]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/userfaultfd.c
Merge tag 'kvmarm-fixes-6.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmar...
[thirdparty/kernel/stable.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
5c041f5d 32#include <linux/swapops.h>
2d5de004 33#include <linux/miscdevice.h>
86039bd3 34
2d337b71
Z
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
2d337b71
Z
48};
49#endif
cefdca0a 50
68279f9c 51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
3004ec9c 52
3004ec9c
AA
53/*
54 * Start with fault_pending_wqh and fault_wqh so they're more likely
55 * to be in the same cacheline.
cbcfa130
EB
56 *
57 * Locking order:
58 * fd_wqh.lock
59 * fault_pending_wqh.lock
60 * fault_wqh.lock
61 * event_wqh.lock
62 *
63 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
64 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
65 * also taken in IRQ context.
3004ec9c 66 */
86039bd3 67struct userfaultfd_ctx {
15b726ef
AA
68 /* waitqueue head for the pending (i.e. not read) userfaults */
69 wait_queue_head_t fault_pending_wqh;
70 /* waitqueue head for the userfaults */
86039bd3
AA
71 wait_queue_head_t fault_wqh;
72 /* waitqueue head for the pseudo fd to wakeup poll/read */
73 wait_queue_head_t fd_wqh;
9cd75c3c
PE
74 /* waitqueue head for events */
75 wait_queue_head_t event_wqh;
2c5b7e1b 76 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 77 seqcount_spinlock_t refile_seq;
3004ec9c 78 /* pseudo fd refcounting */
ca880420 79 refcount_t refcount;
86039bd3
AA
80 /* userfaultfd syscall flags */
81 unsigned int flags;
9cd75c3c
PE
82 /* features requested from the userspace */
83 unsigned int features;
86039bd3
AA
84 /* released */
85 bool released;
df2cc96e 86 /* memory mappings are changing because of non-cooperative event */
a759a909 87 atomic_t mmap_changing;
86039bd3
AA
88 /* mm with one ore more vmas attached to this userfaultfd_ctx */
89 struct mm_struct *mm;
90};
91
893e26e6
PE
92struct userfaultfd_fork_ctx {
93 struct userfaultfd_ctx *orig;
94 struct userfaultfd_ctx *new;
95 struct list_head list;
96};
97
897ab3e0
MR
98struct userfaultfd_unmap_ctx {
99 struct userfaultfd_ctx *ctx;
100 unsigned long start;
101 unsigned long end;
102 struct list_head list;
103};
104
86039bd3 105struct userfaultfd_wait_queue {
a9b85f94 106 struct uffd_msg msg;
ac6424b9 107 wait_queue_entry_t wq;
86039bd3 108 struct userfaultfd_ctx *ctx;
15a77c6f 109 bool waken;
86039bd3
AA
110};
111
112struct userfaultfd_wake_range {
113 unsigned long start;
114 unsigned long len;
115};
116
22e5fe2a
NA
117/* internal indication that UFFD_API ioctl was successfully executed */
118#define UFFD_FEATURE_INITIALIZED (1u << 31)
119
120static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
121{
122 return ctx->features & UFFD_FEATURE_INITIALIZED;
123}
124
d61ea1cb
PX
125static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
126{
127 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
128}
129
2bad466c
PX
130/*
131 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
132 * meaningful when userfaultfd_wp()==true on the vma and when it's
133 * anonymous.
134 */
135bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
136{
137 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
138
139 if (!ctx)
140 return false;
141
142 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
143}
144
51d3d5eb
DH
145static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
146 vm_flags_t flags)
147{
148 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
149
1c71222e 150 vm_flags_reset(vma, flags);
51d3d5eb
DH
151 /*
152 * For shared mappings, we want to enable writenotify while
153 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
154 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
155 */
156 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
157 vma_set_page_prot(vma);
158}
159
ac6424b9 160static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
161 int wake_flags, void *key)
162{
163 struct userfaultfd_wake_range *range = key;
164 int ret;
165 struct userfaultfd_wait_queue *uwq;
166 unsigned long start, len;
167
168 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
169 ret = 0;
86039bd3
AA
170 /* len == 0 means wake all */
171 start = range->start;
172 len = range->len;
a9b85f94
AA
173 if (len && (start > uwq->msg.arg.pagefault.address ||
174 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 175 goto out;
15a77c6f
AA
176 WRITE_ONCE(uwq->waken, true);
177 /*
a9668cd6
PZ
178 * The Program-Order guarantees provided by the scheduler
179 * ensure uwq->waken is visible before the task is woken.
15a77c6f 180 */
86039bd3 181 ret = wake_up_state(wq->private, mode);
a9668cd6 182 if (ret) {
86039bd3
AA
183 /*
184 * Wake only once, autoremove behavior.
185 *
a9668cd6
PZ
186 * After the effect of list_del_init is visible to the other
187 * CPUs, the waitqueue may disappear from under us, see the
188 * !list_empty_careful() in handle_userfault().
189 *
190 * try_to_wake_up() has an implicit smp_mb(), and the
191 * wq->private is read before calling the extern function
192 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 193 */
2055da97 194 list_del_init(&wq->entry);
a9668cd6 195 }
86039bd3
AA
196out:
197 return ret;
198}
199
200/**
201 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
202 * context.
203 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
204 */
205static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
206{
ca880420 207 refcount_inc(&ctx->refcount);
86039bd3
AA
208}
209
210/**
211 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
212 * context.
213 * @ctx: [in] Pointer to userfaultfd context.
214 *
215 * The userfaultfd context reference must have been previously acquired either
216 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
217 */
218static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
219{
ca880420 220 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
221 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
222 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
223 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
224 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
225 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
226 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
227 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
228 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 229 mmdrop(ctx->mm);
3004ec9c 230 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
231 }
232}
233
a9b85f94 234static inline void msg_init(struct uffd_msg *msg)
86039bd3 235{
a9b85f94
AA
236 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
237 /*
238 * Must use memset to zero out the paddings or kernel data is
239 * leaked to userland.
240 */
241 memset(msg, 0, sizeof(struct uffd_msg));
242}
243
244static inline struct uffd_msg userfault_msg(unsigned long address,
d172b1a3 245 unsigned long real_address,
a9b85f94 246 unsigned int flags,
9d4ac934
AP
247 unsigned long reason,
248 unsigned int features)
a9b85f94
AA
249{
250 struct uffd_msg msg;
d172b1a3 251
a9b85f94
AA
252 msg_init(&msg);
253 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60 254
d172b1a3
NA
255 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
256 real_address : address;
257
7677f7fd
AR
258 /*
259 * These flags indicate why the userfault occurred:
260 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
261 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
262 * - Neither of these flags being set indicates a MISSING fault.
263 *
264 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
265 * fault. Otherwise, it was a read fault.
266 */
86039bd3 267 if (flags & FAULT_FLAG_WRITE)
a9b85f94 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 269 if (reason & VM_UFFD_WP)
a9b85f94 270 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
271 if (reason & VM_UFFD_MINOR)
272 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 273 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 274 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 275 return msg;
86039bd3
AA
276}
277
369cd212
MK
278#ifdef CONFIG_HUGETLB_PAGE
279/*
280 * Same functionality as userfaultfd_must_wait below with modifications for
281 * hugepmd ranges.
282 */
283static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e
SB
284 struct vm_fault *vmf,
285 unsigned long reason)
369cd212 286{
29a22b9e 287 struct vm_area_struct *vma = vmf->vma;
1e2c0436 288 pte_t *ptep, pte;
369cd212
MK
289 bool ret = true;
290
29a22b9e 291 assert_fault_locked(vmf);
1e2c0436 292
29a22b9e 293 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
1e2c0436 294 if (!ptep)
369cd212
MK
295 goto out;
296
297 ret = false;
1e2c0436 298 pte = huge_ptep_get(ptep);
369cd212
MK
299
300 /*
301 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
302 * changes under us. PTE markers should be handled the same as none
303 * ptes here.
369cd212 304 */
5c041f5d 305 if (huge_pte_none_mostly(pte))
369cd212 306 ret = true;
1e2c0436 307 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
308 ret = true;
309out:
310 return ret;
311}
312#else
313static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e
SB
314 struct vm_fault *vmf,
315 unsigned long reason)
369cd212
MK
316{
317 return false; /* should never get here */
318}
319#endif /* CONFIG_HUGETLB_PAGE */
320
8d2afd96
AA
321/*
322 * Verify the pagetables are still not ok after having reigstered into
323 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
324 * userfault that has already been resolved, if userfaultfd_read and
325 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
326 * threads.
