]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/fs-writeback.c
KVM: nVMX: Clear pending KVM_REQ_GET_VMCS12_PAGES when leaving nested
[thirdparty/kernel/stable.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
09cbfeaf 36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
bbbc3c1c 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
4a3a485b
TE
176static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178{
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185}
186
f0054bb1
TH
187static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
6585027a 189{
5634cc2a 190 trace_writeback_queue(wb, work);
6585027a 191
cc395d7f
TH
192 if (work->done)
193 atomic_inc(&work->done->cnt);
4a3a485b
TE
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
f0054bb1 203 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
204}
205
cc395d7f
TH
206/**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219{
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222}
223
703c2708
TH
224#ifdef CONFIG_CGROUP_WRITEBACK
225
2a814908
TH
226/* parameters for foreign inode detection, see wb_detach_inode() */
227#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
a1a0e23e
TH
240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241static struct workqueue_struct *isw_wq;
242
21c6321f
TH
243void __inode_attach_wb(struct inode *inode, struct page *page)
244{
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271}
272
87e1d789
TH
273/**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281static struct bdi_writeback *
282locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285{
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
87e1d789 298
aaa2cacf 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
87e1d789
TH
304
305 spin_unlock(&wb->list_lock);
614a4e37 306 wb_put(wb);
87e1d789
TH
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310}
311
312/**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321{
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324}
325
682aa8e1
TH
326struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332};
333
7fc5854f
TH
334static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335{
336 down_write(&bdi->wb_switch_rwsem);
337}
338
339static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340{
341 up_write(&bdi->wb_switch_rwsem);
342}
343
682aa8e1
TH
344static void inode_switch_wbs_work_fn(struct work_struct *work)
345{
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
7fc5854f 349 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 352 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
353 XA_STATE(xas, &mapping->i_pages, 0);
354 struct page *page;
d10c8095 355 bool switched = false;
682aa8e1 356
7fc5854f
TH
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
682aa8e1
TH
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 367 * synchronizing against the i_pages lock.
d10c8095 368 *
b93b0163 369 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
682aa8e1 372 */
d10c8095
TH
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
682aa8e1 380 spin_lock(&inode->i_lock);
b93b0163 381 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 385 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 393 * pages actually under writeback.
d10c8095 394 */
04edf02c
MW
395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (PageDirty(page)) {
3e8f399d
NB
397 dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
399 }
400 }
401
04edf02c
MW
402 xas_set(&xas, 0);
403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 WARN_ON_ONCE(!PageWriteback(page));
405 dec_wb_stat(old_wb, WB_WRITEBACK);
406 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
407 }
408
409 wb_get(new_wb);
410
411 /*
412 * Transfer to @new_wb's IO list if necessary. The specific list
413 * @inode was on is ignored and the inode is put on ->b_dirty which
414 * is always correct including from ->b_dirty_time. The transfer
415 * preserves @inode->dirtied_when ordering.
416 */
c7f54084 417 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
418 struct inode *pos;
419
c7f54084 420 inode_io_list_del_locked(inode, old_wb);
d10c8095 421 inode->i_wb = new_wb;
c7f54084 422 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
423 if (time_after_eq(inode->dirtied_when,
424 pos->dirtied_when))
425 break;
c7f54084 426 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
427 } else {
428 inode->i_wb = new_wb;
429 }
682aa8e1 430
d10c8095 431 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
432 inode->i_wb_frn_winner = 0;
433 inode->i_wb_frn_avg_time = 0;
434 inode->i_wb_frn_history = 0;
d10c8095
TH
435 switched = true;
436skip_switch:
682aa8e1
TH
437 /*
438 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439 * ensures that the new wb is visible if they see !I_WB_SWITCH.
440 */
441 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442
b93b0163 443 xa_unlock_irq(&mapping->i_pages);
682aa8e1 444 spin_unlock(&inode->i_lock);
d10c8095
TH
445 spin_unlock(&new_wb->list_lock);
446 spin_unlock(&old_wb->list_lock);
682aa8e1 447
7fc5854f
TH
448 up_read(&bdi->wb_switch_rwsem);
449
d10c8095
TH
450 if (switched) {
451 wb_wakeup(new_wb);
452 wb_put(old_wb);
453 }
682aa8e1 454 wb_put(new_wb);
d10c8095
TH
455
456 iput(inode);
682aa8e1 457 kfree(isw);
a1a0e23e
TH
458
459 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
460}
461
462static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
463{
464 struct inode_switch_wbs_context *isw = container_of(rcu_head,
465 struct inode_switch_wbs_context, rcu_head);
466
467 /* needs to grab bh-unsafe locks, bounce to work item */
468 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 469 queue_work(isw_wq, &isw->work);
682aa8e1
TH
470}
471
472/**
473 * inode_switch_wbs - change the wb association of an inode
474 * @inode: target inode
475 * @new_wb_id: ID of the new wb
476 *
477 * Switch @inode's wb association to the wb identified by @new_wb_id. The
478 * switching is performed asynchronously and may fail silently.
479 */
480static void inode_switch_wbs(struct inode *inode, int new_wb_id)
481{
482 struct backing_dev_info *bdi = inode_to_bdi(inode);
483 struct cgroup_subsys_state *memcg_css;
484 struct inode_switch_wbs_context *isw;
485
486 /* noop if seems to be already in progress */
487 if (inode->i_state & I_WB_SWITCH)
488 return;
489
7fc5854f
TH
490 /*
491 * Avoid starting new switches while sync_inodes_sb() is in
492 * progress. Otherwise, if the down_write protected issue path
493 * blocks heavily, we might end up starting a large number of
494 * switches which will block on the rwsem.
495 */
496 if (!down_read_trylock(&bdi->wb_switch_rwsem))
497 return;
498
682aa8e1
TH
499 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
500 if (!isw)
7fc5854f 501 goto out_unlock;
682aa8e1
TH
502
503 /* find and pin the new wb */
504 rcu_read_lock();
505 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
506 if (memcg_css)
507 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
508 rcu_read_unlock();
509 if (!isw->new_wb)
510 goto out_free;
511
512 /* while holding I_WB_SWITCH, no one else can update the association */
513 spin_lock(&inode->i_lock);
1751e8a6 514 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
515 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
516 inode_to_wb(inode) == isw->new_wb) {
517 spin_unlock(&inode->i_lock);
518 goto out_free;
519 }
682aa8e1 520 inode->i_state |= I_WB_SWITCH;
74524955 521 __iget(inode);
682aa8e1
TH
522 spin_unlock(&inode->i_lock);
523
682aa8e1
TH
524 isw->inode = inode;
525
526 /*
527 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
528 * the RCU protected stat update paths to grab the i_page
529 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
530 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
531 */
532 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
0b9d5347
JX
533
534 atomic_inc(&isw_nr_in_flight);
535
7fc5854f 536 goto out_unlock;
682aa8e1
TH
537
538out_free:
539 if (isw->new_wb)
540 wb_put(isw->new_wb);
541 kfree(isw);
7fc5854f
TH
542out_unlock:
543 up_read(&bdi->wb_switch_rwsem);
682aa8e1
TH
544}
545
b16b1deb
TH
546/**
547 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
548 * @wbc: writeback_control of interest
549 * @inode: target inode
550 *
551 * @inode is locked and about to be written back under the control of @wbc.
552 * Record @inode's writeback context into @wbc and unlock the i_lock. On
553 * writeback completion, wbc_detach_inode() should be called. This is used
554 * to track the cgroup writeback context.
555 */
556void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
557 struct inode *inode)
558{
dd73e4b7
TH
559 if (!inode_cgwb_enabled(inode)) {
560 spin_unlock(&inode->i_lock);
561 return;
562 }
563
b16b1deb 564 wbc->wb = inode_to_wb(inode);
2a814908
TH
565 wbc->inode = inode;
566
567 wbc->wb_id = wbc->wb->memcg_css->id;
568 wbc->wb_lcand_id = inode->i_wb_frn_winner;
569 wbc->wb_tcand_id = 0;
570 wbc->wb_bytes = 0;
571 wbc->wb_lcand_bytes = 0;
572 wbc->wb_tcand_bytes = 0;
573
b16b1deb
TH
574 wb_get(wbc->wb);
575 spin_unlock(&inode->i_lock);
e8a7abf5
TH
576
577 /*
578 * A dying wb indicates that the memcg-blkcg mapping has changed
579 * and a new wb is already serving the memcg. Switch immediately.
580 */
581 if (unlikely(wb_dying(wbc->wb)))
582 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
583}
584
585/**
2a814908
TH
586 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
587 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
588 *
589 * To be called after a writeback attempt of an inode finishes and undoes
590 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
591 *
592 * As concurrent write sharing of an inode is expected to be very rare and
593 * memcg only tracks page ownership on first-use basis severely confining
594 * the usefulness of such sharing, cgroup writeback tracks ownership
595 * per-inode. While the support for concurrent write sharing of an inode
596 * is deemed unnecessary, an inode being written to by different cgroups at
597 * different points in time is a lot more common, and, more importantly,
598 * charging only by first-use can too readily lead to grossly incorrect
599 * behaviors (single foreign page can lead to gigabytes of writeback to be
600 * incorrectly attributed).
601 *
602 * To resolve this issue, cgroup writeback detects the majority dirtier of
603 * an inode and transfers the ownership to it. To avoid unnnecessary
604 * oscillation, the detection mechanism keeps track of history and gives
605 * out the switch verdict only if the foreign usage pattern is stable over
606 * a certain amount of time and/or writeback attempts.
