]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - fs/fs-writeback.c
writeback: implement foreign cgroup inode bdi_writeback switching
[thirdparty/kernel/linux.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
87e1d789
TH
261/**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269static struct bdi_writeback *
270locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273{
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
aaa2cacf
TH
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb == inode->i_wb))
87e1d789
TH
290 return wb; /* @inode already has ref */
291
292 spin_unlock(&wb->list_lock);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
682aa8e1
TH
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
d10c8095
TH
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 327 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
682aa8e1
TH
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
d10c8095
TH
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
682aa8e1 341 */
d10c8095
TH
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
682aa8e1 349 spin_lock(&inode->i_lock);
d10c8095
TH
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_wb_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_wb_list)) {
394 struct inode *pos;
395
396 inode_wb_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
682aa8e1 406
d10c8095 407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
d10c8095
TH
411 switched = true;
412skip_switch:
682aa8e1
TH
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
d10c8095 419 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 420 spin_unlock(&inode->i_lock);
d10c8095
TH
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
682aa8e1 423
d10c8095
TH
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
682aa8e1 428 wb_put(new_wb);
d10c8095
TH
429
430 iput(inode);
682aa8e1
TH
431 kfree(isw);
432}
433
434static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435{
436 struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 struct inode_switch_wbs_context, rcu_head);
438
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 schedule_work(&isw->work);
442}
443
444/**
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
448 *
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
451 */
452static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453{
454 struct backing_dev_info *bdi = inode_to_bdi(inode);
455 struct cgroup_subsys_state *memcg_css;
456 struct inode_switch_wbs_context *isw;
457
458 /* noop if seems to be already in progress */
459 if (inode->i_state & I_WB_SWITCH)
460 return;
461
462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 if (!isw)
464 return;
465
466 /* find and pin the new wb */
467 rcu_read_lock();
468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 if (memcg_css)
470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 rcu_read_unlock();
472 if (!isw->new_wb)
473 goto out_free;
474
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode->i_lock);
477 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478 inode_to_wb(inode) == isw->new_wb) {
479 spin_unlock(&inode->i_lock);
480 goto out_free;
481 }
482 inode->i_state |= I_WB_SWITCH;
483 spin_unlock(&inode->i_lock);
484
485 ihold(inode);
486 isw->inode = inode;
487
488 /*
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 */
494 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 return;
496
497out_free:
498 if (isw->new_wb)
499 wb_put(isw->new_wb);
500 kfree(isw);
501}
502
b16b1deb
TH
503/**
504 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505 * @wbc: writeback_control of interest
506 * @inode: target inode
507 *
508 * @inode is locked and about to be written back under the control of @wbc.
509 * Record @inode's writeback context into @wbc and unlock the i_lock. On
510 * writeback completion, wbc_detach_inode() should be called. This is used
511 * to track the cgroup writeback context.
512 */
513void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514 struct inode *inode)
515{
516 wbc->wb = inode_to_wb(inode);
2a814908
TH
517 wbc->inode = inode;
518
519 wbc->wb_id = wbc->wb->memcg_css->id;
520 wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 wbc->wb_tcand_id = 0;
522 wbc->wb_bytes = 0;
523 wbc->wb_lcand_bytes = 0;
524 wbc->wb_tcand_bytes = 0;
525
b16b1deb
TH
526 wb_get(wbc->wb);
527 spin_unlock(&inode->i_lock);
528}
529
530/**
2a814908
TH
531 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
532 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
533 *
534 * To be called after a writeback attempt of an inode finishes and undoes
535 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
536 *
537 * As concurrent write sharing of an inode is expected to be very rare and
538 * memcg only tracks page ownership on first-use basis severely confining
539 * the usefulness of such sharing, cgroup writeback tracks ownership
540 * per-inode. While the support for concurrent write sharing of an inode
541 * is deemed unnecessary, an inode being written to by different cgroups at
542 * different points in time is a lot more common, and, more importantly,
543 * charging only by first-use can too readily lead to grossly incorrect
544 * behaviors (single foreign page can lead to gigabytes of writeback to be
545 * incorrectly attributed).
546 *
547 * To resolve this issue, cgroup writeback detects the majority dirtier of
548 * an inode and transfers the ownership to it. To avoid unnnecessary
549 * oscillation, the detection mechanism keeps track of history and gives
550 * out the switch verdict only if the foreign usage pattern is stable over
551 * a certain amount of time and/or writeback attempts.
552 *
553 * On each writeback attempt, @wbc tries to detect the majority writer
554 * using Boyer-Moore majority vote algorithm. In addition to the byte
555 * count from the majority voting, it also counts the bytes written for the
556 * current wb and the last round's winner wb (max of last round's current
557 * wb, the winner from two rounds ago, and the last round's majority
558 * candidate). Keeping track of the historical winner helps the algorithm
559 * to semi-reliably detect the most active writer even when it's not the
560 * absolute majority.
561 *
562 * Once the winner of the round is determined, whether the winner is
563 * foreign or not and how much IO time the round consumed is recorded in
564 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
565 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
566 */
567void wbc_detach_inode(struct writeback_control *wbc)
568{
2a814908
TH
569 struct bdi_writeback *wb = wbc->wb;
570 struct inode *inode = wbc->inode;
571 u16 history = inode->i_wb_frn_history;
572 unsigned long avg_time = inode->i_wb_frn_avg_time;
573 unsigned long max_bytes, max_time;
574 int max_id;
575
576 /* pick the winner of this round */
577 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
578 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
579 max_id = wbc->wb_id;
580 max_bytes = wbc->wb_bytes;
581 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
582 max_id = wbc->wb_lcand_id;
583 max_bytes = wbc->wb_lcand_bytes;
584 } else {
585 max_id = wbc->wb_tcand_id;
586 max_bytes = wbc->wb_tcand_bytes;
587 }
588
589 /*
590 * Calculate the amount of IO time the winner consumed and fold it
591 * into the running average kept per inode. If the consumed IO
592 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
593 * deciding whether to switch or not. This is to prevent one-off
594 * small dirtiers from skewing the verdict.
595 */
596 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
597 wb->avg_write_bandwidth);
598 if (avg_time)
599 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
600 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
601 else
602 avg_time = max_time; /* immediate catch up on first run */
603
604 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
605 int slots;
606
607 /*
608 * The switch verdict is reached if foreign wb's consume
609 * more than a certain proportion of IO time in a
610 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
611 * history mask where each bit represents one sixteenth of
612 * the period. Determine the number of slots to shift into
613 * history from @max_time.
614 */
615 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
616 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
617 history <<= slots;
618 if (wbc->wb_id != max_id)
619 history |= (1U << slots) - 1;
620
621 /*
622 * Switch if the current wb isn't the consistent winner.
623 * If there are multiple closely competing dirtiers, the
624 * inode may switch across them repeatedly over time, which
625 * is okay. The main goal is avoiding keeping an inode on
626 * the wrong wb for an extended period of time.
627 */
682aa8e1
TH
628 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
629 inode_switch_wbs(inode, max_id);
2a814908
TH
630 }
631
632 /*
633 * Multiple instances of this function may race to update the
634 * following fields but we don't mind occassional inaccuracies.
635 */
636 inode->i_wb_frn_winner = max_id;
637 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
638 inode->i_wb_frn_history = history;
639
b16b1deb
TH
640 wb_put(wbc->wb);
641 wbc->wb = NULL;
642}
643
2a814908
TH
644/**
645 * wbc_account_io - account IO issued during writeback
646 * @wbc: writeback_control of the writeback in progress
647 * @page: page being written out
648 * @bytes: number of bytes being written out
649 *
650 * @bytes from @page are about to written out during the writeback
651 * controlled by @wbc. Keep the book for foreign inode detection. See
652 * wbc_detach_inode().
653 */
654void wbc_account_io(struct writeback_control *wbc, struct page *page,
655 size_t bytes)
656{
657 int id;
658
659 /*
660 * pageout() path doesn't attach @wbc to the inode being written
661 * out. This is intentional as we don't want the function to block
662 * behind a slow cgroup. Ultimately, we want pageout() to kick off
663 * regular writeback instead of writing things out itself.
