]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/userfaultfd.c
fs/proc/task_mmu: stop using linked list and highest_vm_end
[thirdparty/kernel/stable.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
5c041f5d 32#include <linux/swapops.h>
2d5de004 33#include <linux/miscdevice.h>
86039bd3 34
d0d4730a 35int sysctl_unprivileged_userfaultfd __read_mostly;
cefdca0a 36
3004ec9c
AA
37static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38
3004ec9c
AA
39/*
40 * Start with fault_pending_wqh and fault_wqh so they're more likely
41 * to be in the same cacheline.
cbcfa130
EB
42 *
43 * Locking order:
44 * fd_wqh.lock
45 * fault_pending_wqh.lock
46 * fault_wqh.lock
47 * event_wqh.lock
48 *
49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51 * also taken in IRQ context.
3004ec9c 52 */
86039bd3 53struct userfaultfd_ctx {
15b726ef
AA
54 /* waitqueue head for the pending (i.e. not read) userfaults */
55 wait_queue_head_t fault_pending_wqh;
56 /* waitqueue head for the userfaults */
86039bd3
AA
57 wait_queue_head_t fault_wqh;
58 /* waitqueue head for the pseudo fd to wakeup poll/read */
59 wait_queue_head_t fd_wqh;
9cd75c3c
PE
60 /* waitqueue head for events */
61 wait_queue_head_t event_wqh;
2c5b7e1b 62 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 63 seqcount_spinlock_t refile_seq;
3004ec9c 64 /* pseudo fd refcounting */
ca880420 65 refcount_t refcount;
86039bd3
AA
66 /* userfaultfd syscall flags */
67 unsigned int flags;
9cd75c3c
PE
68 /* features requested from the userspace */
69 unsigned int features;
86039bd3
AA
70 /* released */
71 bool released;
df2cc96e 72 /* memory mappings are changing because of non-cooperative event */
a759a909 73 atomic_t mmap_changing;
86039bd3
AA
74 /* mm with one ore more vmas attached to this userfaultfd_ctx */
75 struct mm_struct *mm;
76};
77
893e26e6
PE
78struct userfaultfd_fork_ctx {
79 struct userfaultfd_ctx *orig;
80 struct userfaultfd_ctx *new;
81 struct list_head list;
82};
83
897ab3e0
MR
84struct userfaultfd_unmap_ctx {
85 struct userfaultfd_ctx *ctx;
86 unsigned long start;
87 unsigned long end;
88 struct list_head list;
89};
90
86039bd3 91struct userfaultfd_wait_queue {
a9b85f94 92 struct uffd_msg msg;
ac6424b9 93 wait_queue_entry_t wq;
86039bd3 94 struct userfaultfd_ctx *ctx;
15a77c6f 95 bool waken;
86039bd3
AA
96};
97
98struct userfaultfd_wake_range {
99 unsigned long start;
100 unsigned long len;
101};
102
22e5fe2a
NA
103/* internal indication that UFFD_API ioctl was successfully executed */
104#define UFFD_FEATURE_INITIALIZED (1u << 31)
105
106static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
107{
108 return ctx->features & UFFD_FEATURE_INITIALIZED;
109}
110
ac6424b9 111static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
112 int wake_flags, void *key)
113{
114 struct userfaultfd_wake_range *range = key;
115 int ret;
116 struct userfaultfd_wait_queue *uwq;
117 unsigned long start, len;
118
119 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
120 ret = 0;
86039bd3
AA
121 /* len == 0 means wake all */
122 start = range->start;
123 len = range->len;
a9b85f94
AA
124 if (len && (start > uwq->msg.arg.pagefault.address ||
125 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 126 goto out;
15a77c6f
AA
127 WRITE_ONCE(uwq->waken, true);
128 /*
a9668cd6
PZ
129 * The Program-Order guarantees provided by the scheduler
130 * ensure uwq->waken is visible before the task is woken.
15a77c6f 131 */
86039bd3 132 ret = wake_up_state(wq->private, mode);
a9668cd6 133 if (ret) {
86039bd3
AA
134 /*
135 * Wake only once, autoremove behavior.
136 *
a9668cd6
PZ
137 * After the effect of list_del_init is visible to the other
138 * CPUs, the waitqueue may disappear from under us, see the
139 * !list_empty_careful() in handle_userfault().
140 *
141 * try_to_wake_up() has an implicit smp_mb(), and the
142 * wq->private is read before calling the extern function
143 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 144 */
2055da97 145 list_del_init(&wq->entry);
a9668cd6 146 }
86039bd3
AA
147out:
148 return ret;
149}
150
151/**
152 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
153 * context.
154 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
155 */
156static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
157{
ca880420 158 refcount_inc(&ctx->refcount);
86039bd3
AA
159}
160
161/**
162 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
163 * context.
164 * @ctx: [in] Pointer to userfaultfd context.
165 *
166 * The userfaultfd context reference must have been previously acquired either
167 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
168 */
169static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
170{
ca880420 171 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
172 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
176 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
177 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
178 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
179 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 180 mmdrop(ctx->mm);
3004ec9c 181 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
182 }
183}
184
a9b85f94 185static inline void msg_init(struct uffd_msg *msg)
86039bd3 186{
a9b85f94
AA
187 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
188 /*
189 * Must use memset to zero out the paddings or kernel data is
190 * leaked to userland.
191 */
192 memset(msg, 0, sizeof(struct uffd_msg));
193}
194
195static inline struct uffd_msg userfault_msg(unsigned long address,
d172b1a3 196 unsigned long real_address,
a9b85f94 197 unsigned int flags,
9d4ac934
AP
198 unsigned long reason,
199 unsigned int features)
a9b85f94
AA
200{
201 struct uffd_msg msg;
d172b1a3 202
a9b85f94
AA
203 msg_init(&msg);
204 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60 205
d172b1a3
NA
206 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
207 real_address : address;
208
7677f7fd
AR
209 /*
210 * These flags indicate why the userfault occurred:
211 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
212 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
213 * - Neither of these flags being set indicates a MISSING fault.
214 *
215 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
216 * fault. Otherwise, it was a read fault.
217 */
86039bd3 218 if (flags & FAULT_FLAG_WRITE)
a9b85f94 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 220 if (reason & VM_UFFD_WP)
a9b85f94 221 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
222 if (reason & VM_UFFD_MINOR)
223 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 224 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 225 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 226 return msg;
86039bd3
AA
227}
228
369cd212
MK
229#ifdef CONFIG_HUGETLB_PAGE
230/*
231 * Same functionality as userfaultfd_must_wait below with modifications for
232 * hugepmd ranges.
233 */
234static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 235 struct vm_area_struct *vma,
369cd212
MK
236 unsigned long address,
237 unsigned long flags,
238 unsigned long reason)
239{
240 struct mm_struct *mm = ctx->mm;
1e2c0436 241 pte_t *ptep, pte;
369cd212
MK
242 bool ret = true;
243
42fc5414 244 mmap_assert_locked(mm);
369cd212 245
1e2c0436
JF
246 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
247
248 if (!ptep)
369cd212
MK
249 goto out;
250
251 ret = false;
1e2c0436 252 pte = huge_ptep_get(ptep);
369cd212
MK
253
254 /*
255 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
256 * changes under us. PTE markers should be handled the same as none
257 * ptes here.
369cd212 258 */
5c041f5d 259 if (huge_pte_none_mostly(pte))
369cd212 260 ret = true;
1e2c0436 261 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
262 ret = true;
263out:
264 return ret;
265}
266#else
267static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 268 struct vm_area_struct *vma,
369cd212
MK
269 unsigned long address,
270 unsigned long flags,
271 unsigned long reason)
272{
273 return false; /* should never get here */
274}
275#endif /* CONFIG_HUGETLB_PAGE */
276
8d2afd96
AA
277/*
278 * Verify the pagetables are still not ok after having reigstered into
279 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
280 * userfault that has already been resolved, if userfaultfd_read and
281 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
282 * threads.
