]> git.ipfire.org Git - people/ms/linux.git/blame - fs/xfs/xfs_aops.c
xfs: halt auto-reclamation activities while rebuilding rmap
[people/ms/linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
ef473667 34#include "xfs_reflink.h"
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
fbcc0256
DC
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
fbcc0256
DC
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
0b1b213f 51void
f51623b2
NS
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
f51623b2
NS
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
20cb52eb 59 *delalloc = *unwritten = 0;
f51623b2
NS
60
61 bh = head = page_buffers(page);
62 do {
20cb52eb 63 if (buffer_unwritten(bh))
f51623b2
NS
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
20a90f58 70struct block_device *
6214ed44 71xfs_find_bdev_for_inode(
046f1685 72 struct inode *inode)
6214ed44 73{
046f1685 74 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
75 struct xfs_mount *mp = ip->i_mount;
76
71ddabb9 77 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
486aff5e
DW
83struct dax_device *
84xfs_find_daxdev_for_inode(
85 struct inode *inode)
86{
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
89
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
94}
95
f6d6d4fc 96/*
37992c18
DC
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
28b783e4 100 *
8353a814
CH
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
37992c18
DC
106 */
107static void
108xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
112{
8353a814
CH
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
37992c18 115 unsigned int off = 0;
8353a814 116 unsigned long flags;
37992c18
DC
117
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
93407472 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
8353a814 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
93407472 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
37992c18 122
8353a814
CH
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
37992c18 125 do {
8353a814
CH
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
130
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
137 }
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
143 }
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
148
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
37992c18
DC
151}
152
153/*
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
f6d6d4fc 157 */
0829c360
CH
158STATIC void
159xfs_destroy_ioend(
0e51a8e1
CH
160 struct xfs_ioend *ioend,
161 int error)
0829c360 162{
37992c18 163 struct inode *inode = ioend->io_inode;
8353a814
CH
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
f6d6d4fc 168
0e51a8e1 169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
170 struct bio_vec *bvec;
171 int i;
172
0e51a8e1
CH
173 /*
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
176 */
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
583fa586 181
37992c18
DC
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
185
186 bio_put(bio);
f6d6d4fc 187 }
8353a814
CH
188
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
192 }
0829c360
CH
193}
194
fc0063c4
CH
195/*
196 * Fast and loose check if this write could update the on-disk inode size.
197 */
198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199{
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
202}
203
281627df
CH
204STATIC int
205xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
207{
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
211
4df0f7f1
DC
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 XFS_TRANS_NOFS, &tp);
253f4911 214 if (error)
281627df 215 return error;
281627df
CH
216
217 ioend->io_append_trans = tp;
218
d9457dc0 219 /*
437a255a 220 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
221 * we released it.
222 */
bee9182d 223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
224 /*
225 * We hand off the transaction to the completion thread now, so
226 * clear the flag here.
227 */
9070733b 228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
281627df
CH
229 return 0;
230}
231
ba87ea69 232/*
2813d682 233 * Update on-disk file size now that data has been written to disk.
ba87ea69 234 */
281627df 235STATIC int
e372843a 236__xfs_setfilesize(
2ba66237
CH
237 struct xfs_inode *ip,
238 struct xfs_trans *tp,
239 xfs_off_t offset,
240 size_t size)
ba87ea69 241{
ba87ea69 242 xfs_fsize_t isize;
ba87ea69 243
aa6bf01d 244 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 245 isize = xfs_new_eof(ip, offset + size);
281627df
CH
246 if (!isize) {
247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 248 xfs_trans_cancel(tp);
281627df 249 return 0;
ba87ea69
LM
250 }
251
2ba66237 252 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
253
254 ip->i_d.di_size = isize;
255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257
70393313 258 return xfs_trans_commit(tp);
77d7a0c2
DC
259}
260
e372843a
CH
261int
262xfs_setfilesize(
263 struct xfs_inode *ip,
264 xfs_off_t offset,
265 size_t size)
266{
267 struct xfs_mount *mp = ip->i_mount;
268 struct xfs_trans *tp;
269 int error;
270
271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 if (error)
273 return error;
274
275 return __xfs_setfilesize(ip, tp, offset, size);
276}
277
2ba66237
CH
278STATIC int
279xfs_setfilesize_ioend(
0e51a8e1
CH
280 struct xfs_ioend *ioend,
281 int error)
2ba66237
CH
282{
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 struct xfs_trans *tp = ioend->io_append_trans;
285
286 /*
287 * The transaction may have been allocated in the I/O submission thread,
288 * thus we need to mark ourselves as being in a transaction manually.
289 * Similarly for freeze protection.
290 */
9070733b 291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
bee9182d 292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 293
5cb13dcd 294 /* we abort the update if there was an IO error */
0e51a8e1 295 if (error) {
5cb13dcd 296 xfs_trans_cancel(tp);
0e51a8e1 297 return error;
5cb13dcd
Z
298 }
299
e372843a 300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
301}
302
0829c360 303/*
5ec4fabb 304 * IO write completion.
f6d6d4fc
CH
305 */
306STATIC void
5ec4fabb 307xfs_end_io(
77d7a0c2 308 struct work_struct *work)
0829c360 309{
0e51a8e1
CH
310 struct xfs_ioend *ioend =
311 container_of(work, struct xfs_ioend, io_work);
312 struct xfs_inode *ip = XFS_I(ioend->io_inode);
787eb485
CH
313 xfs_off_t offset = ioend->io_offset;
314 size_t size = ioend->io_size;
4e4cbee9 315 int error;
ba87ea69 316
af055e37 317 /*
787eb485 318 * Just clean up the in-memory strutures if the fs has been shut down.
af055e37 319 */
787eb485 320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
0e51a8e1 321 error = -EIO;
787eb485
CH
322 goto done;
323 }
04f658ee 324
43caeb18 325 /*
787eb485 326 * Clean up any COW blocks on an I/O error.
