]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/userfaultfd.c
mm-make-pte_marker_swapin_error-more-general-fix
[thirdparty/kernel/stable.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3 17#include <linux/mm.h>
17fca131 18#include <linux/mm_inline.h>
6dfeaff9 19#include <linux/mmu_notifier.h>
86039bd3
AA
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
5c041f5d 32#include <linux/swapops.h>
2d5de004 33#include <linux/miscdevice.h>
86039bd3 34
2d337b71
Z
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
48 { }
49};
50#endif
cefdca0a 51
3004ec9c
AA
52static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53
3004ec9c
AA
54/*
55 * Start with fault_pending_wqh and fault_wqh so they're more likely
56 * to be in the same cacheline.
cbcfa130
EB
57 *
58 * Locking order:
59 * fd_wqh.lock
60 * fault_pending_wqh.lock
61 * fault_wqh.lock
62 * event_wqh.lock
63 *
64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66 * also taken in IRQ context.
3004ec9c 67 */
86039bd3 68struct userfaultfd_ctx {
15b726ef
AA
69 /* waitqueue head for the pending (i.e. not read) userfaults */
70 wait_queue_head_t fault_pending_wqh;
71 /* waitqueue head for the userfaults */
86039bd3
AA
72 wait_queue_head_t fault_wqh;
73 /* waitqueue head for the pseudo fd to wakeup poll/read */
74 wait_queue_head_t fd_wqh;
9cd75c3c
PE
75 /* waitqueue head for events */
76 wait_queue_head_t event_wqh;
2c5b7e1b 77 /* a refile sequence protected by fault_pending_wqh lock */
2ca97ac8 78 seqcount_spinlock_t refile_seq;
3004ec9c 79 /* pseudo fd refcounting */
ca880420 80 refcount_t refcount;
86039bd3
AA
81 /* userfaultfd syscall flags */
82 unsigned int flags;
9cd75c3c
PE
83 /* features requested from the userspace */
84 unsigned int features;
86039bd3
AA
85 /* released */
86 bool released;
df2cc96e 87 /* memory mappings are changing because of non-cooperative event */
a759a909 88 atomic_t mmap_changing;
86039bd3
AA
89 /* mm with one ore more vmas attached to this userfaultfd_ctx */
90 struct mm_struct *mm;
91};
92
893e26e6
PE
93struct userfaultfd_fork_ctx {
94 struct userfaultfd_ctx *orig;
95 struct userfaultfd_ctx *new;
96 struct list_head list;
97};
98
897ab3e0
MR
99struct userfaultfd_unmap_ctx {
100 struct userfaultfd_ctx *ctx;
101 unsigned long start;
102 unsigned long end;
103 struct list_head list;
104};
105
86039bd3 106struct userfaultfd_wait_queue {
a9b85f94 107 struct uffd_msg msg;
ac6424b9 108 wait_queue_entry_t wq;
86039bd3 109 struct userfaultfd_ctx *ctx;
15a77c6f 110 bool waken;
86039bd3
AA
111};
112
113struct userfaultfd_wake_range {
114 unsigned long start;
115 unsigned long len;
116};
117
22e5fe2a
NA
118/* internal indication that UFFD_API ioctl was successfully executed */
119#define UFFD_FEATURE_INITIALIZED (1u << 31)
120
121static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122{
123 return ctx->features & UFFD_FEATURE_INITIALIZED;
124}
125
2bad466c
PX
126/*
127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
128 * meaningful when userfaultfd_wp()==true on the vma and when it's
129 * anonymous.
130 */
131bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132{
133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134
135 if (!ctx)
136 return false;
137
138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139}
140
51d3d5eb
DH
141static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 vm_flags_t flags)
143{
144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145
1c71222e 146 vm_flags_reset(vma, flags);
51d3d5eb
DH
147 /*
148 * For shared mappings, we want to enable writenotify while
149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 */
152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 vma_set_page_prot(vma);
154}
155
ac6424b9 156static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
157 int wake_flags, void *key)
158{
159 struct userfaultfd_wake_range *range = key;
160 int ret;
161 struct userfaultfd_wait_queue *uwq;
162 unsigned long start, len;
163
164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 ret = 0;
86039bd3
AA
166 /* len == 0 means wake all */
167 start = range->start;
168 len = range->len;
a9b85f94
AA
169 if (len && (start > uwq->msg.arg.pagefault.address ||
170 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 171 goto out;
15a77c6f
AA
172 WRITE_ONCE(uwq->waken, true);
173 /*
a9668cd6
PZ
174 * The Program-Order guarantees provided by the scheduler
175 * ensure uwq->waken is visible before the task is woken.
15a77c6f 176 */
86039bd3 177 ret = wake_up_state(wq->private, mode);
a9668cd6 178 if (ret) {
86039bd3
AA
179 /*
180 * Wake only once, autoremove behavior.
181 *
a9668cd6
PZ
182 * After the effect of list_del_init is visible to the other
183 * CPUs, the waitqueue may disappear from under us, see the
184 * !list_empty_careful() in handle_userfault().
185 *
186 * try_to_wake_up() has an implicit smp_mb(), and the
187 * wq->private is read before calling the extern function
188 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 189 */
2055da97 190 list_del_init(&wq->entry);
a9668cd6 191 }
86039bd3
AA
192out:
193 return ret;
194}
195
196/**
197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198 * context.
199 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
200 */
201static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202{
ca880420 203 refcount_inc(&ctx->refcount);
86039bd3
AA
204}
205
206/**
207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208 * context.
209 * @ctx: [in] Pointer to userfaultfd context.
210 *
211 * The userfaultfd context reference must have been previously acquired either
212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213 */
214static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215{
ca880420 216 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 225 mmdrop(ctx->mm);
3004ec9c 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
227 }
228}
229
a9b85f94 230static inline void msg_init(struct uffd_msg *msg)
86039bd3 231{
a9b85f94
AA
232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 /*
234 * Must use memset to zero out the paddings or kernel data is
235 * leaked to userland.
236 */
237 memset(msg, 0, sizeof(struct uffd_msg));
238}
239
240static inline struct uffd_msg userfault_msg(unsigned long address,
d172b1a3 241 unsigned long real_address,
a9b85f94 242 unsigned int flags,
9d4ac934
AP
243 unsigned long reason,
244 unsigned int features)
a9b85f94
AA
245{
246 struct uffd_msg msg;
d172b1a3 247
a9b85f94
AA
248 msg_init(&msg);
249 msg.event = UFFD_EVENT_PAGEFAULT;
824ddc60 250
d172b1a3
NA
251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 real_address : address;
253
7677f7fd
AR
254 /*
255 * These flags indicate why the userfault occurred:
256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 * - Neither of these flags being set indicates a MISSING fault.
259 *
260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 * fault. Otherwise, it was a read fault.
262 */
86039bd3 263 if (flags & FAULT_FLAG_WRITE)
a9b85f94 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3 265 if (reason & VM_UFFD_WP)
a9b85f94 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
7677f7fd
AR
267 if (reason & VM_UFFD_MINOR)
268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
9d4ac934 269 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 271 return msg;
86039bd3
AA
272}
273
369cd212
MK
274#ifdef CONFIG_HUGETLB_PAGE
275/*
276 * Same functionality as userfaultfd_must_wait below with modifications for
277 * hugepmd ranges.
278 */
279static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 280 struct vm_area_struct *vma,
369cd212
MK
281 unsigned long address,
282 unsigned long flags,
283 unsigned long reason)
284{
1e2c0436 285 pte_t *ptep, pte;
369cd212
MK
286 bool ret = true;
287
9c67a207 288 mmap_assert_locked(ctx->mm);
1e2c0436 289
9c67a207 290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
1e2c0436 291 if (!ptep)
369cd212
MK
292 goto out;
293
294 ret = false;
1e2c0436 295 pte = huge_ptep_get(ptep);
369cd212
MK
296
297 /*
298 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
299 * changes under us. PTE markers should be handled the same as none
300 * ptes here.
369cd212 301 */
5c041f5d 302 if (huge_pte_none_mostly(pte))
369cd212 303 ret = true;
1e2c0436 304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
305 ret = true;
306out:
307 return ret;
308}
309#else
310static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 311 struct vm_area_struct *vma,
369cd212
MK
312 unsigned long address,
313 unsigned long flags,
314 unsigned long reason)
315{
316 return false; /* should never get here */
317}
318#endif /* CONFIG_HUGETLB_PAGE */
319
8d2afd96
AA
320/*
321 * Verify the pagetables are still not ok after having reigstered into
322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323 * userfault that has already been resolved, if userfaultfd_read and
324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325 * threads.