327 */
328static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
29a22b9e 329 struct vm_fault *vmf,
8d2afd96
AA
330 unsigned long reason)
331{
332 struct mm_struct *mm = ctx->mm;
29a22b9e 333 unsigned long address = vmf->address;
8d2afd96 334 pgd_t *pgd;
c2febafc 335 p4d_t *p4d;
8d2afd96
AA
336 pud_t *pud;
337 pmd_t *pmd, _pmd;
338 pte_t *pte;
c33c7948 339 pte_t ptent;
8d2afd96
AA
340 bool ret = true;
341
29a22b9e 342 assert_fault_locked(vmf);
8d2afd96
AA
343
344 pgd = pgd_offset(mm, address);
345 if (!pgd_present(*pgd))
346 goto out;
c2febafc
KS
347 p4d = p4d_offset(pgd, address);
348 if (!p4d_present(*p4d))
349 goto out;
350 pud = pud_offset(p4d, address);
8d2afd96
AA
351 if (!pud_present(*pud))
352 goto out;
353 pmd = pmd_offset(pud, address);
2b683a4f 354again:
26e1a0c3 355 _pmd = pmdp_get_lockless(pmd);
a365ac09 356 if (pmd_none(_pmd))
8d2afd96
AA
357 goto out;
358
359 ret = false;
2b683a4f 360 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
a365ac09
HY
361 goto out;
362
63b2d417
AA
363 if (pmd_trans_huge(_pmd)) {
364 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
365 ret = true;
8d2afd96 366 goto out;
63b2d417 367 }
8d2afd96 368
8d2afd96 369 pte = pte_offset_map(pmd, address);
2b683a4f
HD
370 if (!pte) {
371 ret = true;
372 goto again;
373 }
8d2afd96
AA
374 /*
375 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
376 * changes under us. PTE markers should be handled the same as none
377 * ptes here.
8d2afd96 378 */
c33c7948
RR
379 ptent = ptep_get(pte);
380 if (pte_none_mostly(ptent))
8d2afd96 381 ret = true;
c33c7948 382 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
63b2d417 383 ret = true;
8d2afd96
AA
384 pte_unmap(pte);
385
386out:
387 return ret;
388}
389
2f064a59 390static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
391{
392 if (flags & FAULT_FLAG_INTERRUPTIBLE)
393 return TASK_INTERRUPTIBLE;
394
395 if (flags & FAULT_FLAG_KILLABLE)
396 return TASK_KILLABLE;
397
398 return TASK_UNINTERRUPTIBLE;
399}
400
86039bd3
AA
401/*
402 * The locking rules involved in returning VM_FAULT_RETRY depending on
403 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
404 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
405 * recommendation in __lock_page_or_retry is not an understatement.
406 *
c1e8d7c6 407 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
408 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
409 * not set.
410 *
411 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
412 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 413 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
414 * returning it.
415 */
2b740303 416vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 417{
b8da2e46
PX
418 struct vm_area_struct *vma = vmf->vma;
419 struct mm_struct *mm = vma->vm_mm;
86039bd3
AA
420 struct userfaultfd_ctx *ctx;
421 struct userfaultfd_wait_queue uwq;
2b740303 422 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 423 bool must_wait;
2f064a59 424 unsigned int blocking_state;
86039bd3 425
64c2b203
AA
426 /*
427 * We don't do userfault handling for the final child pid update.
428 *
429 * We also don't do userfault handling during
430 * coredumping. hugetlbfs has the special
48498071 431 * hugetlb_follow_page_mask() to skip missing pages in the
64c2b203
AA
432 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
433 * the no_page_table() helper in follow_page_mask(), but the
434 * shmem_vm_ops->fault method is invoked even during
004a9a38 435 * coredumping and it ends up here.
64c2b203
AA
436 */
437 if (current->flags & (PF_EXITING|PF_DUMPCORE))
438 goto out;
439
29a22b9e 440 assert_fault_locked(vmf);
64c2b203 441
b8da2e46 442 ctx = vma->vm_userfaultfd_ctx.ctx;
86039bd3 443 if (!ctx)
ba85c702 444 goto out;
86039bd3
AA
445
446 BUG_ON(ctx->mm != mm);
447
7677f7fd
AR
448 /* Any unrecognized flag is a bug. */
449 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
450 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
451 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 452
2d6d6f5a
PS
453 if (ctx->features & UFFD_FEATURE_SIGBUS)
454 goto out;
2d5de004 455 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
37cd0575 456 goto out;
2d6d6f5a 457
86039bd3
AA
458 /*
459 * If it's already released don't get it. This avoids to loop
460 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 461 * caller of handle_userfault to release the mmap_lock.
86039bd3 462 */
6aa7de05 463 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
464 /*
465 * Don't return VM_FAULT_SIGBUS in this case, so a non
466 * cooperative manager can close the uffd after the
467 * last UFFDIO_COPY, without risking to trigger an
468 * involuntary SIGBUS if the process was starting the
469 * userfaultfd while the userfaultfd was still armed
470 * (but after the last UFFDIO_COPY). If the uffd
471 * wasn't already closed when the userfault reached
472 * this point, that would normally be solved by
473 * userfaultfd_must_wait returning 'false'.
474 *
475 * If we were to return VM_FAULT_SIGBUS here, the non
476 * cooperative manager would be instead forced to
477 * always call UFFDIO_UNREGISTER before it can safely
478 * close the uffd.
479 */
480 ret = VM_FAULT_NOPAGE;
ba85c702 481 goto out;
656710a6 482 }
86039bd3
AA
483
484 /*
485 * Check that we can return VM_FAULT_RETRY.
486 *
487 * NOTE: it should become possible to return VM_FAULT_RETRY
488 * even if FAULT_FLAG_TRIED is set without leading to gup()
489 * -EBUSY failures, if the userfaultfd is to be extended for
490 * VM_UFFD_WP tracking and we intend to arm the userfault
491 * without first stopping userland access to the memory. For
492 * VM_UFFD_MISSING userfaults this is enough for now.
493 */
82b0f8c3 494 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
495 /*
496 * Validate the invariant that nowait must allow retry
497 * to be sure not to return SIGBUS erroneously on
498 * nowait invocations.
499 */
82b0f8c3 500 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
501#ifdef CONFIG_DEBUG_VM
502 if (printk_ratelimit()) {
503 printk(KERN_WARNING
82b0f8c3
JK
504 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
505 vmf->flags);
86039bd3
AA
506 dump_stack();
507 }
508#endif
ba85c702 509 goto out;
86039bd3
AA
510 }
511
512 /*
513 * Handle nowait, not much to do other than tell it to retry
514 * and wait.
515 */
ba85c702 516 ret = VM_FAULT_RETRY;
82b0f8c3 517 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 518 goto out;
86039bd3 519
c1e8d7c6 520 /* take the reference before dropping the mmap_lock */
86039bd3
AA
521 userfaultfd_ctx_get(ctx);
522
86039bd3
AA
523 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
524 uwq.wq.private = current;
d172b1a3
NA
525 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
526 reason, ctx->features);
86039bd3 527 uwq.ctx = ctx;
15a77c6f 528 uwq.waken = false;
86039bd3 529
3e69ad08 530 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 531
b8da2e46
PX
532 /*
533 * Take the vma lock now, in order to safely call
534 * userfaultfd_huge_must_wait() later. Since acquiring the
535 * (sleepable) vma lock can modify the current task state, that
536 * must be before explicitly calling set_current_state().
537 */
538 if (is_vm_hugetlb_page(vma))
539 hugetlb_vma_lock_read(vma);
540
cbcfa130 541 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
542 /*
543 * After the __add_wait_queue the uwq is visible to userland
544 * through poll/read().
545 */
15b726ef
AA
546 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
547 /*
548 * The smp_mb() after __set_current_state prevents the reads
549 * following the spin_unlock to happen before the list_add in
550 * __add_wait_queue.
551 */
15a77c6f 552 set_current_state(blocking_state);
cbcfa130 553 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 554
b8da2e46 555 if (!is_vm_hugetlb_page(vma))
29a22b9e 556 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
369cd212 557 else
29a22b9e 558 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
b8da2e46
PX
559 if (is_vm_hugetlb_page(vma))
560 hugetlb_vma_unlock_read(vma);
29a22b9e 561 release_fault_lock(vmf);
8d2afd96 562
f9bf3522 563 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 564 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 565 schedule();
ba85c702 566 }
86039bd3 567
ba85c702 568 __set_current_state(TASK_RUNNING);
15b726ef
AA
569
570 /*
571 * Here we race with the list_del; list_add in
572 * userfaultfd_ctx_read(), however because we don't ever run
573 * list_del_init() to refile across the two lists, the prev
574 * and next pointers will never point to self. list_add also
575 * would never let any of the two pointers to point to
576 * self. So list_empty_careful won't risk to see both pointers
577 * pointing to self at any time during the list refile. The
578 * only case where list_del_init() is called is the full
579 * removal in the wake function and there we don't re-list_add
580 * and it's fine not to block on the spinlock. The uwq on this
581 * kernel stack can be released after the list_del_init.
582 */
2055da97 583 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 584 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
585 /*
586 * No need of list_del_init(), the uwq on the stack
587 * will be freed shortly anyway.
588 */
2055da97 589 list_del(&uwq.wq.entry);
cbcfa130 590 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 591 }
86039bd3
AA
592
593 /*
594 * ctx may go away after this if the userfault pseudo fd is
595 * already released.
