]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
aarch64: Add DSB instruction Armv8.7-a variant
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b3adc24a 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
7e84b55d
TC
58/* Currently active instruction sequence. */
59static aarch64_instr_sequence *insn_sequence = NULL;
60
a06ea964
NC
61#ifdef OBJ_ELF
62/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63static symbolS *GOT_symbol;
cec5225b 64
69091a2c
YZ
65/* Which ABI to use. */
66enum aarch64_abi_type
67{
3c0367d0
JW
68 AARCH64_ABI_NONE = 0,
69 AARCH64_ABI_LP64 = 1,
70 AARCH64_ABI_ILP32 = 2
69091a2c
YZ
71};
72
3c0367d0
JW
73#ifndef DEFAULT_ARCH
74#define DEFAULT_ARCH "aarch64"
75#endif
76
77/* DEFAULT_ARCH is initialized in gas/configure.tgt. */
78static const char *default_arch = DEFAULT_ARCH;
79
69091a2c 80/* AArch64 ABI for the output file. */
3c0367d0 81static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
69091a2c 82
cec5225b
YZ
83/* When non-zero, program to a 32-bit model, in which the C data types
84 int, long and all pointer types are 32-bit objects (ILP32); or to a
85 64-bit model, in which the C int type is 32-bits but the C long type
86 and all pointer types are 64-bit objects (LP64). */
69091a2c 87#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
88#endif
89
f06935a5 90enum vector_el_type
a06ea964
NC
91{
92 NT_invtype = -1,
93 NT_b,
94 NT_h,
95 NT_s,
96 NT_d,
d50c751e
RS
97 NT_q,
98 NT_zero,
99 NT_merge
a06ea964
NC
100};
101
8f9a77af 102/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
103#define NTA_HASTYPE 1
104#define NTA_HASINDEX 2
105#define NTA_HASVARWIDTH 4
a06ea964 106
8f9a77af 107struct vector_type_el
a06ea964 108{
f06935a5 109 enum vector_el_type type;
a06ea964
NC
110 unsigned char defined;
111 unsigned width;
112 int64_t index;
113};
114
115#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116
117struct reloc
118{
119 bfd_reloc_code_real_type type;
120 expressionS exp;
121 int pc_rel;
122 enum aarch64_opnd opnd;
123 uint32_t flags;
124 unsigned need_libopcodes_p : 1;
125};
126
127struct aarch64_instruction
128{
129 /* libopcodes structure for instruction intermediate representation. */
130 aarch64_inst base;
131 /* Record assembly errors found during the parsing. */
132 struct
133 {
134 enum aarch64_operand_error_kind kind;
135 const char *error;
136 } parsing_error;
137 /* The condition that appears in the assembly line. */
138 int cond;
139 /* Relocation information (including the GAS internal fixup). */
140 struct reloc reloc;
141 /* Need to generate an immediate in the literal pool. */
142 unsigned gen_lit_pool : 1;
143};
144
145typedef struct aarch64_instruction aarch64_instruction;
146
147static aarch64_instruction inst;
148
149static bfd_boolean parse_operands (char *, const aarch64_opcode *);
150static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
151
7e84b55d
TC
152#ifdef OBJ_ELF
153# define now_instr_sequence seg_info \
154 (now_seg)->tc_segment_info_data.insn_sequence
155#else
156static struct aarch64_instr_sequence now_instr_sequence;
157#endif
158
33eaf5de 159/* Diagnostics inline function utilities.
a06ea964 160
33eaf5de 161 These are lightweight utilities which should only be called by parse_operands
a06ea964
NC
162 and other parsers. GAS processes each assembly line by parsing it against
163 instruction template(s), in the case of multiple templates (for the same
164 mnemonic name), those templates are tried one by one until one succeeds or
165 all fail. An assembly line may fail a few templates before being
166 successfully parsed; an error saved here in most cases is not a user error
167 but an error indicating the current template is not the right template.
168 Therefore it is very important that errors can be saved at a low cost during
169 the parsing; we don't want to slow down the whole parsing by recording
170 non-user errors in detail.
