
4814
4815#if 0
4816/*
4817 * Bind an inode's backing buffer_head into this transaction, to prevent
4818 * it from being flushed to disk early. Unlike
617ba13b 4819 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4820 * returns no iloc structure, so the caller needs to repeat the iloc
4821 * lookup to mark the inode dirty later.
4822 */
617ba13b 4823static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4824{
617ba13b 4825 struct ext4_iloc iloc;
ac27a0ec
DK
4826
4827 int err = 0;
4828 if (handle) {
617ba13b 4829 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4830 if (!err) {
4831 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4832 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4833 if (!err)
0390131b 4834 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4835 NULL,
0390131b 4836 iloc.bh);
ac27a0ec
DK
4837 brelse(iloc.bh);
4838 }
4839 }
617ba13b 4840 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4841 return err;
4842}
4843#endif
4844
617ba13b 4845int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4846{
4847 journal_t *journal;
4848 handle_t *handle;
4849 int err;
4850
4851 /*
4852 * We have to be very careful here: changing a data block's
4853 * journaling status dynamically is dangerous. If we write a
4854 * data block to the journal, change the status and then delete
4855 * that block, we risk forgetting to revoke the old log record
4856 * from the journal and so a subsequent replay can corrupt data.
4857 * So, first we make sure that the journal is empty and that
4858 * nobody is changing anything.
4859 */
4860
617ba13b 4861 journal = EXT4_JOURNAL(inode);
0390131b
FM
4862 if (!journal)
4863 return 0;
d699594d 4864 if (is_journal_aborted(journal))
ac27a0ec 4865 return -EROFS;
2aff57b0
YY
4866 /* We have to allocate physical blocks for delalloc blocks
4867 * before flushing journal. otherwise delalloc blocks can not
4868 * be allocated any more. even more truncate on delalloc blocks
4869 * could trigger BUG by flushing delalloc blocks in journal.
4870 * There is no delalloc block in non-journal data mode.
4871 */
4872 if (val && test_opt(inode->i_sb, DELALLOC)) {
4873 err = ext4_alloc_da_blocks(inode);
4874 if (err < 0)
4875 return err;
4876 }
ac27a0ec 4877
17335dcc
DM
4878 /* Wait for all existing dio workers */
4879 ext4_inode_block_unlocked_dio(inode);
4880 inode_dio_wait(inode);
4881
dab291af 4882 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4883
4884 /*
4885 * OK, there are no updates running now, and all cached data is
4886 * synced to disk. We are now in a completely consistent state
4887 * which doesn't have anything in the journal, and we know that
4888 * no filesystem updates are running, so it is safe to modify
4889 * the inode's in-core data-journaling state flag now.
4890 */
4891
4892 if (val)
12e9b892 4893 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4894 else {
4895 jbd2_journal_flush(journal);
12e9b892 4896 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4897 }
617ba13b 4898 ext4_set_aops(inode);
ac27a0ec 4899
dab291af 4900 jbd2_journal_unlock_updates(journal);
17335dcc 4901 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4902
4903 /* Finally we can mark the inode as dirty. */
4904
617ba13b 4905 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4906 if (IS_ERR(handle))
4907 return PTR_ERR(handle);
4908
617ba13b 4909 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4910 ext4_handle_sync(handle);
617ba13b
MC
4911 ext4_journal_stop(handle);
4912 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4913
4914 return err;
4915}
2e9ee850
AK
4916
4917static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4918{
4919 return !buffer_mapped(bh);
4920}
4921
c2ec175c 4922int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4923{
c2ec175c 4924 struct page *page = vmf->page;
2e9ee850
AK
4925 loff_t size;
4926 unsigned long len;
9ea7df53 4927 int ret;
2e9ee850 4928 struct file *file = vma->vm_file;
496ad9aa 4929 struct inode *inode = file_inode(file);
2e9ee850 4930 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4931 handle_t *handle;
4932 get_block_t *get_block;
4933 int retries = 0;
2e9ee850 4934
8e8ad8a5 4935 sb_start_pagefault(inode->i_sb);
041bbb6d 4936 file_update_time(vma->vm_file);
9ea7df53
JK
4937 /* Delalloc case is easy... */
4938 if (test_opt(inode->i_sb, DELALLOC) &&
4939 !ext4_should_journal_data(inode) &&
4940 !ext4_nonda_switch(inode->i_sb)) {
4941 do {
4942 ret = __block_page_mkwrite(vma, vmf,
4943 ext4_da_get_block_prep);
4944 } while (ret == -ENOSPC &&
4945 ext4_should_retry_alloc(inode->i_sb, &retries));
4946 goto out_ret;
2e9ee850 4947 }
0e499890
DW
4948
4949 lock_page(page);
9ea7df53
JK
4950 size = i_size_read(inode);
4951 /* Page got truncated from under us? */
4952 if (page->mapping != mapping || page_offset(page) > size) {
4953 unlock_page(page);
4954 ret = VM_FAULT_NOPAGE;
4955 goto out;
0e499890 4956 }
2e9ee850
AK
4957
4958 if (page->index == size >> PAGE_CACHE_SHIFT)
4959 len = size & ~PAGE_CACHE_MASK;
4960 else
4961 len = PAGE_CACHE_SIZE;
a827eaff 4962 /*
9ea7df53
JK
4963 * Return if we have all the buffers mapped. This avoids the need to do
4964 * journal_start/journal_stop which can block and take a long time
a827eaff 4965 */
2e9ee850 4966 if (page_has_buffers(page)) {
f19d5870
TM
4967 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4968 0, len, NULL,
4969 ext4_bh_unmapped)) {
9ea7df53
JK
4970 /* Wait so that we don't change page under IO */
4971 wait_on_page_writeback(page);
4972 ret = VM_FAULT_LOCKED;
4973 goto out;
a827eaff 4974 }
2e9ee850 4975 }
a827eaff 4976 unlock_page(page);
9ea7df53
JK
4977 /* OK, we need to fill the hole... */
4978 if (ext4_should_dioread_nolock(inode))
4979 get_block = ext4_get_block_write;
4980 else
4981 get_block = ext4_get_block;
4982retry_alloc:
4983 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4984 if (IS_ERR(handle)) {
c2ec175c 4985 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4986 goto out;
4987 }
4988 ret = __block_page_mkwrite(vma, vmf, get_block);
4989 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 4990 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
4991 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4992 unlock_page(page);
4993 ret = VM_FAULT_SIGBUS;
fcbb5515 4994 ext4_journal_stop(handle);
9ea7df53
JK
4995 goto out;
4996 }
4997 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4998 }
4999 ext4_journal_stop(handle);
5000 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5001 goto retry_alloc;
5002out_ret:
5003 ret = block_page_mkwrite_return(ret);
5004out:
8e8ad8a5 5005 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5006 return ret;
5007}