]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/xfs/xfs_inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[thirdparty/linux.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_sb.h"
1da177e4 15#include "xfs_mount.h"
3ab78df2 16#include "xfs_defer.h"
a4fbe6ab 17#include "xfs_inode.h"
c24b5dfa 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_attr.h"
239880ef
DC
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
1da177e4 22#include "xfs_buf_item.h"
a844f451 23#include "xfs_inode_item.h"
a844f451
NS
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
68988114 26#include "xfs_bmap_util.h"
e9e899a2 27#include "xfs_errortag.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_quota.h"
2a82b8be 30#include "xfs_filestream.h"
0b1b213f 31#include "xfs_trace.h"
33479e05 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_symlink.h"
239880ef
DC
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
a4fbe6ab 36#include "xfs_bmap_btree.h"
aa8968f2 37#include "xfs_reflink.h"
1da177e4 38
1da177e4 39kmem_zone_t *xfs_inode_zone;
1da177e4
LT
40
41/*
8f04c47a 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
54d7b5c1
DC
47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 50
2a0ec1d9
DC
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
bdb2ed2d
CH
58 /*
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
61 */
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
2a0ec1d9
DC
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69}
70
f7ca3522
DW
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
f7ca3522
DW
76 */
77xfs_extlen_t
78xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80{
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
e153aa79
DW
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
f7ca3522
DW
92}
93
fa96acad 94/*
efa70be1
CH
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
fa96acad 105 *
efa70be1 106 * The functions return a value which should be given to the corresponding
01f4f327 107 * xfs_iunlock() call.
fa96acad
DC
108 */
109uint
309ecac8
CH
110xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
fa96acad 112{
309ecac8 113 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 114
309ecac8
CH
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 117 lock_mode = XFS_ILOCK_EXCL;
fa96acad 118 xfs_ilock(ip, lock_mode);
fa96acad
DC
119 return lock_mode;
120}
121
efa70be1
CH
122uint
123xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
fa96acad 125{
efa70be1
CH
126 uint lock_mode = XFS_ILOCK_SHARED;
127
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
fa96acad
DC
133}
134
135/*
65523218
CH
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
fa96acad 139 *
653c60b6
DC
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 142 *
653c60b6
DC
143 * Basic locking order:
144 *
65523218 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
146 *
147 * mmap_sem locking order:
148 *
65523218 149 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
150 * mmap_sem -> i_mmap_lock -> page_lock
151 *
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
65523218 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
157 * page faults already hold the mmap_sem.
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
fa96acad
DC
164 */
165void
166xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169{
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 184
65523218
CH
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
fa96acad 192
653c60b6
DC
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
fa96acad
DC
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202}
203
204/*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216int
217xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220{
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
241 goto out;
242 }
653c60b6
DC
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
fa96acad
DC
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
653c60b6 254 goto out_undo_mmaplock;
fa96acad
DC
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
653c60b6 257 goto out_undo_mmaplock;
fa96acad
DC
258 }
259 return 1;
260
653c60b6
DC
261out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266out_undo_iolock:
fa96acad 267 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 268 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 269 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 270 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 271out:
fa96acad
DC
272 return 0;
273}
274
275/*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287void
288xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291{
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 307 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 308 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 309 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 310
653c60b6
DC
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
fa96acad
DC
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322}
323
324/*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328void
329xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332{
653c60b6
DC
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
653c60b6
DC
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
fa96acad 341 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 342 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345}
346
742ae1e3 347#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
348int
349xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352{
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
653c60b6
DC
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
fa96acad
DC
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
370 }
371
372 ASSERT(0);
373 return 0;
374}
375#endif
376
b6a9947e
DC
377/*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
384static bool
385xfs_lockdep_subclass_ok(
386 int subclass)
387{
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389}
390#else
391#define xfs_lockdep_subclass_ok(subclass) (true)
392#endif
393
c24b5dfa 394/*
653c60b6 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
c24b5dfa
DC
399 */
400static inline int
401xfs_lock_inumorder(int lock_mode, int subclass)
402{
0952c818
DC
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
3403ccc0 407 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 408
653c60b6 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 411 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
417 }
418
0952c818
DC
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
c24b5dfa 423
0952c818 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
425}
426
427/*
95afcf5c
DC
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
c24b5dfa 430 *
95afcf5c
DC
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
0952c818
DC
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
c24b5dfa 441 */
0d5a75e9 442static void
c24b5dfa 443xfs_lock_inodes(
efe2330f
CH
444 struct xfs_inode **ips,
445 int inodes,
446 uint lock_mode)
c24b5dfa 447{
efe2330f
CH
448 int attempts = 0, i, j, try_lock;
449 struct xfs_log_item *lp;
c24b5dfa 450
0952c818
DC
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
95afcf5c 458 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
0952c818
DC
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
472
473 try_lock = 0;
474 i = 0;
c24b5dfa
DC
475again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
95afcf5c 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
480 continue;
481
482 /*
95afcf5c
DC
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 485 */
c24b5dfa
DC
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 488 lp = &ips[j]->i_itemp->ili_item;
22525c17 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 490 try_lock++;
c24b5dfa
DC
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
95afcf5c
DC
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
c24b5dfa 509
95afcf5c
DC
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
c24b5dfa 516 /*
95afcf5c
DC
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
c24b5dfa 520 */
95afcf5c
DC
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
c24b5dfa 523
95afcf5c
DC
524 xfs_iunlock(ips[j], lock_mode);
525 }
c24b5dfa 526
95afcf5c
DC
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
c24b5dfa 529 }
95afcf5c
DC
530 i = 0;
531 try_lock = 0;
532 goto again;
c24b5dfa 533 }
c24b5dfa
DC
534}
535
536/*
653c60b6 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
c24b5dfa
DC
543 */
544void
545xfs_lock_two_inodes(
7c2d238a
DW
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
c24b5dfa 550{
7c2d238a
DW
551 struct xfs_inode *temp;
552 uint mode_temp;
c24b5dfa 553 int attempts = 0;
efe2330f 554 struct xfs_log_item *lp;
c24b5dfa 555
7c2d238a
DW
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 568
c24b5dfa
DC
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
7c2d238a
DW
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
c24b5dfa
DC
578 }
579
580 again:
7c2d238a 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
b3b14aac 588 lp = &ip0->i_itemp->ili_item;
22525c17 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
7c2d238a 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
598 }
599}
600
fa96acad
DC
601void
602__xfs_iflock(
603 struct xfs_inode *ip)
604{
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607
608 do {
21417136 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
610 if (xfs_isiflocked(ip))
611 io_schedule();
612 } while (!xfs_iflock_nowait(ip));
613
21417136 614 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
615}
616
1da177e4
LT
617STATIC uint
618_xfs_dic2xflags(
c8ce540d 619 uint16_t di_flags,
58f88ca2
DC
620 uint64_t di_flags2,
621 bool has_attr)
1da177e4
LT
622{
623 uint flags = 0;
624
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 627 flags |= FS_XFLAG_REALTIME;
1da177e4 628 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 629 flags |= FS_XFLAG_PREALLOC;
1da177e4 630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 631 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 632 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 633 flags |= FS_XFLAG_APPEND;
1da177e4 634 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 635 flags |= FS_XFLAG_SYNC;
1da177e4 636 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 637 flags |= FS_XFLAG_NOATIME;
1da177e4 638 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 639 flags |= FS_XFLAG_NODUMP;
1da177e4 640 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 641 flags |= FS_XFLAG_RTINHERIT;
1da177e4 642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 643 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 645 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 646 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 647 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 649 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 650 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 651 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 652 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 653 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
654 }
655
58f88ca2
DC
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
f7ca3522
DW
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
661 }
662
663 if (has_attr)
664 flags |= FS_XFLAG_HASATTR;
665
1da177e4
LT
666 return flags;
667}
668
669uint
670xfs_ip2xflags(
58f88ca2 671 struct xfs_inode *ip)
1da177e4 672{
58f88ca2 673 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 674
58f88ca2 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
c24b5dfa 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 700 if (error)
dbad7c99 701 goto out_unlock;
c24b5dfa
DC
702
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 if (error)
705 goto out_free_name;
706
707 return 0;
708
709out_free_name:
710 if (ci_name)
711 kmem_free(ci_name->name);
dbad7c99 712out_unlock:
c24b5dfa
DC
713 *ipp = NULL;
714 return error;
715}
716
1da177e4
LT
717/*
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
722 *
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
727 * set to NULL.
1da177e4 728 *
cd856db6
CM
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
736 *
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
742 *
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
1da177e4 747 */
0d5a75e9 748static int
1da177e4
LT
749xfs_ialloc(
750 xfs_trans_t *tp,
751 xfs_inode_t *pip,
576b1d67 752 umode_t mode,
31b084ae 753 xfs_nlink_t nlink,
66f36464 754 dev_t rdev,
6743099c 755 prid_t prid,
1da177e4 756 xfs_buf_t **ialloc_context,
1da177e4
LT
757 xfs_inode_t **ipp)
758{
93848a99 759 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
760 xfs_ino_t ino;
761 xfs_inode_t *ip;
1da177e4
LT
762 uint flags;
763 int error;
95582b00 764 struct timespec64 tv;
3987848c 765 struct inode *inode;
1da177e4
LT
766
767 /*
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
770 */
f59cf5c2 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 772 ialloc_context, &ino);
bf904248 773 if (error)
1da177e4 774 return error;
08358906 775 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
776 *ipp = NULL;
777 return 0;
778 }
779 ASSERT(*ialloc_context == NULL);
780
8b26984d
DC
781 /*
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
786 * first.
787 */
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
791 }
792
1da177e4
LT
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
93848a99 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 799 XFS_ILOCK_EXCL, &ip);
bf904248 800 if (error)
1da177e4 801 return error;
1da177e4 802 ASSERT(ip != NULL);
3987848c 803 inode = VFS_I(ip);
c19b3b05 804 inode->i_mode = mode;
54d7b5c1 805 set_nlink(inode, nlink);
3d8f2821 806 inode->i_uid = current_fsuid();
66f36464 807 inode->i_rdev = rdev;
de7a866f 808 ip->i_d.di_projid = prid;
1da177e4 809
bd186aa9 810 if (pip && XFS_INHERIT_GID(pip)) {
3d8f2821 811 inode->i_gid = VFS_I(pip)->i_gid;
c19b3b05
DC
812 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
813 inode->i_mode |= S_ISGID;
3d8f2821
CH
814 } else {
815 inode->i_gid = current_fsgid();
1da177e4
LT
816 }
817
818 /*
819 * If the group ID of the new file does not match the effective group
820 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
821 * (and only if the irix_sgid_inherit compatibility variable is set).
822 */
54295159
CH
823 if (irix_sgid_inherit &&
824 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
c19b3b05 825 inode->i_mode &= ~S_ISGID;
1da177e4
LT
826
827 ip->i_d.di_size = 0;
828 ip->i_d.di_nextents = 0;
829 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 830
c2050a45 831 tv = current_time(inode);
3987848c
DC
832 inode->i_mtime = tv;
833 inode->i_atime = tv;
834 inode->i_ctime = tv;
dff35fd4 835
1da177e4
LT
836 ip->i_d.di_extsize = 0;
837 ip->i_d.di_dmevmask = 0;
838 ip->i_d.di_dmstate = 0;
839 ip->i_d.di_flags = 0;
93848a99 840
6471e9c5 841 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
f0e28280 842 inode_set_iversion(inode, 1);
93848a99 843 ip->i_d.di_flags2 = 0;
f7ca3522 844 ip->i_d.di_cowextsize = 0;
8d2d878d 845 ip->i_d.di_crtime = tv;
93848a99
CH
846 }
847
1da177e4
LT
848 flags = XFS_ILOG_CORE;
849 switch (mode & S_IFMT) {
850 case S_IFIFO:
851 case S_IFCHR:
852 case S_IFBLK:
853 case S_IFSOCK:
854 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
855 ip->i_df.if_flags = 0;
856 flags |= XFS_ILOG_DEV;
857 break;
858 case S_IFREG:
859 case S_IFDIR:
b11f94d5 860 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 861 uint di_flags = 0;
365ca83d 862
abbede1b 863 if (S_ISDIR(mode)) {
365ca83d
NS
864 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
865 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
866 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
867 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
868 ip->i_d.di_extsize = pip->i_d.di_extsize;
869 }
9336e3a7
DC
870 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
871 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 872 } else if (S_ISREG(mode)) {
613d7043 873 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 874 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
875 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
876 di_flags |= XFS_DIFLAG_EXTSIZE;
877 ip->i_d.di_extsize = pip->i_d.di_extsize;
878 }
1da177e4
LT
879 }
880 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
881 xfs_inherit_noatime)
365ca83d 882 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
883 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
884 xfs_inherit_nodump)
365ca83d 885 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
886 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
887 xfs_inherit_sync)
365ca83d 888 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
889 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
890 xfs_inherit_nosymlinks)
365ca83d 891 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
892 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
893 xfs_inherit_nodefrag)
894 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
895 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
896 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 897
365ca83d 898 ip->i_d.di_flags |= di_flags;
1da177e4 899 }
b3d1d375 900 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
f7ca3522 901 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
b3d1d375 902 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
903 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
904 }
56bdf855 905 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
b3d1d375 906 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
f7ca3522 907 }
1da177e4
LT
908 /* FALLTHROUGH */
909 case S_IFLNK:
910 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
911 ip->i_df.if_flags = XFS_IFEXTENTS;
fcacbc3f 912 ip->i_df.if_bytes = 0;
6bdcf26a 913 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
914 break;
915 default:
916 ASSERT(0);
917 }
918 /*
919 * Attribute fork settings for new inode.
920 */
921 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
922 ip->i_d.di_anextents = 0;
923
924 /*
925 * Log the new values stuffed into the inode.
926 */
ddc3415a 927 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
928 xfs_trans_log_inode(tp, ip, flags);
929
58c90473 930 /* now that we have an i_mode we can setup the inode structure */
41be8bed 931 xfs_setup_inode(ip);
1da177e4
LT
932
933 *ipp = ip;
934 return 0;
935}
936
e546cb79
DC
937/*
938 * Allocates a new inode from disk and return a pointer to the
939 * incore copy. This routine will internally commit the current
940 * transaction and allocate a new one if the Space Manager needed
941 * to do an allocation to replenish the inode free-list.