43caeb18 327 */
4e4cbee9 328 error = blk_status_to_errno(ioend->io_bio->bi_status);
787eb485
CH
329 if (unlikely(error)) {
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 break;
43caeb18 334 }
787eb485
CH
335
336 goto done;
43caeb18
DW
337 }
338
5ec4fabb 339 /*
787eb485 340 * Success: commit the COW or unwritten blocks if needed.
5ec4fabb 341 */
787eb485
CH
342 switch (ioend->io_type) {
343 case XFS_IO_COW:
344 error = xfs_reflink_end_cow(ip, offset, size);
345 break;
346 case XFS_IO_UNWRITTEN:
ee70daab
EG
347 /* writeback should never update isize */
348 error = xfs_iomap_write_unwritten(ip, offset, size, false);
787eb485
CH
349 break;
350 default:
351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 break;
5ec4fabb 353 }
ba87ea69 354
04f658ee 355done:
787eb485
CH
356 if (ioend->io_append_trans)
357 error = xfs_setfilesize_ioend(ioend, error);
0e51a8e1 358 xfs_destroy_ioend(ioend, error);
c626d174
DC
359}
360
0e51a8e1
CH
361STATIC void
362xfs_end_bio(
363 struct bio *bio)
0829c360 364{
0e51a8e1
CH
365 struct xfs_ioend *ioend = bio->bi_private;
366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 367
43caeb18 368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 else if (ioend->io_append_trans)
371 queue_work(mp->m_data_workqueue, &ioend->io_work);
372 else
4e4cbee9 373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
0829c360
CH
374}
375
1da177e4
LT
376STATIC int
377xfs_map_blocks(
378 struct inode *inode,
379 loff_t offset,
207d0416 380 struct xfs_bmbt_irec *imap,
988ef927 381 int type)
1da177e4 382{
a206c817
CH
383 struct xfs_inode *ip = XFS_I(inode);
384 struct xfs_mount *mp = ip->i_mount;
93407472 385 ssize_t count = i_blocksize(inode);
a206c817
CH
386 xfs_fileoff_t offset_fsb, end_fsb;
387 int error = 0;
a206c817
CH
388 int bmapi_flags = XFS_BMAPI_ENTIRE;
389 int nimaps = 1;
390
391 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 392 return -EIO;
a206c817 393
70c57dcd
DW
394 /*
395 * Truncate can race with writeback since writeback doesn't take the
396 * iolock and truncate decreases the file size before it starts
397 * truncating the pages between new_size and old_size. Therefore, we
398 * can end up in the situation where writeback gets a CoW fork mapping
399 * but the truncate makes the mapping invalid and we end up in here
400 * trying to get a new mapping. Bail out here so that we simply never
401 * get a valid mapping and so we drop the write altogether. The page
402 * truncation will kill the contents anyway.
403 */
404 if (type == XFS_IO_COW && offset > i_size_read(inode))
405 return 0;
406
ef473667 407 ASSERT(type != XFS_IO_COW);
0d882a36 408 if (type == XFS_IO_UNWRITTEN)
a206c817 409 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 410
988ef927 411 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 414 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 415
b4d8ad7f 416 if (offset > mp->m_super->s_maxbytes - count)
d2c28191 417 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 imap, &nimaps, bmapi_flags);
ef473667
DW
422 /*
423 * Truncate an overwrite extent if there's a pending CoW
424 * reservation before the end of this extent. This forces us
425 * to come back to writepage to take care of the CoW.
426 */
427 if (nimaps && type == XFS_IO_OVERWRITE)
428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
8ff2957d 429 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 430
8ff2957d 431 if (error)
2451337d 432 return error;
a206c817 433
0d882a36 434 if (type == XFS_IO_DELALLOC &&
8ff2957d 435 (!nimaps || isnullstartblock(imap->br_startblock))) {
60b4984f
DW
436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 imap);
a206c817 438 if (!error)
ef473667 439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 440 return error;
a206c817
CH
441 }
442
8ff2957d 443#ifdef DEBUG
0d882a36 444 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
445 ASSERT(nimaps);
446 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 }
449#endif
450 if (nimaps)
451 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 return 0;
1da177e4
LT
453}
454
fbcc0256 455STATIC bool
558e6891 456xfs_imap_valid(
8699bb0a 457 struct inode *inode,
207d0416 458 struct xfs_bmbt_irec *imap,
558e6891 459 xfs_off_t offset)
1da177e4 460{
558e6891 461 offset >>= inode->i_blkbits;
8699bb0a 462
40214d12
BF
463 /*
464 * We have to make sure the cached mapping is within EOF to protect
465 * against eofblocks trimming on file release leaving us with a stale
466 * mapping. Otherwise, a page for a subsequent file extending buffered
467 * write could get picked up by this writeback cycle and written to the
468 * wrong blocks.
469 *
470 * Note that what we really want here is a generic mapping invalidation
471 * mechanism to protect us from arbitrary extent modifying contexts, not
472 * just eofblocks.