326 */
327static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 unsigned long address,
329 unsigned long flags,
330 unsigned long reason)
331{
332 struct mm_struct *mm = ctx->mm;
333 pgd_t *pgd;
c2febafc 334 p4d_t *p4d;
8d2afd96
AA
335 pud_t *pud;
336 pmd_t *pmd, _pmd;
337 pte_t *pte;
c33c7948 338 pte_t ptent;
8d2afd96
AA
339 bool ret = true;
340
42fc5414 341 mmap_assert_locked(mm);
8d2afd96
AA
342
343 pgd = pgd_offset(mm, address);
344 if (!pgd_present(*pgd))
345 goto out;
c2febafc
KS
346 p4d = p4d_offset(pgd, address);
347 if (!p4d_present(*p4d))
348 goto out;
349 pud = pud_offset(p4d, address);
8d2afd96
AA
350 if (!pud_present(*pud))
351 goto out;
352 pmd = pmd_offset(pud, address);
2b683a4f 353again:
26e1a0c3 354 _pmd = pmdp_get_lockless(pmd);
a365ac09 355 if (pmd_none(_pmd))
8d2afd96
AA
356 goto out;
357
358 ret = false;
2b683a4f 359 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
a365ac09
HY
360 goto out;
361
63b2d417
AA
362 if (pmd_trans_huge(_pmd)) {
363 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
364 ret = true;
8d2afd96 365 goto out;
63b2d417 366 }
8d2afd96 367
8d2afd96 368 pte = pte_offset_map(pmd, address);
2b683a4f
HD
369 if (!pte) {
370 ret = true;
371 goto again;
372 }
8d2afd96
AA
373 /*
374 * Lockless access: we're in a wait_event so it's ok if it
5c041f5d
PX
375 * changes under us. PTE markers should be handled the same as none
376 * ptes here.
8d2afd96 377 */
c33c7948
RR
378 ptent = ptep_get(pte);
379 if (pte_none_mostly(ptent))
8d2afd96 380 ret = true;
c33c7948 381 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
63b2d417 382 ret = true;
8d2afd96
AA
383 pte_unmap(pte);
384
385out:
386 return ret;
387}
388
2f064a59 389static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
3e69ad08
PX
390{
391 if (flags & FAULT_FLAG_INTERRUPTIBLE)
392 return TASK_INTERRUPTIBLE;
393
394 if (flags & FAULT_FLAG_KILLABLE)
395 return TASK_KILLABLE;
396
397 return TASK_UNINTERRUPTIBLE;
398}
399
86039bd3
AA
400/*
401 * The locking rules involved in returning VM_FAULT_RETRY depending on
402 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
403 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
404 * recommendation in __lock_page_or_retry is not an understatement.
405 *
c1e8d7c6 406 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
86039bd3
AA
407 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
408 * not set.
409 *
410 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
411 * set, VM_FAULT_RETRY can still be returned if and only if there are
c1e8d7c6 412 * fatal_signal_pending()s, and the mmap_lock must be released before
86039bd3
AA
413 * returning it.
414 */
2b740303 415vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 416{
b8da2e46
PX
417 struct vm_area_struct *vma = vmf->vma;
418 struct mm_struct *mm = vma->vm_mm;
86039bd3
AA
419 struct userfaultfd_ctx *ctx;
420 struct userfaultfd_wait_queue uwq;
2b740303 421 vm_fault_t ret = VM_FAULT_SIGBUS;
3e69ad08 422 bool must_wait;
2f064a59 423 unsigned int blocking_state;
86039bd3 424
64c2b203
AA
425 /*
426 * We don't do userfault handling for the final child pid update.
427 *
428 * We also don't do userfault handling during
429 * coredumping. hugetlbfs has the special
48498071 430 * hugetlb_follow_page_mask() to skip missing pages in the
64c2b203
AA
431 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
432 * the no_page_table() helper in follow_page_mask(), but the
433 * shmem_vm_ops->fault method is invoked even during
c1e8d7c6 434 * coredumping without mmap_lock and it ends up here.
64c2b203
AA
435 */
436 if (current->flags & (PF_EXITING|PF_DUMPCORE))
437 goto out;
438
439 /*
c1e8d7c6
ML
440 * Coredumping runs without mmap_lock so we can only check that
441 * the mmap_lock is held, if PF_DUMPCORE was not set.
64c2b203 442 */
42fc5414 443 mmap_assert_locked(mm);
64c2b203 444
b8da2e46 445 ctx = vma->vm_userfaultfd_ctx.ctx;
86039bd3 446 if (!ctx)
ba85c702 447 goto out;
86039bd3
AA
448
449 BUG_ON(ctx->mm != mm);
450
7677f7fd
AR
451 /* Any unrecognized flag is a bug. */
452 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
453 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
454 VM_BUG_ON(!reason || (reason & (reason - 1)));
86039bd3 455
2d6d6f5a
PS
456 if (ctx->features & UFFD_FEATURE_SIGBUS)
457 goto out;
2d5de004 458 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
37cd0575 459 goto out;
2d6d6f5a 460
86039bd3
AA
461 /*
462 * If it's already released don't get it. This avoids to loop
463 * in __get_user_pages if userfaultfd_release waits on the
c1e8d7c6 464 * caller of handle_userfault to release the mmap_lock.
86039bd3 465 */
6aa7de05 466 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
467 /*
468 * Don't return VM_FAULT_SIGBUS in this case, so a non
469 * cooperative manager can close the uffd after the
470 * last UFFDIO_COPY, without risking to trigger an
471 * involuntary SIGBUS if the process was starting the
472 * userfaultfd while the userfaultfd was still armed
473 * (but after the last UFFDIO_COPY). If the uffd
474 * wasn't already closed when the userfault reached
475 * this point, that would normally be solved by
476 * userfaultfd_must_wait returning 'false'.
477 *
478 * If we were to return VM_FAULT_SIGBUS here, the non
479 * cooperative manager would be instead forced to
480 * always call UFFDIO_UNREGISTER before it can safely
481 * close the uffd.
482 */
483 ret = VM_FAULT_NOPAGE;
ba85c702 484 goto out;
656710a6 485 }
86039bd3
AA
486
487 /*
488 * Check that we can return VM_FAULT_RETRY.
489 *
490 * NOTE: it should become possible to return VM_FAULT_RETRY
491 * even if FAULT_FLAG_TRIED is set without leading to gup()
492 * -EBUSY failures, if the userfaultfd is to be extended for
493 * VM_UFFD_WP tracking and we intend to arm the userfault
494 * without first stopping userland access to the memory. For
495 * VM_UFFD_MISSING userfaults this is enough for now.
496 */
82b0f8c3 497 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
498 /*
499 * Validate the invariant that nowait must allow retry
500 * to be sure not to return SIGBUS erroneously on
501 * nowait invocations.
502 */
82b0f8c3 503 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
504#ifdef CONFIG_DEBUG_VM
505 if (printk_ratelimit()) {
506 printk(KERN_WARNING
82b0f8c3
JK
507 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
508 vmf->flags);
86039bd3
AA
509 dump_stack();
510 }
511#endif
ba85c702 512 goto out;
86039bd3
AA
513 }
514
515 /*
516 * Handle nowait, not much to do other than tell it to retry
517 * and wait.
518 */
ba85c702 519 ret = VM_FAULT_RETRY;
82b0f8c3 520 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 521 goto out;
86039bd3 522
c1e8d7c6 523 /* take the reference before dropping the mmap_lock */
86039bd3
AA
524 userfaultfd_ctx_get(ctx);
525
86039bd3
AA
526 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
527 uwq.wq.private = current;
d172b1a3
NA
528 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
529 reason, ctx->features);
86039bd3 530 uwq.ctx = ctx;
15a77c6f 531 uwq.waken = false;
86039bd3 532
3e69ad08 533 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
dfa37dc3 534
b8da2e46
PX
535 /*
536 * Take the vma lock now, in order to safely call
537 * userfaultfd_huge_must_wait() later. Since acquiring the
538 * (sleepable) vma lock can modify the current task state, that
539 * must be before explicitly calling set_current_state().
540 */
541 if (is_vm_hugetlb_page(vma))
542 hugetlb_vma_lock_read(vma);
543
cbcfa130 544 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
545 /*
546 * After the __add_wait_queue the uwq is visible to userland
547 * through poll/read().
548 */
15b726ef
AA
549 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
550 /*
551 * The smp_mb() after __set_current_state prevents the reads
552 * following the spin_unlock to happen before the list_add in
553 * __add_wait_queue.
554 */
15a77c6f 555 set_current_state(blocking_state);
cbcfa130 556 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 557
b8da2e46 558 if (!is_vm_hugetlb_page(vma))
369cd212
MK
559 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
560 reason);
561 else
b8da2e46 562 must_wait = userfaultfd_huge_must_wait(ctx, vma,
7868a208 563 vmf->address,
369cd212 564 vmf->flags, reason);
b8da2e46
PX
565 if (is_vm_hugetlb_page(vma))
566 hugetlb_vma_unlock_read(vma);
d8ed45c5 567 mmap_read_unlock(mm);
8d2afd96 568
f9bf3522 569 if (likely(must_wait && !READ_ONCE(ctx->released))) {
a9a08845 570 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 571 schedule();
ba85c702 572 }
86039bd3 573
ba85c702 574 __set_current_state(TASK_RUNNING);
15b726ef
AA
575
576 /*
577 * Here we race with the list_del; list_add in
578 * userfaultfd_ctx_read(), however because we don't ever run
579 * list_del_init() to refile across the two lists, the prev
580 * and next pointers will never point to self. list_add also
581 * would never let any of the two pointers to point to
582 * self. So list_empty_careful won't risk to see both pointers
583 * pointing to self at any time during the list refile. The
584 * only case where list_del_init() is called is the full
585 * removal in the wake function and there we don't re-list_add
586 * and it's fine not to block on the spinlock. The uwq on this
587 * kernel stack can be released after the list_del_init.
