]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/fs-writeback.c
writeback: implement [locked_]inode_to_wb_and_lock_list()
[thirdparty/kernel/linux.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
87e1d789
TH
261/**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269static struct bdi_writeback *
270locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273{
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
288 if (likely(wb == inode_to_wb(inode)))
289 return wb; /* @inode already has ref */
290
291 spin_unlock(&wb->list_lock);
292 cpu_relax();
293 spin_lock(&inode->i_lock);
294 }
295}
296
297/**
298 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
299 * @inode: inode of interest
300 *
301 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
302 * on entry.
303 */
304static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
305 __acquires(&wb->list_lock)
306{
307 spin_lock(&inode->i_lock);
308 return locked_inode_to_wb_and_lock_list(inode);
309}
310
b16b1deb
TH
311/**
312 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
313 * @wbc: writeback_control of interest
314 * @inode: target inode
315 *
316 * @inode is locked and about to be written back under the control of @wbc.
317 * Record @inode's writeback context into @wbc and unlock the i_lock. On
318 * writeback completion, wbc_detach_inode() should be called. This is used
319 * to track the cgroup writeback context.
320 */
321void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
322 struct inode *inode)
323{
324 wbc->wb = inode_to_wb(inode);
2a814908
TH
325 wbc->inode = inode;
326
327 wbc->wb_id = wbc->wb->memcg_css->id;
328 wbc->wb_lcand_id = inode->i_wb_frn_winner;
329 wbc->wb_tcand_id = 0;
330 wbc->wb_bytes = 0;
331 wbc->wb_lcand_bytes = 0;
332 wbc->wb_tcand_bytes = 0;
333
b16b1deb
TH
334 wb_get(wbc->wb);
335 spin_unlock(&inode->i_lock);
336}
337
338/**
2a814908
TH
339 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
340 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
341 *
342 * To be called after a writeback attempt of an inode finishes and undoes
343 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
344 *
345 * As concurrent write sharing of an inode is expected to be very rare and
346 * memcg only tracks page ownership on first-use basis severely confining
347 * the usefulness of such sharing, cgroup writeback tracks ownership
348 * per-inode. While the support for concurrent write sharing of an inode
349 * is deemed unnecessary, an inode being written to by different cgroups at
350 * different points in time is a lot more common, and, more importantly,
351 * charging only by first-use can too readily lead to grossly incorrect
352 * behaviors (single foreign page can lead to gigabytes of writeback to be
353 * incorrectly attributed).
354 *
355 * To resolve this issue, cgroup writeback detects the majority dirtier of
356 * an inode and transfers the ownership to it. To avoid unnnecessary
357 * oscillation, the detection mechanism keeps track of history and gives
358 * out the switch verdict only if the foreign usage pattern is stable over
359 * a certain amount of time and/or writeback attempts.
360 *
361 * On each writeback attempt, @wbc tries to detect the majority writer
362 * using Boyer-Moore majority vote algorithm. In addition to the byte
363 * count from the majority voting, it also counts the bytes written for the
364 * current wb and the last round's winner wb (max of last round's current
365 * wb, the winner from two rounds ago, and the last round's majority
366 * candidate). Keeping track of the historical winner helps the algorithm
367 * to semi-reliably detect the most active writer even when it's not the
368 * absolute majority.
369 *
370 * Once the winner of the round is determined, whether the winner is
371 * foreign or not and how much IO time the round consumed is recorded in
372 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
373 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
374 */
375void wbc_detach_inode(struct writeback_control *wbc)
376{
2a814908
TH
377 struct bdi_writeback *wb = wbc->wb;
378 struct inode *inode = wbc->inode;
379 u16 history = inode->i_wb_frn_history;
380 unsigned long avg_time = inode->i_wb_frn_avg_time;
381 unsigned long max_bytes, max_time;
382 int max_id;
383
384 /* pick the winner of this round */
385 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
386 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
387 max_id = wbc->wb_id;
388 max_bytes = wbc->wb_bytes;
389 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
390 max_id = wbc->wb_lcand_id;
391 max_bytes = wbc->wb_lcand_bytes;
392 } else {
393 max_id = wbc->wb_tcand_id;
394 max_bytes = wbc->wb_tcand_bytes;
395 }
396
397 /*
398 * Calculate the amount of IO time the winner consumed and fold it
399 * into the running average kept per inode. If the consumed IO
400 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
401 * deciding whether to switch or not. This is to prevent one-off
402 * small dirtiers from skewing the verdict.
403 */
404 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
405 wb->avg_write_bandwidth);
406 if (avg_time)
407 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
408 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
409 else
410 avg_time = max_time; /* immediate catch up on first run */
411
412 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
413 int slots;
414
415 /*
416 * The switch verdict is reached if foreign wb's consume
417 * more than a certain proportion of IO time in a
418 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
419 * history mask where each bit represents one sixteenth of
420 * the period. Determine the number of slots to shift into
421 * history from @max_time.
422 */
423 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
424 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
425 history <<= slots;
426 if (wbc->wb_id != max_id)
427 history |= (1U << slots) - 1;
428
429 /*
430 * Switch if the current wb isn't the consistent winner.
431 * If there are multiple closely competing dirtiers, the
432 * inode may switch across them repeatedly over time, which
433 * is okay. The main goal is avoiding keeping an inode on
434 * the wrong wb for an extended period of time.
435 */
436 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) {
437 /* switch */
438 max_id = 0;
439 avg_time = 0;
440 history = 0;
441 }
442 }
443
444 /*
445 * Multiple instances of this function may race to update the
446 * following fields but we don't mind occassional inaccuracies.
447 */
448 inode->i_wb_frn_winner = max_id;
449 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
450 inode->i_wb_frn_history = history;
451
b16b1deb
TH
452 wb_put(wbc->wb);
453 wbc->wb = NULL;
454}
455
2a814908
TH
456/**
457 * wbc_account_io - account IO issued during writeback
458 * @wbc: writeback_control of the writeback in progress
459 * @page: page being written out
460 * @bytes: number of bytes being written out
461 *
462 * @bytes from @page are about to written out during the writeback
463 * controlled by @wbc. Keep the book for foreign inode detection. See
464 * wbc_detach_inode().
465 */
466void wbc_account_io(struct writeback_control *wbc, struct page *page,
467 size_t bytes)
468{
469 int id;
470
471 /*
472 * pageout() path doesn't attach @wbc to the inode being written
473 * out. This is intentional as we don't want the function to block
474 * behind a slow cgroup. Ultimately, we want pageout() to kick off
475 * regular writeback instead of writing things out itself.
476 */
477 if (!wbc->wb)
478 return;
479
480 rcu_read_lock();
481 id = mem_cgroup_css_from_page(page)->id;
482 rcu_read_unlock();
483
484 if (id == wbc->wb_id) {
485 wbc->wb_bytes += bytes;
486 return;
487 }
488
489 if (id == wbc->wb_lcand_id)
490 wbc->wb_lcand_bytes += bytes;
491
492 /* Boyer-Moore majority vote algorithm */
493 if (!wbc->wb_tcand_bytes)
494 wbc->wb_tcand_id = id;
495 if (id == wbc->wb_tcand_id)
496 wbc->wb_tcand_bytes += bytes;
497 else
498 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
499}
500
703c2708
TH
501/**
502 * inode_congested - test whether an inode is congested
503 * @inode: inode to test for congestion
504 * @cong_bits: mask of WB_[a]sync_congested bits to test
505 *
506 * Tests whether @inode is congested. @cong_bits is the mask of congestion
507 * bits to test and the return value is the mask of set bits.
508 *
509 * If cgroup writeback is enabled for @inode, the congestion state is
510 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
511 * associated with @inode is congested; otherwise, the root wb's congestion
512 * state is used.
