]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/xfs/xfs_icache.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / fs / xfs / xfs_icache.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
fe4fa4b8
DC
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
fe4fa4b8
DC
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
5467b34b 8#include "xfs_shared.h"
6ca1c906 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
fe4fa4b8 12#include "xfs_sb.h"
fe4fa4b8 13#include "xfs_mount.h"
fe4fa4b8 14#include "xfs_inode.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
fe4fa4b8 17#include "xfs_inode_item.h"
7d095257 18#include "xfs_quota.h"
0b1b213f 19#include "xfs_trace.h"
6d8b79cf 20#include "xfs_icache.h"
c24b5dfa 21#include "xfs_bmap_util.h"
dc06f398
BF
22#include "xfs_dquot_item.h"
23#include "xfs_dquot.h"
83104d44 24#include "xfs_reflink.h"
fe4fa4b8 25
f0e28280 26#include <linux/iversion.h>
a167b17e 27
33479e05
DC
28/*
29 * Allocate and initialise an xfs_inode.
30 */
638f4416 31struct xfs_inode *
33479e05
DC
32xfs_inode_alloc(
33 struct xfs_mount *mp,
34 xfs_ino_t ino)
35{
36 struct xfs_inode *ip;
37
38 /*
39 * if this didn't occur in transactions, we could use
40 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
41 * code up to do this anyway.
42 */
707e0dda 43 ip = kmem_zone_alloc(xfs_inode_zone, 0);
33479e05
DC
44 if (!ip)
45 return NULL;
46 if (inode_init_always(mp->m_super, VFS_I(ip))) {
377bcd5f 47 kmem_cache_free(xfs_inode_zone, ip);
33479e05
DC
48 return NULL;
49 }
50
c19b3b05
DC
51 /* VFS doesn't initialise i_mode! */
52 VFS_I(ip)->i_mode = 0;
53
ff6d6af2 54 XFS_STATS_INC(mp, vn_active);
33479e05 55 ASSERT(atomic_read(&ip->i_pincount) == 0);
33479e05
DC
56 ASSERT(!xfs_isiflocked(ip));
57 ASSERT(ip->i_ino == 0);
58
33479e05
DC
59 /* initialise the xfs inode */
60 ip->i_ino = ino;
61 ip->i_mount = mp;
62 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
63 ip->i_afp = NULL;
3993baeb
DW
64 ip->i_cowfp = NULL;
65 ip->i_cnextents = 0;
66 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
3ba738df 67 memset(&ip->i_df, 0, sizeof(ip->i_df));
33479e05
DC
68 ip->i_flags = 0;
69 ip->i_delayed_blks = 0;
f8d55aa0 70 memset(&ip->i_d, 0, sizeof(ip->i_d));
6772c1f1
DW
71 ip->i_sick = 0;
72 ip->i_checked = 0;
cb357bf3
DW
73 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
74 INIT_LIST_HEAD(&ip->i_ioend_list);
75 spin_lock_init(&ip->i_ioend_lock);
33479e05
DC
76
77 return ip;
78}
79
80STATIC void
81xfs_inode_free_callback(
82 struct rcu_head *head)
83{
84 struct inode *inode = container_of(head, struct inode, i_rcu);
85 struct xfs_inode *ip = XFS_I(inode);
86
c19b3b05 87 switch (VFS_I(ip)->i_mode & S_IFMT) {
33479e05
DC
88 case S_IFREG:
89 case S_IFDIR:
90 case S_IFLNK:
91 xfs_idestroy_fork(ip, XFS_DATA_FORK);
92 break;
93 }
94
95 if (ip->i_afp)
96 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
3993baeb
DW
97 if (ip->i_cowfp)
98 xfs_idestroy_fork(ip, XFS_COW_FORK);
33479e05
DC
99
100 if (ip->i_itemp) {
22525c17
DC
101 ASSERT(!test_bit(XFS_LI_IN_AIL,
102 &ip->i_itemp->ili_item.li_flags));
33479e05
DC
103 xfs_inode_item_destroy(ip);
104 ip->i_itemp = NULL;
105 }
106
377bcd5f 107 kmem_cache_free(xfs_inode_zone, ip);
1f2dcfe8
DC
108}
109
8a17d7dd
DC
110static void
111__xfs_inode_free(
112 struct xfs_inode *ip)
113{
114 /* asserts to verify all state is correct here */
115 ASSERT(atomic_read(&ip->i_pincount) == 0);
8a17d7dd
DC
116 XFS_STATS_DEC(ip->i_mount, vn_active);
117
118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
119}
120
1f2dcfe8
DC
121void
122xfs_inode_free(
123 struct xfs_inode *ip)
124{
98efe8af
BF
125 ASSERT(!xfs_isiflocked(ip));
126
33479e05
DC
127 /*
128 * Because we use RCU freeing we need to ensure the inode always
129 * appears to be reclaimed with an invalid inode number when in the
130 * free state. The ip->i_flags_lock provides the barrier against lookup
131 * races.
132 */
133 spin_lock(&ip->i_flags_lock);
134 ip->i_flags = XFS_IRECLAIM;
135 ip->i_ino = 0;
136 spin_unlock(&ip->i_flags_lock);
137
8a17d7dd 138 __xfs_inode_free(ip);
33479e05
DC
139}
140
ad438c40
DC
141/*
142 * Queue a new inode reclaim pass if there are reclaimable inodes and there
143 * isn't a reclaim pass already in progress. By default it runs every 5s based
144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
145 * tunable, but that can be done if this method proves to be ineffective or too
146 * aggressive.
147 */
148static void
149xfs_reclaim_work_queue(
150 struct xfs_mount *mp)
151{
152
153 rcu_read_lock();
154 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
155 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
156 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
157 }
158 rcu_read_unlock();
159}
160
161/*
162 * This is a fast pass over the inode cache to try to get reclaim moving on as
163 * many inodes as possible in a short period of time. It kicks itself every few
164 * seconds, as well as being kicked by the inode cache shrinker when memory
165 * goes low. It scans as quickly as possible avoiding locked inodes or those
166 * already being flushed, and once done schedules a future pass.
167 */
168void
169xfs_reclaim_worker(
170 struct work_struct *work)
171{
172 struct xfs_mount *mp = container_of(to_delayed_work(work),
173 struct xfs_mount, m_reclaim_work);
174
175 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
176 xfs_reclaim_work_queue(mp);
177}
178
179static void
180xfs_perag_set_reclaim_tag(
181 struct xfs_perag *pag)
182{
183 struct xfs_mount *mp = pag->pag_mount;
184
95989c46 185 lockdep_assert_held(&pag->pag_ici_lock);
ad438c40
DC
186 if (pag->pag_ici_reclaimable++)
187 return;
188
189 /* propagate the reclaim tag up into the perag radix tree */
190 spin_lock(&mp->m_perag_lock);
191 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
192 XFS_ICI_RECLAIM_TAG);
193 spin_unlock(&mp->m_perag_lock);
194
195 /* schedule periodic background inode reclaim */
196 xfs_reclaim_work_queue(mp);
197
198 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
199}
200
201static void
202xfs_perag_clear_reclaim_tag(
203 struct xfs_perag *pag)
204{
205 struct xfs_mount *mp = pag->pag_mount;
206
95989c46 207 lockdep_assert_held(&pag->pag_ici_lock);
ad438c40
DC
208 if (--pag->pag_ici_reclaimable)
209 return;
210
211 /* clear the reclaim tag from the perag radix tree */
212 spin_lock(&mp->m_perag_lock);
213 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
214 XFS_ICI_RECLAIM_TAG);
215 spin_unlock(&mp->m_perag_lock);
216 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
217}
218
219
220/*
221 * We set the inode flag atomically with the radix tree tag.
222 * Once we get tag lookups on the radix tree, this inode flag
223 * can go away.