588 */
2055da97 589 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 590 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
591 /*
592 * No need of list_del_init(), the uwq on the stack
593 * will be freed shortly anyway.
594 */
2055da97 595 list_del(&uwq.wq.entry);
cbcfa130 596 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 597 }
86039bd3
AA
598
599 /*
600 * ctx may go away after this if the userfault pseudo fd is
601 * already released.
602 */
603 userfaultfd_ctx_put(ctx);
604
ba85c702
AA
605out:
606 return ret;
86039bd3
AA
607}
608
8c9e7bb7
AA
609static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
610 struct userfaultfd_wait_queue *ewq)
9cd75c3c 611{
0cbb4b4f
AA
612 struct userfaultfd_ctx *release_new_ctx;
613
9a69a829
AA
614 if (WARN_ON_ONCE(current->flags & PF_EXITING))
615 goto out;
9cd75c3c
PE
616
617 ewq->ctx = ctx;
618 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 619 release_new_ctx = NULL;
9cd75c3c 620
cbcfa130 621 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
622 /*
623 * After the __add_wait_queue the uwq is visible to userland
624 * through poll/read().
625 */
626 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
627 for (;;) {
628 set_current_state(TASK_KILLABLE);
629 if (ewq->msg.event == 0)
630 break;
6aa7de05 631 if (READ_ONCE(ctx->released) ||
9cd75c3c 632 fatal_signal_pending(current)) {
384632e6
AA
633 /*
634 * &ewq->wq may be queued in fork_event, but
635 * __remove_wait_queue ignores the head
636 * parameter. It would be a problem if it
637 * didn't.
638 */
9cd75c3c 639 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
640 if (ewq->msg.event == UFFD_EVENT_FORK) {
641 struct userfaultfd_ctx *new;
642
643 new = (struct userfaultfd_ctx *)
644 (unsigned long)
645 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 646 release_new_ctx = new;
7eb76d45 647 }
9cd75c3c
PE
648 break;
649 }
650
cbcfa130 651 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 652
a9a08845 653 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
654 schedule();
655
cbcfa130 656 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
657 }
658 __set_current_state(TASK_RUNNING);
cbcfa130 659 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 660
0cbb4b4f
AA
661 if (release_new_ctx) {
662 struct vm_area_struct *vma;
663 struct mm_struct *mm = release_new_ctx->mm;
69dbe6da 664 VMA_ITERATOR(vmi, mm, 0);
0cbb4b4f
AA
665
666 /* the various vma->vm_userfaultfd_ctx still points to it */
d8ed45c5 667 mmap_write_lock(mm);
69dbe6da 668 for_each_vma(vmi, vma) {
31e810aa 669 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb
DH
671 userfaultfd_set_vm_flags(vma,
672 vma->vm_flags & ~__VM_UFFD_FLAGS);
31e810aa 673 }
69dbe6da 674 }
d8ed45c5 675 mmap_write_unlock(mm);
0cbb4b4f
AA
676
677 userfaultfd_ctx_put(release_new_ctx);
678 }
679
9cd75c3c
PE
680 /*
681 * ctx may go away after this if the userfault pseudo fd is
682 * already released.
683 */
9a69a829 684out:
a759a909
NA
685 atomic_dec(&ctx->mmap_changing);
686 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
9cd75c3c 687 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
688}
689
690static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
691 struct userfaultfd_wait_queue *ewq)
692{
693 ewq->msg.event = 0;
694 wake_up_locked(&ctx->event_wqh);
695 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
696}
697
893e26e6
PE
698int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
699{
700 struct userfaultfd_ctx *ctx = NULL, *octx;
701 struct userfaultfd_fork_ctx *fctx;
702
703 octx = vma->vm_userfaultfd_ctx.ctx;
704 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
705 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 706 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
893e26e6
PE
707 return 0;
708 }
709
710 list_for_each_entry(fctx, fcs, list)
711 if (fctx->orig == octx) {
712 ctx = fctx->new;
713 break;
714 }
715
716 if (!ctx) {
717 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
718 if (!fctx)
719 return -ENOMEM;
720
721 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
722 if (!ctx) {
723 kfree(fctx);
724 return -ENOMEM;
725 }
726
ca880420 727 refcount_set(&ctx->refcount, 1);
893e26e6 728 ctx->flags = octx->flags;
893e26e6
PE
729 ctx->features = octx->features;
730 ctx->released = false;
a759a909 731 atomic_set(&ctx->mmap_changing, 0);
893e26e6 732 ctx->mm = vma->vm_mm;
00bb31fa 733 mmgrab(ctx->mm);
893e26e6
PE
734
735 userfaultfd_ctx_get(octx);
a759a909 736 atomic_inc(&octx->mmap_changing);
893e26e6
PE
737 fctx->orig = octx;
738 fctx->new = ctx;
739 list_add_tail(&fctx->list, fcs);
740 }
741
742 vma->vm_userfaultfd_ctx.ctx = ctx;
743 return 0;
744}
745
8c9e7bb7 746static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
747{
748 struct userfaultfd_ctx *ctx = fctx->orig;
749 struct userfaultfd_wait_queue ewq;
750
751 msg_init(&ewq.msg);
752
753 ewq.msg.event = UFFD_EVENT_FORK;
754 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
755
8c9e7bb7 756 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
757}
758
759void dup_userfaultfd_complete(struct list_head *fcs)
760{
893e26e6
PE
761 struct userfaultfd_fork_ctx *fctx, *n;
762
763 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 764 dup_fctx(fctx);
893e26e6
PE
765 list_del(&fctx->list);
766 kfree(fctx);
767 }
768}
769
72f87654
PE
770void mremap_userfaultfd_prep(struct vm_area_struct *vma,
771 struct vm_userfaultfd_ctx *vm_ctx)
772{
773 struct userfaultfd_ctx *ctx;
774
775 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
776
777 if (!ctx)
778 return;
779
780 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
781 vm_ctx->ctx = ctx;
782 userfaultfd_ctx_get(ctx);
a759a909 783 atomic_inc(&ctx->mmap_changing);
3cfd22be
PX
784 } else {
785 /* Drop uffd context if remap feature not enabled */
786 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
51d3d5eb 787 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
72f87654
PE
788 }
789}
790
90794bf1 791void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
792 unsigned long from, unsigned long to,
793 unsigned long len)
794{
90794bf1 795 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
796 struct userfaultfd_wait_queue ewq;
797
798 if (!ctx)
799 return;
800
801 if (to & ~PAGE_MASK) {
802 userfaultfd_ctx_put(ctx);
803 return;
804 }
805
806 msg_init(&ewq.msg);
807
808 ewq.msg.event = UFFD_EVENT_REMAP;
809 ewq.msg.arg.remap.from = from;
810 ewq.msg.arg.remap.to = to;
811 ewq.msg.arg.remap.len = len;
812
813 userfaultfd_event_wait_completion(ctx, &ewq);
814}
815
70ccb92f 816bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 817 unsigned long start, unsigned long end)
05ce7724
PE
818{
819 struct mm_struct *mm = vma->vm_mm;
820 struct userfaultfd_ctx *ctx;
821 struct userfaultfd_wait_queue ewq;
822
823 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 824 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 825 return true;
05ce7724
PE
826
827 userfaultfd_ctx_get(ctx);
a759a909 828 atomic_inc(&ctx->mmap_changing);
d8ed45c5 829 mmap_read_unlock(mm);
05ce7724 830
05ce7724
PE
831 msg_init(&ewq.msg);
832
d811914d
MR
833 ewq.msg.event = UFFD_EVENT_REMOVE;
834 ewq.msg.arg.remove.start = start;
835 ewq.msg.arg.remove.end = end;
05ce7724
PE
836
837 userfaultfd_event_wait_completion(ctx, &ewq);
838
70ccb92f 839 return false;
05ce7724
PE
840}
841
897ab3e0
MR
842static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
843 unsigned long start, unsigned long end)
844{
845 struct userfaultfd_unmap_ctx *unmap_ctx;
846
847 list_for_each_entry(unmap_ctx, unmaps, list)
848 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
849 unmap_ctx->end == end)
850 return true;
851
852 return false;
853}
854
65ac1320 855int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
69dbe6da 856 unsigned long end, struct list_head *unmaps)
897ab3e0 857{
65ac1320
LH
858 struct userfaultfd_unmap_ctx *unmap_ctx;
859 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
897ab3e0 860
65ac1320
LH
861 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
862 has_unmap_ctx(ctx, unmaps, start, end))
863 return 0;
897ab3e0 864
65ac1320
LH
865 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
866 if (!unmap_ctx)
867 return -ENOMEM;
897ab3e0 868
65ac1320
LH
869 userfaultfd_ctx_get(ctx);
870 atomic_inc(&ctx->mmap_changing);
871 unmap_ctx->ctx = ctx;
872 unmap_ctx->start = start;
873 unmap_ctx->end = end;
874 list_add_tail(&unmap_ctx->list, unmaps);
897ab3e0
MR
875
876 return 0;
877}
878
879void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
880{
881 struct userfaultfd_unmap_ctx *ctx, *n;
882 struct userfaultfd_wait_queue ewq;
883
884 list_for_each_entry_safe(ctx, n, uf, list) {
885 msg_init(&ewq.msg);
886
887 ewq.msg.event = UFFD_EVENT_UNMAP;
888 ewq.msg.arg.remove.start = ctx->start;
889 ewq.msg.arg.remove.end = ctx->end;
890
891 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
892
893 list_del(&ctx->list);
894 kfree(ctx);
895 }
896}
897
86039bd3
AA
898static int userfaultfd_release(struct inode *inode, struct file *file)
899{
900 struct userfaultfd_ctx *ctx = file->private_data;
901 struct mm_struct *mm = ctx->mm;
902 struct vm_area_struct *vma, *prev;
903 /* len == 0 means wake all */
904 struct userfaultfd_wake_range range = { .len = 0, };
905 unsigned long new_flags;
11a9b902 906 VMA_ITERATOR(vmi, mm, 0);
86039bd3 907
6aa7de05 908 WRITE_ONCE(ctx->released, true);
86039bd3 909
d2005e3f
ON
910 if (!mmget_not_zero(mm))
911 goto wakeup;
912
86039bd3
AA
913 /*
914 * Flush page faults out of all CPUs. NOTE: all page faults
915 * must be retried without returning VM_FAULT_SIGBUS if
916 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
c1e8d7c6 917 * changes while handle_userfault released the mmap_lock. So
86039bd3 918 * it's critical that released is set to true (above), before
c1e8d7c6 919 * taking the mmap_lock for writing.
