]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/namespace.c
Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[thirdparty/linux.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
38129a13 90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 91{
b58fed8b
RP
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
103}
104
b105e270 105static int mnt_alloc_id(struct mount *mnt)
73cd49ec 106{
169b480e
MW
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
73cd49ec
MS
113}
114
b105e270 115static void mnt_free_id(struct mount *mnt)
73cd49ec 116{
169b480e 117 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
118}
119
719f5d7f
MS
120/*
121 * Allocate a new peer group ID
719f5d7f 122 */
4b8b21f4 123static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 124{
169b480e 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 126
169b480e
MW
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
719f5d7f
MS
131}
132
133/*
134 * Release a peer group ID
135 */
4b8b21f4 136void mnt_release_group_id(struct mount *mnt)
719f5d7f 137{
169b480e 138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 139 mnt->mnt_group_id = 0;
719f5d7f
MS
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for read
144 */
83adc753 145static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
68e8a9fe 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
149#else
150 preempt_disable();
68e8a9fe 151 mnt->mnt_count += n;
b3e19d92
NP
152 preempt_enable();
153#endif
154}
155
b3e19d92
NP
156/*
157 * vfsmount lock must be held for write
158 */
83adc753 159unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
160{
161#ifdef CONFIG_SMP
f03c6599 162 unsigned int count = 0;
b3e19d92
NP
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
68e8a9fe 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
167 }
168
169 return count;
170#else
68e8a9fe 171 return mnt->mnt_count;
b3e19d92
NP
172#endif
173}
174
b105e270 175static struct mount *alloc_vfsmnt(const char *name)
1da177e4 176{
c63181e6
AV
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
73cd49ec
MS
179 int err;
180
c63181e6 181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
fcc139ae 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 187 if (!mnt->mnt_devname)
88b38782 188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
c63181e6
AV
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
c63181e6 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
c63181e6
AV
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
b3e19d92
NP
200#endif
201
38129a13 202 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 211 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
1da177e4 213 }
c63181e6 214 return mnt;
88b38782 215
d3ef3d73
NP
216#ifdef CONFIG_SMP
217out_free_devname:
fcc139ae 218 kfree_const(mnt->mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
c63181e6 221 mnt_free_id(mnt);
88b38782 222out_free_cache:
c63181e6 223 kmem_cache_free(mnt_cache, mnt);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
43f5e655 246bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 247{
43f5e655 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
83adc753 252static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
253{
254#ifdef CONFIG_SMP
68e8a9fe 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 256#else
68e8a9fe 257 mnt->mnt_writers++;
d3ef3d73
NP
258#endif
259}
3d733633 260
83adc753 261static inline void mnt_dec_writers(struct mount *mnt)
3d733633 262{
d3ef3d73 263#ifdef CONFIG_SMP
68e8a9fe 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 265#else
68e8a9fe 266 mnt->mnt_writers--;
d3ef3d73 267#endif
3d733633 268}
3d733633 269
83adc753 270static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 271{
d3ef3d73
NP
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
3d733633 274 int cpu;
3d733633
DH
275
276 for_each_possible_cpu(cpu) {
68e8a9fe 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 278 }
3d733633 279
d3ef3d73
NP
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
3d733633
DH
284}
285
4ed5e82f
MS
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
8366025e 295/*
eb04c282
JK
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
8366025e
DH
300 */
301/**
eb04c282 302 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 303 * @m: the mount on which to take a write
8366025e 304 *
eb04c282
JK
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
8366025e 310 */
eb04c282 311int __mnt_want_write(struct vfsmount *m)
8366025e 312{
83adc753 313 struct mount *mnt = real_mount(m);
3d733633 314 int ret = 0;
3d733633 315
d3ef3d73 316 preempt_disable();
c6653a83 317 mnt_inc_writers(mnt);
d3ef3d73 318 /*
c6653a83 319 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
6aa7de05 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
4ed5e82f 332 if (mnt_is_readonly(m)) {
c6653a83 333 mnt_dec_writers(mnt);
3d733633 334 ret = -EROFS;
3d733633 335 }
d3ef3d73 336 preempt_enable();
eb04c282
JK
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
3d733633 358 return ret;
8366025e
DH
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
96029c4e
NP
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
83adc753 380 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
eb04c282 387 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
388 * @file: the file who's mount on which to take a write
389 *
eb04c282 390 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
391 * do some optimisations if the file is open for write already
392 */
eb04c282 393int __mnt_want_write_file(struct file *file)
96029c4e 394{
83f936c7 395 if (!(file->f_mode & FMODE_WRITER))
eb04c282 396 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
eb04c282 400
7c6893e3
MS
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
7c6893e3
MS
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
a6795a58 412 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
413 ret = __mnt_want_write_file(file);
414 if (ret)
a6795a58 415 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
416 return ret;
417}
96029c4e
NP
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
8366025e 420/**
eb04c282 421 * __mnt_drop_write - give up write access to a mount
8366025e
DH
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
eb04c282 426 * __mnt_want_write() call above.
8366025e 427 */
eb04c282 428void __mnt_drop_write(struct vfsmount *mnt)
8366025e 429{
d3ef3d73 430 preempt_disable();
83adc753 431 mnt_dec_writers(real_mount(mnt));
d3ef3d73 432 preempt_enable();
8366025e 433}
eb04c282
JK
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
8366025e
DH
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
eb04c282
JK
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
7c6893e3
MS
455void mnt_drop_write_file(struct file *file)
456{
a6795a58 457 __mnt_drop_write_file(file);
7c6893e3
MS
458 sb_end_write(file_inode(file)->i_sb);
459}
2a79f17e
AV
460EXPORT_SYMBOL(mnt_drop_write_file);
461
83adc753 462static int mnt_make_readonly(struct mount *mnt)
8366025e 463{
3d733633
DH
464 int ret = 0;
465
719ea2fb 466 lock_mount_hash();
83adc753 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 468 /*
d3ef3d73
NP
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
3d733633 471 */
d3ef3d73
NP
472 smp_mb();
473
3d733633 474 /*
d3ef3d73
NP
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
3d733633 489 */
c6653a83 490 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
491 ret = -EBUSY;
492 else
83adc753 493 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
83adc753 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 500 unlock_mount_hash();
3d733633 501 return ret;
8366025e 502}
8366025e 503
43f5e655 504static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 505{
719ea2fb 506 lock_mount_hash();
83adc753 507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 508 unlock_mount_hash();
43f5e655 509 return 0;
2e4b7fcd
DH
510}
511
4ed5e82f
MS
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
8e8b8796
MS
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
719ea2fb 521 lock_mount_hash();
4ed5e82f
MS
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
8e8b8796
MS
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
4ed5e82f
MS
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
719ea2fb 543 unlock_mount_hash();
4ed5e82f
MS
544
545 return err;
546}
547
b105e270 548static void free_vfsmnt(struct mount *mnt)
1da177e4 549{
fcc139ae 550 kfree_const(mnt->mnt_devname);
d3ef3d73 551#ifdef CONFIG_SMP
68e8a9fe 552 free_percpu(mnt->mnt_pcp);
d3ef3d73 553#endif
b105e270 554 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
555}
556
8ffcb32e
DH
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
48a066e7 562/* call under rcu_read_lock */
294d71ff 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
294d71ff 567 return 1;
48a066e7 568 if (bastard == NULL)
294d71ff 569 return 0;
48a066e7
AV
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
119e1ef8 572 smp_mb(); // see mntput_no_expire()
48a066e7 573 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 574 return 0;
48a066e7
AV
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
294d71ff
AV
577 return 1;
578 }
119e1ef8
AV
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
294d71ff
AV
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
48a066e7 600 }
48a066e7
AV
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
a05964f3 619/*
f015f126
DH
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 634 */
ca71cf71 635struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 636{
c7105365 637 struct mount *child_mnt;
48a066e7
AV
638 struct vfsmount *m;
639 unsigned seq;
99b7db7b 640
48a066e7
AV
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
a05964f3
RP
649}
650
9f6c61f9
MS
651static inline void lock_ns_list(struct mnt_namespace *ns)
652{
653 spin_lock(&ns->ns_lock);
654}
655
656static inline void unlock_ns_list(struct mnt_namespace *ns)
657{
658 spin_unlock(&ns->ns_lock);
659}
660
661static inline bool mnt_is_cursor(struct mount *mnt)
662{
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
664}
665
7af1364f
EB
666/*
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
669 *
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
674 * is a mountpoint.
675 *
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
679 * parent mount.
680 */
681bool __is_local_mountpoint(struct dentry *dentry)
682{
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 struct mount *mnt;
685 bool is_covered = false;
686
687 if (!d_mountpoint(dentry))
688 goto out;
689
690 down_read(&namespace_sem);
9f6c61f9 691 lock_ns_list(ns);
7af1364f 692 list_for_each_entry(mnt, &ns->list, mnt_list) {
9f6c61f9
MS
693 if (mnt_is_cursor(mnt))
694 continue;
7af1364f
EB
695 is_covered = (mnt->mnt_mountpoint == dentry);
696 if (is_covered)
697 break;
698 }
9f6c61f9 699 unlock_ns_list(ns);
7af1364f
EB
700 up_read(&namespace_sem);
701out:
702 return is_covered;
703}
704
e2dfa935 705static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 706{
0818bf27 707 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
708 struct mountpoint *mp;
709
0818bf27 710 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 711 if (mp->m_dentry == dentry) {
84d17192
AV
712 mp->m_count++;
713 return mp;
714 }
715 }
e2dfa935
EB
716 return NULL;
717}
718
3895dbf8 719static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 720{
3895dbf8 721 struct mountpoint *mp, *new = NULL;
e2dfa935 722 int ret;
84d17192 723
3895dbf8 724 if (d_mountpoint(dentry)) {
1e9c75fb
BC
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
3895dbf8
EB
728mountpoint:
729 read_seqlock_excl(&mount_lock);
730 mp = lookup_mountpoint(dentry);
731 read_sequnlock_excl(&mount_lock);
732 if (mp)
733 goto done;
734 }
735
736 if (!new)
737 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
738 if (!new)
84d17192
AV
739 return ERR_PTR(-ENOMEM);
740
3895dbf8
EB
741
742 /* Exactly one processes may set d_mounted */
eed81007 743 ret = d_set_mounted(dentry);
eed81007 744
3895dbf8
EB
745 /* Someone else set d_mounted? */
746 if (ret == -EBUSY)
747 goto mountpoint;
748
749 /* The dentry is not available as a mountpoint? */
750 mp = ERR_PTR(ret);
751 if (ret)
752 goto done;
753
754 /* Add the new mountpoint to the hash table */
755 read_seqlock_excl(&mount_lock);
4edbe133 756 new->m_dentry = dget(dentry);
3895dbf8
EB
757 new->m_count = 1;
758 hlist_add_head(&new->m_hash, mp_hash(dentry));
759 INIT_HLIST_HEAD(&new->m_list);
760 read_sequnlock_excl(&mount_lock);
761
762 mp = new;
763 new = NULL;
764done:
765 kfree(new);
84d17192
AV
766 return mp;
767}
768
4edbe133
AV
769/*
770 * vfsmount lock must be held. Additionally, the caller is responsible
771 * for serializing calls for given disposal list.
772 */
773static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
774{
775 if (!--mp->m_count) {
776 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 777 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
778 spin_lock(&dentry->d_lock);
779 dentry->d_flags &= ~DCACHE_MOUNTED;
780 spin_unlock(&dentry->d_lock);
4edbe133 781 dput_to_list(dentry, list);
0818bf27 782 hlist_del(&mp->m_hash);
84d17192
AV
783 kfree(mp);
784 }
785}
786
4edbe133
AV
787/* called with namespace_lock and vfsmount lock */
788static void put_mountpoint(struct mountpoint *mp)
789{
790 __put_mountpoint(mp, &ex_mountpoints);
791}
792
143c8c91 793static inline int check_mnt(struct mount *mnt)
1da177e4 794{
6b3286ed 795 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
6b3286ed 801static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
802{
803 if (ns) {
804 ns->event = ++event;
805 wake_up_interruptible(&ns->poll);
806 }
807}
808
99b7db7b
NP
809/*
810 * vfsmount lock must be held for write
811 */
6b3286ed 812static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
813{
814 if (ns && ns->event != event) {
815 ns->event = event;
816 wake_up_interruptible(&ns->poll);
817 }
818}
819
99b7db7b
NP
820/*
821 * vfsmount lock must be held for write
822 */
e4e59906 823static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 824{
e4e59906 825 struct mountpoint *mp;
0714a533 826 mnt->mnt_parent = mnt;
a73324da 827 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 828 list_del_init(&mnt->mnt_child);
38129a13 829 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 830 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 831 mp = mnt->mnt_mp;
84d17192 832 mnt->mnt_mp = NULL;
e4e59906 833 return mp;
7bdb11de
EB
834}
835
6a46c573
EB
836/*
837 * vfsmount lock must be held for write
838 */
839static void umount_mnt(struct mount *mnt)
840{
e4e59906 841 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
842}
843
99b7db7b
NP
844/*
845 * vfsmount lock must be held for write
846 */
84d17192
AV
847void mnt_set_mountpoint(struct mount *mnt,
848 struct mountpoint *mp,
44d964d6 849 struct mount *child_mnt)
b90fa9ae 850{
84d17192 851 mp->m_count++;
3a2393d7 852 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 853 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 854 child_mnt->mnt_parent = mnt;
84d17192 855 child_mnt->mnt_mp = mp;
0a5eb7c8 856 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
857}
858
1064f874
EB
859static void __attach_mnt(struct mount *mnt, struct mount *parent)
860{
861 hlist_add_head_rcu(&mnt->mnt_hash,
862 m_hash(&parent->mnt, mnt->mnt_mountpoint));
863 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
864}
865
99b7db7b
NP
866/*
867 * vfsmount lock must be held for write
868 */
84d17192
AV
869static void attach_mnt(struct mount *mnt,
870 struct mount *parent,
871 struct mountpoint *mp)
1da177e4 872{
84d17192 873 mnt_set_mountpoint(parent, mp, mnt);
1064f874 874 __attach_mnt(mnt, parent);
b90fa9ae
RP
875}
876
1064f874 877void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 878{
1064f874 879 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
880 struct mount *old_parent = mnt->mnt_parent;
881
882 list_del_init(&mnt->mnt_child);
883 hlist_del_init(&mnt->mnt_mp_list);
884 hlist_del_init_rcu(&mnt->mnt_hash);
885
886 attach_mnt(mnt, parent, mp);
887
888 put_mountpoint(old_mp);
1064f874 889 mnt_add_count(old_parent, -1);
12a5b529
AV
890}
891
b90fa9ae 892/*
99b7db7b 893 * vfsmount lock must be held for write
b90fa9ae 894 */
1064f874 895static void commit_tree(struct mount *mnt)
b90fa9ae 896{
0714a533 897 struct mount *parent = mnt->mnt_parent;
83adc753 898 struct mount *m;
b90fa9ae 899 LIST_HEAD(head);
143c8c91 900 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 901
0714a533 902 BUG_ON(parent == mnt);
b90fa9ae 903
1a4eeaf2 904 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 905 list_for_each_entry(m, &head, mnt_list)
143c8c91 906 m->mnt_ns = n;
f03c6599 907
b90fa9ae
RP
908 list_splice(&head, n->list.prev);
909
d2921684
EB
910 n->mounts += n->pending_mounts;
911 n->pending_mounts = 0;
912
1064f874 913 __attach_mnt(mnt, parent);
6b3286ed 914 touch_mnt_namespace(n);
1da177e4
LT
915}
916
909b0a88 917static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 918{
6b41d536
AV
919 struct list_head *next = p->mnt_mounts.next;
920 if (next == &p->mnt_mounts) {
1da177e4 921 while (1) {
909b0a88 922 if (p == root)
1da177e4 923 return NULL;
6b41d536
AV
924 next = p->mnt_child.next;
925 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 926 break;
0714a533 927 p = p->mnt_parent;
1da177e4
LT
928 }
929 }
6b41d536 930 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
931}
932
315fc83e 933static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 934{
6b41d536
AV
935 struct list_head *prev = p->mnt_mounts.prev;
936 while (prev != &p->mnt_mounts) {
937 p = list_entry(prev, struct mount, mnt_child);
938 prev = p->mnt_mounts.prev;
9676f0c6
RP
939 }
940 return p;
941}
942
8f291889
AV
943/**
944 * vfs_create_mount - Create a mount for a configured superblock
945 * @fc: The configuration context with the superblock attached
946 *
947 * Create a mount to an already configured superblock. If necessary, the
948 * caller should invoke vfs_get_tree() before calling this.