607 *
608 * On each writeback attempt, @wbc tries to detect the majority writer
609 * using Boyer-Moore majority vote algorithm. In addition to the byte
610 * count from the majority voting, it also counts the bytes written for the
611 * current wb and the last round's winner wb (max of last round's current
612 * wb, the winner from two rounds ago, and the last round's majority
613 * candidate). Keeping track of the historical winner helps the algorithm
614 * to semi-reliably detect the most active writer even when it's not the
615 * absolute majority.
616 *
617 * Once the winner of the round is determined, whether the winner is
618 * foreign or not and how much IO time the round consumed is recorded in
619 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
620 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
621 */
622void wbc_detach_inode(struct writeback_control *wbc)
623{
2a814908
TH
624 struct bdi_writeback *wb = wbc->wb;
625 struct inode *inode = wbc->inode;
dd73e4b7
TH
626 unsigned long avg_time, max_bytes, max_time;
627 u16 history;
2a814908
TH
628 int max_id;
629
dd73e4b7
TH
630 if (!wb)
631 return;
632
633 history = inode->i_wb_frn_history;
634 avg_time = inode->i_wb_frn_avg_time;
635
2a814908
TH
636 /* pick the winner of this round */
637 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
638 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
639 max_id = wbc->wb_id;
640 max_bytes = wbc->wb_bytes;
641 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
642 max_id = wbc->wb_lcand_id;
643 max_bytes = wbc->wb_lcand_bytes;
644 } else {
645 max_id = wbc->wb_tcand_id;
646 max_bytes = wbc->wb_tcand_bytes;
647 }
648
649 /*
650 * Calculate the amount of IO time the winner consumed and fold it
651 * into the running average kept per inode. If the consumed IO
652 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
653 * deciding whether to switch or not. This is to prevent one-off
654 * small dirtiers from skewing the verdict.
655 */
656 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
657 wb->avg_write_bandwidth);
658 if (avg_time)
659 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
660 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
661 else
662 avg_time = max_time; /* immediate catch up on first run */
663
664 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
665 int slots;
666
667 /*
668 * The switch verdict is reached if foreign wb's consume
669 * more than a certain proportion of IO time in a
670 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
671 * history mask where each bit represents one sixteenth of
672 * the period. Determine the number of slots to shift into
673 * history from @max_time.
674 */
675 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
676 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
677 history <<= slots;
678 if (wbc->wb_id != max_id)
679 history |= (1U << slots) - 1;
680
681 /*
682 * Switch if the current wb isn't the consistent winner.
683 * If there are multiple closely competing dirtiers, the
684 * inode may switch across them repeatedly over time, which
685 * is okay. The main goal is avoiding keeping an inode on
686 * the wrong wb for an extended period of time.
687 */
682aa8e1
TH
688 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689 inode_switch_wbs(inode, max_id);
2a814908
TH
690 }
691
692 /*
693 * Multiple instances of this function may race to update the
694 * following fields but we don't mind occassional inaccuracies.
695 */
696 inode->i_wb_frn_winner = max_id;
697 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698 inode->i_wb_frn_history = history;
699
b16b1deb
TH
700 wb_put(wbc->wb);
701 wbc->wb = NULL;
702}
703
2a814908
TH
704/**
705 * wbc_account_io - account IO issued during writeback
706 * @wbc: writeback_control of the writeback in progress
707 * @page: page being written out
708 * @bytes: number of bytes being written out
709 *
710 * @bytes from @page are about to written out during the writeback
711 * controlled by @wbc. Keep the book for foreign inode detection. See
712 * wbc_detach_inode().
713 */
714void wbc_account_io(struct writeback_control *wbc, struct page *page,
715 size_t bytes)
716{
ded52121 717 struct cgroup_subsys_state *css;
2a814908
TH
718 int id;
719
720 /*
721 * pageout() path doesn't attach @wbc to the inode being written
722 * out. This is intentional as we don't want the function to block
723 * behind a slow cgroup. Ultimately, we want pageout() to kick off
724 * regular writeback instead of writing things out itself.
725 */
726 if (!wbc->wb)
727 return;
728
ded52121
TH
729 css = mem_cgroup_css_from_page(page);
730 /* dead cgroups shouldn't contribute to inode ownership arbitration */
731 if (!(css->flags & CSS_ONLINE))
732 return;
733
734 id = css->id;
2a814908
TH
735
736 if (id == wbc->wb_id) {
737 wbc->wb_bytes += bytes;
738 return;
739 }
740
741 if (id == wbc->wb_lcand_id)
742 wbc->wb_lcand_bytes += bytes;
743
744 /* Boyer-Moore majority vote algorithm */
745 if (!wbc->wb_tcand_bytes)
746 wbc->wb_tcand_id = id;
747 if (id == wbc->wb_tcand_id)
748 wbc->wb_tcand_bytes += bytes;
749 else
750 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
751}
5aa2a96b 752EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 753
703c2708
TH
754/**
755 * inode_congested - test whether an inode is congested
60292bcc 756 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
757 * @cong_bits: mask of WB_[a]sync_congested bits to test
758 *
759 * Tests whether @inode is congested. @cong_bits is the mask of congestion
760 * bits to test and the return value is the mask of set bits.
761 *
762 * If cgroup writeback is enabled for @inode, the congestion state is
763 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
764 * associated with @inode is congested; otherwise, the root wb's congestion
765 * state is used.
60292bcc
TH
766 *
767 * @inode is allowed to be NULL as this function is often called on
768 * mapping->host which is NULL for the swapper space.
703c2708
TH
769 */
770int inode_congested(struct inode *inode, int cong_bits)
771{
5cb8b824
TH
772 /*
773 * Once set, ->i_wb never becomes NULL while the inode is alive.
774 * Start transaction iff ->i_wb is visible.
775 */
aaa2cacf 776 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 777 struct bdi_writeback *wb;
2e898e4c
GT
778 struct wb_lock_cookie lock_cookie = {};
779 bool congested;
5cb8b824 780
2e898e4c 781 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 782 congested = wb_congested(wb, cong_bits);
2e898e4c 783 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 784 return congested;
703c2708
TH
785 }
786
787 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
788}
789EXPORT_SYMBOL_GPL(inode_congested);
790
f2b65121
TH
791/**
792 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
793 * @wb: target bdi_writeback to split @nr_pages to
794 * @nr_pages: number of pages to write for the whole bdi
795 *
796 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
797 * relation to the total write bandwidth of all wb's w/ dirty inodes on
798 * @wb->bdi.
799 */
800static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
801{
802 unsigned long this_bw = wb->avg_write_bandwidth;
803 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
804
805 if (nr_pages == LONG_MAX)
806 return LONG_MAX;
807
808 /*
809 * This may be called on clean wb's and proportional distribution
810 * may not make sense, just use the original @nr_pages in those
811 * cases. In general, we wanna err on the side of writing more.
812 */
813 if (!tot_bw || this_bw >= tot_bw)
814 return nr_pages;
815 else
816 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
817}
818
db125360
TH
819/**
820 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
821 * @bdi: target backing_dev_info
822 * @base_work: wb_writeback_work to issue
823 * @skip_if_busy: skip wb's which already have writeback in progress
824 *
825 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
826 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
827 * distributed to the busy wbs according to each wb's proportion in the
828 * total active write bandwidth of @bdi.
829 */
830static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
831 struct wb_writeback_work *base_work,
832 bool skip_if_busy)
833{
b817525a 834 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
835 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
836 struct bdi_writeback, bdi_node);
db125360
TH
837
838 might_sleep();
db125360
TH
839restart:
840 rcu_read_lock();
b817525a 841 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
842 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
843 struct wb_writeback_work fallback_work;
844 struct wb_writeback_work *work;
845 long nr_pages;
846
b817525a
TH
847 if (last_wb) {
848 wb_put(last_wb);
849 last_wb = NULL;
850 }
851
006a0973
TH
852 /* SYNC_ALL writes out I_DIRTY_TIME too */
853 if (!wb_has_dirty_io(wb) &&
854 (base_work->sync_mode == WB_SYNC_NONE ||
855 list_empty(&wb->b_dirty_time)))
856 continue;
857 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
858 continue;
859
8a1270cd
TH
860 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
861
862 work = kmalloc(sizeof(*work), GFP_ATOMIC);
863 if (work) {
864 *work = *base_work;
865 work->nr_pages = nr_pages;
866 work->auto_free = 1;
867 wb_queue_work(wb, work);
868 continue;
db125360 869 }
8a1270cd
TH
870
871 /* alloc failed, execute synchronously using on-stack fallback */
872 work = &fallback_work;
873 *work = *base_work;
874 work->nr_pages = nr_pages;
875 work->auto_free = 0;
876 work->done = &fallback_work_done;
877
878 wb_queue_work(wb, work);
879
b817525a
TH
880 /*
881 * Pin @wb so that it stays on @bdi->wb_list. This allows
882 * continuing iteration from @wb after dropping and
883 * regrabbing rcu read lock.
884 */
885 wb_get(wb);
886 last_wb = wb;
887
8a1270cd
TH
888 rcu_read_unlock();
889 wb_wait_for_completion(bdi, &fallback_work_done);
890 goto restart;
db125360
TH
891 }
892 rcu_read_unlock();
b817525a
TH
893
894 if (last_wb)
895 wb_put(last_wb);
db125360
TH
896}
897
a1a0e23e
TH
898/**
899 * cgroup_writeback_umount - flush inode wb switches for umount
900 *
901 * This function is called when a super_block is about to be destroyed and
902 * flushes in-flight inode wb switches. An inode wb switch goes through
903 * RCU and then workqueue, so the two need to be flushed in order to ensure
904 * that all previously scheduled switches are finished. As wb switches are
905 * rare occurrences and synchronize_rcu() can take a while, perform
906 * flushing iff wb switches are in flight.