473 */
474 xfs_trim_extent_eof(imap, XFS_I(inode));
475
558e6891
CH
476 return offset >= imap->br_startoff &&
477 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
478}
479
f6d6d4fc
CH
480STATIC void
481xfs_start_buffer_writeback(
482 struct buffer_head *bh)
483{
484 ASSERT(buffer_mapped(bh));
485 ASSERT(buffer_locked(bh));
486 ASSERT(!buffer_delay(bh));
487 ASSERT(!buffer_unwritten(bh));
488
8353a814
CH
489 bh->b_end_io = NULL;
490 set_buffer_async_write(bh);
f6d6d4fc
CH
491 set_buffer_uptodate(bh);
492 clear_buffer_dirty(bh);
493}
494
495STATIC void
496xfs_start_page_writeback(
497 struct page *page,
e10de372 498 int clear_dirty)
f6d6d4fc
CH
499{
500 ASSERT(PageLocked(page));
501 ASSERT(!PageWriteback(page));
0d085a52
DC
502
503 /*
504 * if the page was not fully cleaned, we need to ensure that the higher
505 * layers come back to it correctly. That means we need to keep the page
506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 * write this page in this writeback sweep will be made.
509 */
510 if (clear_dirty) {
92132021 511 clear_page_dirty_for_io(page);
0d085a52
DC
512 set_page_writeback(page);
513 } else
514 set_page_writeback_keepwrite(page);
515
f6d6d4fc 516 unlock_page(page);
f6d6d4fc
CH
517}
518
c7c1a7d8 519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
520{
521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522}
523
524/*
bb18782a
DC
525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526 * it, and we submit that bio. The ioend may be used for multiple bio
527 * submissions, so we only want to allocate an append transaction for the ioend
528 * once. In the case of multiple bio submission, each bio will take an IO
529 * reference to the ioend to ensure that the ioend completion is only done once
530 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
531 *
532 * If @fail is non-zero, it means that we have a situation where some part of
533 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
534 * and unlocked them. In this situation, we need to fail the bio and ioend
535 * rather than submit it to IO. This typically only happens on a filesystem
536 * shutdown.
f6d6d4fc 537 */
e10de372 538STATIC int
f6d6d4fc 539xfs_submit_ioend(
06342cf8 540 struct writeback_control *wbc,
0e51a8e1 541 struct xfs_ioend *ioend,
e10de372 542 int status)
f6d6d4fc 543{
5eda4300
DW
544 /* Convert CoW extents to regular */
545 if (!status && ioend->io_type == XFS_IO_COW) {
546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 ioend->io_offset, ioend->io_size);
548 }
549
e10de372
DC
550 /* Reserve log space if we might write beyond the on-disk inode size. */
551 if (!status &&
0e51a8e1 552 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
553 xfs_ioend_is_append(ioend) &&
554 !ioend->io_append_trans)
e10de372 555 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 556
0e51a8e1
CH
557 ioend->io_bio->bi_private = ioend;
558 ioend->io_bio->bi_end_io = xfs_end_bio;
7637241e 559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
70fd7614 560
e10de372
DC
561 /*
562 * If we are failing the IO now, just mark the ioend with an
563 * error and finish it. This will run IO completion immediately
564 * as there is only one reference to the ioend at this point in
565 * time.
566 */
567 if (status) {
4e4cbee9 568 ioend->io_bio->bi_status = errno_to_blk_status(status);
0e51a8e1 569 bio_endio(ioend->io_bio);
e10de372
DC
570 return status;
571 }
d88992f6 572
31d7d58d 573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 574 submit_bio(ioend->io_bio);
e10de372 575 return 0;
f6d6d4fc 576}
f6d6d4fc 577
0e51a8e1
CH
578static void
579xfs_init_bio_from_bh(
580 struct bio *bio,
581 struct buffer_head *bh)
582{
583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 584 bio_set_dev(bio, bh->b_bdev);
0e51a8e1 585}
7bf7f352 586
0e51a8e1
CH
587static struct xfs_ioend *
588xfs_alloc_ioend(
589 struct inode *inode,
590 unsigned int type,
591 xfs_off_t offset,
592 struct buffer_head *bh)
593{
594 struct xfs_ioend *ioend;
595 struct bio *bio;
f6d6d4fc 596
0e51a8e1
CH
597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
598 xfs_init_bio_from_bh(bio, bh);
599
600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 INIT_LIST_HEAD(&ioend->io_list);
602 ioend->io_type = type;
603 ioend->io_inode = inode;
604 ioend->io_size = 0;
605 ioend->io_offset = offset;
606 INIT_WORK(&ioend->io_work, xfs_end_io);
607 ioend->io_append_trans = NULL;
608 ioend->io_bio = bio;
609 return ioend;
610}
611
612/*
613 * Allocate a new bio, and chain the old bio to the new one.
614 *
615 * Note that we have to do perform the chaining in this unintuitive order
616 * so that the bi_private linkage is set up in the right direction for the
617 * traversal in xfs_destroy_ioend().
618 */
619static void
620xfs_chain_bio(
621 struct xfs_ioend *ioend,
622 struct writeback_control *wbc,
623 struct buffer_head *bh)
624{
625 struct bio *new;
626
627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 xfs_init_bio_from_bh(new, bh);
629
630 bio_chain(ioend->io_bio, new);
631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
7637241e 632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
31d7d58d 633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
4e49ea4a 634 submit_bio(ioend->io_bio);
0e51a8e1 635 ioend->io_bio = new;
f6d6d4fc
CH
636}
637
638/*
639 * Test to see if we've been building up a completion structure for
640 * earlier buffers -- if so, we try to append to this ioend if we
641 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
642 * Return the ioend we finished off so that the caller can submit it
643 * once it has finished processing the dirty page.
f6d6d4fc
CH
644 */
645STATIC void
646xfs_add_to_ioend(
647 struct inode *inode,
648 struct buffer_head *bh,
7336cea8 649 xfs_off_t offset,
e10de372 650 struct xfs_writepage_ctx *wpc,
bb18782a 651 struct writeback_control *wbc,
e10de372 652 struct list_head *iolist)
f6d6d4fc 653{
fbcc0256 654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
655 bh->b_blocknr != wpc->last_block + 1 ||
656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
657 if (wpc->ioend)
658 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
660 }
661
0e51a8e1
CH
662 /*
663 * If the buffer doesn't fit into the bio we need to allocate a new
664 * one. This shouldn't happen more than once for a given buffer.
