]> git.ipfire.org Git - people/ms/linux.git/blame - fs/fs-writeback.c
writeback, cgroup: increment isw_nr_in_flight before grabbing an inode
[people/ms/linux.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
123
c7f54084 124 list_move(&inode->i_io_list, head);
d6c10f1f
TH
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132}
133
134/**
c7f54084 135 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
136 * @inode: inode to be removed
137 * @wb: bdi_writeback @inode is being removed from
138 *
139 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140 * clear %WB_has_dirty_io if all are empty afterwards.
141 */
c7f54084 142static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
143 struct bdi_writeback *wb)
144{
145 assert_spin_locked(&wb->list_lock);
b35250c0 146 assert_spin_locked(&inode->i_lock);
d6c10f1f 147
5afced3b 148 inode->i_state &= ~I_SYNC_QUEUED;
c7f54084 149 list_del_init(&inode->i_io_list);
d6c10f1f
TH
150 wb_io_lists_depopulated(wb);
151}
152
f0054bb1 153static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 154{
f0054bb1
TH
155 spin_lock_bh(&wb->work_lock);
156 if (test_bit(WB_registered, &wb->state))
157 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
159}
160
4a3a485b
TE
161static void finish_writeback_work(struct bdi_writeback *wb,
162 struct wb_writeback_work *work)
163{
164 struct wb_completion *done = work->done;
165
166 if (work->auto_free)
167 kfree(work);
8e00c4e9
TH
168 if (done) {
169 wait_queue_head_t *waitq = done->waitq;
170
171 /* @done can't be accessed after the following dec */
172 if (atomic_dec_and_test(&done->cnt))
173 wake_up_all(waitq);
174 }
4a3a485b
TE
175}
176
f0054bb1
TH
177static void wb_queue_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
6585027a 179{
5634cc2a 180 trace_writeback_queue(wb, work);
6585027a 181
cc395d7f
TH
182 if (work->done)
183 atomic_inc(&work->done->cnt);
4a3a485b
TE
184
185 spin_lock_bh(&wb->work_lock);
186
187 if (test_bit(WB_registered, &wb->state)) {
188 list_add_tail(&work->list, &wb->work_list);
189 mod_delayed_work(bdi_wq, &wb->dwork, 0);
190 } else
191 finish_writeback_work(wb, work);
192
f0054bb1 193 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
194}
195
cc395d7f
TH
196/**
197 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
198 * @done: target wb_completion
199 *
200 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
201 * set to @done, which should have been initialized with
202 * DEFINE_WB_COMPLETION(). This function returns after all such work items
203 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
204 * automatically on completion.
205 */
5b9cce4c 206void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
207{
208 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 209 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
210}
211
703c2708
TH
212#ifdef CONFIG_CGROUP_WRITEBACK
213
55a694df
TH
214/*
215 * Parameters for foreign inode detection, see wbc_detach_inode() to see
216 * how they're used.
217 *
218 * These paramters are inherently heuristical as the detection target
219 * itself is fuzzy. All we want to do is detaching an inode from the
220 * current owner if it's being written to by some other cgroups too much.
221 *
222 * The current cgroup writeback is built on the assumption that multiple
223 * cgroups writing to the same inode concurrently is very rare and a mode
224 * of operation which isn't well supported. As such, the goal is not
225 * taking too long when a different cgroup takes over an inode while
226 * avoiding too aggressive flip-flops from occasional foreign writes.
227 *
228 * We record, very roughly, 2s worth of IO time history and if more than
229 * half of that is foreign, trigger the switch. The recording is quantized
230 * to 16 slots. To avoid tiny writes from swinging the decision too much,
231 * writes smaller than 1/8 of avg size are ignored.
232 */
2a814908
TH
233#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
234#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 235#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
236#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
237
238#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
239#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240 /* each slot's duration is 2s / 16 */
241#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
242 /* if foreign slots >= 8, switch */
243#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244 /* one round can affect upto 5 slots */
6444f47e 245#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 246
a1a0e23e
TH
247static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248static struct workqueue_struct *isw_wq;
249
21c6321f
TH
250void __inode_attach_wb(struct inode *inode, struct page *page)
251{
252 struct backing_dev_info *bdi = inode_to_bdi(inode);
253 struct bdi_writeback *wb = NULL;
254
255 if (inode_cgwb_enabled(inode)) {
256 struct cgroup_subsys_state *memcg_css;
257
258 if (page) {
259 memcg_css = mem_cgroup_css_from_page(page);
260 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261 } else {
262 /* must pin memcg_css, see wb_get_create() */
263 memcg_css = task_get_css(current, memory_cgrp_id);
264 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265 css_put(memcg_css);
266 }
267 }
268
269 if (!wb)
270 wb = &bdi->wb;
271
272 /*
273 * There may be multiple instances of this function racing to
274 * update the same inode. Use cmpxchg() to tell the winner.
275 */
276 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277 wb_put(wb);
278}
9b0eb69b 279EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 280
87e1d789
TH
281/**
282 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283 * @inode: inode of interest with i_lock held
284 *
285 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
286 * held on entry and is released on return. The returned wb is guaranteed
287 * to stay @inode's associated wb until its list_lock is released.
288 */
289static struct bdi_writeback *
290locked_inode_to_wb_and_lock_list(struct inode *inode)
291 __releases(&inode->i_lock)
292 __acquires(&wb->list_lock)
293{
294 while (true) {
295 struct bdi_writeback *wb = inode_to_wb(inode);
296
297 /*
298 * inode_to_wb() association is protected by both
299 * @inode->i_lock and @wb->list_lock but list_lock nests
300 * outside i_lock. Drop i_lock and verify that the
301 * association hasn't changed after acquiring list_lock.
302 */
303 wb_get(wb);
304 spin_unlock(&inode->i_lock);
305 spin_lock(&wb->list_lock);
87e1d789 306
aaa2cacf 307 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
308 if (likely(wb == inode->i_wb)) {
309 wb_put(wb); /* @inode already has ref */
310 return wb;
311 }
87e1d789
TH
312
313 spin_unlock(&wb->list_lock);
614a4e37 314 wb_put(wb);
87e1d789
TH
315 cpu_relax();
316 spin_lock(&inode->i_lock);
317 }
318}
319
320/**
321 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322 * @inode: inode of interest
323 *
324 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325 * on entry.
326 */
327static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328 __acquires(&wb->list_lock)
329{
330 spin_lock(&inode->i_lock);
331 return locked_inode_to_wb_and_lock_list(inode);
332}
333
682aa8e1
TH
334struct inode_switch_wbs_context {
335 struct inode *inode;
336 struct bdi_writeback *new_wb;
337
338 struct rcu_head rcu_head;
339 struct work_struct work;
340};
341
7fc5854f
TH
342static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343{
344 down_write(&bdi->wb_switch_rwsem);
345}
346
347static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348{
349 up_write(&bdi->wb_switch_rwsem);
350}
351
682aa8e1
TH
352static void inode_switch_wbs_work_fn(struct work_struct *work)
353{
354 struct inode_switch_wbs_context *isw =
355 container_of(work, struct inode_switch_wbs_context, work);
356 struct inode *inode = isw->inode;
7fc5854f 357 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
358 struct address_space *mapping = inode->i_mapping;
359 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 360 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
361 XA_STATE(xas, &mapping->i_pages, 0);
362 struct page *page;
d10c8095 363 bool switched = false;
682aa8e1 364
7fc5854f
TH
365 /*
366 * If @inode switches cgwb membership while sync_inodes_sb() is
367 * being issued, sync_inodes_sb() might miss it. Synchronize.
368 */
369 down_read(&bdi->wb_switch_rwsem);
370
682aa8e1
TH
371 /*
372 * By the time control reaches here, RCU grace period has passed
373 * since I_WB_SWITCH assertion and all wb stat update transactions
374 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 375 * synchronizing against the i_pages lock.
d10c8095 376 *
b93b0163 377 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
378 * gives us exclusion against all wb related operations on @inode
379 * including IO list manipulations and stat updates.
682aa8e1 380 */
d10c8095
TH
381 if (old_wb < new_wb) {
382 spin_lock(&old_wb->list_lock);
383 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384 } else {
385 spin_lock(&new_wb->list_lock);
386 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387 }
682aa8e1 388 spin_lock(&inode->i_lock);
b93b0163 389 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
390
391 /*
4ade5867
RG
392 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
393 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 394 */
4ade5867 395 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
396 goto skip_switch;
397
3a8e9ac8
TH
398 trace_inode_switch_wbs(inode, old_wb, new_wb);
399
d10c8095
TH
400 /*
401 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
402 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 403 * pages actually under writeback.
d10c8095 404 */
04edf02c
MW
405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406 if (PageDirty(page)) {
3e8f399d
NB
407 dec_wb_stat(old_wb, WB_RECLAIMABLE);
408 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
409 }
410 }
411
04edf02c
MW
412 xas_set(&xas, 0);
413 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414 WARN_ON_ONCE(!PageWriteback(page));
415 dec_wb_stat(old_wb, WB_WRITEBACK);
416 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
417 }
418
419 wb_get(new_wb);
420
421 /*
422 * Transfer to @new_wb's IO list if necessary. The specific list
423 * @inode was on is ignored and the inode is put on ->b_dirty which
424 * is always correct including from ->b_dirty_time. The transfer
425 * preserves @inode->dirtied_when ordering.
426 */
c7f54084 427 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
428 struct inode *pos;
429
c7f54084 430 inode_io_list_del_locked(inode, old_wb);
d10c8095 431 inode->i_wb = new_wb;
c7f54084 432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
433 if (time_after_eq(inode->dirtied_when,
434 pos->dirtied_when))
435 break;
c7f54084 436 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
437 } else {
438 inode->i_wb = new_wb;
439 }
682aa8e1 440
d10c8095 441 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
442 inode->i_wb_frn_winner = 0;
443 inode->i_wb_frn_avg_time = 0;
444 inode->i_wb_frn_history = 0;
d10c8095
TH
445 switched = true;
446skip_switch:
682aa8e1
TH
447 /*
448 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 */
451 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452
b93b0163 453 xa_unlock_irq(&mapping->i_pages);
682aa8e1 454 spin_unlock(&inode->i_lock);
d10c8095
TH
455 spin_unlock(&new_wb->list_lock);
456 spin_unlock(&old_wb->list_lock);
682aa8e1 457
7fc5854f
TH
458 up_read(&bdi->wb_switch_rwsem);
459
d10c8095
TH
460 if (switched) {
461 wb_wakeup(new_wb);
462 wb_put(old_wb);
463 }
682aa8e1 464 wb_put(new_wb);
d10c8095
TH
465
466 iput(inode);
682aa8e1 467 kfree(isw);
a1a0e23e
TH
468
469 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
470}
471
472static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473{
474 struct inode_switch_wbs_context *isw = container_of(rcu_head,
475 struct inode_switch_wbs_context, rcu_head);
476
477 /* needs to grab bh-unsafe locks, bounce to work item */
478 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 479 queue_work(isw_wq, &isw->work);
682aa8e1
TH
480}
481
482/**
483 * inode_switch_wbs - change the wb association of an inode
484 * @inode: target inode
485 * @new_wb_id: ID of the new wb
486 *
487 * Switch @inode's wb association to the wb identified by @new_wb_id. The
488 * switching is performed asynchronously and may fail silently.