664 */
665 if (!wbc->wb)
666 return;
667
668 rcu_read_lock();
669 id = mem_cgroup_css_from_page(page)->id;
670 rcu_read_unlock();
671
672 if (id == wbc->wb_id) {
673 wbc->wb_bytes += bytes;
674 return;
675 }
676
677 if (id == wbc->wb_lcand_id)
678 wbc->wb_lcand_bytes += bytes;
679
680 /* Boyer-Moore majority vote algorithm */
681 if (!wbc->wb_tcand_bytes)
682 wbc->wb_tcand_id = id;
683 if (id == wbc->wb_tcand_id)
684 wbc->wb_tcand_bytes += bytes;
685 else
686 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
687}
688
703c2708
TH
689/**
690 * inode_congested - test whether an inode is congested
691 * @inode: inode to test for congestion
692 * @cong_bits: mask of WB_[a]sync_congested bits to test
693 *
694 * Tests whether @inode is congested. @cong_bits is the mask of congestion
695 * bits to test and the return value is the mask of set bits.
696 *
697 * If cgroup writeback is enabled for @inode, the congestion state is
698 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
699 * associated with @inode is congested; otherwise, the root wb's congestion
700 * state is used.
701 */
702int inode_congested(struct inode *inode, int cong_bits)
703{
5cb8b824
TH
704 /*
705 * Once set, ->i_wb never becomes NULL while the inode is alive.
706 * Start transaction iff ->i_wb is visible.
707 */
aaa2cacf 708 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
709 struct bdi_writeback *wb;
710 bool locked, congested;
711
712 wb = unlocked_inode_to_wb_begin(inode, &locked);
713 congested = wb_congested(wb, cong_bits);
714 unlocked_inode_to_wb_end(inode, locked);
715 return congested;
703c2708
TH
716 }
717
718 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
719}
720EXPORT_SYMBOL_GPL(inode_congested);
721
98754bf7
TH
722/**
723 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
724 * @bdi: bdi the work item was issued to
725 * @work: work item to wait for
726 *
727 * Wait for the completion of @work which was issued to one of @bdi's
728 * bdi_writeback's. The caller must have set @work->single_wait before
729 * issuing it. This wait operates independently fo
730 * wb_wait_for_completion() and also disables automatic freeing of @work.
731 */
732static void wb_wait_for_single_work(struct backing_dev_info *bdi,
733 struct wb_writeback_work *work)
734{
735 if (WARN_ON_ONCE(!work->single_wait))
736 return;
737
738 wait_event(bdi->wb_waitq, work->single_done);
739
740 /*
741 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
742 * modifications to @work prior to assertion of ->single_done is
743 * visible to the caller once this function returns.
744 */
745 smp_rmb();
746}
747
f2b65121
TH
748/**
749 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
750 * @wb: target bdi_writeback to split @nr_pages to
751 * @nr_pages: number of pages to write for the whole bdi
752 *
753 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
754 * relation to the total write bandwidth of all wb's w/ dirty inodes on
755 * @wb->bdi.
756 */
757static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
758{
759 unsigned long this_bw = wb->avg_write_bandwidth;
760 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
761
762 if (nr_pages == LONG_MAX)
763 return LONG_MAX;
764
765 /*
766 * This may be called on clean wb's and proportional distribution
767 * may not make sense, just use the original @nr_pages in those
768 * cases. In general, we wanna err on the side of writing more.
769 */
770 if (!tot_bw || this_bw >= tot_bw)
771 return nr_pages;
772 else
773 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
774}
775
db125360
TH
776/**
777 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
778 * @wb: target bdi_writeback
779 * @base_work: source wb_writeback_work
780 *
781 * Try to make a clone of @base_work and issue it to @wb. If cloning
782 * succeeds, %true is returned; otherwise, @base_work is issued directly
783 * and %false is returned. In the latter case, the caller is required to
784 * wait for @base_work's completion using wb_wait_for_single_work().
785 *
786 * A clone is auto-freed on completion. @base_work never is.
787 */
788static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
789 struct wb_writeback_work *base_work)
790{
791 struct wb_writeback_work *work;
792
793 work = kmalloc(sizeof(*work), GFP_ATOMIC);
794 if (work) {
795 *work = *base_work;
796 work->auto_free = 1;
797 work->single_wait = 0;
798 } else {
799 work = base_work;
800 work->auto_free = 0;
801 work->single_wait = 1;
802 }
803 work->single_done = 0;
804 wb_queue_work(wb, work);
805 return work != base_work;
806}
807
808/**
809 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
810 * @bdi: target backing_dev_info
811 * @base_work: wb_writeback_work to issue
812 * @skip_if_busy: skip wb's which already have writeback in progress
813 *
814 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
815 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
816 * distributed to the busy wbs according to each wb's proportion in the
817 * total active write bandwidth of @bdi.
818 */
819static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
820 struct wb_writeback_work *base_work,
821 bool skip_if_busy)
822{
823 long nr_pages = base_work->nr_pages;
824 int next_blkcg_id = 0;
825 struct bdi_writeback *wb;
826 struct wb_iter iter;
827
828 might_sleep();
829
830 if (!bdi_has_dirty_io(bdi))
831 return;
832restart:
833 rcu_read_lock();
834 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
835 if (!wb_has_dirty_io(wb) ||
836 (skip_if_busy && writeback_in_progress(wb)))
837 continue;
838
839 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
840 if (!wb_clone_and_queue_work(wb, base_work)) {
841 next_blkcg_id = wb->blkcg_css->id + 1;
842 rcu_read_unlock();
843 wb_wait_for_single_work(bdi, base_work);
844 goto restart;
845 }
846 }
847 rcu_read_unlock();
848}
849
f2b65121
TH
850#else /* CONFIG_CGROUP_WRITEBACK */
851
87e1d789
TH
852static struct bdi_writeback *
853locked_inode_to_wb_and_lock_list(struct inode *inode)
854 __releases(&inode->i_lock)
855 __acquires(&wb->list_lock)
856{
857 struct bdi_writeback *wb = inode_to_wb(inode);
858
859 spin_unlock(&inode->i_lock);
860 spin_lock(&wb->list_lock);
861 return wb;
862}
863
864static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
865 __acquires(&wb->list_lock)
866{
867 struct bdi_writeback *wb = inode_to_wb(inode);
868
869 spin_lock(&wb->list_lock);
870 return wb;
871}
872
f2b65121
TH
873static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
874{
875 return nr_pages;
876}
877
db125360
TH
878static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
879 struct wb_writeback_work *base_work,
880 bool skip_if_busy)
881{
882 might_sleep();
883
884 if (bdi_has_dirty_io(bdi) &&
885 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
886 base_work->auto_free = 0;
887 base_work->single_wait = 0;
888 base_work->single_done = 0;
889 wb_queue_work(&bdi->wb, base_work);
890 }
891}
892
703c2708
TH
893#endif /* CONFIG_CGROUP_WRITEBACK */
894
c00ddad3
TH
895void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
896 bool range_cyclic, enum wb_reason reason)
b6e51316 897{
c00ddad3
TH
898 struct wb_writeback_work *work;
899
900 if (!wb_has_dirty_io(wb))
901 return;
902
903 /*
904 * This is WB_SYNC_NONE writeback, so if allocation fails just
905 * wakeup the thread for old dirty data writeback
906 */
907 work = kzalloc(sizeof(*work), GFP_ATOMIC);
908 if (!work) {
909 trace_writeback_nowork(wb->bdi);
910 wb_wakeup(wb);
911 return;
912 }
913
914 work->sync_mode = WB_SYNC_NONE;
915 work->nr_pages = nr_pages;
916 work->range_cyclic = range_cyclic;
917 work->reason = reason;
ac7b19a3 918 work->auto_free = 1;
c00ddad3
TH
919
920 wb_queue_work(wb, work);
c5444198 921}
d3ddec76 922
c5444198 923/**
9ecf4866
TH
924 * wb_start_background_writeback - start background writeback
925 * @wb: bdi_writback to write from
c5444198
CH
926 *
927 * Description:
6585027a 928 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 929 * this function returns, it is only guaranteed that for given wb
6585027a
JK
930 * some IO is happening if we are over background dirty threshold.
931 * Caller need not hold sb s_umount semaphore.
c5444198 932 */
9ecf4866 933void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 934{
6585027a
JK
935 /*
936 * We just wake up the flusher thread. It will perform background
937 * writeback as soon as there is no other work to do.