907 */
908void cgroup_writeback_umount(void)
909{
910 if (atomic_read(&isw_nr_in_flight)) {
0b9d5347
JX
911 /*
912 * Use rcu_barrier() to wait for all pending callbacks to
913 * ensure that all in-flight wb switches are in the workqueue.
914 */
915 rcu_barrier();
a1a0e23e
TH
916 flush_workqueue(isw_wq);
917 }
918}
919
920static int __init cgroup_writeback_init(void)
921{
922 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
923 if (!isw_wq)
924 return -ENOMEM;
925 return 0;
926}
927fs_initcall(cgroup_writeback_init);
928
f2b65121
TH
929#else /* CONFIG_CGROUP_WRITEBACK */
930
7fc5854f
TH
931static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
932static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933
87e1d789
TH
934static struct bdi_writeback *
935locked_inode_to_wb_and_lock_list(struct inode *inode)
936 __releases(&inode->i_lock)
937 __acquires(&wb->list_lock)
938{
939 struct bdi_writeback *wb = inode_to_wb(inode);
940
941 spin_unlock(&inode->i_lock);
942 spin_lock(&wb->list_lock);
943 return wb;
944}
945
946static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
947 __acquires(&wb->list_lock)
948{
949 struct bdi_writeback *wb = inode_to_wb(inode);
950
951 spin_lock(&wb->list_lock);
952 return wb;
953}
954
f2b65121
TH
955static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
956{
957 return nr_pages;
958}
959
db125360
TH
960static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
961 struct wb_writeback_work *base_work,
962 bool skip_if_busy)
963{
964 might_sleep();
965
006a0973 966 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 967 base_work->auto_free = 0;
db125360
TH
968 wb_queue_work(&bdi->wb, base_work);
969 }
970}
971
703c2708
TH
972#endif /* CONFIG_CGROUP_WRITEBACK */
973
e8e8a0c6
JA
974/*
975 * Add in the number of potentially dirty inodes, because each inode
976 * write can dirty pagecache in the underlying blockdev.
977 */
978static unsigned long get_nr_dirty_pages(void)
979{
980 return global_node_page_state(NR_FILE_DIRTY) +
981 global_node_page_state(NR_UNSTABLE_NFS) +
982 get_nr_dirty_inodes();
983}
984
985static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 986{
c00ddad3
TH
987 if (!wb_has_dirty_io(wb))
988 return;
989
aac8d41c
JA
990 /*
991 * All callers of this function want to start writeback of all
992 * dirty pages. Places like vmscan can call this at a very
993 * high frequency, causing pointless allocations of tons of
994 * work items and keeping the flusher threads busy retrieving
995 * that work. Ensure that we only allow one of them pending and
85009b4f 996 * inflight at the time.
aac8d41c 997 */
85009b4f
JA
998 if (test_bit(WB_start_all, &wb->state) ||
999 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1000 return;
1001
85009b4f
JA
1002 wb->start_all_reason = reason;
1003 wb_wakeup(wb);
c5444198 1004}
d3ddec76 1005
c5444198 1006/**
9ecf4866
TH
1007 * wb_start_background_writeback - start background writeback
1008 * @wb: bdi_writback to write from
c5444198
CH
1009 *
1010 * Description:
6585027a 1011 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1012 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1013 * some IO is happening if we are over background dirty threshold.
1014 * Caller need not hold sb s_umount semaphore.
c5444198 1015 */
9ecf4866 1016void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1017{
6585027a
JK
1018 /*
1019 * We just wake up the flusher thread. It will perform background
1020 * writeback as soon as there is no other work to do.
1021 */
5634cc2a 1022 trace_writeback_wake_background(wb);
9ecf4866 1023 wb_wakeup(wb);
1da177e4
LT
1024}
1025
a66979ab
DC
1026/*
1027 * Remove the inode from the writeback list it is on.
1028 */
c7f54084 1029void inode_io_list_del(struct inode *inode)
a66979ab 1030{
87e1d789 1031 struct bdi_writeback *wb;
f758eeab 1032
87e1d789 1033 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1034 inode_io_list_del_locked(inode, wb);
52ebea74 1035 spin_unlock(&wb->list_lock);
a66979ab
DC
1036}
1037
6c60d2b5
DC
1038/*
1039 * mark an inode as under writeback on the sb
1040 */
1041void sb_mark_inode_writeback(struct inode *inode)
1042{
1043 struct super_block *sb = inode->i_sb;
1044 unsigned long flags;
1045
1046 if (list_empty(&inode->i_wb_list)) {
1047 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1048 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1049 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1050 trace_sb_mark_inode_writeback(inode);
1051 }
6c60d2b5
DC
1052 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1053 }
1054}
1055
1056/*
1057 * clear an inode as under writeback on the sb
1058 */
1059void sb_clear_inode_writeback(struct inode *inode)
1060{
1061 struct super_block *sb = inode->i_sb;
1062 unsigned long flags;
1063
1064 if (!list_empty(&inode->i_wb_list)) {
1065 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1066 if (!list_empty(&inode->i_wb_list)) {
1067 list_del_init(&inode->i_wb_list);
1068 trace_sb_clear_inode_writeback(inode);
1069 }
6c60d2b5
DC
1070 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1071 }
1072}
1073
6610a0bc
AM
1074/*
1075 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1076 * furthest end of its superblock's dirty-inode list.
1077 *
1078 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1079 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1080 * the case then the inode must have been redirtied while it was being written
1081 * out and we don't reset its dirtied_when.
1082 */
f758eeab 1083static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1084{
03ba3782 1085 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1086 struct inode *tail;
6610a0bc 1087
7ccf19a8 1088 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1089 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1090 inode->dirtied_when = jiffies;
1091 }
c7f54084 1092 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1093}
1094
c986d1e2 1095/*
66f3b8e2 1096 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1097 */
f758eeab 1098static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1099{
c7f54084 1100 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1101}
1102
1c0eeaf5
JE
1103static void inode_sync_complete(struct inode *inode)
1104{
365b94ae 1105 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1106 /* If inode is clean an unused, put it into LRU now... */
1107 inode_add_lru(inode);
365b94ae 1108 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1109 smp_mb();
1110 wake_up_bit(&inode->i_state, __I_SYNC);
1111}
1112
d2caa3c5
JL
1113static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1114{
1115 bool ret = time_after(inode->dirtied_when, t);
1116#ifndef CONFIG_64BIT
1117 /*
1118 * For inodes being constantly redirtied, dirtied_when can get stuck.
1119 * It _appears_ to be in the future, but is actually in distant past.
1120 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1121 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1122 */
1123 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1124#endif
1125 return ret;
1126}
1127
0ae45f63
TT
1128#define EXPIRE_DIRTY_ATIME 0x0001
1129
2c136579 1130/*
0e2f2b23 1131 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1132 * @delaying_queue to @dispatch_queue.
2c136579 1133 */
e84d0a4f 1134static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1135 struct list_head *dispatch_queue,
0ae45f63 1136 int flags,
ad4e38dd 1137 struct wb_writeback_work *work)
2c136579 1138{
0ae45f63
TT
1139 unsigned long *older_than_this = NULL;
1140 unsigned long expire_time;
5c03449d
SL
1141 LIST_HEAD(tmp);
1142 struct list_head *pos, *node;
cf137307 1143 struct super_block *sb = NULL;
5c03449d 1144 struct inode *inode;
cf137307 1145 int do_sb_sort = 0;
e84d0a4f 1146 int moved = 0;
5c03449d 1147
0ae45f63
TT
1148 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1149 older_than_this = work->older_than_this;
a2f48706
TT
1150 else if (!work->for_sync) {
1151 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1152 older_than_this = &expire_time;
1153 }
2c136579 1154 while (!list_empty(delaying_queue)) {
7ccf19a8 1155 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1156 if (older_than_this &&
1157 inode_dirtied_after(inode, *older_than_this))
2c136579 1158 break;
c7f54084 1159 list_move(&inode->i_io_list, &tmp);
a8855990 1160 moved++;
0ae45f63
TT
1161 if (flags & EXPIRE_DIRTY_ATIME)
1162 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1163 if (sb_is_blkdev_sb(inode->i_sb))
1164 continue;
cf137307
JA
1165 if (sb && sb != inode->i_sb)
1166 do_sb_sort = 1;
1167 sb = inode->i_sb;
5c03449d
SL
1168 }
1169
cf137307
JA
1170 /* just one sb in list, splice to dispatch_queue and we're done */
1171 if (!do_sb_sort) {
1172 list_splice(&tmp, dispatch_queue);
e84d0a4f 1173 goto out;
cf137307
JA
1174 }
1175
5c03449d
SL
1176 /* Move inodes from one superblock together */
1177 while (!list_empty(&tmp)) {
7ccf19a8 1178 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1179 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1180 inode = wb_inode(pos);
5c03449d 1181 if (inode->i_sb == sb)
c7f54084 1182 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1183 }
2c136579 1184 }
e84d0a4f
WF
1185out:
1186 return moved;
2c136579
FW
1187}
1188
1189/*
1190 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1191 * Before
1192 * newly dirtied b_dirty b_io b_more_io
1193 * =============> gf edc BA
1194 * After
1195 * newly dirtied b_dirty b_io b_more_io
1196 * =============> g fBAedc
1197 * |
1198 * +--> dequeue for IO
2c136579 1199 */
ad4e38dd 1200static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1201{
e84d0a4f 1202 int moved;
0ae45f63 1203
f758eeab 1204 assert_spin_locked(&wb->list_lock);
4ea879b9 1205 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1206 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1207 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1208 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1209 if (moved)
1210 wb_io_lists_populated(wb);
ad4e38dd 1211 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1212}
1213
a9185b41 1214static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1215{
9fb0a7da
TH
1216 int ret;
1217
1218 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1219 trace_writeback_write_inode_start(inode, wbc);
1220 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1221 trace_writeback_write_inode(inode, wbc);
1222 return ret;
1223 }
03ba3782 1224 return 0;
08d8e974 1225}
08d8e974 1226
1da177e4 1227/*
169ebd90
JK
1228 * Wait for writeback on an inode to complete. Called with i_lock held.
