]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/ext4/readpage.c
Merge tag 'hid-for-linus-2025070502' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/linux.git] / fs / ext4 / readpage.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
f64e02fe
TT
2/*
3 * linux/fs/ext4/readpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2015, Google, Inc.
7 *
8 * This was originally taken from fs/mpage.c
9 *
6311f91f
MWO
10 * The ext4_mpage_readpages() function here is intended to
11 * replace mpage_readahead() in the general case, not just for
f64e02fe
TT
12 * encrypted files. It has some limitations (see below), where it
13 * will fall back to read_block_full_page(), but these limitations
14 * should only be hit when page_size != block_size.
15 *
16 * This will allow us to attach a callback function to support ext4
17 * encryption.
18 *
19 * If anything unusual happens, such as:
20 *
21 * - encountering a page which has buffers
22 * - encountering a page which has a non-hole after a hole
23 * - encountering a page with non-contiguous blocks
24 *
25 * then this code just gives up and calls the buffer_head-based read function.
26 * It does handle a page which has holes at the end - that is a common case:
ea1754a0 27 * the end-of-file on blocksize < PAGE_SIZE setups.
f64e02fe
TT
28 *
29 */
30
31#include <linux/kernel.h>
32#include <linux/export.h>
33#include <linux/mm.h>
34#include <linux/kdev_t.h>
35#include <linux/gfp.h>
36#include <linux/bio.h>
37#include <linux/fs.h>
38#include <linux/buffer_head.h>
39#include <linux/blkdev.h>
40#include <linux/highmem.h>
41#include <linux/prefetch.h>
42#include <linux/mpage.h>
43#include <linux/writeback.h>
44#include <linux/backing-dev.h>
45#include <linux/pagevec.h>
f64e02fe
TT
46
47#include "ext4.h"
48
22cfe4b4
EB
49#define NUM_PREALLOC_POST_READ_CTXS 128
50
51static struct kmem_cache *bio_post_read_ctx_cache;
52static mempool_t *bio_post_read_ctx_pool;
53
54/* postprocessing steps for read bios */
55enum bio_post_read_step {
56 STEP_INITIAL = 0,
57 STEP_DECRYPT,
58 STEP_VERITY,
68e45330 59 STEP_MAX,
22cfe4b4
EB
60};
61
62struct bio_post_read_ctx {
63 struct bio *bio;
64 struct work_struct work;
65 unsigned int cur_step;
66 unsigned int enabled_steps;
67};
68
69static void __read_end_io(struct bio *bio)
c9c7429c 70{
f2b229a8 71 struct folio_iter fi;
22cfe4b4 72
f8174a11
MWO
73 bio_for_each_folio_all(fi, bio)
74 folio_end_read(fi.folio, bio->bi_status == 0);
22cfe4b4
EB
75 if (bio->bi_private)
76 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
77 bio_put(bio);
78}
79
80static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
81
82static void decrypt_work(struct work_struct *work)
83{
84 struct bio_post_read_ctx *ctx =
85 container_of(work, struct bio_post_read_ctx, work);
14db0b3c 86 struct bio *bio = ctx->bio;
22cfe4b4 87
14db0b3c
EB
88 if (fscrypt_decrypt_bio(bio))
89 bio_post_read_processing(ctx);
90 else
91 __read_end_io(bio);
22cfe4b4
EB
92}
93
94static void verity_work(struct work_struct *work)
95{
96 struct bio_post_read_ctx *ctx =
97 container_of(work, struct bio_post_read_ctx, work);
68e45330 98 struct bio *bio = ctx->bio;
22cfe4b4 99
68e45330 100 /*
704528d8 101 * fsverity_verify_bio() may call readahead() again, and although verity
68e45330
EB
102 * will be disabled for that, decryption may still be needed, causing
103 * another bio_post_read_ctx to be allocated. So to guarantee that
104 * mempool_alloc() never deadlocks we must free the current ctx first.
105 * This is safe because verity is the last post-read step.