283 */
284static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
285 unsigned long address,
286 unsigned long flags,
287 unsigned long reason)
288{
289 struct mm_struct *mm = ctx->mm;
290 pgd_t *pgd;
c2febafc 291 p4d_t *p4d;
8d2afd96
AA
292 pud_t *pud;
293 pmd_t *pmd, _pmd;
294 pte_t *pte;
295 bool ret = true;
296
42fc5414 297 mmap_assert_locked(mm);
8d2afd96
AA
298
299 pgd = pgd_offset(mm, address);
300 if (!pgd_present(*pgd))
301 goto out;
c2febafc
KS
302 p4d = p4d_offset(pgd, address);
303 if (!p4d_present(*p4d))
304 goto out;
305 pud = pud_offset(p4d, address);
8d2afd96
AA
306 if (!pud_present(*pud))
307 goto out;
308 pmd = pmd_offset(pud, address);
309 /*
310 * READ_ONCE must function as a barrier with narrower scope
311 * and it must be equivalent to:
312 * _pmd = *pmd; barrier();
313 *
314 * This is to deal with the instability (as in
315 * pmd_trans_unstable) of the pmd.
316 */
317 _pmd = READ_ONCE(*pmd);
a365ac09 318 if (pmd_none(_pmd))
8d2afd96
AA
319 goto out;
320
321 ret = false;
a365ac09
HY
322 if (!pmd_present(_pmd))
323 goto out;
324
63b2d417
AA
325 if (pmd_trans_huge(_pmd)) {
326 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327 ret = true;
8d2afd96 328 goto out;
63b2d417 329 }
8d2afd96
AA
330
331 /*
332 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
333 * and use the standard pte_offset_map() instead of parsing _pmd.
334 */
335 pte = pte_offset_map(pmd, address);
336 /*
337 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
338 * changes under us. PTE markers should be handled the same as none
339 * ptes here.
8d2afd96 340 */
5c041f5d 341 if (pte_none_mostly(*pte))
8d2afd96 342 ret = true;
63b2d417
AA
343 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
344 ret = true;
8d2afd96
AA
345 pte_unmap(pte);
346
347out:
348 return ret;
349}
350
2f064a59 351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
352{
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
355
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
358
359 return TASK_UNINTERRUPTIBLE;
360}
361
86039bd3
AA
362/*
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
367 *
c1e8d7c6 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370 * not set.
371 *
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 374 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
375 * returning it.
376 */
2b740303 377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 378{
82b0f8c3 379 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
380 struct userfaultfd_ctx *ctx;
381 struct userfaultfd_wait_queue uwq;
2b740303 382 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 383 bool must_wait;
2f064a59 384 unsigned int blocking_state;
86039bd3 385
64c2b203
AA
386 /*
387 * We don't do userfault handling for the final child pid update.
388 *
389 * We also don't do userfault handling during
390 * coredumping. hugetlbfs has the special
391 * follow_hugetlb_page() to skip missing pages in the
392 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
393 * the no_page_table() helper in follow_page_mask(), but the
394 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 395 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
396 */
397 if (current->flags & (PF_EXITING|PF_DUMPCORE))
398 goto out;
399
400 /*
c1e8d7c6
ML
401 * Coredumping runs without mmap_lock so we can only check that
402 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 403 */
42fc5414 404 mmap_assert_locked(mm);
64c2b203 405
82b0f8c3 406 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 407 if (!ctx)
ba85c702 408 goto out;
86039bd3
AA
409
410 BUG_ON(ctx->mm != mm);
411
7677f7fd
AR
412 /* Any unrecognized flag is a bug. */
413 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
414 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
415 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 416
2d6d6f5a
PS
417 if (ctx->features & UFFD_FEATURE_SIGBUS)
418 goto out;
2d5de004 419 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
37cd0575 420 goto out;
2d6d6f5a 421
86039bd3
AA
422 /*
423 * If it's already released don't get it. This avoids to loop
424 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 425 * caller of handle_userfault to release the mmap_lock.
86039bd3 426 */
6aa7de05 427 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
428 /*
429 * Don't return VM_FAULT_SIGBUS in this case, so a non
430 * cooperative manager can close the uffd after the
431 * last UFFDIO_COPY, without risking to trigger an
432 * involuntary SIGBUS if the process was starting the
433 * userfaultfd while the userfaultfd was still armed
434 * (but after the last UFFDIO_COPY). If the uffd
435 * wasn't already closed when the userfault reached
436 * this point, that would normally be solved by
437 * userfaultfd_must_wait returning 'false'.
438 *
439 * If we were to return VM_FAULT_SIGBUS here, the non
440 * cooperative manager would be instead forced to
441 * always call UFFDIO_UNREGISTER before it can safely
442 * close the uffd.
443 */
444 ret = VM_FAULT_NOPAGE;
ba85c702 445 goto out;
656710a6 446 }
86039bd3
AA
447
448 /*
449 * Check that we can return VM_FAULT_RETRY.
450 *
451 * NOTE: it should become possible to return VM_FAULT_RETRY
452 * even if FAULT_FLAG_TRIED is set without leading to gup()
453 * -EBUSY failures, if the userfaultfd is to be extended for
454 * VM_UFFD_WP tracking and we intend to arm the userfault
455 * without first stopping userland access to the memory. For
456 * VM_UFFD_MISSING userfaults this is enough for now.
457 */
82b0f8c3 458 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
459 /*
460 * Validate the invariant that nowait must allow retry
461 * to be sure not to return SIGBUS erroneously on
462 * nowait invocations.
463 */
82b0f8c3 464 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
465#ifdef CONFIG_DEBUG_VM
466 if (printk_ratelimit()) {
467 printk(KERN_WARNING
82b0f8c3
JK
468 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
469 vmf->flags);
86039bd3
AA
470 dump_stack();
471 }
472#endif
ba85c702 473 goto out;
86039bd3
AA
474 }
475
476 /*
477 * Handle nowait, not much to do other than tell it to retry
478 * and wait.
479 */
ba85c702 480 ret = VM_FAULT_RETRY;
82b0f8c3 481 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 482 goto out;
86039bd3 483
c1e8d7c6 484 /* take the reference before dropping the mmap_lock */
86039bd3
AA
485 userfaultfd_ctx_get(ctx);
486
86039bd3
AA
487 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
488 uwq.wq.private = current;
d172b1a3
NA
489 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
490 reason, ctx->features);
86039bd3 491 uwq.ctx = ctx;
15a77c6f 492 uwq.waken = false;
86039bd3 493
3e69ad08 494 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 495
cbcfa130 496 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
497 /*
498 * After the __add_wait_queue the uwq is visible to userland
499 * through poll/read().
500 */
15b726ef
AA
501 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
502 /*
503 * The smp_mb() after __set_current_state prevents the reads
504 * following the spin_unlock to happen before the list_add in
505 * __add_wait_queue.
506 */
15a77c6f 507 set_current_state(blocking_state);
cbcfa130 508 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 509
369cd212
MK
510 if (!is_vm_hugetlb_page(vmf->vma))
511 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
512 reason);
513 else
7868a208
PA
514 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
515 vmf->address,
369cd212 516 vmf->flags, reason);
d8ed45c5 517 mmap_read_unlock(mm);
8d2afd96 518
f9bf3522 519 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 520 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 521 schedule();
ba85c702 522 }
86039bd3 523
ba85c702 524 __set_current_state(TASK_RUNNING);
15b726ef
AA
525
526 /*
527 * Here we race with the list_del; list_add in
528 * userfaultfd_ctx_read(), however because we don't ever run
529 * list_del_init() to refile across the two lists, the prev
530 * and next pointers will never point to self. list_add also
531 * would never let any of the two pointers to point to
532 * self. So list_empty_careful won't risk to see both pointers
533 * pointing to self at any time during the list refile. The
534 * only case where list_del_init() is called is the full
535 * removal in the wake function and there we don't re-list_add
536 * and it's fine not to block on the spinlock. The uwq on this
537 * kernel stack can be released after the list_del_init.
538 */
2055da97 539 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 540 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
541 /*
542 * No need of list_del_init(), the uwq on the stack
543 * will be freed shortly anyway.
544 */
2055da97 545 list_del(&uwq.wq.entry);
cbcfa130 546 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 547 }
86039bd3
AA
548
549 /*
550 * ctx may go away after this if the userfault pseudo fd is
551 * already released.