513 */
514int inode_congested(struct inode *inode, int cong_bits)
515{
516 if (inode) {
517 struct bdi_writeback *wb = inode_to_wb(inode);
518 if (wb)
519 return wb_congested(wb, cong_bits);
520 }
521
522 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
523}
524EXPORT_SYMBOL_GPL(inode_congested);
525
98754bf7
TH
526/**
527 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
528 * @bdi: bdi the work item was issued to
529 * @work: work item to wait for
530 *
531 * Wait for the completion of @work which was issued to one of @bdi's
532 * bdi_writeback's. The caller must have set @work->single_wait before
533 * issuing it. This wait operates independently fo
534 * wb_wait_for_completion() and also disables automatic freeing of @work.
535 */
536static void wb_wait_for_single_work(struct backing_dev_info *bdi,
537 struct wb_writeback_work *work)
538{
539 if (WARN_ON_ONCE(!work->single_wait))
540 return;
541
542 wait_event(bdi->wb_waitq, work->single_done);
543
544 /*
545 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
546 * modifications to @work prior to assertion of ->single_done is
547 * visible to the caller once this function returns.
548 */
549 smp_rmb();
550}
551
f2b65121
TH
552/**
553 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
554 * @wb: target bdi_writeback to split @nr_pages to
555 * @nr_pages: number of pages to write for the whole bdi
556 *
557 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
558 * relation to the total write bandwidth of all wb's w/ dirty inodes on
559 * @wb->bdi.
560 */
561static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
562{
563 unsigned long this_bw = wb->avg_write_bandwidth;
564 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
565
566 if (nr_pages == LONG_MAX)
567 return LONG_MAX;
568
569 /*
570 * This may be called on clean wb's and proportional distribution
571 * may not make sense, just use the original @nr_pages in those
572 * cases. In general, we wanna err on the side of writing more.
573 */
574 if (!tot_bw || this_bw >= tot_bw)
575 return nr_pages;
576 else
577 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
578}
579
db125360
TH
580/**
581 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
582 * @wb: target bdi_writeback
583 * @base_work: source wb_writeback_work
584 *
585 * Try to make a clone of @base_work and issue it to @wb. If cloning
586 * succeeds, %true is returned; otherwise, @base_work is issued directly
587 * and %false is returned. In the latter case, the caller is required to
588 * wait for @base_work's completion using wb_wait_for_single_work().
589 *
590 * A clone is auto-freed on completion. @base_work never is.
591 */
592static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
593 struct wb_writeback_work *base_work)
594{
595 struct wb_writeback_work *work;
596
597 work = kmalloc(sizeof(*work), GFP_ATOMIC);
598 if (work) {
599 *work = *base_work;
600 work->auto_free = 1;
601 work->single_wait = 0;
602 } else {
603 work = base_work;
604 work->auto_free = 0;
605 work->single_wait = 1;
606 }
607 work->single_done = 0;
608 wb_queue_work(wb, work);
609 return work != base_work;
610}
611
612/**
613 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
614 * @bdi: target backing_dev_info
615 * @base_work: wb_writeback_work to issue
616 * @skip_if_busy: skip wb's which already have writeback in progress
617 *
618 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
619 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
620 * distributed to the busy wbs according to each wb's proportion in the
621 * total active write bandwidth of @bdi.
622 */
623static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
624 struct wb_writeback_work *base_work,
625 bool skip_if_busy)
626{
627 long nr_pages = base_work->nr_pages;
628 int next_blkcg_id = 0;
629 struct bdi_writeback *wb;
630 struct wb_iter iter;
631
632 might_sleep();
633
634 if (!bdi_has_dirty_io(bdi))
635 return;
636restart:
637 rcu_read_lock();
638 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
639 if (!wb_has_dirty_io(wb) ||
640 (skip_if_busy && writeback_in_progress(wb)))
641 continue;
642
643 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
644 if (!wb_clone_and_queue_work(wb, base_work)) {
645 next_blkcg_id = wb->blkcg_css->id + 1;
646 rcu_read_unlock();
647 wb_wait_for_single_work(bdi, base_work);
648 goto restart;
649 }
650 }
651 rcu_read_unlock();
652}
653
f2b65121
TH
654#else /* CONFIG_CGROUP_WRITEBACK */
655
87e1d789
TH
656static struct bdi_writeback *
657locked_inode_to_wb_and_lock_list(struct inode *inode)
658 __releases(&inode->i_lock)
659 __acquires(&wb->list_lock)
660{
661 struct bdi_writeback *wb = inode_to_wb(inode);
662
663 spin_unlock(&inode->i_lock);
664 spin_lock(&wb->list_lock);
665 return wb;
666}
667
668static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
669 __acquires(&wb->list_lock)
670{
671 struct bdi_writeback *wb = inode_to_wb(inode);
672
673 spin_lock(&wb->list_lock);
674 return wb;
675}
676
f2b65121
TH
677static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
678{
679 return nr_pages;
680}
681
db125360
TH
682static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
683 struct wb_writeback_work *base_work,
684 bool skip_if_busy)
685{
686 might_sleep();
687
688 if (bdi_has_dirty_io(bdi) &&
689 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
690 base_work->auto_free = 0;
691 base_work->single_wait = 0;
692 base_work->single_done = 0;
693 wb_queue_work(&bdi->wb, base_work);
694 }
695}
696
703c2708
TH
697#endif /* CONFIG_CGROUP_WRITEBACK */
698
c00ddad3
TH
699void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
700 bool range_cyclic, enum wb_reason reason)
b6e51316 701{
c00ddad3
TH
702 struct wb_writeback_work *work;
703
704 if (!wb_has_dirty_io(wb))
705 return;
706
707 /*
708 * This is WB_SYNC_NONE writeback, so if allocation fails just
709 * wakeup the thread for old dirty data writeback
710 */
711 work = kzalloc(sizeof(*work), GFP_ATOMIC);
712 if (!work) {
713 trace_writeback_nowork(wb->bdi);
714 wb_wakeup(wb);
715 return;
716 }
717
718 work->sync_mode = WB_SYNC_NONE;
719 work->nr_pages = nr_pages;
720 work->range_cyclic = range_cyclic;
721 work->reason = reason;
ac7b19a3 722 work->auto_free = 1;
c00ddad3
TH
723
724 wb_queue_work(wb, work);
c5444198 725}
d3ddec76 726
c5444198 727/**
9ecf4866
TH
728 * wb_start_background_writeback - start background writeback
729 * @wb: bdi_writback to write from
c5444198
CH
730 *
731 * Description:
6585027a 732 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 733 * this function returns, it is only guaranteed that for given wb
6585027a
JK
734 * some IO is happening if we are over background dirty threshold.
735 * Caller need not hold sb s_umount semaphore.
c5444198 736 */
9ecf4866 737void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 738{
6585027a
JK
739 /*
740 * We just wake up the flusher thread. It will perform background
741 * writeback as soon as there is no other work to do.
742 */
9ecf4866
TH
743 trace_writeback_wake_background(wb->bdi);
744 wb_wakeup(wb);
1da177e4
LT
745}
746
a66979ab
DC
747/*
748 * Remove the inode from the writeback list it is on.
749 */
750void inode_wb_list_del(struct inode *inode)
751{
87e1d789 752 struct bdi_writeback *wb;
f758eeab 753
87e1d789 754 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 755 inode_wb_list_del_locked(inode, wb);
52ebea74 756 spin_unlock(&wb->list_lock);
a66979ab
DC
757}
758
6610a0bc
AM
759/*
760 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
761 * furthest end of its superblock's dirty-inode list.
762 *
763 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 764 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
765 * the case then the inode must have been redirtied while it was being written
766 * out and we don't reset its dirtied_when.