106 */
107 BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108 mempool_free(ctx, bio_post_read_ctx_pool);
109 bio->bi_private = NULL;
110
111 fsverity_verify_bio(bio);
112
113 __read_end_io(bio);
22cfe4b4
EB
114}
115
116static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117{
118 /*
119 * We use different work queues for decryption and for verity because
120 * verity may require reading metadata pages that need decryption, and
121 * we shouldn't recurse to the same workqueue.
122 */
123 switch (++ctx->cur_step) {
124 case STEP_DECRYPT:
125 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126 INIT_WORK(&ctx->work, decrypt_work);
127 fscrypt_enqueue_decrypt_work(&ctx->work);
128 return;
129 }
130 ctx->cur_step++;
70d7ced2 131 fallthrough;
22cfe4b4
EB
132 case STEP_VERITY:
133 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134 INIT_WORK(&ctx->work, verity_work);
135 fsverity_enqueue_verify_work(&ctx->work);
136 return;
137 }
138 ctx->cur_step++;
70d7ced2 139 fallthrough;
22cfe4b4
EB
140 default:
141 __read_end_io(ctx->bio);
142 }
143}
144
145static bool bio_post_read_required(struct bio *bio)
146{
147 return bio->bi_private && !bio->bi_status;
c9c7429c
MH
148}
149
f64e02fe
TT
150/*
151 * I/O completion handler for multipage BIOs.
152 *
153 * The mpage code never puts partial pages into a BIO (except for end-of-file).
154 * If a page does not map to a contiguous run of blocks then it simply falls
2c69e205 155 * back to block_read_full_folio().
f64e02fe
TT
156 *
157 * Why is this? If a page's completion depends on a number of different BIOs
158 * which can complete in any order (or at the same time) then determining the
159 * status of that page is hard. See end_buffer_async_read() for the details.
160 * There is no point in duplicating all that complexity.
161 */
4246a0b6 162static void mpage_end_io(struct bio *bio)
f64e02fe 163{
22cfe4b4
EB
164 if (bio_post_read_required(bio)) {
165 struct bio_post_read_ctx *ctx = bio->bi_private;
f64e02fe 166
22cfe4b4
EB
167 ctx->cur_step = STEP_INITIAL;
168 bio_post_read_processing(ctx);
169 return;
c9c7429c 170 }
22cfe4b4
EB
171 __read_end_io(bio);
172}
f64e02fe 173
22cfe4b4
EB
174static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175{
176 return fsverity_active(inode) &&
177 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178}
179
fd5fe253
EB
180static void ext4_set_bio_post_read_ctx(struct bio *bio,
181 const struct inode *inode,
182 pgoff_t first_idx)
22cfe4b4
EB
183{
184 unsigned int post_read_steps = 0;
22cfe4b4 185
4f74d15f 186 if (fscrypt_inode_uses_fs_layer_crypto(inode))
22cfe4b4
EB
187 post_read_steps |= 1 << STEP_DECRYPT;
188
189 if (ext4_need_verity(inode, first_idx))
190 post_read_steps |= 1 << STEP_VERITY;
191
192 if (post_read_steps) {
fd5fe253
EB
193 /* Due to the mempool, this never fails. */
194 struct bio_post_read_ctx *ctx =
195 mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196
22cfe4b4
EB
197 ctx->bio = bio;
198 ctx->enabled_steps = post_read_steps;
199 bio->bi_private = ctx;
f64e02fe 200 }
22cfe4b4 201}
f64e02fe 202
22cfe4b4
EB
203static inline loff_t ext4_readpage_limit(struct inode *inode)
204{
5e122148 205 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
22cfe4b4
EB
206 return inode->i_sb->s_maxbytes;
207
208 return i_size_read(inode);
f64e02fe
TT
209}
210
a07f624b 211int ext4_mpage_readpages(struct inode *inode,
c0be8e6f 212 struct readahead_control *rac, struct folio *folio)
f64e02fe
TT
213{
214 struct bio *bio = NULL;
f64e02fe
TT
215 sector_t last_block_in_bio = 0;
216
f64e02fe 217 const unsigned blkbits = inode->i_blkbits;
09cbfeaf 218 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
f64e02fe 219 const unsigned blocksize = 1 << blkbits;
4f74d15f 220 sector_t next_block;
f64e02fe
TT
221 sector_t block_in_file;
222 sector_t last_block;
223 sector_t last_block_in_file;
e37c9e17 224 sector_t first_block;