949 *
950 * Note that this does not attach the mount to anything.
951 */
952struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 953{
b105e270 954 struct mount *mnt;
9d412a43 955
8f291889
AV
956 if (!fc->root)
957 return ERR_PTR(-EINVAL);
9d412a43 958
8f291889 959 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
960 if (!mnt)
961 return ERR_PTR(-ENOMEM);
962
8f291889 963 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 964 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 965
8f291889
AV
966 atomic_inc(&fc->root->d_sb->s_active);
967 mnt->mnt.mnt_sb = fc->root->d_sb;
968 mnt->mnt.mnt_root = dget(fc->root);
969 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
970 mnt->mnt_parent = mnt;
9d412a43 971
719ea2fb 972 lock_mount_hash();
8f291889 973 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 974 unlock_mount_hash();
b105e270 975 return &mnt->mnt;
9d412a43 976}
8f291889
AV
977EXPORT_SYMBOL(vfs_create_mount);
978
979struct vfsmount *fc_mount(struct fs_context *fc)
980{
981 int err = vfs_get_tree(fc);
982 if (!err) {
983 up_write(&fc->root->d_sb->s_umount);
984 return vfs_create_mount(fc);
985 }
986 return ERR_PTR(err);
987}
988EXPORT_SYMBOL(fc_mount);
989
9bc61ab1
DH
990struct vfsmount *vfs_kern_mount(struct file_system_type *type,
991 int flags, const char *name,
992 void *data)
9d412a43 993{
9bc61ab1 994 struct fs_context *fc;
8f291889 995 struct vfsmount *mnt;
9bc61ab1 996 int ret = 0;
9d412a43
AV
997
998 if (!type)
3e1aeb00 999 return ERR_PTR(-EINVAL);
9d412a43 1000
9bc61ab1
DH
1001 fc = fs_context_for_mount(type, flags);
1002 if (IS_ERR(fc))
1003 return ERR_CAST(fc);
1004
3e1aeb00
DH
1005 if (name)
1006 ret = vfs_parse_fs_string(fc, "source",
1007 name, strlen(name));
9bc61ab1
DH
1008 if (!ret)
1009 ret = parse_monolithic_mount_data(fc, data);
1010 if (!ret)
8f291889
AV
1011 mnt = fc_mount(fc);
1012 else
1013 mnt = ERR_PTR(ret);
9d412a43 1014
9bc61ab1 1015 put_fs_context(fc);
8f291889 1016 return mnt;
9d412a43
AV
1017}
1018EXPORT_SYMBOL_GPL(vfs_kern_mount);
1019
93faccbb
EB
1020struct vfsmount *
1021vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1022 const char *name, void *data)
1023{
1024 /* Until it is worked out how to pass the user namespace
1025 * through from the parent mount to the submount don't support
1026 * unprivileged mounts with submounts.
1027 */
1028 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1029 return ERR_PTR(-EPERM);
1030
e462ec50 1031 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1032}
1033EXPORT_SYMBOL_GPL(vfs_submount);
1034
87129cc0 1035static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1036 int flag)
1da177e4 1037{
87129cc0 1038 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1039 struct mount *mnt;
1040 int err;
1da177e4 1041
be34d1a3
DH
1042 mnt = alloc_vfsmnt(old->mnt_devname);
1043 if (!mnt)
1044 return ERR_PTR(-ENOMEM);
719f5d7f 1045
7a472ef4 1046 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1047 mnt->mnt_group_id = 0; /* not a peer of original */
1048 else
1049 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1050
be34d1a3
DH
1051 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1052 err = mnt_alloc_group_id(mnt);
1053 if (err)
1054 goto out_free;
1da177e4 1055 }
be34d1a3 1056
16a34adb
AV
1057 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1058 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1059
be34d1a3
DH
1060 atomic_inc(&sb->s_active);
1061 mnt->mnt.mnt_sb = sb;
1062 mnt->mnt.mnt_root = dget(root);
1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1064 mnt->mnt_parent = mnt;
719ea2fb 1065 lock_mount_hash();
be34d1a3 1066 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1067 unlock_mount_hash();
be34d1a3 1068
7a472ef4
EB
1069 if ((flag & CL_SLAVE) ||
1070 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1071 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1072 mnt->mnt_master = old;
1073 CLEAR_MNT_SHARED(mnt);
1074 } else if (!(flag & CL_PRIVATE)) {
1075 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1076 list_add(&mnt->mnt_share, &old->mnt_share);
1077 if (IS_MNT_SLAVE(old))
1078 list_add(&mnt->mnt_slave, &old->mnt_slave);
1079 mnt->mnt_master = old->mnt_master;
5235d448
AV
1080 } else {
1081 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1082 }
1083 if (flag & CL_MAKE_SHARED)
1084 set_mnt_shared(mnt);
1085
1086 /* stick the duplicate mount on the same expiry list
1087 * as the original if that was on one */
1088 if (flag & CL_EXPIRE) {
1089 if (!list_empty(&old->mnt_expire))
1090 list_add(&mnt->mnt_expire, &old->mnt_expire);
1091 }
1092
cb338d06 1093 return mnt;
719f5d7f
MS
1094
1095 out_free:
8ffcb32e 1096 mnt_free_id(mnt);
719f5d7f 1097 free_vfsmnt(mnt);
be34d1a3 1098 return ERR_PTR(err);
1da177e4
LT
1099}
1100
9ea459e1
AV
1101static void cleanup_mnt(struct mount *mnt)
1102{
56cbb429
AV
1103 struct hlist_node *p;
1104 struct mount *m;
9ea459e1 1105 /*
56cbb429
AV
1106 * The warning here probably indicates that somebody messed
1107 * up a mnt_want/drop_write() pair. If this happens, the
1108 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1109 * The locking used to deal with mnt_count decrement provides barriers,
1110 * so mnt_get_writers() below is safe.
1111 */
1112 WARN_ON(mnt_get_writers(mnt));
1113 if (unlikely(mnt->mnt_pins.first))
1114 mnt_pin_kill(mnt);
56cbb429
AV
1115 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1116 hlist_del(&m->mnt_umount);
1117 mntput(&m->mnt);
1118 }
9ea459e1
AV
1119 fsnotify_vfsmount_delete(&mnt->mnt);
1120 dput(mnt->mnt.mnt_root);
1121 deactivate_super(mnt->mnt.mnt_sb);
1122 mnt_free_id(mnt);
1123 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1124}
1125
1126static void __cleanup_mnt(struct rcu_head *head)
1127{
1128 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1129}
1130
1131static LLIST_HEAD(delayed_mntput_list);
1132static void delayed_mntput(struct work_struct *unused)
1133{
1134 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1135 struct mount *m, *t;
9ea459e1 1136
29785735
BP
1137 llist_for_each_entry_safe(m, t, node, mnt_llist)
1138 cleanup_mnt(m);
9ea459e1
AV
1139}
1140static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1141
900148dc 1142static void mntput_no_expire(struct mount *mnt)
b3e19d92 1143{
4edbe133
AV
1144 LIST_HEAD(list);
1145
48a066e7 1146 rcu_read_lock();
9ea0a46c
AV
1147 if (likely(READ_ONCE(mnt->mnt_ns))) {
1148 /*
1149 * Since we don't do lock_mount_hash() here,
1150 * ->mnt_ns can change under us. However, if it's
1151 * non-NULL, then there's a reference that won't
1152 * be dropped until after an RCU delay done after
1153 * turning ->mnt_ns NULL. So if we observe it
1154 * non-NULL under rcu_read_lock(), the reference
1155 * we are dropping is not the final one.
1156 */
1157 mnt_add_count(mnt, -1);
48a066e7 1158 rcu_read_unlock();
f03c6599 1159 return;
b3e19d92 1160 }
719ea2fb 1161 lock_mount_hash();
119e1ef8
AV
1162 /*
1163 * make sure that if __legitimize_mnt() has not seen us grab
1164 * mount_lock, we'll see their refcount increment here.
1165 */
1166 smp_mb();
9ea0a46c 1167 mnt_add_count(mnt, -1);
b3e19d92 1168 if (mnt_get_count(mnt)) {
48a066e7 1169 rcu_read_unlock();
719ea2fb 1170 unlock_mount_hash();
99b7db7b
NP
1171 return;
1172 }
48a066e7
AV
1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1174 rcu_read_unlock();
1175 unlock_mount_hash();
1176 return;
1177 }
1178 mnt->mnt.mnt_flags |= MNT_DOOMED;
1179 rcu_read_unlock();
962830df 1180
39f7c4db 1181 list_del(&mnt->mnt_instance);
ce07d891
EB
1182
1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 struct mount *p, *tmp;
1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1186 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1188 }
1189 }
719ea2fb 1190 unlock_mount_hash();
4edbe133 1191 shrink_dentry_list(&list);
649a795a 1192
9ea459e1
AV
1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 struct task_struct *task = current;
1195 if (likely(!(task->flags & PF_KTHREAD))) {
1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1197 if (!task_work_add(task, &mnt->mnt_rcu, true))
1198 return;
1199 }
1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 schedule_delayed_work(&delayed_mntput_work, 1);
1202 return;
1203 }
1204 cleanup_mnt(mnt);
b3e19d92 1205}
b3e19d92
NP
1206
1207void mntput(struct vfsmount *mnt)
1208{
1209 if (mnt) {
863d684f 1210 struct mount *m = real_mount(mnt);
b3e19d92 1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1212 if (unlikely(m->mnt_expiry_mark))
1213 m->mnt_expiry_mark = 0;
1214 mntput_no_expire(m);
b3e19d92
NP
1215 }
1216}
1217EXPORT_SYMBOL(mntput);
1218
1219struct vfsmount *mntget(struct vfsmount *mnt)
1220{
1221 if (mnt)
83adc753 1222 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1223 return mnt;
1224}
1225EXPORT_SYMBOL(mntget);
1226
c6609c0a
IK
1227/* path_is_mountpoint() - Check if path is a mount in the current
1228 * namespace.
1229 *
1230 * d_mountpoint() can only be used reliably to establish if a dentry is
1231 * not mounted in any namespace and that common case is handled inline.
1232 * d_mountpoint() isn't aware of the possibility there may be multiple
1233 * mounts using a given dentry in a different namespace. This function
1234 * checks if the passed in path is a mountpoint rather than the dentry
1235 * alone.