942 *
943 * This routine is designed to be called from xfs_create and
944 * xfs_create_dir.
945 *
946 */
947int
948xfs_dir_ialloc(
949 xfs_trans_t **tpp, /* input: current transaction;
950 output: may be a new transaction. */
951 xfs_inode_t *dp, /* directory within whose allocate
952 the inode. */
953 umode_t mode,
954 xfs_nlink_t nlink,
66f36464 955 dev_t rdev,
e546cb79 956 prid_t prid, /* project id */
c959025e 957 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 958 locked. */
e546cb79
DC
959{
960 xfs_trans_t *tp;
e546cb79
DC
961 xfs_inode_t *ip;
962 xfs_buf_t *ialloc_context = NULL;
963 int code;
e546cb79
DC
964 void *dqinfo;
965 uint tflags;
966
967 tp = *tpp;
968 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
969
970 /*
971 * xfs_ialloc will return a pointer to an incore inode if
972 * the Space Manager has an available inode on the free
973 * list. Otherwise, it will do an allocation and replenish
974 * the freelist. Since we can only do one allocation per
975 * transaction without deadlocks, we will need to commit the
976 * current transaction and start a new one. We will then
977 * need to call xfs_ialloc again to get the inode.
978 *
979 * If xfs_ialloc did an allocation to replenish the freelist,
980 * it returns the bp containing the head of the freelist as
981 * ialloc_context. We will hold a lock on it across the
982 * transaction commit so that no other process can steal
983 * the inode(s) that we've just allocated.
984 */
f59cf5c2
CH
985 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
986 &ip);
e546cb79
DC
987
988 /*
989 * Return an error if we were unable to allocate a new inode.
990 * This should only happen if we run out of space on disk or
991 * encounter a disk error.
992 */
993 if (code) {
994 *ipp = NULL;
995 return code;
996 }
997 if (!ialloc_context && !ip) {
998 *ipp = NULL;
2451337d 999 return -ENOSPC;
e546cb79
DC
1000 }
1001
1002 /*
1003 * If the AGI buffer is non-NULL, then we were unable to get an
1004 * inode in one operation. We need to commit the current
1005 * transaction and call xfs_ialloc() again. It is guaranteed
1006 * to succeed the second time.
1007 */
1008 if (ialloc_context) {
1009 /*
1010 * Normally, xfs_trans_commit releases all the locks.
1011 * We call bhold to hang on to the ialloc_context across
1012 * the commit. Holding this buffer prevents any other
1013 * processes from doing any allocations in this
1014 * allocation group.
1015 */
1016 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1017
1018 /*
1019 * We want the quota changes to be associated with the next
1020 * transaction, NOT this one. So, detach the dqinfo from this
1021 * and attach it to the next transaction.
1022 */
1023 dqinfo = NULL;
1024 tflags = 0;
1025 if (tp->t_dqinfo) {
1026 dqinfo = (void *)tp->t_dqinfo;
1027 tp->t_dqinfo = NULL;
1028 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1029 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1030 }
1031
411350df 1032 code = xfs_trans_roll(&tp);
3d3c8b52 1033
e546cb79
DC
1034 /*
1035 * Re-attach the quota info that we detached from prev trx.
1036 */
1037 if (dqinfo) {
1038 tp->t_dqinfo = dqinfo;
1039 tp->t_flags |= tflags;
1040 }
1041
1042 if (code) {
1043 xfs_buf_relse(ialloc_context);
2e6db6c4 1044 *tpp = tp;
e546cb79
DC
1045 *ipp = NULL;
1046 return code;
1047 }
1048 xfs_trans_bjoin(tp, ialloc_context);
1049
1050 /*
1051 * Call ialloc again. Since we've locked out all
1052 * other allocations in this allocation group,
1053 * this call should always succeed.
1054 */
1055 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1056 &ialloc_context, &ip);
e546cb79
DC
1057
1058 /*
1059 * If we get an error at this point, return to the caller
1060 * so that the current transaction can be aborted.
1061 */
1062 if (code) {
1063 *tpp = tp;
1064 *ipp = NULL;
1065 return code;
1066 }
1067 ASSERT(!ialloc_context && ip);
1068
e546cb79
DC
1069 }
1070
1071 *ipp = ip;
1072 *tpp = tp;
1073
1074 return 0;
1075}
1076
1077/*
54d7b5c1
DC
1078 * Decrement the link count on an inode & log the change. If this causes the
1079 * link count to go to zero, move the inode to AGI unlinked list so that it can
1080 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1081 */
0d5a75e9 1082static int /* error */
e546cb79
DC
1083xfs_droplink(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *ip)
1086{
e546cb79
DC
1087 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1088
e546cb79
DC
1089 drop_nlink(VFS_I(ip));
1090 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1091
54d7b5c1
DC
1092 if (VFS_I(ip)->i_nlink)
1093 return 0;
1094
1095 return xfs_iunlink(tp, ip);
e546cb79
DC
1096}
1097
e546cb79
DC
1098/*
1099 * Increment the link count on an inode & log the change.
1100 */
91083269 1101static void
e546cb79
DC
1102xfs_bumplink(
1103 xfs_trans_t *tp,
1104 xfs_inode_t *ip)
1105{
1106 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107
e546cb79 1108 inc_nlink(VFS_I(ip));
e546cb79 1109 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
1110}
1111
c24b5dfa
DC
1112int
1113xfs_create(
1114 xfs_inode_t *dp,
1115 struct xfs_name *name,
1116 umode_t mode,
66f36464 1117 dev_t rdev,
c24b5dfa
DC
1118 xfs_inode_t **ipp)
1119{
1120 int is_dir = S_ISDIR(mode);
1121 struct xfs_mount *mp = dp->i_mount;
1122 struct xfs_inode *ip = NULL;
1123 struct xfs_trans *tp = NULL;
1124 int error;
c24b5dfa 1125 bool unlock_dp_on_error = false;
c24b5dfa
DC
1126 prid_t prid;
1127 struct xfs_dquot *udqp = NULL;
1128 struct xfs_dquot *gdqp = NULL;
1129 struct xfs_dquot *pdqp = NULL;
062647a8 1130 struct xfs_trans_res *tres;
c24b5dfa 1131 uint resblks;
c24b5dfa
DC
1132
1133 trace_xfs_create(dp, name);
1134
1135 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1136 return -EIO;
c24b5dfa 1137
163467d3 1138 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1139
1140 /*
1141 * Make sure that we have allocated dquot(s) on disk.
1142 */
54295159 1143 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
c24b5dfa
DC
1144 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1145 &udqp, &gdqp, &pdqp);
1146 if (error)
1147 return error;
1148
1149 if (is_dir) {
c24b5dfa 1150 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1151 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1152 } else {
1153 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1154 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1155 }
1156
c24b5dfa
DC
1157 /*
1158 * Initially assume that the file does not exist and
1159 * reserve the resources for that case. If that is not
1160 * the case we'll drop the one we have and get a more
1161 * appropriate transaction later.
1162 */
253f4911 1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1164 if (error == -ENOSPC) {
c24b5dfa
DC
1165 /* flush outstanding delalloc blocks and retry */
1166 xfs_flush_inodes(mp);
253f4911 1167 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1168 }
4906e215 1169 if (error)
253f4911 1170 goto out_release_inode;
c24b5dfa 1171
65523218 1172 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1173 unlock_dp_on_error = true;
1174
c24b5dfa
DC
1175 /*
1176 * Reserve disk quota and the inode.
1177 */
1178 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1179 pdqp, resblks, 1, 0);
1180 if (error)
1181 goto out_trans_cancel;
1182
c24b5dfa
DC
1183 /*
1184 * A newly created regular or special file just has one directory
1185 * entry pointing to them, but a directory also the "." entry
1186 * pointing to itself.
1187 */
c959025e 1188 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1189 if (error)
4906e215 1190 goto out_trans_cancel;
c24b5dfa
DC
1191
1192 /*
1193 * Now we join the directory inode to the transaction. We do not do it
1194 * earlier because xfs_dir_ialloc might commit the previous transaction
1195 * (and release all the locks). An error from here on will result in
1196 * the transaction cancel unlocking dp so don't do it explicitly in the
1197 * error path.
1198 */
65523218 1199 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1200 unlock_dp_on_error = false;
1201
381eee69 1202 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
63337b63 1203 resblks - XFS_IALLOC_SPACE_RES(mp));
c24b5dfa 1204 if (error) {
2451337d 1205 ASSERT(error != -ENOSPC);
4906e215 1206 goto out_trans_cancel;
c24b5dfa
DC
1207 }
1208 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1209 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1210
1211 if (is_dir) {
1212 error = xfs_dir_init(tp, ip, dp);
1213 if (error)
c8eac49e 1214 goto out_trans_cancel;
c24b5dfa 1215
91083269 1216 xfs_bumplink(tp, dp);
c24b5dfa
DC
1217 }
1218
1219 /*
1220 * If this is a synchronous mount, make sure that the
1221 * create transaction goes to disk before returning to
1222 * the user.
1223 */
1224 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1225 xfs_trans_set_sync(tp);
1226
1227 /*
1228 * Attach the dquot(s) to the inodes and modify them incore.
1229 * These ids of the inode couldn't have changed since the new
1230 * inode has been locked ever since it was created.
1231 */
1232 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1233
70393313 1234 error = xfs_trans_commit(tp);
c24b5dfa
DC
1235 if (error)
1236 goto out_release_inode;
1237
1238 xfs_qm_dqrele(udqp);
1239 xfs_qm_dqrele(gdqp);
1240 xfs_qm_dqrele(pdqp);
1241
1242 *ipp = ip;
1243 return 0;
1244
c24b5dfa 1245 out_trans_cancel:
4906e215 1246 xfs_trans_cancel(tp);
c24b5dfa
DC
1247 out_release_inode:
1248 /*
58c90473
DC
1249 * Wait until after the current transaction is aborted to finish the
1250 * setup of the inode and release the inode. This prevents recursive
1251 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1252 */
58c90473
DC
1253 if (ip) {
1254 xfs_finish_inode_setup(ip);
44a8736b 1255 xfs_irele(ip);
58c90473 1256 }
c24b5dfa
DC
1257
1258 xfs_qm_dqrele(udqp);
1259 xfs_qm_dqrele(gdqp);
1260 xfs_qm_dqrele(pdqp);
1261
1262 if (unlock_dp_on_error)
65523218 1263 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1264 return error;
1265}
1266
99b6436b
ZYW
1267int
1268xfs_create_tmpfile(
1269 struct xfs_inode *dp,
330033d6
BF
1270 umode_t mode,
1271 struct xfs_inode **ipp)
99b6436b
ZYW
1272{
1273 struct xfs_mount *mp = dp->i_mount;
1274 struct xfs_inode *ip = NULL;
1275 struct xfs_trans *tp = NULL;
1276 int error;
99b6436b
ZYW
1277 prid_t prid;
1278 struct xfs_dquot *udqp = NULL;
1279 struct xfs_dquot *gdqp = NULL;
1280 struct xfs_dquot *pdqp = NULL;
1281 struct xfs_trans_res *tres;
1282 uint resblks;
1283
1284 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1285 return -EIO;
99b6436b
ZYW
1286
1287 prid = xfs_get_initial_prid(dp);
1288
1289 /*
1290 * Make sure that we have allocated dquot(s) on disk.
1291 */
54295159 1292 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
99b6436b
ZYW
1293 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1294 &udqp, &gdqp, &pdqp);
1295 if (error)
1296 return error;
1297
1298 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1299 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1300
1301 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1302 if (error)
253f4911 1303 goto out_release_inode;
99b6436b
ZYW
1304
1305 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1306 pdqp, resblks, 1, 0);
1307 if (error)
1308 goto out_trans_cancel;
1309
c4a6bf7f 1310 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
d6077aa3 1311 if (error)
4906e215 1312 goto out_trans_cancel;
99b6436b
ZYW
1313
1314 if (mp->m_flags & XFS_MOUNT_WSYNC)
1315 xfs_trans_set_sync(tp);
1316
1317 /*
1318 * Attach the dquot(s) to the inodes and modify them incore.
1319 * These ids of the inode couldn't have changed since the new
1320 * inode has been locked ever since it was created.
1321 */
1322 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1323
99b6436b
ZYW
1324 error = xfs_iunlink(tp, ip);
1325 if (error)
4906e215 1326 goto out_trans_cancel;
99b6436b 1327
70393313 1328 error = xfs_trans_commit(tp);
99b6436b
ZYW
1329 if (error)
1330 goto out_release_inode;
1331
1332 xfs_qm_dqrele(udqp);
1333 xfs_qm_dqrele(gdqp);
1334 xfs_qm_dqrele(pdqp);
1335
330033d6 1336 *ipp = ip;
99b6436b
ZYW
1337 return 0;
1338
99b6436b 1339 out_trans_cancel:
4906e215 1340 xfs_trans_cancel(tp);
99b6436b
ZYW
1341 out_release_inode:
1342 /*
58c90473
DC
1343 * Wait until after the current transaction is aborted to finish the
1344 * setup of the inode and release the inode. This prevents recursive
1345 * transactions and deadlocks from xfs_inactive.
99b6436b 1346 */
58c90473
DC
1347 if (ip) {
1348 xfs_finish_inode_setup(ip);
44a8736b 1349 xfs_irele(ip);
58c90473 1350 }
99b6436b
ZYW
1351
1352 xfs_qm_dqrele(udqp);
1353 xfs_qm_dqrele(gdqp);
1354 xfs_qm_dqrele(pdqp);
1355
1356 return error;
1357}
1358
c24b5dfa
DC
1359int
1360xfs_link(
1361 xfs_inode_t *tdp,
1362 xfs_inode_t *sip,
1363 struct xfs_name *target_name)
1364{
1365 xfs_mount_t *mp = tdp->i_mount;
1366 xfs_trans_t *tp;
1367 int error;
c24b5dfa
DC
1368 int resblks;
1369
1370 trace_xfs_link(tdp, target_name);
1371
c19b3b05 1372 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1373
1374 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1375 return -EIO;
c24b5dfa 1376
c14cfcca 1377 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1378 if (error)
1379 goto std_return;
1380
c14cfcca 1381 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1382 if (error)
1383 goto std_return;
1384
c24b5dfa 1385 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1386 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1387 if (error == -ENOSPC) {
c24b5dfa 1388 resblks = 0;
253f4911 1389 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1390 }
4906e215 1391 if (error)
253f4911 1392 goto std_return;
c24b5dfa 1393
7c2d238a 1394 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1395
1396 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1397 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1398
1399 /*
1400 * If we are using project inheritance, we only allow hard link
1401 * creation in our tree when the project IDs are the same; else
1402 * the tree quota mechanism could be circumvented.