665 */
666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 668
fbcc0256
DC
669 wpc->ioend->io_size += bh->b_size;
670 wpc->last_block = bh->b_blocknr;
e10de372 671 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
672}
673
87cbc49c
NS
674STATIC void
675xfs_map_buffer(
046f1685 676 struct inode *inode,
87cbc49c 677 struct buffer_head *bh,
207d0416 678 struct xfs_bmbt_irec *imap,
046f1685 679 xfs_off_t offset)
87cbc49c
NS
680{
681 sector_t bn;
8699bb0a 682 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 685
207d0416
CH
686 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 688
e513182d 689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 690 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 691
046f1685 692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
693
694 bh->b_blocknr = bn;
695 set_buffer_mapped(bh);
696}
697
1da177e4
LT
698STATIC void
699xfs_map_at_offset(
046f1685 700 struct inode *inode,
1da177e4 701 struct buffer_head *bh,
207d0416 702 struct xfs_bmbt_irec *imap,
046f1685 703 xfs_off_t offset)
1da177e4 704{
207d0416
CH
705 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 707
207d0416 708 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
709 set_buffer_mapped(bh);
710 clear_buffer_delay(bh);
f6d6d4fc 711 clear_buffer_unwritten(bh);
1da177e4
LT
712}
713
1da177e4 714/*
a49935f2
DC
715 * Test if a given page contains at least one buffer of a given @type.
716 * If @check_all_buffers is true, then we walk all the buffers in the page to
717 * try to find one of the type passed in. If it is not set, then the caller only
718 * needs to check the first buffer on the page for a match.
1da177e4 719 */
a49935f2 720STATIC bool
6ffc4db5 721xfs_check_page_type(
10ce4444 722 struct page *page,
a49935f2
DC
723 unsigned int type,
724 bool check_all_buffers)
1da177e4 725{
a49935f2
DC
726 struct buffer_head *bh;
727 struct buffer_head *head;
1da177e4 728
a49935f2
DC
729 if (PageWriteback(page))
730 return false;
731 if (!page->mapping)
732 return false;
733 if (!page_has_buffers(page))
734 return false;
1da177e4 735
a49935f2
DC
736 bh = head = page_buffers(page);
737 do {
738 if (buffer_unwritten(bh)) {
739 if (type == XFS_IO_UNWRITTEN)
740 return true;
741 } else if (buffer_delay(bh)) {
805eeb8e 742 if (type == XFS_IO_DELALLOC)
a49935f2
DC
743 return true;
744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 745 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
746 return true;
747 }
1da177e4 748
a49935f2
DC
749 /* If we are only checking the first buffer, we are done now. */
750 if (!check_all_buffers)
751 break;
752 } while ((bh = bh->b_this_page) != head);
1da177e4 753
a49935f2 754 return false;
1da177e4
LT
755}
756
3ed3a434
DC
757STATIC void
758xfs_vm_invalidatepage(
759 struct page *page,
d47992f8
LC
760 unsigned int offset,
761 unsigned int length)
3ed3a434 762{
34097dfe
LC
763 trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 length);
793d7dbe
DC
765
766 /*
767 * If we are invalidating the entire page, clear the dirty state from it
768 * so that we can check for attempts to release dirty cached pages in
769 * xfs_vm_releasepage().
770 */
771 if (offset == 0 && length >= PAGE_SIZE)
772 cancel_dirty_page(page);
34097dfe 773 block_invalidatepage(page, offset, length);
3ed3a434
DC
774}
775
776/*
777 * If the page has delalloc buffers on it, we need to punch them out before we
778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780 * is done on that same region - the delalloc extent is returned when none is
781 * supposed to be there.
782 *
783 * We prevent this by truncating away the delalloc regions on the page before
784 * invalidating it. Because they are delalloc, we can do this without needing a
785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786 * truncation without a transaction as there is no space left for block
787 * reservation (typically why we see a ENOSPC in writeback).
788 *
789 * This is not a performance critical path, so for now just do the punching a
790 * buffer head at a time.
791 */
792STATIC void
793xfs_aops_discard_page(
794 struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct xfs_inode *ip = XFS_I(inode);
798 struct buffer_head *bh, *head;
799 loff_t offset = page_offset(page);
3ed3a434 800
a49935f2 801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
802 goto out_invalidate;
803
e8c3753c
DC
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 goto out_invalidate;
806
4f10700a 807 xfs_alert(ip->i_mount,
c9690043 808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
3ed3a434
DC
809 page, ip->i_ino, offset);
810
811 xfs_ilock(ip, XFS_ILOCK_EXCL);
812 bh = head = page_buffers(page);
813 do {
3ed3a434 814 int error;
c726de44 815 xfs_fileoff_t start_fsb;
3ed3a434
DC
816
817 if (!buffer_delay(bh))
818 goto next_buffer;
819
c726de44
DC
820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
822 if (error) {
823 /* something screwed, just bail */
e8c3753c 824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 825 xfs_alert(ip->i_mount,
3ed3a434 826 "page discard unable to remove delalloc mapping.");
e8c3753c 827 }
3ed3a434
DC
828 break;
829 }
830next_buffer:
93407472 831 offset += i_blocksize(inode);
3ed3a434
DC
832
833 } while ((bh = bh->b_this_page) != head);
834
835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
836out_invalidate:
09cbfeaf 837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
838 return;
839}
840
ef473667
DW
841static int
842xfs_map_cow(
843 struct xfs_writepage_ctx *wpc,
844 struct inode *inode,
845 loff_t offset,
846 unsigned int *new_type)
847{
848 struct xfs_inode *ip = XFS_I(inode);
849 struct xfs_bmbt_irec imap;
092d5d9d 850 bool is_cow = false;
ef473667
DW
851 int error;
852
853 /*
854 * If we already have a valid COW mapping keep using it.