1236 */
1237bool path_is_mountpoint(const struct path *path)
1238{
1239 unsigned seq;
1240 bool res;
1241
1242 if (!d_mountpoint(path->dentry))
1243 return false;
1244
1245 rcu_read_lock();
1246 do {
1247 seq = read_seqbegin(&mount_lock);
1248 res = __path_is_mountpoint(path);
1249 } while (read_seqretry(&mount_lock, seq));
1250 rcu_read_unlock();
1251
1252 return res;
1253}
1254EXPORT_SYMBOL(path_is_mountpoint);
1255
ca71cf71 1256struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1257{
3064c356
AV
1258 struct mount *p;
1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1260 if (IS_ERR(p))
1261 return ERR_CAST(p);
1262 p->mnt.mnt_flags |= MNT_INTERNAL;
1263 return &p->mnt;
7b7b1ace 1264}
1da177e4 1265
a1a2c409 1266#ifdef CONFIG_PROC_FS
9f6c61f9
MS
1267static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 struct list_head *p)
1269{
1270 struct mount *mnt, *ret = NULL;
1271
1272 lock_ns_list(ns);
1273 list_for_each_continue(p, &ns->list) {
1274 mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 if (!mnt_is_cursor(mnt)) {
1276 ret = mnt;
1277 break;
1278 }
1279 }
1280 unlock_ns_list(ns);
1281
1282 return ret;
1283}
1284
0226f492 1285/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1286static void *m_start(struct seq_file *m, loff_t *pos)
1287{
ede1bf0d 1288 struct proc_mounts *p = m->private;
9f6c61f9 1289 struct list_head *prev;
1da177e4 1290
390c6843 1291 down_read(&namespace_sem);
9f6c61f9
MS
1292 if (!*pos) {
1293 prev = &p->ns->list;
1294 } else {
1295 prev = &p->cursor.mnt_list;
1296
1297 /* Read after we'd reached the end? */
1298 if (list_empty(prev))
1299 return NULL;
c7999c36
AV
1300 }
1301
9f6c61f9 1302 return mnt_list_next(p->ns, prev);
1da177e4
LT
1303}
1304
1305static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306{
ede1bf0d 1307 struct proc_mounts *p = m->private;
9f6c61f9 1308 struct mount *mnt = v;
b0765fb8 1309
9f6c61f9
MS
1310 ++*pos;
1311 return mnt_list_next(p->ns, &mnt->mnt_list);
1da177e4
LT
1312}
1313
1314static void m_stop(struct seq_file *m, void *v)
1315{
9f6c61f9
MS
1316 struct proc_mounts *p = m->private;
1317 struct mount *mnt = v;
1318
1319 lock_ns_list(p->ns);
1320 if (mnt)
1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1322 else
1323 list_del_init(&p->cursor.mnt_list);
1324 unlock_ns_list(p->ns);
390c6843 1325 up_read(&namespace_sem);
1da177e4
LT
1326}
1327
0226f492 1328static int m_show(struct seq_file *m, void *v)
2d4d4864 1329{
ede1bf0d 1330 struct proc_mounts *p = m->private;
9f6c61f9 1331 struct mount *r = v;
0226f492 1332 return p->show(m, &r->mnt);
1da177e4
LT
1333}
1334
a1a2c409 1335const struct seq_operations mounts_op = {
1da177e4
LT
1336 .start = m_start,
1337 .next = m_next,
1338 .stop = m_stop,
0226f492 1339 .show = m_show,
b4629fe2 1340};
9f6c61f9
MS
1341
1342void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1343{
1344 down_read(&namespace_sem);
1345 lock_ns_list(ns);
1346 list_del(&cursor->mnt_list);
1347 unlock_ns_list(ns);
1348 up_read(&namespace_sem);
1349}
a1a2c409 1350#endif /* CONFIG_PROC_FS */
b4629fe2 1351
1da177e4
LT
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
909b0a88 1360int may_umount_tree(struct vfsmount *m)
1da177e4 1361{
909b0a88 1362 struct mount *mnt = real_mount(m);
36341f64
RP
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
315fc83e 1365 struct mount *p;
909b0a88 1366 BUG_ON(!m);
1da177e4 1367
b3e19d92 1368 /* write lock needed for mnt_get_count */
719ea2fb 1369 lock_mount_hash();
909b0a88 1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1371 actual_refs += mnt_get_count(p);
1da177e4 1372 minimum_refs += 2;
1da177e4 1373 }
719ea2fb 1374 unlock_mount_hash();
1da177e4
LT
1375
1376 if (actual_refs > minimum_refs)
e3474a8e 1377 return 0;
1da177e4 1378
e3474a8e 1379 return 1;
1da177e4
LT
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
e3474a8e 1399 int ret = 1;
8ad08d8a 1400 down_read(&namespace_sem);
719ea2fb 1401 lock_mount_hash();
1ab59738 1402 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1403 ret = 0;
719ea2fb 1404 unlock_mount_hash();
8ad08d8a 1405 up_read(&namespace_sem);
a05964f3 1406 return ret;
1da177e4
LT
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
97216be0 1411static void namespace_unlock(void)
70fbcdf4 1412{
a3b3c562 1413 struct hlist_head head;
56cbb429
AV
1414 struct hlist_node *p;
1415 struct mount *m;
4edbe133 1416 LIST_HEAD(list);
97216be0 1417
a3b3c562 1418 hlist_move_list(&unmounted, &head);
4edbe133 1419 list_splice_init(&ex_mountpoints, &list);
97216be0 1420
97216be0
AV
1421 up_write(&namespace_sem);
1422
4edbe133
AV
1423 shrink_dentry_list(&list);
1424
a3b3c562
EB
1425 if (likely(hlist_empty(&head)))
1426 return;
1427
22cb7405 1428 synchronize_rcu_expedited();
48a066e7 1429
56cbb429
AV
1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 hlist_del(&m->mnt_umount);
1432 mntput(&m->mnt);
1433 }
70fbcdf4
RP
1434}
1435
97216be0 1436static inline void namespace_lock(void)
e3197d83 1437{
97216be0 1438 down_write(&namespace_sem);
e3197d83
AV
1439}
1440
e819f152
EB
1441enum umount_tree_flags {
1442 UMOUNT_SYNC = 1,
1443 UMOUNT_PROPAGATE = 2,
e0c9c0af 1444 UMOUNT_CONNECTED = 4,
e819f152 1445};
f2d0a123
EB
1446
1447static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448{
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1451 return true;
1452
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1455 return true;
1456
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1460 */
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 return true;
1463
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1466 return false;
1467
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1470 return false;
1471
1472 /* By default disconnect the mount */
1473 return true;
1474}
1475
99b7db7b 1476/*
48a066e7 1477 * mount_lock must be held
99b7db7b
NP
1478 * namespace_sem must be held for write
1479 */
e819f152 1480static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1481{
c003b26f 1482 LIST_HEAD(tmp_list);
315fc83e 1483 struct mount *p;
1da177e4 1484
5d88457e
EB
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1487
c003b26f 1488 /* Gather the mounts to umount */
590ce4bc
EB
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1491 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1492 }
1da177e4 1493
411a938b 1494 /* Hide the mounts from mnt_mounts */
c003b26f 1495 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1496 list_del_init(&p->mnt_child);
c003b26f 1497 }
88b368f2 1498
c003b26f 1499 /* Add propogated mounts to the tmp_list */
e819f152 1500 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1501 propagate_umount(&tmp_list);
a05964f3 1502
c003b26f 1503 while (!list_empty(&tmp_list)) {
d2921684 1504 struct mnt_namespace *ns;
ce07d891 1505 bool disconnect;
c003b26f 1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1507 list_del_init(&p->mnt_expire);
1a4eeaf2 1508 list_del_init(&p->mnt_list);
d2921684
EB
1509 ns = p->mnt_ns;
1510 if (ns) {
1511 ns->mounts--;
1512 __touch_mnt_namespace(ns);
1513 }
143c8c91 1514 p->mnt_ns = NULL;
e819f152 1515 if (how & UMOUNT_SYNC)
48a066e7 1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1517
f2d0a123 1518 disconnect = disconnect_mount(p, how);
676da58d 1519 if (mnt_has_parent(p)) {
81b6b061 1520 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1521 if (!disconnect) {
1522 /* Don't forget about p */
1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1524 } else {
1525 umount_mnt(p);
1526 }
7c4b93d8 1527 }
0f0afb1d 1528 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1529 if (disconnect)
1530 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1531 }
1532}
1533
b54b9be7 1534static void shrink_submounts(struct mount *mnt);
c35038be 1535
8d0347f6
DH
1536static int do_umount_root(struct super_block *sb)
1537{
1538 int ret = 0;
1539
1540 down_write(&sb->s_umount);
1541 if (!sb_rdonly(sb)) {
1542 struct fs_context *fc;
1543
1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1545 SB_RDONLY);
1546 if (IS_ERR(fc)) {
1547 ret = PTR_ERR(fc);
1548 } else {
1549 ret = parse_monolithic_mount_data(fc, NULL);
1550 if (!ret)
1551 ret = reconfigure_super(fc);
1552 put_fs_context(fc);
1553 }
1554 }
1555 up_write(&sb->s_umount);
1556 return ret;
1557}
1558
1ab59738 1559static int do_umount(struct mount *mnt, int flags)
1da177e4 1560{
1ab59738 1561 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1562 int retval;
1563
1ab59738 1564 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1565 if (retval)
1566 return retval;
1567
1568 /*
1569 * Allow userspace to request a mountpoint be expired rather than
1570 * unmounting unconditionally. Unmount only happens if:
1571 * (1) the mark is already set (the mark is cleared by mntput())
1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1573 */
1574 if (flags & MNT_EXPIRE) {
1ab59738 1575 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1576 flags & (MNT_FORCE | MNT_DETACH))
1577 return -EINVAL;
1578
b3e19d92
NP
1579 /*
1580 * probably don't strictly need the lock here if we examined
1581 * all race cases, but it's a slowpath.
1582 */
719ea2fb 1583 lock_mount_hash();
83adc753 1584 if (mnt_get_count(mnt) != 2) {
719ea2fb 1585 unlock_mount_hash();
1da177e4 1586 return -EBUSY;
b3e19d92 1587 }
719ea2fb 1588 unlock_mount_hash();
1da177e4 1589
863d684f 1590 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1591 return -EAGAIN;
1592 }
1593
1594 /*
1595 * If we may have to abort operations to get out of this
1596 * mount, and they will themselves hold resources we must
1597 * allow the fs to do things. In the Unix tradition of
1598 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 * might fail to complete on the first run through as other tasks
1600 * must return, and the like. Thats for the mount program to worry
1601 * about for the moment.
1602 */
1603
42faad99 1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1605 sb->s_op->umount_begin(sb);
42faad99 1606 }
1da177e4
LT
1607
1608 /*
1609 * No sense to grab the lock for this test, but test itself looks
1610 * somewhat bogus. Suggestions for better replacement?
1611 * Ho-hum... In principle, we might treat that as umount + switch
1612 * to rootfs. GC would eventually take care of the old vfsmount.
1613 * Actually it makes sense, especially if rootfs would contain a
1614 * /reboot - static binary that would close all descriptors and
1615 * call reboot(9). Then init(8) could umount root and exec /reboot.
1616 */
1ab59738 1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1618 /*
1619 * Special case for "unmounting" root ...
1620 * we just try to remount it readonly.
1621 */
bc6155d1 1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1623 return -EPERM;
8d0347f6 1624 return do_umount_root(sb);
1da177e4
LT
1625 }
1626
97216be0 1627 namespace_lock();
719ea2fb 1628 lock_mount_hash();
1da177e4 1629
25d202ed
EB
1630 /* Recheck MNT_LOCKED with the locks held */
1631 retval = -EINVAL;
1632 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 goto out;
1634
1635 event++;
48a066e7 1636 if (flags & MNT_DETACH) {
1a4eeaf2 1637 if (!list_empty(&mnt->mnt_list))
e819f152 1638 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1639 retval = 0;
48a066e7
AV
1640 } else {
1641 shrink_submounts(mnt);
1642 retval = -EBUSY;
1643 if (!propagate_mount_busy(mnt, 2)) {
1644 if (!list_empty(&mnt->mnt_list))
e819f152 1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1646 retval = 0;
1647 }
1da177e4 1648 }
25d202ed 1649out:
719ea2fb 1650 unlock_mount_hash();
e3197d83 1651 namespace_unlock();
1da177e4
LT
1652 return retval;
1653}
1654
80b5dce8
EB
1655/*
1656 * __detach_mounts - lazily unmount all mounts on the specified dentry
1657 *
1658 * During unlink, rmdir, and d_drop it is possible to loose the path
1659 * to an existing mountpoint, and wind up leaking the mount.
1660 * detach_mounts allows lazily unmounting those mounts instead of
1661 * leaking them.
1662 *
1663 * The caller may hold dentry->d_inode->i_mutex.
1664 */
1665void __detach_mounts(struct dentry *dentry)
1666{
1667 struct mountpoint *mp;
1668 struct mount *mnt;
1669
1670 namespace_lock();
3895dbf8 1671 lock_mount_hash();
80b5dce8 1672 mp = lookup_mountpoint(dentry);
adc9b5c0 1673 if (!mp)
80b5dce8
EB
1674 goto out_unlock;
1675
e06b933e 1676 event++;
80b5dce8
EB
1677 while (!hlist_empty(&mp->m_list)) {
1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1680 umount_mnt(mnt);
56cbb429 1681 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1682 }
e0c9c0af 1683 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1684 }
80b5dce8
EB
1685 put_mountpoint(mp);
1686out_unlock:
3895dbf8 1687 unlock_mount_hash();
80b5dce8
EB
1688 namespace_unlock();
1689}
1690
dd111b31 1691/*
9b40bc90
AV
1692 * Is the caller allowed to modify his namespace?
1693 */
1694static inline bool may_mount(void)
1695{
1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1697}
1698
df2474a2 1699#ifdef CONFIG_MANDATORY_FILE_LOCKING
9e8925b6
JL
1700static inline bool may_mandlock(void)
1701{
95ace754 1702 return capable(CAP_SYS_ADMIN);
9e8925b6 1703}
df2474a2
JL
1704#else
1705static inline bool may_mandlock(void)
1706{
1707 pr_warn("VFS: \"mand\" mount option not supported");
1708 return false;
1709}
1710#endif
9e8925b6 1711
1da177e4
LT
1712/*
1713 * Now umount can handle mount points as well as block devices.
1714 * This is important for filesystems which use unnamed block devices.
1715 *
1716 * We now support a flag for forced unmount like the other 'big iron'
1717 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1718 */
1719
3a18ef5c 1720int ksys_umount(char __user *name, int flags)
1da177e4 1721{
2d8f3038 1722 struct path path;
900148dc 1723 struct mount *mnt;
1da177e4 1724 int retval;
161aff1d 1725 int lookup_flags = LOOKUP_MOUNTPOINT;
1da177e4 1726
db1f05bb
MS
1727 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1728 return -EINVAL;
1729
9b40bc90
AV
1730 if (!may_mount())
1731 return -EPERM;
1732
db1f05bb
MS
1733 if (!(flags & UMOUNT_NOFOLLOW))
1734 lookup_flags |= LOOKUP_FOLLOW;
1735
161aff1d 1736 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1737 if (retval)
1738 goto out;
900148dc 1739 mnt = real_mount(path.mnt);
1da177e4 1740 retval = -EINVAL;
2d8f3038 1741 if (path.dentry != path.mnt->mnt_root)
1da177e4 1742 goto dput_and_out;
143c8c91 1743 if (!check_mnt(mnt))
1da177e4 1744 goto dput_and_out;
25d202ed 1745 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1746 goto dput_and_out;
b2f5d4dc
EB
1747 retval = -EPERM;
1748 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1749 goto dput_and_out;
1da177e4 1750
900148dc 1751 retval = do_umount(mnt, flags);
1da177e4 1752dput_and_out:
429731b1 1753 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1754 dput(path.dentry);
900148dc 1755 mntput_no_expire(mnt);
1da177e4
LT
1756out:
1757 return retval;
1758}
1759
3a18ef5c
DB
1760SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1761{
1762 return ksys_umount(name, flags);
1763}
1764
1da177e4
LT
1765#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1766
1767/*
b58fed8b 1768 * The 2.0 compatible umount. No flags.
1da177e4 1769 */
bdc480e3 1770SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1771{
3a18ef5c 1772 return ksys_umount(name, 0);
1da177e4
LT
1773}
1774
1775#endif
1776
4ce5d2b1 1777static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1778{
4ce5d2b1 1779 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1780 return dentry->d_op == &ns_dentry_operations &&
1781 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1782}
1783
213921f9 1784static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
58be2825
AV
1785{
1786 return container_of(ns, struct mnt_namespace, ns);
1787}
1788
4ce5d2b1
EB
1789static bool mnt_ns_loop(struct dentry *dentry)
1790{
1791 /* Could bind mounting the mount namespace inode cause a
1792 * mount namespace loop?