938 */
9ecf4866
TH
939 trace_writeback_wake_background(wb->bdi);
940 wb_wakeup(wb);
1da177e4
LT
941}
942
a66979ab
DC
943/*
944 * Remove the inode from the writeback list it is on.
945 */
946void inode_wb_list_del(struct inode *inode)
947{
87e1d789 948 struct bdi_writeback *wb;
f758eeab 949
87e1d789 950 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 951 inode_wb_list_del_locked(inode, wb);
52ebea74 952 spin_unlock(&wb->list_lock);
a66979ab
DC
953}
954
6610a0bc
AM
955/*
956 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
957 * furthest end of its superblock's dirty-inode list.
958 *
959 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 960 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
961 * the case then the inode must have been redirtied while it was being written
962 * out and we don't reset its dirtied_when.
963 */
f758eeab 964static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 965{
03ba3782 966 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 967 struct inode *tail;
6610a0bc 968
7ccf19a8 969 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 970 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
971 inode->dirtied_when = jiffies;
972 }
d6c10f1f 973 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
974}
975
c986d1e2 976/*
66f3b8e2 977 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 978 */
f758eeab 979static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 980{
d6c10f1f 981 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
982}
983
1c0eeaf5
JE
984static void inode_sync_complete(struct inode *inode)
985{
365b94ae 986 inode->i_state &= ~I_SYNC;
4eff96dd
JK
987 /* If inode is clean an unused, put it into LRU now... */
988 inode_add_lru(inode);
365b94ae 989 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
990 smp_mb();
991 wake_up_bit(&inode->i_state, __I_SYNC);
992}
993
d2caa3c5
JL
994static bool inode_dirtied_after(struct inode *inode, unsigned long t)
995{
996 bool ret = time_after(inode->dirtied_when, t);
997#ifndef CONFIG_64BIT
998 /*
999 * For inodes being constantly redirtied, dirtied_when can get stuck.
1000 * It _appears_ to be in the future, but is actually in distant past.
1001 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1002 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1003 */
1004 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1005#endif
1006 return ret;
1007}
1008
0ae45f63
TT
1009#define EXPIRE_DIRTY_ATIME 0x0001
1010
2c136579 1011/*
0e2f2b23 1012 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1013 * @delaying_queue to @dispatch_queue.
2c136579 1014 */
e84d0a4f 1015static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1016 struct list_head *dispatch_queue,
0ae45f63 1017 int flags,
ad4e38dd 1018 struct wb_writeback_work *work)
2c136579 1019{
0ae45f63
TT
1020 unsigned long *older_than_this = NULL;
1021 unsigned long expire_time;
5c03449d
SL
1022 LIST_HEAD(tmp);
1023 struct list_head *pos, *node;
cf137307 1024 struct super_block *sb = NULL;
5c03449d 1025 struct inode *inode;
cf137307 1026 int do_sb_sort = 0;
e84d0a4f 1027 int moved = 0;
5c03449d 1028
0ae45f63
TT
1029 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1030 older_than_this = work->older_than_this;
a2f48706
TT
1031 else if (!work->for_sync) {
1032 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1033 older_than_this = &expire_time;
1034 }
2c136579 1035 while (!list_empty(delaying_queue)) {
7ccf19a8 1036 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1037 if (older_than_this &&
1038 inode_dirtied_after(inode, *older_than_this))
2c136579 1039 break;
a8855990
JK
1040 list_move(&inode->i_wb_list, &tmp);
1041 moved++;
0ae45f63
TT
1042 if (flags & EXPIRE_DIRTY_ATIME)
1043 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1044 if (sb_is_blkdev_sb(inode->i_sb))
1045 continue;
cf137307
JA
1046 if (sb && sb != inode->i_sb)
1047 do_sb_sort = 1;
1048 sb = inode->i_sb;
5c03449d
SL
1049 }
1050
cf137307
JA
1051 /* just one sb in list, splice to dispatch_queue and we're done */
1052 if (!do_sb_sort) {
1053 list_splice(&tmp, dispatch_queue);
e84d0a4f 1054 goto out;
cf137307
JA
1055 }
1056
5c03449d
SL
1057 /* Move inodes from one superblock together */
1058 while (!list_empty(&tmp)) {
7ccf19a8 1059 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1060 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1061 inode = wb_inode(pos);
5c03449d 1062 if (inode->i_sb == sb)
7ccf19a8 1063 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 1064 }
2c136579 1065 }
e84d0a4f
WF
1066out:
1067 return moved;
2c136579
FW
1068}
1069
1070/*
1071 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1072 * Before
1073 * newly dirtied b_dirty b_io b_more_io
1074 * =============> gf edc BA
1075 * After
1076 * newly dirtied b_dirty b_io b_more_io
1077 * =============> g fBAedc
1078 * |
1079 * +--> dequeue for IO
2c136579 1080 */
ad4e38dd 1081static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1082{
e84d0a4f 1083 int moved;
0ae45f63 1084
f758eeab 1085 assert_spin_locked(&wb->list_lock);
4ea879b9 1086 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1087 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1088 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1089 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1090 if (moved)
1091 wb_io_lists_populated(wb);
ad4e38dd 1092 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1093}
1094
a9185b41 1095static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1096{
9fb0a7da
TH
1097 int ret;
1098
1099 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1100 trace_writeback_write_inode_start(inode, wbc);
1101 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1102 trace_writeback_write_inode(inode, wbc);
1103 return ret;
1104 }
03ba3782 1105 return 0;
08d8e974 1106}
08d8e974 1107
1da177e4 1108/*
169ebd90
JK
1109 * Wait for writeback on an inode to complete. Called with i_lock held.
1110 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1111 */
169ebd90
JK
1112static void __inode_wait_for_writeback(struct inode *inode)
1113 __releases(inode->i_lock)
1114 __acquires(inode->i_lock)
01c03194
CH
1115{
1116 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1117 wait_queue_head_t *wqh;
1118
1119 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1120 while (inode->i_state & I_SYNC) {
1121 spin_unlock(&inode->i_lock);
74316201
N
1122 __wait_on_bit(wqh, &wq, bit_wait,
1123 TASK_UNINTERRUPTIBLE);
250df6ed 1124 spin_lock(&inode->i_lock);
58a9d3d8 1125 }
01c03194
CH
1126}
1127
169ebd90
JK
1128/*
1129 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1130 */
1131void inode_wait_for_writeback(struct inode *inode)
1132{
1133 spin_lock(&inode->i_lock);
1134 __inode_wait_for_writeback(inode);
1135 spin_unlock(&inode->i_lock);
1136}
1137
1138/*
1139 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1140 * held and drops it. It is aimed for callers not holding any inode reference
1141 * so once i_lock is dropped, inode can go away.
1142 */
1143static void inode_sleep_on_writeback(struct inode *inode)
1144 __releases(inode->i_lock)
1145{
1146 DEFINE_WAIT(wait);
1147 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1148 int sleep;
1149
1150 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1151 sleep = inode->i_state & I_SYNC;
1152 spin_unlock(&inode->i_lock);
1153 if (sleep)
1154 schedule();
1155 finish_wait(wqh, &wait);
1156}
1157
ccb26b5a
JK
1158/*
1159 * Find proper writeback list for the inode depending on its current state and
1160 * possibly also change of its state while we were doing writeback. Here we
1161 * handle things such as livelock prevention or fairness of writeback among
1162 * inodes. This function can be called only by flusher thread - noone else
1163 * processes all inodes in writeback lists and requeueing inodes behind flusher
1164 * thread's back can have unexpected consequences.
1165 */
1166static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1167 struct writeback_control *wbc)
1168{
1169 if (inode->i_state & I_FREEING)
1170 return;
1171
1172 /*
1173 * Sync livelock prevention. Each inode is tagged and synced in one
1174 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1175 * the dirty time to prevent enqueue and sync it again.
1176 */
1177 if ((inode->i_state & I_DIRTY) &&
1178 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1179 inode->dirtied_when = jiffies;
1180
4f8ad655
JK
1181 if (wbc->pages_skipped) {
1182 /*
1183 * writeback is not making progress due to locked
1184 * buffers. Skip this inode for now.