171
33eaf5de 172 Remember that the objective is to help GAS pick up the most appropriate
a06ea964
NC
173 error message in the case of multiple templates, e.g. FMOV which has 8
174 templates. */
175
176static inline void
177clear_error (void)
178{
179 inst.parsing_error.kind = AARCH64_OPDE_NIL;
180 inst.parsing_error.error = NULL;
181}
182
183static inline bfd_boolean
184error_p (void)
185{
186 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
187}
188
189static inline const char *
190get_error_message (void)
191{
192 return inst.parsing_error.error;
193}
194
a06ea964
NC
195static inline enum aarch64_operand_error_kind
196get_error_kind (void)
197{
198 return inst.parsing_error.kind;
199}
200
a06ea964
NC
201static inline void
202set_error (enum aarch64_operand_error_kind kind, const char *error)
203{
204 inst.parsing_error.kind = kind;
205 inst.parsing_error.error = error;
206}
207
208static inline void
209set_recoverable_error (const char *error)
210{
211 set_error (AARCH64_OPDE_RECOVERABLE, error);
212}
213
214/* Use the DESC field of the corresponding aarch64_operand entry to compose
215 the error message. */
216static inline void
217set_default_error (void)
218{
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
220}
221
222static inline void
223set_syntax_error (const char *error)
224{
225 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226}
227
228static inline void
229set_first_syntax_error (const char *error)
230{
231 if (! error_p ())
232 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
233}
234
235static inline void
236set_fatal_syntax_error (const char *error)
237{
238 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
239}
240\f
a06ea964
NC
241/* Return value for certain parsers when the parsing fails; those parsers
242 return the information of the parsed result, e.g. register number, on
243 success. */
244#define PARSE_FAIL -1
245
246/* This is an invalid condition code that means no conditional field is
247 present. */
248#define COND_ALWAYS 0x10
249
a06ea964
NC
250typedef struct
251{
252 const char *template;
253 uint32_t value;
254} asm_nzcv;
255
256struct reloc_entry
257{
258 char *name;
259 bfd_reloc_code_real_type reloc;
260};
261
a06ea964
NC
262/* Macros to define the register types and masks for the purpose
263 of parsing. */
264
265#undef AARCH64_REG_TYPES
266#define AARCH64_REG_TYPES \
267 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
268 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
269 BASIC_REG_TYPE(SP_32) /* wsp */ \
270 BASIC_REG_TYPE(SP_64) /* sp */ \
271 BASIC_REG_TYPE(Z_32) /* wzr */ \
272 BASIC_REG_TYPE(Z_64) /* xzr */ \
273 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
274 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
275 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
276 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
277 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
a06ea964 278 BASIC_REG_TYPE(VN) /* v[0-31] */ \
f11ad6bc
RS
279 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
280 BASIC_REG_TYPE(PN) /* p[0-15] */ \
e1b988bb 281 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 282 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
283 /* Typecheck: same, plus SVE registers. */ \
284 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
285 | REG_TYPE(ZN)) \
e1b988bb
RS
286 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
287 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
4df068de
RS
289 /* Typecheck: same, plus SVE registers. */ \
290 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
291 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
292 | REG_TYPE(ZN)) \
e1b988bb
RS
293 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
294 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
295 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
296 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
a06ea964
NC
297 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
298 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
299 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
300 /* Typecheck: any [BHSDQ]P FP. */ \
301 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
302 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 303 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
a06ea964
NC
304 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
305 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
306 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
307 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
5b2b928e
JB
308 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
309 be used for SVE instructions, since Zn and Pn are valid symbols \
c0890d26 310 in other contexts. */ \
5b2b928e
JB
311 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
312 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
c0890d26
RS
313 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
314 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
315 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
316 | REG_TYPE(ZN) | REG_TYPE(PN)) \
a06ea964
NC
317 /* Any integer register; used for error messages only. */ \
318 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
319 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
320 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
321 /* Pseudo type to mark the end of the enumerator sequence. */ \
322 BASIC_REG_TYPE(MAX)
323
324#undef BASIC_REG_TYPE
325#define BASIC_REG_TYPE(T) REG_TYPE_##T,
326#undef MULTI_REG_TYPE
327#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
328
329/* Register type enumerators. */
8a0b252a 330typedef enum aarch64_reg_type_
a06ea964
NC
331{
332 /* A list of REG_TYPE_*. */
333 AARCH64_REG_TYPES
334} aarch64_reg_type;
335
336#undef BASIC_REG_TYPE
337#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
338#undef REG_TYPE
339#define REG_TYPE(T) (1 << REG_TYPE_##T)
340#undef MULTI_REG_TYPE
341#define MULTI_REG_TYPE(T,V) V,
342
8a0b252a
TS
343/* Structure for a hash table entry for a register. */
344typedef struct
345{
346 const char *name;
347 unsigned char number;
348 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
349 unsigned char builtin;
350} reg_entry;
351
a06ea964
NC
352/* Values indexed by aarch64_reg_type to assist the type checking. */
353static const unsigned reg_type_masks[] =
354{
355 AARCH64_REG_TYPES
356};
357
358#undef BASIC_REG_TYPE
359#undef REG_TYPE
360#undef MULTI_REG_TYPE
361#undef AARCH64_REG_TYPES
362
363/* Diagnostics used when we don't get a register of the expected type.