86039bd3 920 */
d8ed45c5 921 mmap_write_lock(mm);
86039bd3 922 prev = NULL;
11a9b902 923 for_each_vma(vmi, vma) {
86039bd3
AA
924 cond_resched();
925 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
7677f7fd 926 !!(vma->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
927 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
928 prev = vma;
929 continue;
930 }
7677f7fd 931 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
9760ebff 932 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
4d45e75a
JH
933 new_flags, vma->anon_vma,
934 vma->vm_file, vma->vm_pgoff,
935 vma_policy(vma),
5c26f6ac 936 NULL_VM_UFFD_CTX, anon_vma_name(vma));
69dbe6da 937 if (prev) {
4d45e75a 938 vma = prev;
69dbe6da 939 } else {
4d45e75a 940 prev = vma;
69dbe6da
LH
941 }
942
51d3d5eb 943 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
944 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
945 }
d8ed45c5 946 mmap_write_unlock(mm);
d2005e3f
ON
947 mmput(mm);
948wakeup:
86039bd3 949 /*
15b726ef 950 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 951 * the last page faults that may have been already waiting on
15b726ef 952 * the fault_*wqh.
86039bd3 953 */
cbcfa130 954 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 955 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 956 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 957 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 958
5a18b64e
MR
959 /* Flush pending events that may still wait on event_wqh */
960 wake_up_all(&ctx->event_wqh);
961
a9a08845 962 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
963 userfaultfd_ctx_put(ctx);
964 return 0;
965}
966
15b726ef 967/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
968static inline struct userfaultfd_wait_queue *find_userfault_in(
969 wait_queue_head_t *wqh)
86039bd3 970{
ac6424b9 971 wait_queue_entry_t *wq;
15b726ef 972 struct userfaultfd_wait_queue *uwq;
86039bd3 973
456a7378 974 lockdep_assert_held(&wqh->lock);
86039bd3 975
15b726ef 976 uwq = NULL;
6dcc27fd 977 if (!waitqueue_active(wqh))
15b726ef
AA
978 goto out;
979 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 980 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
981 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
982out:
983 return uwq;
86039bd3 984}
6dcc27fd
PE
985
986static inline struct userfaultfd_wait_queue *find_userfault(
987 struct userfaultfd_ctx *ctx)
988{
989 return find_userfault_in(&ctx->fault_pending_wqh);
990}
86039bd3 991
9cd75c3c
PE
992static inline struct userfaultfd_wait_queue *find_userfault_evt(
993 struct userfaultfd_ctx *ctx)
994{
995 return find_userfault_in(&ctx->event_wqh);
996}
997
076ccb76 998static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
999{
1000 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 1001 __poll_t ret;
86039bd3
AA
1002
1003 poll_wait(file, &ctx->fd_wqh, wait);
1004
22e5fe2a 1005 if (!userfaultfd_is_initialized(ctx))
a9a08845 1006 return EPOLLERR;
9cd75c3c 1007
22e5fe2a
NA
1008 /*
1009 * poll() never guarantees that read won't block.
1010 * userfaults can be waken before they're read().
1011 */
1012 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 1013 return EPOLLERR;
22e5fe2a
NA
1014 /*
1015 * lockless access to see if there are pending faults
1016 * __pollwait last action is the add_wait_queue but
1017 * the spin_unlock would allow the waitqueue_active to
1018 * pass above the actual list_add inside
1019 * add_wait_queue critical section. So use a full
1020 * memory barrier to serialize the list_add write of
1021 * add_wait_queue() with the waitqueue_active read
1022 * below.
1023 */
1024 ret = 0;
1025 smp_mb();
1026 if (waitqueue_active(&ctx->fault_pending_wqh))
1027 ret = EPOLLIN;
1028 else if (waitqueue_active(&ctx->event_wqh))
1029 ret = EPOLLIN;
1030
1031 return ret;
86039bd3
AA
1032}
1033
893e26e6
PE
1034static const struct file_operations userfaultfd_fops;
1035
b537900f
DC
1036static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1037 struct inode *inode,
893e26e6
PE
1038 struct uffd_msg *msg)
1039{
1040 int fd;
893e26e6 1041
b537900f 1042 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
abec3d01 1043 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
893e26e6
PE
1044 if (fd < 0)
1045 return fd;
1046
893e26e6
PE
1047 msg->arg.reserved.reserved1 = 0;
1048 msg->arg.fork.ufd = fd;
893e26e6
PE
1049 return 0;
1050}
1051
86039bd3 1052static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
b537900f 1053 struct uffd_msg *msg, struct inode *inode)
86039bd3
AA
1054{
1055 ssize_t ret;
1056 DECLARE_WAITQUEUE(wait, current);
15b726ef 1057 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1058 /*
1059 * Handling fork event requires sleeping operations, so
1060 * we drop the event_wqh lock, then do these ops, then
1061 * lock it back and wake up the waiter. While the lock is
1062 * dropped the ewq may go away so we keep track of it
1063 * carefully.
1064 */
1065 LIST_HEAD(fork_event);
1066 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1067
15b726ef 1068 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1069 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1070 __add_wait_queue(&ctx->fd_wqh, &wait);
1071 for (;;) {
1072 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1073 spin_lock(&ctx->fault_pending_wqh.lock);
1074 uwq = find_userfault(ctx);
1075 if (uwq) {
2c5b7e1b
AA
1076 /*
1077 * Use a seqcount to repeat the lockless check
1078 * in wake_userfault() to avoid missing
1079 * wakeups because during the refile both
1080 * waitqueue could become empty if this is the
1081 * only userfault.
1082 */
1083 write_seqcount_begin(&ctx->refile_seq);
1084
86039bd3 1085 /*
15b726ef
AA
1086 * The fault_pending_wqh.lock prevents the uwq
1087 * to disappear from under us.
1088 *
1089 * Refile this userfault from
1090 * fault_pending_wqh to fault_wqh, it's not
1091 * pending anymore after we read it.
1092 *
1093 * Use list_del() by hand (as
1094 * userfaultfd_wake_function also uses
1095 * list_del_init() by hand) to be sure nobody
1096 * changes __remove_wait_queue() to use
1097 * list_del_init() in turn breaking the
1098 * !list_empty_careful() check in
2055da97 1099 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1100 * must never be empty at any time during the
1101 * refile, or the waitqueue could disappear
1102 * from under us. The "wait_queue_head_t"
1103 * parameter of __remove_wait_queue() is unused
1104 * anyway.
86039bd3 1105 */
2055da97 1106 list_del(&uwq->wq.entry);
c430d1e8 1107 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1108
2c5b7e1b
AA
1109 write_seqcount_end(&ctx->refile_seq);
1110
a9b85f94
AA
1111 /* careful to always initialize msg if ret == 0 */
1112 *msg = uwq->msg;
15b726ef 1113 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1114 ret = 0;
1115 break;
1116 }
15b726ef 1117 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1118
1119 spin_lock(&ctx->event_wqh.lock);
1120 uwq = find_userfault_evt(ctx);
1121 if (uwq) {
1122 *msg = uwq->msg;
1123
893e26e6
PE
1124 if (uwq->msg.event == UFFD_EVENT_FORK) {
1125 fork_nctx = (struct userfaultfd_ctx *)
1126 (unsigned long)
1127 uwq->msg.arg.reserved.reserved1;
2055da97 1128 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1129 /*
1130 * fork_nctx can be freed as soon as
1131 * we drop the lock, unless we take a
1132 * reference on it.