1185 */
1186 redirty_tail(inode, wb);
1187 return;
1188 }
1189
ccb26b5a
JK
1190 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1191 /*
1192 * We didn't write back all the pages. nfs_writepages()
1193 * sometimes bales out without doing anything.
1194 */
1195 if (wbc->nr_to_write <= 0) {
1196 /* Slice used up. Queue for next turn. */
1197 requeue_io(inode, wb);
1198 } else {
1199 /*
1200 * Writeback blocked by something other than
1201 * congestion. Delay the inode for some time to
1202 * avoid spinning on the CPU (100% iowait)
1203 * retrying writeback of the dirty page/inode
1204 * that cannot be performed immediately.
1205 */
1206 redirty_tail(inode, wb);
1207 }
1208 } else if (inode->i_state & I_DIRTY) {
1209 /*
1210 * Filesystems can dirty the inode during writeback operations,
1211 * such as delayed allocation during submission or metadata
1212 * updates after data IO completion.
1213 */
1214 redirty_tail(inode, wb);
0ae45f63 1215 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1216 inode->dirtied_when = jiffies;
d6c10f1f 1217 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1218 } else {
1219 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1220 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1221 }
1222}
1223
01c03194 1224/*
4f8ad655
JK
1225 * Write out an inode and its dirty pages. Do not update the writeback list
1226 * linkage. That is left to the caller. The caller is also responsible for
1227 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1228 */
1229static int
cd8ed2a4 1230__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1231{
1da177e4 1232 struct address_space *mapping = inode->i_mapping;
251d6a47 1233 long nr_to_write = wbc->nr_to_write;
01c03194 1234 unsigned dirty;
1da177e4
LT
1235 int ret;
1236
4f8ad655 1237 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1238
9fb0a7da
TH
1239 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1240
1da177e4
LT
1241 ret = do_writepages(mapping, wbc);
1242
26821ed4
CH
1243 /*
1244 * Make sure to wait on the data before writing out the metadata.
1245 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1246 * I/O completion. We don't do it for sync(2) writeback because it has a
1247 * separate, external IO completion path and ->sync_fs for guaranteeing
1248 * inode metadata is written back correctly.
26821ed4 1249 */
7747bd4b 1250 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1251 int err = filemap_fdatawait(mapping);
1da177e4
LT
1252 if (ret == 0)
1253 ret = err;
1254 }
1255
5547e8aa
DM
1256 /*
1257 * Some filesystems may redirty the inode during the writeback
1258 * due to delalloc, clear dirty metadata flags right before
1259 * write_inode()
1260 */
250df6ed 1261 spin_lock(&inode->i_lock);
9c6ac78e 1262
5547e8aa 1263 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1264 if (inode->i_state & I_DIRTY_TIME) {
1265 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1266 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1267 unlikely(time_after(jiffies,
1268 (inode->dirtied_time_when +
1269 dirtytime_expire_interval * HZ)))) {
1270 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1271 trace_writeback_lazytime(inode);
1272 }
1273 } else
1274 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1275 inode->i_state &= ~dirty;
9c6ac78e
TH
1276
1277 /*
1278 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1279 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1280 * either they see the I_DIRTY bits cleared or we see the dirtied
1281 * inode.
1282 *
1283 * I_DIRTY_PAGES is always cleared together above even if @mapping
1284 * still has dirty pages. The flag is reinstated after smp_mb() if
1285 * necessary. This guarantees that either __mark_inode_dirty()
1286 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1287 */
1288 smp_mb();
1289
1290 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1291 inode->i_state |= I_DIRTY_PAGES;
1292
250df6ed 1293 spin_unlock(&inode->i_lock);
9c6ac78e 1294
0ae45f63
TT
1295 if (dirty & I_DIRTY_TIME)
1296 mark_inode_dirty_sync(inode);
26821ed4 1297 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1298 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1299 int err = write_inode(inode, wbc);
1da177e4
LT
1300 if (ret == 0)
1301 ret = err;
1302 }
4f8ad655
JK
1303 trace_writeback_single_inode(inode, wbc, nr_to_write);
1304 return ret;
1305}
1306
1307/*
1308 * Write out an inode's dirty pages. Either the caller has an active reference
1309 * on the inode or the inode has I_WILL_FREE set.
1310 *
1311 * This function is designed to be called for writing back one inode which
1312 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1313 * and does more profound writeback list handling in writeback_sb_inodes().
1314 */
1315static int
1316writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1317 struct writeback_control *wbc)
1318{
1319 int ret = 0;
1320
1321 spin_lock(&inode->i_lock);
1322 if (!atomic_read(&inode->i_count))
1323 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1324 else
1325 WARN_ON(inode->i_state & I_WILL_FREE);
1326
1327 if (inode->i_state & I_SYNC) {
1328 if (wbc->sync_mode != WB_SYNC_ALL)
1329 goto out;
1330 /*
169ebd90
JK
1331 * It's a data-integrity sync. We must wait. Since callers hold
1332 * inode reference or inode has I_WILL_FREE set, it cannot go
1333 * away under us.
4f8ad655 1334 */
169ebd90 1335 __inode_wait_for_writeback(inode);
4f8ad655
JK
1336 }
1337 WARN_ON(inode->i_state & I_SYNC);
1338 /*
f9b0e058
JK
1339 * Skip inode if it is clean and we have no outstanding writeback in
1340 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1341 * function since flusher thread may be doing for example sync in
1342 * parallel and if we move the inode, it could get skipped. So here we
1343 * make sure inode is on some writeback list and leave it there unless
1344 * we have completely cleaned the inode.
4f8ad655 1345 */
0ae45f63 1346 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1347 (wbc->sync_mode != WB_SYNC_ALL ||
1348 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1349 goto out;
1350 inode->i_state |= I_SYNC;
b16b1deb 1351 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1352
cd8ed2a4 1353 ret = __writeback_single_inode(inode, wbc);
1da177e4 1354
b16b1deb 1355 wbc_detach_inode(wbc);
f758eeab 1356 spin_lock(&wb->list_lock);
250df6ed 1357 spin_lock(&inode->i_lock);
4f8ad655
JK
1358 /*
1359 * If inode is clean, remove it from writeback lists. Otherwise don't
1360 * touch it. See comment above for explanation.
1361 */
0ae45f63 1362 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1363 inode_wb_list_del_locked(inode, wb);
4f8ad655 1364 spin_unlock(&wb->list_lock);
1c0eeaf5 1365 inode_sync_complete(inode);
4f8ad655
JK
1366out:
1367 spin_unlock(&inode->i_lock);
1da177e4
LT
1368 return ret;
1369}
1370
a88a341a 1371static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1372 struct wb_writeback_work *work)
d46db3d5
WF
1373{
1374 long pages;
1375
1376 /*
1377 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1378 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1379 * here avoids calling into writeback_inodes_wb() more than once.
1380 *
1381 * The intended call sequence for WB_SYNC_ALL writeback is:
1382 *
1383 * wb_writeback()
1384 * writeback_sb_inodes() <== called only once
1385 * write_cache_pages() <== called once for each inode
1386 * (quickly) tag currently dirty pages
1387 * (maybe slowly) sync all tagged pages
1388 */
1389 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1390 pages = LONG_MAX;
1a12d8bd 1391 else {
a88a341a 1392 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1393 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1394 pages = min(pages, work->nr_pages);
1395 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1396 MIN_WRITEBACK_PAGES);
1397 }
d46db3d5
WF
1398
1399 return pages;
1400}
1401
f11c9c5c
ES
1402/*
1403 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1404 *
d46db3d5 1405 * Return the number of pages and/or inodes written.
f11c9c5c 1406 */
d46db3d5
WF
1407static long writeback_sb_inodes(struct super_block *sb,
1408 struct bdi_writeback *wb,
1409 struct wb_writeback_work *work)
1da177e4 1410{
d46db3d5
WF
1411 struct writeback_control wbc = {
1412 .sync_mode = work->sync_mode,
1413 .tagged_writepages = work->tagged_writepages,
1414 .for_kupdate = work->for_kupdate,
1415 .for_background = work->for_background,
7747bd4b 1416 .for_sync = work->for_sync,
d46db3d5
WF
1417 .range_cyclic = work->range_cyclic,
1418 .range_start = 0,
1419 .range_end = LLONG_MAX,
1420 };
1421 unsigned long start_time = jiffies;
1422 long write_chunk;
1423 long wrote = 0; /* count both pages and inodes */
1424
03ba3782 1425 while (!list_empty(&wb->b_io)) {
7ccf19a8 1426 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1427
1428 if (inode->i_sb != sb) {
d46db3d5 1429 if (work->sb) {
edadfb10
CH
1430 /*
1431 * We only want to write back data for this
1432 * superblock, move all inodes not belonging
1433 * to it back onto the dirty list.