1229 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1230 */
169ebd90
JK
1231static void __inode_wait_for_writeback(struct inode *inode)
1232 __releases(inode->i_lock)
1233 __acquires(inode->i_lock)
01c03194
CH
1234{
1235 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1236 wait_queue_head_t *wqh;
1237
1238 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1239 while (inode->i_state & I_SYNC) {
1240 spin_unlock(&inode->i_lock);
74316201
N
1241 __wait_on_bit(wqh, &wq, bit_wait,
1242 TASK_UNINTERRUPTIBLE);
250df6ed 1243 spin_lock(&inode->i_lock);
58a9d3d8 1244 }
01c03194
CH
1245}
1246
169ebd90
JK
1247/*
1248 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1249 */
1250void inode_wait_for_writeback(struct inode *inode)
1251{
1252 spin_lock(&inode->i_lock);
1253 __inode_wait_for_writeback(inode);
1254 spin_unlock(&inode->i_lock);
1255}
1256
1257/*
1258 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1259 * held and drops it. It is aimed for callers not holding any inode reference
1260 * so once i_lock is dropped, inode can go away.
1261 */
1262static void inode_sleep_on_writeback(struct inode *inode)
1263 __releases(inode->i_lock)
1264{
1265 DEFINE_WAIT(wait);
1266 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1267 int sleep;
1268
1269 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1270 sleep = inode->i_state & I_SYNC;
1271 spin_unlock(&inode->i_lock);
1272 if (sleep)
1273 schedule();
1274 finish_wait(wqh, &wait);
1275}
1276
ccb26b5a
JK
1277/*
1278 * Find proper writeback list for the inode depending on its current state and
1279 * possibly also change of its state while we were doing writeback. Here we
1280 * handle things such as livelock prevention or fairness of writeback among
1281 * inodes. This function can be called only by flusher thread - noone else
1282 * processes all inodes in writeback lists and requeueing inodes behind flusher
1283 * thread's back can have unexpected consequences.
1284 */
1285static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1286 struct writeback_control *wbc)
1287{
1288 if (inode->i_state & I_FREEING)
1289 return;
1290
1291 /*
1292 * Sync livelock prevention. Each inode is tagged and synced in one
1293 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1294 * the dirty time to prevent enqueue and sync it again.
1295 */
1296 if ((inode->i_state & I_DIRTY) &&
1297 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1298 inode->dirtied_when = jiffies;
1299
4f8ad655
JK
1300 if (wbc->pages_skipped) {
1301 /*
1302 * writeback is not making progress due to locked
1303 * buffers. Skip this inode for now.
1304 */
1305 redirty_tail(inode, wb);
1306 return;
1307 }
1308
ccb26b5a
JK
1309 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1310 /*
1311 * We didn't write back all the pages. nfs_writepages()
1312 * sometimes bales out without doing anything.
1313 */
1314 if (wbc->nr_to_write <= 0) {
1315 /* Slice used up. Queue for next turn. */
1316 requeue_io(inode, wb);
1317 } else {
1318 /*
1319 * Writeback blocked by something other than
1320 * congestion. Delay the inode for some time to
1321 * avoid spinning on the CPU (100% iowait)
1322 * retrying writeback of the dirty page/inode
1323 * that cannot be performed immediately.
1324 */
1325 redirty_tail(inode, wb);
1326 }
1327 } else if (inode->i_state & I_DIRTY) {
1328 /*
1329 * Filesystems can dirty the inode during writeback operations,
1330 * such as delayed allocation during submission or metadata
1331 * updates after data IO completion.
1332 */
1333 redirty_tail(inode, wb);
0ae45f63 1334 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1335 inode->dirtied_when = jiffies;
c7f54084 1336 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1337 } else {
1338 /* The inode is clean. Remove from writeback lists. */
c7f54084 1339 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1340 }
1341}
1342
01c03194 1343/*
4f8ad655
JK
1344 * Write out an inode and its dirty pages. Do not update the writeback list
1345 * linkage. That is left to the caller. The caller is also responsible for
1346 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1347 */
1348static int
cd8ed2a4 1349__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1350{
1da177e4 1351 struct address_space *mapping = inode->i_mapping;
251d6a47 1352 long nr_to_write = wbc->nr_to_write;
01c03194 1353 unsigned dirty;
1da177e4
LT
1354 int ret;
1355
4f8ad655 1356 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1357
9fb0a7da
TH
1358 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1359
1da177e4
LT
1360 ret = do_writepages(mapping, wbc);
1361
26821ed4
CH
1362 /*
1363 * Make sure to wait on the data before writing out the metadata.
1364 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1365 * I/O completion. We don't do it for sync(2) writeback because it has a
1366 * separate, external IO completion path and ->sync_fs for guaranteeing
1367 * inode metadata is written back correctly.
26821ed4 1368 */
7747bd4b 1369 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1370 int err = filemap_fdatawait(mapping);
1da177e4
LT
1371 if (ret == 0)
1372 ret = err;
1373 }
1374
5547e8aa
DM
1375 /*
1376 * Some filesystems may redirty the inode during the writeback
1377 * due to delalloc, clear dirty metadata flags right before
1378 * write_inode()
1379 */
250df6ed 1380 spin_lock(&inode->i_lock);
9c6ac78e 1381
5547e8aa 1382 dirty = inode->i_state & I_DIRTY;
a2f48706 1383 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1384 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1385 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1386 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1387 unlikely(time_after(jiffies,
1388 (inode->dirtied_time_when +
1389 dirtytime_expire_interval * HZ)))) {
1390 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1391 trace_writeback_lazytime(inode);
1392 }
1393 } else
1394 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1395 inode->i_state &= ~dirty;
9c6ac78e
TH
1396
1397 /*
1398 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1399 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1400 * either they see the I_DIRTY bits cleared or we see the dirtied
1401 * inode.
1402 *
1403 * I_DIRTY_PAGES is always cleared together above even if @mapping
1404 * still has dirty pages. The flag is reinstated after smp_mb() if
1405 * necessary. This guarantees that either __mark_inode_dirty()
1406 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1407 */
1408 smp_mb();
1409
1410 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1411 inode->i_state |= I_DIRTY_PAGES;
1412
250df6ed 1413 spin_unlock(&inode->i_lock);
9c6ac78e 1414
0ae45f63
TT
1415 if (dirty & I_DIRTY_TIME)
1416 mark_inode_dirty_sync(inode);
26821ed4 1417 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1418 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1419 int err = write_inode(inode, wbc);
1da177e4
LT
1420 if (ret == 0)
1421 ret = err;
1422 }
4f8ad655
JK
1423 trace_writeback_single_inode(inode, wbc, nr_to_write);
1424 return ret;
1425}
1426
1427/*
1428 * Write out an inode's dirty pages. Either the caller has an active reference
1429 * on the inode or the inode has I_WILL_FREE set.
1430 *
1431 * This function is designed to be called for writing back one inode which
1432 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1433 * and does more profound writeback list handling in writeback_sb_inodes().
1434 */
aaf25593
TH
1435static int writeback_single_inode(struct inode *inode,
1436 struct writeback_control *wbc)
4f8ad655 1437{
aaf25593 1438 struct bdi_writeback *wb;
4f8ad655
JK
1439 int ret = 0;
1440
1441 spin_lock(&inode->i_lock);
1442 if (!atomic_read(&inode->i_count))
1443 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1444 else
1445 WARN_ON(inode->i_state & I_WILL_FREE);
1446
1447 if (inode->i_state & I_SYNC) {
1448 if (wbc->sync_mode != WB_SYNC_ALL)
1449 goto out;
1450 /*
169ebd90
JK
1451 * It's a data-integrity sync. We must wait. Since callers hold
1452 * inode reference or inode has I_WILL_FREE set, it cannot go
1453 * away under us.
4f8ad655 1454 */
169ebd90 1455 __inode_wait_for_writeback(inode);
4f8ad655
JK
1456 }
1457 WARN_ON(inode->i_state & I_SYNC);
1458 /*
f9b0e058
JK
1459 * Skip inode if it is clean and we have no outstanding writeback in
1460 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1461 * function since flusher thread may be doing for example sync in
1462 * parallel and if we move the inode, it could get skipped. So here we
1463 * make sure inode is on some writeback list and leave it there unless
1464 * we have completely cleaned the inode.