767 */
f758eeab 768static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 769{
03ba3782 770 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 771 struct inode *tail;
6610a0bc 772
7ccf19a8 773 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 774 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
775 inode->dirtied_when = jiffies;
776 }
d6c10f1f 777 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
778}
779
c986d1e2 780/*
66f3b8e2 781 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 782 */
f758eeab 783static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 784{
d6c10f1f 785 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
786}
787
1c0eeaf5
JE
788static void inode_sync_complete(struct inode *inode)
789{
365b94ae 790 inode->i_state &= ~I_SYNC;
4eff96dd
JK
791 /* If inode is clean an unused, put it into LRU now... */
792 inode_add_lru(inode);
365b94ae 793 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
794 smp_mb();
795 wake_up_bit(&inode->i_state, __I_SYNC);
796}
797
d2caa3c5
JL
798static bool inode_dirtied_after(struct inode *inode, unsigned long t)
799{
800 bool ret = time_after(inode->dirtied_when, t);
801#ifndef CONFIG_64BIT
802 /*
803 * For inodes being constantly redirtied, dirtied_when can get stuck.
804 * It _appears_ to be in the future, but is actually in distant past.
805 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 806 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
807 */
808 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
809#endif
810 return ret;
811}
812
0ae45f63
TT
813#define EXPIRE_DIRTY_ATIME 0x0001
814
2c136579 815/*
0e2f2b23 816 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 817 * @delaying_queue to @dispatch_queue.
2c136579 818 */
e84d0a4f 819static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 820 struct list_head *dispatch_queue,
0ae45f63 821 int flags,
ad4e38dd 822 struct wb_writeback_work *work)
2c136579 823{
0ae45f63
TT
824 unsigned long *older_than_this = NULL;
825 unsigned long expire_time;
5c03449d
SL
826 LIST_HEAD(tmp);
827 struct list_head *pos, *node;
cf137307 828 struct super_block *sb = NULL;
5c03449d 829 struct inode *inode;
cf137307 830 int do_sb_sort = 0;
e84d0a4f 831 int moved = 0;
5c03449d 832
0ae45f63
TT
833 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
834 older_than_this = work->older_than_this;
a2f48706
TT
835 else if (!work->for_sync) {
836 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
837 older_than_this = &expire_time;
838 }
2c136579 839 while (!list_empty(delaying_queue)) {
7ccf19a8 840 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
841 if (older_than_this &&
842 inode_dirtied_after(inode, *older_than_this))
2c136579 843 break;
a8855990
JK
844 list_move(&inode->i_wb_list, &tmp);
845 moved++;
0ae45f63
TT
846 if (flags & EXPIRE_DIRTY_ATIME)
847 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
848 if (sb_is_blkdev_sb(inode->i_sb))
849 continue;
cf137307
JA
850 if (sb && sb != inode->i_sb)
851 do_sb_sort = 1;
852 sb = inode->i_sb;
5c03449d
SL
853 }
854
cf137307
JA
855 /* just one sb in list, splice to dispatch_queue and we're done */
856 if (!do_sb_sort) {
857 list_splice(&tmp, dispatch_queue);
e84d0a4f 858 goto out;
cf137307
JA
859 }
860
5c03449d
SL
861 /* Move inodes from one superblock together */
862 while (!list_empty(&tmp)) {
7ccf19a8 863 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 864 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 865 inode = wb_inode(pos);
5c03449d 866 if (inode->i_sb == sb)
7ccf19a8 867 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 868 }
2c136579 869 }
e84d0a4f
WF
870out:
871 return moved;
2c136579
FW
872}
873
874/*
875 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
876 * Before
877 * newly dirtied b_dirty b_io b_more_io
878 * =============> gf edc BA
879 * After
880 * newly dirtied b_dirty b_io b_more_io
881 * =============> g fBAedc
882 * |
883 * +--> dequeue for IO
2c136579 884 */
ad4e38dd 885static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 886{
e84d0a4f 887 int moved;
0ae45f63 888
f758eeab 889 assert_spin_locked(&wb->list_lock);
4ea879b9 890 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
891 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
892 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
893 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
894 if (moved)
895 wb_io_lists_populated(wb);
ad4e38dd 896 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
897}
898
a9185b41 899static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 900{
9fb0a7da
TH
901 int ret;
902
903 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
904 trace_writeback_write_inode_start(inode, wbc);
905 ret = inode->i_sb->s_op->write_inode(inode, wbc);
906 trace_writeback_write_inode(inode, wbc);
907 return ret;
908 }
03ba3782 909 return 0;
08d8e974 910}
08d8e974 911
1da177e4 912/*
169ebd90
JK
913 * Wait for writeback on an inode to complete. Called with i_lock held.
914 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 915 */
169ebd90
JK
916static void __inode_wait_for_writeback(struct inode *inode)
917 __releases(inode->i_lock)
918 __acquires(inode->i_lock)
01c03194
CH
919{
920 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
921 wait_queue_head_t *wqh;
922
923 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
924 while (inode->i_state & I_SYNC) {
925 spin_unlock(&inode->i_lock);
74316201
N
926 __wait_on_bit(wqh, &wq, bit_wait,
927 TASK_UNINTERRUPTIBLE);
250df6ed 928 spin_lock(&inode->i_lock);
58a9d3d8 929 }
01c03194
CH
930}
931
169ebd90
JK
932/*
933 * Wait for writeback on an inode to complete. Caller must have inode pinned.
934 */
935void inode_wait_for_writeback(struct inode *inode)
936{
937 spin_lock(&inode->i_lock);
938 __inode_wait_for_writeback(inode);
939 spin_unlock(&inode->i_lock);
940}
941
942/*
943 * Sleep until I_SYNC is cleared. This function must be called with i_lock
944 * held and drops it. It is aimed for callers not holding any inode reference
945 * so once i_lock is dropped, inode can go away.
946 */
947static void inode_sleep_on_writeback(struct inode *inode)
948 __releases(inode->i_lock)
949{
950 DEFINE_WAIT(wait);
951 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
952 int sleep;
953
954 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
955 sleep = inode->i_state & I_SYNC;
956 spin_unlock(&inode->i_lock);
957 if (sleep)
958 schedule();
959 finish_wait(wqh, &wait);
960}
961
ccb26b5a
JK
962/*
963 * Find proper writeback list for the inode depending on its current state and
964 * possibly also change of its state while we were doing writeback. Here we
965 * handle things such as livelock prevention or fairness of writeback among
966 * inodes. This function can be called only by flusher thread - noone else
967 * processes all inodes in writeback lists and requeueing inodes behind flusher
968 * thread's back can have unexpected consequences.
969 */
970static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
971 struct writeback_control *wbc)
972{
973 if (inode->i_state & I_FREEING)
974 return;
975
976 /*
977 * Sync livelock prevention. Each inode is tagged and synced in one
978 * shot. If still dirty, it will be redirty_tail()'ed below. Update
979 * the dirty time to prevent enqueue and sync it again.
980 */
981 if ((inode->i_state & I_DIRTY) &&
982 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
983 inode->dirtied_when = jiffies;
984
4f8ad655
JK
985 if (wbc->pages_skipped) {
986 /*
987 * writeback is not making progress due to locked
988 * buffers. Skip this inode for now.
989 */
990 redirty_tail(inode, wb);
991 return;
992 }
993
ccb26b5a
JK
994 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
995 /*
996 * We didn't write back all the pages. nfs_writepages()
997 * sometimes bales out without doing anything.
998 */
999 if (wbc->nr_to_write <= 0) {
1000 /* Slice used up. Queue for next turn. */
1001 requeue_io(inode, wb);
1002 } else {
1003 /*
1004 * Writeback blocked by something other than
1005 * congestion. Delay the inode for some time to
1006 * avoid spinning on the CPU (100% iowait)
1007 * retrying writeback of the dirty page/inode
1008 * that cannot be performed immediately.
1009 */
1010 redirty_tail(inode, wb);
1011 }
1012 } else if (inode->i_state & I_DIRTY) {
1013 /*
1014 * Filesystems can dirty the inode during writeback operations,
1015 * such as delayed allocation during submission or metadata
1016 * updates after data IO completion.