489 */
490static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491{
492 struct backing_dev_info *bdi = inode_to_bdi(inode);
493 struct cgroup_subsys_state *memcg_css;
494 struct inode_switch_wbs_context *isw;
495
496 /* noop if seems to be already in progress */
497 if (inode->i_state & I_WB_SWITCH)
498 return;
499
6444f47e
TH
500 /* avoid queueing a new switch if too many are already in flight */
501 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
502 return;
503
682aa8e1
TH
504 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505 if (!isw)
6444f47e 506 return;
682aa8e1 507
8826ee4f
RG
508 atomic_inc(&isw_nr_in_flight);
509
682aa8e1
TH
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
1751e8a6 521 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
4ade5867 522 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
a1a0e23e
TH
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
682aa8e1 527 inode->i_state |= I_WB_SWITCH;
74524955 528 __iget(inode);
682aa8e1
TH
529 spin_unlock(&inode->i_lock);
530
682aa8e1
TH
531 isw->inode = inode;
532
533 /*
534 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
535 * the RCU protected stat update paths to grab the i_page
536 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
537 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 */
539 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
6444f47e 540 return;
682aa8e1
TH
541
542out_free:
8826ee4f 543 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
544 if (isw->new_wb)
545 wb_put(isw->new_wb);
546 kfree(isw);
547}
548
b16b1deb
TH
549/**
550 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
551 * @wbc: writeback_control of interest
552 * @inode: target inode
553 *
554 * @inode is locked and about to be written back under the control of @wbc.
555 * Record @inode's writeback context into @wbc and unlock the i_lock. On
556 * writeback completion, wbc_detach_inode() should be called. This is used
557 * to track the cgroup writeback context.
558 */
559void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
560 struct inode *inode)
561{
dd73e4b7
TH
562 if (!inode_cgwb_enabled(inode)) {
563 spin_unlock(&inode->i_lock);
564 return;
565 }
566
b16b1deb 567 wbc->wb = inode_to_wb(inode);
2a814908
TH
568 wbc->inode = inode;
569
570 wbc->wb_id = wbc->wb->memcg_css->id;
571 wbc->wb_lcand_id = inode->i_wb_frn_winner;
572 wbc->wb_tcand_id = 0;
573 wbc->wb_bytes = 0;
574 wbc->wb_lcand_bytes = 0;
575 wbc->wb_tcand_bytes = 0;
576
b16b1deb
TH
577 wb_get(wbc->wb);
578 spin_unlock(&inode->i_lock);
e8a7abf5
TH
579
580 /*
65de03e2
TH
581 * A dying wb indicates that either the blkcg associated with the
582 * memcg changed or the associated memcg is dying. In the first
583 * case, a replacement wb should already be available and we should
584 * refresh the wb immediately. In the second case, trying to
585 * refresh will keep failing.
e8a7abf5 586 */
65de03e2 587 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 588 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 589}
9b0eb69b 590EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
591
592/**
2a814908
TH
593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
595 *
596 * To be called after a writeback attempt of an inode finishes and undoes
597 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
598 *
599 * As concurrent write sharing of an inode is expected to be very rare and
600 * memcg only tracks page ownership on first-use basis severely confining
601 * the usefulness of such sharing, cgroup writeback tracks ownership
602 * per-inode. While the support for concurrent write sharing of an inode
603 * is deemed unnecessary, an inode being written to by different cgroups at
604 * different points in time is a lot more common, and, more importantly,
605 * charging only by first-use can too readily lead to grossly incorrect
606 * behaviors (single foreign page can lead to gigabytes of writeback to be
607 * incorrectly attributed).
608 *
609 * To resolve this issue, cgroup writeback detects the majority dirtier of
610 * an inode and transfers the ownership to it. To avoid unnnecessary
611 * oscillation, the detection mechanism keeps track of history and gives
612 * out the switch verdict only if the foreign usage pattern is stable over
613 * a certain amount of time and/or writeback attempts.
614 *
615 * On each writeback attempt, @wbc tries to detect the majority writer
616 * using Boyer-Moore majority vote algorithm. In addition to the byte
617 * count from the majority voting, it also counts the bytes written for the
618 * current wb and the last round's winner wb (max of last round's current
619 * wb, the winner from two rounds ago, and the last round's majority
620 * candidate). Keeping track of the historical winner helps the algorithm
621 * to semi-reliably detect the most active writer even when it's not the
622 * absolute majority.
623 *
624 * Once the winner of the round is determined, whether the winner is
625 * foreign or not and how much IO time the round consumed is recorded in
626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
627 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
628 */
629void wbc_detach_inode(struct writeback_control *wbc)
630{
2a814908
TH
631 struct bdi_writeback *wb = wbc->wb;
632 struct inode *inode = wbc->inode;
dd73e4b7
TH
633 unsigned long avg_time, max_bytes, max_time;
634 u16 history;
2a814908
TH
635 int max_id;
636
dd73e4b7
TH
637 if (!wb)
638 return;
639
640 history = inode->i_wb_frn_history;
641 avg_time = inode->i_wb_frn_avg_time;
642
2a814908
TH
643 /* pick the winner of this round */
644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_id = wbc->wb_id;
647 max_bytes = wbc->wb_bytes;
648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_lcand_id;
650 max_bytes = wbc->wb_lcand_bytes;
651 } else {
652 max_id = wbc->wb_tcand_id;
653 max_bytes = wbc->wb_tcand_bytes;
654 }
655
656 /*
657 * Calculate the amount of IO time the winner consumed and fold it
658 * into the running average kept per inode. If the consumed IO
659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660 * deciding whether to switch or not. This is to prevent one-off
661 * small dirtiers from skewing the verdict.
662 */
663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664 wb->avg_write_bandwidth);
665 if (avg_time)
666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 else
669 avg_time = max_time; /* immediate catch up on first run */
670
671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672 int slots;
673
674 /*
675 * The switch verdict is reached if foreign wb's consume
676 * more than a certain proportion of IO time in a
677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
678 * history mask where each bit represents one sixteenth of
679 * the period. Determine the number of slots to shift into
680 * history from @max_time.
681 */
682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 history <<= slots;
685 if (wbc->wb_id != max_id)
686 history |= (1U << slots) - 1;
687
3a8e9ac8
TH
688 if (history)
689 trace_inode_foreign_history(inode, wbc, history);
690
2a814908
TH
691 /*
692 * Switch if the current wb isn't the consistent winner.
693 * If there are multiple closely competing dirtiers, the
694 * inode may switch across them repeatedly over time, which
695 * is okay. The main goal is avoiding keeping an inode on
696 * the wrong wb for an extended period of time.
697 */
682aa8e1
TH
698 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699 inode_switch_wbs(inode, max_id);
2a814908
TH
700 }
701
702 /*
703 * Multiple instances of this function may race to update the
704 * following fields but we don't mind occassional inaccuracies.
705 */
706 inode->i_wb_frn_winner = max_id;
707 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708 inode->i_wb_frn_history = history;
709
b16b1deb
TH
710 wb_put(wbc->wb);
711 wbc->wb = NULL;
712}
9b0eb69b 713EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 714
2a814908 715/**
34e51a5e 716 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
717 * @wbc: writeback_control of the writeback in progress
718 * @page: page being written out
719 * @bytes: number of bytes being written out
720 *
721 * @bytes from @page are about to written out during the writeback
722 * controlled by @wbc. Keep the book for foreign inode detection. See
723 * wbc_detach_inode().
724 */
34e51a5e
TH
725void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
726 size_t bytes)
2a814908 727{
66311422 728 struct cgroup_subsys_state *css;
2a814908
TH
729 int id;
730
731 /*
732 * pageout() path doesn't attach @wbc to the inode being written
733 * out. This is intentional as we don't want the function to block
734 * behind a slow cgroup. Ultimately, we want pageout() to kick off
735 * regular writeback instead of writing things out itself.
736 */
27b36d8f 737 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
738 return;
739
66311422
TH
740 css = mem_cgroup_css_from_page(page);
741 /* dead cgroups shouldn't contribute to inode ownership arbitration */
742 if (!(css->flags & CSS_ONLINE))
743 return;
744
745 id = css->id;
2a814908
TH
746
747 if (id == wbc->wb_id) {
748 wbc->wb_bytes += bytes;
749 return;
750 }
751
752 if (id == wbc->wb_lcand_id)
753 wbc->wb_lcand_bytes += bytes;
754
755 /* Boyer-Moore majority vote algorithm */
756 if (!wbc->wb_tcand_bytes)
757 wbc->wb_tcand_id = id;
758 if (id == wbc->wb_tcand_id)
759 wbc->wb_tcand_bytes += bytes;
760 else
761 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
762}
34e51a5e 763EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 764
703c2708
TH
765/**
766 * inode_congested - test whether an inode is congested
60292bcc 767 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
768 * @cong_bits: mask of WB_[a]sync_congested bits to test
769 *
770 * Tests whether @inode is congested. @cong_bits is the mask of congestion
771 * bits to test and the return value is the mask of set bits.
772 *
773 * If cgroup writeback is enabled for @inode, the congestion state is
774 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
775 * associated with @inode is congested; otherwise, the root wb's congestion
776 * state is used.
60292bcc
TH
777 *
778 * @inode is allowed to be NULL as this function is often called on
779 * mapping->host which is NULL for the swapper space.
703c2708
TH
780 */
781int inode_congested(struct inode *inode, int cong_bits)
782{
5cb8b824
TH
783 /*
784 * Once set, ->i_wb never becomes NULL while the inode is alive.
785 * Start transaction iff ->i_wb is visible.