224 */
225void
226xfs_inode_set_reclaim_tag(
227 struct xfs_inode *ip)
228{
229 struct xfs_mount *mp = ip->i_mount;
230 struct xfs_perag *pag;
231
232 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
233 spin_lock(&pag->pag_ici_lock);
234 spin_lock(&ip->i_flags_lock);
235
236 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
237 XFS_ICI_RECLAIM_TAG);
238 xfs_perag_set_reclaim_tag(pag);
239 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
240
241 spin_unlock(&ip->i_flags_lock);
242 spin_unlock(&pag->pag_ici_lock);
243 xfs_perag_put(pag);
244}
245
246STATIC void
247xfs_inode_clear_reclaim_tag(
248 struct xfs_perag *pag,
249 xfs_ino_t ino)
250{
251 radix_tree_tag_clear(&pag->pag_ici_root,
252 XFS_INO_TO_AGINO(pag->pag_mount, ino),
253 XFS_ICI_RECLAIM_TAG);
254 xfs_perag_clear_reclaim_tag(pag);
255}
256
ae2c4ac2
BF
257static void
258xfs_inew_wait(
259 struct xfs_inode *ip)
260{
261 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
262 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
263
264 do {
21417136 265 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
ae2c4ac2
BF
266 if (!xfs_iflags_test(ip, XFS_INEW))
267 break;
268 schedule();
269 } while (true);
21417136 270 finish_wait(wq, &wait.wq_entry);
ae2c4ac2
BF
271}
272
50997470
DC
273/*
274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
275 * part of the structure. This is made more complex by the fact we store
276 * information about the on-disk values in the VFS inode and so we can't just
83e06f21 277 * overwrite the values unconditionally. Hence we save the parameters we
50997470 278 * need to retain across reinitialisation, and rewrite them into the VFS inode
83e06f21 279 * after reinitialisation even if it fails.
50997470
DC
280 */
281static int
282xfs_reinit_inode(
283 struct xfs_mount *mp,
284 struct inode *inode)
285{
286 int error;
54d7b5c1 287 uint32_t nlink = inode->i_nlink;
9e9a2674 288 uint32_t generation = inode->i_generation;
f0e28280 289 uint64_t version = inode_peek_iversion(inode);
c19b3b05 290 umode_t mode = inode->i_mode;
acd1d715 291 dev_t dev = inode->i_rdev;
3d8f2821
CH
292 kuid_t uid = inode->i_uid;
293 kgid_t gid = inode->i_gid;
50997470
DC
294
295 error = inode_init_always(mp->m_super, inode);
296
54d7b5c1 297 set_nlink(inode, nlink);
9e9a2674 298 inode->i_generation = generation;
f0e28280 299 inode_set_iversion_queried(inode, version);
c19b3b05 300 inode->i_mode = mode;
acd1d715 301 inode->i_rdev = dev;
3d8f2821
CH
302 inode->i_uid = uid;
303 inode->i_gid = gid;
50997470
DC
304 return error;
305}
306
afca6c5b
DC
307/*
308 * If we are allocating a new inode, then check what was returned is
309 * actually a free, empty inode. If we are not allocating an inode,
310 * then check we didn't find a free inode.
311 *
312 * Returns:
313 * 0 if the inode free state matches the lookup context
314 * -ENOENT if the inode is free and we are not allocating
315 * -EFSCORRUPTED if there is any state mismatch at all
316 */
317static int
318xfs_iget_check_free_state(
319 struct xfs_inode *ip,
320 int flags)
321{
322 if (flags & XFS_IGET_CREATE) {
323 /* should be a free inode */
324 if (VFS_I(ip)->i_mode != 0) {
325 xfs_warn(ip->i_mount,
326"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
327 ip->i_ino, VFS_I(ip)->i_mode);
328 return -EFSCORRUPTED;
329 }
330
331 if (ip->i_d.di_nblocks != 0) {
332 xfs_warn(ip->i_mount,
333"Corruption detected! Free inode 0x%llx has blocks allocated!",
334 ip->i_ino);
335 return -EFSCORRUPTED;
336 }
337 return 0;
338 }
339
340 /* should be an allocated inode */
341 if (VFS_I(ip)->i_mode == 0)
342 return -ENOENT;
343
344 return 0;
345}
346
33479e05
DC
347/*
348 * Check the validity of the inode we just found it the cache
349 */
350static int
351xfs_iget_cache_hit(
352 struct xfs_perag *pag,
353 struct xfs_inode *ip,
354 xfs_ino_t ino,
355 int flags,
356 int lock_flags) __releases(RCU)
357{
358 struct inode *inode = VFS_I(ip);
359 struct xfs_mount *mp = ip->i_mount;
360 int error;
361
362 /*
363 * check for re-use of an inode within an RCU grace period due to the
364 * radix tree nodes not being updated yet. We monitor for this by
365 * setting the inode number to zero before freeing the inode structure.
366 * If the inode has been reallocated and set up, then the inode number
367 * will not match, so check for that, too.
368 */
369 spin_lock(&ip->i_flags_lock);
370 if (ip->i_ino != ino) {
371 trace_xfs_iget_skip(ip);
ff6d6af2 372 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 373 error = -EAGAIN;
33479e05
DC
374 goto out_error;
375 }
376
377
378 /*
379 * If we are racing with another cache hit that is currently
380 * instantiating this inode or currently recycling it out of
381 * reclaimabe state, wait for the initialisation to complete
382 * before continuing.
383 *
384 * XXX(hch): eventually we should do something equivalent to
385 * wait_on_inode to wait for these flags to be cleared
386 * instead of polling for it.
387 */
388 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
389 trace_xfs_iget_skip(ip);
ff6d6af2 390 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 391 error = -EAGAIN;
33479e05
DC
392 goto out_error;
393 }
394
395 /*
afca6c5b
DC
396 * Check the inode free state is valid. This also detects lookup
397 * racing with unlinks.
33479e05 398 */
afca6c5b
DC
399 error = xfs_iget_check_free_state(ip, flags);
400 if (error)
33479e05 401 goto out_error;
33479e05
DC
402
403 /*
404 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
405 * Need to carefully get it back into useable state.
406 */
407 if (ip->i_flags & XFS_IRECLAIMABLE) {
408 trace_xfs_iget_reclaim(ip);
409
378f681c
DW
410 if (flags & XFS_IGET_INCORE) {
411 error = -EAGAIN;
412 goto out_error;
413 }
414
33479e05
DC
415 /*
416 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
417 * from stomping over us while we recycle the inode. We can't
418 * clear the radix tree reclaimable tag yet as it requires
419 * pag_ici_lock to be held exclusive.
420 */
421 ip->i_flags |= XFS_IRECLAIM;
422
423 spin_unlock(&ip->i_flags_lock);
424 rcu_read_unlock();
425
50997470 426 error = xfs_reinit_inode(mp, inode);
33479e05 427 if (error) {
756baca2 428 bool wake;
33479e05
DC
429 /*
430 * Re-initializing the inode failed, and we are in deep
431 * trouble. Try to re-add it to the reclaim list.
432 */
433 rcu_read_lock();
434 spin_lock(&ip->i_flags_lock);
756baca2 435 wake = !!__xfs_iflags_test(ip, XFS_INEW);
33479e05 436 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
756baca2
BF
437 if (wake)
438 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
33479e05
DC
439 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
440 trace_xfs_iget_reclaim_fail(ip);
441 goto out_error;
442 }
443
444 spin_lock(&pag->pag_ici_lock);
445 spin_lock(&ip->i_flags_lock);
446
447 /*
448 * Clear the per-lifetime state in the inode as we are now
449 * effectively a new inode and need to return to the initial
450 * state before reuse occurs.