1793 */
1794 struct mnt_namespace *mnt_ns;
1795 if (!is_mnt_ns_file(dentry))
1796 return false;
1797
f77c8014 1798 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1799 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1800}
1801
87129cc0 1802struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1803 int flag)
1da177e4 1804{
84d17192 1805 struct mount *res, *p, *q, *r, *parent;
1da177e4 1806
4ce5d2b1
EB
1807 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1808 return ERR_PTR(-EINVAL);
1809
1810 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1811 return ERR_PTR(-EINVAL);
9676f0c6 1812
36341f64 1813 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1814 if (IS_ERR(q))
1815 return q;
1816
a73324da 1817 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1818
1819 p = mnt;
6b41d536 1820 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1821 struct mount *s;
7ec02ef1 1822 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1823 continue;
1824
909b0a88 1825 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1826 if (!(flag & CL_COPY_UNBINDABLE) &&
1827 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1828 if (s->mnt.mnt_flags & MNT_LOCKED) {
1829 /* Both unbindable and locked. */
1830 q = ERR_PTR(-EPERM);
1831 goto out;
1832 } else {
1833 s = skip_mnt_tree(s);
1834 continue;
1835 }
4ce5d2b1
EB
1836 }
1837 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1838 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1839 s = skip_mnt_tree(s);
1840 continue;
1841 }
0714a533
AV
1842 while (p != s->mnt_parent) {
1843 p = p->mnt_parent;
1844 q = q->mnt_parent;
1da177e4 1845 }
87129cc0 1846 p = s;
84d17192 1847 parent = q;
87129cc0 1848 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1849 if (IS_ERR(q))
1850 goto out;
719ea2fb 1851 lock_mount_hash();
1a4eeaf2 1852 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1853 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1854 unlock_mount_hash();
1da177e4
LT
1855 }
1856 }
1857 return res;
be34d1a3 1858out:
1da177e4 1859 if (res) {
719ea2fb 1860 lock_mount_hash();
e819f152 1861 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1862 unlock_mount_hash();
1da177e4 1863 }
be34d1a3 1864 return q;
1da177e4
LT
1865}
1866
be34d1a3
DH
1867/* Caller should check returned pointer for errors */
1868
ca71cf71 1869struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1870{
cb338d06 1871 struct mount *tree;
97216be0 1872 namespace_lock();
cd4a4017
EB
1873 if (!check_mnt(real_mount(path->mnt)))
1874 tree = ERR_PTR(-EINVAL);
1875 else
1876 tree = copy_tree(real_mount(path->mnt), path->dentry,
1877 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1878 namespace_unlock();
be34d1a3 1879 if (IS_ERR(tree))
52e220d3 1880 return ERR_CAST(tree);
be34d1a3 1881 return &tree->mnt;
8aec0809
AV
1882}
1883
a07b2000
AV
1884static void free_mnt_ns(struct mnt_namespace *);
1885static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1886
1887void dissolve_on_fput(struct vfsmount *mnt)
1888{
1889 struct mnt_namespace *ns;
1890 namespace_lock();
1891 lock_mount_hash();
1892 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1893 if (ns) {
1894 if (is_anon_ns(ns))
1895 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1896 else
1897 ns = NULL;
1898 }
a07b2000
AV
1899 unlock_mount_hash();
1900 namespace_unlock();
44dfd84a
DH
1901 if (ns)
1902 free_mnt_ns(ns);
a07b2000
AV
1903}
1904
8aec0809
AV
1905void drop_collected_mounts(struct vfsmount *mnt)
1906{
97216be0 1907 namespace_lock();
719ea2fb 1908 lock_mount_hash();
9c8e0a1b 1909 umount_tree(real_mount(mnt), 0);
719ea2fb 1910 unlock_mount_hash();
3ab6abee 1911 namespace_unlock();
8aec0809
AV
1912}
1913
c771d683
MS
1914/**
1915 * clone_private_mount - create a private clone of a path
1916 *
1917 * This creates a new vfsmount, which will be the clone of @path. The new will
1918 * not be attached anywhere in the namespace and will be private (i.e. changes
1919 * to the originating mount won't be propagated into this).
1920 *
1921 * Release with mntput().
1922 */
ca71cf71 1923struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1924{
1925 struct mount *old_mnt = real_mount(path->mnt);
1926 struct mount *new_mnt;
1927
1928 if (IS_MNT_UNBINDABLE(old_mnt))
1929 return ERR_PTR(-EINVAL);
1930
c771d683 1931 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1932 if (IS_ERR(new_mnt))
1933 return ERR_CAST(new_mnt);
1934
1935 return &new_mnt->mnt;
1936}
1937EXPORT_SYMBOL_GPL(clone_private_mount);
1938
1f707137
AV
1939int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1940 struct vfsmount *root)
1941{
1a4eeaf2 1942 struct mount *mnt;
1f707137
AV
1943 int res = f(root, arg);
1944 if (res)
1945 return res;
1a4eeaf2
AV
1946 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1947 res = f(&mnt->mnt, arg);
1f707137
AV
1948 if (res)
1949 return res;
1950 }
1951 return 0;
1952}
1953
3bd045cc
AV
1954static void lock_mnt_tree(struct mount *mnt)
1955{
1956 struct mount *p;
1957
1958 for (p = mnt; p; p = next_mnt(p, mnt)) {
1959 int flags = p->mnt.mnt_flags;
1960 /* Don't allow unprivileged users to change mount flags */
1961 flags |= MNT_LOCK_ATIME;
1962
1963 if (flags & MNT_READONLY)
1964 flags |= MNT_LOCK_READONLY;
1965
1966 if (flags & MNT_NODEV)
1967 flags |= MNT_LOCK_NODEV;
1968
1969 if (flags & MNT_NOSUID)
1970 flags |= MNT_LOCK_NOSUID;
1971
1972 if (flags & MNT_NOEXEC)
1973 flags |= MNT_LOCK_NOEXEC;
1974 /* Don't allow unprivileged users to reveal what is under a mount */
1975 if (list_empty(&p->mnt_expire))
1976 flags |= MNT_LOCKED;
1977 p->mnt.mnt_flags = flags;
1978 }
1979}
1980
4b8b21f4 1981static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1982{
315fc83e 1983 struct mount *p;
719f5d7f 1984
909b0a88 1985 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1986 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1987 mnt_release_group_id(p);
719f5d7f
MS
1988 }
1989}
1990
4b8b21f4 1991static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1992{
315fc83e 1993 struct mount *p;
719f5d7f 1994
909b0a88 1995 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1996 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1997 int err = mnt_alloc_group_id(p);
719f5d7f 1998 if (err) {
4b8b21f4 1999 cleanup_group_ids(mnt, p);
719f5d7f
MS
2000 return err;
2001 }
2002 }
2003 }
2004
2005 return 0;
2006}
2007
d2921684
EB
2008int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2009{
2010 unsigned int max = READ_ONCE(sysctl_mount_max);
2011 unsigned int mounts = 0, old, pending, sum;
2012 struct mount *p;
2013
2014 for (p = mnt; p; p = next_mnt(p, mnt))
2015 mounts++;
2016
2017 old = ns->mounts;
2018 pending = ns->pending_mounts;
2019 sum = old + pending;
2020 if ((old > sum) ||
2021 (pending > sum) ||
2022 (max < sum) ||
2023 (mounts > (max - sum)))
2024 return -ENOSPC;
2025
2026 ns->pending_mounts = pending + mounts;
2027 return 0;
2028}
2029
b90fa9ae
RP
2030/*
2031 * @source_mnt : mount tree to be attached
21444403
RP
2032 * @nd : place the mount tree @source_mnt is attached
2033 * @parent_nd : if non-null, detach the source_mnt from its parent and
2034 * store the parent mount and mountpoint dentry.
2035 * (done when source_mnt is moved)
b90fa9ae
RP
2036 *
2037 * NOTE: in the table below explains the semantics when a source mount
2038 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2039 * ---------------------------------------------------------------------------
2040 * | BIND MOUNT OPERATION |
2041 * |**************************************************************************
2042 * | source-->| shared | private | slave | unbindable |
2043 * | dest | | | | |
2044 * | | | | | | |
2045 * | v | | | | |
2046 * |**************************************************************************
2047 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2048 * | | | | | |
2049 * |non-shared| shared (+) | private | slave (*) | invalid |
2050 * ***************************************************************************
b90fa9ae
RP
2051 * A bind operation clones the source mount and mounts the clone on the
2052 * destination mount.
2053 *
2054 * (++) the cloned mount is propagated to all the mounts in the propagation
2055 * tree of the destination mount and the cloned mount is added to
2056 * the peer group of the source mount.
2057 * (+) the cloned mount is created under the destination mount and is marked
2058 * as shared. The cloned mount is added to the peer group of the source
2059 * mount.
5afe0022
RP
2060 * (+++) the mount is propagated to all the mounts in the propagation tree
2061 * of the destination mount and the cloned mount is made slave
2062 * of the same master as that of the source mount. The cloned mount
2063 * is marked as 'shared and slave'.
2064 * (*) the cloned mount is made a slave of the same master as that of the
2065 * source mount.
2066 *
9676f0c6
RP
2067 * ---------------------------------------------------------------------------
2068 * | MOVE MOUNT OPERATION |
2069 * |**************************************************************************
2070 * | source-->| shared | private | slave | unbindable |
2071 * | dest | | | | |
2072 * | | | | | | |
2073 * | v | | | | |
2074 * |**************************************************************************
2075 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2076 * | | | | | |
2077 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2078 * ***************************************************************************
5afe0022
RP
2079 *
2080 * (+) the mount is moved to the destination. And is then propagated to
2081 * all the mounts in the propagation tree of the destination mount.
21444403 2082 * (+*) the mount is moved to the destination.
5afe0022
RP
2083 * (+++) the mount is moved to the destination and is then propagated to
2084 * all the mounts belonging to the destination mount's propagation tree.
2085 * the mount is marked as 'shared and slave'.
2086 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2087 *
2088 * if the source mount is a tree, the operations explained above is
2089 * applied to each mount in the tree.
2090 * Must be called without spinlocks held, since this function can sleep
2091 * in allocations.
2092 */
0fb54e50 2093static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2094 struct mount *dest_mnt,
2095 struct mountpoint *dest_mp,
2763d119 2096 bool moving)
b90fa9ae 2097{
3bd045cc 2098 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2099 HLIST_HEAD(tree_list);
d2921684 2100 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2101 struct mountpoint *smp;
315fc83e 2102 struct mount *child, *p;
38129a13 2103 struct hlist_node *n;
719f5d7f 2104 int err;
b90fa9ae 2105
1064f874
EB
2106 /* Preallocate a mountpoint in case the new mounts need
2107 * to be tucked under other mounts.
2108 */
2109 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2110 if (IS_ERR(smp))
2111 return PTR_ERR(smp);
2112
d2921684 2113 /* Is there space to add these mounts to the mount namespace? */
2763d119 2114 if (!moving) {
d2921684
EB
2115 err = count_mounts(ns, source_mnt);
2116 if (err)
2117 goto out;
2118 }
2119
fc7be130 2120 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2121 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2122 if (err)
2123 goto out;
0b1b901b 2124 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2125 lock_mount_hash();
0b1b901b
AV
2126 if (err)
2127 goto out_cleanup_ids;
909b0a88 2128 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2129 set_mnt_shared(p);
0b1b901b
AV
2130 } else {
2131 lock_mount_hash();
b90fa9ae 2132 }
2763d119
AV
2133 if (moving) {
2134 unhash_mnt(source_mnt);
84d17192 2135 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2136 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2137 } else {
44dfd84a
DH
2138 if (source_mnt->mnt_ns) {
2139 /* move from anon - the caller will destroy */
2140 list_del_init(&source_mnt->mnt_ns->list);
2141 }
84d17192 2142 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2143 commit_tree(source_mnt);
21444403 2144 }
b90fa9ae 2145
38129a13 2146 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2147 struct mount *q;
38129a13 2148 hlist_del_init(&child->mnt_hash);
1064f874
EB
2149 q = __lookup_mnt(&child->mnt_parent->mnt,
2150 child->mnt_mountpoint);
2151 if (q)
2152 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2153 /* Notice when we are propagating across user namespaces */
2154 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2155 lock_mnt_tree(child);
d728cf79 2156 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2157 commit_tree(child);
b90fa9ae 2158 }
1064f874 2159 put_mountpoint(smp);
719ea2fb 2160 unlock_mount_hash();
99b7db7b 2161
b90fa9ae 2162 return 0;
719f5d7f
MS
2163
2164 out_cleanup_ids:
f2ebb3a9
AV
2165 while (!hlist_empty(&tree_list)) {
2166 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2167 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2168 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2169 }
2170 unlock_mount_hash();
0b1b901b 2171 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2172 out:
d2921684 2173 ns->pending_mounts = 0;
1064f874
EB
2174
2175 read_seqlock_excl(&mount_lock);
2176 put_mountpoint(smp);
2177 read_sequnlock_excl(&mount_lock);
2178
719f5d7f 2179 return err;
b90fa9ae
RP
2180}
2181
84d17192 2182static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2183{
2184 struct vfsmount *mnt;
84d17192 2185 struct dentry *dentry = path->dentry;
b12cea91 2186retry:
5955102c 2187 inode_lock(dentry->d_inode);
84d17192 2188 if (unlikely(cant_mount(dentry))) {
5955102c 2189 inode_unlock(dentry->d_inode);
84d17192 2190 return ERR_PTR(-ENOENT);
b12cea91 2191 }
97216be0 2192 namespace_lock();
b12cea91 2193 mnt = lookup_mnt(path);
84d17192 2194 if (likely(!mnt)) {
3895dbf8 2195 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2196 if (IS_ERR(mp)) {
97216be0 2197 namespace_unlock();
5955102c 2198 inode_unlock(dentry->d_inode);
84d17192
AV
2199 return mp;
2200 }
2201 return mp;
2202 }
97216be0 2203 namespace_unlock();
5955102c 2204 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2205 path_put(path);
2206 path->mnt = mnt;
84d17192 2207 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2208 goto retry;
2209}
2210
84d17192 2211static void unlock_mount(struct mountpoint *where)
b12cea91 2212{
84d17192 2213 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2214
2215 read_seqlock_excl(&mount_lock);
84d17192 2216 put_mountpoint(where);
3895dbf8
EB
2217 read_sequnlock_excl(&mount_lock);
2218
328e6d90 2219 namespace_unlock();
5955102c 2220 inode_unlock(dentry->d_inode);
b12cea91
AV
2221}
2222
84d17192 2223static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2224{
e462ec50 2225 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2226 return -EINVAL;
2227
e36cb0b8
DH
2228 if (d_is_dir(mp->m_dentry) !=
2229 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2230 return -ENOTDIR;
2231
2763d119 2232 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2233}
2234
7a2e8a8f
VA
2235/*
2236 * Sanity check the flags to change_mnt_propagation.
2237 */
2238
e462ec50 2239static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2240{
e462ec50 2241 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2242
2243 /* Fail if any non-propagation flags are set */
2244 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2245 return 0;
2246 /* Only one propagation flag should be set */
2247 if (!is_power_of_2(type))
2248 return 0;
2249 return type;
2250}
2251
07b20889
RP
2252/*
2253 * recursively change the type of the mountpoint.