786 */
aaa2cacf 787 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 788 struct bdi_writeback *wb;
2e898e4c
GT
789 struct wb_lock_cookie lock_cookie = {};
790 bool congested;
5cb8b824 791
2e898e4c 792 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 793 congested = wb_congested(wb, cong_bits);
2e898e4c 794 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 795 return congested;
703c2708
TH
796 }
797
798 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
799}
800EXPORT_SYMBOL_GPL(inode_congested);
801
f2b65121
TH
802/**
803 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
804 * @wb: target bdi_writeback to split @nr_pages to
805 * @nr_pages: number of pages to write for the whole bdi
806 *
807 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
808 * relation to the total write bandwidth of all wb's w/ dirty inodes on
809 * @wb->bdi.
810 */
811static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
812{
813 unsigned long this_bw = wb->avg_write_bandwidth;
814 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
815
816 if (nr_pages == LONG_MAX)
817 return LONG_MAX;
818
819 /*
820 * This may be called on clean wb's and proportional distribution
821 * may not make sense, just use the original @nr_pages in those
822 * cases. In general, we wanna err on the side of writing more.
823 */
824 if (!tot_bw || this_bw >= tot_bw)
825 return nr_pages;
826 else
827 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
828}
829
db125360
TH
830/**
831 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
832 * @bdi: target backing_dev_info
833 * @base_work: wb_writeback_work to issue
834 * @skip_if_busy: skip wb's which already have writeback in progress
835 *
836 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
837 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
838 * distributed to the busy wbs according to each wb's proportion in the
839 * total active write bandwidth of @bdi.
840 */
841static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
842 struct wb_writeback_work *base_work,
843 bool skip_if_busy)
844{
b817525a 845 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
846 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
847 struct bdi_writeback, bdi_node);
db125360
TH
848
849 might_sleep();
db125360
TH
850restart:
851 rcu_read_lock();
b817525a 852 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 853 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
854 struct wb_writeback_work fallback_work;
855 struct wb_writeback_work *work;
856 long nr_pages;
857
b817525a
TH
858 if (last_wb) {
859 wb_put(last_wb);
860 last_wb = NULL;
861 }
862
006a0973
TH
863 /* SYNC_ALL writes out I_DIRTY_TIME too */
864 if (!wb_has_dirty_io(wb) &&
865 (base_work->sync_mode == WB_SYNC_NONE ||
866 list_empty(&wb->b_dirty_time)))
867 continue;
868 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
869 continue;
870
8a1270cd
TH
871 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
872
873 work = kmalloc(sizeof(*work), GFP_ATOMIC);
874 if (work) {
875 *work = *base_work;
876 work->nr_pages = nr_pages;
877 work->auto_free = 1;
878 wb_queue_work(wb, work);
879 continue;
db125360 880 }
8a1270cd
TH
881
882 /* alloc failed, execute synchronously using on-stack fallback */
883 work = &fallback_work;
884 *work = *base_work;
885 work->nr_pages = nr_pages;
886 work->auto_free = 0;
887 work->done = &fallback_work_done;
888
889 wb_queue_work(wb, work);
890
b817525a
TH
891 /*
892 * Pin @wb so that it stays on @bdi->wb_list. This allows
893 * continuing iteration from @wb after dropping and
894 * regrabbing rcu read lock.
895 */
896 wb_get(wb);
897 last_wb = wb;
898
8a1270cd 899 rcu_read_unlock();
5b9cce4c 900 wb_wait_for_completion(&fallback_work_done);
8a1270cd 901 goto restart;
db125360
TH
902 }
903 rcu_read_unlock();
b817525a
TH
904
905 if (last_wb)
906 wb_put(last_wb);
db125360
TH
907}
908
d62241c7
TH
909/**
910 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
911 * @bdi_id: target bdi id
912 * @memcg_id: target memcg css id
b46ec1da 913 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
914 * @reason: reason why some writeback work initiated
915 * @done: target wb_completion
916 *
917 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
918 * with the specified parameters.
919 */
920int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
921 enum wb_reason reason, struct wb_completion *done)
922{
923 struct backing_dev_info *bdi;
924 struct cgroup_subsys_state *memcg_css;
925 struct bdi_writeback *wb;
926 struct wb_writeback_work *work;
927 int ret;
928
929 /* lookup bdi and memcg */
930 bdi = bdi_get_by_id(bdi_id);
931 if (!bdi)
932 return -ENOENT;
933
934 rcu_read_lock();
935 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
936 if (memcg_css && !css_tryget(memcg_css))
937 memcg_css = NULL;
938 rcu_read_unlock();
939 if (!memcg_css) {
940 ret = -ENOENT;
941 goto out_bdi_put;
942 }
943
944 /*
945 * And find the associated wb. If the wb isn't there already
946 * there's nothing to flush, don't create one.
947 */
948 wb = wb_get_lookup(bdi, memcg_css);
949 if (!wb) {
950 ret = -ENOENT;
951 goto out_css_put;
952 }
953
954 /*
955 * If @nr is zero, the caller is attempting to write out most of
956 * the currently dirty pages. Let's take the current dirty page
957 * count and inflate it by 25% which should be large enough to
958 * flush out most dirty pages while avoiding getting livelocked by
959 * concurrent dirtiers.
960 */
961 if (!nr) {
962 unsigned long filepages, headroom, dirty, writeback;
963
964 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
965 &writeback);
966 nr = dirty * 10 / 8;
967 }
968
969 /* issue the writeback work */
970 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
971 if (work) {
972 work->nr_pages = nr;
973 work->sync_mode = WB_SYNC_NONE;
974 work->range_cyclic = 1;
975 work->reason = reason;
976 work->done = done;
977 work->auto_free = 1;
978 wb_queue_work(wb, work);
979 ret = 0;
980 } else {
981 ret = -ENOMEM;
982 }
983
984 wb_put(wb);
985out_css_put:
986 css_put(memcg_css);
987out_bdi_put:
988 bdi_put(bdi);
989 return ret;
990}
991
a1a0e23e
TH
992/**
993 * cgroup_writeback_umount - flush inode wb switches for umount
994 *
995 * This function is called when a super_block is about to be destroyed and
996 * flushes in-flight inode wb switches. An inode wb switch goes through
997 * RCU and then workqueue, so the two need to be flushed in order to ensure
998 * that all previously scheduled switches are finished. As wb switches are
999 * rare occurrences and synchronize_rcu() can take a while, perform
1000 * flushing iff wb switches are in flight.
1001 */
1002void cgroup_writeback_umount(void)
1003{
592fa002
RG
1004 /*
1005 * SB_ACTIVE should be reliably cleared before checking
1006 * isw_nr_in_flight, see generic_shutdown_super().
1007 */
1008 smp_mb();
1009
a1a0e23e 1010 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1011 /*
1012 * Use rcu_barrier() to wait for all pending callbacks to
1013 * ensure that all in-flight wb switches are in the workqueue.
1014 */
1015 rcu_barrier();
a1a0e23e
TH
1016 flush_workqueue(isw_wq);
1017 }
1018}
1019
1020static int __init cgroup_writeback_init(void)
1021{
1022 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1023 if (!isw_wq)
1024 return -ENOMEM;
1025 return 0;
1026}
1027fs_initcall(cgroup_writeback_init);
1028
f2b65121
TH
1029#else /* CONFIG_CGROUP_WRITEBACK */
1030
7fc5854f
TH
1031static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1032static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1033
87e1d789
TH
1034static struct bdi_writeback *
1035locked_inode_to_wb_and_lock_list(struct inode *inode)
1036 __releases(&inode->i_lock)
1037 __acquires(&wb->list_lock)
1038{
1039 struct bdi_writeback *wb = inode_to_wb(inode);
1040
1041 spin_unlock(&inode->i_lock);
1042 spin_lock(&wb->list_lock);
1043 return wb;
1044}
1045
1046static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1047 __acquires(&wb->list_lock)
1048{
1049 struct bdi_writeback *wb = inode_to_wb(inode);
1050
1051 spin_lock(&wb->list_lock);
1052 return wb;
1053}
1054
f2b65121
TH
1055static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1056{
1057 return nr_pages;
1058}
1059
db125360
TH
1060static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1061 struct wb_writeback_work *base_work,
1062 bool skip_if_busy)
1063{
1064 might_sleep();
1065
006a0973 1066 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1067 base_work->auto_free = 0;
db125360
TH
1068 wb_queue_work(&bdi->wb, base_work);
1069 }
1070}
1071
703c2708
TH
1072#endif /* CONFIG_CGROUP_WRITEBACK */
1073
e8e8a0c6
JA
1074/*
1075 * Add in the number of potentially dirty inodes, because each inode
1076 * write can dirty pagecache in the underlying blockdev.
1077 */
1078static unsigned long get_nr_dirty_pages(void)
1079{
1080 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1081 get_nr_dirty_inodes();
1082}
1083
1084static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1085{
c00ddad3
TH
1086 if (!wb_has_dirty_io(wb))
1087 return;
1088
aac8d41c
JA
1089 /*
1090 * All callers of this function want to start writeback of all
1091 * dirty pages. Places like vmscan can call this at a very
1092 * high frequency, causing pointless allocations of tons of
1093 * work items and keeping the flusher threads busy retrieving
1094 * that work. Ensure that we only allow one of them pending and
85009b4f 1095 * inflight at the time.
aac8d41c 1096 */
85009b4f
JA
1097 if (test_bit(WB_start_all, &wb->state) ||
1098 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1099 return;
1100
85009b4f
JA
1101 wb->start_all_reason = reason;
1102 wb_wakeup(wb);
c5444198 1103}
d3ddec76 1104
c5444198 1105/**
9ecf4866
TH
1106 * wb_start_background_writeback - start background writeback
1107 * @wb: bdi_writback to write from
c5444198
CH
1108 *
1109 * Description:
6585027a 1110 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1111 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1112 * some IO is happening if we are over background dirty threshold.
1113 * Caller need not hold sb s_umount semaphore.
c5444198 1114 */
9ecf4866 1115void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1116{
6585027a
JK
1117 /*
1118 * We just wake up the flusher thread. It will perform background
1119 * writeback as soon as there is no other work to do.
1120 */
5634cc2a 1121 trace_writeback_wake_background(wb);
9ecf4866 1122 wb_wakeup(wb);
1da177e4
LT
1123}
1124
a66979ab
DC
1125/*
1126 * Remove the inode from the writeback list it is on.