1434 */
f758eeab 1435 redirty_tail(inode, wb);
edadfb10
CH
1436 continue;
1437 }
1438
1439 /*
1440 * The inode belongs to a different superblock.
1441 * Bounce back to the caller to unpin this and
1442 * pin the next superblock.
1443 */
d46db3d5 1444 break;
edadfb10
CH
1445 }
1446
9843b76a 1447 /*
331cbdee
WL
1448 * Don't bother with new inodes or inodes being freed, first
1449 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1450 * kind writeout is handled by the freer.
1451 */
250df6ed 1452 spin_lock(&inode->i_lock);
9843b76a 1453 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1454 spin_unlock(&inode->i_lock);
fcc5c222 1455 redirty_tail(inode, wb);
7ef0d737
NP
1456 continue;
1457 }
cc1676d9
JK
1458 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1459 /*
1460 * If this inode is locked for writeback and we are not
1461 * doing writeback-for-data-integrity, move it to
1462 * b_more_io so that writeback can proceed with the
1463 * other inodes on s_io.
1464 *
1465 * We'll have another go at writing back this inode
1466 * when we completed a full scan of b_io.
1467 */
1468 spin_unlock(&inode->i_lock);
1469 requeue_io(inode, wb);
1470 trace_writeback_sb_inodes_requeue(inode);
1471 continue;
1472 }
f0d07b7f
JK
1473 spin_unlock(&wb->list_lock);
1474
4f8ad655
JK
1475 /*
1476 * We already requeued the inode if it had I_SYNC set and we
1477 * are doing WB_SYNC_NONE writeback. So this catches only the
1478 * WB_SYNC_ALL case.
1479 */
169ebd90
JK
1480 if (inode->i_state & I_SYNC) {
1481 /* Wait for I_SYNC. This function drops i_lock... */
1482 inode_sleep_on_writeback(inode);
1483 /* Inode may be gone, start again */
ead188f9 1484 spin_lock(&wb->list_lock);
169ebd90
JK
1485 continue;
1486 }
4f8ad655 1487 inode->i_state |= I_SYNC;
b16b1deb 1488 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1489
a88a341a 1490 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1491 wbc.nr_to_write = write_chunk;
1492 wbc.pages_skipped = 0;
250df6ed 1493
169ebd90
JK
1494 /*
1495 * We use I_SYNC to pin the inode in memory. While it is set
1496 * evict_inode() will wait so the inode cannot be freed.
1497 */
cd8ed2a4 1498 __writeback_single_inode(inode, &wbc);
250df6ed 1499
b16b1deb 1500 wbc_detach_inode(&wbc);
d46db3d5
WF
1501 work->nr_pages -= write_chunk - wbc.nr_to_write;
1502 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1503 spin_lock(&wb->list_lock);
1504 spin_lock(&inode->i_lock);
0ae45f63 1505 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1506 wrote++;
4f8ad655
JK
1507 requeue_inode(inode, wb, &wbc);
1508 inode_sync_complete(inode);
0f1b1fd8 1509 spin_unlock(&inode->i_lock);
169ebd90 1510 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1511 /*
1512 * bail out to wb_writeback() often enough to check
1513 * background threshold and other termination conditions.
1514 */
1515 if (wrote) {
1516 if (time_is_before_jiffies(start_time + HZ / 10UL))
1517 break;
1518 if (work->nr_pages <= 0)
1519 break;
8bc3be27 1520 }
1da177e4 1521 }
d46db3d5 1522 return wrote;
f11c9c5c
ES
1523}
1524
d46db3d5
WF
1525static long __writeback_inodes_wb(struct bdi_writeback *wb,
1526 struct wb_writeback_work *work)
f11c9c5c 1527{
d46db3d5
WF
1528 unsigned long start_time = jiffies;
1529 long wrote = 0;
38f21977 1530
f11c9c5c 1531 while (!list_empty(&wb->b_io)) {
7ccf19a8 1532 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1533 struct super_block *sb = inode->i_sb;
9ecc2738 1534
eb6ef3df 1535 if (!trylock_super(sb)) {
0e995816 1536 /*
eb6ef3df 1537 * trylock_super() may fail consistently due to
0e995816
WF
1538 * s_umount being grabbed by someone else. Don't use
1539 * requeue_io() to avoid busy retrying the inode/sb.
1540 */
1541 redirty_tail(inode, wb);
edadfb10 1542 continue;
f11c9c5c 1543 }
d46db3d5 1544 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1545 up_read(&sb->s_umount);
f11c9c5c 1546
d46db3d5
WF
1547 /* refer to the same tests at the end of writeback_sb_inodes */
1548 if (wrote) {
1549 if (time_is_before_jiffies(start_time + HZ / 10UL))
1550 break;
1551 if (work->nr_pages <= 0)
1552 break;
1553 }
f11c9c5c 1554 }
66f3b8e2 1555 /* Leave any unwritten inodes on b_io */
d46db3d5 1556 return wrote;
66f3b8e2
JA
1557}
1558
7d9f073b 1559static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1560 enum wb_reason reason)
edadfb10 1561{
d46db3d5
WF
1562 struct wb_writeback_work work = {
1563 .nr_pages = nr_pages,
1564 .sync_mode = WB_SYNC_NONE,
1565 .range_cyclic = 1,
0e175a18 1566 .reason = reason,
d46db3d5 1567 };
edadfb10 1568
f758eeab 1569 spin_lock(&wb->list_lock);
424b351f 1570 if (list_empty(&wb->b_io))
ad4e38dd 1571 queue_io(wb, &work);
d46db3d5 1572 __writeback_inodes_wb(wb, &work);
f758eeab 1573 spin_unlock(&wb->list_lock);
edadfb10 1574
d46db3d5
WF
1575 return nr_pages - work.nr_pages;
1576}
03ba3782 1577
03ba3782
JA
1578/*
1579 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1580 *
03ba3782
JA
1581 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1582 * dirtying-time in the inode's address_space. So this periodic writeback code
1583 * just walks the superblock inode list, writing back any inodes which are
1584 * older than a specific point in time.
66f3b8e2 1585 *
03ba3782
JA
1586 * Try to run once per dirty_writeback_interval. But if a writeback event
1587 * takes longer than a dirty_writeback_interval interval, then leave a
1588 * one-second gap.
66f3b8e2 1589 *
03ba3782
JA
1590 * older_than_this takes precedence over nr_to_write. So we'll only write back
1591 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1592 */
c4a77a6c 1593static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1594 struct wb_writeback_work *work)
66f3b8e2 1595{
e98be2d5 1596 unsigned long wb_start = jiffies;
d46db3d5 1597 long nr_pages = work->nr_pages;
0dc83bd3 1598 unsigned long oldest_jif;
a5989bdc 1599 struct inode *inode;
d46db3d5 1600 long progress;
66f3b8e2 1601
0dc83bd3
JK
1602 oldest_jif = jiffies;
1603 work->older_than_this = &oldest_jif;
38f21977 1604
e8dfc305 1605 spin_lock(&wb->list_lock);
03ba3782
JA
1606 for (;;) {
1607 /*
d3ddec76 1608 * Stop writeback when nr_pages has been consumed
03ba3782 1609 */
83ba7b07 1610 if (work->nr_pages <= 0)
03ba3782 1611 break;
66f3b8e2 1612
aa373cf5
JK
1613 /*
1614 * Background writeout and kupdate-style writeback may
1615 * run forever. Stop them if there is other work to do
1616 * so that e.g. sync can proceed. They'll be restarted
1617 * after the other works are all done.