2254 */
e462ec50 2255static int do_change_type(struct path *path, int ms_flags)
07b20889 2256{
315fc83e 2257 struct mount *m;
4b8b21f4 2258 struct mount *mnt = real_mount(path->mnt);
e462ec50 2259 int recurse = ms_flags & MS_REC;
7a2e8a8f 2260 int type;
719f5d7f 2261 int err = 0;
07b20889 2262
2d92ab3c 2263 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2264 return -EINVAL;
2265
e462ec50 2266 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2267 if (!type)
2268 return -EINVAL;
2269
97216be0 2270 namespace_lock();
719f5d7f
MS
2271 if (type == MS_SHARED) {
2272 err = invent_group_ids(mnt, recurse);
2273 if (err)
2274 goto out_unlock;
2275 }
2276
719ea2fb 2277 lock_mount_hash();
909b0a88 2278 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2279 change_mnt_propagation(m, type);
719ea2fb 2280 unlock_mount_hash();
719f5d7f
MS
2281
2282 out_unlock:
97216be0 2283 namespace_unlock();
719f5d7f 2284 return err;
07b20889
RP
2285}
2286
5ff9d8a6
EB
2287static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2288{
2289 struct mount *child;
2290 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2291 if (!is_subdir(child->mnt_mountpoint, dentry))
2292 continue;
2293
2294 if (child->mnt.mnt_flags & MNT_LOCKED)
2295 return true;
2296 }
2297 return false;
2298}
2299
a07b2000
AV
2300static struct mount *__do_loopback(struct path *old_path, int recurse)
2301{
2302 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2303
2304 if (IS_MNT_UNBINDABLE(old))
2305 return mnt;
2306
2307 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2308 return mnt;
2309
2310 if (!recurse && has_locked_children(old, old_path->dentry))
2311 return mnt;
2312
2313 if (recurse)
2314 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2315 else
2316 mnt = clone_mnt(old, old_path->dentry, 0);
2317
2318 if (!IS_ERR(mnt))
2319 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2320
2321 return mnt;
2322}
2323
1da177e4
LT
2324/*
2325 * do loopback mount.
2326 */
808d4e3c 2327static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2328 int recurse)
1da177e4 2329{
2d92ab3c 2330 struct path old_path;
a07b2000 2331 struct mount *mnt = NULL, *parent;
84d17192 2332 struct mountpoint *mp;
57eccb83 2333 int err;
1da177e4
LT
2334 if (!old_name || !*old_name)
2335 return -EINVAL;
815d405c 2336 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2337 if (err)
2338 return err;
2339
8823c079 2340 err = -EINVAL;
4ce5d2b1 2341 if (mnt_ns_loop(old_path.dentry))
dd111b31 2342 goto out;
8823c079 2343
84d17192 2344 mp = lock_mount(path);
a07b2000
AV
2345 if (IS_ERR(mp)) {
2346 err = PTR_ERR(mp);
b12cea91 2347 goto out;
a07b2000 2348 }
b12cea91 2349
84d17192 2350 parent = real_mount(path->mnt);
e149ed2b
AV
2351 if (!check_mnt(parent))
2352 goto out2;
2353
a07b2000 2354 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2355 if (IS_ERR(mnt)) {
2356 err = PTR_ERR(mnt);
e9c5d8a5 2357 goto out2;
be34d1a3 2358 }
ccd48bc7 2359
84d17192 2360 err = graft_tree(mnt, parent, mp);
ccd48bc7 2361 if (err) {
719ea2fb 2362 lock_mount_hash();
e819f152 2363 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2364 unlock_mount_hash();
5b83d2c5 2365 }
b12cea91 2366out2:
84d17192 2367 unlock_mount(mp);
ccd48bc7 2368out:
2d92ab3c 2369 path_put(&old_path);
1da177e4
LT
2370 return err;
2371}
2372
a07b2000
AV
2373static struct file *open_detached_copy(struct path *path, bool recursive)
2374{
2375 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2376 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2377 struct mount *mnt, *p;
2378 struct file *file;
2379
2380 if (IS_ERR(ns))
2381 return ERR_CAST(ns);
2382
2383 namespace_lock();
2384 mnt = __do_loopback(path, recursive);
2385 if (IS_ERR(mnt)) {
2386 namespace_unlock();
2387 free_mnt_ns(ns);
2388 return ERR_CAST(mnt);
2389 }
2390
2391 lock_mount_hash();
2392 for (p = mnt; p; p = next_mnt(p, mnt)) {
2393 p->mnt_ns = ns;
2394 ns->mounts++;
2395 }
2396 ns->root = mnt;
2397 list_add_tail(&ns->list, &mnt->mnt_list);
2398 mntget(&mnt->mnt);
2399 unlock_mount_hash();
2400 namespace_unlock();
2401
2402 mntput(path->mnt);
2403 path->mnt = &mnt->mnt;
2404 file = dentry_open(path, O_PATH, current_cred());
2405 if (IS_ERR(file))
2406 dissolve_on_fput(path->mnt);
2407 else
2408 file->f_mode |= FMODE_NEED_UNMOUNT;
2409 return file;
2410}
2411
2658ce09 2412SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
a07b2000
AV
2413{
2414 struct file *file;
2415 struct path path;
2416 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2417 bool detached = flags & OPEN_TREE_CLONE;
2418 int error;
2419 int fd;
2420
2421 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2422
2423 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2424 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2425 OPEN_TREE_CLOEXEC))
2426 return -EINVAL;
2427
2428 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2429 return -EINVAL;
2430
2431 if (flags & AT_NO_AUTOMOUNT)
2432 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2433 if (flags & AT_SYMLINK_NOFOLLOW)
2434 lookup_flags &= ~LOOKUP_FOLLOW;
2435 if (flags & AT_EMPTY_PATH)
2436 lookup_flags |= LOOKUP_EMPTY;
2437
2438 if (detached && !may_mount())
2439 return -EPERM;
2440
2441 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2442 if (fd < 0)
2443 return fd;
2444
2445 error = user_path_at(dfd, filename, lookup_flags, &path);
2446 if (unlikely(error)) {
2447 file = ERR_PTR(error);
2448 } else {
2449 if (detached)
2450 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2451 else
2452 file = dentry_open(&path, O_PATH, current_cred());
2453 path_put(&path);
2454 }
2455 if (IS_ERR(file)) {
2456 put_unused_fd(fd);
2457 return PTR_ERR(file);
2458 }
2459 fd_install(fd, file);
2460 return fd;
2461}
2462
43f5e655
DH
2463/*
2464 * Don't allow locked mount flags to be cleared.
2465 *
2466 * No locks need to be held here while testing the various MNT_LOCK
2467 * flags because those flags can never be cleared once they are set.
2468 */
2469static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2470{
43f5e655
DH
2471 unsigned int fl = mnt->mnt.mnt_flags;
2472
2473 if ((fl & MNT_LOCK_READONLY) &&
2474 !(mnt_flags & MNT_READONLY))
2475 return false;
2476
2477 if ((fl & MNT_LOCK_NODEV) &&
2478 !(mnt_flags & MNT_NODEV))
2479 return false;
2480
2481 if ((fl & MNT_LOCK_NOSUID) &&
2482 !(mnt_flags & MNT_NOSUID))
2483 return false;
2484
2485 if ((fl & MNT_LOCK_NOEXEC) &&
2486 !(mnt_flags & MNT_NOEXEC))
2487 return false;
2488
2489 if ((fl & MNT_LOCK_ATIME) &&
2490 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2491 return false;
2e4b7fcd 2492
43f5e655
DH
2493 return true;
2494}
2495
2496static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2497{
43f5e655 2498 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2499
43f5e655 2500 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2501 return 0;
2502
2503 if (readonly_request)
43f5e655
DH
2504 return mnt_make_readonly(mnt);
2505
2506 return __mnt_unmake_readonly(mnt);
2507}
2508
2509/*
2510 * Update the user-settable attributes on a mount. The caller must hold
2511 * sb->s_umount for writing.
2512 */
2513static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2514{
2515 lock_mount_hash();
2516 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2517 mnt->mnt.mnt_flags = mnt_flags;
2518 touch_mnt_namespace(mnt->mnt_ns);
2519 unlock_mount_hash();
2520}
2521
f8b92ba6
DD
2522static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2523{
2524 struct super_block *sb = mnt->mnt_sb;
2525
2526 if (!__mnt_is_readonly(mnt) &&
2527 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2528 char *buf = (char *)__get_free_page(GFP_KERNEL);
2529 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2530 struct tm tm;
2531
2532 time64_to_tm(sb->s_time_max, 0, &tm);
2533
0ecee669
EB
2534 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2535 sb->s_type->name,
2536 is_mounted(mnt) ? "remounted" : "mounted",
2537 mntpath,
f8b92ba6
DD
2538 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2539
2540 free_page((unsigned long)buf);
2541 }
2542}
2543
43f5e655
DH
2544/*
2545 * Handle reconfiguration of the mountpoint only without alteration of the
2546 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2547 * to mount(2).
2548 */
2549static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2550{
2551 struct super_block *sb = path->mnt->mnt_sb;
2552 struct mount *mnt = real_mount(path->mnt);
2553 int ret;
2554
2555 if (!check_mnt(mnt))
2556 return -EINVAL;
2557
2558 if (path->dentry != mnt->mnt.mnt_root)
2559 return -EINVAL;
2560
2561 if (!can_change_locked_flags(mnt, mnt_flags))
2562 return -EPERM;
2563
2564 down_write(&sb->s_umount);
2565 ret = change_mount_ro_state(mnt, mnt_flags);
2566 if (ret == 0)
2567 set_mount_attributes(mnt, mnt_flags);
2568 up_write(&sb->s_umount);
f8b92ba6
DD
2569
2570 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2571
43f5e655 2572 return ret;
2e4b7fcd
DH
2573}
2574
1da177e4
LT
2575/*
2576 * change filesystem flags. dir should be a physical root of filesystem.
2577 * If you've mounted a non-root directory somewhere and want to do remount
2578 * on it - tough luck.
2579 */
e462ec50
DH
2580static int do_remount(struct path *path, int ms_flags, int sb_flags,
2581 int mnt_flags, void *data)
1da177e4
LT
2582{
2583 int err;
2d92ab3c 2584 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2585 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2586 struct fs_context *fc;
1da177e4 2587
143c8c91 2588 if (!check_mnt(mnt))
1da177e4
LT
2589 return -EINVAL;
2590
2d92ab3c 2591 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2592 return -EINVAL;
2593
43f5e655 2594 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2595 return -EPERM;
9566d674 2596
8d0347f6
DH
2597 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2598 if (IS_ERR(fc))
2599 return PTR_ERR(fc);
ff36fe2c 2600
8d0347f6
DH
2601 err = parse_monolithic_mount_data(fc, data);
2602 if (!err) {
2603 down_write(&sb->s_umount);
2604 err = -EPERM;
2605 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2606 err = reconfigure_super(fc);
2607 if (!err)
2608 set_mount_attributes(mnt, mnt_flags);
2609 }
2610 up_write(&sb->s_umount);
0e55a7cc 2611 }
f8b92ba6
DD
2612
2613 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614
8d0347f6 2615 put_fs_context(fc);
1da177e4
LT
2616 return err;
2617}
2618
cbbe362c 2619static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2620{
315fc83e 2621 struct mount *p;
909b0a88 2622 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2623 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2624 return 1;
2625 }
2626 return 0;
2627}
2628
44dfd84a
DH
2629/*
2630 * Check that there aren't references to earlier/same mount namespaces in the
2631 * specified subtree. Such references can act as pins for mount namespaces
2632 * that aren't checked by the mount-cycle checking code, thereby allowing
2633 * cycles to be made.
2634 */
2635static bool check_for_nsfs_mounts(struct mount *subtree)
2636{
2637 struct mount *p;
2638 bool ret = false;
2639
2640 lock_mount_hash();
2641 for (p = subtree; p; p = next_mnt(p, subtree))
2642 if (mnt_ns_loop(p->mnt.mnt_root))
2643 goto out;
2644
2645 ret = true;
2646out:
2647 unlock_mount_hash();
2648 return ret;
2649}
2650
2db154b3 2651static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2652{
44dfd84a 2653 struct mnt_namespace *ns;
676da58d 2654 struct mount *p;
0fb54e50 2655 struct mount *old;
2763d119
AV
2656 struct mount *parent;
2657 struct mountpoint *mp, *old_mp;
57eccb83 2658 int err;
44dfd84a 2659 bool attached;
1da177e4 2660
2db154b3 2661 mp = lock_mount(new_path);
84d17192 2662 if (IS_ERR(mp))
2db154b3 2663 return PTR_ERR(mp);
cc53ce53 2664
2db154b3
DH
2665 old = real_mount(old_path->mnt);
2666 p = real_mount(new_path->mnt);
2763d119 2667 parent = old->mnt_parent;
44dfd84a 2668 attached = mnt_has_parent(old);
2763d119 2669 old_mp = old->mnt_mp;
44dfd84a 2670 ns = old->mnt_ns;
143c8c91 2671
1da177e4 2672 err = -EINVAL;
44dfd84a
DH
2673 /* The mountpoint must be in our namespace. */
2674 if (!check_mnt(p))
2db154b3 2675 goto out;
1da177e4 2676
570d7a98
EB
2677 /* The thing moved must be mounted... */
2678 if (!is_mounted(&old->mnt))
44dfd84a
DH
2679 goto out;
2680
570d7a98
EB
2681 /* ... and either ours or the root of anon namespace */
2682 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2683 goto out;
5ff9d8a6 2684
2db154b3
DH
2685 if (old->mnt.mnt_flags & MNT_LOCKED)
2686 goto out;
1da177e4 2687
2db154b3
DH
2688 if (old_path->dentry != old_path->mnt->mnt_root)
2689 goto out;
1da177e4 2690
2db154b3
DH
2691 if (d_is_dir(new_path->dentry) !=
2692 d_is_dir(old_path->dentry))
2693 goto out;
21444403
RP
2694 /*
2695 * Don't move a mount residing in a shared parent.
2696 */
2763d119 2697 if (attached && IS_MNT_SHARED(parent))
2db154b3 2698 goto out;
9676f0c6
RP
2699 /*
2700 * Don't move a mount tree containing unbindable mounts to a destination
2701 * mount which is shared.