855 */
856 if (wpc->io_type == XFS_IO_COW) {
857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 if (wpc->imap_valid) {
859 *new_type = XFS_IO_COW;
860 return 0;
861 }
862 }
863
864 /*
865 * Else we need to check if there is a COW mapping at this offset.
866 */
867 xfs_ilock(ip, XFS_ILOCK_SHARED);
092d5d9d 868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
ef473667
DW
869 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870
871 if (!is_cow)
872 return 0;
873
874 /*
875 * And if the COW mapping has a delayed extent here we need to
876 * allocate real space for it now.
877 */
092d5d9d 878 if (isnullstartblock(imap.br_startblock)) {
ef473667
DW
879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 &imap);
881 if (error)
882 return error;
883 }
884
885 wpc->io_type = *new_type = XFS_IO_COW;
886 wpc->imap_valid = true;
887 wpc->imap = imap;
888 return 0;
889}
890
e10de372
DC
891/*
892 * We implement an immediate ioend submission policy here to avoid needing to
893 * chain multiple ioends and hence nest mempool allocations which can violate
894 * forward progress guarantees we need to provide. The current ioend we are
895 * adding buffers to is cached on the writepage context, and if the new buffer
896 * does not append to the cached ioend it will create a new ioend and cache that
897 * instead.
898 *
899 * If a new ioend is created and cached, the old ioend is returned and queued
900 * locally for submission once the entire page is processed or an error has been
901 * detected. While ioends are submitted immediately after they are completed,
902 * batching optimisations are provided by higher level block plugging.
903 *
904 * At the end of a writeback pass, there will be a cached ioend remaining on the
905 * writepage context that the caller will need to submit.
906 */
bfce7d2e
DC
907static int
908xfs_writepage_map(
909 struct xfs_writepage_ctx *wpc,
e10de372 910 struct writeback_control *wbc,
bfce7d2e
DC
911 struct inode *inode,
912 struct page *page,
2d5f4b5b 913 uint64_t end_offset)
bfce7d2e 914{
e10de372
DC
915 LIST_HEAD(submit_list);
916 struct xfs_ioend *ioend, *next;
bfce7d2e 917 struct buffer_head *bh, *head;
93407472 918 ssize_t len = i_blocksize(inode);
2d5f4b5b 919 uint64_t offset;
bfce7d2e 920 int error = 0;
bfce7d2e 921 int count = 0;
e10de372 922 int uptodate = 1;
ef473667 923 unsigned int new_type;
bfce7d2e
DC
924
925 bh = head = page_buffers(page);
926 offset = page_offset(page);
bfce7d2e
DC
927 do {
928 if (offset >= end_offset)
929 break;
930 if (!buffer_uptodate(bh))
931 uptodate = 0;
932
933 /*
934 * set_page_dirty dirties all buffers in a page, independent
935 * of their state. The dirty state however is entirely
936 * meaningless for holes (!mapped && uptodate), so skip
937 * buffers covering holes here.
938 */
939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 wpc->imap_valid = false;
941 continue;
942 }
943
ef473667
DW
944 if (buffer_unwritten(bh))
945 new_type = XFS_IO_UNWRITTEN;
946 else if (buffer_delay(bh))
947 new_type = XFS_IO_DELALLOC;
948 else if (buffer_uptodate(bh))
949 new_type = XFS_IO_OVERWRITE;
950 else {
bfce7d2e
DC
951 if (PageUptodate(page))
952 ASSERT(buffer_mapped(bh));
953 /*
954 * This buffer is not uptodate and will not be
955 * written to disk. Ensure that we will put any
956 * subsequent writeable buffers into a new
957 * ioend.
958 */
959 wpc->imap_valid = false;
960 continue;
961 }
962
ef473667
DW
963 if (xfs_is_reflink_inode(XFS_I(inode))) {
964 error = xfs_map_cow(wpc, inode, offset, &new_type);
965 if (error)
966 goto out;
967 }
968
969 if (wpc->io_type != new_type) {
970 wpc->io_type = new_type;
971 wpc->imap_valid = false;
972 }
973
bfce7d2e
DC
974 if (wpc->imap_valid)
975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 offset);
977 if (!wpc->imap_valid) {
978 error = xfs_map_blocks(inode, offset, &wpc->imap,
979 wpc->io_type);
980 if (error)
e10de372 981 goto out;
bfce7d2e
DC
982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 offset);
984 }
985 if (wpc->imap_valid) {
986 lock_buffer(bh);
987 if (wpc->io_type != XFS_IO_OVERWRITE)
988 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
990 count++;
991 }
992
bfce7d2e
DC
993 } while (offset += len, ((bh = bh->b_this_page) != head));
994
995 if (uptodate && bh == head)
996 SetPageUptodate(page);
997
e10de372 998 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 999
e10de372 1000out:
bfce7d2e 1001 /*
e10de372
DC
1002 * On error, we have to fail the ioend here because we have locked
1003 * buffers in the ioend. If we don't do this, we'll deadlock
1004 * invalidating the page as that tries to lock the buffers on the page.