1618 */
1619 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1620 !list_empty(&wb->work_list))
aa373cf5
JK
1621 break;
1622
38f21977 1623 /*
d3ddec76
WF
1624 * For background writeout, stop when we are below the
1625 * background dirty threshold
38f21977 1626 */
aa661bbe 1627 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1628 break;
38f21977 1629
1bc36b64
JK
1630 /*
1631 * Kupdate and background works are special and we want to
1632 * include all inodes that need writing. Livelock avoidance is
1633 * handled by these works yielding to any other work so we are
1634 * safe.
1635 */
ba9aa839 1636 if (work->for_kupdate) {
0dc83bd3 1637 oldest_jif = jiffies -
ba9aa839 1638 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1639 } else if (work->for_background)
0dc83bd3 1640 oldest_jif = jiffies;
028c2dd1 1641
d46db3d5 1642 trace_writeback_start(wb->bdi, work);
e8dfc305 1643 if (list_empty(&wb->b_io))
ad4e38dd 1644 queue_io(wb, work);
83ba7b07 1645 if (work->sb)
d46db3d5 1646 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1647 else
d46db3d5
WF
1648 progress = __writeback_inodes_wb(wb, work);
1649 trace_writeback_written(wb->bdi, work);
028c2dd1 1650
e98be2d5 1651 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1652
1653 /*
e6fb6da2
WF
1654 * Did we write something? Try for more
1655 *
1656 * Dirty inodes are moved to b_io for writeback in batches.
1657 * The completion of the current batch does not necessarily
1658 * mean the overall work is done. So we keep looping as long
1659 * as made some progress on cleaning pages or inodes.
03ba3782 1660 */
d46db3d5 1661 if (progress)
71fd05a8
JA
1662 continue;
1663 /*
e6fb6da2 1664 * No more inodes for IO, bail
71fd05a8 1665 */
b7a2441f 1666 if (list_empty(&wb->b_more_io))
03ba3782 1667 break;
71fd05a8
JA
1668 /*
1669 * Nothing written. Wait for some inode to
1670 * become available for writeback. Otherwise
1671 * we'll just busyloop.
1672 */
71fd05a8 1673 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1674 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1675 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1676 spin_lock(&inode->i_lock);
f0d07b7f 1677 spin_unlock(&wb->list_lock);
169ebd90
JK
1678 /* This function drops i_lock... */
1679 inode_sleep_on_writeback(inode);
f0d07b7f 1680 spin_lock(&wb->list_lock);
03ba3782
JA
1681 }
1682 }
e8dfc305 1683 spin_unlock(&wb->list_lock);
03ba3782 1684
d46db3d5 1685 return nr_pages - work->nr_pages;
03ba3782
JA
1686}
1687
1688/*
83ba7b07 1689 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1690 */
f0054bb1 1691static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1692{
83ba7b07 1693 struct wb_writeback_work *work = NULL;
03ba3782 1694
f0054bb1
TH
1695 spin_lock_bh(&wb->work_lock);
1696 if (!list_empty(&wb->work_list)) {
1697 work = list_entry(wb->work_list.next,
83ba7b07
CH
1698 struct wb_writeback_work, list);
1699 list_del_init(&work->list);
03ba3782 1700 }
f0054bb1 1701 spin_unlock_bh(&wb->work_lock);
83ba7b07 1702 return work;
03ba3782
JA
1703}
1704
cdf01dd5
LT
1705/*
1706 * Add in the number of potentially dirty inodes, because each inode
1707 * write can dirty pagecache in the underlying blockdev.
1708 */
1709static unsigned long get_nr_dirty_pages(void)
1710{
1711 return global_page_state(NR_FILE_DIRTY) +
1712 global_page_state(NR_UNSTABLE_NFS) +
1713 get_nr_dirty_inodes();
1714}
1715
6585027a
JK
1716static long wb_check_background_flush(struct bdi_writeback *wb)
1717{
aa661bbe 1718 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1719
1720 struct wb_writeback_work work = {
1721 .nr_pages = LONG_MAX,
1722 .sync_mode = WB_SYNC_NONE,
1723 .for_background = 1,
1724 .range_cyclic = 1,
0e175a18 1725 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1726 };
1727
1728 return wb_writeback(wb, &work);
1729 }
1730
1731 return 0;
1732}
1733
03ba3782
JA
1734static long wb_check_old_data_flush(struct bdi_writeback *wb)
1735{
1736 unsigned long expired;
1737 long nr_pages;
1738
69b62d01
JA
1739 /*
1740 * When set to zero, disable periodic writeback
1741 */
1742 if (!dirty_writeback_interval)
1743 return 0;
1744
03ba3782
JA
1745 expired = wb->last_old_flush +
1746 msecs_to_jiffies(dirty_writeback_interval * 10);
1747 if (time_before(jiffies, expired))
1748 return 0;
1749
1750 wb->last_old_flush = jiffies;
cdf01dd5 1751 nr_pages = get_nr_dirty_pages();
03ba3782 1752
c4a77a6c 1753 if (nr_pages) {
83ba7b07 1754 struct wb_writeback_work work = {
c4a77a6c
JA
1755 .nr_pages = nr_pages,
1756 .sync_mode = WB_SYNC_NONE,
1757 .for_kupdate = 1,
1758 .range_cyclic = 1,
0e175a18 1759 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1760 };
1761
83ba7b07 1762 return wb_writeback(wb, &work);
c4a77a6c 1763 }
03ba3782
JA
1764
1765 return 0;
1766}
1767
1768/*
1769 * Retrieve work items and do the writeback they describe
1770 */
25d130ba 1771static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1772{
83ba7b07 1773 struct wb_writeback_work *work;
c4a77a6c 1774 long wrote = 0;
03ba3782 1775
4452226e 1776 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1777 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1778 struct wb_completion *done = work->done;
98754bf7 1779 bool need_wake_up = false;
03ba3782 1780
f0054bb1 1781 trace_writeback_exec(wb->bdi, work);
455b2864 1782
83ba7b07 1783 wrote += wb_writeback(wb, work);
03ba3782 1784
98754bf7
TH
1785 if (work->single_wait) {
1786 WARN_ON_ONCE(work->auto_free);
1787 /* paired w/ rmb in wb_wait_for_single_work() */
1788 smp_wmb();
1789 work->single_done = 1;
1790 need_wake_up = true;
1791 } else if (work->auto_free) {
83ba7b07 1792 kfree(work);
98754bf7
TH
1793 }
1794
cc395d7f 1795 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1796 need_wake_up = true;
1797
1798 if (need_wake_up)
cc395d7f 1799 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1800 }
1801
1802 /*
1803 * Check for periodic writeback, kupdated() style
1804 */
1805 wrote += wb_check_old_data_flush(wb);
6585027a 1806 wrote += wb_check_background_flush(wb);
4452226e 1807 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1808
1809 return wrote;
1810}
1811
1812/*
1813 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1814 * reschedules periodically and does kupdated style flushing.
03ba3782 1815 */
f0054bb1 1816void wb_workfn(struct work_struct *work)
03ba3782 1817{
839a8e86
TH
1818 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1819 struct bdi_writeback, dwork);
03ba3782
JA
1820 long pages_written;
1821
f0054bb1 1822 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1823 current->flags |= PF_SWAPWRITE;
455b2864 1824
839a8e86 1825 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1826 !test_bit(WB_registered, &wb->state))) {
6467716a 1827 /*
f0054bb1 1828 * The normal path. Keep writing back @wb until its
839a8e86 1829 * work_list is empty. Note that this path is also taken
f0054bb1 1830 * if @wb is shutting down even when we're running off the
839a8e86 1831 * rescuer as work_list needs to be drained.
6467716a 1832 */
839a8e86 1833 do {
25d130ba 1834 pages_written = wb_do_writeback(wb);
839a8e86 1835 trace_writeback_pages_written(pages_written);
f0054bb1 1836 } while (!list_empty(&wb->work_list));
839a8e86
TH
1837 } else {
1838 /*
1839 * bdi_wq can't get enough workers and we're running off
1840 * the emergency worker. Don't hog it. Hopefully, 1024 is
1841 * enough for efficient IO.
1842 */
f0054bb1 1843 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1844 WB_REASON_FORKER_THREAD);
455b2864 1845 trace_writeback_pages_written(pages_written);
03ba3782
JA
1846 }
1847
f0054bb1 1848 if (!list_empty(&wb->work_list))
6ca738d6
DB
1849 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1850 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1851 wb_wakeup_delayed(wb);
455b2864 1852
839a8e86 1853 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1854}
1855
1856/*
b8c2f347
CH
1857 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1858 * the whole world.