552 */
553 userfaultfd_ctx_put(ctx);
554
ba85c702
AA
555out:
556 return ret;
86039bd3
AA
557}
558
8c9e7bb7
AA
559static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
560 struct userfaultfd_wait_queue *ewq)
9cd75c3c 561{
0cbb4b4f
AA
562 struct userfaultfd_ctx *release_new_ctx;
563
9a69a829
AA
564 if (WARN_ON_ONCE(current->flags & PF_EXITING))
565 goto out;
9cd75c3c
PE
566
567 ewq->ctx = ctx;
568 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 569 release_new_ctx = NULL;
9cd75c3c 570
cbcfa130 571 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
572 /*
573 * After the __add_wait_queue the uwq is visible to userland
574 * through poll/read().
575 */
576 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
577 for (;;) {
578 set_current_state(TASK_KILLABLE);
579 if (ewq->msg.event == 0)
580 break;
6aa7de05 581 if (READ_ONCE(ctx->released) ||
9cd75c3c 582 fatal_signal_pending(current)) {
384632e6
AA
583 /*
584 * &ewq->wq may be queued in fork_event, but
585 * __remove_wait_queue ignores the head
586 * parameter. It would be a problem if it
587 * didn't.
588 */
9cd75c3c 589 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
590 if (ewq->msg.event == UFFD_EVENT_FORK) {
591 struct userfaultfd_ctx *new;
592
593 new = (struct userfaultfd_ctx *)
594 (unsigned long)
595 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 596 release_new_ctx = new;
7eb76d45 597 }
9cd75c3c
PE
598 break;
599 }
600
cbcfa130 601 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 602
a9a08845 603 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
604 schedule();
605
cbcfa130 606 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
607 }
608 __set_current_state(TASK_RUNNING);
cbcfa130 609 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 610
0cbb4b4f
AA
611 if (release_new_ctx) {
612 struct vm_area_struct *vma;
613 struct mm_struct *mm = release_new_ctx->mm;
614
615 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 616 mmap_write_lock(mm);
0cbb4b4f 617 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 618 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 619 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 620 vma->vm_flags &= ~__VM_UFFD_FLAGS;
31e810aa 621 }
d8ed45c5 622 mmap_write_unlock(mm);
0cbb4b4f
AA
623
624 userfaultfd_ctx_put(release_new_ctx);
625 }
626
9cd75c3c
PE
627 /*
628 * ctx may go away after this if the userfault pseudo fd is
629 * already released.
630 */
9a69a829 631out:
a759a909
NA
632 atomic_dec(&ctx->mmap_changing);
633 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 634 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
635}
636
637static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
638 struct userfaultfd_wait_queue *ewq)
639{
640 ewq->msg.event = 0;
641 wake_up_locked(&ctx->event_wqh);
642 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
643}
644
893e26e6
PE
645int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
646{
647 struct userfaultfd_ctx *ctx = NULL, *octx;
648 struct userfaultfd_fork_ctx *fctx;
649
650 octx = vma->vm_userfaultfd_ctx.ctx;
651 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
652 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 653 vma->vm_flags &= ~__VM_UFFD_FLAGS;
893e26e6
PE
654 return 0;
655 }
656
657 list_for_each_entry(fctx, fcs, list)
658 if (fctx->orig == octx) {
659 ctx = fctx->new;
660 break;
661 }
662
663 if (!ctx) {
664 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
665 if (!fctx)
666 return -ENOMEM;
667
668 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
669 if (!ctx) {
670 kfree(fctx);
671 return -ENOMEM;
672 }
673
ca880420 674 refcount_set(&ctx->refcount, 1);
893e26e6 675 ctx->flags = octx->flags;
893e26e6
PE
676 ctx->features = octx->features;
677 ctx->released = false;
a759a909 678 atomic_set(&ctx->mmap_changing, 0);
893e26e6 679 ctx->mm = vma->vm_mm;
00bb31fa 680 mmgrab(ctx->mm);
893e26e6
PE
681
682 userfaultfd_ctx_get(octx);
a759a909 683 atomic_inc(&octx->mmap_changing);
893e26e6
PE
684 fctx->orig = octx;
685 fctx->new = ctx;
686 list_add_tail(&fctx->list, fcs);
687 }
688
689 vma->vm_userfaultfd_ctx.ctx = ctx;
690 return 0;
691}
692
8c9e7bb7 693static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
694{
695 struct userfaultfd_ctx *ctx = fctx->orig;
696 struct userfaultfd_wait_queue ewq;
697
698 msg_init(&ewq.msg);
699
700 ewq.msg.event = UFFD_EVENT_FORK;
701 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
702
8c9e7bb7 703 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
704}
705
706void dup_userfaultfd_complete(struct list_head *fcs)
707{
893e26e6
PE
708 struct userfaultfd_fork_ctx *fctx, *n;
709
710 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 711 dup_fctx(fctx);
893e26e6
PE
712 list_del(&fctx->list);
713 kfree(fctx);
714 }
715}
716
72f87654
PE
717void mremap_userfaultfd_prep(struct vm_area_struct *vma,
718 struct vm_userfaultfd_ctx *vm_ctx)
719{
720 struct userfaultfd_ctx *ctx;
721
722 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
723
724 if (!ctx)
725 return;
726
727 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
728 vm_ctx->ctx = ctx;
729 userfaultfd_ctx_get(ctx);
a759a909 730 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
731 } else {
732 /* Drop uffd context if remap feature not enabled */
733 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
7677f7fd 734 vma->vm_flags &= ~__VM_UFFD_FLAGS;
72f87654
PE
735 }
736}
737
90794bf1 738void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
739 unsigned long from, unsigned long to,
740 unsigned long len)
741{
90794bf1 742 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
743 struct userfaultfd_wait_queue ewq;
744
745 if (!ctx)
746 return;
747
748 if (to & ~PAGE_MASK) {
749 userfaultfd_ctx_put(ctx);
750 return;
751 }
752
753 msg_init(&ewq.msg);
754
755 ewq.msg.event = UFFD_EVENT_REMAP;
756 ewq.msg.arg.remap.from = from;
757 ewq.msg.arg.remap.to = to;
758 ewq.msg.arg.remap.len = len;
759
760 userfaultfd_event_wait_completion(ctx, &ewq);
761}
762
70ccb92f 763bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 764 unsigned long start, unsigned long end)
05ce7724
PE
765{
766 struct mm_struct *mm = vma->vm_mm;
767 struct userfaultfd_ctx *ctx;
768 struct userfaultfd_wait_queue ewq;
769
770 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 771 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 772 return true;
05ce7724
PE
773
774 userfaultfd_ctx_get(ctx);
a759a909 775 atomic_inc(&ctx->mmap_changing);
d8ed45c5 776 mmap_read_unlock(mm);
05ce7724 777
05ce7724
PE
778 msg_init(&ewq.msg);
779
d811914d
MR
780 ewq.msg.event = UFFD_EVENT_REMOVE;
781 ewq.msg.arg.remove.start = start;
782 ewq.msg.arg.remove.end = end;
05ce7724
PE
783
784 userfaultfd_event_wait_completion(ctx, &ewq);
785
70ccb92f 786 return false;
05ce7724
PE
787}
788
897ab3e0
MR
789static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
790 unsigned long start, unsigned long end)
791{
792 struct userfaultfd_unmap_ctx *unmap_ctx;
793
794 list_for_each_entry(unmap_ctx, unmaps, list)
795 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
796 unmap_ctx->end == end)
797 return true;
798
799 return false;
800}
801
802int userfaultfd_unmap_prep(struct vm_area_struct *vma,
803 unsigned long start, unsigned long end,
804 struct list_head *unmaps)
805{
806 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
807 struct userfaultfd_unmap_ctx *unmap_ctx;
808 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
809
810 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
811 has_unmap_ctx(ctx, unmaps, start, end))
812 continue;
813
814 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
815 if (!unmap_ctx)
816 return -ENOMEM;
817
818 userfaultfd_ctx_get(ctx);
a759a909 819 atomic_inc(&ctx->mmap_changing);
897ab3e0
MR
820 unmap_ctx->ctx = ctx;
821 unmap_ctx->start = start;
822 unmap_ctx->end = end;
823 list_add_tail(&unmap_ctx->list, unmaps);
824 }
825
826 return 0;
827}
828
829void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
830{
831 struct userfaultfd_unmap_ctx *ctx, *n;
832 struct userfaultfd_wait_queue ewq;
833
834 list_for_each_entry_safe(ctx, n, uf, list) {
835 msg_init(&ewq.msg);
836
837 ewq.msg.event = UFFD_EVENT_UNMAP;
838 ewq.msg.arg.remove.start = ctx->start;
839 ewq.msg.arg.remove.end = ctx->end;
840
841 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
842
843 list_del(&ctx->list);
844 kfree(ctx);
845 }
846}
847
86039bd3
AA
848static int userfaultfd_release(struct inode *inode, struct file *file)
849{
850 struct userfaultfd_ctx *ctx = file->private_data;
851 struct mm_struct *mm = ctx->mm;
852 struct vm_area_struct *vma, *prev;
853 /* len == 0 means wake all */
854 struct userfaultfd_wake_range range = { .len = 0, };
855 unsigned long new_flags;
856
6aa7de05 857 WRITE_ONCE(ctx->released, true);
86039bd3 858
d2005e3f
ON
859 if (!mmget_not_zero(mm))
860 goto wakeup;
861
86039bd3
AA
862 /*
863 * Flush page faults out of all CPUs. NOTE: all page faults
864 * must be retried without returning VM_FAULT_SIGBUS if
865 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 866 * changes while handle_userfault released the mmap_lock. So
86039bd3 867 * it's critical that released is set to true (above), before
c1e8d7c6 868 * taking the mmap_lock for writing.