1133 */
1134 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1135 spin_unlock(&ctx->event_wqh.lock);
1136 ret = 0;
1137 break;
1138 }
1139
9cd75c3c
PE
1140 userfaultfd_event_complete(ctx, uwq);
1141 spin_unlock(&ctx->event_wqh.lock);
1142 ret = 0;
1143 break;
1144 }
1145 spin_unlock(&ctx->event_wqh.lock);
1146
86039bd3
AA
1147 if (signal_pending(current)) {
1148 ret = -ERESTARTSYS;
1149 break;
1150 }
1151 if (no_wait) {
1152 ret = -EAGAIN;
1153 break;
1154 }
ae62c16e 1155 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1156 schedule();
ae62c16e 1157 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1158 }
1159 __remove_wait_queue(&ctx->fd_wqh, &wait);
1160 __set_current_state(TASK_RUNNING);
ae62c16e 1161 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1162
893e26e6 1163 if (!ret && msg->event == UFFD_EVENT_FORK) {
b537900f 1164 ret = resolve_userfault_fork(fork_nctx, inode, msg);
cbcfa130 1165 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1166 if (!list_empty(&fork_event)) {
1167 /*
1168 * The fork thread didn't abort, so we can
1169 * drop the temporary refcount.
1170 */
1171 userfaultfd_ctx_put(fork_nctx);
1172
1173 uwq = list_first_entry(&fork_event,
1174 typeof(*uwq),
1175 wq.entry);
1176 /*
1177 * If fork_event list wasn't empty and in turn
1178 * the event wasn't already released by fork
1179 * (the event is allocated on fork kernel
1180 * stack), put the event back to its place in
1181 * the event_wq. fork_event head will be freed
1182 * as soon as we return so the event cannot
1183 * stay queued there no matter the current
1184 * "ret" value.
1185 */
1186 list_del(&uwq->wq.entry);
1187 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1188
384632e6
AA
1189 /*
1190 * Leave the event in the waitqueue and report
1191 * error to userland if we failed to resolve
1192 * the userfault fork.
1193 */
1194 if (likely(!ret))
893e26e6 1195 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1196 } else {
1197 /*
1198 * Here the fork thread aborted and the
1199 * refcount from the fork thread on fork_nctx
1200 * has already been released. We still hold
1201 * the reference we took before releasing the
1202 * lock above. If resolve_userfault_fork
1203 * failed we've to drop it because the
1204 * fork_nctx has to be freed in such case. If
1205 * it succeeded we'll hold it because the new
1206 * uffd references it.
1207 */
1208 if (ret)
1209 userfaultfd_ctx_put(fork_nctx);
893e26e6 1210 }
cbcfa130 1211 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1212 }
1213
86039bd3
AA
1214 return ret;
1215}
1216
1217static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1218 size_t count, loff_t *ppos)
1219{
1220 struct userfaultfd_ctx *ctx = file->private_data;
1221 ssize_t _ret, ret = 0;
a9b85f94 1222 struct uffd_msg msg;
86039bd3 1223 int no_wait = file->f_flags & O_NONBLOCK;
b537900f 1224 struct inode *inode = file_inode(file);
86039bd3 1225
22e5fe2a 1226 if (!userfaultfd_is_initialized(ctx))
86039bd3 1227 return -EINVAL;
86039bd3
AA
1228
1229 for (;;) {
a9b85f94 1230 if (count < sizeof(msg))
86039bd3 1231 return ret ? ret : -EINVAL;
b537900f 1232 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
86039bd3
AA
1233 if (_ret < 0)
1234 return ret ? ret : _ret;
a9b85f94 1235 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1236 return ret ? ret : -EFAULT;
a9b85f94
AA
1237 ret += sizeof(msg);
1238 buf += sizeof(msg);
1239 count -= sizeof(msg);
86039bd3
AA
1240 /*
1241 * Allow to read more than one fault at time but only
1242 * block if waiting for the very first one.
1243 */
1244 no_wait = O_NONBLOCK;
1245 }
1246}
1247
1248static void __wake_userfault(struct userfaultfd_ctx *ctx,
1249 struct userfaultfd_wake_range *range)
1250{
cbcfa130 1251 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1252 /* wake all in the range and autoremove */
15b726ef 1253 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1254 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1255 range);
1256 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1257 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1258 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1259}
1260
1261static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1262 struct userfaultfd_wake_range *range)
1263{
2c5b7e1b
AA
1264 unsigned seq;
1265 bool need_wakeup;
1266
86039bd3
AA
1267 /*
1268 * To be sure waitqueue_active() is not reordered by the CPU
1269 * before the pagetable update, use an explicit SMP memory
3e4e28c5 1270 * barrier here. PT lock release or mmap_read_unlock(mm) still
86039bd3
AA
1271 * have release semantics that can allow the
1272 * waitqueue_active() to be reordered before the pte update.
1273 */
1274 smp_mb();
1275
1276 /*
1277 * Use waitqueue_active because it's very frequent to
1278 * change the address space atomically even if there are no
1279 * userfaults yet. So we take the spinlock only when we're
1280 * sure we've userfaults to wake.
1281 */
2c5b7e1b
AA
1282 do {
1283 seq = read_seqcount_begin(&ctx->refile_seq);
1284 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1285 waitqueue_active(&ctx->fault_wqh);
1286 cond_resched();
1287 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1288 if (need_wakeup)
86039bd3
AA
1289 __wake_userfault(ctx, range);
1290}
1291
1292static __always_inline int validate_range(struct mm_struct *mm,
e71e2ace 1293 __u64 start, __u64 len)
86039bd3
AA
1294{
1295 __u64 task_size = mm->task_size;
1296
e71e2ace 1297 if (start & ~PAGE_MASK)
86039bd3
AA
1298 return -EINVAL;
1299 if (len & ~PAGE_MASK)
1300 return -EINVAL;
1301 if (!len)
1302 return -EINVAL;
e71e2ace 1303 if (start < mmap_min_addr)
86039bd3 1304 return -EINVAL;
e71e2ace 1305 if (start >= task_size)
86039bd3 1306 return -EINVAL;
e71e2ace 1307 if (len > task_size - start)
86039bd3
AA
1308 return -EINVAL;
1309 return 0;
1310}
1311
1312static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1313 unsigned long arg)
1314{
1315 struct mm_struct *mm = ctx->mm;
1316 struct vm_area_struct *vma, *prev, *cur;
1317 int ret;
1318 struct uffdio_register uffdio_register;
1319 struct uffdio_register __user *user_uffdio_register;
1320 unsigned long vm_flags, new_flags;
1321 bool found;
ce53e8e6 1322 bool basic_ioctls;
86039bd3 1323 unsigned long start, end, vma_end;
11a9b902 1324 struct vma_iterator vmi;
5543d3c4 1325 pgoff_t pgoff;
86039bd3
AA
1326
1327 user_uffdio_register = (struct uffdio_register __user *) arg;
1328
1329 ret = -EFAULT;
1330 if (copy_from_user(&uffdio_register, user_uffdio_register,
1331 sizeof(uffdio_register)-sizeof(__u64)))
1332 goto out;
1333
1334 ret = -EINVAL;
1335 if (!uffdio_register.mode)
1336 goto out;
7677f7fd 1337 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
86039bd3
AA
1338 goto out;
1339 vm_flags = 0;
1340 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1341 vm_flags |= VM_UFFD_MISSING;
00b151f2
PX
1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1343#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1344 goto out;
1345#endif
86039bd3 1346 vm_flags |= VM_UFFD_WP;
00b151f2 1347 }
7677f7fd
AR
1348 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1349#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1350 goto out;
1351#endif
1352 vm_flags |= VM_UFFD_MINOR;
1353 }
86039bd3 1354
e71e2ace 1355 ret = validate_range(mm, uffdio_register.range.start,
86039bd3
AA
1356 uffdio_register.range.len);
1357 if (ret)
1358 goto out;
1359
1360 start = uffdio_register.range.start;
1361 end = start + uffdio_register.range.len;
1362
d2005e3f
ON
1363 ret = -ENOMEM;
1364 if (!mmget_not_zero(mm))
1365 goto out;
1366
11a9b902 1367 ret = -EINVAL;
d8ed45c5 1368 mmap_write_lock(mm);
11a9b902
LH
1369 vma_iter_init(&vmi, mm, start);
1370 vma = vma_find(&vmi, end);
86039bd3
AA
1371 if (!vma)
1372 goto out_unlock;
1373
cab350af
MK
1374 /*
1375 * If the first vma contains huge pages, make sure start address
1376 * is aligned to huge page size.
1377 */
1378 if (is_vm_hugetlb_page(vma)) {
1379 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1380
1381 if (start & (vma_hpagesize - 1))
1382 goto out_unlock;
1383 }
1384
86039bd3
AA
1385 /*
1386 * Search for not compatible vmas.