1127 */
c7f54084 1128void inode_io_list_del(struct inode *inode)
a66979ab 1129{
87e1d789 1130 struct bdi_writeback *wb;
f758eeab 1131
87e1d789 1132 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1133 spin_lock(&inode->i_lock);
c7f54084 1134 inode_io_list_del_locked(inode, wb);
b35250c0 1135 spin_unlock(&inode->i_lock);
52ebea74 1136 spin_unlock(&wb->list_lock);
a66979ab 1137}
4301efa4 1138EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1139
6c60d2b5
DC
1140/*
1141 * mark an inode as under writeback on the sb
1142 */
1143void sb_mark_inode_writeback(struct inode *inode)
1144{
1145 struct super_block *sb = inode->i_sb;
1146 unsigned long flags;
1147
1148 if (list_empty(&inode->i_wb_list)) {
1149 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1150 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1151 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1152 trace_sb_mark_inode_writeback(inode);
1153 }
6c60d2b5
DC
1154 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1155 }
1156}
1157
1158/*
1159 * clear an inode as under writeback on the sb
1160 */
1161void sb_clear_inode_writeback(struct inode *inode)
1162{
1163 struct super_block *sb = inode->i_sb;
1164 unsigned long flags;
1165
1166 if (!list_empty(&inode->i_wb_list)) {
1167 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1168 if (!list_empty(&inode->i_wb_list)) {
1169 list_del_init(&inode->i_wb_list);
1170 trace_sb_clear_inode_writeback(inode);
1171 }
6c60d2b5
DC
1172 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1173 }
1174}
1175
6610a0bc
AM
1176/*
1177 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1178 * furthest end of its superblock's dirty-inode list.
1179 *
1180 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1181 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1182 * the case then the inode must have been redirtied while it was being written
1183 * out and we don't reset its dirtied_when.
1184 */
b35250c0 1185static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1186{
b35250c0
JK
1187 assert_spin_locked(&inode->i_lock);
1188
03ba3782 1189 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1190 struct inode *tail;
6610a0bc 1191
7ccf19a8 1192 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1193 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1194 inode->dirtied_when = jiffies;
1195 }
c7f54084 1196 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1197 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1198}
1199
b35250c0
JK
1200static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1201{
1202 spin_lock(&inode->i_lock);
1203 redirty_tail_locked(inode, wb);
1204 spin_unlock(&inode->i_lock);
1205}
1206
c986d1e2 1207/*
66f3b8e2 1208 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1209 */
f758eeab 1210static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1211{
c7f54084 1212 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1213}
1214
1c0eeaf5
JE
1215static void inode_sync_complete(struct inode *inode)
1216{
365b94ae 1217 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1218 /* If inode is clean an unused, put it into LRU now... */
1219 inode_add_lru(inode);
365b94ae 1220 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1221 smp_mb();
1222 wake_up_bit(&inode->i_state, __I_SYNC);
1223}
1224
d2caa3c5
JL
1225static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1226{
1227 bool ret = time_after(inode->dirtied_when, t);
1228#ifndef CONFIG_64BIT
1229 /*
1230 * For inodes being constantly redirtied, dirtied_when can get stuck.
1231 * It _appears_ to be in the future, but is actually in distant past.
1232 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1233 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1234 */
1235 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1236#endif
1237 return ret;
1238}
1239
0ae45f63
TT
1240#define EXPIRE_DIRTY_ATIME 0x0001
1241
2c136579 1242/*
f9cae926 1243 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1244 * @delaying_queue to @dispatch_queue.
2c136579 1245 */
e84d0a4f 1246static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1247 struct list_head *dispatch_queue,
5fcd5750 1248 unsigned long dirtied_before)
2c136579 1249{
5c03449d
SL
1250 LIST_HEAD(tmp);
1251 struct list_head *pos, *node;
cf137307 1252 struct super_block *sb = NULL;
5c03449d 1253 struct inode *inode;
cf137307 1254 int do_sb_sort = 0;
e84d0a4f 1255 int moved = 0;
5c03449d 1256
2c136579 1257 while (!list_empty(delaying_queue)) {
7ccf19a8 1258 inode = wb_inode(delaying_queue->prev);
f9cae926 1259 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1260 break;
c7f54084 1261 list_move(&inode->i_io_list, &tmp);
a8855990 1262 moved++;
5afced3b 1263 spin_lock(&inode->i_lock);
5afced3b
JK
1264 inode->i_state |= I_SYNC_QUEUED;
1265 spin_unlock(&inode->i_lock);
a8855990
JK
1266 if (sb_is_blkdev_sb(inode->i_sb))
1267 continue;
cf137307
JA
1268 if (sb && sb != inode->i_sb)
1269 do_sb_sort = 1;
1270 sb = inode->i_sb;
5c03449d
SL
1271 }
1272
cf137307
JA
1273 /* just one sb in list, splice to dispatch_queue and we're done */
1274 if (!do_sb_sort) {
1275 list_splice(&tmp, dispatch_queue);
e84d0a4f 1276 goto out;
cf137307
JA
1277 }
1278
5c03449d
SL
1279 /* Move inodes from one superblock together */
1280 while (!list_empty(&tmp)) {
7ccf19a8 1281 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1282 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1283 inode = wb_inode(pos);
5c03449d 1284 if (inode->i_sb == sb)
c7f54084 1285 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1286 }
2c136579 1287 }
e84d0a4f
WF
1288out:
1289 return moved;
2c136579
FW
1290}
1291
1292/*
1293 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1294 * Before
1295 * newly dirtied b_dirty b_io b_more_io
1296 * =============> gf edc BA
1297 * After
1298 * newly dirtied b_dirty b_io b_more_io
1299 * =============> g fBAedc
1300 * |
1301 * +--> dequeue for IO
2c136579 1302 */
f9cae926
JK
1303static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1304 unsigned long dirtied_before)
66f3b8e2 1305{
e84d0a4f 1306 int moved;
f9cae926 1307 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1308
f758eeab 1309 assert_spin_locked(&wb->list_lock);
4ea879b9 1310 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1311 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1312 if (!work->for_sync)
1313 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1314 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1315 time_expire_jif);
d6c10f1f
TH
1316 if (moved)
1317 wb_io_lists_populated(wb);
f9cae926 1318 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1319}
1320
a9185b41 1321static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1322{
9fb0a7da
TH
1323 int ret;
1324
1325 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1326 trace_writeback_write_inode_start(inode, wbc);
1327 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1328 trace_writeback_write_inode(inode, wbc);
1329 return ret;
1330 }
03ba3782 1331 return 0;
08d8e974 1332}
08d8e974 1333
1da177e4 1334/*
169ebd90
JK
1335 * Wait for writeback on an inode to complete. Called with i_lock held.
1336 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1337 */
169ebd90
JK
1338static void __inode_wait_for_writeback(struct inode *inode)
1339 __releases(inode->i_lock)
1340 __acquires(inode->i_lock)
01c03194
CH
1341{
1342 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1343 wait_queue_head_t *wqh;
1344
1345 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1346 while (inode->i_state & I_SYNC) {
1347 spin_unlock(&inode->i_lock);
74316201
N
1348 __wait_on_bit(wqh, &wq, bit_wait,
1349 TASK_UNINTERRUPTIBLE);
250df6ed 1350 spin_lock(&inode->i_lock);
58a9d3d8 1351 }
01c03194
CH
1352}
1353
169ebd90
JK
1354/*
1355 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1356 */
1357void inode_wait_for_writeback(struct inode *inode)
1358{
1359 spin_lock(&inode->i_lock);
1360 __inode_wait_for_writeback(inode);
1361 spin_unlock(&inode->i_lock);
1362}
1363
1364/*
1365 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1366 * held and drops it. It is aimed for callers not holding any inode reference
1367 * so once i_lock is dropped, inode can go away.
1368 */
1369static void inode_sleep_on_writeback(struct inode *inode)
1370 __releases(inode->i_lock)
1371{
1372 DEFINE_WAIT(wait);
1373 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1374 int sleep;
1375
1376 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1377 sleep = inode->i_state & I_SYNC;
1378 spin_unlock(&inode->i_lock);
1379 if (sleep)
1380 schedule();
1381 finish_wait(wqh, &wait);
1382}
1383
ccb26b5a
JK
1384/*
1385 * Find proper writeback list for the inode depending on its current state and
1386 * possibly also change of its state while we were doing writeback. Here we
1387 * handle things such as livelock prevention or fairness of writeback among
1388 * inodes. This function can be called only by flusher thread - noone else
1389 * processes all inodes in writeback lists and requeueing inodes behind flusher
1390 * thread's back can have unexpected consequences.
1391 */
1392static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1393 struct writeback_control *wbc)
1394{
1395 if (inode->i_state & I_FREEING)
1396 return;
1397
1398 /*
1399 * Sync livelock prevention. Each inode is tagged and synced in one
1400 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1401 * the dirty time to prevent enqueue and sync it again.
1402 */
1403 if ((inode->i_state & I_DIRTY) &&
1404 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1405 inode->dirtied_when = jiffies;
1406
4f8ad655
JK
1407 if (wbc->pages_skipped) {
1408 /*
1409 * writeback is not making progress due to locked
1410 * buffers. Skip this inode for now.
1411 */
b35250c0 1412 redirty_tail_locked(inode, wb);
4f8ad655
JK
1413 return;
1414 }
1415
ccb26b5a
JK
1416 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1417 /*
1418 * We didn't write back all the pages. nfs_writepages()
1419 * sometimes bales out without doing anything.
1420 */
1421 if (wbc->nr_to_write <= 0) {
1422 /* Slice used up. Queue for next turn. */
1423 requeue_io(inode, wb);
1424 } else {
1425 /*
1426 * Writeback blocked by something other than
1427 * congestion. Delay the inode for some time to
1428 * avoid spinning on the CPU (100% iowait)
1429 * retrying writeback of the dirty page/inode
1430 * that cannot be performed immediately.
1431 */
b35250c0 1432 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1433 }
1434 } else if (inode->i_state & I_DIRTY) {
1435 /*
1436 * Filesystems can dirty the inode during writeback operations,
1437 * such as delayed allocation during submission or metadata
1438 * updates after data IO completion.
1439 */
b35250c0 1440 redirty_tail_locked(inode, wb);
0ae45f63 1441 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1442 inode->dirtied_when = jiffies;
c7f54084 1443 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1444 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1445 } else {
1446 /* The inode is clean. Remove from writeback lists. */
c7f54084 1447 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1448 }
1449}
1450
01c03194 1451/*
da0c4c60
EB
1452 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1453 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1454 *
1455 * This doesn't remove the inode from the writeback list it is on, except
1456 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1457 * expiration. The caller is otherwise responsible for writeback list handling.