4f8ad655 1465 */
0ae45f63 1466 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1467 (wbc->sync_mode != WB_SYNC_ALL ||
1468 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1469 goto out;
1470 inode->i_state |= I_SYNC;
b16b1deb 1471 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1472
cd8ed2a4 1473 ret = __writeback_single_inode(inode, wbc);
1da177e4 1474
b16b1deb 1475 wbc_detach_inode(wbc);
aaf25593
TH
1476
1477 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1478 spin_lock(&inode->i_lock);
4f8ad655
JK
1479 /*
1480 * If inode is clean, remove it from writeback lists. Otherwise don't
1481 * touch it. See comment above for explanation.
1482 */
0ae45f63 1483 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1484 inode_io_list_del_locked(inode, wb);
4f8ad655 1485 spin_unlock(&wb->list_lock);
1c0eeaf5 1486 inode_sync_complete(inode);
4f8ad655
JK
1487out:
1488 spin_unlock(&inode->i_lock);
1da177e4
LT
1489 return ret;
1490}
1491
a88a341a 1492static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1493 struct wb_writeback_work *work)
d46db3d5
WF
1494{
1495 long pages;
1496
1497 /*
1498 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1499 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1500 * here avoids calling into writeback_inodes_wb() more than once.
1501 *
1502 * The intended call sequence for WB_SYNC_ALL writeback is:
1503 *
1504 * wb_writeback()
1505 * writeback_sb_inodes() <== called only once
1506 * write_cache_pages() <== called once for each inode
1507 * (quickly) tag currently dirty pages
1508 * (maybe slowly) sync all tagged pages
1509 */
1510 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1511 pages = LONG_MAX;
1a12d8bd 1512 else {
a88a341a 1513 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1514 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1515 pages = min(pages, work->nr_pages);
1516 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1517 MIN_WRITEBACK_PAGES);
1518 }
d46db3d5
WF
1519
1520 return pages;
1521}
1522
f11c9c5c
ES
1523/*
1524 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1525 *
d46db3d5 1526 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1527 *
1528 * NOTE! This is called with wb->list_lock held, and will
1529 * unlock and relock that for each inode it ends up doing
1530 * IO for.
f11c9c5c 1531 */
d46db3d5
WF
1532static long writeback_sb_inodes(struct super_block *sb,
1533 struct bdi_writeback *wb,
1534 struct wb_writeback_work *work)
1da177e4 1535{
d46db3d5
WF
1536 struct writeback_control wbc = {
1537 .sync_mode = work->sync_mode,
1538 .tagged_writepages = work->tagged_writepages,
1539 .for_kupdate = work->for_kupdate,
1540 .for_background = work->for_background,
7747bd4b 1541 .for_sync = work->for_sync,
d46db3d5
WF
1542 .range_cyclic = work->range_cyclic,
1543 .range_start = 0,
1544 .range_end = LLONG_MAX,
1545 };
1546 unsigned long start_time = jiffies;
1547 long write_chunk;
1548 long wrote = 0; /* count both pages and inodes */
1549
03ba3782 1550 while (!list_empty(&wb->b_io)) {
7ccf19a8 1551 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1552 struct bdi_writeback *tmp_wb;
edadfb10
CH
1553
1554 if (inode->i_sb != sb) {
d46db3d5 1555 if (work->sb) {
edadfb10
CH
1556 /*
1557 * We only want to write back data for this
1558 * superblock, move all inodes not belonging
1559 * to it back onto the dirty list.
1560 */
f758eeab 1561 redirty_tail(inode, wb);
edadfb10
CH
1562 continue;
1563 }
1564
1565 /*
1566 * The inode belongs to a different superblock.
1567 * Bounce back to the caller to unpin this and
1568 * pin the next superblock.
1569 */
d46db3d5 1570 break;
edadfb10
CH
1571 }
1572
9843b76a 1573 /*
331cbdee
WL
1574 * Don't bother with new inodes or inodes being freed, first
1575 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1576 * kind writeout is handled by the freer.
1577 */
250df6ed 1578 spin_lock(&inode->i_lock);
9843b76a 1579 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1580 spin_unlock(&inode->i_lock);
fcc5c222 1581 redirty_tail(inode, wb);
7ef0d737
NP
1582 continue;
1583 }
cc1676d9
JK
1584 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1585 /*
1586 * If this inode is locked for writeback and we are not
1587 * doing writeback-for-data-integrity, move it to
1588 * b_more_io so that writeback can proceed with the
1589 * other inodes on s_io.
1590 *
1591 * We'll have another go at writing back this inode
1592 * when we completed a full scan of b_io.
1593 */
1594 spin_unlock(&inode->i_lock);
1595 requeue_io(inode, wb);
1596 trace_writeback_sb_inodes_requeue(inode);
1597 continue;
1598 }
f0d07b7f
JK
1599 spin_unlock(&wb->list_lock);
1600
4f8ad655
JK
1601 /*
1602 * We already requeued the inode if it had I_SYNC set and we
1603 * are doing WB_SYNC_NONE writeback. So this catches only the
1604 * WB_SYNC_ALL case.
1605 */
169ebd90
JK
1606 if (inode->i_state & I_SYNC) {
1607 /* Wait for I_SYNC. This function drops i_lock... */
1608 inode_sleep_on_writeback(inode);
1609 /* Inode may be gone, start again */
ead188f9 1610 spin_lock(&wb->list_lock);
169ebd90
JK
1611 continue;
1612 }
4f8ad655 1613 inode->i_state |= I_SYNC;
b16b1deb 1614 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1615
a88a341a 1616 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1617 wbc.nr_to_write = write_chunk;
1618 wbc.pages_skipped = 0;
250df6ed 1619
169ebd90
JK
1620 /*
1621 * We use I_SYNC to pin the inode in memory. While it is set
1622 * evict_inode() will wait so the inode cannot be freed.
1623 */
cd8ed2a4 1624 __writeback_single_inode(inode, &wbc);
250df6ed 1625
b16b1deb 1626 wbc_detach_inode(&wbc);
d46db3d5
WF
1627 work->nr_pages -= write_chunk - wbc.nr_to_write;
1628 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1629
1630 if (need_resched()) {
1631 /*
1632 * We're trying to balance between building up a nice
1633 * long list of IOs to improve our merge rate, and
1634 * getting those IOs out quickly for anyone throttling
1635 * in balance_dirty_pages(). cond_resched() doesn't
1636 * unplug, so get our IOs out the door before we
1637 * give up the CPU.
1638 */
1639 blk_flush_plug(current);
1640 cond_resched();
1641 }
1642
aaf25593
TH
1643 /*
1644 * Requeue @inode if still dirty. Be careful as @inode may
1645 * have been switched to another wb in the meantime.
1646 */
1647 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1648 spin_lock(&inode->i_lock);
0ae45f63 1649 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1650 wrote++;
aaf25593 1651 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1652 inode_sync_complete(inode);
0f1b1fd8 1653 spin_unlock(&inode->i_lock);
590dca3a 1654
aaf25593
TH
1655 if (unlikely(tmp_wb != wb)) {
1656 spin_unlock(&tmp_wb->list_lock);
1657 spin_lock(&wb->list_lock);
1658 }
1659
d46db3d5
WF
1660 /*
1661 * bail out to wb_writeback() often enough to check
1662 * background threshold and other termination conditions.
1663 */
1664 if (wrote) {
1665 if (time_is_before_jiffies(start_time + HZ / 10UL))
1666 break;
1667 if (work->nr_pages <= 0)
1668 break;
8bc3be27 1669 }
1da177e4 1670 }
d46db3d5 1671 return wrote;
f11c9c5c
ES
1672}
1673
d46db3d5
WF
1674static long __writeback_inodes_wb(struct bdi_writeback *wb,
1675 struct wb_writeback_work *work)
f11c9c5c 1676{
d46db3d5
WF
1677 unsigned long start_time = jiffies;
1678 long wrote = 0;
38f21977 1679
f11c9c5c 1680 while (!list_empty(&wb->b_io)) {
7ccf19a8 1681 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1682 struct super_block *sb = inode->i_sb;
9ecc2738 1683
eb6ef3df 1684 if (!trylock_super(sb)) {
0e995816 1685 /*
eb6ef3df 1686 * trylock_super() may fail consistently due to
0e995816
WF
1687 * s_umount being grabbed by someone else. Don't use
1688 * requeue_io() to avoid busy retrying the inode/sb.
1689 */
1690 redirty_tail(inode, wb);
edadfb10 1691 continue;
f11c9c5c 1692 }
d46db3d5 1693 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1694 up_read(&sb->s_umount);
f11c9c5c 1695
d46db3d5
WF
1696 /* refer to the same tests at the end of writeback_sb_inodes */
1697 if (wrote) {
1698 if (time_is_before_jiffies(start_time + HZ / 10UL))
1699 break;
1700 if (work->nr_pages <= 0)
1701 break;
1702 }
f11c9c5c 1703 }
66f3b8e2 1704 /* Leave any unwritten inodes on b_io */
d46db3d5 1705 return wrote;
66f3b8e2
JA
1706}
1707
7d9f073b 1708static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1709 enum wb_reason reason)
edadfb10 1710{
d46db3d5
WF
1711 struct wb_writeback_work work = {
1712 .nr_pages = nr_pages,
1713 .sync_mode = WB_SYNC_NONE,
1714 .range_cyclic = 1,
0e175a18 1715 .reason = reason,
d46db3d5 1716 };
505a666e 1717 struct blk_plug plug;
edadfb10 1718
505a666e 1719 blk_start_plug(&plug);
f758eeab 1720 spin_lock(&wb->list_lock);
424b351f 1721 if (list_empty(&wb->b_io))
ad4e38dd 1722 queue_io(wb, &work);
d46db3d5 1723 __writeback_inodes_wb(wb, &work);
f758eeab 1724 spin_unlock(&wb->list_lock);
505a666e 1725 blk_finish_plug(&plug);
edadfb10 1726
d46db3d5
WF
1727 return nr_pages - work.nr_pages;
1728}
03ba3782 1729
03ba3782
JA
1730/*
1731 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1732 *
03ba3782
JA
1733 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1734 * dirtying-time in the inode's address_space. So this periodic writeback code
1735 * just walks the superblock inode list, writing back any inodes which are
1736 * older than a specific point in time.