1017 */
1018 redirty_tail(inode, wb);
0ae45f63 1019 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1020 inode->dirtied_when = jiffies;
d6c10f1f 1021 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1022 } else {
1023 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1024 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1025 }
1026}
1027
01c03194 1028/*
4f8ad655
JK
1029 * Write out an inode and its dirty pages. Do not update the writeback list
1030 * linkage. That is left to the caller. The caller is also responsible for
1031 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1032 */
1033static int
cd8ed2a4 1034__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1035{
1da177e4 1036 struct address_space *mapping = inode->i_mapping;
251d6a47 1037 long nr_to_write = wbc->nr_to_write;
01c03194 1038 unsigned dirty;
1da177e4
LT
1039 int ret;
1040
4f8ad655 1041 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1042
9fb0a7da
TH
1043 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1044
1da177e4
LT
1045 ret = do_writepages(mapping, wbc);
1046
26821ed4
CH
1047 /*
1048 * Make sure to wait on the data before writing out the metadata.
1049 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1050 * I/O completion. We don't do it for sync(2) writeback because it has a
1051 * separate, external IO completion path and ->sync_fs for guaranteeing
1052 * inode metadata is written back correctly.
26821ed4 1053 */
7747bd4b 1054 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1055 int err = filemap_fdatawait(mapping);
1da177e4
LT
1056 if (ret == 0)
1057 ret = err;
1058 }
1059
5547e8aa
DM
1060 /*
1061 * Some filesystems may redirty the inode during the writeback
1062 * due to delalloc, clear dirty metadata flags right before
1063 * write_inode()
1064 */
250df6ed 1065 spin_lock(&inode->i_lock);
9c6ac78e 1066
5547e8aa 1067 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1068 if (inode->i_state & I_DIRTY_TIME) {
1069 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1070 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1071 unlikely(time_after(jiffies,
1072 (inode->dirtied_time_when +
1073 dirtytime_expire_interval * HZ)))) {
1074 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1075 trace_writeback_lazytime(inode);
1076 }
1077 } else
1078 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1079 inode->i_state &= ~dirty;
9c6ac78e
TH
1080
1081 /*
1082 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1083 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1084 * either they see the I_DIRTY bits cleared or we see the dirtied
1085 * inode.
1086 *
1087 * I_DIRTY_PAGES is always cleared together above even if @mapping
1088 * still has dirty pages. The flag is reinstated after smp_mb() if
1089 * necessary. This guarantees that either __mark_inode_dirty()
1090 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1091 */
1092 smp_mb();
1093
1094 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1095 inode->i_state |= I_DIRTY_PAGES;
1096
250df6ed 1097 spin_unlock(&inode->i_lock);
9c6ac78e 1098
0ae45f63
TT
1099 if (dirty & I_DIRTY_TIME)
1100 mark_inode_dirty_sync(inode);
26821ed4 1101 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1102 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1103 int err = write_inode(inode, wbc);
1da177e4
LT
1104 if (ret == 0)
1105 ret = err;
1106 }
4f8ad655
JK
1107 trace_writeback_single_inode(inode, wbc, nr_to_write);
1108 return ret;
1109}
1110
1111/*
1112 * Write out an inode's dirty pages. Either the caller has an active reference
1113 * on the inode or the inode has I_WILL_FREE set.
1114 *
1115 * This function is designed to be called for writing back one inode which
1116 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1117 * and does more profound writeback list handling in writeback_sb_inodes().
1118 */
1119static int
1120writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1121 struct writeback_control *wbc)
1122{
1123 int ret = 0;
1124
1125 spin_lock(&inode->i_lock);
1126 if (!atomic_read(&inode->i_count))
1127 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1128 else
1129 WARN_ON(inode->i_state & I_WILL_FREE);
1130
1131 if (inode->i_state & I_SYNC) {
1132 if (wbc->sync_mode != WB_SYNC_ALL)
1133 goto out;
1134 /*
169ebd90
JK
1135 * It's a data-integrity sync. We must wait. Since callers hold
1136 * inode reference or inode has I_WILL_FREE set, it cannot go
1137 * away under us.
4f8ad655 1138 */
169ebd90 1139 __inode_wait_for_writeback(inode);
4f8ad655
JK
1140 }
1141 WARN_ON(inode->i_state & I_SYNC);
1142 /*
f9b0e058
JK
1143 * Skip inode if it is clean and we have no outstanding writeback in
1144 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1145 * function since flusher thread may be doing for example sync in
1146 * parallel and if we move the inode, it could get skipped. So here we
1147 * make sure inode is on some writeback list and leave it there unless
1148 * we have completely cleaned the inode.
4f8ad655 1149 */
0ae45f63 1150 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1151 (wbc->sync_mode != WB_SYNC_ALL ||
1152 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1153 goto out;
1154 inode->i_state |= I_SYNC;
b16b1deb 1155 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1156
cd8ed2a4 1157 ret = __writeback_single_inode(inode, wbc);
1da177e4 1158
b16b1deb 1159 wbc_detach_inode(wbc);
f758eeab 1160 spin_lock(&wb->list_lock);
250df6ed 1161 spin_lock(&inode->i_lock);
4f8ad655
JK
1162 /*
1163 * If inode is clean, remove it from writeback lists. Otherwise don't
1164 * touch it. See comment above for explanation.
1165 */
0ae45f63 1166 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1167 inode_wb_list_del_locked(inode, wb);
4f8ad655 1168 spin_unlock(&wb->list_lock);
1c0eeaf5 1169 inode_sync_complete(inode);
4f8ad655
JK
1170out:
1171 spin_unlock(&inode->i_lock);
1da177e4
LT
1172 return ret;
1173}
1174
a88a341a 1175static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1176 struct wb_writeback_work *work)
d46db3d5
WF
1177{
1178 long pages;
1179
1180 /*
1181 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1182 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1183 * here avoids calling into writeback_inodes_wb() more than once.
1184 *
1185 * The intended call sequence for WB_SYNC_ALL writeback is:
1186 *
1187 * wb_writeback()
1188 * writeback_sb_inodes() <== called only once
1189 * write_cache_pages() <== called once for each inode
1190 * (quickly) tag currently dirty pages
1191 * (maybe slowly) sync all tagged pages
1192 */
1193 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1194 pages = LONG_MAX;
1a12d8bd 1195 else {
a88a341a 1196 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1197 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1198 pages = min(pages, work->nr_pages);
1199 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1200 MIN_WRITEBACK_PAGES);
1201 }
d46db3d5
WF
1202
1203 return pages;
1204}
1205
f11c9c5c
ES
1206/*
1207 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1208 *
d46db3d5 1209 * Return the number of pages and/or inodes written.
f11c9c5c 1210 */
d46db3d5
WF
1211static long writeback_sb_inodes(struct super_block *sb,
1212 struct bdi_writeback *wb,
1213 struct wb_writeback_work *work)
1da177e4 1214{
d46db3d5
WF
1215 struct writeback_control wbc = {
1216 .sync_mode = work->sync_mode,
1217 .tagged_writepages = work->tagged_writepages,
1218 .for_kupdate = work->for_kupdate,
1219 .for_background = work->for_background,
7747bd4b 1220 .for_sync = work->for_sync,
d46db3d5
WF
1221 .range_cyclic = work->range_cyclic,
1222 .range_start = 0,
1223 .range_end = LLONG_MAX,
1224 };
1225 unsigned long start_time = jiffies;
1226 long write_chunk;
1227 long wrote = 0; /* count both pages and inodes */
1228
03ba3782 1229 while (!list_empty(&wb->b_io)) {
7ccf19a8 1230 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1231
1232 if (inode->i_sb != sb) {
d46db3d5 1233 if (work->sb) {
edadfb10
CH
1234 /*
1235 * We only want to write back data for this
1236 * superblock, move all inodes not belonging
1237 * to it back onto the dirty list.
1238 */
f758eeab 1239 redirty_tail(inode, wb);
edadfb10
CH
1240 continue;
1241 }
1242
1243 /*
1244 * The inode belongs to a different superblock.
1245 * Bounce back to the caller to unpin this and
1246 * pin the next superblock.
1247 */
d46db3d5 1248 break;
edadfb10
CH
1249 }
1250
9843b76a 1251 /*
331cbdee
WL
1252 * Don't bother with new inodes or inodes being freed, first
1253 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1254 * kind writeout is handled by the freer.