86039bd3 869 */
d8ed45c5 870 mmap_write_lock(mm);
86039bd3
AA
871 prev = NULL;
872 for (vma = mm->mmap; vma; vma = vma->vm_next) {
873 cond_resched();
874 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 875 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
876 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
877 prev = vma;
878 continue;
879 }
7677f7fd 880 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
4d45e75a
JH
881 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
882 new_flags, vma->anon_vma,
883 vma->vm_file, vma->vm_pgoff,
884 vma_policy(vma),
5c26f6ac 885 NULL_VM_UFFD_CTX, anon_vma_name(vma));
4d45e75a
JH
886 if (prev)
887 vma = prev;
888 else
889 prev = vma;
86039bd3
AA
890 vma->vm_flags = new_flags;
891 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
892 }
d8ed45c5 893 mmap_write_unlock(mm);
d2005e3f
ON
894 mmput(mm);
895wakeup:
86039bd3 896 /*
15b726ef 897 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 898 * the last page faults that may have been already waiting on
15b726ef 899 * the fault_*wqh.
86039bd3 900 */
cbcfa130 901 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 902 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 903 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 904 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 905
5a18b64e
MR
906 /* Flush pending events that may still wait on event_wqh */
907 wake_up_all(&ctx->event_wqh);
908
a9a08845 909 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
910 userfaultfd_ctx_put(ctx);
911 return 0;
912}
913
15b726ef 914/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
915static inline struct userfaultfd_wait_queue *find_userfault_in(
916 wait_queue_head_t *wqh)
86039bd3 917{
ac6424b9 918 wait_queue_entry_t *wq;
15b726ef 919 struct userfaultfd_wait_queue *uwq;
86039bd3 920
456a7378 921 lockdep_assert_held(&wqh->lock);
86039bd3 922
15b726ef 923 uwq = NULL;
6dcc27fd 924 if (!waitqueue_active(wqh))
15b726ef
AA
925 goto out;
926 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 927 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
928 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
929out:
930 return uwq;
86039bd3 931}
6dcc27fd
PE
932
933static inline struct userfaultfd_wait_queue *find_userfault(
934 struct userfaultfd_ctx *ctx)
935{
936 return find_userfault_in(&ctx->fault_pending_wqh);
937}
86039bd3 938
9cd75c3c
PE
939static inline struct userfaultfd_wait_queue *find_userfault_evt(
940 struct userfaultfd_ctx *ctx)
941{
942 return find_userfault_in(&ctx->event_wqh);
943}
944
076ccb76 945static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
946{
947 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 948 __poll_t ret;
86039bd3
AA
949
950 poll_wait(file, &ctx->fd_wqh, wait);
951
22e5fe2a 952 if (!userfaultfd_is_initialized(ctx))
a9a08845 953 return EPOLLERR;
9cd75c3c 954
22e5fe2a
NA
955 /*
956 * poll() never guarantees that read won't block.
957 * userfaults can be waken before they're read().
958 */
959 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 960 return EPOLLERR;
22e5fe2a
NA
961 /*
962 * lockless access to see if there are pending faults
963 * __pollwait last action is the add_wait_queue but
964 * the spin_unlock would allow the waitqueue_active to
965 * pass above the actual list_add inside
966 * add_wait_queue critical section. So use a full
967 * memory barrier to serialize the list_add write of
968 * add_wait_queue() with the waitqueue_active read
969 * below.
970 */
971 ret = 0;
972 smp_mb();
973 if (waitqueue_active(&ctx->fault_pending_wqh))
974 ret = EPOLLIN;
975 else if (waitqueue_active(&ctx->event_wqh))
976 ret = EPOLLIN;
977
978 return ret;
86039bd3
AA
979}
980
893e26e6
PE
981static const struct file_operations userfaultfd_fops;
982
b537900f
DC
983static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct inode *inode,
893e26e6
PE
985 struct uffd_msg *msg)
986{
987 int fd;
893e26e6 988
b537900f
DC
989 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
991 if (fd < 0)
992 return fd;
993
893e26e6
PE
994 msg->arg.reserved.reserved1 = 0;
995 msg->arg.fork.ufd = fd;
893e26e6
PE
996 return 0;
997}
998
86039bd3 999static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1000 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1001{
1002 ssize_t ret;
1003 DECLARE_WAITQUEUE(wait, current);
15b726ef 1004 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1005 /*
1006 * Handling fork event requires sleeping operations, so
1007 * we drop the event_wqh lock, then do these ops, then
1008 * lock it back and wake up the waiter. While the lock is
1009 * dropped the ewq may go away so we keep track of it
1010 * carefully.
1011 */
1012 LIST_HEAD(fork_event);
1013 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1014
15b726ef 1015 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1016 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1017 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 for (;;) {
1019 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1020 spin_lock(&ctx->fault_pending_wqh.lock);
1021 uwq = find_userfault(ctx);
1022 if (uwq) {
2c5b7e1b
AA
1023 /*
1024 * Use a seqcount to repeat the lockless check
1025 * in wake_userfault() to avoid missing
1026 * wakeups because during the refile both
1027 * waitqueue could become empty if this is the
1028 * only userfault.
1029 */
1030 write_seqcount_begin(&ctx->refile_seq);
1031
86039bd3 1032 /*
15b726ef
AA
1033 * The fault_pending_wqh.lock prevents the uwq
1034 * to disappear from under us.
1035 *
1036 * Refile this userfault from
1037 * fault_pending_wqh to fault_wqh, it's not
1038 * pending anymore after we read it.
1039 *
1040 * Use list_del() by hand (as
1041 * userfaultfd_wake_function also uses
1042 * list_del_init() by hand) to be sure nobody
1043 * changes __remove_wait_queue() to use
1044 * list_del_init() in turn breaking the
1045 * !list_empty_careful() check in
2055da97 1046 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1047 * must never be empty at any time during the
1048 * refile, or the waitqueue could disappear
1049 * from under us. The "wait_queue_head_t"
1050 * parameter of __remove_wait_queue() is unused
1051 * anyway.
86039bd3 1052 */
2055da97 1053 list_del(&uwq->wq.entry);
c430d1e8 1054 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1055
2c5b7e1b
AA
1056 write_seqcount_end(&ctx->refile_seq);
1057
a9b85f94
AA
1058 /* careful to always initialize msg if ret == 0 */
1059 *msg = uwq->msg;
15b726ef 1060 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1061 ret = 0;
1062 break;
1063 }
15b726ef 1064 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1065
1066 spin_lock(&ctx->event_wqh.lock);
1067 uwq = find_userfault_evt(ctx);
1068 if (uwq) {
1069 *msg = uwq->msg;
1070
893e26e6
PE
1071 if (uwq->msg.event == UFFD_EVENT_FORK) {
1072 fork_nctx = (struct userfaultfd_ctx *)
1073 (unsigned long)
1074 uwq->msg.arg.reserved.reserved1;
2055da97 1075 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1076 /*
1077 * fork_nctx can be freed as soon as
1078 * we drop the lock, unless we take a
1079 * reference on it.