2702 */
fc7be130 2703 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2704 goto out;
1da177e4 2705 err = -ELOOP;
44dfd84a
DH
2706 if (!check_for_nsfs_mounts(old))
2707 goto out;
fc7be130 2708 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2709 if (p == old)
2db154b3 2710 goto out;
1da177e4 2711
2db154b3 2712 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2713 attached);
4ac91378 2714 if (err)
2db154b3 2715 goto out;
1da177e4
LT
2716
2717 /* if the mount is moved, it should no longer be expire
2718 * automatically */
6776db3d 2719 list_del_init(&old->mnt_expire);
2763d119
AV
2720 if (attached)
2721 put_mountpoint(old_mp);
1da177e4 2722out:
2db154b3 2723 unlock_mount(mp);
44dfd84a 2724 if (!err) {
2763d119
AV
2725 if (attached)
2726 mntput_no_expire(parent);
2727 else
44dfd84a
DH
2728 free_mnt_ns(ns);
2729 }
2db154b3
DH
2730 return err;
2731}
2732
2733static int do_move_mount_old(struct path *path, const char *old_name)
2734{
2735 struct path old_path;
2736 int err;
2737
2738 if (!old_name || !*old_name)
2739 return -EINVAL;
2740
2741 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2742 if (err)
2743 return err;
2744
2745 err = do_move_mount(&old_path, path);
2d92ab3c 2746 path_put(&old_path);
1da177e4
LT
2747 return err;
2748}
2749
9d412a43
AV
2750/*
2751 * add a mount into a namespace's mount tree
2752 */
8f11538e
AV
2753static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2754 struct path *path, int mnt_flags)
9d412a43 2755{
8f11538e 2756 struct mount *parent = real_mount(path->mnt);
9d412a43 2757
f2ebb3a9 2758 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2759
84d17192 2760 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2761 /* that's acceptable only for automounts done in private ns */
2762 if (!(mnt_flags & MNT_SHRINKABLE))
8f11538e 2763 return -EINVAL;
156cacb1 2764 /* ... and for those we'd better have mountpoint still alive */
84d17192 2765 if (!parent->mnt_ns)
8f11538e 2766 return -EINVAL;
156cacb1 2767 }
9d412a43
AV
2768
2769 /* Refuse the same filesystem on the same mount point */
95bc5f25 2770 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43 2771 path->mnt->mnt_root == path->dentry)
8f11538e 2772 return -EBUSY;
9d412a43 2773
e36cb0b8 2774 if (d_is_symlink(newmnt->mnt.mnt_root))
8f11538e 2775 return -EINVAL;
9d412a43 2776
95bc5f25 2777 newmnt->mnt.mnt_flags = mnt_flags;
8f11538e 2778 return graft_tree(newmnt, parent, mp);
9d412a43 2779}
b1e75df4 2780
132e4608
DH
2781static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2782
2783/*
2784 * Create a new mount using a superblock configuration and request it
2785 * be added to the namespace tree.
2786 */
2787static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2788 unsigned int mnt_flags)
2789{
2790 struct vfsmount *mnt;
8f11538e 2791 struct mountpoint *mp;
132e4608
DH
2792 struct super_block *sb = fc->root->d_sb;
2793 int error;
2794
c9ce29ed
AV
2795 error = security_sb_kern_mount(sb);
2796 if (!error && mount_too_revealing(sb, &mnt_flags))
2797 error = -EPERM;
2798
2799 if (unlikely(error)) {
2800 fc_drop_locked(fc);
2801 return error;
132e4608
DH
2802 }
2803
2804 up_write(&sb->s_umount);
2805
2806 mnt = vfs_create_mount(fc);
2807 if (IS_ERR(mnt))
2808 return PTR_ERR(mnt);
2809
f8b92ba6
DD
2810 mnt_warn_timestamp_expiry(mountpoint, mnt);
2811
8f11538e
AV
2812 mp = lock_mount(mountpoint);
2813 if (IS_ERR(mp)) {
2814 mntput(mnt);
2815 return PTR_ERR(mp);
2816 }
2817 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2818 unlock_mount(mp);
0ecee669
EB
2819 if (error < 0)
2820 mntput(mnt);
132e4608
DH
2821 return error;
2822}
1b852bce 2823
1da177e4
LT
2824/*
2825 * create a new mount for userspace and request it to be added into the
2826 * namespace's tree
2827 */
e462ec50 2828static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2829 int mnt_flags, const char *name, void *data)
1da177e4 2830{
0c55cfc4 2831 struct file_system_type *type;
a0c9a8b8
AV
2832 struct fs_context *fc;
2833 const char *subtype = NULL;
2834 int err = 0;
1da177e4 2835
0c55cfc4 2836 if (!fstype)
1da177e4
LT
2837 return -EINVAL;
2838
0c55cfc4
EB
2839 type = get_fs_type(fstype);
2840 if (!type)
2841 return -ENODEV;
2842
a0c9a8b8
AV
2843 if (type->fs_flags & FS_HAS_SUBTYPE) {
2844 subtype = strchr(fstype, '.');
2845 if (subtype) {
2846 subtype++;
2847 if (!*subtype) {
2848 put_filesystem(type);
2849 return -EINVAL;
2850 }
a0c9a8b8
AV
2851 }
2852 }
0c55cfc4 2853
a0c9a8b8 2854 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2855 put_filesystem(type);
a0c9a8b8
AV
2856 if (IS_ERR(fc))
2857 return PTR_ERR(fc);
2858
3e1aeb00
DH
2859 if (subtype)
2860 err = vfs_parse_fs_string(fc, "subtype",
2861 subtype, strlen(subtype));
2862 if (!err && name)
2863 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2864 if (!err)
2865 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2866 if (!err && !mount_capable(fc))
2867 err = -EPERM;
a0c9a8b8
AV
2868 if (!err)
2869 err = vfs_get_tree(fc);
132e4608
DH
2870 if (!err)
2871 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2872
a0c9a8b8 2873 put_fs_context(fc);
15f9a3f3 2874 return err;
1da177e4
LT
2875}
2876
19a167af
AV
2877int finish_automount(struct vfsmount *m, struct path *path)
2878{
26df6034 2879 struct dentry *dentry = path->dentry;
8f11538e 2880 struct mountpoint *mp;
25e195aa 2881 struct mount *mnt;
19a167af 2882 int err;
25e195aa
AV
2883
2884 if (!m)
2885 return 0;
2886 if (IS_ERR(m))
2887 return PTR_ERR(m);
2888
2889 mnt = real_mount(m);
19a167af
AV
2890 /* The new mount record should have at least 2 refs to prevent it being
2891 * expired before we get a chance to add it
2892 */
6776db3d 2893 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2894
2895 if (m->mnt_sb == path->mnt->mnt_sb &&
26df6034 2896 m->mnt_root == dentry) {
b1e75df4 2897 err = -ELOOP;
26df6034 2898 goto discard;
19a167af
AV
2899 }
2900
26df6034
AV
2901 /*
2902 * we don't want to use lock_mount() - in this case finding something
2903 * that overmounts our mountpoint to be means "quitely drop what we've
2904 * got", not "try to mount it on top".
2905 */
2906 inode_lock(dentry->d_inode);
2907 namespace_lock();
2908 if (unlikely(cant_mount(dentry))) {
2909 err = -ENOENT;
2910 goto discard_locked;
2911 }
2912 rcu_read_lock();
2913 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2914 rcu_read_unlock();
2915 err = 0;
2916 goto discard_locked;
2917 }
2918 rcu_read_unlock();
2919 mp = get_mountpoint(dentry);
8f11538e
AV
2920 if (IS_ERR(mp)) {
2921 err = PTR_ERR(mp);
26df6034 2922 goto discard_locked;
8f11538e 2923 }
26df6034 2924
8f11538e
AV
2925 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2926 unlock_mount(mp);
26df6034
AV
2927 if (unlikely(err))
2928 goto discard;
2929 mntput(m);
2930 return 0;
2931
2932discard_locked:
2933 namespace_unlock();
2934 inode_unlock(dentry->d_inode);
2935discard:
b1e75df4 2936 /* remove m from any expiration list it may be on */
6776db3d 2937 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2938 namespace_lock();
6776db3d 2939 list_del_init(&mnt->mnt_expire);
97216be0 2940 namespace_unlock();
19a167af 2941 }
b1e75df4
AV
2942 mntput(m);
2943 mntput(m);
19a167af
AV
2944 return err;
2945}
2946
ea5b778a
DH
2947/**
2948 * mnt_set_expiry - Put a mount on an expiration list
2949 * @mnt: The mount to list.
2950 * @expiry_list: The list to add the mount to.
2951 */
2952void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2953{
97216be0 2954 namespace_lock();
ea5b778a 2955
6776db3d 2956 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2957
97216be0 2958 namespace_unlock();
ea5b778a
DH
2959}
2960EXPORT_SYMBOL(mnt_set_expiry);
2961
1da177e4
LT
2962/*
2963 * process a list of expirable mountpoints with the intent of discarding any
2964 * mountpoints that aren't in use and haven't been touched since last we came
2965 * here
2966 */
2967void mark_mounts_for_expiry(struct list_head *mounts)
2968{
761d5c38 2969 struct mount *mnt, *next;
1da177e4
LT
2970 LIST_HEAD(graveyard);
2971
2972 if (list_empty(mounts))
2973 return;
2974
97216be0 2975 namespace_lock();
719ea2fb 2976 lock_mount_hash();
1da177e4
LT
2977
2978 /* extract from the expiration list every vfsmount that matches the
2979 * following criteria:
2980 * - only referenced by its parent vfsmount
2981 * - still marked for expiry (marked on the last call here; marks are
2982 * cleared by mntput())
2983 */
6776db3d 2984 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2985 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2986 propagate_mount_busy(mnt, 1))
1da177e4 2987 continue;
6776db3d 2988 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2989 }
bcc5c7d2 2990 while (!list_empty(&graveyard)) {
6776db3d 2991 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2992 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2993 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2994 }
719ea2fb 2995 unlock_mount_hash();
3ab6abee 2996 namespace_unlock();
5528f911
TM
2997}
2998
2999EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3000
3001/*
3002 * Ripoff of 'select_parent()'
3003 *
3004 * search the list of submounts for a given mountpoint, and move any
3005 * shrinkable submounts to the 'graveyard' list.
3006 */
692afc31 3007static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 3008{
692afc31 3009 struct mount *this_parent = parent;
5528f911
TM
3010 struct list_head *next;
3011 int found = 0;
3012
3013repeat:
6b41d536 3014 next = this_parent->mnt_mounts.next;
5528f911 3015resume:
6b41d536 3016 while (next != &this_parent->mnt_mounts) {
5528f911 3017 struct list_head *tmp = next;
6b41d536 3018 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
3019
3020 next = tmp->next;
692afc31 3021 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 3022 continue;
5528f911
TM
3023 /*
3024 * Descend a level if the d_mounts list is non-empty.
3025 */
6b41d536 3026 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
3027 this_parent = mnt;
3028 goto repeat;
3029 }
1da177e4 3030
1ab59738 3031 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 3032 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
3033 found++;
3034 }
1da177e4 3035 }
5528f911
TM
3036 /*
3037 * All done at this level ... ascend and resume the search
3038 */
3039 if (this_parent != parent) {
6b41d536 3040 next = this_parent->mnt_child.next;
0714a533 3041 this_parent = this_parent->mnt_parent;
5528f911
TM
3042 goto resume;
3043 }
3044 return found;
3045}
3046
3047/*
3048 * process a list of expirable mountpoints with the intent of discarding any
3049 * submounts of a specific parent mountpoint
99b7db7b 3050 *
48a066e7 3051 * mount_lock must be held for write
5528f911 3052 */
b54b9be7 3053static void shrink_submounts(struct mount *mnt)
5528f911
TM
3054{
3055 LIST_HEAD(graveyard);
761d5c38 3056 struct mount *m;
5528f911 3057
5528f911 3058 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3059 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3060 while (!list_empty(&graveyard)) {
761d5c38 3061 m = list_first_entry(&graveyard, struct mount,
6776db3d 3062 mnt_expire);
143c8c91 3063 touch_mnt_namespace(m->mnt_ns);
e819f152 3064 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3065 }
3066 }
1da177e4
LT
3067}
3068
b40ef869 3069void *copy_mount_options(const void __user * data)
1da177e4 3070{
b40ef869 3071 char *copy;
12efec56 3072 unsigned size;
b58fed8b 3073
1da177e4 3074 if (!data)
b40ef869 3075 return NULL;
1da177e4 3076
b40ef869
AV
3077 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3078 if (!copy)
3079 return ERR_PTR(-ENOMEM);
1da177e4 3080
12efec56 3081 size = PAGE_SIZE - offset_in_page(data);
1da177e4 3082
12efec56 3083 if (copy_from_user(copy, data, size)) {
b40ef869
AV
3084 kfree(copy);
3085 return ERR_PTR(-EFAULT);
1da177e4 3086 }
12efec56
AV
3087 if (size != PAGE_SIZE) {
3088 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3089 memset(copy + size, 0, PAGE_SIZE - size);
3090 }
b40ef869 3091 return copy;
1da177e4
LT
3092}
3093
b8850d1f 3094char *copy_mount_string(const void __user *data)
eca6f534 3095{
fbdb4401 3096 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3097}
3098
1da177e4
LT
3099/*
3100 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3101 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3102 *
3103 * data is a (void *) that can point to any structure up to
3104 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3105 * information (or be NULL).
3106 *
3107 * Pre-0.97 versions of mount() didn't have a flags word.
3108 * When the flags word was introduced its top half was required
3109 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3110 * Therefore, if this magic number is present, it carries no information
3111 * and must be discarded.
3112 */
5e6123f3 3113long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3114 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3115{
2d92ab3c 3116 struct path path;
e462ec50 3117 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3118 int retval = 0;
1da177e4
LT
3119
3120 /* Discard magic */
3121 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3122 flags &= ~MS_MGC_MSK;
3123
3124 /* Basic sanity checks */
1da177e4
LT
3125 if (data_page)
3126 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3127
e462ec50
DH
3128 if (flags & MS_NOUSER)
3129 return -EINVAL;
3130
a27ab9f2 3131 /* ... and get the mountpoint */
ce6595a2 3132 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
a27ab9f2
TH
3133 if (retval)
3134 return retval;
3135
3136 retval = security_sb_mount(dev_name, &path,
3137 type_page, flags, data_page);
0d5cadb8
AV
3138 if (!retval && !may_mount())
3139 retval = -EPERM;
e462ec50 3140 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3141 retval = -EPERM;
a27ab9f2
TH
3142 if (retval)
3143 goto dput_out;
3144
613cbe3d
AK
3145 /* Default to relatime unless overriden */
3146 if (!(flags & MS_NOATIME))
3147 mnt_flags |= MNT_RELATIME;
0a1c01c9 3148
1da177e4
LT
3149 /* Separate the per-mountpoint flags */
3150 if (flags & MS_NOSUID)
3151 mnt_flags |= MNT_NOSUID;
3152 if (flags & MS_NODEV)
3153 mnt_flags |= MNT_NODEV;
3154 if (flags & MS_NOEXEC)
3155 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3156 if (flags & MS_NOATIME)
3157 mnt_flags |= MNT_NOATIME;
3158 if (flags & MS_NODIRATIME)
3159 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3160 if (flags & MS_STRICTATIME)
3161 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3162 if (flags & MS_RDONLY)
2e4b7fcd 3163 mnt_flags |= MNT_READONLY;
fc33a7bb 3164
ffbc6f0e
EB
3165 /* The default atime for remount is preservation */
3166 if ((flags & MS_REMOUNT) &&
3167 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3168 MS_STRICTATIME)) == 0)) {
3169 mnt_flags &= ~MNT_ATIME_MASK;
3170 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3171 }
3172
e462ec50
DH
3173 sb_flags = flags & (SB_RDONLY |
3174 SB_SYNCHRONOUS |
3175 SB_MANDLOCK |
3176 SB_DIRSYNC |
3177 SB_SILENT |
917086ff 3178 SB_POSIXACL |
d7ee9469 3179 SB_LAZYTIME |
917086ff 3180 SB_I_VERSION);
1da177e4 3181
43f5e655
DH
3182 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3183 retval = do_reconfigure_mnt(&path, mnt_flags);
3184 else if (flags & MS_REMOUNT)
e462ec50 3185 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3186 data_page);
3187 else if (flags & MS_BIND)
2d92ab3c 3188 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3189 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3190 retval = do_change_type(&path, flags);
1da177e4 3191 else if (flags & MS_MOVE)
2db154b3 3192 retval = do_move_mount_old(&path, dev_name);
1da177e4 3193 else
e462ec50 3194 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3195 dev_name, data_page);
3196dput_out:
2d92ab3c 3197 path_put(&path);
1da177e4
LT
3198 return retval;
3199}
3200
537f7ccb
EB
3201static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3202{
3203 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3204}
3205
3206static void dec_mnt_namespaces(struct ucounts *ucounts)
3207{
3208 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3209}
3210
771b1371
EB
3211static void free_mnt_ns(struct mnt_namespace *ns)
3212{
74e83122
AV
3213 if (!is_anon_ns(ns))
3214 ns_free_inum(&ns->ns);
537f7ccb 3215 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3216 put_user_ns(ns->user_ns);
3217 kfree(ns);
3218}
3219
8823c079
EB
3220/*
3221 * Assign a sequence number so we can detect when we attempt to bind
3222 * mount a reference to an older mount namespace into the current
3223 * mount namespace, preventing reference counting loops. A 64bit
3224 * number incrementing at 10Ghz will take 12,427 years to wrap which
3225 * is effectively never, so we can ignore the possibility.