03ba3782 1859 */
0e175a18 1860void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1861{
b8c2f347 1862 struct backing_dev_info *bdi;
03ba3782 1863
47df3dde
JK
1864 if (!nr_pages)
1865 nr_pages = get_nr_dirty_pages();
03ba3782 1866
b8c2f347 1867 rcu_read_lock();
f2b65121
TH
1868 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1869 struct bdi_writeback *wb;
1870 struct wb_iter iter;
1871
1872 if (!bdi_has_dirty_io(bdi))
1873 continue;
1874
1875 bdi_for_each_wb(wb, bdi, &iter, 0)
1876 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1877 false, reason);
1878 }
cfc4ba53 1879 rcu_read_unlock();
1da177e4
LT
1880}
1881
a2f48706
TT
1882/*
1883 * Wake up bdi's periodically to make sure dirtytime inodes gets
1884 * written back periodically. We deliberately do *not* check the
1885 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1886 * kernel to be constantly waking up once there are any dirtytime
1887 * inodes on the system. So instead we define a separate delayed work
1888 * function which gets called much more rarely. (By default, only
1889 * once every 12 hours.)
1890 *
1891 * If there is any other write activity going on in the file system,
1892 * this function won't be necessary. But if the only thing that has
1893 * happened on the file system is a dirtytime inode caused by an atime
1894 * update, we need this infrastructure below to make sure that inode
1895 * eventually gets pushed out to disk.
1896 */
1897static void wakeup_dirtytime_writeback(struct work_struct *w);
1898static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1899
1900static void wakeup_dirtytime_writeback(struct work_struct *w)
1901{
1902 struct backing_dev_info *bdi;
1903
1904 rcu_read_lock();
1905 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1906 struct bdi_writeback *wb;
1907 struct wb_iter iter;
1908
1909 bdi_for_each_wb(wb, bdi, &iter, 0)
1910 if (!list_empty(&bdi->wb.b_dirty_time))
1911 wb_wakeup(&bdi->wb);
a2f48706
TT
1912 }
1913 rcu_read_unlock();
1914 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1915}
1916
1917static int __init start_dirtytime_writeback(void)
1918{
1919 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1920 return 0;
1921}
1922__initcall(start_dirtytime_writeback);
1923
1efff914
TT
1924int dirtytime_interval_handler(struct ctl_table *table, int write,
1925 void __user *buffer, size_t *lenp, loff_t *ppos)
1926{
1927 int ret;
1928
1929 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1930 if (ret == 0 && write)
1931 mod_delayed_work(system_wq, &dirtytime_work, 0);
1932 return ret;
1933}
1934
03ba3782
JA
1935static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1936{
1937 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1938 struct dentry *dentry;
1939 const char *name = "?";
1940
1941 dentry = d_find_alias(inode);
1942 if (dentry) {
1943 spin_lock(&dentry->d_lock);
1944 name = (const char *) dentry->d_name.name;
1945 }
1946 printk(KERN_DEBUG
1947 "%s(%d): dirtied inode %lu (%s) on %s\n",
1948 current->comm, task_pid_nr(current), inode->i_ino,
1949 name, inode->i_sb->s_id);
1950 if (dentry) {
1951 spin_unlock(&dentry->d_lock);
1952 dput(dentry);
1953 }
1954 }
1955}
1956
1957/**
1958 * __mark_inode_dirty - internal function
1959 * @inode: inode to mark
1960 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1961 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1962 * mark_inode_dirty_sync.
1da177e4 1963 *
03ba3782
JA
1964 * Put the inode on the super block's dirty list.
1965 *
1966 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1967 * dirty list only if it is hashed or if it refers to a blockdev.
1968 * If it was not hashed, it will never be added to the dirty list
1969 * even if it is later hashed, as it will have been marked dirty already.
1970 *
1971 * In short, make sure you hash any inodes _before_ you start marking
1972 * them dirty.
1da177e4 1973 *
03ba3782
JA
1974 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1975 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1976 * the kernel-internal blockdev inode represents the dirtying time of the
1977 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1978 * page->mapping->host, so the page-dirtying time is recorded in the internal
1979 * blockdev inode.
1da177e4 1980 */
0ae45f63 1981#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1982void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1983{
03ba3782 1984 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1985 int dirtytime;
1986
1987 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1988
03ba3782
JA
1989 /*
1990 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1991 * dirty the inode itself
1992 */
0ae45f63 1993 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1994 trace_writeback_dirty_inode_start(inode, flags);
1995
03ba3782 1996 if (sb->s_op->dirty_inode)
aa385729 1997 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1998
1999 trace_writeback_dirty_inode(inode, flags);
03ba3782 2000 }
0ae45f63
TT
2001 if (flags & I_DIRTY_INODE)
2002 flags &= ~I_DIRTY_TIME;
2003 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2004
2005 /*
9c6ac78e
TH
2006 * Paired with smp_mb() in __writeback_single_inode() for the
2007 * following lockless i_state test. See there for details.
03ba3782
JA
2008 */
2009 smp_mb();
2010
0ae45f63
TT
2011 if (((inode->i_state & flags) == flags) ||
2012 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2013 return;
2014
2015 if (unlikely(block_dump))
2016 block_dump___mark_inode_dirty(inode);
2017
250df6ed 2018 spin_lock(&inode->i_lock);
0ae45f63
TT
2019 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2020 goto out_unlock_inode;
03ba3782
JA
2021 if ((inode->i_state & flags) != flags) {
2022 const int was_dirty = inode->i_state & I_DIRTY;
2023
52ebea74
TH
2024 inode_attach_wb(inode, NULL);
2025
0ae45f63
TT
2026 if (flags & I_DIRTY_INODE)
2027 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2028 inode->i_state |= flags;
2029
2030 /*
2031 * If the inode is being synced, just update its dirty state.
2032 * The unlocker will place the inode on the appropriate
2033 * superblock list, based upon its state.
2034 */
2035 if (inode->i_state & I_SYNC)
250df6ed 2036 goto out_unlock_inode;
03ba3782
JA
2037
2038 /*
2039 * Only add valid (hashed) inodes to the superblock's
2040 * dirty list. Add blockdev inodes as well.
2041 */
2042 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2043 if (inode_unhashed(inode))
250df6ed 2044 goto out_unlock_inode;
03ba3782 2045 }
a4ffdde6 2046 if (inode->i_state & I_FREEING)
250df6ed 2047 goto out_unlock_inode;
03ba3782
JA
2048
2049 /*
2050 * If the inode was already on b_dirty/b_io/b_more_io, don't
2051 * reposition it (that would break b_dirty time-ordering).
2052 */
2053 if (!was_dirty) {
87e1d789 2054 struct bdi_writeback *wb;
d6c10f1f 2055 struct list_head *dirty_list;
a66979ab 2056 bool wakeup_bdi = false;
253c34e9 2057
87e1d789 2058 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2059
0747259d
TH
2060 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2061 !test_bit(WB_registered, &wb->state),
2062 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2063
2064 inode->dirtied_when = jiffies;
a2f48706
TT
2065 if (dirtytime)
2066 inode->dirtied_time_when = jiffies;
d6c10f1f 2067
a2f48706 2068 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2069 dirty_list = &wb->b_dirty;
a2f48706 2070 else
0747259d 2071 dirty_list = &wb->b_dirty_time;
d6c10f1f 2072
0747259d 2073 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
2074 dirty_list);
2075
0747259d 2076 spin_unlock(&wb->list_lock);
0ae45f63 2077 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2078
d6c10f1f
TH
2079 /*
2080 * If this is the first dirty inode for this bdi,
2081 * we have to wake-up the corresponding bdi thread
2082 * to make sure background write-back happens
2083 * later.
2084 */
0747259d
TH
2085 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2086 wb_wakeup_delayed(wb);
a66979ab 2087 return;
1da177e4 2088 }
1da177e4 2089 }
250df6ed
DC
2090out_unlock_inode:
2091 spin_unlock(&inode->i_lock);
253c34e9 2092
03ba3782
JA
2093}
2094EXPORT_SYMBOL(__mark_inode_dirty);
2095
b6e51316 2096static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2097{
2098 struct inode *inode, *old_inode = NULL;
2099
2100 /*
2101 * We need to be protected against the filesystem going from
2102 * r/o to r/w or vice versa.