1255 */
250df6ed 1256 spin_lock(&inode->i_lock);
9843b76a 1257 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1258 spin_unlock(&inode->i_lock);
fcc5c222 1259 redirty_tail(inode, wb);
7ef0d737
NP
1260 continue;
1261 }
cc1676d9
JK
1262 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1263 /*
1264 * If this inode is locked for writeback and we are not
1265 * doing writeback-for-data-integrity, move it to
1266 * b_more_io so that writeback can proceed with the
1267 * other inodes on s_io.
1268 *
1269 * We'll have another go at writing back this inode
1270 * when we completed a full scan of b_io.
1271 */
1272 spin_unlock(&inode->i_lock);
1273 requeue_io(inode, wb);
1274 trace_writeback_sb_inodes_requeue(inode);
1275 continue;
1276 }
f0d07b7f
JK
1277 spin_unlock(&wb->list_lock);
1278
4f8ad655
JK
1279 /*
1280 * We already requeued the inode if it had I_SYNC set and we
1281 * are doing WB_SYNC_NONE writeback. So this catches only the
1282 * WB_SYNC_ALL case.
1283 */
169ebd90
JK
1284 if (inode->i_state & I_SYNC) {
1285 /* Wait for I_SYNC. This function drops i_lock... */
1286 inode_sleep_on_writeback(inode);
1287 /* Inode may be gone, start again */
ead188f9 1288 spin_lock(&wb->list_lock);
169ebd90
JK
1289 continue;
1290 }
4f8ad655 1291 inode->i_state |= I_SYNC;
b16b1deb 1292 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1293
a88a341a 1294 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1295 wbc.nr_to_write = write_chunk;
1296 wbc.pages_skipped = 0;
250df6ed 1297
169ebd90
JK
1298 /*
1299 * We use I_SYNC to pin the inode in memory. While it is set
1300 * evict_inode() will wait so the inode cannot be freed.
1301 */
cd8ed2a4 1302 __writeback_single_inode(inode, &wbc);
250df6ed 1303
b16b1deb 1304 wbc_detach_inode(&wbc);
d46db3d5
WF
1305 work->nr_pages -= write_chunk - wbc.nr_to_write;
1306 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1307 spin_lock(&wb->list_lock);
1308 spin_lock(&inode->i_lock);
0ae45f63 1309 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1310 wrote++;
4f8ad655
JK
1311 requeue_inode(inode, wb, &wbc);
1312 inode_sync_complete(inode);
0f1b1fd8 1313 spin_unlock(&inode->i_lock);
169ebd90 1314 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1315 /*
1316 * bail out to wb_writeback() often enough to check
1317 * background threshold and other termination conditions.
1318 */
1319 if (wrote) {
1320 if (time_is_before_jiffies(start_time + HZ / 10UL))
1321 break;
1322 if (work->nr_pages <= 0)
1323 break;
8bc3be27 1324 }
1da177e4 1325 }
d46db3d5 1326 return wrote;
f11c9c5c
ES
1327}
1328
d46db3d5
WF
1329static long __writeback_inodes_wb(struct bdi_writeback *wb,
1330 struct wb_writeback_work *work)
f11c9c5c 1331{
d46db3d5
WF
1332 unsigned long start_time = jiffies;
1333 long wrote = 0;
38f21977 1334
f11c9c5c 1335 while (!list_empty(&wb->b_io)) {
7ccf19a8 1336 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1337 struct super_block *sb = inode->i_sb;
9ecc2738 1338
eb6ef3df 1339 if (!trylock_super(sb)) {
0e995816 1340 /*
eb6ef3df 1341 * trylock_super() may fail consistently due to
0e995816
WF
1342 * s_umount being grabbed by someone else. Don't use
1343 * requeue_io() to avoid busy retrying the inode/sb.
1344 */
1345 redirty_tail(inode, wb);
edadfb10 1346 continue;
f11c9c5c 1347 }
d46db3d5 1348 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1349 up_read(&sb->s_umount);
f11c9c5c 1350
d46db3d5
WF
1351 /* refer to the same tests at the end of writeback_sb_inodes */
1352 if (wrote) {
1353 if (time_is_before_jiffies(start_time + HZ / 10UL))
1354 break;
1355 if (work->nr_pages <= 0)
1356 break;
1357 }
f11c9c5c 1358 }
66f3b8e2 1359 /* Leave any unwritten inodes on b_io */
d46db3d5 1360 return wrote;
66f3b8e2
JA
1361}
1362
7d9f073b 1363static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1364 enum wb_reason reason)
edadfb10 1365{
d46db3d5
WF
1366 struct wb_writeback_work work = {
1367 .nr_pages = nr_pages,
1368 .sync_mode = WB_SYNC_NONE,
1369 .range_cyclic = 1,
0e175a18 1370 .reason = reason,
d46db3d5 1371 };
edadfb10 1372
f758eeab 1373 spin_lock(&wb->list_lock);
424b351f 1374 if (list_empty(&wb->b_io))
ad4e38dd 1375 queue_io(wb, &work);
d46db3d5 1376 __writeback_inodes_wb(wb, &work);
f758eeab 1377 spin_unlock(&wb->list_lock);
edadfb10 1378
d46db3d5
WF
1379 return nr_pages - work.nr_pages;
1380}
03ba3782 1381
03ba3782
JA
1382/*
1383 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1384 *
03ba3782
JA
1385 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1386 * dirtying-time in the inode's address_space. So this periodic writeback code
1387 * just walks the superblock inode list, writing back any inodes which are
1388 * older than a specific point in time.
66f3b8e2 1389 *
03ba3782
JA
1390 * Try to run once per dirty_writeback_interval. But if a writeback event
1391 * takes longer than a dirty_writeback_interval interval, then leave a
1392 * one-second gap.
66f3b8e2 1393 *
03ba3782
JA
1394 * older_than_this takes precedence over nr_to_write. So we'll only write back
1395 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1396 */
c4a77a6c 1397static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1398 struct wb_writeback_work *work)
66f3b8e2 1399{
e98be2d5 1400 unsigned long wb_start = jiffies;
d46db3d5 1401 long nr_pages = work->nr_pages;
0dc83bd3 1402 unsigned long oldest_jif;
a5989bdc 1403 struct inode *inode;
d46db3d5 1404 long progress;
66f3b8e2 1405
0dc83bd3
JK
1406 oldest_jif = jiffies;
1407 work->older_than_this = &oldest_jif;
38f21977 1408
e8dfc305 1409 spin_lock(&wb->list_lock);
03ba3782
JA
1410 for (;;) {
1411 /*
d3ddec76 1412 * Stop writeback when nr_pages has been consumed
03ba3782 1413 */
83ba7b07 1414 if (work->nr_pages <= 0)
03ba3782 1415 break;
66f3b8e2 1416
aa373cf5
JK
1417 /*
1418 * Background writeout and kupdate-style writeback may
1419 * run forever. Stop them if there is other work to do
1420 * so that e.g. sync can proceed. They'll be restarted
1421 * after the other works are all done.
1422 */
1423 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1424 !list_empty(&wb->work_list))
aa373cf5
JK
1425 break;
1426
38f21977 1427 /*
d3ddec76
WF
1428 * For background writeout, stop when we are below the
1429 * background dirty threshold
38f21977 1430 */
aa661bbe 1431 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1432 break;
38f21977 1433
1bc36b64
JK
1434 /*
1435 * Kupdate and background works are special and we want to
1436 * include all inodes that need writing. Livelock avoidance is
1437 * handled by these works yielding to any other work so we are
1438 * safe.