1403 */
1404 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 1405 tdp->i_d.di_projid != sip->i_d.di_projid)) {
2451337d 1406 error = -EXDEV;
c24b5dfa
DC
1407 goto error_return;
1408 }
1409
94f3cad5
ES
1410 if (!resblks) {
1411 error = xfs_dir_canenter(tp, tdp, target_name);
1412 if (error)
1413 goto error_return;
1414 }
c24b5dfa 1415
54d7b5c1
DC
1416 /*
1417 * Handle initial link state of O_TMPFILE inode
1418 */
1419 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1420 error = xfs_iunlink_remove(tp, sip);
1421 if (error)
4906e215 1422 goto error_return;
ab297431
ZYW
1423 }
1424
c24b5dfa 1425 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1426 resblks);
c24b5dfa 1427 if (error)
4906e215 1428 goto error_return;
c24b5dfa
DC
1429 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1430 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1431
91083269 1432 xfs_bumplink(tp, sip);
c24b5dfa
DC
1433
1434 /*
1435 * If this is a synchronous mount, make sure that the
1436 * link transaction goes to disk before returning to
1437 * the user.
1438 */
f6106efa 1439 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1440 xfs_trans_set_sync(tp);
c24b5dfa 1441
70393313 1442 return xfs_trans_commit(tp);
c24b5dfa 1443
c24b5dfa 1444 error_return:
4906e215 1445 xfs_trans_cancel(tp);
c24b5dfa
DC
1446 std_return:
1447 return error;
1448}
1449
363e59ba
DW
1450/* Clear the reflink flag and the cowblocks tag if possible. */
1451static void
1452xfs_itruncate_clear_reflink_flags(
1453 struct xfs_inode *ip)
1454{
1455 struct xfs_ifork *dfork;
1456 struct xfs_ifork *cfork;
1457
1458 if (!xfs_is_reflink_inode(ip))
1459 return;
1460 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1461 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1462 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1463 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1464 if (cfork->if_bytes == 0)
1465 xfs_inode_clear_cowblocks_tag(ip);
1466}
1467
1da177e4 1468/*
8f04c47a
CH
1469 * Free up the underlying blocks past new_size. The new size must be smaller
1470 * than the current size. This routine can be used both for the attribute and
1471 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1472 *
f6485057
DC
1473 * The transaction passed to this routine must have made a permanent log
1474 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1475 * given transaction and start new ones, so make sure everything involved in
1476 * the transaction is tidy before calling here. Some transaction will be
1477 * returned to the caller to be committed. The incoming transaction must
1478 * already include the inode, and both inode locks must be held exclusively.
1479 * The inode must also be "held" within the transaction. On return the inode
1480 * will be "held" within the returned transaction. This routine does NOT
1481 * require any disk space to be reserved for it within the transaction.
1da177e4 1482 *
f6485057
DC
1483 * If we get an error, we must return with the inode locked and linked into the
1484 * current transaction. This keeps things simple for the higher level code,
1485 * because it always knows that the inode is locked and held in the transaction
1486 * that returns to it whether errors occur or not. We don't mark the inode
1487 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1488 */
1489int
4e529339 1490xfs_itruncate_extents_flags(
8f04c47a
CH
1491 struct xfs_trans **tpp,
1492 struct xfs_inode *ip,
1493 int whichfork,
13b86fc3 1494 xfs_fsize_t new_size,
4e529339 1495 int flags)
1da177e4 1496{
8f04c47a
CH
1497 struct xfs_mount *mp = ip->i_mount;
1498 struct xfs_trans *tp = *tpp;
8f04c47a 1499 xfs_fileoff_t first_unmap_block;
8f04c47a 1500 xfs_filblks_t unmap_len;
8f04c47a 1501 int error = 0;
1da177e4 1502
0b56185b
CH
1503 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1504 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1505 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1506 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1507 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1508 ASSERT(ip->i_itemp != NULL);
898621d5 1509 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1510 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1511
673e8e59
CH
1512 trace_xfs_itruncate_extents_start(ip, new_size);
1513
4e529339 1514 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1515
1da177e4
LT
1516 /*
1517 * Since it is possible for space to become allocated beyond
1518 * the end of the file (in a crash where the space is allocated
1519 * but the inode size is not yet updated), simply remove any
1520 * blocks which show up between the new EOF and the maximum
4bbb04ab
DW
1521 * possible file size.
1522 *
1523 * We have to free all the blocks to the bmbt maximum offset, even if
1524 * the page cache can't scale that far.
1da177e4 1525 */
8f04c47a 1526 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
4bbb04ab
DW
1527 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1528 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
8f04c47a 1529 return 0;
4bbb04ab 1530 }
8f04c47a 1531
4bbb04ab
DW
1532 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1533 while (unmap_len > 0) {
02dff7bf 1534 ASSERT(tp->t_firstblock == NULLFSBLOCK);
4bbb04ab
DW
1535 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1536 flags, XFS_ITRUNC_MAX_EXTENTS);
8f04c47a 1537 if (error)
d5a2e289 1538 goto out;
1da177e4
LT
1539
1540 /*
1541 * Duplicate the transaction that has the permanent
1542 * reservation and commit the old transaction.
1543 */
9e28a242 1544 error = xfs_defer_finish(&tp);
8f04c47a 1545 if (error)
9b1f4e98 1546 goto out;
1da177e4 1547
411350df 1548 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1549 if (error)
8f04c47a 1550 goto out;
1da177e4 1551 }
8f04c47a 1552
4919d42a
DW
1553 if (whichfork == XFS_DATA_FORK) {
1554 /* Remove all pending CoW reservations. */
1555 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
4bbb04ab 1556 first_unmap_block, XFS_MAX_FILEOFF, true);
4919d42a
DW
1557 if (error)
1558 goto out;
aa8968f2 1559
4919d42a
DW
1560 xfs_itruncate_clear_reflink_flags(ip);
1561 }
aa8968f2 1562
673e8e59
CH
1563 /*
1564 * Always re-log the inode so that our permanent transaction can keep
1565 * on rolling it forward in the log.
1566 */
1567 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1568
1569 trace_xfs_itruncate_extents_end(ip, new_size);
1570
8f04c47a
CH
1571out:
1572 *tpp = tp;
1573 return error;
8f04c47a
CH
1574}
1575
c24b5dfa
DC
1576int
1577xfs_release(
1578 xfs_inode_t *ip)
1579{
1580 xfs_mount_t *mp = ip->i_mount;
1581 int error;
1582
c19b3b05 1583 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1584 return 0;
1585
1586 /* If this is a read-only mount, don't do this (would generate I/O) */
1587 if (mp->m_flags & XFS_MOUNT_RDONLY)
1588 return 0;
1589
1590 if (!XFS_FORCED_SHUTDOWN(mp)) {
1591 int truncated;
1592
c24b5dfa
DC
1593 /*
1594 * If we previously truncated this file and removed old data
1595 * in the process, we want to initiate "early" writeout on
1596 * the last close. This is an attempt to combat the notorious
1597 * NULL files problem which is particularly noticeable from a
1598 * truncate down, buffered (re-)write (delalloc), followed by
1599 * a crash. What we are effectively doing here is
1600 * significantly reducing the time window where we'd otherwise
1601 * be exposed to that problem.
1602 */
1603 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1604 if (truncated) {
1605 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1606 if (ip->i_delayed_blks > 0) {
2451337d 1607 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1608 if (error)
1609 return error;
1610 }
1611 }
1612 }
1613
54d7b5c1 1614 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1615 return 0;
1616
1617 if (xfs_can_free_eofblocks(ip, false)) {
1618
a36b9261
BF
1619 /*
1620 * Check if the inode is being opened, written and closed
1621 * frequently and we have delayed allocation blocks outstanding
1622 * (e.g. streaming writes from the NFS server), truncating the
1623 * blocks past EOF will cause fragmentation to occur.
1624 *
1625 * In this case don't do the truncation, but we have to be
1626 * careful how we detect this case. Blocks beyond EOF show up as
1627 * i_delayed_blks even when the inode is clean, so we need to
1628 * truncate them away first before checking for a dirty release.
1629 * Hence on the first dirty close we will still remove the
1630 * speculative allocation, but after that we will leave it in
1631 * place.
1632 */
1633 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1634 return 0;
c24b5dfa
DC
1635 /*
1636 * If we can't get the iolock just skip truncating the blocks
1637 * past EOF because we could deadlock with the mmap_sem
a36b9261 1638 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1639 * last reference to the inode is dropped, so we'll never leak
1640 * blocks permanently.
c24b5dfa 1641 */
a36b9261
BF
1642 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1643 error = xfs_free_eofblocks(ip);
1644 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1645 if (error)
1646 return error;
1647 }
c24b5dfa
DC
1648
1649 /* delalloc blocks after truncation means it really is dirty */
1650 if (ip->i_delayed_blks)
1651 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1652 }
1653 return 0;
1654}
1655
f7be2d7f
BF
1656/*
1657 * xfs_inactive_truncate
1658 *
1659 * Called to perform a truncate when an inode becomes unlinked.
1660 */
1661STATIC int
1662xfs_inactive_truncate(
1663 struct xfs_inode *ip)
1664{
1665 struct xfs_mount *mp = ip->i_mount;
1666 struct xfs_trans *tp;
1667 int error;
1668
253f4911 1669 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1670 if (error) {
1671 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1672 return error;
1673 }
f7be2d7f
BF
1674 xfs_ilock(ip, XFS_ILOCK_EXCL);
1675 xfs_trans_ijoin(tp, ip, 0);
1676
1677 /*
1678 * Log the inode size first to prevent stale data exposure in the event
1679 * of a system crash before the truncate completes. See the related
69bca807 1680 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1681 */
1682 ip->i_d.di_size = 0;
1683 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1684
1685 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1686 if (error)
1687 goto error_trans_cancel;
1688
1689 ASSERT(ip->i_d.di_nextents == 0);
1690
70393313 1691 error = xfs_trans_commit(tp);
f7be2d7f
BF
1692 if (error)
1693 goto error_unlock;
1694
1695 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1696 return 0;
1697
1698error_trans_cancel:
4906e215 1699 xfs_trans_cancel(tp);
f7be2d7f
BF
1700error_unlock:
1701 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1702 return error;
1703}
1704
88877d2b
BF
1705/*
1706 * xfs_inactive_ifree()
1707 *
1708 * Perform the inode free when an inode is unlinked.
1709 */
1710STATIC int
1711xfs_inactive_ifree(
1712 struct xfs_inode *ip)
1713{
88877d2b
BF
1714 struct xfs_mount *mp = ip->i_mount;
1715 struct xfs_trans *tp;
1716 int error;
1717
9d43b180 1718 /*
76d771b4
CH
1719 * We try to use a per-AG reservation for any block needed by the finobt
1720 * tree, but as the finobt feature predates the per-AG reservation
1721 * support a degraded file system might not have enough space for the
1722 * reservation at mount time. In that case try to dip into the reserved
1723 * pool and pray.
9d43b180
BF
1724 *
1725 * Send a warning if the reservation does happen to fail, as the inode
1726 * now remains allocated and sits on the unlinked list until the fs is
1727 * repaired.
1728 */
e1f6ca11 1729 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1731 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1732 &tp);
1733 } else {
1734 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1735 }
88877d2b 1736 if (error) {
2451337d 1737 if (error == -ENOSPC) {
9d43b180
BF
1738 xfs_warn_ratelimited(mp,
1739 "Failed to remove inode(s) from unlinked list. "
1740 "Please free space, unmount and run xfs_repair.");
1741 } else {
1742 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1743 }
88877d2b
BF
1744 return error;
1745 }
1746
1747 xfs_ilock(ip, XFS_ILOCK_EXCL);
1748 xfs_trans_ijoin(tp, ip, 0);
1749
0e0417f3 1750 error = xfs_ifree(tp, ip);
88877d2b
BF
1751 if (error) {
1752 /*
1753 * If we fail to free the inode, shut down. The cancel
1754 * might do that, we need to make sure. Otherwise the
1755 * inode might be lost for a long time or forever.
1756 */
1757 if (!XFS_FORCED_SHUTDOWN(mp)) {
1758 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1759 __func__, error);
1760 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1761 }
4906e215 1762 xfs_trans_cancel(tp);
88877d2b
BF
1763 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1764 return error;
1765 }
1766
1767 /*
1768 * Credit the quota account(s). The inode is gone.
1769 */
1770 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1771
1772 /*
d4a97a04
BF
1773 * Just ignore errors at this point. There is nothing we can do except
1774 * to try to keep going. Make sure it's not a silent error.
88877d2b 1775 */
70393313 1776 error = xfs_trans_commit(tp);
88877d2b
BF
1777 if (error)
1778 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1779 __func__, error);
1780
1781 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1782 return 0;
1783}
1784
c24b5dfa
DC
1785/*
1786 * xfs_inactive
1787 *
1788 * This is called when the vnode reference count for the vnode
1789 * goes to zero. If the file has been unlinked, then it must
1790 * now be truncated. Also, we clear all of the read-ahead state
1791 * kept for the inode here since the file is now closed.
1792 */
74564fb4 1793void
c24b5dfa
DC
1794xfs_inactive(
1795 xfs_inode_t *ip)
1796{
3d3c8b52 1797 struct xfs_mount *mp;
3d3c8b52
JL
1798 int error;
1799 int truncate = 0;
c24b5dfa
DC
1800
1801 /*
1802 * If the inode is already free, then there can be nothing
1803 * to clean up here.
1804 */
c19b3b05 1805 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1806 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1807 return;
c24b5dfa
DC
1808 }
1809
1810 mp = ip->i_mount;
17c12bcd 1811 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1812
c24b5dfa
DC
1813 /* If this is a read-only mount, don't do this (would generate I/O) */
1814 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1815 return;
c24b5dfa 1816
6231848c 1817 /* Try to clean out the cow blocks if there are any. */
51d62690 1818 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1819 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1820
54d7b5c1 1821 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1822 /*
1823 * force is true because we are evicting an inode from the
1824 * cache. Post-eof blocks must be freed, lest we end up with
1825 * broken free space accounting.