1005 * Also, because we may have set pages under writeback, we have to make
1006 * sure we run IO completion to mark the error state of the IO
1007 * appropriately, so we can't cancel the ioend directly here. That means
1008 * we have to mark this page as under writeback if we included any
1009 * buffers from it in the ioend chain so that completion treats it
1010 * correctly.
bfce7d2e 1011 *
e10de372
DC
1012 * If we didn't include the page in the ioend, the on error we can
1013 * simply discard and unlock it as there are no other users of the page
1014 * or it's buffers right now. The caller will still need to trigger
1015 * submission of outstanding ioends on the writepage context so they are
1016 * treated correctly on error.
bfce7d2e 1017 */
e10de372
DC
1018 if (count) {
1019 xfs_start_page_writeback(page, !error);
1020
1021 /*
1022 * Preserve the original error if there was one, otherwise catch
1023 * submission errors here and propagate into subsequent ioend
1024 * submissions.
1025 */
1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 int error2;
1028
1029 list_del_init(&ioend->io_list);
1030 error2 = xfs_submit_ioend(wbc, ioend, error);
1031 if (error2 && !error)
1032 error = error2;
1033 }
1034 } else if (error) {
bfce7d2e
DC
1035 xfs_aops_discard_page(page);
1036 ClearPageUptodate(page);
1037 unlock_page(page);
e10de372
DC
1038 } else {
1039 /*
1040 * We can end up here with no error and nothing to write if we
1041 * race with a partial page truncate on a sub-page block sized
1042 * filesystem. In that case we need to mark the page clean.
1043 */
1044 xfs_start_page_writeback(page, 1);
1045 end_page_writeback(page);
bfce7d2e 1046 }
e10de372 1047
bfce7d2e
DC
1048 mapping_set_error(page->mapping, error);
1049 return error;
1050}
1051
1da177e4 1052/*
89f3b363
CH
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
89f3b363 1058 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1059 */
1da177e4 1060STATIC int
fbcc0256 1061xfs_do_writepage(
89f3b363 1062 struct page *page,
fbcc0256
DC
1063 struct writeback_control *wbc,
1064 void *data)
1da177e4 1065{
fbcc0256 1066 struct xfs_writepage_ctx *wpc = data;
89f3b363 1067 struct inode *inode = page->mapping->host;
1da177e4 1068 loff_t offset;
c8ce540d 1069 uint64_t end_offset;
ad68972a 1070 pgoff_t end_index;
89f3b363 1071
34097dfe 1072 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 1073
20cb52eb
CH
1074 ASSERT(page_has_buffers(page));
1075
89f3b363
CH
1076 /*
1077 * Refuse to write the page out if we are called from reclaim context.
1078 *
d4f7a5cb
CH
1079 * This avoids stack overflows when called from deeply used stacks in
1080 * random callers for direct reclaim or memcg reclaim. We explicitly
1081 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 1082 *
94054fa3
MG
1083 * This should never happen except in the case of a VM regression so
1084 * warn about it.
89f3b363 1085 */
94054fa3
MG
1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 PF_MEMALLOC))
b5420f23 1088 goto redirty;
1da177e4 1089
89f3b363 1090 /*
680a647b
CH
1091 * Given that we do not allow direct reclaim to call us, we should
1092 * never be called while in a filesystem transaction.
89f3b363 1093 */
9070733b 1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
b5420f23 1095 goto redirty;
89f3b363 1096
8695d27e 1097 /*
ad68972a
DC
1098 * Is this page beyond the end of the file?
1099 *
8695d27e
JL
1100 * The page index is less than the end_index, adjust the end_offset
1101 * to the highest offset that this page should represent.
1102 * -----------------------------------------------------
1103 * | file mapping | <EOF> |
1104 * -----------------------------------------------------
1105 * | Page ... | Page N-2 | Page N-1 | Page N | |
1106 * ^--------------------------------^----------|--------
1107 * | desired writeback range | see else |
1108 * ---------------------------------^------------------|
1109 */
ad68972a 1110 offset = i_size_read(inode);
09cbfeaf 1111 end_index = offset >> PAGE_SHIFT;
8695d27e 1112 if (page->index < end_index)
09cbfeaf 1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
1114 else {
1115 /*
1116 * Check whether the page to write out is beyond or straddles
1117 * i_size or not.
1118 * -------------------------------------------------------
1119 * | file mapping | <EOF> |
1120 * -------------------------------------------------------
1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1122 * ^--------------------------------^-----------|---------
1123 * | | Straddles |
1124 * ---------------------------------^-----------|--------|
1125 */
09cbfeaf 1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
1127
1128 /*
ff9a28f6
JK
1129 * Skip the page if it is fully outside i_size, e.g. due to a
1130 * truncate operation that is in progress. We must redirty the
1131 * page so that reclaim stops reclaiming it. Otherwise
1132 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1133 *
1134 * Note that the end_index is unsigned long, it would overflow
1135 * if the given offset is greater than 16TB on 32-bit system
1136 * and if we do check the page is fully outside i_size or not
1137 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 * will be evaluated to 0. Hence this page will be redirtied
1139 * and be written out repeatedly which would result in an
1140 * infinite loop, the user program that perform this operation
1141 * will hang. Instead, we can verify this situation by checking
1142 * if the page to write is totally beyond the i_size or if it's
1143 * offset is just equal to the EOF.
6b7a03f0 1144 */
8695d27e
JL
1145 if (page->index > end_index ||
1146 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1147 goto redirty;
6b7a03f0
CH
1148
1149 /*
1150 * The page straddles i_size. It must be zeroed out on each
1151 * and every writepage invocation because it may be mmapped.