3226 */
3227static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3228
74e83122 3229static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3230{
3231 struct mnt_namespace *new_ns;
537f7ccb 3232 struct ucounts *ucounts;
98f842e6 3233 int ret;
cf8d2c11 3234
537f7ccb
EB
3235 ucounts = inc_mnt_namespaces(user_ns);
3236 if (!ucounts)
df75e774 3237 return ERR_PTR(-ENOSPC);
537f7ccb 3238
74e83122 3239 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3240 if (!new_ns) {
3241 dec_mnt_namespaces(ucounts);
cf8d2c11 3242 return ERR_PTR(-ENOMEM);
537f7ccb 3243 }
74e83122
AV
3244 if (!anon) {
3245 ret = ns_alloc_inum(&new_ns->ns);
3246 if (ret) {
3247 kfree(new_ns);
3248 dec_mnt_namespaces(ucounts);
3249 return ERR_PTR(ret);
3250 }
98f842e6 3251 }
33c42940 3252 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3253 if (!anon)
3254 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3255 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3256 INIT_LIST_HEAD(&new_ns->list);
3257 init_waitqueue_head(&new_ns->poll);
9f6c61f9 3258 spin_lock_init(&new_ns->ns_lock);
771b1371 3259 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3260 new_ns->ucounts = ucounts;
cf8d2c11
TM
3261 return new_ns;
3262}
3263
0766f788 3264__latent_entropy
9559f689
AV
3265struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3266 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3267{
6b3286ed 3268 struct mnt_namespace *new_ns;
7f2da1e7 3269 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3270 struct mount *p, *q;
9559f689 3271 struct mount *old;
cb338d06 3272 struct mount *new;
7a472ef4 3273 int copy_flags;
1da177e4 3274
9559f689
AV
3275 BUG_ON(!ns);
3276
3277 if (likely(!(flags & CLONE_NEWNS))) {
3278 get_mnt_ns(ns);
3279 return ns;
3280 }
3281
3282 old = ns->root;
3283
74e83122 3284 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3285 if (IS_ERR(new_ns))
3286 return new_ns;
1da177e4 3287
97216be0 3288 namespace_lock();
1da177e4 3289 /* First pass: copy the tree topology */
4ce5d2b1 3290 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3291 if (user_ns != ns->user_ns)
3bd045cc 3292 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3293 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3294 if (IS_ERR(new)) {
328e6d90 3295 namespace_unlock();
771b1371 3296 free_mnt_ns(new_ns);
be34d1a3 3297 return ERR_CAST(new);
1da177e4 3298 }
3bd045cc
AV
3299 if (user_ns != ns->user_ns) {
3300 lock_mount_hash();
3301 lock_mnt_tree(new);
3302 unlock_mount_hash();
3303 }
be08d6d2 3304 new_ns->root = new;
1a4eeaf2 3305 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3306
3307 /*
3308 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3309 * as belonging to new namespace. We have already acquired a private
3310 * fs_struct, so tsk->fs->lock is not needed.
3311 */
909b0a88 3312 p = old;
cb338d06 3313 q = new;
1da177e4 3314 while (p) {
143c8c91 3315 q->mnt_ns = new_ns;
d2921684 3316 new_ns->mounts++;
9559f689
AV
3317 if (new_fs) {
3318 if (&p->mnt == new_fs->root.mnt) {
3319 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3320 rootmnt = &p->mnt;
1da177e4 3321 }
9559f689
AV
3322 if (&p->mnt == new_fs->pwd.mnt) {
3323 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3324 pwdmnt = &p->mnt;
1da177e4 3325 }
1da177e4 3326 }
909b0a88
AV
3327 p = next_mnt(p, old);
3328 q = next_mnt(q, new);
4ce5d2b1
EB
3329 if (!q)
3330 break;
3331 while (p->mnt.mnt_root != q->mnt.mnt_root)
3332 p = next_mnt(p, old);
1da177e4 3333 }
328e6d90 3334 namespace_unlock();
1da177e4 3335
1da177e4 3336 if (rootmnt)
f03c6599 3337 mntput(rootmnt);
1da177e4 3338 if (pwdmnt)
f03c6599 3339 mntput(pwdmnt);
1da177e4 3340
741a2951 3341 return new_ns;
1da177e4
LT
3342}
3343
74e83122 3344struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3345{
74e83122 3346 struct mount *mnt = real_mount(m);
ea441d11 3347 struct mnt_namespace *ns;
d31da0f0 3348 struct super_block *s;
ea441d11
AV
3349 struct path path;
3350 int err;
3351
74e83122
AV
3352 ns = alloc_mnt_ns(&init_user_ns, true);
3353 if (IS_ERR(ns)) {
3354 mntput(m);
ea441d11 3355 return ERR_CAST(ns);
74e83122
AV
3356 }
3357 mnt->mnt_ns = ns;
3358 ns->root = mnt;
3359 ns->mounts++;
3360 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3361
74e83122 3362 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3363 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3364
3365 put_mnt_ns(ns);
3366
3367 if (err)
3368 return ERR_PTR(err);
3369
3370 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3371 s = path.mnt->mnt_sb;
3372 atomic_inc(&s->s_active);
ea441d11
AV
3373 mntput(path.mnt);
3374 /* lock the sucker */
d31da0f0 3375 down_write(&s->s_umount);
ea441d11
AV
3376 /* ... and return the root of (sub)tree on it */
3377 return path.dentry;
3378}
3379EXPORT_SYMBOL(mount_subtree);
3380
cccaa5e3
DB
3381SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3382 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3383{
eca6f534
VN
3384 int ret;
3385 char *kernel_type;
eca6f534 3386 char *kernel_dev;
b40ef869 3387 void *options;
1da177e4 3388
b8850d1f
TG
3389 kernel_type = copy_mount_string(type);
3390 ret = PTR_ERR(kernel_type);
3391 if (IS_ERR(kernel_type))
eca6f534 3392 goto out_type;
1da177e4 3393
b8850d1f
TG
3394 kernel_dev = copy_mount_string(dev_name);
3395 ret = PTR_ERR(kernel_dev);
3396 if (IS_ERR(kernel_dev))
eca6f534 3397 goto out_dev;
1da177e4 3398
b40ef869
AV
3399 options = copy_mount_options(data);
3400 ret = PTR_ERR(options);
3401 if (IS_ERR(options))
eca6f534 3402 goto out_data;
1da177e4 3403
b40ef869 3404 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3405
b40ef869 3406 kfree(options);
eca6f534
VN
3407out_data:
3408 kfree(kernel_dev);
3409out_dev:
eca6f534
VN
3410 kfree(kernel_type);
3411out_type:
3412 return ret;
1da177e4
LT
3413}
3414
2db154b3 3415/*
93766fbd
DH
3416 * Create a kernel mount representation for a new, prepared superblock
3417 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3418 */
3419SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3420 unsigned int, attr_flags)
3421{
3422 struct mnt_namespace *ns;
3423 struct fs_context *fc;
3424 struct file *file;
3425 struct path newmount;
3426 struct mount *mnt;
3427 struct fd f;
3428 unsigned int mnt_flags = 0;
3429 long ret;
3430
3431 if (!may_mount())
3432 return -EPERM;
3433
3434 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3435 return -EINVAL;
3436
3437 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3438 MOUNT_ATTR_NOSUID |
3439 MOUNT_ATTR_NODEV |
3440 MOUNT_ATTR_NOEXEC |
3441 MOUNT_ATTR__ATIME |
3442 MOUNT_ATTR_NODIRATIME))
3443 return -EINVAL;
3444
3445 if (attr_flags & MOUNT_ATTR_RDONLY)
3446 mnt_flags |= MNT_READONLY;
3447 if (attr_flags & MOUNT_ATTR_NOSUID)
3448 mnt_flags |= MNT_NOSUID;
3449 if (attr_flags & MOUNT_ATTR_NODEV)
3450 mnt_flags |= MNT_NODEV;
3451 if (attr_flags & MOUNT_ATTR_NOEXEC)
3452 mnt_flags |= MNT_NOEXEC;
3453 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3454 mnt_flags |= MNT_NODIRATIME;
3455
3456 switch (attr_flags & MOUNT_ATTR__ATIME) {
3457 case MOUNT_ATTR_STRICTATIME:
3458 break;
3459 case MOUNT_ATTR_NOATIME:
3460 mnt_flags |= MNT_NOATIME;
3461 break;
3462 case MOUNT_ATTR_RELATIME:
3463 mnt_flags |= MNT_RELATIME;
3464 break;
3465 default:
3466 return -EINVAL;
3467 }
3468
3469 f = fdget(fs_fd);
3470 if (!f.file)
3471 return -EBADF;
3472
3473 ret = -EINVAL;
3474 if (f.file->f_op != &fscontext_fops)
3475 goto err_fsfd;
3476
3477 fc = f.file->private_data;
3478
3479 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3480 if (ret < 0)
3481 goto err_fsfd;
3482
3483 /* There must be a valid superblock or we can't mount it */
3484 ret = -EINVAL;
3485 if (!fc->root)
3486 goto err_unlock;
3487
3488 ret = -EPERM;
3489 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3490 pr_warn("VFS: Mount too revealing\n");
3491 goto err_unlock;
3492 }
3493
3494 ret = -EBUSY;
3495 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3496 goto err_unlock;
3497
3498 ret = -EPERM;
3499 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3500 goto err_unlock;
3501
3502 newmount.mnt = vfs_create_mount(fc);
3503 if (IS_ERR(newmount.mnt)) {
3504 ret = PTR_ERR(newmount.mnt);
3505 goto err_unlock;
3506 }
3507 newmount.dentry = dget(fc->root);
3508 newmount.mnt->mnt_flags = mnt_flags;
3509
3510 /* We've done the mount bit - now move the file context into more or
3511 * less the same state as if we'd done an fspick(). We don't want to
3512 * do any memory allocation or anything like that at this point as we
3513 * don't want to have to handle any errors incurred.
3514 */
3515 vfs_clean_context(fc);
3516
3517 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3518 if (IS_ERR(ns)) {
3519 ret = PTR_ERR(ns);
3520 goto err_path;
3521 }
3522 mnt = real_mount(newmount.mnt);
3523 mnt->mnt_ns = ns;
3524 ns->root = mnt;
3525 ns->mounts = 1;
3526 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3527 mntget(newmount.mnt);
93766fbd
DH
3528
3529 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3530 * it, not just simply put it.
3531 */
3532 file = dentry_open(&newmount, O_PATH, fc->cred);
3533 if (IS_ERR(file)) {
3534 dissolve_on_fput(newmount.mnt);
3535 ret = PTR_ERR(file);
3536 goto err_path;
3537 }
3538 file->f_mode |= FMODE_NEED_UNMOUNT;
3539
3540 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3541 if (ret >= 0)
3542 fd_install(ret, file);
3543 else
3544 fput(file);
3545
3546err_path:
3547 path_put(&newmount);
3548err_unlock:
3549 mutex_unlock(&fc->uapi_mutex);
3550err_fsfd:
3551 fdput(f);
3552 return ret;
3553}
3554
3555/*
3556 * Move a mount from one place to another. In combination with
3557 * fsopen()/fsmount() this is used to install a new mount and in combination
3558 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3559 * a mount subtree.
2db154b3
DH
3560 *
3561 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3562 */
3563SYSCALL_DEFINE5(move_mount,
2658ce09
BD
3564 int, from_dfd, const char __user *, from_pathname,
3565 int, to_dfd, const char __user *, to_pathname,
2db154b3
DH
3566 unsigned int, flags)
3567{
3568 struct path from_path, to_path;
3569 unsigned int lflags;
3570 int ret = 0;
3571
3572 if (!may_mount())
3573 return -EPERM;
3574
3575 if (flags & ~MOVE_MOUNT__MASK)
3576 return -EINVAL;
3577
3578 /* If someone gives a pathname, they aren't permitted to move
3579 * from an fd that requires unmount as we can't get at the flag
3580 * to clear it afterwards.
3581 */
3582 lflags = 0;
3583 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3584 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3585 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3586
3587 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3588 if (ret < 0)
3589 return ret;
3590
3591 lflags = 0;
3592 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3593 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3594 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3595
3596 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3597 if (ret < 0)
3598 goto out_from;
3599
3600 ret = security_move_mount(&from_path, &to_path);
3601 if (ret < 0)
3602 goto out_to;
3603
3604 ret = do_move_mount(&from_path, &to_path);
3605
3606out_to:
3607 path_put(&to_path);
3608out_from:
3609 path_put(&from_path);
3610 return ret;
3611}
3612
afac7cba
AV
3613/*
3614 * Return true if path is reachable from root
3615 *
48a066e7 3616 * namespace_sem or mount_lock is held
afac7cba 3617 */
643822b4 3618bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3619 const struct path *root)
3620{
643822b4 3621 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3622 dentry = mnt->mnt_mountpoint;
0714a533 3623 mnt = mnt->mnt_parent;
afac7cba 3624 }
643822b4 3625 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3626}
3627
640eb7e7 3628bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3629{
25ab4c9b 3630 bool res;
48a066e7 3631 read_seqlock_excl(&mount_lock);
643822b4 3632 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3633 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3634 return res;
3635}
3636EXPORT_SYMBOL(path_is_under);
3637
1da177e4
LT
3638/*
3639 * pivot_root Semantics:
3640 * Moves the root file system of the current process to the directory put_old,
3641 * makes new_root as the new root file system of the current process, and sets
3642 * root/cwd of all processes which had them on the current root to new_root.