1439 */
ba9aa839 1440 if (work->for_kupdate) {
0dc83bd3 1441 oldest_jif = jiffies -
ba9aa839 1442 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1443 } else if (work->for_background)
0dc83bd3 1444 oldest_jif = jiffies;
028c2dd1 1445
d46db3d5 1446 trace_writeback_start(wb->bdi, work);
e8dfc305 1447 if (list_empty(&wb->b_io))
ad4e38dd 1448 queue_io(wb, work);
83ba7b07 1449 if (work->sb)
d46db3d5 1450 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1451 else
d46db3d5
WF
1452 progress = __writeback_inodes_wb(wb, work);
1453 trace_writeback_written(wb->bdi, work);
028c2dd1 1454
e98be2d5 1455 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1456
1457 /*
e6fb6da2
WF
1458 * Did we write something? Try for more
1459 *
1460 * Dirty inodes are moved to b_io for writeback in batches.
1461 * The completion of the current batch does not necessarily
1462 * mean the overall work is done. So we keep looping as long
1463 * as made some progress on cleaning pages or inodes.
03ba3782 1464 */
d46db3d5 1465 if (progress)
71fd05a8
JA
1466 continue;
1467 /*
e6fb6da2 1468 * No more inodes for IO, bail
71fd05a8 1469 */
b7a2441f 1470 if (list_empty(&wb->b_more_io))
03ba3782 1471 break;
71fd05a8
JA
1472 /*
1473 * Nothing written. Wait for some inode to
1474 * become available for writeback. Otherwise
1475 * we'll just busyloop.
1476 */
71fd05a8 1477 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1478 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1479 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1480 spin_lock(&inode->i_lock);
f0d07b7f 1481 spin_unlock(&wb->list_lock);
169ebd90
JK
1482 /* This function drops i_lock... */
1483 inode_sleep_on_writeback(inode);
f0d07b7f 1484 spin_lock(&wb->list_lock);
03ba3782
JA
1485 }
1486 }
e8dfc305 1487 spin_unlock(&wb->list_lock);
03ba3782 1488
d46db3d5 1489 return nr_pages - work->nr_pages;
03ba3782
JA
1490}
1491
1492/*
83ba7b07 1493 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1494 */
f0054bb1 1495static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1496{
83ba7b07 1497 struct wb_writeback_work *work = NULL;
03ba3782 1498
f0054bb1
TH
1499 spin_lock_bh(&wb->work_lock);
1500 if (!list_empty(&wb->work_list)) {
1501 work = list_entry(wb->work_list.next,
83ba7b07
CH
1502 struct wb_writeback_work, list);
1503 list_del_init(&work->list);
03ba3782 1504 }
f0054bb1 1505 spin_unlock_bh(&wb->work_lock);
83ba7b07 1506 return work;
03ba3782
JA
1507}
1508
cdf01dd5
LT
1509/*
1510 * Add in the number of potentially dirty inodes, because each inode
1511 * write can dirty pagecache in the underlying blockdev.
1512 */
1513static unsigned long get_nr_dirty_pages(void)
1514{
1515 return global_page_state(NR_FILE_DIRTY) +
1516 global_page_state(NR_UNSTABLE_NFS) +
1517 get_nr_dirty_inodes();
1518}
1519
6585027a
JK
1520static long wb_check_background_flush(struct bdi_writeback *wb)
1521{
aa661bbe 1522 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1523
1524 struct wb_writeback_work work = {
1525 .nr_pages = LONG_MAX,
1526 .sync_mode = WB_SYNC_NONE,
1527 .for_background = 1,
1528 .range_cyclic = 1,
0e175a18 1529 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1530 };
1531
1532 return wb_writeback(wb, &work);
1533 }
1534
1535 return 0;
1536}
1537
03ba3782
JA
1538static long wb_check_old_data_flush(struct bdi_writeback *wb)
1539{
1540 unsigned long expired;
1541 long nr_pages;
1542
69b62d01
JA
1543 /*
1544 * When set to zero, disable periodic writeback
1545 */
1546 if (!dirty_writeback_interval)
1547 return 0;
1548
03ba3782
JA
1549 expired = wb->last_old_flush +
1550 msecs_to_jiffies(dirty_writeback_interval * 10);
1551 if (time_before(jiffies, expired))
1552 return 0;
1553
1554 wb->last_old_flush = jiffies;
cdf01dd5 1555 nr_pages = get_nr_dirty_pages();
03ba3782 1556
c4a77a6c 1557 if (nr_pages) {
83ba7b07 1558 struct wb_writeback_work work = {
c4a77a6c
JA
1559 .nr_pages = nr_pages,
1560 .sync_mode = WB_SYNC_NONE,
1561 .for_kupdate = 1,
1562 .range_cyclic = 1,
0e175a18 1563 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1564 };
1565
83ba7b07 1566 return wb_writeback(wb, &work);
c4a77a6c 1567 }
03ba3782
JA
1568
1569 return 0;
1570}
1571
1572/*
1573 * Retrieve work items and do the writeback they describe
1574 */
25d130ba 1575static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1576{
83ba7b07 1577 struct wb_writeback_work *work;
c4a77a6c 1578 long wrote = 0;
03ba3782 1579
4452226e 1580 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1581 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1582 struct wb_completion *done = work->done;
98754bf7 1583 bool need_wake_up = false;
03ba3782 1584
f0054bb1 1585 trace_writeback_exec(wb->bdi, work);
455b2864 1586
83ba7b07 1587 wrote += wb_writeback(wb, work);
03ba3782 1588
98754bf7
TH
1589 if (work->single_wait) {
1590 WARN_ON_ONCE(work->auto_free);
1591 /* paired w/ rmb in wb_wait_for_single_work() */
1592 smp_wmb();
1593 work->single_done = 1;
1594 need_wake_up = true;
1595 } else if (work->auto_free) {
83ba7b07 1596 kfree(work);
98754bf7
TH
1597 }
1598
cc395d7f 1599 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1600 need_wake_up = true;
1601
1602 if (need_wake_up)
cc395d7f 1603 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1604 }
1605
1606 /*
1607 * Check for periodic writeback, kupdated() style
1608 */
1609 wrote += wb_check_old_data_flush(wb);
6585027a 1610 wrote += wb_check_background_flush(wb);
4452226e 1611 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1612
1613 return wrote;
1614}
1615
1616/*
1617 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1618 * reschedules periodically and does kupdated style flushing.
03ba3782 1619 */
f0054bb1 1620void wb_workfn(struct work_struct *work)
03ba3782 1621{
839a8e86
TH
1622 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1623 struct bdi_writeback, dwork);
03ba3782
JA
1624 long pages_written;
1625
f0054bb1 1626 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1627 current->flags |= PF_SWAPWRITE;
455b2864 1628
839a8e86 1629 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1630 !test_bit(WB_registered, &wb->state))) {
6467716a 1631 /*
f0054bb1 1632 * The normal path. Keep writing back @wb until its
839a8e86 1633 * work_list is empty. Note that this path is also taken
f0054bb1 1634 * if @wb is shutting down even when we're running off the
839a8e86 1635 * rescuer as work_list needs to be drained.
6467716a 1636 */
839a8e86 1637 do {
25d130ba 1638 pages_written = wb_do_writeback(wb);
839a8e86 1639 trace_writeback_pages_written(pages_written);
f0054bb1 1640 } while (!list_empty(&wb->work_list));
839a8e86
TH
1641 } else {
1642 /*
1643 * bdi_wq can't get enough workers and we're running off
1644 * the emergency worker. Don't hog it. Hopefully, 1024 is
1645 * enough for efficient IO.
1646 */
f0054bb1 1647 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1648 WB_REASON_FORKER_THREAD);
455b2864 1649 trace_writeback_pages_written(pages_written);
03ba3782
JA
1650 }
1651
f0054bb1 1652 if (!list_empty(&wb->work_list))
6ca738d6
DB
1653 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1654 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1655 wb_wakeup_delayed(wb);
455b2864 1656
839a8e86 1657 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1658}
1659
1660/*
b8c2f347
CH
1661 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1662 * the whole world.