1080 */
1081 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086
9cd75c3c
PE
1087 userfaultfd_event_complete(ctx, uwq);
1088 spin_unlock(&ctx->event_wqh.lock);
1089 ret = 0;
1090 break;
1091 }
1092 spin_unlock(&ctx->event_wqh.lock);
1093
86039bd3
AA
1094 if (signal_pending(current)) {
1095 ret = -ERESTARTSYS;
1096 break;
1097 }
1098 if (no_wait) {
1099 ret = -EAGAIN;
1100 break;
1101 }
ae62c16e 1102 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1103 schedule();
ae62c16e 1104 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1105 }
1106 __remove_wait_queue(&ctx->fd_wqh, &wait);
1107 __set_current_state(TASK_RUNNING);
ae62c16e 1108 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1109
893e26e6 1110 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1111 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1112 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1113 if (!list_empty(&fork_event)) {
1114 /*
1115 * The fork thread didn't abort, so we can
1116 * drop the temporary refcount.
1117 */
1118 userfaultfd_ctx_put(fork_nctx);
1119
1120 uwq = list_first_entry(&fork_event,
1121 typeof(*uwq),
1122 wq.entry);
1123 /*
1124 * If fork_event list wasn't empty and in turn
1125 * the event wasn't already released by fork
1126 * (the event is allocated on fork kernel
1127 * stack), put the event back to its place in
1128 * the event_wq. fork_event head will be freed
1129 * as soon as we return so the event cannot
1130 * stay queued there no matter the current
1131 * "ret" value.
1132 */
1133 list_del(&uwq->wq.entry);
1134 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1135
384632e6
AA
1136 /*
1137 * Leave the event in the waitqueue and report
1138 * error to userland if we failed to resolve
1139 * the userfault fork.
1140 */
1141 if (likely(!ret))
893e26e6 1142 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1143 } else {
1144 /*
1145 * Here the fork thread aborted and the
1146 * refcount from the fork thread on fork_nctx
1147 * has already been released. We still hold
1148 * the reference we took before releasing the
1149 * lock above. If resolve_userfault_fork
1150 * failed we've to drop it because the
1151 * fork_nctx has to be freed in such case. If
1152 * it succeeded we'll hold it because the new
1153 * uffd references it.
1154 */
1155 if (ret)
1156 userfaultfd_ctx_put(fork_nctx);
893e26e6 1157 }
cbcfa130 1158 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1159 }
1160
86039bd3
AA
1161 return ret;
1162}
1163
1164static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165 size_t count, loff_t *ppos)
1166{
1167 struct userfaultfd_ctx *ctx = file->private_data;
1168 ssize_t _ret, ret = 0;
a9b85f94 1169 struct uffd_msg msg;
86039bd3 1170 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1171 struct inode *inode = file_inode(file);
86039bd3 1172
22e5fe2a 1173 if (!userfaultfd_is_initialized(ctx))
86039bd3 1174 return -EINVAL;
86039bd3
AA
1175
1176 for (;;) {
a9b85f94 1177 if (count < sizeof(msg))
86039bd3 1178 return ret ? ret : -EINVAL;
b537900f 1179 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1180 if (_ret < 0)
1181 return ret ? ret : _ret;
a9b85f94 1182 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1183 return ret ? ret : -EFAULT;
a9b85f94
AA
1184 ret += sizeof(msg);
1185 buf += sizeof(msg);
1186 count -= sizeof(msg);
86039bd3
AA
1187 /*
1188 * Allow to read more than one fault at time but only
1189 * block if waiting for the very first one.
1190 */
1191 no_wait = O_NONBLOCK;
1192 }
1193}
1194
1195static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196 struct userfaultfd_wake_range *range)
1197{
cbcfa130 1198 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1199 /* wake all in the range and autoremove */
15b726ef 1200 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1201 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1202 range);
1203 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1204 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1205 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1206}
1207
1208static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209 struct userfaultfd_wake_range *range)
1210{
2c5b7e1b
AA
1211 unsigned seq;
1212 bool need_wakeup;
1213
86039bd3
AA
1214 /*
1215 * To be sure waitqueue_active() is not reordered by the CPU
1216 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1217 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1218 * have release semantics that can allow the
1219 * waitqueue_active() to be reordered before the pte update.
1220 */
1221 smp_mb();
1222
1223 /*
1224 * Use waitqueue_active because it's very frequent to
1225 * change the address space atomically even if there are no
1226 * userfaults yet. So we take the spinlock only when we're
1227 * sure we've userfaults to wake.
1228 */
2c5b7e1b
AA
1229 do {
1230 seq = read_seqcount_begin(&ctx->refile_seq);
1231 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232 waitqueue_active(&ctx->fault_wqh);
1233 cond_resched();
1234 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 if (need_wakeup)
86039bd3
AA
1236 __wake_userfault(ctx, range);
1237}
1238
1239static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1240 __u64 start, __u64 len)
86039bd3
AA
1241{
1242 __u64 task_size = mm->task_size;
1243
e71e2ace 1244 if (start & ~PAGE_MASK)
86039bd3
AA
1245 return -EINVAL;
1246 if (len & ~PAGE_MASK)
1247 return -EINVAL;
1248 if (!len)
1249 return -EINVAL;
e71e2ace 1250 if (start < mmap_min_addr)
86039bd3 1251 return -EINVAL;
e71e2ace 1252 if (start >= task_size)
86039bd3 1253 return -EINVAL;
e71e2ace 1254 if (len > task_size - start)
86039bd3
AA
1255 return -EINVAL;
1256 return 0;
1257}
1258
1259static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1260 unsigned long arg)
1261{
1262 struct mm_struct *mm = ctx->mm;
1263 struct vm_area_struct *vma, *prev, *cur;
1264 int ret;
1265 struct uffdio_register uffdio_register;
1266 struct uffdio_register __user *user_uffdio_register;
1267 unsigned long vm_flags, new_flags;
1268 bool found;
ce53e8e6 1269 bool basic_ioctls;
86039bd3
AA
1270 unsigned long start, end, vma_end;
1271
1272 user_uffdio_register = (struct uffdio_register __user *) arg;
1273
1274 ret = -EFAULT;
1275 if (copy_from_user(&uffdio_register, user_uffdio_register,
1276 sizeof(uffdio_register)-sizeof(__u64)))
1277 goto out;
1278
1279 ret = -EINVAL;
1280 if (!uffdio_register.mode)
1281 goto out;
7677f7fd 1282 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1283 goto out;
1284 vm_flags = 0;
1285 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1286 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1287 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1288#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1289 goto out;
1290#endif
86039bd3 1291 vm_flags |= VM_UFFD_WP;
00b151f2 1292 }
7677f7fd
AR
1293 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1294#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1295 goto out;
1296#endif
1297 vm_flags |= VM_UFFD_MINOR;
1298 }
86039bd3 1299
e71e2ace 1300 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1301 uffdio_register.range.len);
1302 if (ret)
1303 goto out;
1304
1305 start = uffdio_register.range.start;
1306 end = start + uffdio_register.range.len;
1307
d2005e3f
ON
1308 ret = -ENOMEM;
1309 if (!mmget_not_zero(mm))
1310 goto out;
1311
d8ed45c5 1312 mmap_write_lock(mm);
86039bd3 1313 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1314 if (!vma)
1315 goto out_unlock;
1316
1317 /* check that there's at least one vma in the range */
1318 ret = -EINVAL;
1319 if (vma->vm_start >= end)
1320 goto out_unlock;
1321
cab350af
MK
1322 /*
1323 * If the first vma contains huge pages, make sure start address
1324 * is aligned to huge page size.