451 */
452 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
453 ip->i_flags |= XFS_INEW;
545c0889 454 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
33479e05 455 inode->i_state = I_NEW;
6772c1f1
DW
456 ip->i_sick = 0;
457 ip->i_checked = 0;
33479e05 458
65523218
CH
459 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
460 init_rwsem(&inode->i_rwsem);
33479e05
DC
461
462 spin_unlock(&ip->i_flags_lock);
463 spin_unlock(&pag->pag_ici_lock);
464 } else {
465 /* If the VFS inode is being torn down, pause and try again. */
466 if (!igrab(inode)) {
467 trace_xfs_iget_skip(ip);
2451337d 468 error = -EAGAIN;
33479e05
DC
469 goto out_error;
470 }
471
472 /* We've got a live one. */
473 spin_unlock(&ip->i_flags_lock);
474 rcu_read_unlock();
475 trace_xfs_iget_hit(ip);
476 }
477
478 if (lock_flags != 0)
479 xfs_ilock(ip, lock_flags);
480
378f681c
DW
481 if (!(flags & XFS_IGET_INCORE))
482 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
ff6d6af2 483 XFS_STATS_INC(mp, xs_ig_found);
33479e05
DC
484
485 return 0;
486
487out_error:
488 spin_unlock(&ip->i_flags_lock);
489 rcu_read_unlock();
490 return error;
491}
492
493
494static int
495xfs_iget_cache_miss(
496 struct xfs_mount *mp,
497 struct xfs_perag *pag,
498 xfs_trans_t *tp,
499 xfs_ino_t ino,
500 struct xfs_inode **ipp,
501 int flags,
502 int lock_flags)
503{
504 struct xfs_inode *ip;
505 int error;
506 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
507 int iflags;
508
509 ip = xfs_inode_alloc(mp, ino);
510 if (!ip)
2451337d 511 return -ENOMEM;
33479e05
DC
512
513 error = xfs_iread(mp, tp, ip, flags);
514 if (error)
515 goto out_destroy;
516
9cfb9b47
DW
517 if (!xfs_inode_verify_forks(ip)) {
518 error = -EFSCORRUPTED;
519 goto out_destroy;
520 }
521
33479e05
DC
522 trace_xfs_iget_miss(ip);
523
ee457001
DC
524
525 /*
afca6c5b
DC
526 * Check the inode free state is valid. This also detects lookup
527 * racing with unlinks.
ee457001 528 */
afca6c5b
DC
529 error = xfs_iget_check_free_state(ip, flags);
530 if (error)
33479e05 531 goto out_destroy;
33479e05
DC
532
533 /*
534 * Preload the radix tree so we can insert safely under the
535 * write spinlock. Note that we cannot sleep inside the preload
536 * region. Since we can be called from transaction context, don't
537 * recurse into the file system.
538 */
539 if (radix_tree_preload(GFP_NOFS)) {
2451337d 540 error = -EAGAIN;
33479e05
DC
541 goto out_destroy;
542 }
543
544 /*
545 * Because the inode hasn't been added to the radix-tree yet it can't
546 * be found by another thread, so we can do the non-sleeping lock here.
547 */
548 if (lock_flags) {
549 if (!xfs_ilock_nowait(ip, lock_flags))
550 BUG();
551 }
552
553 /*
554 * These values must be set before inserting the inode into the radix
555 * tree as the moment it is inserted a concurrent lookup (allowed by the
556 * RCU locking mechanism) can find it and that lookup must see that this
557 * is an inode currently under construction (i.e. that XFS_INEW is set).
558 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
559 * memory barrier that ensures this detection works correctly at lookup
560 * time.
561 */
562 iflags = XFS_INEW;
563 if (flags & XFS_IGET_DONTCACHE)
564 iflags |= XFS_IDONTCACHE;
113a5683
CS
565 ip->i_udquot = NULL;
566 ip->i_gdquot = NULL;
92f8ff73 567 ip->i_pdquot = NULL;
33479e05
DC
568 xfs_iflags_set(ip, iflags);
569
570 /* insert the new inode */
571 spin_lock(&pag->pag_ici_lock);
572 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
573 if (unlikely(error)) {
574 WARN_ON(error != -EEXIST);
ff6d6af2 575 XFS_STATS_INC(mp, xs_ig_dup);
2451337d 576 error = -EAGAIN;
33479e05
DC
577 goto out_preload_end;
578 }
579 spin_unlock(&pag->pag_ici_lock);
580 radix_tree_preload_end();
581
582 *ipp = ip;
583 return 0;
584
585out_preload_end:
586 spin_unlock(&pag->pag_ici_lock);
587 radix_tree_preload_end();
588 if (lock_flags)
589 xfs_iunlock(ip, lock_flags);
590out_destroy:
591 __destroy_inode(VFS_I(ip));
592 xfs_inode_free(ip);
593 return error;
594}
595
596/*
597 * Look up an inode by number in the given file system.
598 * The inode is looked up in the cache held in each AG.
599 * If the inode is found in the cache, initialise the vfs inode
600 * if necessary.
601 *
602 * If it is not in core, read it in from the file system's device,
603 * add it to the cache and initialise the vfs inode.
604 *
605 * The inode is locked according to the value of the lock_flags parameter.
606 * This flag parameter indicates how and if the inode's IO lock and inode lock
607 * should be taken.
608 *
609 * mp -- the mount point structure for the current file system. It points
610 * to the inode hash table.
611 * tp -- a pointer to the current transaction if there is one. This is
612 * simply passed through to the xfs_iread() call.
613 * ino -- the number of the inode desired. This is the unique identifier
614 * within the file system for the inode being requested.
615 * lock_flags -- flags indicating how to lock the inode. See the comment
616 * for xfs_ilock() for a list of valid values.
617 */
618int
619xfs_iget(
620 xfs_mount_t *mp,
621 xfs_trans_t *tp,
622 xfs_ino_t ino,
623 uint flags,
624 uint lock_flags,
625 xfs_inode_t **ipp)
626{
627 xfs_inode_t *ip;
628 int error;
629 xfs_perag_t *pag;
630 xfs_agino_t agino;
631
632 /*
633 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
634 * doesn't get freed while it's being referenced during a
635 * radix tree traversal here. It assumes this function
636 * aqcuires only the ILOCK (and therefore it has no need to
637 * involve the IOLOCK in this synchronization).
638 */
639 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
640
641 /* reject inode numbers outside existing AGs */
642 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
2451337d 643 return -EINVAL;
33479e05 644
ff6d6af2 645 XFS_STATS_INC(mp, xs_ig_attempts);
8774cf8b 646
33479e05
DC
647 /* get the perag structure and ensure that it's inode capable */
648 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
649 agino = XFS_INO_TO_AGINO(mp, ino);
650
651again:
652 error = 0;
653 rcu_read_lock();
654 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
655
656 if (ip) {
657 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
658 if (error)
659 goto out_error_or_again;
660 } else {
661 rcu_read_unlock();
378f681c 662 if (flags & XFS_IGET_INCORE) {
ed438b47 663 error = -ENODATA;
378f681c
DW
664 goto out_error_or_again;
665 }
ff6d6af2 666 XFS_STATS_INC(mp, xs_ig_missed);
33479e05
DC
667
668 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
669 flags, lock_flags);
670 if (error)
671 goto out_error_or_again;
672 }
673 xfs_perag_put(pag);
674
675 *ipp = ip;
676
677 /*
58c90473 678 * If we have a real type for an on-disk inode, we can setup the inode
33479e05
DC
679 * now. If it's a new inode being created, xfs_ialloc will handle it.
680 */
c19b3b05 681 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
58c90473 682 xfs_setup_existing_inode(ip);
33479e05
DC
683 return 0;
684
685out_error_or_again:
378f681c 686 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
33479e05
DC
687 delay(1);
688 goto again;
689 }
690 xfs_perag_put(pag);
691 return error;
692}
693
378f681c
DW
694/*
695 * "Is this a cached inode that's also allocated?"
696 *
697 * Look up an inode by number in the given file system. If the inode is
698 * in cache and isn't in purgatory, return 1 if the inode is allocated
699 * and 0 if it is not. For all other cases (not in cache, being torn
700 * down, etc.), return a negative error code.