03ba3782 1663 */
0e175a18 1664void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1665{
b8c2f347 1666 struct backing_dev_info *bdi;
03ba3782 1667
47df3dde
JK
1668 if (!nr_pages)
1669 nr_pages = get_nr_dirty_pages();
03ba3782 1670
b8c2f347 1671 rcu_read_lock();
f2b65121
TH
1672 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1673 struct bdi_writeback *wb;
1674 struct wb_iter iter;
1675
1676 if (!bdi_has_dirty_io(bdi))
1677 continue;
1678
1679 bdi_for_each_wb(wb, bdi, &iter, 0)
1680 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1681 false, reason);
1682 }
cfc4ba53 1683 rcu_read_unlock();
1da177e4
LT
1684}
1685
a2f48706
TT
1686/*
1687 * Wake up bdi's periodically to make sure dirtytime inodes gets
1688 * written back periodically. We deliberately do *not* check the
1689 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1690 * kernel to be constantly waking up once there are any dirtytime
1691 * inodes on the system. So instead we define a separate delayed work
1692 * function which gets called much more rarely. (By default, only
1693 * once every 12 hours.)
1694 *
1695 * If there is any other write activity going on in the file system,
1696 * this function won't be necessary. But if the only thing that has
1697 * happened on the file system is a dirtytime inode caused by an atime
1698 * update, we need this infrastructure below to make sure that inode
1699 * eventually gets pushed out to disk.
1700 */
1701static void wakeup_dirtytime_writeback(struct work_struct *w);
1702static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1703
1704static void wakeup_dirtytime_writeback(struct work_struct *w)
1705{
1706 struct backing_dev_info *bdi;
1707
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1710 struct bdi_writeback *wb;
1711 struct wb_iter iter;
1712
1713 bdi_for_each_wb(wb, bdi, &iter, 0)
1714 if (!list_empty(&bdi->wb.b_dirty_time))
1715 wb_wakeup(&bdi->wb);
a2f48706
TT
1716 }
1717 rcu_read_unlock();
1718 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1719}
1720
1721static int __init start_dirtytime_writeback(void)
1722{
1723 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1724 return 0;
1725}
1726__initcall(start_dirtytime_writeback);
1727
1efff914
TT
1728int dirtytime_interval_handler(struct ctl_table *table, int write,
1729 void __user *buffer, size_t *lenp, loff_t *ppos)
1730{
1731 int ret;
1732
1733 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1734 if (ret == 0 && write)
1735 mod_delayed_work(system_wq, &dirtytime_work, 0);
1736 return ret;
1737}
1738
03ba3782
JA
1739static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1740{
1741 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1742 struct dentry *dentry;
1743 const char *name = "?";
1744
1745 dentry = d_find_alias(inode);
1746 if (dentry) {
1747 spin_lock(&dentry->d_lock);
1748 name = (const char *) dentry->d_name.name;
1749 }
1750 printk(KERN_DEBUG
1751 "%s(%d): dirtied inode %lu (%s) on %s\n",
1752 current->comm, task_pid_nr(current), inode->i_ino,
1753 name, inode->i_sb->s_id);
1754 if (dentry) {
1755 spin_unlock(&dentry->d_lock);
1756 dput(dentry);
1757 }
1758 }
1759}
1760
1761/**
1762 * __mark_inode_dirty - internal function
1763 * @inode: inode to mark
1764 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1765 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1766 * mark_inode_dirty_sync.
1da177e4 1767 *
03ba3782
JA
1768 * Put the inode on the super block's dirty list.
1769 *
1770 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1771 * dirty list only if it is hashed or if it refers to a blockdev.
1772 * If it was not hashed, it will never be added to the dirty list
1773 * even if it is later hashed, as it will have been marked dirty already.
1774 *
1775 * In short, make sure you hash any inodes _before_ you start marking
1776 * them dirty.
1da177e4 1777 *
03ba3782
JA
1778 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1779 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1780 * the kernel-internal blockdev inode represents the dirtying time of the
1781 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1782 * page->mapping->host, so the page-dirtying time is recorded in the internal
1783 * blockdev inode.
1da177e4 1784 */
0ae45f63 1785#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1786void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1787{
03ba3782 1788 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1789 int dirtytime;
1790
1791 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1792
03ba3782
JA
1793 /*
1794 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1795 * dirty the inode itself
1796 */
0ae45f63 1797 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1798 trace_writeback_dirty_inode_start(inode, flags);
1799
03ba3782 1800 if (sb->s_op->dirty_inode)
aa385729 1801 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1802
1803 trace_writeback_dirty_inode(inode, flags);
03ba3782 1804 }
0ae45f63
TT
1805 if (flags & I_DIRTY_INODE)
1806 flags &= ~I_DIRTY_TIME;
1807 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
1808
1809 /*
9c6ac78e
TH
1810 * Paired with smp_mb() in __writeback_single_inode() for the
1811 * following lockless i_state test. See there for details.
03ba3782
JA
1812 */
1813 smp_mb();
1814
0ae45f63
TT
1815 if (((inode->i_state & flags) == flags) ||
1816 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
1817 return;
1818
1819 if (unlikely(block_dump))
1820 block_dump___mark_inode_dirty(inode);
1821
250df6ed 1822 spin_lock(&inode->i_lock);
0ae45f63
TT
1823 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1824 goto out_unlock_inode;
03ba3782
JA
1825 if ((inode->i_state & flags) != flags) {
1826 const int was_dirty = inode->i_state & I_DIRTY;
1827
52ebea74
TH
1828 inode_attach_wb(inode, NULL);
1829
0ae45f63
TT
1830 if (flags & I_DIRTY_INODE)
1831 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
1832 inode->i_state |= flags;
1833
1834 /*
1835 * If the inode is being synced, just update its dirty state.
1836 * The unlocker will place the inode on the appropriate
1837 * superblock list, based upon its state.
1838 */
1839 if (inode->i_state & I_SYNC)
250df6ed 1840 goto out_unlock_inode;
03ba3782
JA
1841
1842 /*
1843 * Only add valid (hashed) inodes to the superblock's
1844 * dirty list. Add blockdev inodes as well.
1845 */
1846 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 1847 if (inode_unhashed(inode))
250df6ed 1848 goto out_unlock_inode;
03ba3782 1849 }
a4ffdde6 1850 if (inode->i_state & I_FREEING)
250df6ed 1851 goto out_unlock_inode;
03ba3782
JA
1852
1853 /*
1854 * If the inode was already on b_dirty/b_io/b_more_io, don't
1855 * reposition it (that would break b_dirty time-ordering).
1856 */
1857 if (!was_dirty) {
87e1d789 1858 struct bdi_writeback *wb;
d6c10f1f 1859 struct list_head *dirty_list;
a66979ab 1860 bool wakeup_bdi = false;
253c34e9 1861
87e1d789 1862 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 1863
0747259d
TH
1864 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1865 !test_bit(WB_registered, &wb->state),
1866 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
1867
1868 inode->dirtied_when = jiffies;
a2f48706
TT
1869 if (dirtytime)
1870 inode->dirtied_time_when = jiffies;
d6c10f1f 1871
a2f48706 1872 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 1873 dirty_list = &wb->b_dirty;
a2f48706 1874 else
0747259d 1875 dirty_list = &wb->b_dirty_time;
d6c10f1f 1876
0747259d 1877 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
1878 dirty_list);
1879
0747259d 1880 spin_unlock(&wb->list_lock);
0ae45f63 1881 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 1882
d6c10f1f
TH
1883 /*
1884 * If this is the first dirty inode for this bdi,
1885 * we have to wake-up the corresponding bdi thread
1886 * to make sure background write-back happens
1887 * later.
1888 */
0747259d
TH
1889 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1890 wb_wakeup_delayed(wb);
a66979ab 1891 return;
1da177e4 1892 }
1da177e4 1893 }
250df6ed
DC
1894out_unlock_inode:
1895 spin_unlock(&inode->i_lock);
253c34e9 1896
03ba3782
JA
1897}
1898EXPORT_SYMBOL(__mark_inode_dirty);
1899
b6e51316 1900static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1901{
1902 struct inode *inode, *old_inode = NULL;
1903
1904 /*
1905 * We need to be protected against the filesystem going from
1906 * r/o to r/w or vice versa.