596 */
597 userfaultfd_ctx_put(ctx);
598
ba85c702
AA
599out:
600 return ret;
86039bd3
AA
601}
602
8c9e7bb7
AA
603static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
604 struct userfaultfd_wait_queue *ewq)
9cd75c3c 605{
0cbb4b4f
AA
606 struct userfaultfd_ctx *release_new_ctx;
607
9a69a829
AA
608 if (WARN_ON_ONCE(current->flags & PF_EXITING))
609 goto out;
9cd75c3c
PE
610
611 ewq->ctx = ctx;
612 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 613 release_new_ctx = NULL;
9cd75c3c 614
cbcfa130 615 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
616 /*
617 * After the __add_wait_queue the uwq is visible to userland
618 * through poll/read().
619 */
620 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
621 for (;;) {
622 set_current_state(TASK_KILLABLE);
623 if (ewq->msg.event == 0)
624 break;
6aa7de05 625 if (READ_ONCE(ctx->released) ||
9cd75c3c 626 fatal_signal_pending(current)) {
384632e6
AA
627 /*
628 * &ewq->wq may be queued in fork_event, but
629 * __remove_wait_queue ignores the head
630 * parameter. It would be a problem if it
631 * didn't.
632 */
9cd75c3c 633 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
634 if (ewq->msg.event == UFFD_EVENT_FORK) {
635 struct userfaultfd_ctx *new;
636
637 new = (struct userfaultfd_ctx *)
638 (unsigned long)
639 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 640 release_new_ctx = new;
7eb76d45 641 }
9cd75c3c
PE
642 break;
643 }
644
cbcfa130 645 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 646
a9a08845 647 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
648 schedule();
649
cbcfa130 650 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
651 }
652 __set_current_state(TASK_RUNNING);
cbcfa130 653 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 654
0cbb4b4f
AA
655 if (release_new_ctx) {
656 struct vm_area_struct *vma;
657 struct mm_struct *mm = release_new_ctx->mm;
69dbe6da 658 VMA_ITERATOR(vmi, mm, 0);
0cbb4b4f
AA
659
660 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 661 mmap_write_lock(mm);
69dbe6da 662 for_each_vma(vmi, vma) {
31e810aa 663 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
60081bf1 664 vma_start_write(vma);
0cbb4b4f 665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb
DH
666 userfaultfd_set_vm_flags(vma,
667 vma->vm_flags & ~__VM_UFFD_FLAGS);
31e810aa 668 }
69dbe6da 669 }
d8ed45c5 670 mmap_write_unlock(mm);
0cbb4b4f
AA
671
672 userfaultfd_ctx_put(release_new_ctx);
673 }
674
9cd75c3c
PE
675 /*
676 * ctx may go away after this if the userfault pseudo fd is
677 * already released.
678 */
9a69a829 679out:
a759a909
NA
680 atomic_dec(&ctx->mmap_changing);
681 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 682 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
683}
684
685static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
686 struct userfaultfd_wait_queue *ewq)
687{
688 ewq->msg.event = 0;
689 wake_up_locked(&ctx->event_wqh);
690 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
691}
692
893e26e6
PE
693int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
694{
695 struct userfaultfd_ctx *ctx = NULL, *octx;
696 struct userfaultfd_fork_ctx *fctx;
697
698 octx = vma->vm_userfaultfd_ctx.ctx;
699 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
60081bf1 700 vma_start_write(vma);
893e26e6 701 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 702 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
893e26e6
PE
703 return 0;
704 }
705
706 list_for_each_entry(fctx, fcs, list)
707 if (fctx->orig == octx) {
708 ctx = fctx->new;
709 break;
710 }
711
712 if (!ctx) {
713 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
714 if (!fctx)
715 return -ENOMEM;
716
717 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
718 if (!ctx) {
719 kfree(fctx);
720 return -ENOMEM;
721 }
722
ca880420 723 refcount_set(&ctx->refcount, 1);
893e26e6 724 ctx->flags = octx->flags;
893e26e6
PE
725 ctx->features = octx->features;
726 ctx->released = false;
a759a909 727 atomic_set(&ctx->mmap_changing, 0);
893e26e6 728 ctx->mm = vma->vm_mm;
00bb31fa 729 mmgrab(ctx->mm);
893e26e6
PE
730
731 userfaultfd_ctx_get(octx);
a759a909 732 atomic_inc(&octx->mmap_changing);
893e26e6
PE
733 fctx->orig = octx;
734 fctx->new = ctx;
735 list_add_tail(&fctx->list, fcs);
736 }
737
738 vma->vm_userfaultfd_ctx.ctx = ctx;
739 return 0;
740}
741
8c9e7bb7 742static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
743{
744 struct userfaultfd_ctx *ctx = fctx->orig;
745 struct userfaultfd_wait_queue ewq;
746
747 msg_init(&ewq.msg);
748
749 ewq.msg.event = UFFD_EVENT_FORK;
750 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
751
8c9e7bb7 752 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
753}
754
755void dup_userfaultfd_complete(struct list_head *fcs)
756{
893e26e6
PE
757 struct userfaultfd_fork_ctx *fctx, *n;
758
759 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 760 dup_fctx(fctx);
893e26e6
PE
761 list_del(&fctx->list);
762 kfree(fctx);
763 }
764}
765
72f87654
PE
766void mremap_userfaultfd_prep(struct vm_area_struct *vma,
767 struct vm_userfaultfd_ctx *vm_ctx)
768{
769 struct userfaultfd_ctx *ctx;
770
771 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
772
773 if (!ctx)
774 return;
775
776 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
777 vm_ctx->ctx = ctx;
778 userfaultfd_ctx_get(ctx);
a759a909 779 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
780 } else {
781 /* Drop uffd context if remap feature not enabled */
60081bf1 782 vma_start_write(vma);
3cfd22be 783 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 784 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
72f87654
PE
785 }
786}
787
90794bf1 788void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
789 unsigned long from, unsigned long to,
790 unsigned long len)
791{
90794bf1 792 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
793 struct userfaultfd_wait_queue ewq;
794
795 if (!ctx)
796 return;
797
798 if (to & ~PAGE_MASK) {
799 userfaultfd_ctx_put(ctx);
800 return;
801 }
802
803 msg_init(&ewq.msg);
804
805 ewq.msg.event = UFFD_EVENT_REMAP;
806 ewq.msg.arg.remap.from = from;
807 ewq.msg.arg.remap.to = to;
808 ewq.msg.arg.remap.len = len;
809
810 userfaultfd_event_wait_completion(ctx, &ewq);
811}
812
70ccb92f 813bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 814 unsigned long start, unsigned long end)
05ce7724
PE
815{
816 struct mm_struct *mm = vma->vm_mm;
817 struct userfaultfd_ctx *ctx;
818 struct userfaultfd_wait_queue ewq;
819
820 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 821 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 822 return true;
05ce7724
PE
823
824 userfaultfd_ctx_get(ctx);
a759a909 825 atomic_inc(&ctx->mmap_changing);
d8ed45c5 826 mmap_read_unlock(mm);
05ce7724 827
05ce7724
PE
828 msg_init(&ewq.msg);
829
d811914d
MR
830 ewq.msg.event = UFFD_EVENT_REMOVE;
831 ewq.msg.arg.remove.start = start;
832 ewq.msg.arg.remove.end = end;
05ce7724
PE
833
834 userfaultfd_event_wait_completion(ctx, &ewq);
835
70ccb92f 836 return false;
05ce7724
PE
837}
838
897ab3e0
MR
839static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
840 unsigned long start, unsigned long end)
841{
842 struct userfaultfd_unmap_ctx *unmap_ctx;
843
844 list_for_each_entry(unmap_ctx, unmaps, list)
845 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
846 unmap_ctx->end == end)
847 return true;
848
849 return false;
850}
851
65ac1320 852int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
69dbe6da 853 unsigned long end, struct list_head *unmaps)
897ab3e0 854{
65ac1320
LH
855 struct userfaultfd_unmap_ctx *unmap_ctx;
856 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
897ab3e0 857
65ac1320
LH
858 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
859 has_unmap_ctx(ctx, unmaps, start, end))
860 return 0;
897ab3e0 861
65ac1320
LH
862 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
863 if (!unmap_ctx)
864 return -ENOMEM;
897ab3e0 865
65ac1320
LH
866 userfaultfd_ctx_get(ctx);
867 atomic_inc(&ctx->mmap_changing);
868 unmap_ctx->ctx = ctx;
869 unmap_ctx->start = start;
870 unmap_ctx->end = end;
871 list_add_tail(&unmap_ctx->list, unmaps);
897ab3e0
MR
872
873 return 0;
874}
875
876void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
877{
878 struct userfaultfd_unmap_ctx *ctx, *n;
879 struct userfaultfd_wait_queue ewq;
880
881 list_for_each_entry_safe(ctx, n, uf, list) {
882 msg_init(&ewq.msg);
883
884 ewq.msg.event = UFFD_EVENT_UNMAP;
885 ewq.msg.arg.remove.start = ctx->start;
886 ewq.msg.arg.remove.end = ctx->end;
887
888 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
889
890 list_del(&ctx->list);
891 kfree(ctx);
892 }
893}
894
86039bd3
AA
895static int userfaultfd_release(struct inode *inode, struct file *file)
896{
897 struct userfaultfd_ctx *ctx = file->private_data;
898 struct mm_struct *mm = ctx->mm;
899 struct vm_area_struct *vma, *prev;
900 /* len == 0 means wake all */
901 struct userfaultfd_wake_range range = { .len = 0, };
902 unsigned long new_flags;
11a9b902 903 VMA_ITERATOR(vmi, mm, 0);
86039bd3 904
6aa7de05 905 WRITE_ONCE(ctx->released, true);
86039bd3 906
d2005e3f
ON
907 if (!mmget_not_zero(mm))
908 goto wakeup;
909
86039bd3
AA
910 /*
911 * Flush page faults out of all CPUs. NOTE: all page faults
912 * must be retried without returning VM_FAULT_SIGBUS if
913 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 914 * changes while handle_userfault released the mmap_lock. So
86039bd3 915 * it's critical that released is set to true (above), before
c1e8d7c6 916 * taking the mmap_lock for writing.