86039bd3
AA
1387 */
1388 found = false;
ce53e8e6 1389 basic_ioctls = false;
11a9b902
LH
1390 cur = vma;
1391 do {
86039bd3
AA
1392 cond_resched();
1393
1394 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1395 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1396
1397 /* check not compatible vmas */
1398 ret = -EINVAL;
63b2d417 1399 if (!vma_can_userfault(cur, vm_flags))
86039bd3 1400 goto out_unlock;
29ec9066
AA
1401
1402 /*
1403 * UFFDIO_COPY will fill file holes even without
1404 * PROT_WRITE. This check enforces that if this is a
1405 * MAP_SHARED, the process has write permission to the backing
1406 * file. If VM_MAYWRITE is set it also enforces that on a
1407 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1408 * F_WRITE_SEAL can be taken until the vma is destroyed.
1409 */
1410 ret = -EPERM;
1411 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1412 goto out_unlock;
1413
cab350af
MK
1414 /*
1415 * If this vma contains ending address, and huge pages
1416 * check alignment.
1417 */
1418 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1419 end > cur->vm_start) {
1420 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1421
1422 ret = -EINVAL;
1423
1424 if (end & (vma_hpagesize - 1))
1425 goto out_unlock;
1426 }
63b2d417
AA
1427 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1428 goto out_unlock;
86039bd3
AA
1429
1430 /*
1431 * Check that this vma isn't already owned by a
1432 * different userfaultfd. We can't allow more than one
1433 * userfaultfd to own a single vma simultaneously or we
1434 * wouldn't know which one to deliver the userfaults to.
1435 */
1436 ret = -EBUSY;
1437 if (cur->vm_userfaultfd_ctx.ctx &&
1438 cur->vm_userfaultfd_ctx.ctx != ctx)
1439 goto out_unlock;
1440
cab350af
MK
1441 /*
1442 * Note vmas containing huge pages
1443 */
ce53e8e6
MR
1444 if (is_vm_hugetlb_page(cur))
1445 basic_ioctls = true;
cab350af 1446
86039bd3 1447 found = true;
11a9b902 1448 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1449 BUG_ON(!found);
1450
11a9b902
LH
1451 vma_iter_set(&vmi, start);
1452 prev = vma_prev(&vmi);
270aa010
PX
1453 if (vma->vm_start < start)
1454 prev = vma;
86039bd3
AA
1455
1456 ret = 0;
11a9b902 1457 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1458 cond_resched();
1459
63b2d417 1460 BUG_ON(!vma_can_userfault(vma, vm_flags));
86039bd3
AA
1461 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1462 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1463 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1464
1465 /*
1466 * Nothing to do: this vma is already registered into this
1467 * userfaultfd and with the right tracking mode too.
1468 */
1469 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1470 (vma->vm_flags & vm_flags) == vm_flags)
1471 goto skip;
1472
1473 if (vma->vm_start > start)
1474 start = vma->vm_start;
1475 vma_end = min(end, vma->vm_end);
1476
7677f7fd 1477 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
5543d3c4 1478 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
9760ebff 1479 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
5543d3c4 1480 vma->anon_vma, vma->vm_file, pgoff,
86039bd3 1481 vma_policy(vma),
9a10064f 1482 ((struct vm_userfaultfd_ctx){ ctx }),
5c26f6ac 1483 anon_vma_name(vma));
86039bd3 1484 if (prev) {
69dbe6da 1485 /* vma_merge() invalidated the mas */
86039bd3
AA
1486 vma = prev;
1487 goto next;
1488 }
1489 if (vma->vm_start < start) {
9760ebff 1490 ret = split_vma(&vmi, vma, start, 1);
86039bd3
AA
1491 if (ret)
1492 break;
1493 }
1494 if (vma->vm_end > end) {
9760ebff 1495 ret = split_vma(&vmi, vma, end, 0);
86039bd3
AA
1496 if (ret)
1497 break;
1498 }
1499 next:
1500 /*
1501 * In the vma_merge() successful mprotect-like case 8:
1502 * the next vma was merged into the current one and
1503 * the current one has not been updated yet.
1504 */
51d3d5eb 1505 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1506 vma->vm_userfaultfd_ctx.ctx = ctx;
1507
6dfeaff9
PX
1508 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1509 hugetlb_unshare_all_pmds(vma);
1510
86039bd3
AA
1511 skip:
1512 prev = vma;
1513 start = vma->vm_end;
11a9b902
LH
1514 }
1515
86039bd3 1516out_unlock:
d8ed45c5 1517 mmap_write_unlock(mm);
d2005e3f 1518 mmput(mm);
86039bd3 1519 if (!ret) {
14819305
PX
1520 __u64 ioctls_out;
1521
1522 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1523 UFFD_API_RANGE_IOCTLS;
1524
1525 /*
1526 * Declare the WP ioctl only if the WP mode is
1527 * specified and all checks passed with the range
1528 */
1529 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1530 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1531
f6191471
AR
1532 /* CONTINUE ioctl is only supported for MINOR ranges. */
1533 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1534 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1535
86039bd3
AA
1536 /*
1537 * Now that we scanned all vmas we can already tell
1538 * userland which ioctls methods are guaranteed to
1539 * succeed on this range.
1540 */
14819305 1541 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
86039bd3
AA
1542 ret = -EFAULT;
1543 }
1544out:
1545 return ret;
1546}
1547
1548static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1549 unsigned long arg)
1550{
1551 struct mm_struct *mm = ctx->mm;
1552 struct vm_area_struct *vma, *prev, *cur;
1553 int ret;
1554 struct uffdio_range uffdio_unregister;
1555 unsigned long new_flags;
1556 bool found;
1557 unsigned long start, end, vma_end;
1558 const void __user *buf = (void __user *)arg;
11a9b902 1559 struct vma_iterator vmi;
5543d3c4 1560 pgoff_t pgoff;
86039bd3
AA
1561
1562 ret = -EFAULT;
1563 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1564 goto out;
1565
e71e2ace 1566 ret = validate_range(mm, uffdio_unregister.start,
86039bd3
AA
1567 uffdio_unregister.len);
1568 if (ret)
1569 goto out;
1570
1571 start = uffdio_unregister.start;
1572 end = start + uffdio_unregister.len;
1573
d2005e3f
ON
1574 ret = -ENOMEM;
1575 if (!mmget_not_zero(mm))
1576 goto out;
1577
d8ed45c5 1578 mmap_write_lock(mm);
86039bd3 1579 ret = -EINVAL;
11a9b902
LH
1580 vma_iter_init(&vmi, mm, start);
1581 vma = vma_find(&vmi, end);
1582 if (!vma)
86039bd3
AA
1583 goto out_unlock;
1584
cab350af
MK
1585 /*
1586 * If the first vma contains huge pages, make sure start address
1587 * is aligned to huge page size.
1588 */
1589 if (is_vm_hugetlb_page(vma)) {
1590 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1591
1592 if (start & (vma_hpagesize - 1))
1593 goto out_unlock;
1594 }
1595
86039bd3
AA
1596 /*
1597 * Search for not compatible vmas.
86039bd3
AA
1598 */
1599 found = false;
11a9b902
LH
1600 cur = vma;
1601 do {
86039bd3
AA
1602 cond_resched();
1603
1604 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
7677f7fd 1605 !!(cur->vm_flags & __VM_UFFD_FLAGS));
86039bd3
AA
1606
1607 /*
1608 * Check not compatible vmas, not strictly required
1609 * here as not compatible vmas cannot have an
1610 * userfaultfd_ctx registered on them, but this
1611 * provides for more strict behavior to notice
1612 * unregistration errors.
1613 */
63b2d417 1614 if (!vma_can_userfault(cur, cur->vm_flags))
86039bd3
AA
1615 goto out_unlock;
1616
1617 found = true;
11a9b902 1618 } for_each_vma_range(vmi, cur, end);
86039bd3
AA
1619 BUG_ON(!found);
1620
11a9b902
LH
1621 vma_iter_set(&vmi, start);
1622 prev = vma_prev(&vmi);
270aa010
PX
1623 if (vma->vm_start < start)
1624 prev = vma;
1625
86039bd3 1626 ret = 0;
11a9b902 1627 for_each_vma_range(vmi, vma, end) {
86039bd3
AA
1628 cond_resched();
1629
63b2d417 1630 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
86039bd3
AA
1631
1632 /*
1633 * Nothing to do: this vma is already registered into this
1634 * userfaultfd and with the right tracking mode too.
1635 */
1636 if (!vma->vm_userfaultfd_ctx.ctx)
1637 goto skip;
1638
01e881f5
AA
1639 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1640
86039bd3
AA
1641 if (vma->vm_start > start)
1642 start = vma->vm_start;
1643 vma_end = min(end, vma->vm_end);
1644
09fa5296
AA
1645 if (userfaultfd_missing(vma)) {
1646 /*
1647 * Wake any concurrent pending userfault while
1648 * we unregister, so they will not hang
1649 * permanently and it avoids userland to call
1650 * UFFDIO_WAKE explicitly.