1152 * "A file is mapped in multiples of the page size. For a file
8695d27e 1153 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1154 * memory is zeroed when mapped, and writes to that region are
1155 * not written out to the file."
1156 */
09cbfeaf 1157 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
1158
1159 /* Adjust the end_offset to the end of file */
1160 end_offset = offset;
1da177e4
LT
1161 }
1162
2d5f4b5b 1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
f51623b2 1164
b5420f23 1165redirty:
f51623b2
NS
1166 redirty_page_for_writepage(wbc, page);
1167 unlock_page(page);
1168 return 0;
f51623b2
NS
1169}
1170
fbcc0256
DC
1171STATIC int
1172xfs_vm_writepage(
1173 struct page *page,
1174 struct writeback_control *wbc)
1175{
1176 struct xfs_writepage_ctx wpc = {
1177 .io_type = XFS_IO_INVALID,
1178 };
1179 int ret;
1180
1181 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1182 if (wpc.ioend)
1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 return ret;
fbcc0256
DC
1185}
1186
7d4fb40a
NS
1187STATIC int
1188xfs_vm_writepages(
1189 struct address_space *mapping,
1190 struct writeback_control *wbc)
1191{
fbcc0256
DC
1192 struct xfs_writepage_ctx wpc = {
1193 .io_type = XFS_IO_INVALID,
1194 };
1195 int ret;
1196
b3aea4ed 1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
fbcc0256 1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1199 if (wpc.ioend)
1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 return ret;
7d4fb40a
NS
1202}
1203
6e2608df
DW
1204STATIC int
1205xfs_dax_writepages(
1206 struct address_space *mapping,
1207 struct writeback_control *wbc)
1208{
1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 return dax_writeback_mapping_range(mapping,
1211 xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
f51623b2
NS
1214/*
1215 * Called to move a page into cleanable state - and from there
89f3b363 1216 * to be released. The page should already be clean. We always
f51623b2
NS
1217 * have buffer heads in this call.
1218 *
89f3b363 1219 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1220 */
1221STATIC int
238f4c54 1222xfs_vm_releasepage(
f51623b2
NS
1223 struct page *page,
1224 gfp_t gfp_mask)
1225{
20cb52eb 1226 int delalloc, unwritten;
f51623b2 1227
34097dfe 1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1229
99579cce
BF
1230 /*
1231 * mm accommodates an old ext3 case where clean pages might not have had
1232 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 * ->releasepage() via shrink_active_list(). Conversely,
793d7dbe
DC
1234 * block_invalidatepage() can send pages that are still marked dirty but
1235 * otherwise have invalidated buffers.
99579cce 1236 *
0a417b8d 1237 * We want to release the latter to avoid unnecessary buildup of the
793d7dbe
DC
1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 * that are entirely invalidated and need to be released. Hence the
1240 * only time we should get dirty pages here is through
1241 * shrink_active_list() and so we can simply skip those now.
1242 *
1243 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 * or invalidated pages we are about to release.
99579cce 1245 */
793d7dbe
DC
1246 if (PageDirty(page))
1247 return 0;
1248
20cb52eb 1249 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1250
793d7dbe 1251 if (WARN_ON_ONCE(delalloc))
f51623b2 1252 return 0;
793d7dbe 1253 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1254 return 0;
1255
f51623b2
NS
1256 return try_to_free_buffers(page);
1257}
1258
1fdca9c2
DC
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272 struct inode *inode,
1273 sector_t iblock,
1274 struct buffer_head *bh_result,
1275 struct xfs_bmbt_irec *imap,
1276 xfs_off_t offset,
1277 ssize_t size)
1278{
1279 xfs_off_t mapping_size;
1280
1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 mapping_size <<= inode->i_blkbits;
1283
1284 ASSERT(mapping_size > 0);
1285 if (mapping_size > size)
1286 mapping_size = size;
1287 if (offset < i_size_read(inode) &&
22a6c837 1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1fdca9c2
DC
1289 /* limit mapping to block that spans EOF */
1290 mapping_size = roundup_64(i_size_read(inode) - offset,
93407472 1291 i_blocksize(inode));
1fdca9c2
DC
1292 }
1293 if (mapping_size > LONG_MAX)
1294 mapping_size = LONG_MAX;
1295
1296 bh_result->b_size = mapping_size;
1297}
1298
0613f16c 1299static int
acdda3aa 1300xfs_get_blocks(
1da177e4
LT
1301 struct inode *inode,
1302 sector_t iblock,
1da177e4 1303 struct buffer_head *bh_result,
acdda3aa 1304 int create)
1da177e4 1305{
a206c817
CH
1306 struct xfs_inode *ip = XFS_I(inode);
1307 struct xfs_mount *mp = ip->i_mount;
1308 xfs_fileoff_t offset_fsb, end_fsb;
1309 int error = 0;
1310 int lockmode = 0;
207d0416 1311 struct xfs_bmbt_irec imap;
a206c817 1312 int nimaps = 1;
fdc7ed75
NS
1313 xfs_off_t offset;
1314 ssize_t size;
a206c817 1315
acdda3aa 1316 BUG_ON(create);
6e8a27a8 1317
a206c817 1318 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1319 return -EIO;
1da177e4 1320
fdc7ed75 1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
93407472 1322 ASSERT(bh_result->b_size >= i_blocksize(inode));
c2536668 1323 size = bh_result->b_size;
364f358a 1324
acdda3aa 1325 if (offset >= i_size_read(inode))
364f358a
LM
1326 return 0;
1327
507630b2
DC
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
6e8a27a8 1330 * a block mapping without an exclusive lock first.