364 Note: this has to synchronized with aarch64_reg_type definitions
365 above. */
366static const char *
367get_reg_expected_msg (aarch64_reg_type reg_type)
368{
369 const char *msg;
370
371 switch (reg_type)
372 {
373 case REG_TYPE_R_32:
374 msg = N_("integer 32-bit register expected");
375 break;
376 case REG_TYPE_R_64:
377 msg = N_("integer 64-bit register expected");
378 break;
379 case REG_TYPE_R_N:
380 msg = N_("integer register expected");
381 break;
e1b988bb
RS
382 case REG_TYPE_R64_SP:
383 msg = N_("64-bit integer or SP register expected");
384 break;
4df068de
RS
385 case REG_TYPE_SVE_BASE:
386 msg = N_("base register expected");
387 break;
e1b988bb
RS
388 case REG_TYPE_R_Z:
389 msg = N_("integer or zero register expected");
390 break;
4df068de
RS
391 case REG_TYPE_SVE_OFFSET:
392 msg = N_("offset register expected");
393 break;
e1b988bb
RS
394 case REG_TYPE_R_SP:
395 msg = N_("integer or SP register expected");
396 break;
a06ea964
NC
397 case REG_TYPE_R_Z_SP:
398 msg = N_("integer, zero or SP register expected");
399 break;
400 case REG_TYPE_FP_B:
401 msg = N_("8-bit SIMD scalar register expected");
402 break;
403 case REG_TYPE_FP_H:
404 msg = N_("16-bit SIMD scalar or floating-point half precision "
405 "register expected");
406 break;
407 case REG_TYPE_FP_S:
408 msg = N_("32-bit SIMD scalar or floating-point single precision "
409 "register expected");
410 break;
411 case REG_TYPE_FP_D:
412 msg = N_("64-bit SIMD scalar or floating-point double precision "
413 "register expected");
414 break;
415 case REG_TYPE_FP_Q:
416 msg = N_("128-bit SIMD scalar or floating-point quad precision "
417 "register expected");
418 break;
a06ea964 419 case REG_TYPE_R_Z_BHSDQ_V:
5b2b928e 420 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
a06ea964
NC
421 msg = N_("register expected");
422 break;
423 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
424 msg = N_("SIMD scalar or floating-point register expected");
425 break;
426 case REG_TYPE_VN: /* any V reg */
427 msg = N_("vector register expected");
428 break;
f11ad6bc
RS
429 case REG_TYPE_ZN:
430 msg = N_("SVE vector register expected");
431 break;
432 case REG_TYPE_PN:
433 msg = N_("SVE predicate register expected");
434 break;
a06ea964
NC
435 default:
436 as_fatal (_("invalid register type %d"), reg_type);
437 }
438 return msg;
439}
440
441/* Some well known registers that we refer to directly elsewhere. */
442#define REG_SP 31
c469c864 443#define REG_ZR 31
a06ea964
NC
444
445/* Instructions take 4 bytes in the object file. */
446#define INSN_SIZE 4
447
629310ab
ML
448static htab_t aarch64_ops_hsh;
449static htab_t aarch64_cond_hsh;
450static htab_t aarch64_shift_hsh;
451static htab_t aarch64_sys_regs_hsh;
452static htab_t aarch64_pstatefield_hsh;
453static htab_t aarch64_sys_regs_ic_hsh;
454static htab_t aarch64_sys_regs_dc_hsh;
455static htab_t aarch64_sys_regs_at_hsh;
456static htab_t aarch64_sys_regs_tlbi_hsh;
457static htab_t aarch64_sys_regs_sr_hsh;
458static htab_t aarch64_reg_hsh;
459static htab_t aarch64_barrier_opt_hsh;
460static htab_t aarch64_nzcv_hsh;
461static htab_t aarch64_pldop_hsh;
462static htab_t aarch64_hint_opt_hsh;
a06ea964
NC
463
464/* Stuff needed to resolve the label ambiguity
465 As:
466 ...