1458 *
1459 * The caller is also responsible for setting the I_SYNC flag beforehand and
1460 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1461 */
1462static int
cd8ed2a4 1463__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1464{
1da177e4 1465 struct address_space *mapping = inode->i_mapping;
251d6a47 1466 long nr_to_write = wbc->nr_to_write;
01c03194 1467 unsigned dirty;
1da177e4
LT
1468 int ret;
1469
4f8ad655 1470 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1471
9fb0a7da
TH
1472 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1473
1da177e4
LT
1474 ret = do_writepages(mapping, wbc);
1475
26821ed4
CH
1476 /*
1477 * Make sure to wait on the data before writing out the metadata.
1478 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1479 * I/O completion. We don't do it for sync(2) writeback because it has a
1480 * separate, external IO completion path and ->sync_fs for guaranteeing
1481 * inode metadata is written back correctly.
26821ed4 1482 */
7747bd4b 1483 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1484 int err = filemap_fdatawait(mapping);
1da177e4
LT
1485 if (ret == 0)
1486 ret = err;
1487 }
1488
5547e8aa 1489 /*
1e249cb5
EB
1490 * If the inode has dirty timestamps and we need to write them, call
1491 * mark_inode_dirty_sync() to notify the filesystem about it and to
1492 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1493 */
5fcd5750 1494 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1495 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1496 time_after(jiffies, inode->dirtied_time_when +
1497 dirtytime_expire_interval * HZ))) {
5fcd5750 1498 trace_writeback_lazytime(inode);
1e249cb5 1499 mark_inode_dirty_sync(inode);
5fcd5750 1500 }
1e249cb5
EB
1501
1502 /*
da0c4c60
EB
1503 * Get and clear the dirty flags from i_state. This needs to be done
1504 * after calling writepages because some filesystems may redirty the
1505 * inode during writepages due to delalloc. It also needs to be done
1506 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1507 */
1508 spin_lock(&inode->i_lock);
1509 dirty = inode->i_state & I_DIRTY;
0ae45f63 1510 inode->i_state &= ~dirty;
9c6ac78e
TH
1511
1512 /*
1513 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1514 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1515 * either they see the I_DIRTY bits cleared or we see the dirtied
1516 * inode.
1517 *
1518 * I_DIRTY_PAGES is always cleared together above even if @mapping
1519 * still has dirty pages. The flag is reinstated after smp_mb() if
1520 * necessary. This guarantees that either __mark_inode_dirty()
1521 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1522 */
1523 smp_mb();
1524
1525 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1526 inode->i_state |= I_DIRTY_PAGES;
1527
250df6ed 1528 spin_unlock(&inode->i_lock);
9c6ac78e 1529
26821ed4 1530 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1531 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1532 int err = write_inode(inode, wbc);
1da177e4
LT
1533 if (ret == 0)
1534 ret = err;
1535 }
4f8ad655
JK
1536 trace_writeback_single_inode(inode, wbc, nr_to_write);
1537 return ret;
1538}
1539
1540/*
da0c4c60
EB
1541 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1542 * the regular batched writeback done by the flusher threads in
1543 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1544 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1545 *
da0c4c60
EB
1546 * To prevent the inode from going away, either the caller must have a reference
1547 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1548 */
aaf25593
TH
1549static int writeback_single_inode(struct inode *inode,
1550 struct writeback_control *wbc)
4f8ad655 1551{
aaf25593 1552 struct bdi_writeback *wb;
4f8ad655
JK
1553 int ret = 0;
1554
1555 spin_lock(&inode->i_lock);
1556 if (!atomic_read(&inode->i_count))
1557 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1558 else
1559 WARN_ON(inode->i_state & I_WILL_FREE);
1560
1561 if (inode->i_state & I_SYNC) {
4f8ad655 1562 /*
da0c4c60
EB
1563 * Writeback is already running on the inode. For WB_SYNC_NONE,
1564 * that's enough and we can just return. For WB_SYNC_ALL, we
1565 * must wait for the existing writeback to complete, then do
1566 * writeback again if there's anything left.
4f8ad655 1567 */
da0c4c60
EB
1568 if (wbc->sync_mode != WB_SYNC_ALL)
1569 goto out;
169ebd90 1570 __inode_wait_for_writeback(inode);
4f8ad655
JK
1571 }
1572 WARN_ON(inode->i_state & I_SYNC);
1573 /*
da0c4c60
EB
1574 * If the inode is already fully clean, then there's nothing to do.
1575 *
1576 * For data-integrity syncs we also need to check whether any pages are
1577 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1578 * there are any such pages, we'll need to wait for them.
4f8ad655 1579 */
0ae45f63 1580 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1581 (wbc->sync_mode != WB_SYNC_ALL ||
1582 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1583 goto out;
1584 inode->i_state |= I_SYNC;
b16b1deb 1585 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1586
cd8ed2a4 1587 ret = __writeback_single_inode(inode, wbc);
1da177e4 1588
b16b1deb 1589 wbc_detach_inode(wbc);
aaf25593
TH
1590
1591 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1592 spin_lock(&inode->i_lock);
4f8ad655 1593 /*
da0c4c60
EB
1594 * If the inode is now fully clean, then it can be safely removed from
1595 * its writeback list (if any). Otherwise the flusher threads are
1596 * responsible for the writeback lists.
4f8ad655 1597 */
0ae45f63 1598 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1599 inode_io_list_del_locked(inode, wb);
4f8ad655 1600 spin_unlock(&wb->list_lock);
1c0eeaf5 1601 inode_sync_complete(inode);
4f8ad655
JK
1602out:
1603 spin_unlock(&inode->i_lock);
1da177e4
LT
1604 return ret;
1605}
1606
a88a341a 1607static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1608 struct wb_writeback_work *work)
d46db3d5
WF
1609{
1610 long pages;
1611
1612 /*
1613 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1614 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1615 * here avoids calling into writeback_inodes_wb() more than once.
1616 *
1617 * The intended call sequence for WB_SYNC_ALL writeback is:
1618 *
1619 * wb_writeback()
1620 * writeback_sb_inodes() <== called only once
1621 * write_cache_pages() <== called once for each inode
1622 * (quickly) tag currently dirty pages
1623 * (maybe slowly) sync all tagged pages
1624 */
1625 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1626 pages = LONG_MAX;
1a12d8bd 1627 else {
a88a341a 1628 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1629 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1630 pages = min(pages, work->nr_pages);
1631 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1632 MIN_WRITEBACK_PAGES);
1633 }
d46db3d5
WF
1634
1635 return pages;
1636}
1637
f11c9c5c
ES
1638/*
1639 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1640 *
d46db3d5 1641 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1642 *
1643 * NOTE! This is called with wb->list_lock held, and will
1644 * unlock and relock that for each inode it ends up doing
1645 * IO for.
f11c9c5c 1646 */
d46db3d5
WF
1647static long writeback_sb_inodes(struct super_block *sb,
1648 struct bdi_writeback *wb,
1649 struct wb_writeback_work *work)
1da177e4 1650{
d46db3d5
WF
1651 struct writeback_control wbc = {
1652 .sync_mode = work->sync_mode,
1653 .tagged_writepages = work->tagged_writepages,
1654 .for_kupdate = work->for_kupdate,
1655 .for_background = work->for_background,
7747bd4b 1656 .for_sync = work->for_sync,
d46db3d5
WF
1657 .range_cyclic = work->range_cyclic,
1658 .range_start = 0,
1659 .range_end = LLONG_MAX,
1660 };
1661 unsigned long start_time = jiffies;
1662 long write_chunk;
1663 long wrote = 0; /* count both pages and inodes */
1664
03ba3782 1665 while (!list_empty(&wb->b_io)) {
7ccf19a8 1666 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1667 struct bdi_writeback *tmp_wb;
edadfb10
CH
1668
1669 if (inode->i_sb != sb) {
d46db3d5 1670 if (work->sb) {
edadfb10
CH
1671 /*
1672 * We only want to write back data for this
1673 * superblock, move all inodes not belonging
1674 * to it back onto the dirty list.
1675 */
f758eeab 1676 redirty_tail(inode, wb);
edadfb10
CH
1677 continue;
1678 }
1679
1680 /*
1681 * The inode belongs to a different superblock.
1682 * Bounce back to the caller to unpin this and
1683 * pin the next superblock.
1684 */
d46db3d5 1685 break;
edadfb10
CH
1686 }
1687
9843b76a 1688 /*
331cbdee
WL
1689 * Don't bother with new inodes or inodes being freed, first
1690 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1691 * kind writeout is handled by the freer.
1692 */
250df6ed 1693 spin_lock(&inode->i_lock);
9843b76a 1694 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1695 redirty_tail_locked(inode, wb);
250df6ed 1696 spin_unlock(&inode->i_lock);
7ef0d737
NP
1697 continue;
1698 }
cc1676d9
JK
1699 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1700 /*
1701 * If this inode is locked for writeback and we are not
1702 * doing writeback-for-data-integrity, move it to
1703 * b_more_io so that writeback can proceed with the
1704 * other inodes on s_io.
1705 *
1706 * We'll have another go at writing back this inode
1707 * when we completed a full scan of b_io.
1708 */
1709 spin_unlock(&inode->i_lock);
1710 requeue_io(inode, wb);
1711 trace_writeback_sb_inodes_requeue(inode);
1712 continue;
1713 }
f0d07b7f
JK
1714 spin_unlock(&wb->list_lock);
1715
4f8ad655
JK
1716 /*
1717 * We already requeued the inode if it had I_SYNC set and we
1718 * are doing WB_SYNC_NONE writeback. So this catches only the
1719 * WB_SYNC_ALL case.
1720 */
169ebd90
JK
1721 if (inode->i_state & I_SYNC) {
1722 /* Wait for I_SYNC. This function drops i_lock... */
1723 inode_sleep_on_writeback(inode);
1724 /* Inode may be gone, start again */
ead188f9 1725 spin_lock(&wb->list_lock);
169ebd90
JK
1726 continue;
1727 }
4f8ad655 1728 inode->i_state |= I_SYNC;
b16b1deb 1729 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1730
a88a341a 1731 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1732 wbc.nr_to_write = write_chunk;
1733 wbc.pages_skipped = 0;
250df6ed 1734
169ebd90
JK
1735 /*
1736 * We use I_SYNC to pin the inode in memory. While it is set
1737 * evict_inode() will wait so the inode cannot be freed.
1738 */
cd8ed2a4 1739 __writeback_single_inode(inode, &wbc);
250df6ed 1740
b16b1deb 1741 wbc_detach_inode(&wbc);
d46db3d5
WF
1742 work->nr_pages -= write_chunk - wbc.nr_to_write;
1743 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1744
1745 if (need_resched()) {
1746 /*
1747 * We're trying to balance between building up a nice
1748 * long list of IOs to improve our merge rate, and
1749 * getting those IOs out quickly for anyone throttling
1750 * in balance_dirty_pages(). cond_resched() doesn't
1751 * unplug, so get our IOs out the door before we
1752 * give up the CPU.