701 *
702 * The caller has to prevent inode allocation and freeing activity,
703 * presumably by locking the AGI buffer. This is to ensure that an
704 * inode cannot transition from allocated to freed until the caller is
705 * ready to allow that. If the inode is in an intermediate state (new,
706 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
707 * inode is not in the cache, -ENOENT will be returned. The caller must
708 * deal with these scenarios appropriately.
709 *
710 * This is a specialized use case for the online scrubber; if you're
711 * reading this, you probably want xfs_iget.
712 */
713int
714xfs_icache_inode_is_allocated(
715 struct xfs_mount *mp,
716 struct xfs_trans *tp,
717 xfs_ino_t ino,
718 bool *inuse)
719{
720 struct xfs_inode *ip;
721 int error;
722
723 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
724 if (error)
725 return error;
726
727 *inuse = !!(VFS_I(ip)->i_mode);
44a8736b 728 xfs_irele(ip);
378f681c
DW
729 return 0;
730}
731
78ae5256
DC
732/*
733 * The inode lookup is done in batches to keep the amount of lock traffic and
734 * radix tree lookups to a minimum. The batch size is a trade off between
735 * lookup reduction and stack usage. This is in the reclaim path, so we can't
736 * be too greedy.
737 */
738#define XFS_LOOKUP_BATCH 32
739
e13de955
DC
740STATIC int
741xfs_inode_ag_walk_grab(
ae2c4ac2
BF
742 struct xfs_inode *ip,
743 int flags)
e13de955
DC
744{
745 struct inode *inode = VFS_I(ip);
ae2c4ac2 746 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
e13de955 747
1a3e8f3d
DC
748 ASSERT(rcu_read_lock_held());
749
750 /*
751 * check for stale RCU freed inode
752 *
753 * If the inode has been reallocated, it doesn't matter if it's not in
754 * the AG we are walking - we are walking for writeback, so if it
755 * passes all the "valid inode" checks and is dirty, then we'll write
756 * it back anyway. If it has been reallocated and still being
757 * initialised, the XFS_INEW check below will catch it.
758 */
759 spin_lock(&ip->i_flags_lock);
760 if (!ip->i_ino)
761 goto out_unlock_noent;
762
763 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
ae2c4ac2
BF
764 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
765 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
1a3e8f3d
DC
766 goto out_unlock_noent;
767 spin_unlock(&ip->i_flags_lock);
768
e13de955
DC
769 /* nothing to sync during shutdown */
770 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
2451337d 771 return -EFSCORRUPTED;
e13de955 772
e13de955
DC
773 /* If we can't grab the inode, it must on it's way to reclaim. */
774 if (!igrab(inode))
2451337d 775 return -ENOENT;
e13de955 776
e13de955
DC
777 /* inode is valid */
778 return 0;
1a3e8f3d
DC
779
780out_unlock_noent:
781 spin_unlock(&ip->i_flags_lock);
2451337d 782 return -ENOENT;
e13de955
DC
783}
784
75f3cb13
DC
785STATIC int
786xfs_inode_ag_walk(
787 struct xfs_mount *mp,
5017e97d 788 struct xfs_perag *pag,
e0094008 789 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
790 void *args),
791 int flags,
792 void *args,
ae2c4ac2
BF
793 int tag,
794 int iter_flags)
75f3cb13 795{
75f3cb13
DC
796 uint32_t first_index;
797 int last_error = 0;
798 int skipped;
65d0f205 799 int done;
78ae5256 800 int nr_found;
75f3cb13
DC
801
802restart:
65d0f205 803 done = 0;
75f3cb13
DC
804 skipped = 0;
805 first_index = 0;
78ae5256 806 nr_found = 0;
75f3cb13 807 do {
78ae5256 808 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 809 int error = 0;
78ae5256 810 int i;
75f3cb13 811
1a3e8f3d 812 rcu_read_lock();
a454f742
BF
813
814 if (tag == -1)
815 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
816 (void **)batch, first_index,
817 XFS_LOOKUP_BATCH);
a454f742
BF
818 else
819 nr_found = radix_tree_gang_lookup_tag(
820 &pag->pag_ici_root,
821 (void **) batch, first_index,
822 XFS_LOOKUP_BATCH, tag);
823
65d0f205 824 if (!nr_found) {
1a3e8f3d 825 rcu_read_unlock();
75f3cb13 826 break;
c8e20be0 827 }
75f3cb13 828
65d0f205 829 /*
78ae5256
DC
830 * Grab the inodes before we drop the lock. if we found
831 * nothing, nr == 0 and the loop will be skipped.
65d0f205 832 */
78ae5256
DC
833 for (i = 0; i < nr_found; i++) {
834 struct xfs_inode *ip = batch[i];
835
ae2c4ac2 836 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
78ae5256
DC
837 batch[i] = NULL;
838
839 /*
1a3e8f3d
DC
840 * Update the index for the next lookup. Catch
841 * overflows into the next AG range which can occur if
842 * we have inodes in the last block of the AG and we
843 * are currently pointing to the last inode.
844 *
845 * Because we may see inodes that are from the wrong AG
846 * due to RCU freeing and reallocation, only update the
847 * index if it lies in this AG. It was a race that lead
848 * us to see this inode, so another lookup from the
849 * same index will not find it again.
78ae5256 850 */
1a3e8f3d
DC
851 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
852 continue;
78ae5256
DC
853 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
854 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
855 done = 1;
e13de955 856 }
78ae5256
DC
857
858 /* unlock now we've grabbed the inodes. */
1a3e8f3d 859 rcu_read_unlock();
e13de955 860
78ae5256
DC
861 for (i = 0; i < nr_found; i++) {
862 if (!batch[i])
863 continue;
ae2c4ac2
BF
864 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
865 xfs_iflags_test(batch[i], XFS_INEW))
866 xfs_inew_wait(batch[i]);
e0094008 867 error = execute(batch[i], flags, args);
44a8736b 868 xfs_irele(batch[i]);
2451337d 869 if (error == -EAGAIN) {
78ae5256
DC
870 skipped++;
871 continue;
872 }
2451337d 873 if (error && last_error != -EFSCORRUPTED)
78ae5256 874 last_error = error;
75f3cb13 875 }
c8e20be0
DC
876
877 /* bail out if the filesystem is corrupted. */
2451337d 878 if (error == -EFSCORRUPTED)
75f3cb13
DC
879 break;
880
8daaa831
DC
881 cond_resched();
882
78ae5256 883 } while (nr_found && !done);
75f3cb13
DC
884
885 if (skipped) {
886 delay(1);
887 goto restart;
888 }
75f3cb13
DC
889 return last_error;
890}
891
579b62fa
BF
892/*
893 * Background scanning to trim post-EOF preallocated space. This is queued
b9fe5052 894 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
579b62fa 895 */
fa5a4f57 896void
579b62fa
BF
897xfs_queue_eofblocks(
898 struct xfs_mount *mp)
899{
900 rcu_read_lock();
901 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
902 queue_delayed_work(mp->m_eofblocks_workqueue,
903 &mp->m_eofblocks_work,
904 msecs_to_jiffies(xfs_eofb_secs * 1000));
905 rcu_read_unlock();
906}
907
908void
909xfs_eofblocks_worker(
910 struct work_struct *work)
911{
912 struct xfs_mount *mp = container_of(to_delayed_work(work),
913 struct xfs_mount, m_eofblocks_work);
4b674b9a
BF
914
915 if (!sb_start_write_trylock(mp->m_super))
916 return;
579b62fa 917 xfs_icache_free_eofblocks(mp, NULL);
4b674b9a
BF
918 sb_end_write(mp->m_super);
919
579b62fa
BF
920 xfs_queue_eofblocks(mp);
921}
922
83104d44
DW
923/*
924 * Background scanning to trim preallocated CoW space. This is queued
925 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
926 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
927 */
10ddf64e 928void
83104d44
DW
929xfs_queue_cowblocks(