f64e02fe
TT
225 unsigned page_block;
226 struct block_device *bdev = inode->i_sb->s_bdev;
227 int length;
228 unsigned relative_block = 0;
229 struct ext4_map_blocks map;
fdbd0df9 230 unsigned int nr_pages, folio_pages;
f64e02fe
TT
231
232 map.m_pblk = 0;
233 map.m_lblk = 0;
234 map.m_len = 0;
235 map.m_flags = 0;
236
fdbd0df9
ZY
237 nr_pages = rac ? readahead_count(rac) : folio_nr_pages(folio);
238 for (; nr_pages; nr_pages -= folio_pages) {
f64e02fe 239 int fully_mapped = 1;
fdbd0df9
ZY
240 unsigned int first_hole;
241 unsigned int blocks_per_folio;
f64e02fe 242
c0be8e6f
MW
243 if (rac)
244 folio = readahead_folio(rac);
fdbd0df9
ZY
245
246 folio_pages = folio_nr_pages(folio);
c0be8e6f 247 prefetchw(&folio->flags);
f64e02fe 248
c0be8e6f 249 if (folio_buffers(folio))
f64e02fe
TT
250 goto confused;
251
fdbd0df9
ZY
252 blocks_per_folio = folio_size(folio) >> blkbits;
253 first_hole = blocks_per_folio;
4f74d15f 254 block_in_file = next_block =
c0be8e6f 255 (sector_t)folio->index << (PAGE_SHIFT - blkbits);
f64e02fe 256 last_block = block_in_file + nr_pages * blocks_per_page;
22cfe4b4
EB
257 last_block_in_file = (ext4_readpage_limit(inode) +
258 blocksize - 1) >> blkbits;
f64e02fe
TT
259 if (last_block > last_block_in_file)
260 last_block = last_block_in_file;
261 page_block = 0;
262
263 /*
264 * Map blocks using the previous result first.
265 */
266 if ((map.m_flags & EXT4_MAP_MAPPED) &&
267 block_in_file > map.m_lblk &&
268 block_in_file < (map.m_lblk + map.m_len)) {
269 unsigned map_offset = block_in_file - map.m_lblk;
270 unsigned last = map.m_len - map_offset;
271
e37c9e17 272 first_block = map.m_pblk + map_offset;
f64e02fe
TT
273 for (relative_block = 0; ; relative_block++) {
274 if (relative_block == last) {
275 /* needed? */
276 map.m_flags &= ~EXT4_MAP_MAPPED;
277 break;
278 }
fdbd0df9 279 if (page_block == blocks_per_folio)
f64e02fe 280 break;
f64e02fe
TT
281 page_block++;
282 block_in_file++;
283 }
284 }
285
286 /*
287 * Then do more ext4_map_blocks() calls until we are
c0be8e6f 288 * done with this folio.
f64e02fe 289 */
fdbd0df9 290 while (page_block < blocks_per_folio) {
f64e02fe
TT
291 if (block_in_file < last_block) {
292 map.m_lblk = block_in_file;
293 map.m_len = last_block - block_in_file;
294
295 if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
296 set_error_page:
c0be8e6f
MW
297 folio_zero_segment(folio, 0,
298 folio_size(folio));
299 folio_unlock(folio);
f64e02fe
TT
300 goto next_page;
301 }
302 }
303 if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
304 fully_mapped = 0;
fdbd0df9 305 if (first_hole == blocks_per_folio)
f64e02fe
TT
306 first_hole = page_block;
307 page_block++;
308 block_in_file++;
309 continue;
310 }
fdbd0df9 311 if (first_hole != blocks_per_folio)
f64e02fe
TT
312 goto confused; /* hole -> non-hole */
313
314 /* Contiguous blocks? */
e37c9e17
MWO
315 if (!page_block)
316 first_block = map.m_pblk;
317 else if (first_block + page_block != map.m_pblk)
f64e02fe
TT
318 goto confused;
319 for (relative_block = 0; ; relative_block++) {
320 if (relative_block == map.m_len) {
321 /* needed? */
322 map.m_flags &= ~EXT4_MAP_MAPPED;
323 break;
fdbd0df9 324 } else if (page_block == blocks_per_folio)
f64e02fe 325 break;
f64e02fe
TT
326 page_block++;
327 block_in_file++;
328 }
329 }
fdbd0df9 330 if (first_hole != blocks_per_folio) {
c0be8e6f
MW
331 folio_zero_segment(folio, first_hole << blkbits,
332 folio_size(folio));
f64e02fe 333 if (first_hole == 0) {
c0be8e6f 334 if (ext4_need_verity(inode, folio->index) &&
0dea40aa 335 !fsverity_verify_folio(folio))
22cfe4b4 336 goto set_error_page;
f8174a11 337 folio_end_read(folio, true);
c0be8e6f 338 continue;
f64e02fe
TT
339 }
340 } else if (fully_mapped) {
c0be8e6f 341 folio_set_mappedtodisk(folio);
f64e02fe 342 }
f64e02fe
TT
343
344 /*
c0be8e6f 345 * This folio will go to BIO. Do we need to send this
f64e02fe
TT
346 * BIO off first?