1651 */
1652 struct userfaultfd_wake_range range;
1653 range.start = start;
1654 range.len = vma_end - start;
1655 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1656 }
1657
f369b07c
PX
1658 /* Reset ptes for the whole vma range if wr-protected */
1659 if (userfaultfd_wp(vma))
61c50040 1660 uffd_wp_range(vma, start, vma_end - start, false);
f369b07c 1661
7677f7fd 1662 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
5543d3c4 1663 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
9760ebff 1664 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
5543d3c4 1665 vma->anon_vma, vma->vm_file, pgoff,
86039bd3 1666 vma_policy(vma),
5c26f6ac 1667 NULL_VM_UFFD_CTX, anon_vma_name(vma));
86039bd3
AA
1668 if (prev) {
1669 vma = prev;
1670 goto next;
1671 }
1672 if (vma->vm_start < start) {
9760ebff 1673 ret = split_vma(&vmi, vma, start, 1);
86039bd3
AA
1674 if (ret)
1675 break;
1676 }
1677 if (vma->vm_end > end) {
9760ebff 1678 ret = split_vma(&vmi, vma, end, 0);
86039bd3
AA
1679 if (ret)
1680 break;
1681 }
1682 next:
1683 /*
1684 * In the vma_merge() successful mprotect-like case 8:
1685 * the next vma was merged into the current one and
1686 * the current one has not been updated yet.
1687 */
51d3d5eb 1688 userfaultfd_set_vm_flags(vma, new_flags);
86039bd3
AA
1689 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1690
1691 skip:
1692 prev = vma;
1693 start = vma->vm_end;
11a9b902
LH
1694 }
1695
86039bd3 1696out_unlock:
d8ed45c5 1697 mmap_write_unlock(mm);
d2005e3f 1698 mmput(mm);
86039bd3
AA
1699out:
1700 return ret;
1701}
1702
1703/*
ba85c702
AA
1704 * userfaultfd_wake may be used in combination with the
1705 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1706 */
1707static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1708 unsigned long arg)
1709{
1710 int ret;
1711 struct uffdio_range uffdio_wake;
1712 struct userfaultfd_wake_range range;
1713 const void __user *buf = (void __user *)arg;
1714
1715 ret = -EFAULT;
1716 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1717 goto out;
1718
e71e2ace 1719 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1720 if (ret)
1721 goto out;
1722
1723 range.start = uffdio_wake.start;
1724 range.len = uffdio_wake.len;
1725
1726 /*
1727 * len == 0 means wake all and we don't want to wake all here,
1728 * so check it again to be sure.
1729 */
1730 VM_BUG_ON(!range.len);
1731
1732 wake_userfault(ctx, &range);
1733 ret = 0;
1734
1735out:
1736 return ret;
1737}
1738
ad465cae
AA
1739static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1740 unsigned long arg)
1741{
1742 __s64 ret;
1743 struct uffdio_copy uffdio_copy;
1744 struct uffdio_copy __user *user_uffdio_copy;
1745 struct userfaultfd_wake_range range;
d9712937 1746 uffd_flags_t flags = 0;
ad465cae
AA
1747
1748 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1749
df2cc96e 1750 ret = -EAGAIN;
a759a909 1751 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1752 goto out;
1753
ad465cae
AA
1754 ret = -EFAULT;
1755 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1756 /* don't copy "copy" last field */
1757 sizeof(uffdio_copy)-sizeof(__s64)))
1758 goto out;
1759
e71e2ace 1760 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1761 if (ret)
1762 goto out;
1763 /*
1764 * double check for wraparound just in case. copy_from_user()
1765 * will later check uffdio_copy.src + uffdio_copy.len to fit
1766 * in the userland range.
1767 */
1768 ret = -EINVAL;
1769 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1770 goto out;
72981e0e 1771 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
ad465cae 1772 goto out;
d9712937
AR
1773 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1774 flags |= MFILL_ATOMIC_WP;
d2005e3f 1775 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1776 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1777 uffdio_copy.len, &ctx->mmap_changing,
d9712937 1778 flags);
d2005e3f 1779 mmput(ctx->mm);
96333187 1780 } else {
e86b298b 1781 return -ESRCH;
d2005e3f 1782 }
ad465cae
AA
1783 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1784 return -EFAULT;
1785 if (ret < 0)
1786 goto out;
1787 BUG_ON(!ret);
1788 /* len == 0 would wake all */
1789 range.len = ret;
1790 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1791 range.start = uffdio_copy.dst;
1792 wake_userfault(ctx, &range);
1793 }
1794 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1795out:
1796 return ret;
1797}
1798
1799static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1800 unsigned long arg)
1801{
1802 __s64 ret;
1803 struct uffdio_zeropage uffdio_zeropage;
1804 struct uffdio_zeropage __user *user_uffdio_zeropage;
1805 struct userfaultfd_wake_range range;
1806
1807 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1808
df2cc96e 1809 ret = -EAGAIN;
a759a909 1810 if (atomic_read(&ctx->mmap_changing))
df2cc96e
MR
1811 goto out;
1812
ad465cae
AA
1813 ret = -EFAULT;
1814 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1815 /* don't copy "zeropage" last field */
1816 sizeof(uffdio_zeropage)-sizeof(__s64)))
1817 goto out;
1818
e71e2ace 1819 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
ad465cae
AA
1820 uffdio_zeropage.range.len);
1821 if (ret)
1822 goto out;
1823 ret = -EINVAL;
1824 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1825 goto out;
1826
d2005e3f 1827 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1828 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1829 uffdio_zeropage.range.len,
1830 &ctx->mmap_changing);
d2005e3f 1831 mmput(ctx->mm);
9d95aa4b 1832 } else {
e86b298b 1833 return -ESRCH;
d2005e3f 1834 }
ad465cae
AA
1835 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1836 return -EFAULT;
1837 if (ret < 0)
1838 goto out;
1839 /* len == 0 would wake all */
1840 BUG_ON(!ret);
1841 range.len = ret;
1842 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1843 range.start = uffdio_zeropage.range.start;
1844 wake_userfault(ctx, &range);
1845 }
1846 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1847out:
1848 return ret;
1849}
1850
63b2d417
AA
1851static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1852 unsigned long arg)
1853{
1854 int ret;
1855 struct uffdio_writeprotect uffdio_wp;
1856 struct uffdio_writeprotect __user *user_uffdio_wp;
1857 struct userfaultfd_wake_range range;
23080e27 1858 bool mode_wp, mode_dontwake;
63b2d417 1859
a759a909 1860 if (atomic_read(&ctx->mmap_changing))
63b2d417
AA
1861 return -EAGAIN;
1862
1863 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1864
1865 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1866 sizeof(struct uffdio_writeprotect)))
1867 return -EFAULT;
1868
e71e2ace 1869 ret = validate_range(ctx->mm, uffdio_wp.range.start,
63b2d417
AA
1870 uffdio_wp.range.len);
1871 if (ret)
1872 return ret;
1873
1874 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1875 UFFDIO_WRITEPROTECT_MODE_WP))
1876 return -EINVAL;
23080e27
PX
1877
1878 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1879 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1880
1881 if (mode_wp && mode_dontwake)
63b2d417
AA
1882 return -EINVAL;
1883
cb185d5f
NA
1884 if (mmget_not_zero(ctx->mm)) {
1885 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1886 uffdio_wp.range.len, mode_wp,
1887 &ctx->mmap_changing);
1888 mmput(ctx->mm);
1889 } else {
1890 return -ESRCH;
1891 }
1892
63b2d417
AA
1893 if (ret)
1894 return ret;
1895
23080e27 1896 if (!mode_wp && !mode_dontwake) {
63b2d417
AA
1897 range.start = uffdio_wp.range.start;
1898 range.len = uffdio_wp.range.len;
1899 wake_userfault(ctx, &range);
1900 }
1901 return ret;
1902}
1903
f6191471
AR
1904static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1905{
1906 __s64 ret;
1907 struct uffdio_continue uffdio_continue;
1908 struct uffdio_continue __user *user_uffdio_continue;
1909 struct userfaultfd_wake_range range;
02891844 1910 uffd_flags_t flags = 0;
f6191471
AR
1911
1912 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1913
1914 ret = -EAGAIN;
a759a909 1915 if (atomic_read(&ctx->mmap_changing))
f6191471
AR
1916 goto out;
1917
1918 ret = -EFAULT;
1919 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1920 /* don't copy the output fields */
1921 sizeof(uffdio_continue) - (sizeof(__s64))))
1922 goto out;
1923
e71e2ace 1924 ret = validate_range(ctx->mm, uffdio_continue.range.start,
f6191471
AR
1925 uffdio_continue.range.len);
1926 if (ret)
1927 goto out;
1928
1929 ret = -EINVAL;
1930 /* double check for wraparound just in case. */
1931 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1932 uffdio_continue.range.start) {
1933 goto out;
1934 }
02891844
AR
1935 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1936 UFFDIO_CONTINUE_MODE_WP))
f6191471 1937 goto out;
02891844
AR
1938 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1939 flags |= MFILL_ATOMIC_WP;
f6191471
AR
1940
1941 if (mmget_not_zero(ctx->mm)) {
a734991c
AR
1942 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1943 uffdio_continue.range.len,
02891844 1944 &ctx->mmap_changing, flags);
f6191471
AR
1945 mmput(ctx->mm);
1946 } else {
1947 return -ESRCH;
1948 }
1949
1950 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1951 return -EFAULT;
1952 if (ret < 0)
1953 goto out;
1954
1955 /* len == 0 would wake all */
1956 BUG_ON(!ret);
1957 range.len = ret;
1958 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1959 range.start = uffdio_continue.range.start;
1960 wake_userfault(ctx, &range);
1961 }
1962 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1963
1964out:
1965 return ret;
1966}
1967
9cd75c3c
PE
1968static inline unsigned int uffd_ctx_features(__u64 user_features)
1969{
1970 /*
22e5fe2a
NA
1971 * For the current set of features the bits just coincide. Set
1972 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
9cd75c3c 1973 */
22e5fe2a 1974 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
9cd75c3c
PE
1975}
1976
86039bd3
AA
1977/*
1978 * userland asks for a certain API version and we return which bits
1979 * and ioctl commands are implemented in this kernel for such API
1980 * version or -EINVAL if unknown.