3b4683c2
BF
1826 *
1827 * Note: don't bother with iolock here since lockdep complains
1828 * about acquiring it in reclaim context. We have the only
1829 * reference to the inode at this point anyways.
c24b5dfa 1830 */
3b4683c2 1831 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1832 xfs_free_eofblocks(ip);
74564fb4
BF
1833
1834 return;
c24b5dfa
DC
1835 }
1836
c19b3b05 1837 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1838 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1839 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1840 truncate = 1;
1841
c14cfcca 1842 error = xfs_qm_dqattach(ip);
c24b5dfa 1843 if (error)
74564fb4 1844 return;
c24b5dfa 1845
c19b3b05 1846 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1847 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1848 else if (truncate)
1849 error = xfs_inactive_truncate(ip);
1850 if (error)
74564fb4 1851 return;
c24b5dfa
DC
1852
1853 /*
1854 * If there are attributes associated with the file then blow them away
1855 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1856 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1857 */
6dfe5a04 1858 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1859 error = xfs_attr_inactive(ip);
1860 if (error)
74564fb4 1861 return;
c24b5dfa
DC
1862 }
1863
6dfe5a04 1864 ASSERT(!ip->i_afp);
c24b5dfa 1865 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1866 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1867
1868 /*
1869 * Free the inode.
1870 */
88877d2b
BF
1871 error = xfs_inactive_ifree(ip);
1872 if (error)
74564fb4 1873 return;
c24b5dfa
DC
1874
1875 /*
1876 * Release the dquots held by inode, if any.
1877 */
1878 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1879}
1880
9b247179
DW
1881/*
1882 * In-Core Unlinked List Lookups
1883 * =============================
1884 *
1885 * Every inode is supposed to be reachable from some other piece of metadata
1886 * with the exception of the root directory. Inodes with a connection to a
1887 * file descriptor but not linked from anywhere in the on-disk directory tree
1888 * are collectively known as unlinked inodes, though the filesystem itself
1889 * maintains links to these inodes so that on-disk metadata are consistent.
1890 *
1891 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1892 * header contains a number of buckets that point to an inode, and each inode
1893 * record has a pointer to the next inode in the hash chain. This
1894 * singly-linked list causes scaling problems in the iunlink remove function
1895 * because we must walk that list to find the inode that points to the inode
1896 * being removed from the unlinked hash bucket list.
1897 *
1898 * What if we modelled the unlinked list as a collection of records capturing
1899 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1900 * have a fast way to look up unlinked list predecessors, which avoids the
1901 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1902 * rhashtable.
1903 *
1904 * Because this is a backref cache, we ignore operational failures since the
1905 * iunlink code can fall back to the slow bucket walk. The only errors that
1906 * should bubble out are for obviously incorrect situations.
1907 *
1908 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1909 * access or have otherwise provided for concurrency control.
1910 */
1911
1912/* Capture a "X.next_unlinked = Y" relationship. */
1913struct xfs_iunlink {
1914 struct rhash_head iu_rhash_head;
1915 xfs_agino_t iu_agino; /* X */
1916 xfs_agino_t iu_next_unlinked; /* Y */
1917};
1918
1919/* Unlinked list predecessor lookup hashtable construction */
1920static int
1921xfs_iunlink_obj_cmpfn(
1922 struct rhashtable_compare_arg *arg,
1923 const void *obj)
1924{
1925 const xfs_agino_t *key = arg->key;
1926 const struct xfs_iunlink *iu = obj;
1927
1928 if (iu->iu_next_unlinked != *key)
1929 return 1;
1930 return 0;
1931}
1932
1933static const struct rhashtable_params xfs_iunlink_hash_params = {
1934 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1935 .key_len = sizeof(xfs_agino_t),
1936 .key_offset = offsetof(struct xfs_iunlink,
1937 iu_next_unlinked),
1938 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1939 .automatic_shrinking = true,
1940 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1941};
1942
1943/*
1944 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1945 * relation is found.
1946 */
1947static xfs_agino_t
1948xfs_iunlink_lookup_backref(
1949 struct xfs_perag *pag,
1950 xfs_agino_t agino)
1951{
1952 struct xfs_iunlink *iu;
1953
1954 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1955 xfs_iunlink_hash_params);
1956 return iu ? iu->iu_agino : NULLAGINO;
1957}
1958
1959/*
1960 * Take ownership of an iunlink cache entry and insert it into the hash table.
1961 * If successful, the entry will be owned by the cache; if not, it is freed.
1962 * Either way, the caller does not own @iu after this call.
1963 */
1964static int
1965xfs_iunlink_insert_backref(
1966 struct xfs_perag *pag,
1967 struct xfs_iunlink *iu)
1968{
1969 int error;
1970
1971 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1972 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1973 /*
1974 * Fail loudly if there already was an entry because that's a sign of
1975 * corruption of in-memory data. Also fail loudly if we see an error
1976 * code we didn't anticipate from the rhashtable code. Currently we
1977 * only anticipate ENOMEM.
1978 */
1979 if (error) {
1980 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1981 kmem_free(iu);
1982 }
1983 /*
1984 * Absorb any runtime errors that aren't a result of corruption because
1985 * this is a cache and we can always fall back to bucket list scanning.
1986 */
1987 if (error != 0 && error != -EEXIST)
1988 error = 0;
1989 return error;
1990}
1991
1992/* Remember that @prev_agino.next_unlinked = @this_agino. */
1993static int
1994xfs_iunlink_add_backref(
1995 struct xfs_perag *pag,
1996 xfs_agino_t prev_agino,
1997 xfs_agino_t this_agino)
1998{
1999 struct xfs_iunlink *iu;
2000
2001 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2002 return 0;
2003
707e0dda 2004 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
9b247179
DW
2005 iu->iu_agino = prev_agino;
2006 iu->iu_next_unlinked = this_agino;
2007
2008 return xfs_iunlink_insert_backref(pag, iu);
2009}
2010
2011/*
2012 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2013 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2014 * wasn't any such entry then we don't bother.
2015 */
2016static int
2017xfs_iunlink_change_backref(
2018 struct xfs_perag *pag,
2019 xfs_agino_t agino,
2020 xfs_agino_t next_unlinked)
2021{
2022 struct xfs_iunlink *iu;
2023 int error;
2024
2025 /* Look up the old entry; if there wasn't one then exit. */
2026 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2027 xfs_iunlink_hash_params);
2028 if (!iu)
2029 return 0;
2030
2031 /*
2032 * Remove the entry. This shouldn't ever return an error, but if we
2033 * couldn't remove the old entry we don't want to add it again to the
2034 * hash table, and if the entry disappeared on us then someone's
2035 * violated the locking rules and we need to fail loudly. Either way
2036 * we cannot remove the inode because internal state is or would have
2037 * been corrupt.
2038 */
2039 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2040 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2041 if (error)
2042 return error;
2043
2044 /* If there is no new next entry just free our item and return. */
2045 if (next_unlinked == NULLAGINO) {
2046 kmem_free(iu);
2047 return 0;
2048 }
2049
2050 /* Update the entry and re-add it to the hash table. */
2051 iu->iu_next_unlinked = next_unlinked;
2052 return xfs_iunlink_insert_backref(pag, iu);
2053}
2054
2055/* Set up the in-core predecessor structures. */
2056int
2057xfs_iunlink_init(
2058 struct xfs_perag *pag)
2059{
2060 return rhashtable_init(&pag->pagi_unlinked_hash,
2061 &xfs_iunlink_hash_params);
2062}
2063
2064/* Free the in-core predecessor structures. */
2065static void
2066xfs_iunlink_free_item(
2067 void *ptr,
2068 void *arg)
2069{
2070 struct xfs_iunlink *iu = ptr;
2071 bool *freed_anything = arg;
2072
2073 *freed_anything = true;
2074 kmem_free(iu);
2075}
2076
2077void
2078xfs_iunlink_destroy(
2079 struct xfs_perag *pag)
2080{
2081 bool freed_anything = false;
2082
2083 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2084 xfs_iunlink_free_item, &freed_anything);
2085
2086 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2087}
2088
9a4a5118
DW
2089/*
2090 * Point the AGI unlinked bucket at an inode and log the results. The caller
2091 * is responsible for validating the old value.
2092 */
2093STATIC int
2094xfs_iunlink_update_bucket(
2095 struct xfs_trans *tp,
2096 xfs_agnumber_t agno,
2097 struct xfs_buf *agibp,
2098 unsigned int bucket_index,
2099 xfs_agino_t new_agino)
2100{
370c782b 2101 struct xfs_agi *agi = agibp->b_addr;
9a4a5118
DW
2102 xfs_agino_t old_value;
2103 int offset;
2104
2105 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2106
2107 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2108 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2109 old_value, new_agino);
2110
2111 /*
2112 * We should never find the head of the list already set to the value
2113 * passed in because either we're adding or removing ourselves from the
2114 * head of the list.
2115 */
a5155b87 2116 if (old_value == new_agino) {
8d57c216 2117 xfs_buf_mark_corrupt(agibp);
9a4a5118 2118 return -EFSCORRUPTED;
a5155b87 2119 }
9a4a5118
DW
2120
2121 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2122 offset = offsetof(struct xfs_agi, agi_unlinked) +
2123 (sizeof(xfs_agino_t) * bucket_index);
2124 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2125 return 0;
2126}
2127
f2fc16a3
DW
2128/* Set an on-disk inode's next_unlinked pointer. */
2129STATIC void
2130xfs_iunlink_update_dinode(
2131 struct xfs_trans *tp,
2132 xfs_agnumber_t agno,
2133 xfs_agino_t agino,
2134 struct xfs_buf *ibp,
2135 struct xfs_dinode *dip,
2136 struct xfs_imap *imap,
2137 xfs_agino_t next_agino)
2138{
2139 struct xfs_mount *mp = tp->t_mountp;
2140 int offset;
2141
2142 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2143
2144 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2145 be32_to_cpu(dip->di_next_unlinked), next_agino);
2146
2147 dip->di_next_unlinked = cpu_to_be32(next_agino);
2148 offset = imap->im_boffset +
2149 offsetof(struct xfs_dinode, di_next_unlinked);
2150
2151 /* need to recalc the inode CRC if appropriate */
2152 xfs_dinode_calc_crc(mp, dip);
2153 xfs_trans_inode_buf(tp, ibp);
2154 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2155 xfs_inobp_check(mp, ibp);
2156}
2157
2158/* Set an in-core inode's unlinked pointer and return the old value. */
2159STATIC int
2160xfs_iunlink_update_inode(
2161 struct xfs_trans *tp,
2162 struct xfs_inode *ip,
2163 xfs_agnumber_t agno,
2164 xfs_agino_t next_agino,
2165 xfs_agino_t *old_next_agino)
2166{
2167 struct xfs_mount *mp = tp->t_mountp;
2168 struct xfs_dinode *dip;
2169 struct xfs_buf *ibp;
2170 xfs_agino_t old_value;
2171 int error;
2172
2173 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2174
2175 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2176 if (error)
2177 return error;
2178
2179 /* Make sure the old pointer isn't garbage. */
2180 old_value = be32_to_cpu(dip->di_next_unlinked);
2181 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
a5155b87
DW
2182 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2183 sizeof(*dip), __this_address);
f2fc16a3
DW
2184 error = -EFSCORRUPTED;
2185 goto out;
2186 }
2187
2188 /*
2189 * Since we're updating a linked list, we should never find that the
2190 * current pointer is the same as the new value, unless we're
2191 * terminating the list.
2192 */
2193 *old_next_agino = old_value;
2194 if (old_value == next_agino) {
a5155b87
DW
2195 if (next_agino != NULLAGINO) {
2196 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2197 dip, sizeof(*dip), __this_address);
f2fc16a3 2198 error = -EFSCORRUPTED;
a5155b87 2199 }
f2fc16a3
DW
2200 goto out;
2201 }
2202
2203 /* Ok, update the new pointer. */
2204 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2205 ibp, dip, &ip->i_imap, next_agino);
2206 return 0;
2207out:
2208 xfs_trans_brelse(tp, ibp);
2209 return error;
2210}
2211
1da177e4 2212/*
c4a6bf7f
DW
2213 * This is called when the inode's link count has gone to 0 or we are creating
2214 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
2215 *
2216 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2217 * list when the inode is freed.
1da177e4 2218 */
54d7b5c1 2219STATIC int
1da177e4 2220xfs_iunlink(
5837f625
DW
2221 struct xfs_trans *tp,
2222 struct xfs_inode *ip)
1da177e4 2223{
5837f625
DW
2224 struct xfs_mount *mp = tp->t_mountp;
2225 struct xfs_agi *agi;
5837f625 2226 struct xfs_buf *agibp;
86bfd375 2227 xfs_agino_t next_agino;
5837f625
DW
2228 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2229 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2230 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2231 int error;
1da177e4 2232
c4a6bf7f 2233 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 2234 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 2235 trace_xfs_iunlink(ip);
1da177e4 2236
5837f625
DW
2237 /* Get the agi buffer first. It ensures lock ordering on the list. */
2238 error = xfs_read_agi(mp, tp, agno, &agibp);
859d7182 2239 if (error)
1da177e4 2240 return error;
370c782b 2241 agi = agibp->b_addr;
5e1be0fb 2242
1da177e4 2243 /*
86bfd375
DW
2244 * Get the index into the agi hash table for the list this inode will
2245 * go on. Make sure the pointer isn't garbage and that this inode
2246 * isn't already on the list.
1da177e4 2247 */
86bfd375
DW
2248 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2249 if (next_agino == agino ||
a5155b87 2250 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
8d57c216 2251 xfs_buf_mark_corrupt(agibp);
86bfd375 2252 return -EFSCORRUPTED;
a5155b87 2253 }
1da177e4 2254
86bfd375 2255 if (next_agino != NULLAGINO) {
9b247179
DW
2256 struct xfs_perag *pag;
2257 xfs_agino_t old_agino;
f2fc16a3 2258
1da177e4 2259 /*
f2fc16a3
DW
2260 * There is already another inode in the bucket, so point this
2261 * inode to the current head of the list.