347 */
e37c9e17 348 if (bio && (last_block_in_bio != first_block - 1 ||
4f74d15f 349 !fscrypt_mergeable_bio(bio, inode, next_block))) {
f64e02fe 350 submit_and_realloc:
4e49ea4a 351 submit_bio(bio);
f64e02fe
TT
352 bio = NULL;
353 }
354 if (bio == NULL) {
5500221e
GX
355 /*
356 * bio_alloc will _always_ be able to allocate a bio if
357 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
358 */
07888c66
CH
359 bio = bio_alloc(bdev, bio_max_segs(nr_pages),
360 REQ_OP_READ, GFP_KERNEL);
4f74d15f
EB
361 fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
362 GFP_KERNEL);
c0be8e6f 363 ext4_set_bio_post_read_ctx(bio, inode, folio->index);
e37c9e17 364 bio->bi_iter.bi_sector = first_block << (blkbits - 9);
f64e02fe 365 bio->bi_end_io = mpage_end_io;
07888c66
CH
366 if (rac)
367 bio->bi_opf |= REQ_RAHEAD;
f64e02fe
TT
368 }
369
370 length = first_hole << blkbits;
c0be8e6f 371 if (!bio_add_folio(bio, folio, length, 0))
f64e02fe
TT
372 goto submit_and_realloc;
373
374 if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
375 (relative_block == map.m_len)) ||
fdbd0df9 376 (first_hole != blocks_per_folio)) {
4e49ea4a 377 submit_bio(bio);
f64e02fe
TT
378 bio = NULL;
379 } else
fdbd0df9 380 last_block_in_bio = first_block + blocks_per_folio - 1;
c0be8e6f 381 continue;
f64e02fe
TT
382 confused:
383 if (bio) {
4e49ea4a 384 submit_bio(bio);
f64e02fe
TT
385 bio = NULL;
386 }
c0be8e6f
MW
387 if (!folio_test_uptodate(folio))
388 block_read_full_folio(folio, ext4_get_block);
f64e02fe 389 else
c0be8e6f
MW
390 folio_unlock(folio);
391next_page:
392 ; /* A label shall be followed by a statement until C23 */
f64e02fe 393 }
f64e02fe 394 if (bio)
4e49ea4a 395 submit_bio(bio);
f64e02fe
TT
396 return 0;
397}
22cfe4b4
EB
398
399int __init ext4_init_post_read_processing(void)
400{
060f7739
JS
401 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
402
22cfe4b4
EB
403 if (!bio_post_read_ctx_cache)
404 goto fail;
405 bio_post_read_ctx_pool =
406 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
407 bio_post_read_ctx_cache);
408 if (!bio_post_read_ctx_pool)
409 goto fail_free_cache;
410 return 0;
411
412fail_free_cache:
413 kmem_cache_destroy(bio_post_read_ctx_cache);
414fail:
415 return -ENOMEM;
416}
417
418void ext4_exit_post_read_processing(void)
419{
420 mempool_destroy(bio_post_read_ctx_pool);
421 kmem_cache_destroy(bio_post_read_ctx_cache);
422}