1753 */
1754 blk_flush_plug(current);
1755 cond_resched();
1756 }
1757
aaf25593
TH
1758 /*
1759 * Requeue @inode if still dirty. Be careful as @inode may
1760 * have been switched to another wb in the meantime.
1761 */
1762 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1763 spin_lock(&inode->i_lock);
0ae45f63 1764 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1765 wrote++;
aaf25593 1766 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1767 inode_sync_complete(inode);
0f1b1fd8 1768 spin_unlock(&inode->i_lock);
590dca3a 1769
aaf25593
TH
1770 if (unlikely(tmp_wb != wb)) {
1771 spin_unlock(&tmp_wb->list_lock);
1772 spin_lock(&wb->list_lock);
1773 }
1774
d46db3d5
WF
1775 /*
1776 * bail out to wb_writeback() often enough to check
1777 * background threshold and other termination conditions.
1778 */
1779 if (wrote) {
1780 if (time_is_before_jiffies(start_time + HZ / 10UL))
1781 break;
1782 if (work->nr_pages <= 0)
1783 break;
8bc3be27 1784 }
1da177e4 1785 }
d46db3d5 1786 return wrote;
f11c9c5c
ES
1787}
1788
d46db3d5
WF
1789static long __writeback_inodes_wb(struct bdi_writeback *wb,
1790 struct wb_writeback_work *work)
f11c9c5c 1791{
d46db3d5
WF
1792 unsigned long start_time = jiffies;
1793 long wrote = 0;
38f21977 1794
f11c9c5c 1795 while (!list_empty(&wb->b_io)) {
7ccf19a8 1796 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1797 struct super_block *sb = inode->i_sb;
9ecc2738 1798
eb6ef3df 1799 if (!trylock_super(sb)) {
0e995816 1800 /*
eb6ef3df 1801 * trylock_super() may fail consistently due to
0e995816
WF
1802 * s_umount being grabbed by someone else. Don't use
1803 * requeue_io() to avoid busy retrying the inode/sb.
1804 */
1805 redirty_tail(inode, wb);
edadfb10 1806 continue;
f11c9c5c 1807 }
d46db3d5 1808 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1809 up_read(&sb->s_umount);
f11c9c5c 1810
d46db3d5
WF
1811 /* refer to the same tests at the end of writeback_sb_inodes */
1812 if (wrote) {
1813 if (time_is_before_jiffies(start_time + HZ / 10UL))
1814 break;
1815 if (work->nr_pages <= 0)
1816 break;
1817 }
f11c9c5c 1818 }
66f3b8e2 1819 /* Leave any unwritten inodes on b_io */
d46db3d5 1820 return wrote;
66f3b8e2
JA
1821}
1822
7d9f073b 1823static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1824 enum wb_reason reason)
edadfb10 1825{
d46db3d5
WF
1826 struct wb_writeback_work work = {
1827 .nr_pages = nr_pages,
1828 .sync_mode = WB_SYNC_NONE,
1829 .range_cyclic = 1,
0e175a18 1830 .reason = reason,
d46db3d5 1831 };
505a666e 1832 struct blk_plug plug;
edadfb10 1833
505a666e 1834 blk_start_plug(&plug);
f758eeab 1835 spin_lock(&wb->list_lock);
424b351f 1836 if (list_empty(&wb->b_io))
f9cae926 1837 queue_io(wb, &work, jiffies);
d46db3d5 1838 __writeback_inodes_wb(wb, &work);
f758eeab 1839 spin_unlock(&wb->list_lock);
505a666e 1840 blk_finish_plug(&plug);
edadfb10 1841
d46db3d5
WF
1842 return nr_pages - work.nr_pages;
1843}
03ba3782 1844
03ba3782
JA
1845/*
1846 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1847 *
03ba3782
JA
1848 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1849 * dirtying-time in the inode's address_space. So this periodic writeback code
1850 * just walks the superblock inode list, writing back any inodes which are
1851 * older than a specific point in time.
66f3b8e2 1852 *
03ba3782
JA
1853 * Try to run once per dirty_writeback_interval. But if a writeback event
1854 * takes longer than a dirty_writeback_interval interval, then leave a
1855 * one-second gap.
66f3b8e2 1856 *
f9cae926 1857 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 1858 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1859 */
c4a77a6c 1860static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1861 struct wb_writeback_work *work)
66f3b8e2 1862{
e98be2d5 1863 unsigned long wb_start = jiffies;
d46db3d5 1864 long nr_pages = work->nr_pages;
f9cae926 1865 unsigned long dirtied_before = jiffies;
a5989bdc 1866 struct inode *inode;
d46db3d5 1867 long progress;
505a666e 1868 struct blk_plug plug;
66f3b8e2 1869
505a666e 1870 blk_start_plug(&plug);
e8dfc305 1871 spin_lock(&wb->list_lock);
03ba3782
JA
1872 for (;;) {
1873 /*
d3ddec76 1874 * Stop writeback when nr_pages has been consumed
03ba3782 1875 */
83ba7b07 1876 if (work->nr_pages <= 0)
03ba3782 1877 break;
66f3b8e2 1878
aa373cf5
JK
1879 /*
1880 * Background writeout and kupdate-style writeback may
1881 * run forever. Stop them if there is other work to do
1882 * so that e.g. sync can proceed. They'll be restarted
1883 * after the other works are all done.
1884 */
1885 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1886 !list_empty(&wb->work_list))
aa373cf5
JK
1887 break;
1888
38f21977 1889 /*
d3ddec76
WF
1890 * For background writeout, stop when we are below the
1891 * background dirty threshold
38f21977 1892 */
aa661bbe 1893 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1894 break;
38f21977 1895
1bc36b64
JK
1896 /*
1897 * Kupdate and background works are special and we want to
1898 * include all inodes that need writing. Livelock avoidance is
1899 * handled by these works yielding to any other work so we are
1900 * safe.
1901 */
ba9aa839 1902 if (work->for_kupdate) {
f9cae926 1903 dirtied_before = jiffies -
ba9aa839 1904 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1905 } else if (work->for_background)
f9cae926 1906 dirtied_before = jiffies;
028c2dd1 1907
5634cc2a 1908 trace_writeback_start(wb, work);
e8dfc305 1909 if (list_empty(&wb->b_io))
f9cae926 1910 queue_io(wb, work, dirtied_before);
83ba7b07 1911 if (work->sb)
d46db3d5 1912 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1913 else
d46db3d5 1914 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1915 trace_writeback_written(wb, work);
028c2dd1 1916
e98be2d5 1917 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1918
1919 /*
e6fb6da2
WF
1920 * Did we write something? Try for more
1921 *
1922 * Dirty inodes are moved to b_io for writeback in batches.
1923 * The completion of the current batch does not necessarily
1924 * mean the overall work is done. So we keep looping as long
1925 * as made some progress on cleaning pages or inodes.
03ba3782 1926 */
d46db3d5 1927 if (progress)
71fd05a8
JA
1928 continue;
1929 /*
e6fb6da2 1930 * No more inodes for IO, bail
71fd05a8 1931 */
b7a2441f 1932 if (list_empty(&wb->b_more_io))
03ba3782 1933 break;
71fd05a8
JA
1934 /*
1935 * Nothing written. Wait for some inode to
1936 * become available for writeback. Otherwise
1937 * we'll just busyloop.
1938 */
bace9248
TE
1939 trace_writeback_wait(wb, work);
1940 inode = wb_inode(wb->b_more_io.prev);
1941 spin_lock(&inode->i_lock);
1942 spin_unlock(&wb->list_lock);
1943 /* This function drops i_lock... */
1944 inode_sleep_on_writeback(inode);
1945 spin_lock(&wb->list_lock);
03ba3782 1946 }
e8dfc305 1947 spin_unlock(&wb->list_lock);
505a666e 1948 blk_finish_plug(&plug);
03ba3782 1949
d46db3d5 1950 return nr_pages - work->nr_pages;
03ba3782
JA
1951}
1952
1953/*
83ba7b07 1954 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1955 */
f0054bb1 1956static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1957{
83ba7b07 1958 struct wb_writeback_work *work = NULL;
03ba3782 1959
f0054bb1
TH
1960 spin_lock_bh(&wb->work_lock);
1961 if (!list_empty(&wb->work_list)) {
1962 work = list_entry(wb->work_list.next,
83ba7b07
CH
1963 struct wb_writeback_work, list);
1964 list_del_init(&work->list);
03ba3782 1965 }
f0054bb1 1966 spin_unlock_bh(&wb->work_lock);
83ba7b07 1967 return work;
03ba3782
JA
1968}
1969
6585027a
JK
1970static long wb_check_background_flush(struct bdi_writeback *wb)
1971{
aa661bbe 1972 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1973
1974 struct wb_writeback_work work = {
1975 .nr_pages = LONG_MAX,
1976 .sync_mode = WB_SYNC_NONE,
1977 .for_background = 1,
1978 .range_cyclic = 1,
0e175a18 1979 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1980 };
1981
1982 return wb_writeback(wb, &work);
1983 }
1984
1985 return 0;
1986}
1987
03ba3782
JA
1988static long wb_check_old_data_flush(struct bdi_writeback *wb)
1989{
1990 unsigned long expired;
1991 long nr_pages;
1992
69b62d01
JA
1993 /*
1994 * When set to zero, disable periodic writeback
1995 */
1996 if (!dirty_writeback_interval)
1997 return 0;
1998
03ba3782
JA
1999 expired = wb->last_old_flush +
2000 msecs_to_jiffies(dirty_writeback_interval * 10);
2001 if (time_before(jiffies, expired))
2002 return 0;
2003
2004 wb->last_old_flush = jiffies;
cdf01dd5 2005 nr_pages = get_nr_dirty_pages();
03ba3782 2006
c4a77a6c 2007 if (nr_pages) {
83ba7b07 2008 struct wb_writeback_work work = {
c4a77a6c
JA
2009 .nr_pages = nr_pages,
2010 .sync_mode = WB_SYNC_NONE,
2011 .for_kupdate = 1,
2012 .range_cyclic = 1,
0e175a18 2013 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2014 };
2015
83ba7b07 2016 return wb_writeback(wb, &work);
c4a77a6c 2017 }
03ba3782
JA
2018
2019 return 0;
2020}
2021
85009b4f
JA
2022static long wb_check_start_all(struct bdi_writeback *wb)
2023{
2024 long nr_pages;
2025
2026 if (!test_bit(WB_start_all, &wb->state))
2027 return 0;
2028
2029 nr_pages = get_nr_dirty_pages();
2030 if (nr_pages) {
2031 struct wb_writeback_work work = {
2032 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2033 .sync_mode = WB_SYNC_NONE,
2034 .range_cyclic = 1,
2035 .reason = wb->start_all_reason,
2036 };
2037
2038 nr_pages = wb_writeback(wb, &work);
2039 }
2040
2041 clear_bit(WB_start_all, &wb->state);
2042 return nr_pages;
2043}
2044
2045
03ba3782
JA
2046/*
2047 * Retrieve work items and do the writeback they describe
2048 */
25d130ba 2049static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2050{
83ba7b07 2051 struct wb_writeback_work *work;
c4a77a6c 2052 long wrote = 0;
03ba3782 2053
4452226e 2054 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2055 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2056 trace_writeback_exec(wb, work);
83ba7b07 2057 wrote += wb_writeback(wb, work);
4a3a485b 2058 finish_writeback_work(wb, work);
03ba3782
JA
2059 }
2060
85009b4f
JA
2061 /*
2062 * Check for a flush-everything request
2063 */
2064 wrote += wb_check_start_all(wb);
2065
03ba3782
JA
2066 /*
2067 * Check for periodic writeback, kupdated() style
2068 */
2069 wrote += wb_check_old_data_flush(wb);
6585027a 2070 wrote += wb_check_background_flush(wb);
4452226e 2071 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2072
2073 return wrote;
2074}
2075
2076/*
2077 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2078 * reschedules periodically and does kupdated style flushing.