86039bd3 917 */
d8ed45c5 918 mmap_write_lock(mm);
86039bd3 919 prev = NULL;
11a9b902 920 for_each_vma(vmi, vma) {
86039bd3
AA
921 cond_resched();
922 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 923 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
924 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
925 prev = vma;
926 continue;
927 }
7677f7fd 928 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
94d7d923
LS
929 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
930 vma->vm_end, new_flags,
931 NULL_VM_UFFD_CTX);
69dbe6da 932
60081bf1 933 vma_start_write(vma);
51d3d5eb 934 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3 935 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
94d7d923
LS
936
937 prev = vma;
86039bd3 938 }
d8ed45c5 939 mmap_write_unlock(mm);
d2005e3f
ON
940 mmput(mm);
941wakeup:
86039bd3 942 /*
15b726ef 943 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 944 * the last page faults that may have been already waiting on
15b726ef 945 * the fault_*wqh.
86039bd3 946 */
cbcfa130 947 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 948 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 949 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 950 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 951
5a18b64e
MR
952 /* Flush pending events that may still wait on event_wqh */
953 wake_up_all(&ctx->event_wqh);
954
a9a08845 955 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
956 userfaultfd_ctx_put(ctx);
957 return 0;
958}
959
15b726ef 960/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
961static inline struct userfaultfd_wait_queue *find_userfault_in(
962 wait_queue_head_t *wqh)
86039bd3 963{
ac6424b9 964 wait_queue_entry_t *wq;
15b726ef 965 struct userfaultfd_wait_queue *uwq;
86039bd3 966
456a7378 967 lockdep_assert_held(&wqh->lock);
86039bd3 968
15b726ef 969 uwq = NULL;
6dcc27fd 970 if (!waitqueue_active(wqh))
15b726ef
AA
971 goto out;
972 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 973 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
974 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
975out:
976 return uwq;
86039bd3 977}
6dcc27fd
PE
978
979static inline struct userfaultfd_wait_queue *find_userfault(
980 struct userfaultfd_ctx *ctx)
981{
982 return find_userfault_in(&ctx->fault_pending_wqh);
983}
86039bd3 984
9cd75c3c
PE
985static inline struct userfaultfd_wait_queue *find_userfault_evt(
986 struct userfaultfd_ctx *ctx)
987{
988 return find_userfault_in(&ctx->event_wqh);
989}
990
076ccb76 991static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
992{
993 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 994 __poll_t ret;
86039bd3
AA
995
996 poll_wait(file, &ctx->fd_wqh, wait);
997
22e5fe2a 998 if (!userfaultfd_is_initialized(ctx))
a9a08845 999 return EPOLLERR;
9cd75c3c 1000
22e5fe2a
NA
1001 /*
1002 * poll() never guarantees that read won't block.
1003 * userfaults can be waken before they're read().
1004 */
1005 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 1006 return EPOLLERR;
22e5fe2a
NA
1007 /*
1008 * lockless access to see if there are pending faults
1009 * __pollwait last action is the add_wait_queue but
1010 * the spin_unlock would allow the waitqueue_active to
1011 * pass above the actual list_add inside
1012 * add_wait_queue critical section. So use a full
1013 * memory barrier to serialize the list_add write of
1014 * add_wait_queue() with the waitqueue_active read
1015 * below.
1016 */
1017 ret = 0;
1018 smp_mb();
1019 if (waitqueue_active(&ctx->fault_pending_wqh))
1020 ret = EPOLLIN;
1021 else if (waitqueue_active(&ctx->event_wqh))
1022 ret = EPOLLIN;
1023
1024 return ret;
86039bd3
AA
1025}
1026
893e26e6
PE
1027static const struct file_operations userfaultfd_fops;
1028
b537900f
DC
1029static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1030 struct inode *inode,
893e26e6
PE
1031 struct uffd_msg *msg)
1032{
1033 int fd;
893e26e6 1034
4f0b9194 1035 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
abec3d01 1036 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
1037 if (fd < 0)
1038 return fd;
1039
893e26e6
PE
1040 msg->arg.reserved.reserved1 = 0;
1041 msg->arg.fork.ufd = fd;
893e26e6
PE
1042 return 0;
1043}
1044
86039bd3 1045static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1046 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1047{
1048 ssize_t ret;
1049 DECLARE_WAITQUEUE(wait, current);
15b726ef 1050 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1051 /*
1052 * Handling fork event requires sleeping operations, so
1053 * we drop the event_wqh lock, then do these ops, then
1054 * lock it back and wake up the waiter. While the lock is
1055 * dropped the ewq may go away so we keep track of it
1056 * carefully.
1057 */
1058 LIST_HEAD(fork_event);
1059 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1060
15b726ef 1061 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1062 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1063 __add_wait_queue(&ctx->fd_wqh, &wait);
1064 for (;;) {
1065 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1066 spin_lock(&ctx->fault_pending_wqh.lock);
1067 uwq = find_userfault(ctx);
1068 if (uwq) {
2c5b7e1b
AA
1069 /*
1070 * Use a seqcount to repeat the lockless check
1071 * in wake_userfault() to avoid missing
1072 * wakeups because during the refile both
1073 * waitqueue could become empty if this is the
1074 * only userfault.
1075 */
1076 write_seqcount_begin(&ctx->refile_seq);
1077
86039bd3 1078 /*
15b726ef
AA
1079 * The fault_pending_wqh.lock prevents the uwq
1080 * to disappear from under us.
1081 *
1082 * Refile this userfault from
1083 * fault_pending_wqh to fault_wqh, it's not
1084 * pending anymore after we read it.
1085 *
1086 * Use list_del() by hand (as
1087 * userfaultfd_wake_function also uses
1088 * list_del_init() by hand) to be sure nobody
1089 * changes __remove_wait_queue() to use
1090 * list_del_init() in turn breaking the
1091 * !list_empty_careful() check in
2055da97 1092 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1093 * must never be empty at any time during the
1094 * refile, or the waitqueue could disappear
1095 * from under us. The "wait_queue_head_t"
1096 * parameter of __remove_wait_queue() is unused
1097 * anyway.
86039bd3 1098 */
2055da97 1099 list_del(&uwq->wq.entry);
c430d1e8 1100 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1101
2c5b7e1b
AA
1102 write_seqcount_end(&ctx->refile_seq);
1103
a9b85f94
AA
1104 /* careful to always initialize msg if ret == 0 */
1105 *msg = uwq->msg;
15b726ef 1106 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1107 ret = 0;
1108 break;
1109 }
15b726ef 1110 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1111
1112 spin_lock(&ctx->event_wqh.lock);
1113 uwq = find_userfault_evt(ctx);
1114 if (uwq) {
1115 *msg = uwq->msg;
1116
893e26e6
PE
1117 if (uwq->msg.event == UFFD_EVENT_FORK) {
1118 fork_nctx = (struct userfaultfd_ctx *)
1119 (unsigned long)
1120 uwq->msg.arg.reserved.reserved1;
2055da97 1121 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1122 /*
1123 * fork_nctx can be freed as soon as
1124 * we drop the lock, unless we take a
1125 * reference on it.
1126 */
1127 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1128 spin_unlock(&ctx->event_wqh.lock);
1129 ret = 0;
1130 break;
1131 }
1132
9cd75c3c
PE
1133 userfaultfd_event_complete(ctx, uwq);
1134 spin_unlock(&ctx->event_wqh.lock);
1135 ret = 0;
1136 break;
1137 }
1138 spin_unlock(&ctx->event_wqh.lock);
1139
86039bd3
AA
1140 if (signal_pending(current)) {
1141 ret = -ERESTARTSYS;
1142 break;
1143 }
1144 if (no_wait) {
1145 ret = -EAGAIN;
1146 break;
1147 }
ae62c16e 1148 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1149 schedule();
ae62c16e 1150 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1151 }
1152 __remove_wait_queue(&ctx->fd_wqh, &wait);
1153 __set_current_state(TASK_RUNNING);
ae62c16e 1154 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1155
893e26e6 1156 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1157 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1158 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1159 if (!list_empty(&fork_event)) {
1160 /*
1161 * The fork thread didn't abort, so we can
1162 * drop the temporary refcount.