467 label: <insn>
468 may differ from:
469 ...
470 label:
471 <insn> */
472
473static symbolS *last_label_seen;
474
475/* Literal pool structure. Held on a per-section
476 and per-sub-section basis. */
477
478#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
479typedef struct literal_expression
480{
481 expressionS exp;
482 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
483 LITTLENUM_TYPE * bignum;
484} literal_expression;
485
a06ea964
NC
486typedef struct literal_pool
487{
55d9b4c1 488 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
489 unsigned int next_free_entry;
490 unsigned int id;
491 symbolS *symbol;
492 segT section;
493 subsegT sub_section;
494 int size;
495 struct literal_pool *next;
496} literal_pool;
497
498/* Pointer to a linked list of literal pools. */
499static literal_pool *list_of_pools = NULL;
500\f
501/* Pure syntax. */
502
503/* This array holds the chars that always start a comment. If the
504 pre-processor is disabled, these aren't very useful. */
505const char comment_chars[] = "";
506
507/* This array holds the chars that only start a comment at the beginning of
508 a line. If the line seems to have the form '# 123 filename'
509 .line and .file directives will appear in the pre-processed output. */
510/* Note that input_file.c hand checks for '#' at the beginning of the
511 first line of the input file. This is because the compiler outputs
512 #NO_APP at the beginning of its output. */
513/* Also note that comments like this one will always work. */
514const char line_comment_chars[] = "#";
515
516const char line_separator_chars[] = ";";
517
518/* Chars that can be used to separate mant
519 from exp in floating point numbers. */
520const char EXP_CHARS[] = "eE";
521
522/* Chars that mean this number is a floating point constant. */
523/* As in 0f12.456 */
524/* or 0d1.2345e12 */
525
b20d3859 526const char FLT_CHARS[] = "rRsSfFdDxXeEpPhH";
a06ea964
NC
527
528/* Prefix character that indicates the start of an immediate value. */
529#define is_immediate_prefix(C) ((C) == '#')
530
531/* Separator character handling. */
532
533#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
534
535static inline bfd_boolean
536skip_past_char (char **str, char c)
537{
538 if (**str == c)
539 {
540 (*str)++;
541 return TRUE;
542 }
543 else
544 return FALSE;
545}
546
547#define skip_past_comma(str) skip_past_char (str, ',')
548
549/* Arithmetic expressions (possibly involving symbols). */
550
a06ea964
NC
551static bfd_boolean in_my_get_expression_p = FALSE;
552
553/* Third argument to my_get_expression. */
554#define GE_NO_PREFIX 0
555#define GE_OPT_PREFIX 1
556
557/* Return TRUE if the string pointed by *STR is successfully parsed
558 as an valid expression; *EP will be filled with the information of
559 such an expression. Otherwise return FALSE. */
560
561static bfd_boolean
562my_get_expression (expressionS * ep, char **str, int prefix_mode,
563 int reject_absent)
564{
565 char *save_in;
566 segT seg;
567 int prefix_present_p = 0;
568
569 switch (prefix_mode)
570 {
571 case GE_NO_PREFIX:
572 break;
573 case GE_OPT_PREFIX:
574 if (is_immediate_prefix (**str))
575 {
576 (*str)++;
577 prefix_present_p = 1;
578 }
579 break;
580 default:
581 abort ();
582 }
583
584 memset (ep, 0, sizeof (expressionS));
585