1907 */
b6e51316 1908 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 1909
55fa6091 1910 spin_lock(&inode_sb_list_lock);
03ba3782
JA
1911
1912 /*
1913 * Data integrity sync. Must wait for all pages under writeback,
1914 * because there may have been pages dirtied before our sync
1915 * call, but which had writeout started before we write it out.
1916 * In which case, the inode may not be on the dirty list, but
1917 * we still have to wait for that writeout.
1918 */
b6e51316 1919 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 1920 struct address_space *mapping = inode->i_mapping;
03ba3782 1921
250df6ed
DC
1922 spin_lock(&inode->i_lock);
1923 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1924 (mapping->nrpages == 0)) {
1925 spin_unlock(&inode->i_lock);
03ba3782 1926 continue;
250df6ed 1927 }
03ba3782 1928 __iget(inode);
250df6ed 1929 spin_unlock(&inode->i_lock);
55fa6091
DC
1930 spin_unlock(&inode_sb_list_lock);
1931
03ba3782 1932 /*
55fa6091
DC
1933 * We hold a reference to 'inode' so it couldn't have been
1934 * removed from s_inodes list while we dropped the
1935 * inode_sb_list_lock. We cannot iput the inode now as we can
1936 * be holding the last reference and we cannot iput it under
1937 * inode_sb_list_lock. So we keep the reference and iput it
1938 * later.
03ba3782
JA
1939 */
1940 iput(old_inode);
1941 old_inode = inode;
1942
1943 filemap_fdatawait(mapping);
1944
1945 cond_resched();
1946
55fa6091 1947 spin_lock(&inode_sb_list_lock);
03ba3782 1948 }
55fa6091 1949 spin_unlock(&inode_sb_list_lock);
03ba3782 1950 iput(old_inode);
1da177e4
LT
1951}
1952
f30a7d0c
TH
1953static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
1954 enum wb_reason reason, bool skip_if_busy)
1da177e4 1955{
cc395d7f 1956 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 1957 struct wb_writeback_work work = {
6e6938b6
WF
1958 .sb = sb,
1959 .sync_mode = WB_SYNC_NONE,
1960 .tagged_writepages = 1,
1961 .done = &done,
1962 .nr_pages = nr,
0e175a18 1963 .reason = reason,
3c4d7165 1964 };
e7972912 1965 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 1966
e7972912 1967 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 1968 return;
cf37e972 1969 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 1970
db125360 1971 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 1972 wb_wait_for_completion(bdi, &done);
e913fc82 1973}
f30a7d0c
TH
1974
1975/**
1976 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1977 * @sb: the superblock
1978 * @nr: the number of pages to write
1979 * @reason: reason why some writeback work initiated
1980 *
1981 * Start writeback on some inodes on this super_block. No guarantees are made
1982 * on how many (if any) will be written, and this function does not wait
1983 * for IO completion of submitted IO.
1984 */
1985void writeback_inodes_sb_nr(struct super_block *sb,
1986 unsigned long nr,
1987 enum wb_reason reason)
1988{
1989 __writeback_inodes_sb_nr(sb, nr, reason, false);
1990}
3259f8be
CM
1991EXPORT_SYMBOL(writeback_inodes_sb_nr);
1992
1993/**
1994 * writeback_inodes_sb - writeback dirty inodes from given super_block
1995 * @sb: the superblock
786228ab 1996 * @reason: reason why some writeback work was initiated
3259f8be
CM
1997 *
1998 * Start writeback on some inodes on this super_block. No guarantees are made
1999 * on how many (if any) will be written, and this function does not wait
2000 * for IO completion of submitted IO.
2001 */
0e175a18 2002void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2003{
0e175a18 2004 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2005}
0e3c9a22 2006EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2007
17bd55d0 2008/**
10ee27a0 2009 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2010 * @sb: the superblock
10ee27a0
MX
2011 * @nr: the number of pages to write
2012 * @reason: the reason of writeback
17bd55d0 2013 *
10ee27a0 2014 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2015 * Returns 1 if writeback was started, 0 if not.
2016 */
f30a7d0c
TH
2017bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2018 enum wb_reason reason)
17bd55d0 2019{
10ee27a0 2020 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2021 return false;
10ee27a0 2022
f30a7d0c 2023 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2024 up_read(&sb->s_umount);
f30a7d0c 2025 return true;
17bd55d0 2026}
10ee27a0 2027EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2028
3259f8be 2029/**
10ee27a0 2030 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2031 * @sb: the superblock
786228ab 2032 * @reason: reason why some writeback work was initiated
3259f8be 2033 *
10ee27a0 2034 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2035 * Returns 1 if writeback was started, 0 if not.
2036 */
f30a7d0c 2037bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2038{
10ee27a0 2039 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2040}
10ee27a0 2041EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2042
d8a8559c
JA
2043/**
2044 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2045 * @sb: the superblock
d8a8559c
JA
2046 *
2047 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2048 * super_block.
d8a8559c 2049 */
0dc83bd3 2050void sync_inodes_sb(struct super_block *sb)
d8a8559c 2051{
cc395d7f 2052 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2053 struct wb_writeback_work work = {
3c4d7165
CH
2054 .sb = sb,
2055 .sync_mode = WB_SYNC_ALL,
2056 .nr_pages = LONG_MAX,
2057 .range_cyclic = 0,
83ba7b07 2058 .done = &done,
0e175a18 2059 .reason = WB_REASON_SYNC,
7747bd4b 2060 .for_sync = 1,
3c4d7165 2061 };
e7972912 2062 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2063
6eedc701 2064 /* Nothing to do? */
e7972912 2065 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2066 return;
cf37e972
CH
2067 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2068
db125360 2069 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2070 wb_wait_for_completion(bdi, &done);
83ba7b07 2071
b6e51316 2072 wait_sb_inodes(sb);
1da177e4 2073}
d8a8559c 2074EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2075
1da177e4 2076/**
7f04c26d
AA
2077 * write_inode_now - write an inode to disk
2078 * @inode: inode to write to disk
2079 * @sync: whether the write should be synchronous or not
2080 *
2081 * This function commits an inode to disk immediately if it is dirty. This is
2082 * primarily needed by knfsd.
1da177e4 2083 *
7f04c26d 2084 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2085 */
1da177e4
LT
2086int write_inode_now(struct inode *inode, int sync)
2087{
f758eeab 2088 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2089 struct writeback_control wbc = {
2090 .nr_to_write = LONG_MAX,
18914b18 2091 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2092 .range_start = 0,
2093 .range_end = LLONG_MAX,
1da177e4
LT
2094 };
2095
2096 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2097 wbc.nr_to_write = 0;
1da177e4
LT
2098
2099 might_sleep();
4f8ad655 2100 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2101}
2102EXPORT_SYMBOL(write_inode_now);
2103
2104/**
2105 * sync_inode - write an inode and its pages to disk.
2106 * @inode: the inode to sync
2107 * @wbc: controls the writeback mode
2108 *
2109 * sync_inode() will write an inode and its pages to disk. It will also
2110 * correctly update the inode on its superblock's dirty inode lists and will
2111 * update inode->i_state.
2112 *
2113 * The caller must have a ref on the inode.
2114 */
2115int sync_inode(struct inode *inode, struct writeback_control *wbc)
2116{
4f8ad655 2117 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2118}
2119EXPORT_SYMBOL(sync_inode);
c3765016
CH
2120
2121/**
c691b9d9 2122 * sync_inode_metadata - write an inode to disk
c3765016
CH
2123 * @inode: the inode to sync
2124 * @wait: wait for I/O to complete.
2125 *
c691b9d9 2126 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2127 *
2128 * Note: only writes the actual inode, no associated data or other metadata.
2129 */
2130int sync_inode_metadata(struct inode *inode, int wait)
2131{
2132 struct writeback_control wbc = {
2133 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2134 .nr_to_write = 0, /* metadata-only */
2135 };
2136
2137 return sync_inode(inode, &wbc);
2138}
2139EXPORT_SYMBOL(sync_inode_metadata);