1163 */
1164 userfaultfd_ctx_put(fork_nctx);
1165
1166 uwq = list_first_entry(&fork_event,
1167 typeof(*uwq),
1168 wq.entry);
1169 /*
1170 * If fork_event list wasn't empty and in turn
1171 * the event wasn't already released by fork
1172 * (the event is allocated on fork kernel
1173 * stack), put the event back to its place in
1174 * the event_wq. fork_event head will be freed
1175 * as soon as we return so the event cannot
1176 * stay queued there no matter the current
1177 * "ret" value.
1178 */
1179 list_del(&uwq->wq.entry);
1180 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1181
384632e6
AA
1182 /*
1183 * Leave the event in the waitqueue and report
1184 * error to userland if we failed to resolve
1185 * the userfault fork.
1186 */
1187 if (likely(!ret))
893e26e6 1188 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1189 } else {
1190 /*
1191 * Here the fork thread aborted and the
1192 * refcount from the fork thread on fork_nctx
1193 * has already been released. We still hold
1194 * the reference we took before releasing the
1195 * lock above. If resolve_userfault_fork
1196 * failed we've to drop it because the
1197 * fork_nctx has to be freed in such case. If
1198 * it succeeded we'll hold it because the new
1199 * uffd references it.
1200 */
1201 if (ret)
1202 userfaultfd_ctx_put(fork_nctx);
893e26e6 1203 }
cbcfa130 1204 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1205 }
1206
86039bd3
AA
1207 return ret;
1208}
1209
1210static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *ppos)
1212{
1213 struct userfaultfd_ctx *ctx = file->private_data;
1214 ssize_t _ret, ret = 0;
a9b85f94 1215 struct uffd_msg msg;
86039bd3 1216 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1217 struct inode *inode = file_inode(file);
86039bd3 1218
22e5fe2a 1219 if (!userfaultfd_is_initialized(ctx))
86039bd3 1220 return -EINVAL;
86039bd3
AA
1221
1222 for (;;) {
a9b85f94 1223 if (count < sizeof(msg))
86039bd3 1224 return ret ? ret : -EINVAL;
b537900f 1225 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1226 if (_ret < 0)
1227 return ret ? ret : _ret;
a9b85f94 1228 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1229 return ret ? ret : -EFAULT;
a9b85f94
AA
1230 ret += sizeof(msg);
1231 buf += sizeof(msg);
1232 count -= sizeof(msg);
86039bd3
AA
1233 /*
1234 * Allow to read more than one fault at time but only
1235 * block if waiting for the very first one.
1236 */
1237 no_wait = O_NONBLOCK;
1238 }
1239}
1240
1241static void __wake_userfault(struct userfaultfd_ctx *ctx,
1242 struct userfaultfd_wake_range *range)
1243{
cbcfa130 1244 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1245 /* wake all in the range and autoremove */
15b726ef 1246 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1247 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1248 range);
1249 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1250 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1251 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1252}
1253
1254static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1255 struct userfaultfd_wake_range *range)
1256{
2c5b7e1b
AA
1257 unsigned seq;
1258 bool need_wakeup;
1259
86039bd3
AA
1260 /*
1261 * To be sure waitqueue_active() is not reordered by the CPU
1262 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1263 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1264 * have release semantics that can allow the
1265 * waitqueue_active() to be reordered before the pte update.
1266 */
1267 smp_mb();
1268
1269 /*
1270 * Use waitqueue_active because it's very frequent to
1271 * change the address space atomically even if there are no
1272 * userfaults yet. So we take the spinlock only when we're
1273 * sure we've userfaults to wake.
1274 */
2c5b7e1b
AA
1275 do {
1276 seq = read_seqcount_begin(&ctx->refile_seq);
1277 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1278 waitqueue_active(&ctx->fault_wqh);
1279 cond_resched();
1280 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1281 if (need_wakeup)
86039bd3
AA
1282 __wake_userfault(ctx, range);
1283}
1284
2ef5d724
AR
1285static __always_inline int validate_unaligned_range(
1286 struct mm_struct *mm, __u64 start, __u64 len)
86039bd3
AA
1287{
1288 __u64 task_size = mm->task_size;
1289
86039bd3
AA
1290 if (len & ~PAGE_MASK)
1291 return -EINVAL;
1292 if (!len)
1293 return -EINVAL;
e71e2ace 1294 if (start < mmap_min_addr)
86039bd3 1295 return -EINVAL;
e71e2ace 1296 if (start >= task_size)
86039bd3 1297 return -EINVAL;
e71e2ace 1298 if (len > task_size - start)
86039bd3 1299 return -EINVAL;
2ef5d724
AR
1300 if (start + len <= start)
1301 return -EINVAL;
86039bd3
AA
1302 return 0;
1303}
1304
2ef5d724
AR
1305static __always_inline int validate_range(struct mm_struct *mm,
1306 __u64 start, __u64 len)
1307{
1308 if (start & ~PAGE_MASK)
1309 return -EINVAL;
1310
1311 return validate_unaligned_range(mm, start, len);
1312}
1313
86039bd3
AA
1314static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1315 unsigned long arg)
1316{
1317 struct mm_struct *mm = ctx->mm;
1318 struct vm_area_struct *vma, *prev, *cur;
1319 int ret;
1320 struct uffdio_register uffdio_register;
1321 struct uffdio_register __user *user_uffdio_register;
1322 unsigned long vm_flags, new_flags;
1323 bool found;
ce53e8e6 1324 bool basic_ioctls;
86039bd3 1325 unsigned long start, end, vma_end;
11a9b902 1326 struct vma_iterator vmi;
d61ea1cb 1327 bool wp_async = userfaultfd_wp_async_ctx(ctx);
86039bd3
AA
1328
1329 user_uffdio_register = (struct uffdio_register __user *) arg;
1330
1331 ret = -EFAULT;
1332 if (copy_from_user(&uffdio_register, user_uffdio_register,
1333 sizeof(uffdio_register)-sizeof(__u64)))
1334 goto out;
1335
1336 ret = -EINVAL;
1337 if (!uffdio_register.mode)
1338 goto out;
7677f7fd 1339 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1340 goto out;
1341 vm_flags = 0;
1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1343 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1344 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1345#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1346 goto out;
1347#endif
86039bd3 1348 vm_flags |= VM_UFFD_WP;
00b151f2 1349 }
7677f7fd
AR
1350 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1351#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1352 goto out;
1353#endif
1354 vm_flags |= VM_UFFD_MINOR;
1355 }
86039bd3 1356
e71e2ace 1357 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1358 uffdio_register.range.len);
1359 if (ret)
1360 goto out;
1361
1362 start = uffdio_register.range.start;
1363 end = start + uffdio_register.range.len;
1364
d2005e3f
ON
1365 ret = -ENOMEM;
1366 if (!mmget_not_zero(mm))
1367 goto out;
1368
11a9b902 1369 ret = -EINVAL;
d8ed45c5 1370 mmap_write_lock(mm);
11a9b902
LH
1371 vma_iter_init(&vmi, mm, start);
1372 vma = vma_find(&vmi, end);
86039bd3
AA
1373 if (!vma)
1374 goto out_unlock;
1375
cab350af
MK
1376 /*
1377 * If the first vma contains huge pages, make sure start address
1378 * is aligned to huge page size.
1379 */
1380 if (is_vm_hugetlb_page(vma)) {
1381 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1382
1383 if (start & (vma_hpagesize - 1))
1384 goto out_unlock;
1385 }
1386
86039bd3
AA
1387 /*
1388 * Search for not compatible vmas.
86039bd3
AA
1389 */
1390 found = false;
ce53e8e6 1391 basic_ioctls = false;
11a9b902
LH
1392 cur = vma;
1393 do {
86039bd3
AA
1394 cond_resched();
1395
1396 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1397 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1398
1399 /* check not compatible vmas */
1400 ret = -EINVAL;
d61ea1cb 1401 if (!vma_can_userfault(cur, vm_flags, wp_async))
86039bd3 1402 goto out_unlock;
29ec9066
AA
1403
1404 /*
1405 * UFFDIO_COPY will fill file holes even without
1406 * PROT_WRITE. This check enforces that if this is a
1407 * MAP_SHARED, the process has write permission to the backing
1408 * file. If VM_MAYWRITE is set it also enforces that on a
1409 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1410 * F_WRITE_SEAL can be taken until the vma is destroyed.
1411 */
1412 ret = -EPERM;
1413 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1414 goto out_unlock;
1415
cab350af
MK
1416 /*
1417 * If this vma contains ending address, and huge pages
1418 * check alignment.
1419 */
1420 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1421 end > cur->vm_start) {
1422 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1423
1424 ret = -EINVAL;
1425
1426 if (end & (vma_hpagesize - 1))
1427 goto out_unlock;
1428 }
63b2d417
AA
1429 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1430 goto out_unlock;
86039bd3
AA
1431
1432 /*
1433 * Check that this vma isn't already owned by a
1434 * different userfaultfd. We can't allow more than one
1435 * userfaultfd to own a single vma simultaneously or we
1436 * wouldn't know which one to deliver the userfaults to.