507630b2 1331 */
6e8a27a8 1332 lockmode = xfs_ilock_data_map_shared(ip);
f2bde9b8 1333
d2c28191 1334 ASSERT(offset <= mp->m_super->s_maxbytes);
b4d8ad7f 1335 if (offset > mp->m_super->s_maxbytes - size)
d2c28191 1336 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
7d9df3c1
CH
1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 &nimaps, 0);
1da177e4 1342 if (error)
a206c817 1343 goto out_unlock;
1d4352de 1344 if (!nimaps) {
a206c817
CH
1345 trace_xfs_get_blocks_notfound(ip, offset, size);
1346 goto out_unlock;
1347 }
1da177e4 1348
1d4352de
CH
1349 trace_xfs_get_blocks_found(ip, offset, size,
1350 imap.br_state == XFS_EXT_UNWRITTEN ?
1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 xfs_iunlock(ip, lockmode);
1353
1fdca9c2 1354 /* trim mapping down to size requested */
6e8a27a8 1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1fdca9c2 1356
a719370b
DC
1357 /*
1358 * For unwritten extents do not report a disk address in the buffered
1359 * read case (treat as if we're reading into a hole).
1360 */
9c4f29d3 1361 if (xfs_bmap_is_real_extent(&imap))
a719370b 1362 xfs_map_buffer(inode, bh_result, &imap, offset);
1da177e4 1363
c2536668
NS
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
046f1685 1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1369 return 0;
a206c817
CH
1370
1371out_unlock:
1372 xfs_iunlock(ip, lockmode);
2451337d 1373 return error;
1da177e4
LT
1374}
1375
1da177e4 1376STATIC sector_t
e4c573bb 1377xfs_vm_bmap(
1da177e4
LT
1378 struct address_space *mapping,
1379 sector_t block)
1380{
1381 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1382 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1383
cca28fb8 1384 trace_xfs_vm_bmap(XFS_I(inode));
db1327b1
DW
1385
1386 /*
1387 * The swap code (ab-)uses ->bmap to get a block mapping and then
793057e1 1388 * bypasses the file system for actual I/O. We really can't allow
db1327b1 1389 * that on reflinks inodes, so we have to skip out here. And yes,
eb5e248d
DW
1390 * 0 is the magic code for a bmap error.
1391 *
1392 * Since we don't pass back blockdev info, we can't return bmap
1393 * information for rt files either.
db1327b1 1394 */
eb5e248d 1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
db1327b1 1396 return 0;
65523218 1397
4bc1ea6b 1398 filemap_write_and_wait(mapping);
c2536668 1399 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1400}
1401
1402STATIC int
e4c573bb 1403xfs_vm_readpage(
1da177e4
LT
1404 struct file *unused,
1405 struct page *page)
1406{
121e213e 1407 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1408 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1409}
1410
1411STATIC int
e4c573bb 1412xfs_vm_readpages(
1da177e4
LT
1413 struct file *unused,
1414 struct address_space *mapping,
1415 struct list_head *pages,
1416 unsigned nr_pages)
1417{
121e213e 1418 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1420}
1421
22e757a4
DC
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436 struct page *page)
1437{
1438 struct address_space *mapping = page->mapping;
1439 struct inode *inode = mapping->host;
1440 loff_t end_offset;
1441 loff_t offset;
1442 int newly_dirty;
1443
1444 if (unlikely(!mapping))
1445 return !TestSetPageDirty(page);
1446
1447 end_offset = i_size_read(inode);
1448 offset = page_offset(page);
1449
1450 spin_lock(&mapping->private_lock);
1451 if (page_has_buffers(page)) {
1452 struct buffer_head *head = page_buffers(page);
1453 struct buffer_head *bh = head;
1454
1455 do {
1456 if (offset < end_offset)
1457 set_buffer_dirty(bh);
1458 bh = bh->b_this_page;
93407472 1459 offset += i_blocksize(inode);
22e757a4
DC
1460 } while (bh != head);
1461 }
c4843a75 1462 /*
81f8c3a4
JW
1463 * Lock out page->mem_cgroup migration to keep PageDirty
1464 * synchronized with per-memcg dirty page counters.
c4843a75 1465 */
62cccb8c 1466 lock_page_memcg(page);
22e757a4
DC
1467 newly_dirty = !TestSetPageDirty(page);
1468 spin_unlock(&mapping->private_lock);
1469
f82b3764
MW
1470 if (newly_dirty)
1471 __set_page_dirty(page, mapping, 1);
62cccb8c 1472 unlock_page_memcg(page);
c4843a75
GT
1473 if (newly_dirty)
1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1475 return newly_dirty;
1476}
1477
f5e54d6e 1478const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1479 .readpage = xfs_vm_readpage,
1480 .readpages = xfs_vm_readpages,
1481 .writepage = xfs_vm_writepage,
7d4fb40a 1482 .writepages = xfs_vm_writepages,
22e757a4 1483 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1484 .releasepage = xfs_vm_releasepage,
1485 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1486 .bmap = xfs_vm_bmap,
6e2608df 1487 .direct_IO = noop_direct_IO,
e965f963 1488 .migratepage = buffer_migrate_page,
bddaafa1 1489 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1490 .error_remove_page = generic_error_remove_page,
1da177e4 1491};
6e2608df
DW
1492
1493const struct address_space_operations xfs_dax_aops = {
1494 .writepages = xfs_dax_writepages,
1495 .direct_IO = noop_direct_IO,
1496 .set_page_dirty = noop_set_page_dirty,
1497 .invalidatepage = noop_invalidatepage,
1498};