586 save_in = input_line_pointer;
587 input_line_pointer = *str;
588 in_my_get_expression_p = TRUE;
589 seg = expression (ep);
590 in_my_get_expression_p = FALSE;
591
592 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
593 {
594 /* We found a bad expression in md_operand(). */
595 *str = input_line_pointer;
596 input_line_pointer = save_in;
597 if (prefix_present_p && ! error_p ())
598 set_fatal_syntax_error (_("bad expression"));
599 else
600 set_first_syntax_error (_("bad expression"));
601 return FALSE;
602 }
603
604#ifdef OBJ_AOUT
605 if (seg != absolute_section
606 && seg != text_section
607 && seg != data_section
608 && seg != bss_section && seg != undefined_section)
609 {
610 set_syntax_error (_("bad segment"));
611 *str = input_line_pointer;
612 input_line_pointer = save_in;
613 return FALSE;
614 }
615#else
616 (void) seg;
617#endif
618
a06ea964
NC
619 *str = input_line_pointer;
620 input_line_pointer = save_in;
621 return TRUE;
622}
623
624/* Turn a string in input_line_pointer into a floating point constant
625 of type TYPE, and store the appropriate bytes in *LITP. The number
626 of LITTLENUMS emitted is stored in *SIZEP. An error message is
627 returned, or NULL on OK. */
628
6d4af3c2 629const char *
a06ea964
NC
630md_atof (int type, char *litP, int *sizeP)
631{
eb5bbc48
MM
632 /* If this is a bfloat16 type, then parse it slightly differently -
633 as it does not follow the IEEE standard exactly. */
634 if (type == 'b')
635 {
636 char * t;
637 LITTLENUM_TYPE words[MAX_LITTLENUMS];
638 FLONUM_TYPE generic_float;
639
640 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
641
642 if (t)
643 input_line_pointer = t;
644 else
645 return _("invalid floating point number");
646
647 switch (generic_float.sign)
648 {
649 /* Is +Inf. */
650 case 'P':
651 words[0] = 0x7f80;
652 break;
653
654 /* Is -Inf. */
655 case 'N':
656 words[0] = 0xff80;
657 break;
658
659 /* Is NaN. */
660 /* bfloat16 has two types of NaN - quiet and signalling.
661 Quiet NaN has bit[6] == 1 && faction != 0, whereas
662 signalling Nan's have bit[0] == 0 && fraction != 0.
663 Chose this specific encoding as it is the same form
664 as used by other IEEE 754 encodings in GAS. */
665 case 0:
666 words[0] = 0x7fff;
667 break;
668
669 default:
670 break;
671 }
672
673 *sizeP = 2;
674
675 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
676
677 return NULL;
678 }
679
a06ea964
NC
680 return ieee_md_atof (type, litP, sizeP, target_big_endian);
681}
682
683/* We handle all bad expressions here, so that we can report the faulty
684 instruction in the error message. */
685void
686md_operand (expressionS * exp)
687{
688 if (in_my_get_expression_p)
689 exp->X_op = O_illegal;
690}
691
692/* Immediate values. */
693
694/* Errors may be set multiple times during parsing or bit encoding
695 (particularly in the Neon bits), but usually the earliest error which is set
696 will be the most meaningful. Avoid overwriting it with later (cascading)
697 errors by calling this function. */
698
699static void
700first_error (const char *error)
701{
702 if (! error_p ())
703 set_syntax_error (error);
704}
705
2b0f3761 706/* Similar to first_error, but this function accepts formatted error
a06ea964
NC
707 message. */
708static void
709first_error_fmt (const char *format, ...)