3643 *
3644 * Restrictions:
3645 * The new_root and put_old must be directories, and must not be on the
3646 * same file system as the current process root. The put_old must be
3647 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3648 * pointed to by put_old must yield the same directory as new_root. No other
3649 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3650 *
4a0d11fa 3651 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
0c1bc6b8 3652 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4a0d11fa
NB
3653 * in this situation.
3654 *
1da177e4
LT
3655 * Notes:
3656 * - we don't move root/cwd if they are not at the root (reason: if something
3657 * cared enough to change them, it's probably wrong to force them elsewhere)
3658 * - it's okay to pick a root that isn't the root of a file system, e.g.
3659 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3660 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3661 * first.
3662 */
3480b257
HC
3663SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3664 const char __user *, put_old)
1da177e4 3665{
2763d119
AV
3666 struct path new, old, root;
3667 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3668 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3669 int error;
3670
9b40bc90 3671 if (!may_mount())
1da177e4
LT
3672 return -EPERM;
3673
ce6595a2
AV
3674 error = user_path_at(AT_FDCWD, new_root,
3675 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3676 if (error)
3677 goto out0;
1da177e4 3678
ce6595a2
AV
3679 error = user_path_at(AT_FDCWD, put_old,
3680 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3681 if (error)
3682 goto out1;
3683
2d8f3038 3684 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3685 if (error)
3686 goto out2;
1da177e4 3687
f7ad3c6b 3688 get_fs_root(current->fs, &root);
84d17192
AV
3689 old_mp = lock_mount(&old);
3690 error = PTR_ERR(old_mp);
3691 if (IS_ERR(old_mp))
b12cea91
AV
3692 goto out3;
3693
1da177e4 3694 error = -EINVAL;
419148da
AV
3695 new_mnt = real_mount(new.mnt);
3696 root_mnt = real_mount(root.mnt);
84d17192 3697 old_mnt = real_mount(old.mnt);
2763d119
AV
3698 ex_parent = new_mnt->mnt_parent;
3699 root_parent = root_mnt->mnt_parent;
84d17192 3700 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3701 IS_MNT_SHARED(ex_parent) ||
3702 IS_MNT_SHARED(root_parent))
b12cea91 3703 goto out4;
143c8c91 3704 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3705 goto out4;
5ff9d8a6
EB
3706 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3707 goto out4;
1da177e4 3708 error = -ENOENT;
f3da392e 3709 if (d_unlinked(new.dentry))
b12cea91 3710 goto out4;
1da177e4 3711 error = -EBUSY;
84d17192 3712 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3713 goto out4; /* loop, on the same file system */
1da177e4 3714 error = -EINVAL;
8c3ee42e 3715 if (root.mnt->mnt_root != root.dentry)
b12cea91 3716 goto out4; /* not a mountpoint */
676da58d 3717 if (!mnt_has_parent(root_mnt))
b12cea91 3718 goto out4; /* not attached */
2d8f3038 3719 if (new.mnt->mnt_root != new.dentry)
b12cea91 3720 goto out4; /* not a mountpoint */
676da58d 3721 if (!mnt_has_parent(new_mnt))
b12cea91 3722 goto out4; /* not attached */
4ac91378 3723 /* make sure we can reach put_old from new_root */
84d17192 3724 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3725 goto out4;
0d082601
EB
3726 /* make certain new is below the root */
3727 if (!is_path_reachable(new_mnt, new.dentry, &root))
3728 goto out4;
719ea2fb 3729 lock_mount_hash();
2763d119
AV
3730 umount_mnt(new_mnt);
3731 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3732 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3733 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3734 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3735 }
4ac91378 3736 /* mount old root on put_old */
84d17192 3737 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3738 /* mount new_root on / */
2763d119
AV
3739 attach_mnt(new_mnt, root_parent, root_mp);
3740 mnt_add_count(root_parent, -1);
6b3286ed 3741 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3742 /* A moved mount should not expire automatically */
3743 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3744 put_mountpoint(root_mp);
719ea2fb 3745 unlock_mount_hash();
2d8f3038 3746 chroot_fs_refs(&root, &new);
1da177e4 3747 error = 0;
b12cea91 3748out4:
84d17192 3749 unlock_mount(old_mp);
2763d119
AV
3750 if (!error)
3751 mntput_no_expire(ex_parent);
b12cea91 3752out3:
8c3ee42e 3753 path_put(&root);
b12cea91 3754out2:
2d8f3038 3755 path_put(&old);
1da177e4 3756out1:
2d8f3038 3757 path_put(&new);
1da177e4 3758out0:
1da177e4 3759 return error;
1da177e4
LT
3760}
3761
3762static void __init init_mount_tree(void)
3763{
3764 struct vfsmount *mnt;
74e83122 3765 struct mount *m;
6b3286ed 3766 struct mnt_namespace *ns;
ac748a09 3767 struct path root;
1da177e4 3768
fd3e007f 3769 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3770 if (IS_ERR(mnt))
3771 panic("Can't create rootfs");
b3e19d92 3772
74e83122 3773 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3774 if (IS_ERR(ns))
1da177e4 3775 panic("Can't allocate initial namespace");
74e83122
AV
3776 m = real_mount(mnt);
3777 m->mnt_ns = ns;
3778 ns->root = m;
3779 ns->mounts = 1;
3780 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3781 init_task.nsproxy->mnt_ns = ns;
3782 get_mnt_ns(ns);
3783
be08d6d2
AV
3784 root.mnt = mnt;
3785 root.dentry = mnt->mnt_root;
da362b09 3786 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3787
3788 set_fs_pwd(current->fs, &root);
3789 set_fs_root(current->fs, &root);
1da177e4
LT
3790}
3791
74bf17cf 3792void __init mnt_init(void)
1da177e4 3793{
15a67dd8 3794 int err;
1da177e4 3795
7d6fec45 3796 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3797 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3798
0818bf27 3799 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3800 sizeof(struct hlist_head),
0818bf27 3801 mhash_entries, 19,
3d375d78 3802 HASH_ZERO,
0818bf27
AV
3803 &m_hash_shift, &m_hash_mask, 0, 0);
3804 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3805 sizeof(struct hlist_head),
3806 mphash_entries, 19,
3d375d78 3807 HASH_ZERO,
0818bf27 3808 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3809
84d17192 3810 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3811 panic("Failed to allocate mount hash table\n");
3812
4b93dc9b
TH
3813 kernfs_init();
3814
15a67dd8
RD
3815 err = sysfs_init();
3816 if (err)
3817 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3818 __func__, err);
00d26666
GKH
3819 fs_kobj = kobject_create_and_add("fs", NULL);
3820 if (!fs_kobj)
8e24eea7 3821 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3822 shmem_init();
1da177e4
LT
3823 init_rootfs();
3824 init_mount_tree();
3825}
3826
616511d0 3827void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3828{
d498b25a 3829 if (!atomic_dec_and_test(&ns->count))
616511d0 3830 return;
7b00ed6f 3831 drop_collected_mounts(&ns->root->mnt);
771b1371 3832 free_mnt_ns(ns);
1da177e4 3833}
9d412a43 3834
d911b458 3835struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3836{
423e0ab0 3837 struct vfsmount *mnt;
d911b458 3838 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3839 if (!IS_ERR(mnt)) {
3840 /*
3841 * it is a longterm mount, don't release mnt until
3842 * we unmount before file sys is unregistered
3843 */
f7a99c5b 3844 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3845 }
3846 return mnt;
9d412a43 3847}
d911b458 3848EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3849
3850void kern_unmount(struct vfsmount *mnt)
3851{
3852 /* release long term mount so mount point can be released */
3853 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3854 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3855 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3856 mntput(mnt);
3857 }
3858}
3859EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3860
3861bool our_mnt(struct vfsmount *mnt)
3862{
143c8c91 3863 return check_mnt(real_mount(mnt));
02125a82 3864}
8823c079 3865
3151527e
EB
3866bool current_chrooted(void)
3867{
3868 /* Does the current process have a non-standard root */
3869 struct path ns_root;
3870 struct path fs_root;
3871 bool chrooted;
3872
3873 /* Find the namespace root */
3874 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3875 ns_root.dentry = ns_root.mnt->mnt_root;
3876 path_get(&ns_root);
3877 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3878 ;
3879
3880 get_fs_root(current->fs, &fs_root);
3881
3882 chrooted = !path_equal(&fs_root, &ns_root);
3883
3884 path_put(&fs_root);
3885 path_put(&ns_root);
3886
3887 return chrooted;
3888}
3889
132e4608
DH
3890static bool mnt_already_visible(struct mnt_namespace *ns,
3891 const struct super_block *sb,
8654df4e 3892 int *new_mnt_flags)
87a8ebd6 3893{
8c6cf9cc 3894 int new_flags = *new_mnt_flags;
87a8ebd6 3895 struct mount *mnt;
e51db735 3896 bool visible = false;
87a8ebd6 3897
44bb4385 3898 down_read(&namespace_sem);
9f6c61f9 3899 lock_ns_list(ns);
87a8ebd6 3900 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3901 struct mount *child;
77b1a97d
EB
3902 int mnt_flags;
3903
9f6c61f9
MS
3904 if (mnt_is_cursor(mnt))
3905 continue;
3906
132e4608 3907 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3908 continue;
3909
7e96c1b0
EB
3910 /* This mount is not fully visible if it's root directory
3911 * is not the root directory of the filesystem.
3912 */
3913 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3914 continue;
3915
a1935c17 3916 /* A local view of the mount flags */
77b1a97d 3917 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3918
695e9df0 3919 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3920 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3921 mnt_flags |= MNT_LOCK_READONLY;
3922
8c6cf9cc
EB
3923 /* Verify the mount flags are equal to or more permissive
3924 * than the proposed new mount.
3925 */
77b1a97d 3926 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3927 !(new_flags & MNT_READONLY))
3928 continue;
77b1a97d
EB
3929 if ((mnt_flags & MNT_LOCK_ATIME) &&
3930 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3931 continue;
3932
ceeb0e5d
EB
3933 /* This mount is not fully visible if there are any
3934 * locked child mounts that cover anything except for
3935 * empty directories.
e51db735
EB
3936 */
3937 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3938 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3939 /* Only worry about locked mounts */
d71ed6c9 3940 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3941 continue;
7236c85e
EB
3942 /* Is the directory permanetly empty? */
3943 if (!is_empty_dir_inode(inode))
e51db735 3944 goto next;
87a8ebd6 3945 }
8c6cf9cc 3946 /* Preserve the locked attributes */
77b1a97d 3947 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3948 MNT_LOCK_ATIME);
e51db735
EB
3949 visible = true;
3950 goto found;
3951 next: ;
87a8ebd6 3952 }
e51db735 3953found:
9f6c61f9 3954 unlock_ns_list(ns);
44bb4385 3955 up_read(&namespace_sem);
e51db735 3956 return visible;
87a8ebd6
EB
3957}
3958
132e4608 3959static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3960{
a1935c17 3961 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3962 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3963 unsigned long s_iflags;
3964
3965 if (ns->user_ns == &init_user_ns)
3966 return false;
3967
3968 /* Can this filesystem be too revealing? */
132e4608 3969 s_iflags = sb->s_iflags;
8654df4e
EB
3970 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3971 return false;
3972
a1935c17
EB
3973 if ((s_iflags & required_iflags) != required_iflags) {
3974 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3975 required_iflags);
3976 return true;
3977 }
3978
132e4608 3979 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3980}
3981
380cf5ba
AL
3982bool mnt_may_suid(struct vfsmount *mnt)
3983{
3984 /*
3985 * Foreign mounts (accessed via fchdir or through /proc
3986 * symlinks) are always treated as if they are nosuid. This
3987 * prevents namespaces from trusting potentially unsafe
3988 * suid/sgid bits, file caps, or security labels that originate
3989 * in other namespaces.
3990 */
3991 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3992 current_in_userns(mnt->mnt_sb->s_user_ns);
3993}
3994
64964528 3995static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3996{
58be2825 3997 struct ns_common *ns = NULL;
8823c079
EB
3998 struct nsproxy *nsproxy;
3999
728dba3a
EB
4000 task_lock(task);
4001 nsproxy = task->nsproxy;
8823c079 4002 if (nsproxy) {
58be2825
AV
4003 ns = &nsproxy->mnt_ns->ns;
4004 get_mnt_ns(to_mnt_ns(ns));
8823c079 4005 }
728dba3a 4006 task_unlock(task);
8823c079
EB
4007
4008 return ns;
4009}
4010
64964528 4011static void mntns_put(struct ns_common *ns)
8823c079 4012{
58be2825 4013 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
4014}
4015
64964528 4016static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
4017{
4018 struct fs_struct *fs = current->fs;
4f757f3c 4019 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 4020 struct path root;
4f757f3c 4021 int err;
8823c079 4022
0c55cfc4 4023 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
4024 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4025 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 4026 return -EPERM;
8823c079 4027
74e83122
AV
4028 if (is_anon_ns(mnt_ns))
4029 return -EINVAL;
4030
8823c079
EB
4031 if (fs->users != 1)
4032 return -EINVAL;
4033
4034 get_mnt_ns(mnt_ns);
4f757f3c 4035 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4036 nsproxy->mnt_ns = mnt_ns;
4037
4038 /* Find the root */
4f757f3c
AV
4039 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4040 "/", LOOKUP_DOWN, &root);
4041 if (err) {
4042 /* revert to old namespace */
4043 nsproxy->mnt_ns = old_mnt_ns;
4044 put_mnt_ns(mnt_ns);
4045 return err;
4046 }
8823c079 4047
4068367c
AV
4048 put_mnt_ns(old_mnt_ns);
4049
8823c079
EB
4050 /* Update the pwd and root */
4051 set_fs_pwd(fs, &root);
4052 set_fs_root(fs, &root);
4053
4054 path_put(&root);
4055 return 0;
4056}
4057
bcac25a5
AV
4058static struct user_namespace *mntns_owner(struct ns_common *ns)
4059{
4060 return to_mnt_ns(ns)->user_ns;
4061}
4062
8823c079
EB
4063const struct proc_ns_operations mntns_operations = {
4064 .name = "mnt",
4065 .type = CLONE_NEWNS,
4066 .get = mntns_get,
4067 .put = mntns_put,
4068 .install = mntns_install,
bcac25a5 4069 .owner = mntns_owner,
8823c079 4070};