930 struct xfs_mount *mp)
931{
932 rcu_read_lock();
933 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
934 queue_delayed_work(mp->m_eofblocks_workqueue,
935 &mp->m_cowblocks_work,
936 msecs_to_jiffies(xfs_cowb_secs * 1000));
937 rcu_read_unlock();
938}
939
940void
941xfs_cowblocks_worker(
942 struct work_struct *work)
943{
944 struct xfs_mount *mp = container_of(to_delayed_work(work),
945 struct xfs_mount, m_cowblocks_work);
4b674b9a
BF
946
947 if (!sb_start_write_trylock(mp->m_super))
948 return;
83104d44 949 xfs_icache_free_cowblocks(mp, NULL);
4b674b9a
BF
950 sb_end_write(mp->m_super);
951
83104d44
DW
952 xfs_queue_cowblocks(mp);
953}
954
fe588ed3 955int
ae2c4ac2 956xfs_inode_ag_iterator_flags(
75f3cb13 957 struct xfs_mount *mp,
e0094008 958 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
959 void *args),
960 int flags,
ae2c4ac2
BF
961 void *args,
962 int iter_flags)
75f3cb13 963{
16fd5367 964 struct xfs_perag *pag;
75f3cb13
DC
965 int error = 0;
966 int last_error = 0;
967 xfs_agnumber_t ag;
968
16fd5367 969 ag = 0;
65d0f205
DC
970 while ((pag = xfs_perag_get(mp, ag))) {
971 ag = pag->pag_agno + 1;
ae2c4ac2
BF
972 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
973 iter_flags);
a454f742
BF
974 xfs_perag_put(pag);
975 if (error) {
976 last_error = error;
2451337d 977 if (error == -EFSCORRUPTED)
a454f742
BF
978 break;
979 }
980 }
b474c7ae 981 return last_error;
a454f742
BF
982}
983
ae2c4ac2
BF
984int
985xfs_inode_ag_iterator(
986 struct xfs_mount *mp,
987 int (*execute)(struct xfs_inode *ip, int flags,
988 void *args),
989 int flags,
990 void *args)
991{
992 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
993}
994
a454f742
BF
995int
996xfs_inode_ag_iterator_tag(
997 struct xfs_mount *mp,
e0094008 998 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
999 void *args),
1000 int flags,
1001 void *args,
1002 int tag)
1003{
1004 struct xfs_perag *pag;
1005 int error = 0;
1006 int last_error = 0;
1007 xfs_agnumber_t ag;
1008
1009 ag = 0;
1010 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1011 ag = pag->pag_agno + 1;
ae2c4ac2
BF
1012 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1013 0);
5017e97d 1014 xfs_perag_put(pag);
75f3cb13
DC
1015 if (error) {
1016 last_error = error;
2451337d 1017 if (error == -EFSCORRUPTED)
75f3cb13
DC
1018 break;
1019 }
1020 }
b474c7ae 1021 return last_error;
75f3cb13
DC
1022}
1023
e3a20c0b
DC
1024/*
1025 * Grab the inode for reclaim exclusively.
1026 * Return 0 if we grabbed it, non-zero otherwise.
1027 */
1028STATIC int
1029xfs_reclaim_inode_grab(
1030 struct xfs_inode *ip,
1031 int flags)
1032{
1a3e8f3d
DC
1033 ASSERT(rcu_read_lock_held());
1034
1035 /* quick check for stale RCU freed inode */
1036 if (!ip->i_ino)
1037 return 1;
e3a20c0b
DC
1038
1039 /*
474fce06
CH
1040 * If we are asked for non-blocking operation, do unlocked checks to
1041 * see if the inode already is being flushed or in reclaim to avoid
1042 * lock traffic.
e3a20c0b
DC
1043 */
1044 if ((flags & SYNC_TRYLOCK) &&
474fce06 1045 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 1046 return 1;
e3a20c0b
DC
1047
1048 /*
1049 * The radix tree lock here protects a thread in xfs_iget from racing
1050 * with us starting reclaim on the inode. Once we have the
1051 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
1052 *
1053 * Due to RCU lookup, we may find inodes that have been freed and only
1054 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1055 * aren't candidates for reclaim at all, so we must check the
1056 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
1057 */
1058 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
1059 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1060 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1061 /* not a reclaim candidate. */
e3a20c0b
DC
1062 spin_unlock(&ip->i_flags_lock);
1063 return 1;
1064 }
1065 __xfs_iflags_set(ip, XFS_IRECLAIM);
1066 spin_unlock(&ip->i_flags_lock);
1067 return 0;
1068}
1069
777df5af 1070/*
8a48088f
CH
1071 * Inodes in different states need to be treated differently. The following
1072 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
1073 *
1074 * inode state iflush ret required action
1075 * --------------- ---------- ---------------
1076 * bad - reclaim
1077 * shutdown EIO unpin and reclaim
1078 * clean, unpinned 0 reclaim
1079 * stale, unpinned 0 reclaim
c854363e
DC
1080 * clean, pinned(*) 0 requeue
1081 * stale, pinned EAGAIN requeue
8a48088f
CH
1082 * dirty, async - requeue
1083 * dirty, sync 0 reclaim
777df5af
DC
1084 *
1085 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1086 * handled anyway given the order of checks implemented.
1087 *
c854363e
DC
1088 * Also, because we get the flush lock first, we know that any inode that has
1089 * been flushed delwri has had the flush completed by the time we check that
8a48088f 1090 * the inode is clean.
c854363e 1091 *
8a48088f
CH
1092 * Note that because the inode is flushed delayed write by AIL pushing, the
1093 * flush lock may already be held here and waiting on it can result in very
1094 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1095 * the caller should push the AIL first before trying to reclaim inodes to
1096 * minimise the amount of time spent waiting. For background relaim, we only
1097 * bother to reclaim clean inodes anyway.
c854363e 1098 *
777df5af
DC
1099 * Hence the order of actions after gaining the locks should be:
1100 * bad => reclaim
1101 * shutdown => unpin and reclaim
8a48088f 1102 * pinned, async => requeue
c854363e 1103 * pinned, sync => unpin
777df5af
DC
1104 * stale => reclaim
1105 * clean => reclaim
8a48088f 1106 * dirty, async => requeue
c854363e 1107 * dirty, sync => flush, wait and reclaim
777df5af 1108 */
75f3cb13 1109STATIC int
c8e20be0 1110xfs_reclaim_inode(
75f3cb13
DC
1111 struct xfs_inode *ip,
1112 struct xfs_perag *pag,
c8e20be0 1113 int sync_mode)
fce08f2f 1114{
4c46819a 1115 struct xfs_buf *bp = NULL;
8a17d7dd 1116 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
4c46819a 1117 int error;
777df5af 1118
1bfd8d04
DC
1119restart:
1120 error = 0;
c8e20be0 1121 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
1122 if (!xfs_iflock_nowait(ip)) {
1123 if (!(sync_mode & SYNC_WAIT))
1124 goto out;
1125 xfs_iflock(ip);
1126 }
7a3be02b 1127
777df5af
DC
1128 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1129 xfs_iunpin_wait(ip);
98efe8af 1130 /* xfs_iflush_abort() drops the flush lock */
04913fdd 1131 xfs_iflush_abort(ip, false);
777df5af
DC
1132 goto reclaim;
1133 }
c854363e 1134 if (xfs_ipincount(ip)) {
8a48088f
CH
1135 if (!(sync_mode & SYNC_WAIT))
1136 goto out_ifunlock;
777df5af 1137 xfs_iunpin_wait(ip);
c854363e 1138 }
98efe8af
BF
1139 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1140 xfs_ifunlock(ip);
777df5af 1141 goto reclaim;
98efe8af 1142 }
777df5af 1143
8a48088f
CH
1144 /*
1145 * Never flush out dirty data during non-blocking reclaim, as it would
1146 * just contend with AIL pushing trying to do the same job.
1147 */
1148 if (!(sync_mode & SYNC_WAIT))
1149 goto out_ifunlock;
1150
1bfd8d04
DC
1151 /*
1152 * Now we have an inode that needs flushing.