1da177e4 2262 */
f2fc16a3
DW
2263 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2264 &old_agino);
c319b58b
VA
2265 if (error)
2266 return error;
f2fc16a3 2267 ASSERT(old_agino == NULLAGINO);
9b247179
DW
2268
2269 /*
2270 * agino has been unlinked, add a backref from the next inode
2271 * back to agino.
2272 */
2273 pag = xfs_perag_get(mp, agno);
2274 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2275 xfs_perag_put(pag);
2276 if (error)
2277 return error;
1da177e4
LT
2278 }
2279
9a4a5118
DW
2280 /* Point the head of the list to point to this inode. */
2281 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
1da177e4
LT
2282}
2283
23ffa52c
DW
2284/* Return the imap, dinode pointer, and buffer for an inode. */
2285STATIC int
2286xfs_iunlink_map_ino(
2287 struct xfs_trans *tp,
2288 xfs_agnumber_t agno,
2289 xfs_agino_t agino,
2290 struct xfs_imap *imap,
2291 struct xfs_dinode **dipp,
2292 struct xfs_buf **bpp)
2293{
2294 struct xfs_mount *mp = tp->t_mountp;
2295 int error;
2296
2297 imap->im_blkno = 0;
2298 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2299 if (error) {
2300 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2301 __func__, error);
2302 return error;
2303 }
2304
2305 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2306 if (error) {
2307 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2308 __func__, error);
2309 return error;
2310 }
2311
2312 return 0;
2313}
2314
2315/*
2316 * Walk the unlinked chain from @head_agino until we find the inode that
2317 * points to @target_agino. Return the inode number, map, dinode pointer,
2318 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2319 *
2320 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2321 * @agino, @imap, @dipp, and @bpp are all output parameters.
2322 *
2323 * Do not call this function if @target_agino is the head of the list.
2324 */
2325STATIC int
2326xfs_iunlink_map_prev(
2327 struct xfs_trans *tp,
2328 xfs_agnumber_t agno,
2329 xfs_agino_t head_agino,
2330 xfs_agino_t target_agino,
2331 xfs_agino_t *agino,
2332 struct xfs_imap *imap,
2333 struct xfs_dinode **dipp,
9b247179
DW
2334 struct xfs_buf **bpp,
2335 struct xfs_perag *pag)
23ffa52c
DW
2336{
2337 struct xfs_mount *mp = tp->t_mountp;
2338 xfs_agino_t next_agino;
2339 int error;
2340
2341 ASSERT(head_agino != target_agino);
2342 *bpp = NULL;
2343
9b247179
DW
2344 /* See if our backref cache can find it faster. */
2345 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2346 if (*agino != NULLAGINO) {
2347 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2348 if (error)
2349 return error;
2350
2351 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2352 return 0;
2353
2354 /*
2355 * If we get here the cache contents were corrupt, so drop the
2356 * buffer and fall back to walking the bucket list.
2357 */
2358 xfs_trans_brelse(tp, *bpp);
2359 *bpp = NULL;
2360 WARN_ON_ONCE(1);
2361 }
2362
2363 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2364
2365 /* Otherwise, walk the entire bucket until we find it. */
23ffa52c
DW
2366 next_agino = head_agino;
2367 while (next_agino != target_agino) {
2368 xfs_agino_t unlinked_agino;
2369
2370 if (*bpp)
2371 xfs_trans_brelse(tp, *bpp);
2372
2373 *agino = next_agino;
2374 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2375 bpp);
2376 if (error)
2377 return error;
2378
2379 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2380 /*
2381 * Make sure this pointer is valid and isn't an obvious
2382 * infinite loop.
2383 */
2384 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2385 next_agino == unlinked_agino) {
2386 XFS_CORRUPTION_ERROR(__func__,
2387 XFS_ERRLEVEL_LOW, mp,
2388 *dipp, sizeof(**dipp));
2389 error = -EFSCORRUPTED;
2390 return error;
2391 }
2392 next_agino = unlinked_agino;
2393 }
2394
2395 return 0;
2396}
2397
1da177e4
LT
2398/*
2399 * Pull the on-disk inode from the AGI unlinked list.
2400 */
2401STATIC int
2402xfs_iunlink_remove(
5837f625
DW
2403 struct xfs_trans *tp,
2404 struct xfs_inode *ip)
1da177e4 2405{
5837f625
DW
2406 struct xfs_mount *mp = tp->t_mountp;
2407 struct xfs_agi *agi;
5837f625 2408 struct xfs_buf *agibp;
5837f625
DW
2409 struct xfs_buf *last_ibp;
2410 struct xfs_dinode *last_dip = NULL;
9b247179 2411 struct xfs_perag *pag = NULL;
5837f625
DW
2412 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2413 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2414 xfs_agino_t next_agino;
b1d2a068 2415 xfs_agino_t head_agino;
5837f625 2416 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2417 int error;
1da177e4 2418
4664c66c
DW
2419 trace_xfs_iunlink_remove(ip);
2420
5837f625 2421 /* Get the agi buffer first. It ensures lock ordering on the list. */
5e1be0fb
CH
2422 error = xfs_read_agi(mp, tp, agno, &agibp);
2423 if (error)
1da177e4 2424 return error;
370c782b 2425 agi = agibp->b_addr;
5e1be0fb 2426
1da177e4 2427 /*
86bfd375
DW
2428 * Get the index into the agi hash table for the list this inode will
2429 * go on. Make sure the head pointer isn't garbage.
1da177e4 2430 */
b1d2a068
DW
2431 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2432 if (!xfs_verify_agino(mp, agno, head_agino)) {
d2e73665
DW
2433 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2434 agi, sizeof(*agi));
2435 return -EFSCORRUPTED;
2436 }
1da177e4 2437
b1d2a068
DW
2438 /*
2439 * Set our inode's next_unlinked pointer to NULL and then return
2440 * the old pointer value so that we can update whatever was previous
2441 * to us in the list to point to whatever was next in the list.
2442 */
2443 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2444 if (error)
2445 return error;
9a4a5118 2446
9b247179
DW
2447 /*
2448 * If there was a backref pointing from the next inode back to this
2449 * one, remove it because we've removed this inode from the list.
2450 *
2451 * Later, if this inode was in the middle of the list we'll update
2452 * this inode's backref to point from the next inode.
2453 */
2454 if (next_agino != NULLAGINO) {
2455 pag = xfs_perag_get(mp, agno);
2456 error = xfs_iunlink_change_backref(pag, next_agino,
2457 NULLAGINO);
2458 if (error)
2459 goto out;
2460 }
2461
b1d2a068 2462 if (head_agino == agino) {
9a4a5118
DW
2463 /* Point the head of the list to the next unlinked inode. */
2464 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2465 next_agino);
2466 if (error)
9b247179 2467 goto out;
1da177e4 2468 } else {
f2fc16a3
DW
2469 struct xfs_imap imap;
2470 xfs_agino_t prev_agino;
2471
9b247179
DW
2472 if (!pag)
2473 pag = xfs_perag_get(mp, agno);
2474
23ffa52c 2475 /* We need to search the list for the inode being freed. */
b1d2a068 2476 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
9b247179
DW
2477 &prev_agino, &imap, &last_dip, &last_ibp,
2478 pag);
23ffa52c 2479 if (error)
9b247179 2480 goto out;
475ee413 2481
f2fc16a3
DW
2482 /* Point the previous inode on the list to the next inode. */
2483 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2484 last_dip, &imap, next_agino);
9b247179
DW
2485
2486 /*
2487 * Now we deal with the backref for this inode. If this inode
2488 * pointed at a real inode, change the backref that pointed to
2489 * us to point to our old next. If this inode was the end of
2490 * the list, delete the backref that pointed to us. Note that
2491 * change_backref takes care of deleting the backref if
2492 * next_agino is NULLAGINO.
2493 */
2494 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2495 if (error)
2496 goto out;
1da177e4 2497 }
9b247179
DW
2498
2499out:
2500 if (pag)
2501 xfs_perag_put(pag);
2502 return error;
1da177e4
LT
2503}
2504
5806165a
DC
2505/*
2506 * Look up the inode number specified and mark it stale if it is found. If it is
2507 * dirty, return the inode so it can be attached to the cluster buffer so it can
2508 * be processed appropriately when the cluster free transaction completes.
2509 */
2510static struct xfs_inode *
2511xfs_ifree_get_one_inode(
2512 struct xfs_perag *pag,
2513 struct xfs_inode *free_ip,
d9fdd0ad 2514 xfs_ino_t inum)
5806165a
DC
2515{
2516 struct xfs_mount *mp = pag->pag_mount;
2517 struct xfs_inode *ip;
2518
2519retry:
2520 rcu_read_lock();
2521 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2522
2523 /* Inode not in memory, nothing to do */
2524 if (!ip)
2525 goto out_rcu_unlock;
2526
2527 /*
2528 * because this is an RCU protected lookup, we could find a recently
2529 * freed or even reallocated inode during the lookup. We need to check
2530 * under the i_flags_lock for a valid inode here. Skip it if it is not
2531 * valid, the wrong inode or stale.
2532 */
2533 spin_lock(&ip->i_flags_lock);
2534 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2535 spin_unlock(&ip->i_flags_lock);
2536 goto out_rcu_unlock;
2537 }
2538 spin_unlock(&ip->i_flags_lock);
2539
2540 /*
2541 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2542 * other inodes that we did not find in the list attached to the buffer
2543 * and are not already marked stale. If we can't lock it, back off and
2544 * retry.
2545 */
2546 if (ip != free_ip) {
2547 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2548 rcu_read_unlock();
2549 delay(1);
2550 goto retry;
2551 }
2552
2553 /*
2554 * Check the inode number again in case we're racing with
2555 * freeing in xfs_reclaim_inode(). See the comments in that
2556 * function for more information as to why the initial check is
2557 * not sufficient.
2558 */
2559 if (ip->i_ino != inum) {
2560 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2561 goto out_rcu_unlock;
2562 }
2563 }
2564 rcu_read_unlock();
2565
2566 xfs_iflock(ip);
2567 xfs_iflags_set(ip, XFS_ISTALE);
2568
2569 /*
2570 * We don't need to attach clean inodes or those only with unlogged
2571 * changes (which we throw away, anyway).
2572 */
2573 if (!ip->i_itemp || xfs_inode_clean(ip)) {
2574 ASSERT(ip != free_ip);
2575 xfs_ifunlock(ip);
2576 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2577 goto out_no_inode;
2578 }
2579 return ip;
2580
2581out_rcu_unlock:
2582 rcu_read_unlock();
2583out_no_inode:
2584 return NULL;
2585}
2586
5b3eed75 2587/*
0b8182db 2588 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2589 * inodes that are in memory - they all must be marked stale and attached to
2590 * the cluster buffer.
2591 */
2a30f36d 2592STATIC int
1da177e4 2593xfs_ifree_cluster(
09b56604
BF
2594 xfs_inode_t *free_ip,
2595 xfs_trans_t *tp,
2596 struct xfs_icluster *xic)
1da177e4
LT
2597{
2598 xfs_mount_t *mp = free_ip->i_mount;
1da177e4 2599 int nbufs;
5b257b4a 2600 int i, j;
3cdaa189 2601 int ioffset;
1da177e4
LT
2602 xfs_daddr_t blkno;
2603 xfs_buf_t *bp;
5b257b4a 2604 xfs_inode_t *ip;
1da177e4 2605 xfs_inode_log_item_t *iip;
643c8c05 2606 struct xfs_log_item *lip;
5017e97d 2607 struct xfs_perag *pag;
ef325959 2608 struct xfs_ino_geometry *igeo = M_IGEO(mp);
09b56604 2609 xfs_ino_t inum;
ce92464c 2610 int error;
1da177e4 2611
09b56604 2612 inum = xic->first_ino;
5017e97d 2613 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
ef325959 2614 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2615
ef325959 2616 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2617 /*
2618 * The allocation bitmap tells us which inodes of the chunk were
2619 * physically allocated. Skip the cluster if an inode falls into
2620 * a sparse region.
2621 */
3cdaa189
BF
2622 ioffset = inum - xic->first_ino;
2623 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2624 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2625 continue;
2626 }
2627
1da177e4
LT
2628 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2629 XFS_INO_TO_AGBNO(mp, inum));
2630
5b257b4a
DC
2631 /*
2632 * We obtain and lock the backing buffer first in the process
2633 * here, as we have to ensure that any dirty inode that we
2634 * can't get the flush lock on is attached to the buffer.
2635 * If we scan the in-memory inodes first, then buffer IO can
2636 * complete before we get a lock on it, and hence we may fail
2637 * to mark all the active inodes on the buffer stale.
2638 */
ce92464c
DW
2639 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2640 mp->m_bsize * igeo->blocks_per_cluster,
2641 XBF_UNMAPPED, &bp);
2642 if (error)
2643 return error;
b0f539de
DC
2644
2645 /*
2646 * This buffer may not have been correctly initialised as we
2647 * didn't read it from disk. That's not important because we are
2648 * only using to mark the buffer as stale in the log, and to
2649 * attach stale cached inodes on it. That means it will never be
2650 * dispatched for IO. If it is, we want to know about it, and we
2651 * want it to fail. We can acheive this by adding a write
2652 * verifier to the buffer.
2653 */
8c4ce794 2654 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2655
5b257b4a
DC
2656 /*
2657 * Walk the inodes already attached to the buffer and mark them
2658 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2659 * in-memory inode walk can't lock them. By marking them all
2660 * stale first, we will not attempt to lock them in the loop
2661 * below as the XFS_ISTALE flag will be set.
5b257b4a 2662 */
643c8c05 2663 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2664 if (lip->li_type == XFS_LI_INODE) {
2665 iip = (xfs_inode_log_item_t *)lip;
2666 ASSERT(iip->ili_logged == 1);
ca30b2a7 2667 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2668 xfs_trans_ail_copy_lsn(mp->m_ail,
2669 &iip->ili_flush_lsn,
2670 &iip->ili_item.li_lsn);
2671 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2672 }
5b257b4a 2673 }
1da177e4 2674
5b3eed75 2675
1da177e4 2676 /*
5b257b4a
DC
2677 * For each inode in memory attempt to add it to the inode
2678 * buffer and set it up for being staled on buffer IO
2679 * completion. This is safe as we've locked out tail pushing
2680 * and flushing by locking the buffer.