2103 */
b6e51316 2104 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2105
55fa6091 2106 spin_lock(&inode_sb_list_lock);
03ba3782
JA
2107
2108 /*
2109 * Data integrity sync. Must wait for all pages under writeback,
2110 * because there may have been pages dirtied before our sync
2111 * call, but which had writeout started before we write it out.
2112 * In which case, the inode may not be on the dirty list, but
2113 * we still have to wait for that writeout.
2114 */
b6e51316 2115 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2116 struct address_space *mapping = inode->i_mapping;
03ba3782 2117
250df6ed
DC
2118 spin_lock(&inode->i_lock);
2119 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2120 (mapping->nrpages == 0)) {
2121 spin_unlock(&inode->i_lock);
03ba3782 2122 continue;
250df6ed 2123 }
03ba3782 2124 __iget(inode);
250df6ed 2125 spin_unlock(&inode->i_lock);
55fa6091
DC
2126 spin_unlock(&inode_sb_list_lock);
2127
03ba3782 2128 /*
55fa6091
DC
2129 * We hold a reference to 'inode' so it couldn't have been
2130 * removed from s_inodes list while we dropped the
2131 * inode_sb_list_lock. We cannot iput the inode now as we can
2132 * be holding the last reference and we cannot iput it under
2133 * inode_sb_list_lock. So we keep the reference and iput it
2134 * later.
03ba3782
JA
2135 */
2136 iput(old_inode);
2137 old_inode = inode;
2138
2139 filemap_fdatawait(mapping);
2140
2141 cond_resched();
2142
55fa6091 2143 spin_lock(&inode_sb_list_lock);
03ba3782 2144 }
55fa6091 2145 spin_unlock(&inode_sb_list_lock);
03ba3782 2146 iput(old_inode);
1da177e4
LT
2147}
2148
f30a7d0c
TH
2149static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2150 enum wb_reason reason, bool skip_if_busy)
1da177e4 2151{
cc395d7f 2152 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2153 struct wb_writeback_work work = {
6e6938b6
WF
2154 .sb = sb,
2155 .sync_mode = WB_SYNC_NONE,
2156 .tagged_writepages = 1,
2157 .done = &done,
2158 .nr_pages = nr,
0e175a18 2159 .reason = reason,
3c4d7165 2160 };
e7972912 2161 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2162
e7972912 2163 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2164 return;
cf37e972 2165 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2166
db125360 2167 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2168 wb_wait_for_completion(bdi, &done);
e913fc82 2169}
f30a7d0c
TH
2170
2171/**
2172 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2173 * @sb: the superblock
2174 * @nr: the number of pages to write
2175 * @reason: reason why some writeback work initiated
2176 *
2177 * Start writeback on some inodes on this super_block. No guarantees are made
2178 * on how many (if any) will be written, and this function does not wait
2179 * for IO completion of submitted IO.
2180 */
2181void writeback_inodes_sb_nr(struct super_block *sb,
2182 unsigned long nr,
2183 enum wb_reason reason)
2184{
2185 __writeback_inodes_sb_nr(sb, nr, reason, false);
2186}
3259f8be
CM
2187EXPORT_SYMBOL(writeback_inodes_sb_nr);
2188
2189/**
2190 * writeback_inodes_sb - writeback dirty inodes from given super_block
2191 * @sb: the superblock
786228ab 2192 * @reason: reason why some writeback work was initiated
3259f8be
CM
2193 *
2194 * Start writeback on some inodes on this super_block. No guarantees are made
2195 * on how many (if any) will be written, and this function does not wait
2196 * for IO completion of submitted IO.
2197 */
0e175a18 2198void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2199{
0e175a18 2200 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2201}
0e3c9a22 2202EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2203
17bd55d0 2204/**
10ee27a0 2205 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2206 * @sb: the superblock
10ee27a0
MX
2207 * @nr: the number of pages to write
2208 * @reason: the reason of writeback
17bd55d0 2209 *
10ee27a0 2210 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2211 * Returns 1 if writeback was started, 0 if not.
2212 */
f30a7d0c
TH
2213bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2214 enum wb_reason reason)
17bd55d0 2215{
10ee27a0 2216 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2217 return false;
10ee27a0 2218
f30a7d0c 2219 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2220 up_read(&sb->s_umount);
f30a7d0c 2221 return true;
17bd55d0 2222}
10ee27a0 2223EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2224
3259f8be 2225/**
10ee27a0 2226 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2227 * @sb: the superblock
786228ab 2228 * @reason: reason why some writeback work was initiated
3259f8be 2229 *
10ee27a0 2230 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2231 * Returns 1 if writeback was started, 0 if not.
2232 */
f30a7d0c 2233bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2234{
10ee27a0 2235 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2236}
10ee27a0 2237EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2238
d8a8559c
JA
2239/**
2240 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2241 * @sb: the superblock
d8a8559c
JA
2242 *
2243 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2244 * super_block.
d8a8559c 2245 */
0dc83bd3 2246void sync_inodes_sb(struct super_block *sb)
d8a8559c 2247{
cc395d7f 2248 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2249 struct wb_writeback_work work = {
3c4d7165
CH
2250 .sb = sb,
2251 .sync_mode = WB_SYNC_ALL,
2252 .nr_pages = LONG_MAX,
2253 .range_cyclic = 0,
83ba7b07 2254 .done = &done,
0e175a18 2255 .reason = WB_REASON_SYNC,
7747bd4b 2256 .for_sync = 1,
3c4d7165 2257 };
e7972912 2258 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2259
6eedc701 2260 /* Nothing to do? */
e7972912 2261 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2262 return;
cf37e972
CH
2263 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2264
db125360 2265 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2266 wb_wait_for_completion(bdi, &done);
83ba7b07 2267
b6e51316 2268 wait_sb_inodes(sb);
1da177e4 2269}
d8a8559c 2270EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2271
1da177e4 2272/**
7f04c26d
AA
2273 * write_inode_now - write an inode to disk
2274 * @inode: inode to write to disk
2275 * @sync: whether the write should be synchronous or not
2276 *
2277 * This function commits an inode to disk immediately if it is dirty. This is
2278 * primarily needed by knfsd.
1da177e4 2279 *
7f04c26d 2280 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2281 */
1da177e4
LT
2282int write_inode_now(struct inode *inode, int sync)
2283{
f758eeab 2284 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2285 struct writeback_control wbc = {
2286 .nr_to_write = LONG_MAX,
18914b18 2287 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2288 .range_start = 0,
2289 .range_end = LLONG_MAX,
1da177e4
LT
2290 };
2291
2292 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2293 wbc.nr_to_write = 0;
1da177e4
LT
2294
2295 might_sleep();
4f8ad655 2296 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2297}
2298EXPORT_SYMBOL(write_inode_now);
2299
2300/**
2301 * sync_inode - write an inode and its pages to disk.
2302 * @inode: the inode to sync
2303 * @wbc: controls the writeback mode
2304 *
2305 * sync_inode() will write an inode and its pages to disk. It will also
2306 * correctly update the inode on its superblock's dirty inode lists and will
2307 * update inode->i_state.
2308 *
2309 * The caller must have a ref on the inode.
2310 */
2311int sync_inode(struct inode *inode, struct writeback_control *wbc)
2312{
4f8ad655 2313 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2314}
2315EXPORT_SYMBOL(sync_inode);
c3765016
CH
2316
2317/**
c691b9d9 2318 * sync_inode_metadata - write an inode to disk
c3765016
CH
2319 * @inode: the inode to sync
2320 * @wait: wait for I/O to complete.
2321 *
c691b9d9 2322 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2323 *
2324 * Note: only writes the actual inode, no associated data or other metadata.
2325 */
2326int sync_inode_metadata(struct inode *inode, int wait)
2327{
2328 struct writeback_control wbc = {
2329 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2330 .nr_to_write = 0, /* metadata-only */
2331 };
2332
2333 return sync_inode(inode, &wbc);
2334}
2335EXPORT_SYMBOL(sync_inode_metadata);