66f3b8e2 1737 *
03ba3782
JA
1738 * Try to run once per dirty_writeback_interval. But if a writeback event
1739 * takes longer than a dirty_writeback_interval interval, then leave a
1740 * one-second gap.
66f3b8e2 1741 *
03ba3782
JA
1742 * older_than_this takes precedence over nr_to_write. So we'll only write back
1743 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1744 */
c4a77a6c 1745static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1746 struct wb_writeback_work *work)
66f3b8e2 1747{
e98be2d5 1748 unsigned long wb_start = jiffies;
d46db3d5 1749 long nr_pages = work->nr_pages;
0dc83bd3 1750 unsigned long oldest_jif;
a5989bdc 1751 struct inode *inode;
d46db3d5 1752 long progress;
505a666e 1753 struct blk_plug plug;
66f3b8e2 1754
0dc83bd3
JK
1755 oldest_jif = jiffies;
1756 work->older_than_this = &oldest_jif;
38f21977 1757
505a666e 1758 blk_start_plug(&plug);
e8dfc305 1759 spin_lock(&wb->list_lock);
03ba3782
JA
1760 for (;;) {
1761 /*
d3ddec76 1762 * Stop writeback when nr_pages has been consumed
03ba3782 1763 */
83ba7b07 1764 if (work->nr_pages <= 0)
03ba3782 1765 break;
66f3b8e2 1766
aa373cf5
JK
1767 /*
1768 * Background writeout and kupdate-style writeback may
1769 * run forever. Stop them if there is other work to do
1770 * so that e.g. sync can proceed. They'll be restarted
1771 * after the other works are all done.
1772 */
1773 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1774 !list_empty(&wb->work_list))
aa373cf5
JK
1775 break;
1776
38f21977 1777 /*
d3ddec76
WF
1778 * For background writeout, stop when we are below the
1779 * background dirty threshold
38f21977 1780 */
aa661bbe 1781 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1782 break;
38f21977 1783
1bc36b64
JK
1784 /*
1785 * Kupdate and background works are special and we want to
1786 * include all inodes that need writing. Livelock avoidance is
1787 * handled by these works yielding to any other work so we are
1788 * safe.
1789 */
ba9aa839 1790 if (work->for_kupdate) {
0dc83bd3 1791 oldest_jif = jiffies -
ba9aa839 1792 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1793 } else if (work->for_background)
0dc83bd3 1794 oldest_jif = jiffies;
028c2dd1 1795
5634cc2a 1796 trace_writeback_start(wb, work);
e8dfc305 1797 if (list_empty(&wb->b_io))
ad4e38dd 1798 queue_io(wb, work);
83ba7b07 1799 if (work->sb)
d46db3d5 1800 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1801 else
d46db3d5 1802 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1803 trace_writeback_written(wb, work);
028c2dd1 1804
e98be2d5 1805 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1806
1807 /*
e6fb6da2
WF
1808 * Did we write something? Try for more
1809 *
1810 * Dirty inodes are moved to b_io for writeback in batches.
1811 * The completion of the current batch does not necessarily
1812 * mean the overall work is done. So we keep looping as long
1813 * as made some progress on cleaning pages or inodes.
03ba3782 1814 */
d46db3d5 1815 if (progress)
71fd05a8
JA
1816 continue;
1817 /*
e6fb6da2 1818 * No more inodes for IO, bail
71fd05a8 1819 */
b7a2441f 1820 if (list_empty(&wb->b_more_io))
03ba3782 1821 break;
71fd05a8
JA
1822 /*
1823 * Nothing written. Wait for some inode to
1824 * become available for writeback. Otherwise
1825 * we'll just busyloop.
1826 */
bace9248
TE
1827 trace_writeback_wait(wb, work);
1828 inode = wb_inode(wb->b_more_io.prev);
1829 spin_lock(&inode->i_lock);
1830 spin_unlock(&wb->list_lock);
1831 /* This function drops i_lock... */
1832 inode_sleep_on_writeback(inode);
1833 spin_lock(&wb->list_lock);
03ba3782 1834 }
e8dfc305 1835 spin_unlock(&wb->list_lock);
505a666e 1836 blk_finish_plug(&plug);
03ba3782 1837
d46db3d5 1838 return nr_pages - work->nr_pages;
03ba3782
JA
1839}
1840
1841/*
83ba7b07 1842 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1843 */
f0054bb1 1844static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1845{
83ba7b07 1846 struct wb_writeback_work *work = NULL;
03ba3782 1847
f0054bb1
TH
1848 spin_lock_bh(&wb->work_lock);
1849 if (!list_empty(&wb->work_list)) {
1850 work = list_entry(wb->work_list.next,
83ba7b07
CH
1851 struct wb_writeback_work, list);
1852 list_del_init(&work->list);
03ba3782 1853 }
f0054bb1 1854 spin_unlock_bh(&wb->work_lock);
83ba7b07 1855 return work;
03ba3782
JA
1856}
1857
6585027a
JK
1858static long wb_check_background_flush(struct bdi_writeback *wb)
1859{
aa661bbe 1860 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1861
1862 struct wb_writeback_work work = {
1863 .nr_pages = LONG_MAX,
1864 .sync_mode = WB_SYNC_NONE,
1865 .for_background = 1,
1866 .range_cyclic = 1,
0e175a18 1867 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1868 };
1869
1870 return wb_writeback(wb, &work);
1871 }
1872
1873 return 0;
1874}
1875
03ba3782
JA
1876static long wb_check_old_data_flush(struct bdi_writeback *wb)
1877{
1878 unsigned long expired;
1879 long nr_pages;
1880
69b62d01
JA
1881 /*
1882 * When set to zero, disable periodic writeback
1883 */
1884 if (!dirty_writeback_interval)
1885 return 0;
1886
03ba3782
JA
1887 expired = wb->last_old_flush +
1888 msecs_to_jiffies(dirty_writeback_interval * 10);
1889 if (time_before(jiffies, expired))
1890 return 0;
1891
1892 wb->last_old_flush = jiffies;
cdf01dd5 1893 nr_pages = get_nr_dirty_pages();
03ba3782 1894
c4a77a6c 1895 if (nr_pages) {
83ba7b07 1896 struct wb_writeback_work work = {
c4a77a6c
JA
1897 .nr_pages = nr_pages,
1898 .sync_mode = WB_SYNC_NONE,
1899 .for_kupdate = 1,
1900 .range_cyclic = 1,
0e175a18 1901 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1902 };
1903
83ba7b07 1904 return wb_writeback(wb, &work);
c4a77a6c 1905 }
03ba3782
JA
1906
1907 return 0;
1908}
1909
85009b4f
JA
1910static long wb_check_start_all(struct bdi_writeback *wb)
1911{
1912 long nr_pages;
1913
1914 if (!test_bit(WB_start_all, &wb->state))
1915 return 0;
1916
1917 nr_pages = get_nr_dirty_pages();
1918 if (nr_pages) {
1919 struct wb_writeback_work work = {
1920 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1921 .sync_mode = WB_SYNC_NONE,
1922 .range_cyclic = 1,
1923 .reason = wb->start_all_reason,
1924 };
1925
1926 nr_pages = wb_writeback(wb, &work);
1927 }
1928
1929 clear_bit(WB_start_all, &wb->state);
1930 return nr_pages;
1931}
1932
1933
03ba3782
JA
1934/*
1935 * Retrieve work items and do the writeback they describe
1936 */
25d130ba 1937static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1938{
83ba7b07 1939 struct wb_writeback_work *work;
c4a77a6c 1940 long wrote = 0;
03ba3782 1941
4452226e 1942 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1943 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1944 trace_writeback_exec(wb, work);
83ba7b07 1945 wrote += wb_writeback(wb, work);
4a3a485b 1946 finish_writeback_work(wb, work);
03ba3782
JA
1947 }
1948
85009b4f
JA
1949 /*
1950 * Check for a flush-everything request
1951 */
1952 wrote += wb_check_start_all(wb);
1953
03ba3782
JA
1954 /*
1955 * Check for periodic writeback, kupdated() style
1956 */
1957 wrote += wb_check_old_data_flush(wb);
6585027a 1958 wrote += wb_check_background_flush(wb);
4452226e 1959 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1960
1961 return wrote;
1962}
1963
1964/*
1965 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1966 * reschedules periodically and does kupdated style flushing.
03ba3782 1967 */
f0054bb1 1968void wb_workfn(struct work_struct *work)
03ba3782 1969{
839a8e86
TH
1970 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1971 struct bdi_writeback, dwork);
03ba3782
JA
1972 long pages_written;
1973
f0054bb1 1974 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1975 current->flags |= PF_SWAPWRITE;
455b2864 1976
839a8e86 1977 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1978 !test_bit(WB_registered, &wb->state))) {
6467716a 1979 /*
f0054bb1 1980 * The normal path. Keep writing back @wb until its
839a8e86 1981 * work_list is empty. Note that this path is also taken
f0054bb1 1982 * if @wb is shutting down even when we're running off the
839a8e86 1983 * rescuer as work_list needs to be drained.