1da177e4 2681 *
5b257b4a
DC
2682 * We have already marked every inode that was part of a
2683 * transaction stale above, which means there is no point in
2684 * even trying to lock them.
1da177e4 2685 */
ef325959 2686 for (i = 0; i < igeo->inodes_per_cluster; i++) {
5806165a
DC
2687 ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i);
2688 if (!ip)
1da177e4 2689 continue;
1da177e4 2690
1da177e4 2691 iip = ip->i_itemp;
f5d8d5c4
CH
2692 iip->ili_last_fields = iip->ili_fields;
2693 iip->ili_fields = 0;
fc0561ce 2694 iip->ili_fsync_fields = 0;
1da177e4 2695 iip->ili_logged = 1;
7b2e2a31
DC
2696 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2697 &iip->ili_item.li_lsn);
1da177e4 2698
ca30b2a7
CH
2699 xfs_buf_attach_iodone(bp, xfs_istale_done,
2700 &iip->ili_item);
5b257b4a
DC
2701
2702 if (ip != free_ip)
1da177e4 2703 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2704 }
2705
5b3eed75 2706 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2707 xfs_trans_binval(tp, bp);
2708 }
2709
5017e97d 2710 xfs_perag_put(pag);
2a30f36d 2711 return 0;
1da177e4
LT
2712}
2713
98c4f78d
DW
2714/*
2715 * Free any local-format buffers sitting around before we reset to
2716 * extents format.
2717 */
2718static inline void
2719xfs_ifree_local_data(
2720 struct xfs_inode *ip,
2721 int whichfork)
2722{
2723 struct xfs_ifork *ifp;
2724
2725 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2726 return;
2727
2728 ifp = XFS_IFORK_PTR(ip, whichfork);
2729 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2730}
2731
1da177e4
LT
2732/*
2733 * This is called to return an inode to the inode free list.
2734 * The inode should already be truncated to 0 length and have
2735 * no pages associated with it. This routine also assumes that
2736 * the inode is already a part of the transaction.
2737 *
2738 * The on-disk copy of the inode will have been added to the list
2739 * of unlinked inodes in the AGI. We need to remove the inode from
2740 * that list atomically with respect to freeing it here.
2741 */
2742int
2743xfs_ifree(
0e0417f3
BF
2744 struct xfs_trans *tp,
2745 struct xfs_inode *ip)
1da177e4
LT
2746{
2747 int error;
09b56604 2748 struct xfs_icluster xic = { 0 };
1da177e4 2749
579aa9ca 2750 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2751 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2752 ASSERT(ip->i_d.di_nextents == 0);
2753 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2754 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2755 ASSERT(ip->i_d.di_nblocks == 0);
2756
2757 /*
2758 * Pull the on-disk inode from the AGI unlinked list.
2759 */
2760 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2761 if (error)
1da177e4 2762 return error;
1da177e4 2763
0e0417f3 2764 error = xfs_difree(tp, ip->i_ino, &xic);
1baaed8f 2765 if (error)
1da177e4 2766 return error;
1baaed8f 2767
98c4f78d
DW
2768 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2769 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2770
c19b3b05 2771 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2772 ip->i_d.di_flags = 0;
beaae8cd 2773 ip->i_d.di_flags2 = 0;
1da177e4
LT
2774 ip->i_d.di_dmevmask = 0;
2775 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2776 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2777 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2778
2779 /* Don't attempt to replay owner changes for a deleted inode */
2780 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2781
1da177e4
LT
2782 /*
2783 * Bump the generation count so no one will be confused
2784 * by reincarnations of this inode.
2785 */
9e9a2674 2786 VFS_I(ip)->i_generation++;
1da177e4
LT
2787 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2788
09b56604
BF
2789 if (xic.deleted)
2790 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2791
2a30f36d 2792 return error;
1da177e4
LT
2793}
2794
1da177e4 2795/*
60ec6783
CH
2796 * This is called to unpin an inode. The caller must have the inode locked
2797 * in at least shared mode so that the buffer cannot be subsequently pinned
2798 * once someone is waiting for it to be unpinned.
1da177e4 2799 */
60ec6783 2800static void
f392e631 2801xfs_iunpin(
60ec6783 2802 struct xfs_inode *ip)
1da177e4 2803{
579aa9ca 2804 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2805
4aaf15d1
DC
2806 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2807
a3f74ffb 2808 /* Give the log a push to start the unpinning I/O */
656de4ff 2809 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2810
a3f74ffb 2811}
1da177e4 2812
f392e631
CH
2813static void
2814__xfs_iunpin_wait(
2815 struct xfs_inode *ip)
2816{
2817 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2818 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2819
2820 xfs_iunpin(ip);
2821
2822 do {
21417136 2823 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2824 if (xfs_ipincount(ip))
2825 io_schedule();
2826 } while (xfs_ipincount(ip));
21417136 2827 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2828}
2829
777df5af 2830void
a3f74ffb 2831xfs_iunpin_wait(
60ec6783 2832 struct xfs_inode *ip)
a3f74ffb 2833{
f392e631
CH
2834 if (xfs_ipincount(ip))
2835 __xfs_iunpin_wait(ip);
1da177e4
LT
2836}
2837
27320369
DC
2838/*
2839 * Removing an inode from the namespace involves removing the directory entry
2840 * and dropping the link count on the inode. Removing the directory entry can
2841 * result in locking an AGF (directory blocks were freed) and removing a link
2842 * count can result in placing the inode on an unlinked list which results in
2843 * locking an AGI.
2844 *
2845 * The big problem here is that we have an ordering constraint on AGF and AGI
2846 * locking - inode allocation locks the AGI, then can allocate a new extent for
2847 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2848 * removes the inode from the unlinked list, requiring that we lock the AGI
2849 * first, and then freeing the inode can result in an inode chunk being freed
2850 * and hence freeing disk space requiring that we lock an AGF.
2851 *
2852 * Hence the ordering that is imposed by other parts of the code is AGI before
2853 * AGF. This means we cannot remove the directory entry before we drop the inode
2854 * reference count and put it on the unlinked list as this results in a lock
2855 * order of AGF then AGI, and this can deadlock against inode allocation and
2856 * freeing. Therefore we must drop the link counts before we remove the
2857 * directory entry.
2858 *
2859 * This is still safe from a transactional point of view - it is not until we
310a75a3 2860 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2861 * transactions in this operation. Hence as long as we remove the directory
2862 * entry and drop the link count in the first transaction of the remove
2863 * operation, there are no transactional constraints on the ordering here.
2864 */
c24b5dfa
DC
2865int
2866xfs_remove(
2867 xfs_inode_t *dp,
2868 struct xfs_name *name,
2869 xfs_inode_t *ip)
2870{
2871 xfs_mount_t *mp = dp->i_mount;
2872 xfs_trans_t *tp = NULL;
c19b3b05 2873 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2874 int error = 0;
c24b5dfa 2875 uint resblks;
c24b5dfa
DC
2876
2877 trace_xfs_remove(dp, name);
2878
2879 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2880 return -EIO;
c24b5dfa 2881
c14cfcca 2882 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2883 if (error)
2884 goto std_return;
2885
c14cfcca 2886 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2887 if (error)
2888 goto std_return;
2889
c24b5dfa
DC
2890 /*
2891 * We try to get the real space reservation first,
2892 * allowing for directory btree deletion(s) implying
2893 * possible bmap insert(s). If we can't get the space
2894 * reservation then we use 0 instead, and avoid the bmap
2895 * btree insert(s) in the directory code by, if the bmap
2896 * insert tries to happen, instead trimming the LAST
2897 * block from the directory.
2898 */
2899 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2901 if (error == -ENOSPC) {
c24b5dfa 2902 resblks = 0;
253f4911
CH
2903 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2904 &tp);
c24b5dfa
DC
2905 }
2906 if (error) {
2451337d 2907 ASSERT(error != -ENOSPC);
253f4911 2908 goto std_return;
c24b5dfa
DC
2909 }
2910
7c2d238a 2911 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2912
65523218 2913 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2914 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2915
2916 /*
2917 * If we're removing a directory perform some additional validation.
2918 */
2919 if (is_dir) {
54d7b5c1
DC
2920 ASSERT(VFS_I(ip)->i_nlink >= 2);
2921 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2922 error = -ENOTEMPTY;
c24b5dfa
DC
2923 goto out_trans_cancel;
2924 }
2925 if (!xfs_dir_isempty(ip)) {
2451337d 2926 error = -ENOTEMPTY;
c24b5dfa
DC
2927 goto out_trans_cancel;
2928 }
c24b5dfa 2929
27320369 2930 /* Drop the link from ip's "..". */
c24b5dfa
DC
2931 error = xfs_droplink(tp, dp);
2932 if (error)
27320369 2933 goto out_trans_cancel;
c24b5dfa 2934
27320369 2935 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2936 error = xfs_droplink(tp, ip);
2937 if (error)
27320369 2938 goto out_trans_cancel;
c24b5dfa
DC
2939 } else {
2940 /*
2941 * When removing a non-directory we need to log the parent
2942 * inode here. For a directory this is done implicitly
2943 * by the xfs_droplink call for the ".." entry.
2944 */
2945 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2946 }
27320369 2947 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2948
27320369 2949 /* Drop the link from dp to ip. */
c24b5dfa
DC
2950 error = xfs_droplink(tp, ip);
2951 if (error)
27320369 2952 goto out_trans_cancel;
c24b5dfa 2953
381eee69 2954 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2955 if (error) {
2451337d 2956 ASSERT(error != -ENOENT);
c8eac49e 2957 goto out_trans_cancel;
27320369
DC
2958 }
2959
c24b5dfa
DC
2960 /*
2961 * If this is a synchronous mount, make sure that the
2962 * remove transaction goes to disk before returning to
2963 * the user.
2964 */
2965 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2966 xfs_trans_set_sync(tp);
2967
70393313 2968 error = xfs_trans_commit(tp);
c24b5dfa
DC
2969 if (error)
2970 goto std_return;
2971
2cd2ef6a 2972 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2973 xfs_filestream_deassociate(ip);
2974
2975 return 0;
2976
c24b5dfa 2977 out_trans_cancel:
4906e215 2978 xfs_trans_cancel(tp);
c24b5dfa
DC
2979 std_return:
2980 return error;
2981}
2982
f6bba201
DC
2983/*
2984 * Enter all inodes for a rename transaction into a sorted array.
2985 */
95afcf5c 2986#define __XFS_SORT_INODES 5
f6bba201
DC
2987STATIC void
2988xfs_sort_for_rename(
95afcf5c
DC
2989 struct xfs_inode *dp1, /* in: old (source) directory inode */
2990 struct xfs_inode *dp2, /* in: new (target) directory inode */
2991 struct xfs_inode *ip1, /* in: inode of old entry */
2992 struct xfs_inode *ip2, /* in: inode of new entry */
2993 struct xfs_inode *wip, /* in: whiteout inode */
2994 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2995 int *num_inodes) /* in/out: inodes in array */
f6bba201 2996{
f6bba201
DC
2997 int i, j;
2998
95afcf5c
DC
2999 ASSERT(*num_inodes == __XFS_SORT_INODES);
3000 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3001
f6bba201
DC
3002 /*
3003 * i_tab contains a list of pointers to inodes. We initialize
3004 * the table here & we'll sort it. We will then use it to
3005 * order the acquisition of the inode locks.
3006 *
3007 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3008 */
95afcf5c
DC
3009 i = 0;
3010 i_tab[i++] = dp1;
3011 i_tab[i++] = dp2;
3012 i_tab[i++] = ip1;
3013 if (ip2)
3014 i_tab[i++] = ip2;
3015 if (wip)
3016 i_tab[i++] = wip;
3017 *num_inodes = i;
f6bba201
DC
3018
3019 /*
3020 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 3021 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
3022 */
3023 for (i = 0; i < *num_inodes; i++) {
3024 for (j = 1; j < *num_inodes; j++) {
3025 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 3026 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
3027 i_tab[j] = i_tab[j-1];
3028 i_tab[j-1] = temp;
3029 }
3030 }
3031 }
3032}
3033
310606b0
DC
3034static int
3035xfs_finish_rename(
c9cfdb38 3036 struct xfs_trans *tp)
310606b0 3037{
310606b0
DC
3038 /*
3039 * If this is a synchronous mount, make sure that the rename transaction
3040 * goes to disk before returning to the user.
3041 */
3042 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3043 xfs_trans_set_sync(tp);
3044
70393313 3045 return xfs_trans_commit(tp);
310606b0
DC
3046}
3047
d31a1825
CM
3048/*
3049 * xfs_cross_rename()
3050 *
3051 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3052 */
3053STATIC int
3054xfs_cross_rename(
3055 struct xfs_trans *tp,
3056 struct xfs_inode *dp1,
3057 struct xfs_name *name1,
3058 struct xfs_inode *ip1,
3059 struct xfs_inode *dp2,
3060 struct xfs_name *name2,
3061 struct xfs_inode *ip2,
d31a1825
CM
3062 int spaceres)
3063{
3064 int error = 0;
3065 int ip1_flags = 0;
3066 int ip2_flags = 0;
3067 int dp2_flags = 0;
3068
3069 /* Swap inode number for dirent in first parent */
381eee69 3070 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 3071 if (error)
eeacd321 3072 goto out_trans_abort;
d31a1825
CM
3073
3074 /* Swap inode number for dirent in second parent */
381eee69 3075 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 3076 if (error)
eeacd321 3077 goto out_trans_abort;
d31a1825
CM
3078
3079 /*
3080 * If we're renaming one or more directories across different parents,
3081 * update the respective ".." entries (and link counts) to match the new
3082 * parents.