1325 */
1326 if (is_vm_hugetlb_page(vma)) {
1327 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1328
1329 if (start & (vma_hpagesize - 1))
1330 goto out_unlock;
1331 }
1332
86039bd3
AA
1333 /*
1334 * Search for not compatible vmas.
86039bd3
AA
1335 */
1336 found = false;
ce53e8e6 1337 basic_ioctls = false;
86039bd3
AA
1338 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1339 cond_resched();
1340
1341 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1342 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1343
1344 /* check not compatible vmas */
1345 ret = -EINVAL;
63b2d417 1346 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1347 goto out_unlock;
29ec9066
AA
1348
1349 /*
1350 * UFFDIO_COPY will fill file holes even without
1351 * PROT_WRITE. This check enforces that if this is a
1352 * MAP_SHARED, the process has write permission to the backing
1353 * file. If VM_MAYWRITE is set it also enforces that on a
1354 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1355 * F_WRITE_SEAL can be taken until the vma is destroyed.
1356 */
1357 ret = -EPERM;
1358 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1359 goto out_unlock;
1360
cab350af
MK
1361 /*
1362 * If this vma contains ending address, and huge pages
1363 * check alignment.
1364 */
1365 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1366 end > cur->vm_start) {
1367 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1368
1369 ret = -EINVAL;
1370
1371 if (end & (vma_hpagesize - 1))
1372 goto out_unlock;
1373 }
63b2d417
AA
1374 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1375 goto out_unlock;
86039bd3
AA
1376
1377 /*
1378 * Check that this vma isn't already owned by a
1379 * different userfaultfd. We can't allow more than one
1380 * userfaultfd to own a single vma simultaneously or we
1381 * wouldn't know which one to deliver the userfaults to.
1382 */
1383 ret = -EBUSY;
1384 if (cur->vm_userfaultfd_ctx.ctx &&
1385 cur->vm_userfaultfd_ctx.ctx != ctx)
1386 goto out_unlock;
1387
cab350af
MK
1388 /*
1389 * Note vmas containing huge pages
1390 */
ce53e8e6
MR
1391 if (is_vm_hugetlb_page(cur))
1392 basic_ioctls = true;
cab350af 1393
86039bd3
AA
1394 found = true;
1395 }
1396 BUG_ON(!found);
1397
1398 if (vma->vm_start < start)
1399 prev = vma;
1400
1401 ret = 0;
1402 do {
1403 cond_resched();
1404
63b2d417 1405 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1406 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1407 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1408 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1409
1410 /*
1411 * Nothing to do: this vma is already registered into this
1412 * userfaultfd and with the right tracking mode too.
1413 */
1414 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1415 (vma->vm_flags & vm_flags) == vm_flags)
1416 goto skip;
1417
1418 if (vma->vm_start > start)
1419 start = vma->vm_start;
1420 vma_end = min(end, vma->vm_end);
1421
7677f7fd 1422 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
86039bd3
AA
1423 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1424 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1425 vma_policy(vma),
9a10064f 1426 ((struct vm_userfaultfd_ctx){ ctx }),
5c26f6ac 1427 anon_vma_name(vma));
86039bd3
AA
1428 if (prev) {
1429 vma = prev;
1430 goto next;
1431 }
1432 if (vma->vm_start < start) {
1433 ret = split_vma(mm, vma, start, 1);
1434 if (ret)
1435 break;
1436 }
1437 if (vma->vm_end > end) {
1438 ret = split_vma(mm, vma, end, 0);
1439 if (ret)
1440 break;
1441 }
1442 next:
1443 /*
1444 * In the vma_merge() successful mprotect-like case 8:
1445 * the next vma was merged into the current one and
1446 * the current one has not been updated yet.
1447 */
1448 vma->vm_flags = new_flags;
1449 vma->vm_userfaultfd_ctx.ctx = ctx;
1450
6dfeaff9
PX
1451 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1452 hugetlb_unshare_all_pmds(vma);
1453
86039bd3
AA
1454 skip:
1455 prev = vma;
1456 start = vma->vm_end;
1457 vma = vma->vm_next;
1458 } while (vma && vma->vm_start < end);
1459out_unlock:
d8ed45c5 1460 mmap_write_unlock(mm);
d2005e3f 1461 mmput(mm);
86039bd3 1462 if (!ret) {
14819305
PX
1463 __u64 ioctls_out;
1464
1465 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1466 UFFD_API_RANGE_IOCTLS;
1467
1468 /*
1469 * Declare the WP ioctl only if the WP mode is
1470 * specified and all checks passed with the range
1471 */
1472 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1473 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1474
f6191471
AR
1475 /* CONTINUE ioctl is only supported for MINOR ranges. */
1476 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1477 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1478
86039bd3
AA
1479 /*
1480 * Now that we scanned all vmas we can already tell
1481 * userland which ioctls methods are guaranteed to
1482 * succeed on this range.
1483 */
14819305 1484 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1485 ret = -EFAULT;
1486 }
1487out:
1488 return ret;
1489}
1490
1491static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1492 unsigned long arg)
1493{
1494 struct mm_struct *mm = ctx->mm;
1495 struct vm_area_struct *vma, *prev, *cur;
1496 int ret;
1497 struct uffdio_range uffdio_unregister;
1498 unsigned long new_flags;
1499 bool found;
1500 unsigned long start, end, vma_end;
1501 const void __user *buf = (void __user *)arg;
1502
1503 ret = -EFAULT;
1504 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1505 goto out;
1506
e71e2ace 1507 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1508 uffdio_unregister.len);
1509 if (ret)
1510 goto out;
1511
1512 start = uffdio_unregister.start;
1513 end = start + uffdio_unregister.len;
1514
d2005e3f
ON
1515 ret = -ENOMEM;
1516 if (!mmget_not_zero(mm))
1517 goto out;
1518
d8ed45c5 1519 mmap_write_lock(mm);
86039bd3 1520 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1521 if (!vma)
1522 goto out_unlock;
1523
1524 /* check that there's at least one vma in the range */
1525 ret = -EINVAL;
1526 if (vma->vm_start >= end)
1527 goto out_unlock;
1528
cab350af
MK
1529 /*
1530 * If the first vma contains huge pages, make sure start address
1531 * is aligned to huge page size.
1532 */
1533 if (is_vm_hugetlb_page(vma)) {
1534 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1535
1536 if (start & (vma_hpagesize - 1))
1537 goto out_unlock;
1538 }
1539
86039bd3
AA
1540 /*
1541 * Search for not compatible vmas.
86039bd3
AA
1542 */
1543 found = false;
1544 ret = -EINVAL;
1545 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1546 cond_resched();
1547
1548 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1549 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1550
1551 /*
1552 * Check not compatible vmas, not strictly required
1553 * here as not compatible vmas cannot have an
1554 * userfaultfd_ctx registered on them, but this
1555 * provides for more strict behavior to notice
1556 * unregistration errors.
1557 */
63b2d417 1558 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1559 goto out_unlock;
1560
1561 found = true;
1562 }
1563 BUG_ON(!found);
1564
1565 if (vma->vm_start < start)
1566 prev = vma;
1567
1568 ret = 0;
1569 do {
1570 cond_resched();
1571
63b2d417 1572 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1573
1574 /*
1575 * Nothing to do: this vma is already registered into this
1576 * userfaultfd and with the right tracking mode too.
1577 */
1578 if (!vma->vm_userfaultfd_ctx.ctx)
1579 goto skip;
1580
01e881f5
AA
1581 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1582
86039bd3
AA
1583 if (vma->vm_start > start)
1584 start = vma->vm_start;
1585 vma_end = min(end, vma->vm_end);
1586
09fa5296
AA
1587 if (userfaultfd_missing(vma)) {
1588 /*
1589 * Wake any concurrent pending userfault while
1590 * we unregister, so they will not hang
1591 * permanently and it avoids userland to call
1592 * UFFDIO_WAKE explicitly.