1153 *
4c46819a 1154 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 1155 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 1156 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
1157 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1158 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
1159 *
1160 * As xfs_ifree_cluser() must gather all inodes that are active in the
1161 * cache to mark them stale, if we hit this case we don't actually want
1162 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
1163 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1164 * inode, back off and try again. Hopefully the next pass through will
1165 * see the stale flag set on the inode.
1bfd8d04 1166 */
4c46819a 1167 error = xfs_iflush(ip, &bp);
2451337d 1168 if (error == -EAGAIN) {
8a48088f
CH
1169 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1170 /* backoff longer than in xfs_ifree_cluster */
1171 delay(2);
1172 goto restart;
c854363e 1173 }
c854363e 1174
4c46819a
CH
1175 if (!error) {
1176 error = xfs_bwrite(bp);
1177 xfs_buf_relse(bp);
1178 }
1179
777df5af 1180reclaim:
98efe8af
BF
1181 ASSERT(!xfs_isiflocked(ip));
1182
8a17d7dd
DC
1183 /*
1184 * Because we use RCU freeing we need to ensure the inode always appears
1185 * to be reclaimed with an invalid inode number when in the free state.
98efe8af 1186 * We do this as early as possible under the ILOCK so that
f2e9ad21
OS
1187 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1188 * detect races with us here. By doing this, we guarantee that once
1189 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1190 * it will see either a valid inode that will serialise correctly, or it
1191 * will see an invalid inode that it can skip.
8a17d7dd
DC
1192 */
1193 spin_lock(&ip->i_flags_lock);
1194 ip->i_flags = XFS_IRECLAIM;
1195 ip->i_ino = 0;
1196 spin_unlock(&ip->i_flags_lock);
1197
c8e20be0 1198 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1199
ff6d6af2 1200 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
2f11feab
DC
1201 /*
1202 * Remove the inode from the per-AG radix tree.
1203 *
1204 * Because radix_tree_delete won't complain even if the item was never
1205 * added to the tree assert that it's been there before to catch
1206 * problems with the inode life time early on.
1207 */
1a427ab0 1208 spin_lock(&pag->pag_ici_lock);
2f11feab 1209 if (!radix_tree_delete(&pag->pag_ici_root,
8a17d7dd 1210 XFS_INO_TO_AGINO(ip->i_mount, ino)))
2f11feab 1211 ASSERT(0);
545c0889 1212 xfs_perag_clear_reclaim_tag(pag);
1a427ab0 1213 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
1214
1215 /*
1216 * Here we do an (almost) spurious inode lock in order to coordinate
1217 * with inode cache radix tree lookups. This is because the lookup
1218 * can reference the inodes in the cache without taking references.
1219 *
1220 * We make that OK here by ensuring that we wait until the inode is
ad637a10 1221 * unlocked after the lookup before we go ahead and free it.
2f11feab 1222 */
ad637a10 1223 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 1224 xfs_qm_dqdetach(ip);
ad637a10 1225 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1226
8a17d7dd 1227 __xfs_inode_free(ip);
ad637a10 1228 return error;
8a48088f
CH
1229
1230out_ifunlock:
1231 xfs_ifunlock(ip);
1232out:
1233 xfs_iflags_clear(ip, XFS_IRECLAIM);
1234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1235 /*
2451337d 1236 * We could return -EAGAIN here to make reclaim rescan the inode tree in
8a48088f 1237 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1238 * waiting for IO to complete and the reclaim work never goes back to
1239 * the idle state. Instead, return 0 to let the next scheduled
1240 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1241 */
1242 return 0;
7a3be02b
DC
1243}
1244
65d0f205
DC
1245/*
1246 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1247 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1248 * then a shut down during filesystem unmount reclaim walk leak all the
1249 * unreclaimed inodes.
1250 */
33479e05 1251STATIC int
65d0f205
DC
1252xfs_reclaim_inodes_ag(
1253 struct xfs_mount *mp,
1254 int flags,
1255 int *nr_to_scan)
1256{
1257 struct xfs_perag *pag;
1258 int error = 0;
1259 int last_error = 0;
1260 xfs_agnumber_t ag;
69b491c2
DC
1261 int trylock = flags & SYNC_TRYLOCK;
1262 int skipped;
65d0f205 1263
69b491c2 1264restart:
65d0f205 1265 ag = 0;
69b491c2 1266 skipped = 0;
65d0f205
DC
1267 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1268 unsigned long first_index = 0;
1269 int done = 0;
e3a20c0b 1270 int nr_found = 0;
65d0f205
DC
1271
1272 ag = pag->pag_agno + 1;
1273
69b491c2
DC
1274 if (trylock) {
1275 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1276 skipped++;
f83282a8 1277 xfs_perag_put(pag);
69b491c2
DC
1278 continue;
1279 }
1280 first_index = pag->pag_ici_reclaim_cursor;
1281 } else
1282 mutex_lock(&pag->pag_ici_reclaim_lock);
1283
65d0f205 1284 do {
e3a20c0b
DC
1285 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1286 int i;
65d0f205 1287
1a3e8f3d 1288 rcu_read_lock();
e3a20c0b
DC
1289 nr_found = radix_tree_gang_lookup_tag(
1290 &pag->pag_ici_root,
1291 (void **)batch, first_index,
1292 XFS_LOOKUP_BATCH,
65d0f205
DC
1293 XFS_ICI_RECLAIM_TAG);
1294 if (!nr_found) {
b2232219 1295 done = 1;
1a3e8f3d 1296 rcu_read_unlock();
65d0f205
DC
1297 break;
1298 }
1299
1300 /*
e3a20c0b
DC
1301 * Grab the inodes before we drop the lock. if we found
1302 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1303 */
e3a20c0b
DC
1304 for (i = 0; i < nr_found; i++) {
1305 struct xfs_inode *ip = batch[i];
1306
1307 if (done || xfs_reclaim_inode_grab(ip, flags))
1308 batch[i] = NULL;
1309
1310 /*
1311 * Update the index for the next lookup. Catch
1312 * overflows into the next AG range which can
1313 * occur if we have inodes in the last block of
1314 * the AG and we are currently pointing to the
1315 * last inode.
1a3e8f3d
DC
1316 *
1317 * Because we may see inodes that are from the
1318 * wrong AG due to RCU freeing and
1319 * reallocation, only update the index if it
1320 * lies in this AG. It was a race that lead us
1321 * to see this inode, so another lookup from
1322 * the same index will not find it again.
e3a20c0b 1323 */
1a3e8f3d
DC
1324 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1325 pag->pag_agno)
1326 continue;
e3a20c0b
DC
1327 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1328 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1329 done = 1;
1330 }
65d0f205 1331
e3a20c0b 1332 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1333 rcu_read_unlock();
e3a20c0b
DC
1334
1335 for (i = 0; i < nr_found; i++) {
1336 if (!batch[i])
1337 continue;
1338 error = xfs_reclaim_inode(batch[i], pag, flags);
2451337d 1339 if (error && last_error != -EFSCORRUPTED)
e3a20c0b
DC
1340 last_error = error;
1341 }
1342
1343 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1344
8daaa831
DC
1345 cond_resched();
1346
e3a20c0b 1347 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1348
69b491c2
DC
1349 if (trylock && !done)
1350 pag->pag_ici_reclaim_cursor = first_index;
1351 else
1352 pag->pag_ici_reclaim_cursor = 0;
1353 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1354 xfs_perag_put(pag);
1355 }
69b491c2
DC
1356
1357 /*
1358 * if we skipped any AG, and we still have scan count remaining, do
1359 * another pass this time using blocking reclaim semantics (i.e
1360 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1361 * ensure that when we get more reclaimers than AGs we block rather
1362 * than spin trying to execute reclaim.