1437 */
1438 ret = -EBUSY;
1439 if (cur->vm_userfaultfd_ctx.ctx &&
1440 cur->vm_userfaultfd_ctx.ctx != ctx)
1441 goto out_unlock;
1442
cab350af
MK
1443 /*
1444 * Note vmas containing huge pages
1445 */
ce53e8e6
MR
1446 if (is_vm_hugetlb_page(cur))
1447 basic_ioctls = true;
cab350af 1448
86039bd3 1449 found = true;
11a9b902 1450 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1451 BUG_ON(!found);
1452
11a9b902
LH
1453 vma_iter_set(&vmi, start);
1454 prev = vma_prev(&vmi);
270aa010
PX
1455 if (vma->vm_start < start)
1456 prev = vma;
86039bd3
AA
1457
1458 ret = 0;
11a9b902 1459 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1460 cond_resched();
1461
d61ea1cb 1462 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
86039bd3
AA
1463 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1464 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1465 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1466
1467 /*
1468 * Nothing to do: this vma is already registered into this
1469 * userfaultfd and with the right tracking mode too.
1470 */
1471 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1472 (vma->vm_flags & vm_flags) == vm_flags)
1473 goto skip;
1474
1475 if (vma->vm_start > start)
1476 start = vma->vm_start;
1477 vma_end = min(end, vma->vm_end);
1478
7677f7fd 1479 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
94d7d923
LS
1480 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1481 new_flags,
1482 (struct vm_userfaultfd_ctx){ctx});
1483 if (IS_ERR(vma)) {
1484 ret = PTR_ERR(vma);
1485 break;
86039bd3 1486 }
94d7d923 1487
86039bd3
AA
1488 /*
1489 * In the vma_merge() successful mprotect-like case 8:
1490 * the next vma was merged into the current one and
1491 * the current one has not been updated yet.
1492 */
60081bf1 1493 vma_start_write(vma);
51d3d5eb 1494 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1495 vma->vm_userfaultfd_ctx.ctx = ctx;
1496
6dfeaff9
PX
1497 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1498 hugetlb_unshare_all_pmds(vma);
1499
86039bd3
AA
1500 skip:
1501 prev = vma;
1502 start = vma->vm_end;
11a9b902
LH
1503 }
1504
86039bd3 1505out_unlock:
d8ed45c5 1506 mmap_write_unlock(mm);
d2005e3f 1507 mmput(mm);
86039bd3 1508 if (!ret) {
14819305
PX
1509 __u64 ioctls_out;
1510
1511 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1512 UFFD_API_RANGE_IOCTLS;
1513
1514 /*
1515 * Declare the WP ioctl only if the WP mode is
1516 * specified and all checks passed with the range
1517 */
1518 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1519 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1520
f6191471
AR
1521 /* CONTINUE ioctl is only supported for MINOR ranges. */
1522 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1523 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1524
86039bd3
AA
1525 /*
1526 * Now that we scanned all vmas we can already tell
1527 * userland which ioctls methods are guaranteed to
1528 * succeed on this range.
1529 */
14819305 1530 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1531 ret = -EFAULT;
1532 }
1533out:
1534 return ret;
1535}
1536
1537static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1538 unsigned long arg)
1539{
1540 struct mm_struct *mm = ctx->mm;
1541 struct vm_area_struct *vma, *prev, *cur;
1542 int ret;
1543 struct uffdio_range uffdio_unregister;
1544 unsigned long new_flags;
1545 bool found;
1546 unsigned long start, end, vma_end;
1547 const void __user *buf = (void __user *)arg;
11a9b902 1548 struct vma_iterator vmi;
d61ea1cb 1549 bool wp_async = userfaultfd_wp_async_ctx(ctx);
86039bd3
AA
1550
1551 ret = -EFAULT;
1552 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1553 goto out;
1554
e71e2ace 1555 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1556 uffdio_unregister.len);
1557 if (ret)
1558 goto out;
1559
1560 start = uffdio_unregister.start;
1561 end = start + uffdio_unregister.len;
1562
d2005e3f
ON
1563 ret = -ENOMEM;
1564 if (!mmget_not_zero(mm))
1565 goto out;
1566
d8ed45c5 1567 mmap_write_lock(mm);
86039bd3 1568 ret = -EINVAL;
11a9b902
LH
1569 vma_iter_init(&vmi, mm, start);
1570 vma = vma_find(&vmi, end);
1571 if (!vma)
86039bd3
AA
1572 goto out_unlock;
1573
cab350af
MK
1574 /*
1575 * If the first vma contains huge pages, make sure start address
1576 * is aligned to huge page size.
1577 */
1578 if (is_vm_hugetlb_page(vma)) {
1579 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1580
1581 if (start & (vma_hpagesize - 1))
1582 goto out_unlock;
1583 }
1584
86039bd3
AA
1585 /*
1586 * Search for not compatible vmas.
86039bd3
AA
1587 */
1588 found = false;
11a9b902
LH
1589 cur = vma;
1590 do {
86039bd3
AA
1591 cond_resched();
1592
1593 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1594 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1595
1596 /*
1597 * Check not compatible vmas, not strictly required
1598 * here as not compatible vmas cannot have an
1599 * userfaultfd_ctx registered on them, but this
1600 * provides for more strict behavior to notice
1601 * unregistration errors.
1602 */
d61ea1cb 1603 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
86039bd3
AA
1604 goto out_unlock;
1605
1606 found = true;
11a9b902 1607 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1608 BUG_ON(!found);
1609
11a9b902
LH
1610 vma_iter_set(&vmi, start);
1611 prev = vma_prev(&vmi);
270aa010
PX
1612 if (vma->vm_start < start)
1613 prev = vma;
1614
86039bd3 1615 ret = 0;
11a9b902 1616 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1617 cond_resched();
1618
d61ea1cb 1619 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
86039bd3
AA
1620
1621 /*
1622 * Nothing to do: this vma is already registered into this
1623 * userfaultfd and with the right tracking mode too.
1624 */
1625 if (!vma->vm_userfaultfd_ctx.ctx)
1626 goto skip;
1627
01e881f5
AA
1628 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1629
86039bd3
AA
1630 if (vma->vm_start > start)
1631 start = vma->vm_start;
1632 vma_end = min(end, vma->vm_end);
1633
09fa5296
AA
1634 if (userfaultfd_missing(vma)) {
1635 /*
1636 * Wake any concurrent pending userfault while
1637 * we unregister, so they will not hang
1638 * permanently and it avoids userland to call
1639 * UFFDIO_WAKE explicitly.
1640 */
1641 struct userfaultfd_wake_range range;
1642 range.start = start;
1643 range.len = vma_end - start;
1644 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1645 }
1646
f369b07c
PX
1647 /* Reset ptes for the whole vma range if wr-protected */
1648 if (userfaultfd_wp(vma))
61c50040 1649 uffd_wp_range(vma, start, vma_end - start, false);
f369b07c 1650
7677f7fd 1651 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
94d7d923
LS
1652 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1653 new_flags, NULL_VM_UFFD_CTX);
1654 if (IS_ERR(vma)) {
1655 ret = PTR_ERR(vma);
1656 break;
86039bd3 1657 }
94d7d923 1658
86039bd3
AA
1659 /*
1660 * In the vma_merge() successful mprotect-like case 8:
1661 * the next vma was merged into the current one and
1662 * the current one has not been updated yet.
1663 */
60081bf1 1664 vma_start_write(vma);
51d3d5eb 1665 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1666 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1667
1668 skip:
1669 prev = vma;
1670 start = vma->vm_end;
11a9b902
LH
1671 }
1672
86039bd3 1673out_unlock:
d8ed45c5 1674 mmap_write_unlock(mm);
d2005e3f 1675 mmput(mm);
86039bd3
AA
1676out:
1677 return ret;
1678}
1679
1680/*
ba85c702
AA
1681 * userfaultfd_wake may be used in combination with the
1682 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1683 */
1684static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1685 unsigned long arg)
1686{
1687 int ret;
1688 struct uffdio_range uffdio_wake;
1689 struct userfaultfd_wake_range range;
1690 const void __user *buf = (void __user *)arg;
1691
1692 ret = -EFAULT;
1693 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1694 goto out;
1695
e71e2ace 1696 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1697 if (ret)
1698 goto out;
1699
1700 range.start = uffdio_wake.start;
1701 range.len = uffdio_wake.len;
1702
1703 /*
1704 * len == 0 means wake all and we don't want to wake all here,
1705 * so check it again to be sure.