3083 */
3084 if (dp1 != dp2) {
3085 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3086
c19b3b05 3087 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 3088 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 3089 dp1->i_ino, spaceres);
d31a1825 3090 if (error)
eeacd321 3091 goto out_trans_abort;
d31a1825
CM
3092
3093 /* transfer ip2 ".." reference to dp1 */
c19b3b05 3094 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
3095 error = xfs_droplink(tp, dp2);
3096 if (error)
eeacd321 3097 goto out_trans_abort;
91083269 3098 xfs_bumplink(tp, dp1);
d31a1825
CM
3099 }
3100
3101 /*
3102 * Although ip1 isn't changed here, userspace needs
3103 * to be warned about the change, so that applications
3104 * relying on it (like backup ones), will properly
3105 * notify the change
3106 */
3107 ip1_flags |= XFS_ICHGTIME_CHG;
3108 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3109 }
3110
c19b3b05 3111 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 3112 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 3113 dp2->i_ino, spaceres);
d31a1825 3114 if (error)
eeacd321 3115 goto out_trans_abort;
d31a1825
CM
3116
3117 /* transfer ip1 ".." reference to dp2 */
c19b3b05 3118 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
3119 error = xfs_droplink(tp, dp1);
3120 if (error)
eeacd321 3121 goto out_trans_abort;
91083269 3122 xfs_bumplink(tp, dp2);
d31a1825
CM
3123 }
3124
3125 /*
3126 * Although ip2 isn't changed here, userspace needs
3127 * to be warned about the change, so that applications
3128 * relying on it (like backup ones), will properly
3129 * notify the change
3130 */
3131 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3132 ip2_flags |= XFS_ICHGTIME_CHG;
3133 }
3134 }
3135
3136 if (ip1_flags) {
3137 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3138 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3139 }
3140 if (ip2_flags) {
3141 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3142 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3143 }
3144 if (dp2_flags) {
3145 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3146 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3147 }
3148 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3149 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 3150 return xfs_finish_rename(tp);
eeacd321
DC
3151
3152out_trans_abort:
4906e215 3153 xfs_trans_cancel(tp);
d31a1825
CM
3154 return error;
3155}
3156
7dcf5c3e
DC
3157/*
3158 * xfs_rename_alloc_whiteout()
3159 *
3160 * Return a referenced, unlinked, unlocked inode that that can be used as a
3161 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3162 * crash between allocating the inode and linking it into the rename transaction
3163 * recovery will free the inode and we won't leak it.
3164 */
3165static int
3166xfs_rename_alloc_whiteout(
3167 struct xfs_inode *dp,
3168 struct xfs_inode **wip)
3169{
3170 struct xfs_inode *tmpfile;
3171 int error;
3172
a1f69417 3173 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
3174 if (error)
3175 return error;
3176
22419ac9
BF
3177 /*
3178 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
3179 * Complete the inode setup and flag it as linkable. nlink is already
3180 * zero, so we can skip the drop_nlink.
22419ac9 3181 */
2b3d1d41 3182 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
3183 xfs_finish_inode_setup(tmpfile);
3184 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3185
3186 *wip = tmpfile;
3187 return 0;
3188}
3189
f6bba201
DC
3190/*
3191 * xfs_rename
3192 */
3193int
3194xfs_rename(
7dcf5c3e
DC
3195 struct xfs_inode *src_dp,
3196 struct xfs_name *src_name,
3197 struct xfs_inode *src_ip,
3198 struct xfs_inode *target_dp,
3199 struct xfs_name *target_name,
3200 struct xfs_inode *target_ip,
3201 unsigned int flags)
f6bba201 3202{
7dcf5c3e
DC
3203 struct xfs_mount *mp = src_dp->i_mount;
3204 struct xfs_trans *tp;
7dcf5c3e
DC
3205 struct xfs_inode *wip = NULL; /* whiteout inode */
3206 struct xfs_inode *inodes[__XFS_SORT_INODES];
93597ae8 3207 struct xfs_buf *agibp;
7dcf5c3e 3208 int num_inodes = __XFS_SORT_INODES;
2b93681f 3209 bool new_parent = (src_dp != target_dp);
c19b3b05 3210 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
3211 int spaceres;
3212 int error;
f6bba201
DC
3213
3214 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3215
eeacd321
DC
3216 if ((flags & RENAME_EXCHANGE) && !target_ip)
3217 return -EINVAL;
3218
7dcf5c3e
DC
3219 /*
3220 * If we are doing a whiteout operation, allocate the whiteout inode
3221 * we will be placing at the target and ensure the type is set
3222 * appropriately.
3223 */
3224 if (flags & RENAME_WHITEOUT) {
3225 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3226 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3227 if (error)
3228 return error;
3229
3230 /* setup target dirent info as whiteout */
3231 src_name->type = XFS_DIR3_FT_CHRDEV;
3232 }
f6bba201 3233
7dcf5c3e 3234 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
3235 inodes, &num_inodes);
3236
f6bba201 3237 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 3238 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 3239 if (error == -ENOSPC) {
f6bba201 3240 spaceres = 0;
253f4911
CH
3241 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3242 &tp);
f6bba201 3243 }
445883e8 3244 if (error)
253f4911 3245 goto out_release_wip;
f6bba201
DC
3246
3247 /*
3248 * Attach the dquots to the inodes
3249 */
3250 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
3251 if (error)
3252 goto out_trans_cancel;
f6bba201
DC
3253
3254 /*
3255 * Lock all the participating inodes. Depending upon whether
3256 * the target_name exists in the target directory, and
3257 * whether the target directory is the same as the source
3258 * directory, we can lock from 2 to 4 inodes.
3259 */
3260 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3261
3262 /*
3263 * Join all the inodes to the transaction. From this point on,
3264 * we can rely on either trans_commit or trans_cancel to unlock
3265 * them.
3266 */
65523218 3267 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3268 if (new_parent)
65523218 3269 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3270 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3271 if (target_ip)
3272 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3273 if (wip)
3274 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3275
3276 /*
3277 * If we are using project inheritance, we only allow renames
3278 * into our tree when the project IDs are the same; else the
3279 * tree quota mechanism would be circumvented.
3280 */
3281 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 3282 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
2451337d 3283 error = -EXDEV;
445883e8 3284 goto out_trans_cancel;
f6bba201
DC
3285 }
3286
eeacd321
DC
3287 /* RENAME_EXCHANGE is unique from here on. */
3288 if (flags & RENAME_EXCHANGE)
3289 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3290 target_dp, target_name, target_ip,
f16dea54 3291 spaceres);
d31a1825 3292
f6bba201 3293 /*
bc56ad8c 3294 * Check for expected errors before we dirty the transaction
3295 * so we can return an error without a transaction abort.
f6bba201
DC
3296 */
3297 if (target_ip == NULL) {
3298 /*
3299 * If there's no space reservation, check the entry will
3300 * fit before actually inserting it.
3301 */
94f3cad5
ES
3302 if (!spaceres) {
3303 error = xfs_dir_canenter(tp, target_dp, target_name);
3304 if (error)
445883e8 3305 goto out_trans_cancel;
94f3cad5 3306 }
bc56ad8c 3307 } else {
3308 /*
3309 * If target exists and it's a directory, check that whether
3310 * it can be destroyed.
3311 */
3312 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3313 (!xfs_dir_isempty(target_ip) ||
3314 (VFS_I(target_ip)->i_nlink > 2))) {
3315 error = -EEXIST;
3316 goto out_trans_cancel;
3317 }
3318 }
3319
3320 /*
3321 * Directory entry creation below may acquire the AGF. Remove
3322 * the whiteout from the unlinked list first to preserve correct
3323 * AGI/AGF locking order. This dirties the transaction so failures
3324 * after this point will abort and log recovery will clean up the
3325 * mess.
3326 *
3327 * For whiteouts, we need to bump the link count on the whiteout
3328 * inode. After this point, we have a real link, clear the tmpfile
3329 * state flag from the inode so it doesn't accidentally get misused
3330 * in future.
3331 */
3332 if (wip) {
3333 ASSERT(VFS_I(wip)->i_nlink == 0);
3334 error = xfs_iunlink_remove(tp, wip);
3335 if (error)
3336 goto out_trans_cancel;
3337
3338 xfs_bumplink(tp, wip);
bc56ad8c 3339 VFS_I(wip)->i_state &= ~I_LINKABLE;
3340 }
3341
3342 /*
3343 * Set up the target.
3344 */
3345 if (target_ip == NULL) {
f6bba201
DC
3346 /*
3347 * If target does not exist and the rename crosses
3348 * directories, adjust the target directory link count
3349 * to account for the ".." reference from the new entry.
3350 */
3351 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3352 src_ip->i_ino, spaceres);
f6bba201 3353 if (error)
c8eac49e 3354 goto out_trans_cancel;
f6bba201
DC
3355
3356 xfs_trans_ichgtime(tp, target_dp,
3357 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3358
3359 if (new_parent && src_is_directory) {
91083269 3360 xfs_bumplink(tp, target_dp);
f6bba201
DC
3361 }
3362 } else { /* target_ip != NULL */
f6bba201
DC
3363 /*
3364 * Link the source inode under the target name.
3365 * If the source inode is a directory and we are moving
3366 * it across directories, its ".." entry will be
3367 * inconsistent until we replace that down below.
3368 *
3369 * In case there is already an entry with the same
3370 * name at the destination directory, remove it first.
3371 */
93597ae8 3372
3373 /*
3374 * Check whether the replace operation will need to allocate
3375 * blocks. This happens when the shortform directory lacks
3376 * space and we have to convert it to a block format directory.
3377 * When more blocks are necessary, we must lock the AGI first
3378 * to preserve locking order (AGI -> AGF).
3379 */
3380 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3381 error = xfs_read_agi(mp, tp,
3382 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3383 &agibp);
3384 if (error)
3385 goto out_trans_cancel;
3386 }
3387
f6bba201 3388 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3389 src_ip->i_ino, spaceres);
f6bba201 3390 if (error)
c8eac49e 3391 goto out_trans_cancel;
f6bba201
DC
3392
3393 xfs_trans_ichgtime(tp, target_dp,
3394 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3395
3396 /*
3397 * Decrement the link count on the target since the target
3398 * dir no longer points to it.
3399 */
3400 error = xfs_droplink(tp, target_ip);
3401 if (error)
c8eac49e 3402 goto out_trans_cancel;
f6bba201
DC
3403
3404 if (src_is_directory) {
3405 /*
3406 * Drop the link from the old "." entry.
3407 */
3408 error = xfs_droplink(tp, target_ip);
3409 if (error)
c8eac49e 3410 goto out_trans_cancel;
f6bba201
DC
3411 }
3412 } /* target_ip != NULL */
3413
3414 /*
3415 * Remove the source.
3416 */
3417 if (new_parent && src_is_directory) {
3418 /*
3419 * Rewrite the ".." entry to point to the new
3420 * directory.
3421 */
3422 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3423 target_dp->i_ino, spaceres);
2451337d 3424 ASSERT(error != -EEXIST);
f6bba201 3425 if (error)
c8eac49e 3426 goto out_trans_cancel;
f6bba201
DC
3427 }
3428
3429 /*
3430 * We always want to hit the ctime on the source inode.
3431 *
3432 * This isn't strictly required by the standards since the source
3433 * inode isn't really being changed, but old unix file systems did
3434 * it and some incremental backup programs won't work without it.
3435 */
3436 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3437 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3438
3439 /*
3440 * Adjust the link count on src_dp. This is necessary when
3441 * renaming a directory, either within one parent when
3442 * the target existed, or across two parent directories.
3443 */
3444 if (src_is_directory && (new_parent || target_ip != NULL)) {
3445
3446 /*
3447 * Decrement link count on src_directory since the
3448 * entry that's moved no longer points to it.
3449 */
3450 error = xfs_droplink(tp, src_dp);
3451 if (error)
c8eac49e 3452 goto out_trans_cancel;
f6bba201
DC
3453 }
3454
7dcf5c3e
DC
3455 /*
3456 * For whiteouts, we only need to update the source dirent with the
3457 * inode number of the whiteout inode rather than removing it
3458 * altogether.
3459 */
3460 if (wip) {
3461 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3462 spaceres);
7dcf5c3e
DC
3463 } else
3464 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3465 spaceres);
f6bba201 3466 if (error)
c8eac49e 3467 goto out_trans_cancel;
f6bba201 3468
f6bba201
DC
3469 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3470 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3471 if (new_parent)
3472 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3473
c9cfdb38 3474 error = xfs_finish_rename(tp);
7dcf5c3e 3475 if (wip)
44a8736b 3476 xfs_irele(wip);
7dcf5c3e 3477 return error;
f6bba201 3478
445883e8 3479out_trans_cancel:
4906e215 3480 xfs_trans_cancel(tp);
253f4911 3481out_release_wip:
7dcf5c3e 3482 if (wip)
44a8736b 3483 xfs_irele(wip);
f6bba201
DC
3484 return error;
3485}
3486
5c4d97d0
DC
3487STATIC int
3488xfs_iflush_cluster(
19429363
DC
3489 struct xfs_inode *ip,
3490 struct xfs_buf *bp)
1da177e4 3491{
19429363 3492 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3493 struct xfs_perag *pag;
3494 unsigned long first_index, mask;
19429363
DC
3495 int cilist_size;
3496 struct xfs_inode **cilist;
3497 struct xfs_inode *cip;
ef325959 3498 struct xfs_ino_geometry *igeo = M_IGEO(mp);
5c4d97d0
DC
3499 int nr_found;
3500 int clcount = 0;
1da177e4 3501 int i;
1da177e4 3502
5c4d97d0 3503 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3504
4b4d98cc 3505 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
19429363
DC
3506 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3507 if (!cilist)
5c4d97d0 3508 goto out_put;
1da177e4 3509
4b4d98cc 3510 mask = ~(igeo->inodes_per_cluster - 1);
5c4d97d0
DC
3511 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3512 rcu_read_lock();
3513 /* really need a gang lookup range call here */
19429363 3514 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
4b4d98cc 3515 first_index, igeo->inodes_per_cluster);
5c4d97d0
DC
3516 if (nr_found == 0)
3517 goto out_free;
3518
3519 for (i = 0; i < nr_found; i++) {
19429363
DC
3520 cip = cilist[i];
3521 if (cip == ip)
bad55843 3522 continue;
1a3e8f3d
DC
3523
3524 /*
3525 * because this is an RCU protected lookup, we could find a
3526 * recently freed or even reallocated inode during the lookup.
3527 * We need to check under the i_flags_lock for a valid inode
3528 * here. Skip it if it is not valid or the wrong inode.
3529 */
19429363
DC
3530 spin_lock(&cip->i_flags_lock);
3531 if (!cip->i_ino ||
3532 __xfs_iflags_test(cip, XFS_ISTALE)) {
3533 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3534 continue;
3535 }
5a90e53e
DC
3536
3537 /*
3538 * Once we fall off the end of the cluster, no point checking
3539 * any more inodes in the list because they will also all be
3540 * outside the cluster.