6467716a 1984 */
839a8e86 1985 do {
25d130ba 1986 pages_written = wb_do_writeback(wb);
839a8e86 1987 trace_writeback_pages_written(pages_written);
f0054bb1 1988 } while (!list_empty(&wb->work_list));
839a8e86
TH
1989 } else {
1990 /*
1991 * bdi_wq can't get enough workers and we're running off
1992 * the emergency worker. Don't hog it. Hopefully, 1024 is
1993 * enough for efficient IO.
1994 */
f0054bb1 1995 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1996 WB_REASON_FORKER_THREAD);
455b2864 1997 trace_writeback_pages_written(pages_written);
03ba3782
JA
1998 }
1999
f0054bb1 2000 if (!list_empty(&wb->work_list))
b8b78495 2001 wb_wakeup(wb);
6ca738d6 2002 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2003 wb_wakeup_delayed(wb);
455b2864 2004
839a8e86 2005 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2006}
2007
595043e5
JA
2008/*
2009 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2010 * write back the whole world.
2011 */
2012static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2013 enum wb_reason reason)
595043e5
JA
2014{
2015 struct bdi_writeback *wb;
2016
2017 if (!bdi_has_dirty_io(bdi))
2018 return;
2019
2020 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2021 wb_start_writeback(wb, reason);
595043e5
JA
2022}
2023
2024void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2025 enum wb_reason reason)
2026{
595043e5 2027 rcu_read_lock();
e8e8a0c6 2028 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2029 rcu_read_unlock();
2030}
2031
03ba3782 2032/*
9ba4b2df 2033 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2034 */
9ba4b2df 2035void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2036{
b8c2f347 2037 struct backing_dev_info *bdi;
03ba3782 2038
51350ea0
KK
2039 /*
2040 * If we are expecting writeback progress we must submit plugged IO.
2041 */
2042 if (blk_needs_flush_plug(current))
2043 blk_schedule_flush_plug(current);
2044
b8c2f347 2045 rcu_read_lock();
595043e5 2046 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2047 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2048 rcu_read_unlock();
1da177e4
LT
2049}
2050
a2f48706
TT
2051/*
2052 * Wake up bdi's periodically to make sure dirtytime inodes gets
2053 * written back periodically. We deliberately do *not* check the
2054 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2055 * kernel to be constantly waking up once there are any dirtytime
2056 * inodes on the system. So instead we define a separate delayed work
2057 * function which gets called much more rarely. (By default, only
2058 * once every 12 hours.)
2059 *
2060 * If there is any other write activity going on in the file system,
2061 * this function won't be necessary. But if the only thing that has
2062 * happened on the file system is a dirtytime inode caused by an atime
2063 * update, we need this infrastructure below to make sure that inode
2064 * eventually gets pushed out to disk.
2065 */
2066static void wakeup_dirtytime_writeback(struct work_struct *w);
2067static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2068
2069static void wakeup_dirtytime_writeback(struct work_struct *w)
2070{
2071 struct backing_dev_info *bdi;
2072
2073 rcu_read_lock();
2074 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2075 struct bdi_writeback *wb;
001fe6f6 2076
b817525a 2077 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2078 if (!list_empty(&wb->b_dirty_time))
2079 wb_wakeup(wb);
a2f48706
TT
2080 }
2081 rcu_read_unlock();
2082 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2083}
2084
2085static int __init start_dirtytime_writeback(void)
2086{
2087 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2088 return 0;
2089}
2090__initcall(start_dirtytime_writeback);
2091
1efff914
TT
2092int dirtytime_interval_handler(struct ctl_table *table, int write,
2093 void __user *buffer, size_t *lenp, loff_t *ppos)
2094{
2095 int ret;
2096
2097 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2098 if (ret == 0 && write)
2099 mod_delayed_work(system_wq, &dirtytime_work, 0);
2100 return ret;
2101}
2102
03ba3782
JA
2103static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2104{
2105 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2106 struct dentry *dentry;
2107 const char *name = "?";
2108
2109 dentry = d_find_alias(inode);
2110 if (dentry) {
2111 spin_lock(&dentry->d_lock);
2112 name = (const char *) dentry->d_name.name;
2113 }
2114 printk(KERN_DEBUG
2115 "%s(%d): dirtied inode %lu (%s) on %s\n",
2116 current->comm, task_pid_nr(current), inode->i_ino,
2117 name, inode->i_sb->s_id);
2118 if (dentry) {
2119 spin_unlock(&dentry->d_lock);
2120 dput(dentry);
2121 }
2122 }
2123}
2124
2125/**
0117d427
MCC
2126 * __mark_inode_dirty - internal function
2127 *
2128 * @inode: inode to mark
2129 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2130 *
2131 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2132 * mark_inode_dirty_sync.
1da177e4 2133 *
03ba3782
JA
2134 * Put the inode on the super block's dirty list.
2135 *
2136 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2137 * dirty list only if it is hashed or if it refers to a blockdev.
2138 * If it was not hashed, it will never be added to the dirty list
2139 * even if it is later hashed, as it will have been marked dirty already.
2140 *
2141 * In short, make sure you hash any inodes _before_ you start marking
2142 * them dirty.
1da177e4 2143 *
03ba3782
JA
2144 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2145 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2146 * the kernel-internal blockdev inode represents the dirtying time of the
2147 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2148 * page->mapping->host, so the page-dirtying time is recorded in the internal
2149 * blockdev inode.
1da177e4 2150 */
03ba3782 2151void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2152{
03ba3782 2153 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2154 int dirtytime;
2155
2156 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2157
03ba3782
JA
2158 /*
2159 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2160 * dirty the inode itself
2161 */
0e11f644 2162 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2163 trace_writeback_dirty_inode_start(inode, flags);
2164
03ba3782 2165 if (sb->s_op->dirty_inode)
aa385729 2166 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2167
2168 trace_writeback_dirty_inode(inode, flags);
03ba3782 2169 }
0ae45f63
TT
2170 if (flags & I_DIRTY_INODE)
2171 flags &= ~I_DIRTY_TIME;
2172 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2173
2174 /*
9c6ac78e
TH
2175 * Paired with smp_mb() in __writeback_single_inode() for the
2176 * following lockless i_state test. See there for details.
03ba3782
JA
2177 */
2178 smp_mb();
2179
0ae45f63
TT
2180 if (((inode->i_state & flags) == flags) ||
2181 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2182 return;
2183
2184 if (unlikely(block_dump))
2185 block_dump___mark_inode_dirty(inode);
2186
250df6ed 2187 spin_lock(&inode->i_lock);
0ae45f63
TT
2188 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2189 goto out_unlock_inode;
03ba3782
JA
2190 if ((inode->i_state & flags) != flags) {
2191 const int was_dirty = inode->i_state & I_DIRTY;
2192
52ebea74
TH
2193 inode_attach_wb(inode, NULL);
2194
0ae45f63
TT
2195 if (flags & I_DIRTY_INODE)
2196 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2197 inode->i_state |= flags;
2198
2199 /*
2200 * If the inode is being synced, just update its dirty state.
2201 * The unlocker will place the inode on the appropriate
2202 * superblock list, based upon its state.
2203 */
2204 if (inode->i_state & I_SYNC)
250df6ed 2205 goto out_unlock_inode;
03ba3782
JA
2206
2207 /*
2208 * Only add valid (hashed) inodes to the superblock's
2209 * dirty list. Add blockdev inodes as well.
2210 */
2211 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2212 if (inode_unhashed(inode))
250df6ed 2213 goto out_unlock_inode;
03ba3782 2214 }
a4ffdde6 2215 if (inode->i_state & I_FREEING)
250df6ed 2216 goto out_unlock_inode;
03ba3782
JA
2217
2218 /*
2219 * If the inode was already on b_dirty/b_io/b_more_io, don't
2220 * reposition it (that would break b_dirty time-ordering).
2221 */
2222 if (!was_dirty) {
87e1d789 2223 struct bdi_writeback *wb;
d6c10f1f 2224 struct list_head *dirty_list;
a66979ab 2225 bool wakeup_bdi = false;
253c34e9 2226
87e1d789 2227 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2228
0747259d
TH
2229 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2230 !test_bit(WB_registered, &wb->state),
2231 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2232
2233 inode->dirtied_when = jiffies;
a2f48706
TT
2234 if (dirtytime)
2235 inode->dirtied_time_when = jiffies;
d6c10f1f 2236
0e11f644 2237 if (inode->i_state & I_DIRTY)
0747259d 2238 dirty_list = &wb->b_dirty;
a2f48706 2239 else
0747259d 2240 dirty_list = &wb->b_dirty_time;
d6c10f1f 2241
c7f54084 2242 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2243 dirty_list);
2244
0747259d 2245 spin_unlock(&wb->list_lock);
0ae45f63 2246 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2247
d6c10f1f
TH
2248 /*
2249 * If this is the first dirty inode for this bdi,
2250 * we have to wake-up the corresponding bdi thread
2251 * to make sure background write-back happens
2252 * later.