1593 */
1594 struct userfaultfd_wake_range range;
1595 range.start = start;
1596 range.len = vma_end - start;
1597 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1598 }
1599
f369b07c
PX
1600 /* Reset ptes for the whole vma range if wr-protected */
1601 if (userfaultfd_wp(vma))
1602 uffd_wp_range(mm, vma, start, vma_end - start, false);
1603
7677f7fd 1604 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
86039bd3
AA
1605 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1606 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1607 vma_policy(vma),
5c26f6ac 1608 NULL_VM_UFFD_CTX, anon_vma_name(vma));
86039bd3
AA
1609 if (prev) {
1610 vma = prev;
1611 goto next;
1612 }
1613 if (vma->vm_start < start) {
1614 ret = split_vma(mm, vma, start, 1);
1615 if (ret)
1616 break;
1617 }
1618 if (vma->vm_end > end) {
1619 ret = split_vma(mm, vma, end, 0);
1620 if (ret)
1621 break;
1622 }
1623 next:
1624 /*
1625 * In the vma_merge() successful mprotect-like case 8:
1626 * the next vma was merged into the current one and
1627 * the current one has not been updated yet.
1628 */
1629 vma->vm_flags = new_flags;
1630 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1631
1632 skip:
1633 prev = vma;
1634 start = vma->vm_end;
1635 vma = vma->vm_next;
1636 } while (vma && vma->vm_start < end);
1637out_unlock:
d8ed45c5 1638 mmap_write_unlock(mm);
d2005e3f 1639 mmput(mm);
86039bd3
AA
1640out:
1641 return ret;
1642}
1643
1644/*
ba85c702
AA
1645 * userfaultfd_wake may be used in combination with the
1646 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1647 */
1648static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1649 unsigned long arg)
1650{
1651 int ret;
1652 struct uffdio_range uffdio_wake;
1653 struct userfaultfd_wake_range range;
1654 const void __user *buf = (void __user *)arg;
1655
1656 ret = -EFAULT;
1657 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1658 goto out;
1659
e71e2ace 1660 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1661 if (ret)
1662 goto out;
1663
1664 range.start = uffdio_wake.start;
1665 range.len = uffdio_wake.len;
1666
1667 /*
1668 * len == 0 means wake all and we don't want to wake all here,
1669 * so check it again to be sure.
1670 */
1671 VM_BUG_ON(!range.len);
1672
1673 wake_userfault(ctx, &range);
1674 ret = 0;
1675
1676out:
1677 return ret;
1678}
1679
ad465cae
AA
1680static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1681 unsigned long arg)
1682{
1683 __s64 ret;
1684 struct uffdio_copy uffdio_copy;
1685 struct uffdio_copy __user *user_uffdio_copy;
1686 struct userfaultfd_wake_range range;
1687
1688 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1689
df2cc96e 1690 ret = -EAGAIN;
a759a909 1691 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1692 goto out;
1693
ad465cae
AA
1694 ret = -EFAULT;
1695 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1696 /* don't copy "copy" last field */
1697 sizeof(uffdio_copy)-sizeof(__s64)))
1698 goto out;
1699
e71e2ace 1700 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1701 if (ret)
1702 goto out;
1703 /*
1704 * double check for wraparound just in case. copy_from_user()
1705 * will later check uffdio_copy.src + uffdio_copy.len to fit
1706 * in the userland range.
1707 */
1708 ret = -EINVAL;
1709 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1710 goto out;
72981e0e 1711 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1712 goto out;
d2005e3f
ON
1713 if (mmget_not_zero(ctx->mm)) {
1714 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
72981e0e
AA
1715 uffdio_copy.len, &ctx->mmap_changing,
1716 uffdio_copy.mode);
d2005e3f 1717 mmput(ctx->mm);
96333187 1718 } else {
e86b298b 1719 return -ESRCH;
d2005e3f 1720 }
ad465cae
AA
1721 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1722 return -EFAULT;
1723 if (ret < 0)
1724 goto out;
1725 BUG_ON(!ret);
1726 /* len == 0 would wake all */
1727 range.len = ret;
1728 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1729 range.start = uffdio_copy.dst;
1730 wake_userfault(ctx, &range);
1731 }
1732 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1733out:
1734 return ret;
1735}
1736
1737static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1738 unsigned long arg)
1739{
1740 __s64 ret;
1741 struct uffdio_zeropage uffdio_zeropage;
1742 struct uffdio_zeropage __user *user_uffdio_zeropage;
1743 struct userfaultfd_wake_range range;
1744
1745 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1746
df2cc96e 1747 ret = -EAGAIN;
a759a909 1748 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1749 goto out;
1750
ad465cae
AA
1751 ret = -EFAULT;
1752 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1753 /* don't copy "zeropage" last field */
1754 sizeof(uffdio_zeropage)-sizeof(__s64)))
1755 goto out;
1756
e71e2ace 1757 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1758 uffdio_zeropage.range.len);
1759 if (ret)
1760 goto out;
1761 ret = -EINVAL;
1762 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1763 goto out;
1764
d2005e3f
ON
1765 if (mmget_not_zero(ctx->mm)) {
1766 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1767 uffdio_zeropage.range.len,
1768 &ctx->mmap_changing);
d2005e3f 1769 mmput(ctx->mm);
9d95aa4b 1770 } else {
e86b298b 1771 return -ESRCH;
d2005e3f 1772 }
ad465cae
AA
1773 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1774 return -EFAULT;
1775 if (ret < 0)
1776 goto out;
1777 /* len == 0 would wake all */
1778 BUG_ON(!ret);
1779 range.len = ret;
1780 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1781 range.start = uffdio_zeropage.range.start;
1782 wake_userfault(ctx, &range);
1783 }
1784 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1785out:
1786 return ret;
1787}
1788
63b2d417
AA
1789static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1790 unsigned long arg)
1791{
1792 int ret;
1793 struct uffdio_writeprotect uffdio_wp;
1794 struct uffdio_writeprotect __user *user_uffdio_wp;
1795 struct userfaultfd_wake_range range;
23080e27 1796 bool mode_wp, mode_dontwake;
63b2d417 1797
a759a909 1798 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1799 return -EAGAIN;
1800
1801 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1802
1803 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1804 sizeof(struct uffdio_writeprotect)))
1805 return -EFAULT;
1806
e71e2ace 1807 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1808 uffdio_wp.range.len);
1809 if (ret)
1810 return ret;
1811
1812 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1813 UFFDIO_WRITEPROTECT_MODE_WP))
1814 return -EINVAL;
23080e27
PX
1815
1816 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1817 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1818
1819 if (mode_wp && mode_dontwake)
63b2d417
AA
1820 return -EINVAL;
1821
cb185d5f
NA
1822 if (mmget_not_zero(ctx->mm)) {
1823 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1824 uffdio_wp.range.len, mode_wp,
1825 &ctx->mmap_changing);
1826 mmput(ctx->mm);
1827 } else {
1828 return -ESRCH;
1829 }
1830
63b2d417
AA
1831 if (ret)
1832 return ret;
1833
23080e27 1834 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1835 range.start = uffdio_wp.range.start;
1836 range.len = uffdio_wp.range.len;
1837 wake_userfault(ctx, &range);
1838 }
1839 return ret;
1840}
1841
f6191471
AR
1842static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1843{
1844 __s64 ret;
1845 struct uffdio_continue uffdio_continue;
1846 struct uffdio_continue __user *user_uffdio_continue;
1847 struct userfaultfd_wake_range range;
1848
1849 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1850
1851 ret = -EAGAIN;
a759a909 1852 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1853 goto out;
1854
1855 ret = -EFAULT;
1856 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1857 /* don't copy the output fields */
1858 sizeof(uffdio_continue) - (sizeof(__s64))))
1859 goto out;
1860
e71e2ace 1861 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1862 uffdio_continue.range.len);
1863 if (ret)
1864 goto out;
1865
1866 ret = -EINVAL;
1867 /* double check for wraparound just in case. */
1868 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1869 uffdio_continue.range.start) {
1870 goto out;
1871 }
1872 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1873 goto out;
1874
1875 if (mmget_not_zero(ctx->mm)) {
1876 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1877 uffdio_continue.range.len,
1878 &ctx->mmap_changing);
1879 mmput(ctx->mm);
1880 } else {
1881 return -ESRCH;
1882 }
1883
1884 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1885 return -EFAULT;
1886 if (ret < 0)
1887 goto out;
1888
1889 /* len == 0 would wake all */
1890 BUG_ON(!ret);
1891 range.len = ret;
1892 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1893 range.start = uffdio_continue.range.start;
1894 wake_userfault(ctx, &range);
1895 }
1896 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1897
1898out:
1899 return ret;
1900}
1901
9cd75c3c
PE
1902static inline unsigned int uffd_ctx_features(__u64 user_features)
1903{
1904 /*
22e5fe2a
NA
1905 * For the current set of features the bits just coincide. Set
1906 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1907 */
22e5fe2a 1908 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1909}
1910
86039bd3
AA
1911/*
1912 * userland asks for a certain API version and we return which bits
1913 * and ioctl commands are implemented in this kernel for such API
1914 * version or -EINVAL if unknown.