1363 */
8daaa831 1364 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1365 trylock = 0;
1366 goto restart;
1367 }
b474c7ae 1368 return last_error;
65d0f205
DC
1369}
1370
7a3be02b
DC
1371int
1372xfs_reclaim_inodes(
1373 xfs_mount_t *mp,
7a3be02b
DC
1374 int mode)
1375{
65d0f205
DC
1376 int nr_to_scan = INT_MAX;
1377
1378 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1379}
1380
1381/*
8daaa831 1382 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1383 *
1384 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1385 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1386 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1387 * them to be cleaned, which we hope will not be very long due to the
1388 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1389 */
0a234c6d 1390long
8daaa831
DC
1391xfs_reclaim_inodes_nr(
1392 struct xfs_mount *mp,
1393 int nr_to_scan)
9bf729c0 1394{
8daaa831 1395 /* kick background reclaimer and push the AIL */
5889608d 1396 xfs_reclaim_work_queue(mp);
8daaa831 1397 xfs_ail_push_all(mp->m_ail);
a7b339f1 1398
0a234c6d 1399 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
8daaa831 1400}
9bf729c0 1401
8daaa831
DC
1402/*
1403 * Return the number of reclaimable inodes in the filesystem for
1404 * the shrinker to determine how much to reclaim.
1405 */
1406int
1407xfs_reclaim_inodes_count(
1408 struct xfs_mount *mp)
1409{
1410 struct xfs_perag *pag;
1411 xfs_agnumber_t ag = 0;
1412 int reclaimable = 0;
9bf729c0 1413
65d0f205
DC
1414 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1415 ag = pag->pag_agno + 1;
70e60ce7
DC
1416 reclaimable += pag->pag_ici_reclaimable;
1417 xfs_perag_put(pag);
9bf729c0 1418 }
9bf729c0
DC
1419 return reclaimable;
1420}
1421
3e3f9f58
BF
1422STATIC int
1423xfs_inode_match_id(
1424 struct xfs_inode *ip,
1425 struct xfs_eofblocks *eofb)
1426{
b9fe5052
DE
1427 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1428 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1b556048 1429 return 0;
3e3f9f58 1430
b9fe5052
DE
1431 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1432 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1b556048
BF
1433 return 0;
1434
b9fe5052 1435 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
de7a866f 1436 ip->i_d.di_projid != eofb->eof_prid)
1b556048
BF
1437 return 0;
1438
1439 return 1;
3e3f9f58
BF
1440}
1441
f4526397
BF
1442/*
1443 * A union-based inode filtering algorithm. Process the inode if any of the
1444 * criteria match. This is for global/internal scans only.
1445 */
1446STATIC int
1447xfs_inode_match_id_union(
1448 struct xfs_inode *ip,
1449 struct xfs_eofblocks *eofb)
1450{
1451 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1452 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1453 return 1;
1454
1455 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1456 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1457 return 1;
1458
1459 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
de7a866f 1460 ip->i_d.di_projid == eofb->eof_prid)
f4526397
BF
1461 return 1;
1462
1463 return 0;
1464}
1465
41176a68
BF
1466STATIC int
1467xfs_inode_free_eofblocks(
1468 struct xfs_inode *ip,
41176a68
BF
1469 int flags,
1470 void *args)
1471{
a36b9261 1472 int ret = 0;
3e3f9f58 1473 struct xfs_eofblocks *eofb = args;
f4526397 1474 int match;
5400da7d 1475
41176a68
BF
1476 if (!xfs_can_free_eofblocks(ip, false)) {
1477 /* inode could be preallocated or append-only */
1478 trace_xfs_inode_free_eofblocks_invalid(ip);
1479 xfs_inode_clear_eofblocks_tag(ip);
1480 return 0;
1481 }
1482
1483 /*
1484 * If the mapping is dirty the operation can block and wait for some
1485 * time. Unless we are waiting, skip it.
1486 */
1487 if (!(flags & SYNC_WAIT) &&
1488 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1489 return 0;
1490
00ca79a0 1491 if (eofb) {
f4526397
BF
1492 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1493 match = xfs_inode_match_id_union(ip, eofb);
1494 else
1495 match = xfs_inode_match_id(ip, eofb);
1496 if (!match)
00ca79a0
BF
1497 return 0;
1498
1499 /* skip the inode if the file size is too small */
1500 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1501 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1502 return 0;
1503 }
3e3f9f58 1504
a36b9261
BF
1505 /*
1506 * If the caller is waiting, return -EAGAIN to keep the background
1507 * scanner moving and revisit the inode in a subsequent pass.
1508 */
c3155097 1509 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
a36b9261
BF
1510 if (flags & SYNC_WAIT)
1511 ret = -EAGAIN;
1512 return ret;
1513 }
1514 ret = xfs_free_eofblocks(ip);
c3155097 1515 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
41176a68
BF
1516
1517 return ret;
1518}
1519
83104d44
DW
1520static int
1521__xfs_icache_free_eofblocks(
41176a68 1522 struct xfs_mount *mp,
83104d44
DW
1523 struct xfs_eofblocks *eofb,
1524 int (*execute)(struct xfs_inode *ip, int flags,
1525 void *args),
1526 int tag)
41176a68 1527{
8ca149de
BF
1528 int flags = SYNC_TRYLOCK;
1529
1530 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1531 flags = SYNC_WAIT;
1532
83104d44
DW
1533 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1534 eofb, tag);
1535}
1536
1537int
1538xfs_icache_free_eofblocks(
1539 struct xfs_mount *mp,
1540 struct xfs_eofblocks *eofb)
1541{
1542 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1543 XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1544}
1545
dc06f398
BF
1546/*
1547 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1548 * multiple quotas, we don't know exactly which quota caused an allocation
1549 * failure. We make a best effort by including each quota under low free space
1550 * conditions (less than 1% free space) in the scan.
1551 */
83104d44
DW
1552static int
1553__xfs_inode_free_quota_eofblocks(
1554 struct xfs_inode *ip,
1555 int (*execute)(struct xfs_mount *mp,
1556 struct xfs_eofblocks *eofb))
dc06f398
BF
1557{
1558 int scan = 0;
1559 struct xfs_eofblocks eofb = {0};
1560 struct xfs_dquot *dq;
1561
dc06f398 1562 /*
c3155097 1563 * Run a sync scan to increase effectiveness and use the union filter to
dc06f398
BF
1564 * cover all applicable quotas in a single scan.
1565 */
dc06f398
BF
1566 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1567
1568 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1569 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1570 if (dq && xfs_dquot_lowsp(dq)) {
1571 eofb.eof_uid = VFS_I(ip)->i_uid;
1572 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1573 scan = 1;
1574 }
1575 }
1576
1577 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1578 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1579 if (dq && xfs_dquot_lowsp(dq)) {
1580 eofb.eof_gid = VFS_I(ip)->i_gid;
1581 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1582 scan = 1;
1583 }
1584 }
1585
1586 if (scan)
83104d44 1587 execute(ip->i_mount, &eofb);
dc06f398
BF
1588
1589 return scan;
1590}
1591
83104d44
DW
1592int
1593xfs_inode_free_quota_eofblocks(
1594 struct xfs_inode *ip)
1595{
1596 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1597}
1598
91aae6be
DW
1599static inline unsigned long
1600xfs_iflag_for_tag(
1601 int tag)
1602{
1603 switch (tag) {
1604 case XFS_ICI_EOFBLOCKS_TAG:
1605 return XFS_IEOFBLOCKS;
1606 case XFS_ICI_COWBLOCKS_TAG:
1607 return XFS_ICOWBLOCKS;
1608 default:
1609 ASSERT(0);
1610 return 0;
1611 }
1612}
1613
83104d44 1614static void
91aae6be 1615__xfs_inode_set_blocks_tag(
83104d44
DW
1616 xfs_inode_t *ip,
1617 void (*execute)(struct xfs_mount *mp),
1618 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1619 int error, unsigned long caller_ip),
1620 int tag)
27b52867
BF
1621{
1622 struct xfs_mount *mp = ip->i_mount;
1623 struct xfs_perag *pag;
1624 int tagged;
1625
85a6e764
CH
1626 /*
1627 * Don't bother locking the AG and looking up in the radix trees
1628 * if we already know that we have the tag set.