1706 */
1707 VM_BUG_ON(!range.len);
1708
1709 wake_userfault(ctx, &range);
1710 ret = 0;
1711
1712out:
1713 return ret;
1714}
1715
ad465cae
AA
1716static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1717 unsigned long arg)
1718{
1719 __s64 ret;
1720 struct uffdio_copy uffdio_copy;
1721 struct uffdio_copy __user *user_uffdio_copy;
1722 struct userfaultfd_wake_range range;
d9712937 1723 uffd_flags_t flags = 0;
ad465cae
AA
1724
1725 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1726
df2cc96e 1727 ret = -EAGAIN;
a759a909 1728 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1729 goto out;
1730
ad465cae
AA
1731 ret = -EFAULT;
1732 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1733 /* don't copy "copy" last field */
1734 sizeof(uffdio_copy)-sizeof(__s64)))
1735 goto out;
1736
2ef5d724
AR
1737 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1738 uffdio_copy.len);
1739 if (ret)
1740 goto out;
e71e2ace 1741 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1742 if (ret)
1743 goto out;
2ef5d724 1744
ad465cae 1745 ret = -EINVAL;
72981e0e 1746 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1747 goto out;
d9712937
AR
1748 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1749 flags |= MFILL_ATOMIC_WP;
d2005e3f 1750 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1751 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1752 uffdio_copy.len, &ctx->mmap_changing,
d9712937 1753 flags);
d2005e3f 1754 mmput(ctx->mm);
96333187 1755 } else {
e86b298b 1756 return -ESRCH;
d2005e3f 1757 }
ad465cae
AA
1758 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1759 return -EFAULT;
1760 if (ret < 0)
1761 goto out;
1762 BUG_ON(!ret);
1763 /* len == 0 would wake all */
1764 range.len = ret;
1765 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1766 range.start = uffdio_copy.dst;
1767 wake_userfault(ctx, &range);
1768 }
1769 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1770out:
1771 return ret;
1772}
1773
1774static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1775 unsigned long arg)
1776{
1777 __s64 ret;
1778 struct uffdio_zeropage uffdio_zeropage;
1779 struct uffdio_zeropage __user *user_uffdio_zeropage;
1780 struct userfaultfd_wake_range range;
1781
1782 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1783
df2cc96e 1784 ret = -EAGAIN;
a759a909 1785 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1786 goto out;
1787
ad465cae
AA
1788 ret = -EFAULT;
1789 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1790 /* don't copy "zeropage" last field */
1791 sizeof(uffdio_zeropage)-sizeof(__s64)))
1792 goto out;
1793
e71e2ace 1794 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1795 uffdio_zeropage.range.len);
1796 if (ret)
1797 goto out;
1798 ret = -EINVAL;
1799 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1800 goto out;
1801
d2005e3f 1802 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1803 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1804 uffdio_zeropage.range.len,
1805 &ctx->mmap_changing);
d2005e3f 1806 mmput(ctx->mm);
9d95aa4b 1807 } else {
e86b298b 1808 return -ESRCH;
d2005e3f 1809 }
ad465cae
AA
1810 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1811 return -EFAULT;
1812 if (ret < 0)
1813 goto out;
1814 /* len == 0 would wake all */
1815 BUG_ON(!ret);
1816 range.len = ret;
1817 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1818 range.start = uffdio_zeropage.range.start;
1819 wake_userfault(ctx, &range);
1820 }
1821 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1822out:
1823 return ret;
1824}
1825
63b2d417
AA
1826static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1827 unsigned long arg)
1828{
1829 int ret;
1830 struct uffdio_writeprotect uffdio_wp;
1831 struct uffdio_writeprotect __user *user_uffdio_wp;
1832 struct userfaultfd_wake_range range;
23080e27 1833 bool mode_wp, mode_dontwake;
63b2d417 1834
a759a909 1835 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1836 return -EAGAIN;
1837
1838 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1839
1840 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1841 sizeof(struct uffdio_writeprotect)))
1842 return -EFAULT;
1843
e71e2ace 1844 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1845 uffdio_wp.range.len);
1846 if (ret)
1847 return ret;
1848
1849 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1850 UFFDIO_WRITEPROTECT_MODE_WP))
1851 return -EINVAL;
23080e27
PX
1852
1853 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1854 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1855
1856 if (mode_wp && mode_dontwake)
63b2d417
AA
1857 return -EINVAL;
1858
cb185d5f
NA
1859 if (mmget_not_zero(ctx->mm)) {
1860 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1861 uffdio_wp.range.len, mode_wp,
1862 &ctx->mmap_changing);
1863 mmput(ctx->mm);
1864 } else {
1865 return -ESRCH;
1866 }
1867
63b2d417
AA
1868 if (ret)
1869 return ret;
1870
23080e27 1871 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1872 range.start = uffdio_wp.range.start;
1873 range.len = uffdio_wp.range.len;
1874 wake_userfault(ctx, &range);
1875 }
1876 return ret;
1877}
1878
f6191471
AR
1879static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1880{
1881 __s64 ret;
1882 struct uffdio_continue uffdio_continue;
1883 struct uffdio_continue __user *user_uffdio_continue;
1884 struct userfaultfd_wake_range range;
02891844 1885 uffd_flags_t flags = 0;
f6191471
AR
1886
1887 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1888
1889 ret = -EAGAIN;
a759a909 1890 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1891 goto out;
1892
1893 ret = -EFAULT;
1894 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1895 /* don't copy the output fields */
1896 sizeof(uffdio_continue) - (sizeof(__s64))))
1897 goto out;
1898
e71e2ace 1899 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1900 uffdio_continue.range.len);
1901 if (ret)
1902 goto out;
1903
1904 ret = -EINVAL;
02891844
AR
1905 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1906 UFFDIO_CONTINUE_MODE_WP))
f6191471 1907 goto out;
02891844
AR
1908 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1909 flags |= MFILL_ATOMIC_WP;
f6191471
AR
1910
1911 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1912 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1913 uffdio_continue.range.len,
02891844 1914 &ctx->mmap_changing, flags);
f6191471
AR
1915 mmput(ctx->mm);
1916 } else {
1917 return -ESRCH;
1918 }
1919
1920 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1921 return -EFAULT;
1922 if (ret < 0)
1923 goto out;
1924
1925 /* len == 0 would wake all */
1926 BUG_ON(!ret);
1927 range.len = ret;
1928 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1929 range.start = uffdio_continue.range.start;
1930 wake_userfault(ctx, &range);
1931 }
1932 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1933
1934out:
1935 return ret;
1936}
1937
fc71884a
AR
1938static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1939{
1940 __s64 ret;
1941 struct uffdio_poison uffdio_poison;
1942 struct uffdio_poison __user *user_uffdio_poison;
1943 struct userfaultfd_wake_range range;
1944
1945 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1946
1947 ret = -EAGAIN;
1948 if (atomic_read(&ctx->mmap_changing))
1949 goto out;
1950
1951 ret = -EFAULT;
1952 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1953 /* don't copy the output fields */
1954 sizeof(uffdio_poison) - (sizeof(__s64))))
1955 goto out;
1956
1957 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1958 uffdio_poison.range.len);
1959 if (ret)
1960 goto out;
1961
1962 ret = -EINVAL;
1963 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1964 goto out;
1965
1966 if (mmget_not_zero(ctx->mm)) {
1967 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start,
1968 uffdio_poison.range.len,
1969 &ctx->mmap_changing, 0);
1970 mmput(ctx->mm);
1971 } else {
1972 return -ESRCH;
1973 }
1974
1975 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1976 return -EFAULT;
1977 if (ret < 0)
1978 goto out;
1979
1980 /* len == 0 would wake all */
1981 BUG_ON(!ret);
1982 range.len = ret;
1983 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1984 range.start = uffdio_poison.range.start;
1985 wake_userfault(ctx, &range);
1986 }
1987 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1988
1989out:
1990 return ret;
1991}
1992
d61ea1cb
PX
1993bool userfaultfd_wp_async(struct vm_area_struct *vma)
1994{
1995 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1996}
1997
9cd75c3c
PE
1998static inline unsigned int uffd_ctx_features(__u64 user_features)
1999{
2000 /*
22e5fe2a
NA
2001 * For the current set of features the bits just coincide. Set
2002 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 2003 */
22e5fe2a 2004 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
2005}
2006
adef4406
AA
2007static int userfaultfd_move(struct userfaultfd_ctx *ctx,
2008 unsigned long arg)
2009{
2010 __s64 ret;
2011 struct uffdio_move uffdio_move;
2012 struct uffdio_move __user *user_uffdio_move;
2013 struct userfaultfd_wake_range range;
2014 struct mm_struct *mm = ctx->mm;
2015
2016 user_uffdio_move = (struct uffdio_move __user *) arg;
2017
2018 if (atomic_read(&ctx->mmap_changing))
2019 return -EAGAIN;
2020
2021 if (copy_from_user(&uffdio_move, user_uffdio_move,
2022 /* don't copy "move" last field */
2023 sizeof(uffdio_move)-sizeof(__s64)))
2024 return -EFAULT;
2025
2026 /* Do not allow cross-mm moves. */
2027 if (mm != current->mm)
2028 return -EINVAL;
2029
2030 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2031 if (ret)
2032 return ret;
2033
2034 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2035 if (ret)
2036 return ret;
2037
2038 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2039 UFFDIO_MOVE_MODE_DONTWAKE))
2040 return -EINVAL;
2041
2042 if (mmget_not_zero(mm)) {
2043 mmap_read_lock(mm);
2044
2045 /* Re-check after taking mmap_lock */
2046 if (likely(!atomic_read(&ctx->mmap_changing)))
2047 ret = move_pages(ctx, mm, uffdio_move.dst, uffdio_move.src,
2048 uffdio_move.len, uffdio_move.mode);
2049 else
2050 ret = -EINVAL;
2051
2052 mmap_read_unlock(mm);
2053 mmput(mm);
2054 } else {
2055 return -ESRCH;
2056 }
2057
2058 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2059 return -EFAULT;
2060 if (ret < 0)
2061 goto out;
2062
2063 /* len == 0 would wake all */
2064 VM_WARN_ON(!ret);
2065 range.len = ret;
2066 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2067 range.start = uffdio_move.dst;
2068 wake_userfault(ctx, &range);
2069 }
2070 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2071
2072out:
2073 return ret;
2074}
2075
86039bd3
AA
2076/*
2077 * userland asks for a certain API version and we return which bits
2078 * and ioctl commands are implemented in this kernel for such API
2079 * version or -EINVAL if unknown.