1915 */
1916static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1917 unsigned long arg)
1918{
1919 struct uffdio_api uffdio_api;
1920 void __user *buf = (void __user *)arg;
22e5fe2a 1921 unsigned int ctx_features;
86039bd3 1922 int ret;
65603144 1923 __u64 features;
86039bd3 1924
86039bd3 1925 ret = -EFAULT;
a9b85f94 1926 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1927 goto out;
914eedcb
AR
1928 /* Ignore unsupported features (userspace built against newer kernel) */
1929 features = uffdio_api.features & UFFD_API_FEATURES;
3c1c24d9
MR
1930 ret = -EPERM;
1931 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1932 goto err_out;
65603144
AA
1933 /* report all available features and ioctls to userland */
1934 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 1935#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
1936 uffdio_api.features &=
1937 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
1938#endif
1939#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1940 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
b1f9e876
PX
1941#endif
1942#ifndef CONFIG_PTE_MARKER_UFFD_WP
1943 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
7677f7fd 1944#endif
86039bd3
AA
1945 uffdio_api.ioctls = UFFD_API_IOCTLS;
1946 ret = -EFAULT;
1947 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1948 goto out;
22e5fe2a 1949
65603144 1950 /* only enable the requested features for this uffd context */
22e5fe2a
NA
1951 ctx_features = uffd_ctx_features(features);
1952 ret = -EINVAL;
1953 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1954 goto err_out;
1955
86039bd3
AA
1956 ret = 0;
1957out:
1958 return ret;
3c1c24d9
MR
1959err_out:
1960 memset(&uffdio_api, 0, sizeof(uffdio_api));
1961 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962 ret = -EFAULT;
1963 goto out;
86039bd3
AA
1964}
1965
1966static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1967 unsigned long arg)
1968{
1969 int ret = -EINVAL;
1970 struct userfaultfd_ctx *ctx = file->private_data;
1971
22e5fe2a 1972 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
1973 return -EINVAL;
1974
86039bd3
AA
1975 switch(cmd) {
1976 case UFFDIO_API:
1977 ret = userfaultfd_api(ctx, arg);
1978 break;
1979 case UFFDIO_REGISTER:
1980 ret = userfaultfd_register(ctx, arg);
1981 break;
1982 case UFFDIO_UNREGISTER:
1983 ret = userfaultfd_unregister(ctx, arg);
1984 break;
1985 case UFFDIO_WAKE:
1986 ret = userfaultfd_wake(ctx, arg);
1987 break;
ad465cae
AA
1988 case UFFDIO_COPY:
1989 ret = userfaultfd_copy(ctx, arg);
1990 break;
1991 case UFFDIO_ZEROPAGE:
1992 ret = userfaultfd_zeropage(ctx, arg);
1993 break;
63b2d417
AA
1994 case UFFDIO_WRITEPROTECT:
1995 ret = userfaultfd_writeprotect(ctx, arg);
1996 break;
f6191471
AR
1997 case UFFDIO_CONTINUE:
1998 ret = userfaultfd_continue(ctx, arg);
1999 break;
86039bd3
AA
2000 }
2001 return ret;
2002}
2003
2004#ifdef CONFIG_PROC_FS
2005static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2006{
2007 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2008 wait_queue_entry_t *wq;
86039bd3
AA
2009 unsigned long pending = 0, total = 0;
2010
cbcfa130 2011 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2012 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2013 pending++;
2014 total++;
2015 }
2055da97 2016 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2017 total++;
2018 }
cbcfa130 2019 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2020
2021 /*
2022 * If more protocols will be added, there will be all shown
2023 * separated by a space. Like this:
2024 * protocols: aa:... bb:...
2025 */
2026 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2027 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2028 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2029}
2030#endif
2031
2032static const struct file_operations userfaultfd_fops = {
2033#ifdef CONFIG_PROC_FS
2034 .show_fdinfo = userfaultfd_show_fdinfo,
2035#endif
2036 .release = userfaultfd_release,
2037 .poll = userfaultfd_poll,
2038 .read = userfaultfd_read,
2039 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2040 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2041 .llseek = noop_llseek,
2042};
2043
3004ec9c
AA
2044static void init_once_userfaultfd_ctx(void *mem)
2045{
2046 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2047
2048 init_waitqueue_head(&ctx->fault_pending_wqh);
2049 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2050 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2051 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2052 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2053}
2054
2d5de004 2055static int new_userfaultfd(int flags)
86039bd3 2056{
86039bd3 2057 struct userfaultfd_ctx *ctx;
284cd241 2058 int fd;
86039bd3
AA
2059
2060 BUG_ON(!current->mm);
2061
2062 /* Check the UFFD_* constants for consistency. */
37cd0575 2063 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2064 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2065 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2066
37cd0575 2067 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2068 return -EINVAL;
86039bd3 2069
3004ec9c 2070 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2071 if (!ctx)
284cd241 2072 return -ENOMEM;
86039bd3 2073
ca880420 2074 refcount_set(&ctx->refcount, 1);
86039bd3 2075 ctx->flags = flags;
9cd75c3c 2076 ctx->features = 0;
86039bd3 2077 ctx->released = false;
a759a909 2078 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2079 ctx->mm = current->mm;
2080 /* prevent the mm struct to be freed */
f1f10076 2081 mmgrab(ctx->mm);
86039bd3 2082
b537900f
DC
2083 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2084 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2085 if (fd < 0) {
d2005e3f 2086 mmdrop(ctx->mm);
3004ec9c 2087 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2088 }
86039bd3 2089 return fd;
86039bd3 2090}
3004ec9c 2091
2d5de004
AR
2092static inline bool userfaultfd_syscall_allowed(int flags)
2093{
2094 /* Userspace-only page faults are always allowed */
2095 if (flags & UFFD_USER_MODE_ONLY)
2096 return true;
2097
2098 /*
2099 * The user is requesting a userfaultfd which can handle kernel faults.
2100 * Privileged users are always allowed to do this.
2101 */
2102 if (capable(CAP_SYS_PTRACE))
2103 return true;
2104
2105 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2106 return sysctl_unprivileged_userfaultfd;
2107}
2108
2109SYSCALL_DEFINE1(userfaultfd, int, flags)
2110{
2111 if (!userfaultfd_syscall_allowed(flags))
2112 return -EPERM;
2113
2114 return new_userfaultfd(flags);
2115}
2116
2117static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2118{
2119 if (cmd != USERFAULTFD_IOC_NEW)
2120 return -EINVAL;
2121
2122 return new_userfaultfd(flags);
2123}
2124
2125static const struct file_operations userfaultfd_dev_fops = {
2126 .unlocked_ioctl = userfaultfd_dev_ioctl,
2127 .compat_ioctl = userfaultfd_dev_ioctl,
2128 .owner = THIS_MODULE,
2129 .llseek = noop_llseek,
2130};
2131
2132static struct miscdevice userfaultfd_misc = {
2133 .minor = MISC_DYNAMIC_MINOR,
2134 .name = "userfaultfd",
2135 .fops = &userfaultfd_dev_fops
2136};
2137
3004ec9c
AA
2138static int __init userfaultfd_init(void)
2139{
2d5de004
AR
2140 int ret;
2141
2142 ret = misc_register(&userfaultfd_misc);
2143 if (ret)
2144 return ret;
2145
3004ec9c
AA
2146 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2147 sizeof(struct userfaultfd_ctx),
2148 0,
2149 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2150 init_once_userfaultfd_ctx);
2151 return 0;
2152}
2153__initcall(userfaultfd_init);