1629 */
91aae6be 1630 if (ip->i_flags & xfs_iflag_for_tag(tag))
85a6e764
CH
1631 return;
1632 spin_lock(&ip->i_flags_lock);
91aae6be 1633 ip->i_flags |= xfs_iflag_for_tag(tag);
85a6e764
CH
1634 spin_unlock(&ip->i_flags_lock);
1635
27b52867
BF
1636 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1637 spin_lock(&pag->pag_ici_lock);
27b52867 1638
83104d44 1639 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
27b52867 1640 radix_tree_tag_set(&pag->pag_ici_root,
83104d44 1641 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
27b52867
BF
1642 if (!tagged) {
1643 /* propagate the eofblocks tag up into the perag radix tree */
1644 spin_lock(&ip->i_mount->m_perag_lock);
1645 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1646 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1647 tag);
27b52867 1648 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1649
1650 /* kick off background trimming */
83104d44 1651 execute(ip->i_mount);
27b52867 1652
83104d44 1653 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1654 }
1655
1656 spin_unlock(&pag->pag_ici_lock);
1657 xfs_perag_put(pag);
1658}
1659
1660void
83104d44 1661xfs_inode_set_eofblocks_tag(
27b52867 1662 xfs_inode_t *ip)
83104d44
DW
1663{
1664 trace_xfs_inode_set_eofblocks_tag(ip);
91aae6be 1665 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
83104d44
DW
1666 trace_xfs_perag_set_eofblocks,
1667 XFS_ICI_EOFBLOCKS_TAG);
1668}
1669
1670static void
91aae6be 1671__xfs_inode_clear_blocks_tag(
83104d44
DW
1672 xfs_inode_t *ip,
1673 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1674 int error, unsigned long caller_ip),
1675 int tag)
27b52867
BF
1676{
1677 struct xfs_mount *mp = ip->i_mount;
1678 struct xfs_perag *pag;
1679
85a6e764 1680 spin_lock(&ip->i_flags_lock);
91aae6be 1681 ip->i_flags &= ~xfs_iflag_for_tag(tag);
85a6e764
CH
1682 spin_unlock(&ip->i_flags_lock);
1683
27b52867
BF
1684 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1685 spin_lock(&pag->pag_ici_lock);
27b52867
BF
1686
1687 radix_tree_tag_clear(&pag->pag_ici_root,
83104d44
DW
1688 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1689 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
27b52867
BF
1690 /* clear the eofblocks tag from the perag radix tree */
1691 spin_lock(&ip->i_mount->m_perag_lock);
1692 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1693 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1694 tag);
27b52867 1695 spin_unlock(&ip->i_mount->m_perag_lock);
83104d44 1696 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1697 }
1698
1699 spin_unlock(&pag->pag_ici_lock);
1700 xfs_perag_put(pag);
1701}
1702
83104d44
DW
1703void
1704xfs_inode_clear_eofblocks_tag(
1705 xfs_inode_t *ip)
1706{
1707 trace_xfs_inode_clear_eofblocks_tag(ip);
91aae6be 1708 return __xfs_inode_clear_blocks_tag(ip,
83104d44
DW
1709 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1710}
1711
1712/*
be78ff0e
DW
1713 * Set ourselves up to free CoW blocks from this file. If it's already clean
1714 * then we can bail out quickly, but otherwise we must back off if the file
1715 * is undergoing some kind of write.
83104d44 1716 */
be78ff0e
DW
1717static bool
1718xfs_prep_free_cowblocks(
51d62690 1719 struct xfs_inode *ip)
83104d44 1720{
39937234
BF
1721 /*
1722 * Just clear the tag if we have an empty cow fork or none at all. It's
1723 * possible the inode was fully unshared since it was originally tagged.
1724 */
51d62690 1725 if (!xfs_inode_has_cow_data(ip)) {
83104d44
DW
1726 trace_xfs_inode_free_cowblocks_invalid(ip);
1727 xfs_inode_clear_cowblocks_tag(ip);
be78ff0e 1728 return false;
83104d44
DW
1729 }
1730
1731 /*
1732 * If the mapping is dirty or under writeback we cannot touch the
1733 * CoW fork. Leave it alone if we're in the midst of a directio.
1734 */
a1b7a4de
CH
1735 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1736 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
83104d44
DW
1737 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1738 atomic_read(&VFS_I(ip)->i_dio_count))
be78ff0e
DW
1739 return false;
1740
1741 return true;
1742}
1743
1744/*
1745 * Automatic CoW Reservation Freeing
1746 *
1747 * These functions automatically garbage collect leftover CoW reservations
1748 * that were made on behalf of a cowextsize hint when we start to run out
1749 * of quota or when the reservations sit around for too long. If the file
1750 * has dirty pages or is undergoing writeback, its CoW reservations will
1751 * be retained.
1752 *
1753 * The actual garbage collection piggybacks off the same code that runs
1754 * the speculative EOF preallocation garbage collector.
1755 */
1756STATIC int
1757xfs_inode_free_cowblocks(
1758 struct xfs_inode *ip,
1759 int flags,
1760 void *args)
1761{
1762 struct xfs_eofblocks *eofb = args;
be78ff0e
DW
1763 int match;
1764 int ret = 0;
1765
51d62690 1766 if (!xfs_prep_free_cowblocks(ip))
83104d44
DW
1767 return 0;
1768
1769 if (eofb) {
1770 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1771 match = xfs_inode_match_id_union(ip, eofb);
1772 else
1773 match = xfs_inode_match_id(ip, eofb);
1774 if (!match)
1775 return 0;
1776
1777 /* skip the inode if the file size is too small */
1778 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1779 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1780 return 0;
83104d44
DW
1781 }
1782
1783 /* Free the CoW blocks */
c3155097
BF
1784 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1785 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
83104d44 1786
be78ff0e
DW
1787 /*
1788 * Check again, nobody else should be able to dirty blocks or change
1789 * the reflink iflag now that we have the first two locks held.
1790 */
51d62690 1791 if (xfs_prep_free_cowblocks(ip))
be78ff0e 1792 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
83104d44 1793
c3155097
BF
1794 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1795 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83104d44
DW
1796
1797 return ret;
1798}
1799
1800int
1801xfs_icache_free_cowblocks(
1802 struct xfs_mount *mp,
1803 struct xfs_eofblocks *eofb)
1804{
1805 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1806 XFS_ICI_COWBLOCKS_TAG);
1807}
1808
1809int
1810xfs_inode_free_quota_cowblocks(
1811 struct xfs_inode *ip)
1812{
1813 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1814}
1815
1816void
1817xfs_inode_set_cowblocks_tag(
1818 xfs_inode_t *ip)
1819{
7b7381f0 1820 trace_xfs_inode_set_cowblocks_tag(ip);
91aae6be 1821 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
7b7381f0 1822 trace_xfs_perag_set_cowblocks,
83104d44
DW
1823 XFS_ICI_COWBLOCKS_TAG);
1824}
1825
1826void
1827xfs_inode_clear_cowblocks_tag(
1828 xfs_inode_t *ip)
1829{
7b7381f0 1830 trace_xfs_inode_clear_cowblocks_tag(ip);
91aae6be 1831 return __xfs_inode_clear_blocks_tag(ip,
7b7381f0 1832 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
83104d44 1833}
d6b636eb
DW
1834
1835/* Disable post-EOF and CoW block auto-reclamation. */
1836void
ed30dcbd 1837xfs_stop_block_reaping(
d6b636eb
DW
1838 struct xfs_mount *mp)
1839{
1840 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1841 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1842}
1843
1844/* Enable post-EOF and CoW block auto-reclamation. */
1845void
ed30dcbd 1846xfs_start_block_reaping(
d6b636eb
DW
1847 struct xfs_mount *mp)
1848{
1849 xfs_queue_eofblocks(mp);
1850 xfs_queue_cowblocks(mp);
1851}