03ba3782 2079 */
f0054bb1 2080void wb_workfn(struct work_struct *work)
03ba3782 2081{
839a8e86
TH
2082 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2083 struct bdi_writeback, dwork);
03ba3782
JA
2084 long pages_written;
2085
68f23b89 2086 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2087 current->flags |= PF_SWAPWRITE;
455b2864 2088
839a8e86 2089 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2090 !test_bit(WB_registered, &wb->state))) {
6467716a 2091 /*
f0054bb1 2092 * The normal path. Keep writing back @wb until its
839a8e86 2093 * work_list is empty. Note that this path is also taken
f0054bb1 2094 * if @wb is shutting down even when we're running off the
839a8e86 2095 * rescuer as work_list needs to be drained.
6467716a 2096 */
839a8e86 2097 do {
25d130ba 2098 pages_written = wb_do_writeback(wb);
839a8e86 2099 trace_writeback_pages_written(pages_written);
f0054bb1 2100 } while (!list_empty(&wb->work_list));
839a8e86
TH
2101 } else {
2102 /*
2103 * bdi_wq can't get enough workers and we're running off
2104 * the emergency worker. Don't hog it. Hopefully, 1024 is
2105 * enough for efficient IO.
2106 */
f0054bb1 2107 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2108 WB_REASON_FORKER_THREAD);
455b2864 2109 trace_writeback_pages_written(pages_written);
03ba3782
JA
2110 }
2111
f0054bb1 2112 if (!list_empty(&wb->work_list))
b8b78495 2113 wb_wakeup(wb);
6ca738d6 2114 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2115 wb_wakeup_delayed(wb);
455b2864 2116
839a8e86 2117 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2118}
2119
595043e5
JA
2120/*
2121 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2122 * write back the whole world.
2123 */
2124static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2125 enum wb_reason reason)
595043e5
JA
2126{
2127 struct bdi_writeback *wb;
2128
2129 if (!bdi_has_dirty_io(bdi))
2130 return;
2131
2132 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2133 wb_start_writeback(wb, reason);
595043e5
JA
2134}
2135
2136void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2137 enum wb_reason reason)
2138{
595043e5 2139 rcu_read_lock();
e8e8a0c6 2140 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2141 rcu_read_unlock();
2142}
2143
03ba3782 2144/*
9ba4b2df 2145 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2146 */
9ba4b2df 2147void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2148{
b8c2f347 2149 struct backing_dev_info *bdi;
03ba3782 2150
51350ea0
KK
2151 /*
2152 * If we are expecting writeback progress we must submit plugged IO.
2153 */
2154 if (blk_needs_flush_plug(current))
2155 blk_schedule_flush_plug(current);
2156
b8c2f347 2157 rcu_read_lock();
595043e5 2158 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2159 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2160 rcu_read_unlock();
1da177e4
LT
2161}
2162
a2f48706
TT
2163/*
2164 * Wake up bdi's periodically to make sure dirtytime inodes gets
2165 * written back periodically. We deliberately do *not* check the
2166 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2167 * kernel to be constantly waking up once there are any dirtytime
2168 * inodes on the system. So instead we define a separate delayed work
2169 * function which gets called much more rarely. (By default, only
2170 * once every 12 hours.)
2171 *
2172 * If there is any other write activity going on in the file system,
2173 * this function won't be necessary. But if the only thing that has
2174 * happened on the file system is a dirtytime inode caused by an atime
2175 * update, we need this infrastructure below to make sure that inode
2176 * eventually gets pushed out to disk.
2177 */
2178static void wakeup_dirtytime_writeback(struct work_struct *w);
2179static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2180
2181static void wakeup_dirtytime_writeback(struct work_struct *w)
2182{
2183 struct backing_dev_info *bdi;
2184
2185 rcu_read_lock();
2186 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2187 struct bdi_writeback *wb;
001fe6f6 2188
b817525a 2189 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2190 if (!list_empty(&wb->b_dirty_time))
2191 wb_wakeup(wb);
a2f48706
TT
2192 }
2193 rcu_read_unlock();
2194 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2195}
2196
2197static int __init start_dirtytime_writeback(void)
2198{
2199 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2200 return 0;
2201}
2202__initcall(start_dirtytime_writeback);
2203
1efff914 2204int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2205 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2206{
2207 int ret;
2208
2209 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2210 if (ret == 0 && write)
2211 mod_delayed_work(system_wq, &dirtytime_work, 0);
2212 return ret;
2213}
2214
03ba3782
JA
2215static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2216{
2217 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2218 struct dentry *dentry;
2219 const char *name = "?";
2220
2221 dentry = d_find_alias(inode);
2222 if (dentry) {
2223 spin_lock(&dentry->d_lock);
2224 name = (const char *) dentry->d_name.name;
2225 }
2226 printk(KERN_DEBUG
2227 "%s(%d): dirtied inode %lu (%s) on %s\n",
2228 current->comm, task_pid_nr(current), inode->i_ino,
2229 name, inode->i_sb->s_id);
2230 if (dentry) {
2231 spin_unlock(&dentry->d_lock);
2232 dput(dentry);
2233 }
2234 }
2235}
2236
2237/**
35d14f27 2238 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2239 *
2240 * @inode: inode to mark
35d14f27
EB
2241 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2242 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2243 * with I_DIRTY_PAGES.
0117d427 2244 *
35d14f27
EB
2245 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2246 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2247 *
35d14f27
EB
2248 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2249 * instead of calling this directly.
03ba3782 2250 *
35d14f27
EB
2251 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2252 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2253 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2254 *
35d14f27 2255 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2256 *
03ba3782
JA
2257 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2258 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2259 * the kernel-internal blockdev inode represents the dirtying time of the
2260 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2261 * page->mapping->host, so the page-dirtying time is recorded in the internal
2262 * blockdev inode.
1da177e4 2263 */
03ba3782 2264void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2265{
03ba3782 2266 struct super_block *sb = inode->i_sb;
35d14f27 2267 int dirtytime = 0;
0ae45f63
TT
2268
2269 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2270
e2728c56 2271 if (flags & I_DIRTY_INODE) {
35d14f27
EB
2272 /*
2273 * Notify the filesystem about the inode being dirtied, so that
2274 * (if needed) it can update on-disk fields and journal the
2275 * inode. This is only needed when the inode itself is being
2276 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2277 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2278 */
9fb0a7da 2279 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2280 if (sb->s_op->dirty_inode)
a38ed483 2281 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
9fb0a7da 2282 trace_writeback_dirty_inode(inode, flags);
e2728c56 2283
35d14f27 2284 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2285 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2286 } else {
2287 /*
2288 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2289 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2290 * in one call to __mark_inode_dirty().)
2291 */
2292 dirtytime = flags & I_DIRTY_TIME;
2293 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2294 }
03ba3782
JA
2295
2296 /*
9c6ac78e
TH
2297 * Paired with smp_mb() in __writeback_single_inode() for the
2298 * following lockless i_state test. See there for details.
03ba3782
JA
2299 */
2300 smp_mb();
2301
0ae45f63
TT
2302 if (((inode->i_state & flags) == flags) ||
2303 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2304 return;
2305
2306 if (unlikely(block_dump))
2307 block_dump___mark_inode_dirty(inode);
2308
250df6ed 2309 spin_lock(&inode->i_lock);
0ae45f63
TT
2310 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2311 goto out_unlock_inode;
03ba3782
JA
2312 if ((inode->i_state & flags) != flags) {
2313 const int was_dirty = inode->i_state & I_DIRTY;
2314
52ebea74
TH
2315 inode_attach_wb(inode, NULL);
2316
35d14f27 2317 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63
TT
2318 if (flags & I_DIRTY_INODE)
2319 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2320 inode->i_state |= flags;
2321
2322 /*
5afced3b
JK
2323 * If the inode is queued for writeback by flush worker, just
2324 * update its dirty state. Once the flush worker is done with
2325 * the inode it will place it on the appropriate superblock
2326 * list, based upon its state.
03ba3782 2327 */
5afced3b 2328 if (inode->i_state & I_SYNC_QUEUED)
250df6ed 2329 goto out_unlock_inode;
03ba3782
JA
2330
2331 /*
2332 * Only add valid (hashed) inodes to the superblock's
2333 * dirty list. Add blockdev inodes as well.
2334 */
2335 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2336 if (inode_unhashed(inode))
250df6ed 2337 goto out_unlock_inode;
03ba3782 2338 }
a4ffdde6 2339 if (inode->i_state & I_FREEING)
250df6ed 2340 goto out_unlock_inode;
03ba3782
JA
2341
2342 /*
2343 * If the inode was already on b_dirty/b_io/b_more_io, don't
2344 * reposition it (that would break b_dirty time-ordering).