2253 */
0747259d
TH
2254 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2255 wb_wakeup_delayed(wb);
a66979ab 2256 return;
1da177e4 2257 }
1da177e4 2258 }
250df6ed
DC
2259out_unlock_inode:
2260 spin_unlock(&inode->i_lock);
03ba3782
JA
2261}
2262EXPORT_SYMBOL(__mark_inode_dirty);
2263
e97fedb9
DC
2264/*
2265 * The @s_sync_lock is used to serialise concurrent sync operations
2266 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2267 * Concurrent callers will block on the s_sync_lock rather than doing contending
2268 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2269 * has been issued up to the time this function is enter is guaranteed to be
2270 * completed by the time we have gained the lock and waited for all IO that is
2271 * in progress regardless of the order callers are granted the lock.
2272 */
b6e51316 2273static void wait_sb_inodes(struct super_block *sb)
03ba3782 2274{
6c60d2b5 2275 LIST_HEAD(sync_list);
03ba3782
JA
2276
2277 /*
2278 * We need to be protected against the filesystem going from
2279 * r/o to r/w or vice versa.
2280 */
b6e51316 2281 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2282
e97fedb9 2283 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2284
2285 /*
6c60d2b5
DC
2286 * Splice the writeback list onto a temporary list to avoid waiting on
2287 * inodes that have started writeback after this point.
2288 *
2289 * Use rcu_read_lock() to keep the inodes around until we have a
2290 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2291 * the local list because inodes can be dropped from either by writeback
2292 * completion.
2293 */
2294 rcu_read_lock();
2295 spin_lock_irq(&sb->s_inode_wblist_lock);
2296 list_splice_init(&sb->s_inodes_wb, &sync_list);
2297
2298 /*
2299 * Data integrity sync. Must wait for all pages under writeback, because
2300 * there may have been pages dirtied before our sync call, but which had
2301 * writeout started before we write it out. In which case, the inode
2302 * may not be on the dirty list, but we still have to wait for that
2303 * writeout.
03ba3782 2304 */
6c60d2b5
DC
2305 while (!list_empty(&sync_list)) {
2306 struct inode *inode = list_first_entry(&sync_list, struct inode,
2307 i_wb_list);
250df6ed 2308 struct address_space *mapping = inode->i_mapping;
03ba3782 2309
6c60d2b5
DC
2310 /*
2311 * Move each inode back to the wb list before we drop the lock
2312 * to preserve consistency between i_wb_list and the mapping
2313 * writeback tag. Writeback completion is responsible to remove
2314 * the inode from either list once the writeback tag is cleared.
2315 */
2316 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2317
2318 /*
2319 * The mapping can appear untagged while still on-list since we
2320 * do not have the mapping lock. Skip it here, wb completion
2321 * will remove it.
2322 */
2323 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2324 continue;
2325
2326 spin_unlock_irq(&sb->s_inode_wblist_lock);
2327
250df6ed 2328 spin_lock(&inode->i_lock);
6c60d2b5 2329 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2330 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2331
2332 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2333 continue;
250df6ed 2334 }
03ba3782 2335 __iget(inode);
250df6ed 2336 spin_unlock(&inode->i_lock);
6c60d2b5 2337 rcu_read_unlock();
03ba3782 2338
aa750fd7
JN
2339 /*
2340 * We keep the error status of individual mapping so that
2341 * applications can catch the writeback error using fsync(2).
2342 * See filemap_fdatawait_keep_errors() for details.
2343 */
2344 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2345
2346 cond_resched();
2347
6c60d2b5
DC
2348 iput(inode);
2349
2350 rcu_read_lock();
2351 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2352 }
6c60d2b5
DC
2353 spin_unlock_irq(&sb->s_inode_wblist_lock);
2354 rcu_read_unlock();
e97fedb9 2355 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2356}
2357
f30a7d0c
TH
2358static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2359 enum wb_reason reason, bool skip_if_busy)
1da177e4 2360{
cc395d7f 2361 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2362 struct wb_writeback_work work = {
6e6938b6
WF
2363 .sb = sb,
2364 .sync_mode = WB_SYNC_NONE,
2365 .tagged_writepages = 1,
2366 .done = &done,
2367 .nr_pages = nr,
0e175a18 2368 .reason = reason,
3c4d7165 2369 };
e7972912 2370 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2371
e7972912 2372 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2373 return;
cf37e972 2374 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2375
db125360 2376 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2377 wb_wait_for_completion(bdi, &done);
e913fc82 2378}
f30a7d0c
TH
2379
2380/**
2381 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2382 * @sb: the superblock
2383 * @nr: the number of pages to write
2384 * @reason: reason why some writeback work initiated
2385 *
2386 * Start writeback on some inodes on this super_block. No guarantees are made
2387 * on how many (if any) will be written, and this function does not wait
2388 * for IO completion of submitted IO.
2389 */
2390void writeback_inodes_sb_nr(struct super_block *sb,
2391 unsigned long nr,
2392 enum wb_reason reason)
2393{
2394 __writeback_inodes_sb_nr(sb, nr, reason, false);
2395}
3259f8be
CM
2396EXPORT_SYMBOL(writeback_inodes_sb_nr);
2397
2398/**
2399 * writeback_inodes_sb - writeback dirty inodes from given super_block
2400 * @sb: the superblock
786228ab 2401 * @reason: reason why some writeback work was initiated
3259f8be
CM
2402 *
2403 * Start writeback on some inodes on this super_block. No guarantees are made
2404 * on how many (if any) will be written, and this function does not wait
2405 * for IO completion of submitted IO.
2406 */
0e175a18 2407void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2408{
0e175a18 2409 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2410}
0e3c9a22 2411EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2412
17bd55d0 2413/**
8264c321 2414 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2415 * @sb: the superblock
8264c321 2416 * @reason: reason why some writeback work was initiated
17bd55d0 2417 *
8264c321 2418 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2419 */
8264c321 2420void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2421{
10ee27a0 2422 if (!down_read_trylock(&sb->s_umount))
8264c321 2423 return;
10ee27a0 2424
8264c321 2425 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2426 up_read(&sb->s_umount);
3259f8be 2427}
10ee27a0 2428EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2429
d8a8559c
JA
2430/**
2431 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2432 * @sb: the superblock
d8a8559c
JA
2433 *
2434 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2435 * super_block.
d8a8559c 2436 */
0dc83bd3 2437void sync_inodes_sb(struct super_block *sb)
d8a8559c 2438{
cc395d7f 2439 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2440 struct wb_writeback_work work = {
3c4d7165
CH
2441 .sb = sb,
2442 .sync_mode = WB_SYNC_ALL,
2443 .nr_pages = LONG_MAX,
2444 .range_cyclic = 0,
83ba7b07 2445 .done = &done,
0e175a18 2446 .reason = WB_REASON_SYNC,
7747bd4b 2447 .for_sync = 1,
3c4d7165 2448 };
e7972912 2449 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2450
006a0973
TH
2451 /*
2452 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2453 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2454 * bdi_has_dirty() need to be written out too.
2455 */
2456 if (bdi == &noop_backing_dev_info)
6eedc701 2457 return;
cf37e972
CH
2458 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2459
7fc5854f
TH
2460 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2461 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2462 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2463 wb_wait_for_completion(bdi, &done);
7fc5854f 2464 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2465
b6e51316 2466 wait_sb_inodes(sb);
1da177e4 2467}
d8a8559c 2468EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2469
1da177e4 2470/**
7f04c26d
AA
2471 * write_inode_now - write an inode to disk
2472 * @inode: inode to write to disk
2473 * @sync: whether the write should be synchronous or not
2474 *
2475 * This function commits an inode to disk immediately if it is dirty. This is
2476 * primarily needed by knfsd.
1da177e4 2477 *
7f04c26d 2478 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2479 */
1da177e4
LT
2480int write_inode_now(struct inode *inode, int sync)
2481{
1da177e4
LT
2482 struct writeback_control wbc = {
2483 .nr_to_write = LONG_MAX,
18914b18 2484 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2485 .range_start = 0,
2486 .range_end = LLONG_MAX,
1da177e4
LT
2487 };
2488
2489 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2490 wbc.nr_to_write = 0;
1da177e4
LT
2491
2492 might_sleep();
aaf25593 2493 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2494}
2495EXPORT_SYMBOL(write_inode_now);
2496
2497/**
2498 * sync_inode - write an inode and its pages to disk.
2499 * @inode: the inode to sync
2500 * @wbc: controls the writeback mode
2501 *
2502 * sync_inode() will write an inode and its pages to disk. It will also
2503 * correctly update the inode on its superblock's dirty inode lists and will
2504 * update inode->i_state.
2505 *
2506 * The caller must have a ref on the inode.
2507 */
2508int sync_inode(struct inode *inode, struct writeback_control *wbc)
2509{
aaf25593 2510 return writeback_single_inode(inode, wbc);
1da177e4
LT
2511}
2512EXPORT_SYMBOL(sync_inode);
c3765016
CH
2513
2514/**
c691b9d9 2515 * sync_inode_metadata - write an inode to disk
c3765016
CH
2516 * @inode: the inode to sync
2517 * @wait: wait for I/O to complete.
2518 *
c691b9d9 2519 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2520 *
2521 * Note: only writes the actual inode, no associated data or other metadata.
2522 */
2523int sync_inode_metadata(struct inode *inode, int wait)
2524{
2525 struct writeback_control wbc = {
2526 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2527 .nr_to_write = 0, /* metadata-only */
2528 };
2529
2530 return sync_inode(inode, &wbc);
2531}
2532EXPORT_SYMBOL(sync_inode_metadata);