1981 */
1982static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1983 unsigned long arg)
1984{
1985 struct uffdio_api uffdio_api;
1986 void __user *buf = (void __user *)arg;
22e5fe2a 1987 unsigned int ctx_features;
86039bd3 1988 int ret;
65603144 1989 __u64 features;
86039bd3 1990
86039bd3 1991 ret = -EFAULT;
a9b85f94 1992 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1993 goto out;
2ff559f3
PX
1994 features = uffdio_api.features;
1995 ret = -EINVAL;
1996 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1997 goto err_out;
3c1c24d9
MR
1998 ret = -EPERM;
1999 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2000 goto err_out;
65603144
AA
2001 /* report all available features and ioctls to userland */
2002 uffdio_api.features = UFFD_API_FEATURES;
7677f7fd 2003#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
964ab004
AR
2004 uffdio_api.features &=
2005 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
00b151f2
PX
2006#endif
2007#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2008 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
b1f9e876
PX
2009#endif
2010#ifndef CONFIG_PTE_MARKER_UFFD_WP
2011 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2bad466c 2012 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
7677f7fd 2013#endif
86039bd3
AA
2014 uffdio_api.ioctls = UFFD_API_IOCTLS;
2015 ret = -EFAULT;
2016 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2017 goto out;
22e5fe2a 2018
65603144 2019 /* only enable the requested features for this uffd context */
22e5fe2a
NA
2020 ctx_features = uffd_ctx_features(features);
2021 ret = -EINVAL;
2022 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2023 goto err_out;
2024
86039bd3
AA
2025 ret = 0;
2026out:
2027 return ret;
3c1c24d9
MR
2028err_out:
2029 memset(&uffdio_api, 0, sizeof(uffdio_api));
2030 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2031 ret = -EFAULT;
2032 goto out;
86039bd3
AA
2033}
2034
2035static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2036 unsigned long arg)
2037{
2038 int ret = -EINVAL;
2039 struct userfaultfd_ctx *ctx = file->private_data;
2040
22e5fe2a 2041 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
e6485a47
AA
2042 return -EINVAL;
2043
86039bd3
AA
2044 switch(cmd) {
2045 case UFFDIO_API:
2046 ret = userfaultfd_api(ctx, arg);
2047 break;
2048 case UFFDIO_REGISTER:
2049 ret = userfaultfd_register(ctx, arg);
2050 break;
2051 case UFFDIO_UNREGISTER:
2052 ret = userfaultfd_unregister(ctx, arg);
2053 break;
2054 case UFFDIO_WAKE:
2055 ret = userfaultfd_wake(ctx, arg);
2056 break;
ad465cae
AA
2057 case UFFDIO_COPY:
2058 ret = userfaultfd_copy(ctx, arg);
2059 break;
2060 case UFFDIO_ZEROPAGE:
2061 ret = userfaultfd_zeropage(ctx, arg);
2062 break;
63b2d417
AA
2063 case UFFDIO_WRITEPROTECT:
2064 ret = userfaultfd_writeprotect(ctx, arg);
2065 break;
f6191471
AR
2066 case UFFDIO_CONTINUE:
2067 ret = userfaultfd_continue(ctx, arg);
2068 break;
86039bd3
AA
2069 }
2070 return ret;
2071}
2072
2073#ifdef CONFIG_PROC_FS
2074static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2075{
2076 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 2077 wait_queue_entry_t *wq;
86039bd3
AA
2078 unsigned long pending = 0, total = 0;
2079
cbcfa130 2080 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 2081 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
2082 pending++;
2083 total++;
2084 }
2055da97 2085 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
2086 total++;
2087 }
cbcfa130 2088 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
2089
2090 /*
2091 * If more protocols will be added, there will be all shown
2092 * separated by a space. Like this:
2093 * protocols: aa:... bb:...
2094 */
2095 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 2096 pending, total, UFFD_API, ctx->features,
86039bd3
AA
2097 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2098}
2099#endif
2100
2101static const struct file_operations userfaultfd_fops = {
2102#ifdef CONFIG_PROC_FS
2103 .show_fdinfo = userfaultfd_show_fdinfo,
2104#endif
2105 .release = userfaultfd_release,
2106 .poll = userfaultfd_poll,
2107 .read = userfaultfd_read,
2108 .unlocked_ioctl = userfaultfd_ioctl,
1832f2d8 2109 .compat_ioctl = compat_ptr_ioctl,
86039bd3
AA
2110 .llseek = noop_llseek,
2111};
2112
3004ec9c
AA
2113static void init_once_userfaultfd_ctx(void *mem)
2114{
2115 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2116
2117 init_waitqueue_head(&ctx->fault_pending_wqh);
2118 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 2119 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 2120 init_waitqueue_head(&ctx->fd_wqh);
2ca97ac8 2121 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
3004ec9c
AA
2122}
2123
2d5de004 2124static int new_userfaultfd(int flags)
86039bd3 2125{
86039bd3 2126 struct userfaultfd_ctx *ctx;
284cd241 2127 int fd;
86039bd3
AA
2128
2129 BUG_ON(!current->mm);
2130
2131 /* Check the UFFD_* constants for consistency. */
37cd0575 2132 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
86039bd3
AA
2133 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2134 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2135
37cd0575 2136 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
284cd241 2137 return -EINVAL;
86039bd3 2138
3004ec9c 2139 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 2140 if (!ctx)
284cd241 2141 return -ENOMEM;
86039bd3 2142
ca880420 2143 refcount_set(&ctx->refcount, 1);
86039bd3 2144 ctx->flags = flags;
9cd75c3c 2145 ctx->features = 0;
86039bd3 2146 ctx->released = false;
a759a909 2147 atomic_set(&ctx->mmap_changing, 0);
86039bd3
AA
2148 ctx->mm = current->mm;
2149 /* prevent the mm struct to be freed */
f1f10076 2150 mmgrab(ctx->mm);
86039bd3 2151
b537900f 2152 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
abec3d01 2153 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
284cd241 2154 if (fd < 0) {
d2005e3f 2155 mmdrop(ctx->mm);
3004ec9c 2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 2157 }
86039bd3 2158 return fd;
86039bd3 2159}
3004ec9c 2160
2d5de004
AR
2161static inline bool userfaultfd_syscall_allowed(int flags)
2162{
2163 /* Userspace-only page faults are always allowed */
2164 if (flags & UFFD_USER_MODE_ONLY)
2165 return true;
2166
2167 /*
2168 * The user is requesting a userfaultfd which can handle kernel faults.
2169 * Privileged users are always allowed to do this.
2170 */
2171 if (capable(CAP_SYS_PTRACE))
2172 return true;
2173
2174 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2175 return sysctl_unprivileged_userfaultfd;
2176}
2177
2178SYSCALL_DEFINE1(userfaultfd, int, flags)
2179{
2180 if (!userfaultfd_syscall_allowed(flags))
2181 return -EPERM;
2182
2183 return new_userfaultfd(flags);
2184}
2185
2186static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2187{
2188 if (cmd != USERFAULTFD_IOC_NEW)
2189 return -EINVAL;
2190
2191 return new_userfaultfd(flags);
2192}
2193
2194static const struct file_operations userfaultfd_dev_fops = {
2195 .unlocked_ioctl = userfaultfd_dev_ioctl,
2196 .compat_ioctl = userfaultfd_dev_ioctl,
2197 .owner = THIS_MODULE,
2198 .llseek = noop_llseek,
2199};
2200
2201static struct miscdevice userfaultfd_misc = {
2202 .minor = MISC_DYNAMIC_MINOR,
2203 .name = "userfaultfd",
2204 .fops = &userfaultfd_dev_fops
2205};
2206
3004ec9c
AA
2207static int __init userfaultfd_init(void)
2208{
2d5de004
AR
2209 int ret;
2210
2211 ret = misc_register(&userfaultfd_misc);
2212 if (ret)
2213 return ret;
2214
3004ec9c
AA
2215 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2216 sizeof(struct userfaultfd_ctx),
2217 0,
2218 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2219 init_once_userfaultfd_ctx);
2d337b71
Z
2220#ifdef CONFIG_SYSCTL
2221 register_sysctl_init("vm", vm_userfaultfd_table);
2222#endif
3004ec9c
AA
2223 return 0;
2224}
2225__initcall(userfaultfd_init);