3541 */
19429363
DC
3542 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3543 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3544 break;
3545 }
19429363 3546 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3547
bad55843
DC
3548 /*
3549 * Do an un-protected check to see if the inode is dirty and
3550 * is a candidate for flushing. These checks will be repeated
3551 * later after the appropriate locks are acquired.
3552 */
19429363 3553 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3554 continue;
bad55843
DC
3555
3556 /*
3557 * Try to get locks. If any are unavailable or it is pinned,
3558 * then this inode cannot be flushed and is skipped.
3559 */
3560
19429363 3561 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3562 continue;
19429363
DC
3563 if (!xfs_iflock_nowait(cip)) {
3564 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3565 continue;
3566 }
19429363
DC
3567 if (xfs_ipincount(cip)) {
3568 xfs_ifunlock(cip);
3569 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3570 continue;
3571 }
3572
8a17d7dd
DC
3573
3574 /*
3575 * Check the inode number again, just to be certain we are not
3576 * racing with freeing in xfs_reclaim_inode(). See the comments
3577 * in that function for more information as to why the initial
3578 * check is not sufficient.
3579 */
19429363
DC
3580 if (!cip->i_ino) {
3581 xfs_ifunlock(cip);
3582 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3583 continue;
3584 }
3585
3586 /*
3587 * arriving here means that this inode can be flushed. First
3588 * re-check that it's dirty before flushing.
3589 */
19429363 3590 if (!xfs_inode_clean(cip)) {
33540408 3591 int error;
19429363 3592 error = xfs_iflush_int(cip, bp);
bad55843 3593 if (error) {
19429363 3594 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3595 goto cluster_corrupt_out;
3596 }
3597 clcount++;
3598 } else {
19429363 3599 xfs_ifunlock(cip);
bad55843 3600 }
19429363 3601 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3602 }
3603
3604 if (clcount) {
ff6d6af2
BD
3605 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3606 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3607 }
3608
3609out_free:
1a3e8f3d 3610 rcu_read_unlock();
19429363 3611 kmem_free(cilist);
44b56e0a
DC
3612out_put:
3613 xfs_perag_put(pag);
bad55843
DC
3614 return 0;
3615
3616
3617cluster_corrupt_out:
3618 /*
3619 * Corruption detected in the clustering loop. Invalidate the
3620 * inode buffer and shut down the filesystem.
3621 */
1a3e8f3d 3622 rcu_read_unlock();
bad55843 3623
bad55843 3624 /*
e53946db
DC
3625 * We'll always have an inode attached to the buffer for completion
3626 * process by the time we are called from xfs_iflush(). Hence we have
3627 * always need to do IO completion processing to abort the inodes
3628 * attached to the buffer. handle them just like the shutdown case in
3629 * xfs_buf_submit().
bad55843 3630 */
e53946db 3631 ASSERT(bp->b_iodone);
22fedd80 3632 bp->b_flags |= XBF_ASYNC;
e53946db
DC
3633 bp->b_flags &= ~XBF_DONE;
3634 xfs_buf_stale(bp);
3635 xfs_buf_ioerror(bp, -EIO);
3636 xfs_buf_ioend(bp);
3637
22fedd80
BF
3638 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3639
e53946db 3640 /* abort the corrupt inode, as it was not attached to the buffer */
19429363
DC
3641 xfs_iflush_abort(cip, false);
3642 kmem_free(cilist);
44b56e0a 3643 xfs_perag_put(pag);
2451337d 3644 return -EFSCORRUPTED;
bad55843
DC
3645}
3646
1da177e4 3647/*
4c46819a
CH
3648 * Flush dirty inode metadata into the backing buffer.
3649 *
3650 * The caller must have the inode lock and the inode flush lock held. The
3651 * inode lock will still be held upon return to the caller, and the inode
3652 * flush lock will be released after the inode has reached the disk.
3653 *
3654 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3655 */
3656int
3657xfs_iflush(
4c46819a
CH
3658 struct xfs_inode *ip,
3659 struct xfs_buf **bpp)
1da177e4 3660{
4c46819a 3661 struct xfs_mount *mp = ip->i_mount;
b1438f47 3662 struct xfs_buf *bp = NULL;
4c46819a 3663 struct xfs_dinode *dip;
1da177e4 3664 int error;
1da177e4 3665
ff6d6af2 3666 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3667
579aa9ca 3668 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3669 ASSERT(xfs_isiflocked(ip));
1da177e4 3670 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3671 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3672
4c46819a 3673 *bpp = NULL;
1da177e4 3674
1da177e4
LT
3675 xfs_iunpin_wait(ip);
3676
4b6a4688
DC
3677 /*
3678 * For stale inodes we cannot rely on the backing buffer remaining
3679 * stale in cache for the remaining life of the stale inode and so
475ee413 3680 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3681 * inodes below. We have to check this after ensuring the inode is
3682 * unpinned so that it is safe to reclaim the stale inode after the
3683 * flush call.
3684 */
3685 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3686 xfs_ifunlock(ip);
3687 return 0;
3688 }
3689
1da177e4
LT
3690 /*
3691 * This may have been unpinned because the filesystem is shutting
3692 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3693 * to disk, because the log record didn't make it to disk.
3694 *
3695 * We also have to remove the log item from the AIL in this case,
3696 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3697 */
3698 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3699 error = -EIO;
32ce90a4 3700 goto abort_out;
1da177e4
LT
3701 }
3702
a3f74ffb 3703 /*
b1438f47
DC
3704 * Get the buffer containing the on-disk inode. We are doing a try-lock
3705 * operation here, so we may get an EAGAIN error. In that case, we
3706 * simply want to return with the inode still dirty.
3707 *
3708 * If we get any other error, we effectively have a corruption situation
3709 * and we cannot flush the inode, so we treat it the same as failing
3710 * xfs_iflush_int().
a3f74ffb 3711 */
475ee413
CH
3712 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3713 0);
b1438f47 3714 if (error == -EAGAIN) {
a3f74ffb
DC
3715 xfs_ifunlock(ip);
3716 return error;
3717 }
b1438f47
DC
3718 if (error)
3719 goto corrupt_out;
a3f74ffb 3720
1da177e4
LT
3721 /*
3722 * First flush out the inode that xfs_iflush was called with.
3723 */
3724 error = xfs_iflush_int(ip, bp);
bad55843 3725 if (error)
1da177e4 3726 goto corrupt_out;
1da177e4 3727
a3f74ffb
DC
3728 /*
3729 * If the buffer is pinned then push on the log now so we won't
3730 * get stuck waiting in the write for too long.
3731 */
811e64c7 3732 if (xfs_buf_ispinned(bp))
a14a348b 3733 xfs_log_force(mp, 0);
a3f74ffb 3734
1da177e4 3735 /*
e53946db
DC
3736 * inode clustering: try to gather other inodes into this write
3737 *
3738 * Note: Any error during clustering will result in the filesystem
3739 * being shut down and completion callbacks run on the cluster buffer.
3740 * As we have already flushed and attached this inode to the buffer,
3741 * it has already been aborted and released by xfs_iflush_cluster() and
3742 * so we have no further error handling to do here.
1da177e4 3743 */
bad55843
DC
3744 error = xfs_iflush_cluster(ip, bp);
3745 if (error)
e53946db 3746 return error;
1da177e4 3747
4c46819a
CH
3748 *bpp = bp;
3749 return 0;
1da177e4
LT
3750
3751corrupt_out:
b1438f47
DC
3752 if (bp)
3753 xfs_buf_relse(bp);
7d04a335 3754 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
32ce90a4 3755abort_out:
e53946db 3756 /* abort the corrupt inode, as it was not attached to the buffer */
04913fdd 3757 xfs_iflush_abort(ip, false);
32ce90a4 3758 return error;
1da177e4
LT
3759}
3760
9cfb9b47
DW
3761/*
3762 * If there are inline format data / attr forks attached to this inode,
3763 * make sure they're not corrupt.
3764 */
3765bool
3766xfs_inode_verify_forks(
3767 struct xfs_inode *ip)
3768{
22431bf3 3769 struct xfs_ifork *ifp;
9cfb9b47
DW
3770 xfs_failaddr_t fa;
3771
3772 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3773 if (fa) {
22431bf3
DW
3774 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3775 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3776 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3777 return false;
3778 }
3779
3780 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3781 if (fa) {
22431bf3
DW
3782 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3783 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3784 ifp ? ifp->if_u1.if_data : NULL,
3785 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3786 return false;
3787 }
3788 return true;
3789}
3790
1da177e4
LT
3791STATIC int
3792xfs_iflush_int(
93848a99
CH
3793 struct xfs_inode *ip,
3794 struct xfs_buf *bp)
1da177e4 3795{
93848a99
CH
3796 struct xfs_inode_log_item *iip = ip->i_itemp;
3797 struct xfs_dinode *dip;
3798 struct xfs_mount *mp = ip->i_mount;
1da177e4 3799
579aa9ca 3800 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3801 ASSERT(xfs_isiflocked(ip));
1da177e4 3802 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3803 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3804 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3805
1da177e4 3806 /* set *dip = inode's place in the buffer */
88ee2df7 3807 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3808
69ef921b 3809 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3810 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3811 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3812 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3813 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3814 goto corrupt_out;
3815 }
c19b3b05 3816 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3817 if (XFS_TEST_ERROR(
3818 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3819 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3820 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3821 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3822 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3823 __func__, ip->i_ino, ip);
1da177e4
LT
3824 goto corrupt_out;
3825 }
c19b3b05 3826 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3827 if (XFS_TEST_ERROR(
3828 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3829 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3830 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3831 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3832 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3833 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3834 __func__, ip->i_ino, ip);
1da177e4
LT
3835 goto corrupt_out;
3836 }
3837 }
3838 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3839 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3840 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3841 "%s: detected corrupt incore inode %Lu, "
c9690043 3842 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3843 __func__, ip->i_ino,
1da177e4 3844 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3845 ip->i_d.di_nblocks, ip);
1da177e4
LT
3846 goto corrupt_out;
3847 }
3848 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3849 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3850 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3851 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3852 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3853 goto corrupt_out;
3854 }
e60896d8 3855
1da177e4 3856 /*
263997a6 3857 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3858 * di_flushiter count for correct sequencing. We bump the flush
3859 * iteration count so we can detect flushes which postdate a log record
3860 * during recovery. This is redundant as we now log every change and
3861 * hence this can't happen but we need to still do it to ensure
3862 * backwards compatibility with old kernels that predate logging all
3863 * inode changes.
1da177e4 3864 */
6471e9c5 3865 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
e60896d8 3866 ip->i_d.di_flushiter++;
1da177e4 3867
9cfb9b47
DW
3868 /* Check the inline fork data before we write out. */
3869 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3870 goto corrupt_out;
3871
1da177e4 3872 /*
3987848c
DC
3873 * Copy the dirty parts of the inode into the on-disk inode. We always
3874 * copy out the core of the inode, because if the inode is dirty at all
3875 * the core must be.
1da177e4 3876 */
93f958f9 3877 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3878
3879 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3880 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3881 ip->i_d.di_flushiter = 0;
3882
005c5db8
DW
3883 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3884 if (XFS_IFORK_Q(ip))
3885 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3886 xfs_inobp_check(mp, bp);
3887
3888 /*
f5d8d5c4
CH
3889 * We've recorded everything logged in the inode, so we'd like to clear
3890 * the ili_fields bits so we don't log and flush things unnecessarily.
3891 * However, we can't stop logging all this information until the data
3892 * we've copied into the disk buffer is written to disk. If we did we
3893 * might overwrite the copy of the inode in the log with all the data
3894 * after re-logging only part of it, and in the face of a crash we
3895 * wouldn't have all the data we need to recover.
1da177e4 3896 *
f5d8d5c4
CH
3897 * What we do is move the bits to the ili_last_fields field. When
3898 * logging the inode, these bits are moved back to the ili_fields field.
3899 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3900 * know that the information those bits represent is permanently on
3901 * disk. As long as the flush completes before the inode is logged
3902 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3903 *
f5d8d5c4
CH
3904 * We can play with the ili_fields bits here, because the inode lock
3905 * must be held exclusively in order to set bits there and the flush
3906 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3907 * done routine can tell whether or not to look in the AIL. Also, store
3908 * the current LSN of the inode so that we can tell whether the item has
3909 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3910 * need the AIL lock, because it is a 64 bit value that cannot be read
3911 * atomically.
1da177e4 3912 */
93848a99
CH
3913 iip->ili_last_fields = iip->ili_fields;
3914 iip->ili_fields = 0;
fc0561ce 3915 iip->ili_fsync_fields = 0;
93848a99 3916 iip->ili_logged = 1;
1da177e4 3917
93848a99
CH
3918 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3919 &iip->ili_item.li_lsn);
1da177e4 3920
93848a99
CH
3921 /*
3922 * Attach the function xfs_iflush_done to the inode's
3923 * buffer. This will remove the inode from the AIL
3924 * and unlock the inode's flush lock when the inode is
3925 * completely written to disk.
3926 */
3927 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3928
93848a99
CH
3929 /* generate the checksum. */
3930 xfs_dinode_calc_crc(mp, dip);
1da177e4 3931
643c8c05 3932 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3933 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3934 return 0;
3935
3936corrupt_out:
2451337d 3937 return -EFSCORRUPTED;
1da177e4 3938}
44a8736b
DW
3939
3940/* Release an inode. */
3941void
3942xfs_irele(
3943 struct xfs_inode *ip)
3944{
3945 trace_xfs_irele(ip, _RET_IP_);
3946 iput(VFS_I(ip));
3947}
54fbdd10
CH
3948
3949/*
3950 * Ensure all commited transactions touching the inode are written to the log.
3951 */
3952int
3953xfs_log_force_inode(
3954 struct xfs_inode *ip)
3955{
3956 xfs_lsn_t lsn = 0;
3957
3958 xfs_ilock(ip, XFS_ILOCK_SHARED);
3959 if (xfs_ipincount(ip))
3960 lsn = ip->i_itemp->ili_last_lsn;
3961 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3962
3963 if (!lsn)
3964 return 0;
3965 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3966}