2080 */
2081static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2082 unsigned long arg)
2083{
2084 struct uffdio_api uffdio_api;
2085 void __user *buf = (void __user *)arg;
22e5fe2a 2086 unsigned int ctx_features;
86039bd3 2087 int ret;
65603144 2088 __u64 features;
86039bd3 2089
86039bd3 2090 ret = -EFAULT;
a9b85f94 2091 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 2092 goto out;
2ff559f3
PX
2093 features = uffdio_api.features;
2094 ret = -EINVAL;
2095 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2096 goto err_out;
3c1c24d9
MR
2097 ret = -EPERM;
2098 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2099 goto err_out;
d61ea1cb
PX
2100
2101 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2102 if (features & UFFD_FEATURE_WP_ASYNC)
2103 features |= UFFD_FEATURE_WP_UNPOPULATED;
2104
65603144
AA
2105 /* report all available features and ioctls to userland */
2106 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 2107#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
2108 uffdio_api.features &=
2109 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
2110#endif
2111#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2112 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
b1f9e876
PX
2113#endif
2114#ifndef CONFIG_PTE_MARKER_UFFD_WP
2115 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2bad466c 2116 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
d61ea1cb 2117 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
7677f7fd 2118#endif
86039bd3
AA
2119 uffdio_api.ioctls = UFFD_API_IOCTLS;
2120 ret = -EFAULT;
2121 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2122 goto out;
22e5fe2a 2123
65603144 2124 /* only enable the requested features for this uffd context */
22e5fe2a
NA
2125 ctx_features = uffd_ctx_features(features);
2126 ret = -EINVAL;
2127 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2128 goto err_out;
2129
86039bd3
AA
2130 ret = 0;
2131out:
2132 return ret;
3c1c24d9
MR
2133err_out:
2134 memset(&uffdio_api, 0, sizeof(uffdio_api));
2135 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2136 ret = -EFAULT;
2137 goto out;
86039bd3
AA
2138}
2139
2140static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2141 unsigned long arg)
2142{
2143 int ret = -EINVAL;
2144 struct userfaultfd_ctx *ctx = file->private_data;
2145
22e5fe2a 2146 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
2147 return -EINVAL;
2148
86039bd3
AA
2149 switch(cmd) {
2150 case UFFDIO_API:
2151 ret = userfaultfd_api(ctx, arg);
2152 break;
2153 case UFFDIO_REGISTER:
2154 ret = userfaultfd_register(ctx, arg);
2155 break;
2156 case UFFDIO_UNREGISTER:
2157 ret = userfaultfd_unregister(ctx, arg);
2158 break;
2159 case UFFDIO_WAKE:
2160 ret = userfaultfd_wake(ctx, arg);
2161 break;
ad465cae
AA
2162 case UFFDIO_COPY:
2163 ret = userfaultfd_copy(ctx, arg);
2164 break;
2165 case UFFDIO_ZEROPAGE:
2166 ret = userfaultfd_zeropage(ctx, arg);
2167 break;
adef4406
AA
2168 case UFFDIO_MOVE:
2169 ret = userfaultfd_move(ctx, arg);
2170 break;
63b2d417
AA
2171 case UFFDIO_WRITEPROTECT:
2172 ret = userfaultfd_writeprotect(ctx, arg);
2173 break;
f6191471
AR
2174 case UFFDIO_CONTINUE:
2175 ret = userfaultfd_continue(ctx, arg);
2176 break;
fc71884a
AR
2177 case UFFDIO_POISON:
2178 ret = userfaultfd_poison(ctx, arg);
2179 break;
86039bd3
AA
2180 }
2181 return ret;
2182}
2183
2184#ifdef CONFIG_PROC_FS
2185static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2186{
2187 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2188 wait_queue_entry_t *wq;
86039bd3
AA
2189 unsigned long pending = 0, total = 0;
2190
cbcfa130 2191 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2192 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2193 pending++;
2194 total++;
2195 }
2055da97 2196 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2197 total++;
2198 }
cbcfa130 2199 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2200
2201 /*
2202 * If more protocols will be added, there will be all shown
2203 * separated by a space. Like this:
2204 * protocols: aa:... bb:...
2205 */
2206 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2207 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2208 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2209}
2210#endif
2211
2212static const struct file_operations userfaultfd_fops = {
2213#ifdef CONFIG_PROC_FS
2214 .show_fdinfo = userfaultfd_show_fdinfo,
2215#endif
2216 .release = userfaultfd_release,
2217 .poll = userfaultfd_poll,
2218 .read = userfaultfd_read,
2219 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2220 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2221 .llseek = noop_llseek,
2222};
2223
3004ec9c
AA
2224static void init_once_userfaultfd_ctx(void *mem)
2225{
2226 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2227
2228 init_waitqueue_head(&ctx->fault_pending_wqh);
2229 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2230 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2231 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2232 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2233}
2234
2d5de004 2235static int new_userfaultfd(int flags)
86039bd3 2236{
86039bd3 2237 struct userfaultfd_ctx *ctx;
284cd241 2238 int fd;
86039bd3
AA
2239
2240 BUG_ON(!current->mm);
2241
2242 /* Check the UFFD_* constants for consistency. */
37cd0575 2243 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2244 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2245 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2246
37cd0575 2247 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2248 return -EINVAL;
86039bd3 2249
3004ec9c 2250 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2251 if (!ctx)
284cd241 2252 return -ENOMEM;
86039bd3 2253
ca880420 2254 refcount_set(&ctx->refcount, 1);
86039bd3 2255 ctx->flags = flags;
9cd75c3c 2256 ctx->features = 0;
86039bd3 2257 ctx->released = false;
a759a909 2258 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2259 ctx->mm = current->mm;
2260 /* prevent the mm struct to be freed */
f1f10076 2261 mmgrab(ctx->mm);
86039bd3 2262
4f0b9194
PB
2263 /* Create a new inode so that the LSM can block the creation. */
2264 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
abec3d01 2265 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2266 if (fd < 0) {
d2005e3f 2267 mmdrop(ctx->mm);
3004ec9c 2268 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2269 }
86039bd3 2270 return fd;
86039bd3 2271}
3004ec9c 2272
2d5de004
AR
2273static inline bool userfaultfd_syscall_allowed(int flags)
2274{
2275 /* Userspace-only page faults are always allowed */
2276 if (flags & UFFD_USER_MODE_ONLY)
2277 return true;
2278
2279 /*
2280 * The user is requesting a userfaultfd which can handle kernel faults.
2281 * Privileged users are always allowed to do this.
2282 */
2283 if (capable(CAP_SYS_PTRACE))
2284 return true;
2285
2286 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2287 return sysctl_unprivileged_userfaultfd;
2288}
2289
2290SYSCALL_DEFINE1(userfaultfd, int, flags)
2291{
2292 if (!userfaultfd_syscall_allowed(flags))
2293 return -EPERM;
2294
2295 return new_userfaultfd(flags);
2296}
2297
2298static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2299{
2300 if (cmd != USERFAULTFD_IOC_NEW)
2301 return -EINVAL;
2302
2303 return new_userfaultfd(flags);
2304}
2305
2306static const struct file_operations userfaultfd_dev_fops = {
2307 .unlocked_ioctl = userfaultfd_dev_ioctl,
2308 .compat_ioctl = userfaultfd_dev_ioctl,
2309 .owner = THIS_MODULE,
2310 .llseek = noop_llseek,
2311};
2312
2313static struct miscdevice userfaultfd_misc = {
2314 .minor = MISC_DYNAMIC_MINOR,
2315 .name = "userfaultfd",
2316 .fops = &userfaultfd_dev_fops
2317};
2318
3004ec9c
AA
2319static int __init userfaultfd_init(void)
2320{
2d5de004
AR
2321 int ret;
2322
2323 ret = misc_register(&userfaultfd_misc);
2324 if (ret)
2325 return ret;
2326
3004ec9c
AA
2327 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2328 sizeof(struct userfaultfd_ctx),
2329 0,
2330 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2331 init_once_userfaultfd_ctx);
2d337b71
Z
2332#ifdef CONFIG_SYSCTL
2333 register_sysctl_init("vm", vm_userfaultfd_table);
2334#endif
3004ec9c
AA
2335 return 0;
2336}
2337__initcall(userfaultfd_init);