2345 */
2346 if (!was_dirty) {
87e1d789 2347 struct bdi_writeback *wb;
d6c10f1f 2348 struct list_head *dirty_list;
a66979ab 2349 bool wakeup_bdi = false;
253c34e9 2350
87e1d789 2351 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2352
03ba3782 2353 inode->dirtied_when = jiffies;
a2f48706
TT
2354 if (dirtytime)
2355 inode->dirtied_time_when = jiffies;
d6c10f1f 2356
0e11f644 2357 if (inode->i_state & I_DIRTY)
0747259d 2358 dirty_list = &wb->b_dirty;
a2f48706 2359 else
0747259d 2360 dirty_list = &wb->b_dirty_time;
d6c10f1f 2361
c7f54084 2362 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2363 dirty_list);
2364
0747259d 2365 spin_unlock(&wb->list_lock);
0ae45f63 2366 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2367
d6c10f1f
TH
2368 /*
2369 * If this is the first dirty inode for this bdi,
2370 * we have to wake-up the corresponding bdi thread
2371 * to make sure background write-back happens
2372 * later.
2373 */
f56753ac
CH
2374 if (wakeup_bdi &&
2375 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2376 wb_wakeup_delayed(wb);
a66979ab 2377 return;
1da177e4 2378 }
1da177e4 2379 }
250df6ed
DC
2380out_unlock_inode:
2381 spin_unlock(&inode->i_lock);
03ba3782
JA
2382}
2383EXPORT_SYMBOL(__mark_inode_dirty);
2384
e97fedb9
DC
2385/*
2386 * The @s_sync_lock is used to serialise concurrent sync operations
2387 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2388 * Concurrent callers will block on the s_sync_lock rather than doing contending
2389 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2390 * has been issued up to the time this function is enter is guaranteed to be
2391 * completed by the time we have gained the lock and waited for all IO that is
2392 * in progress regardless of the order callers are granted the lock.
2393 */
b6e51316 2394static void wait_sb_inodes(struct super_block *sb)
03ba3782 2395{
6c60d2b5 2396 LIST_HEAD(sync_list);
03ba3782
JA
2397
2398 /*
2399 * We need to be protected against the filesystem going from
2400 * r/o to r/w or vice versa.
2401 */
b6e51316 2402 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2403
e97fedb9 2404 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2405
2406 /*
6c60d2b5
DC
2407 * Splice the writeback list onto a temporary list to avoid waiting on
2408 * inodes that have started writeback after this point.
2409 *
2410 * Use rcu_read_lock() to keep the inodes around until we have a
2411 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2412 * the local list because inodes can be dropped from either by writeback
2413 * completion.
2414 */
2415 rcu_read_lock();
2416 spin_lock_irq(&sb->s_inode_wblist_lock);
2417 list_splice_init(&sb->s_inodes_wb, &sync_list);
2418
2419 /*
2420 * Data integrity sync. Must wait for all pages under writeback, because
2421 * there may have been pages dirtied before our sync call, but which had
2422 * writeout started before we write it out. In which case, the inode
2423 * may not be on the dirty list, but we still have to wait for that
2424 * writeout.
03ba3782 2425 */
6c60d2b5
DC
2426 while (!list_empty(&sync_list)) {
2427 struct inode *inode = list_first_entry(&sync_list, struct inode,
2428 i_wb_list);
250df6ed 2429 struct address_space *mapping = inode->i_mapping;
03ba3782 2430
6c60d2b5
DC
2431 /*
2432 * Move each inode back to the wb list before we drop the lock
2433 * to preserve consistency between i_wb_list and the mapping
2434 * writeback tag. Writeback completion is responsible to remove
2435 * the inode from either list once the writeback tag is cleared.
2436 */
2437 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2438
2439 /*
2440 * The mapping can appear untagged while still on-list since we
2441 * do not have the mapping lock. Skip it here, wb completion
2442 * will remove it.
2443 */
2444 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2445 continue;
2446
2447 spin_unlock_irq(&sb->s_inode_wblist_lock);
2448
250df6ed 2449 spin_lock(&inode->i_lock);
6c60d2b5 2450 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2451 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2452
2453 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2454 continue;
250df6ed 2455 }
03ba3782 2456 __iget(inode);
250df6ed 2457 spin_unlock(&inode->i_lock);
6c60d2b5 2458 rcu_read_unlock();
03ba3782 2459
aa750fd7
JN
2460 /*
2461 * We keep the error status of individual mapping so that
2462 * applications can catch the writeback error using fsync(2).
2463 * See filemap_fdatawait_keep_errors() for details.
2464 */
2465 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2466
2467 cond_resched();
2468
6c60d2b5
DC
2469 iput(inode);
2470
2471 rcu_read_lock();
2472 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2473 }
6c60d2b5
DC
2474 spin_unlock_irq(&sb->s_inode_wblist_lock);
2475 rcu_read_unlock();
e97fedb9 2476 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2477}
2478
f30a7d0c
TH
2479static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2480 enum wb_reason reason, bool skip_if_busy)
1da177e4 2481{
5b9cce4c
TH
2482 struct backing_dev_info *bdi = sb->s_bdi;
2483 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2484 struct wb_writeback_work work = {
6e6938b6
WF
2485 .sb = sb,
2486 .sync_mode = WB_SYNC_NONE,
2487 .tagged_writepages = 1,
2488 .done = &done,
2489 .nr_pages = nr,
0e175a18 2490 .reason = reason,
3c4d7165 2491 };
d8a8559c 2492
e7972912 2493 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2494 return;
cf37e972 2495 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2496
db125360 2497 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2498 wb_wait_for_completion(&done);
e913fc82 2499}
f30a7d0c
TH
2500
2501/**
2502 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2503 * @sb: the superblock
2504 * @nr: the number of pages to write
2505 * @reason: reason why some writeback work initiated
2506 *
2507 * Start writeback on some inodes on this super_block. No guarantees are made
2508 * on how many (if any) will be written, and this function does not wait
2509 * for IO completion of submitted IO.
2510 */
2511void writeback_inodes_sb_nr(struct super_block *sb,
2512 unsigned long nr,
2513 enum wb_reason reason)
2514{
2515 __writeback_inodes_sb_nr(sb, nr, reason, false);
2516}
3259f8be
CM
2517EXPORT_SYMBOL(writeback_inodes_sb_nr);
2518
2519/**
2520 * writeback_inodes_sb - writeback dirty inodes from given super_block
2521 * @sb: the superblock
786228ab 2522 * @reason: reason why some writeback work was initiated
3259f8be
CM
2523 *
2524 * Start writeback on some inodes on this super_block. No guarantees are made
2525 * on how many (if any) will be written, and this function does not wait
2526 * for IO completion of submitted IO.
2527 */
0e175a18 2528void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2529{
0e175a18 2530 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2531}
0e3c9a22 2532EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2533
17bd55d0 2534/**
8264c321 2535 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2536 * @sb: the superblock
8264c321 2537 * @reason: reason why some writeback work was initiated
17bd55d0 2538 *
8264c321 2539 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2540 */
8264c321 2541void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2542{
10ee27a0 2543 if (!down_read_trylock(&sb->s_umount))
8264c321 2544 return;
10ee27a0 2545
8264c321 2546 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2547 up_read(&sb->s_umount);
3259f8be 2548}
10ee27a0 2549EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2550
d8a8559c
JA
2551/**
2552 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2553 * @sb: the superblock
d8a8559c
JA
2554 *
2555 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2556 * super_block.
d8a8559c 2557 */
0dc83bd3 2558void sync_inodes_sb(struct super_block *sb)
d8a8559c 2559{
5b9cce4c
TH
2560 struct backing_dev_info *bdi = sb->s_bdi;
2561 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2562 struct wb_writeback_work work = {
3c4d7165
CH
2563 .sb = sb,
2564 .sync_mode = WB_SYNC_ALL,
2565 .nr_pages = LONG_MAX,
2566 .range_cyclic = 0,
83ba7b07 2567 .done = &done,
0e175a18 2568 .reason = WB_REASON_SYNC,
7747bd4b 2569 .for_sync = 1,
3c4d7165
CH
2570 };
2571
006a0973
TH
2572 /*
2573 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2574 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2575 * bdi_has_dirty() need to be written out too.
2576 */
2577 if (bdi == &noop_backing_dev_info)
6eedc701 2578 return;
cf37e972
CH
2579 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2580
7fc5854f
TH
2581 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2582 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2583 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2584 wb_wait_for_completion(&done);
7fc5854f 2585 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2586
b6e51316 2587 wait_sb_inodes(sb);
1da177e4 2588}
d8a8559c 2589EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2590
1da177e4 2591/**
7f04c26d
AA
2592 * write_inode_now - write an inode to disk
2593 * @inode: inode to write to disk
2594 * @sync: whether the write should be synchronous or not
2595 *
2596 * This function commits an inode to disk immediately if it is dirty. This is
2597 * primarily needed by knfsd.
1da177e4 2598 *
7f04c26d 2599 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2600 */
1da177e4
LT
2601int write_inode_now(struct inode *inode, int sync)
2602{
1da177e4
LT
2603 struct writeback_control wbc = {
2604 .nr_to_write = LONG_MAX,
18914b18 2605 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2606 .range_start = 0,
2607 .range_end = LLONG_MAX,
1da177e4
LT
2608 };
2609
f56753ac 2610 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2611 wbc.nr_to_write = 0;
1da177e4
LT
2612
2613 might_sleep();
aaf25593 2614 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2615}
2616EXPORT_SYMBOL(write_inode_now);
2617
2618/**
2619 * sync_inode - write an inode and its pages to disk.
2620 * @inode: the inode to sync
2621 * @wbc: controls the writeback mode
2622 *
2623 * sync_inode() will write an inode and its pages to disk. It will also
2624 * correctly update the inode on its superblock's dirty inode lists and will
2625 * update inode->i_state.
2626 *
2627 * The caller must have a ref on the inode.
2628 */
2629int sync_inode(struct inode *inode, struct writeback_control *wbc)
2630{
aaf25593 2631 return writeback_single_inode(inode, wbc);
1da177e4
LT
2632}
2633EXPORT_SYMBOL(sync_inode);
c3765016
CH
2634
2635/**
c691b9d9 2636 * sync_inode_metadata - write an inode to disk
c3765016
CH
2637 * @inode: the inode to sync
2638 * @wait: wait for I/O to complete.
2639 *
c691b9d9 2640 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2641 *
2642 * Note: only writes the actual inode, no associated data or other metadata.
2643 */
2644int sync_inode_metadata(struct inode *inode, int wait)
2645{
2646 struct writeback_control wbc = {
2647 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2648 .nr_to_write = 0, /* metadata-only */
2649 };
2650
2651 return sync_inode(inode, &wbc);
2652}
2653EXPORT_SYMBOL(sync_inode_metadata);