710{
711 va_list args;
712 enum
713 { size = 100 };
714 /* N.B. this single buffer will not cause error messages for different
715 instructions to pollute each other; this is because at the end of
716 processing of each assembly line, error message if any will be
717 collected by as_bad. */
718 static char buffer[size];
719
720 if (! error_p ())
721 {
3e0baa28 722 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
723 va_start (args, format);
724 ret = vsnprintf (buffer, size, format, args);
725 know (ret <= size - 1 && ret >= 0);
726 va_end (args);
727 set_syntax_error (buffer);
728 }
729}
730
731/* Register parsing. */
732
733/* Generic register parser which is called by other specialized
734 register parsers.
735 CCP points to what should be the beginning of a register name.
736 If it is indeed a valid register name, advance CCP over it and
737 return the reg_entry structure; otherwise return NULL.
738 It does not issue diagnostics. */
739
740static reg_entry *
741parse_reg (char **ccp)
742{
743 char *start = *ccp;
744 char *p;
745 reg_entry *reg;
746
747#ifdef REGISTER_PREFIX
748 if (*start != REGISTER_PREFIX)
749 return NULL;
750 start++;
751#endif
752
753 p = start;
754 if (!ISALPHA (*p) || !is_name_beginner (*p))
755 return NULL;
756
757 do
758 p++;
759 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
760
629310ab 761 reg = (reg_entry *) str_hash_find_n (aarch64_reg_hsh, start, p - start);
a06ea964
NC
762
763 if (!reg)
764 return NULL;
765
766 *ccp = p;
767 return reg;
768}
769
770/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
771 return FALSE. */
772static bfd_boolean
773aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
774{
e1b988bb 775 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
776}
777
4df068de
RS
778/* Try to parse a base or offset register. Allow SVE base and offset
779 registers if REG_TYPE includes SVE registers. Return the register
780 entry on success, setting *QUALIFIER to the register qualifier.
781 Return null otherwise.
e1b988bb 782
a06ea964
NC
783 Note that this function does not issue any diagnostics. */
784
e1b988bb 785static const reg_entry *
4df068de
RS
786aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
787 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
788{
789 char *str = *ccp;
790 const reg_entry *reg = parse_reg (&str);
791
792 if (reg == NULL)
e1b988bb 793 return NULL;
a06ea964
NC
794
795 switch (reg->type)
796 {
e1b988bb 797 case REG_TYPE_R_32:
a06ea964 798 case REG_TYPE_SP_32:
e1b988bb
RS
799 case REG_TYPE_Z_32:
800 *qualifier = AARCH64_OPND_QLF_W;
a06ea964 801 break;
e1b988bb 802
a06ea964 803 case REG_TYPE_R_64:
e1b988bb 804 case REG_TYPE_SP_64:
a06ea964 805 case REG_TYPE_Z_64:
e1b988bb 806 *qualifier = AARCH64_OPND_QLF_X;
a06ea964 807 break;
e1b988bb 808
4df068de
RS
809 case REG_TYPE_ZN:
810 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
811 || str[0] != '.')
812 return NULL;
813 switch (TOLOWER (str[1]))
814 {
815 case 's':
816 *qualifier = AARCH64_OPND_QLF_S_S;
817 break;
818 case 'd':
819 *qualifier = AARCH64_OPND_QLF_S_D;
820 break;
821 default:
822 return NULL;
823 }
824 str += 2;
825 break;
826
a06ea964 827 default:
e1b988bb 828 return NULL;
a06ea964
NC
829 }
830
831 *ccp = str;
832
e1b988bb 833 return reg;
a06ea964
NC
834}
835
4df068de
RS
836/* Try to parse a base or offset register. Return the register entry
837 on success, setting *QUALIFIER to the register qualifier. Return null
838 otherwise.
839
840 Note that this function does not issue any diagnostics. */
841
842static const reg_entry *
843aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
844{
845 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
846}
847
f11ad6bc
RS
848/* Parse the qualifier of a vector register or vector element of type
849 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
850 succeeds; otherwise return FALSE.
a06ea964
NC
851
852 Accept only one occurrence of:
65a55fbb 853 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
854 b h s d q */
855static bfd_boolean
f11ad6bc
RS
856parse_vector_type_for_operand (aarch64_reg_type reg_type,
857 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
858{
859 char *ptr = *str;
860 unsigned width;
861 unsigned element_size;
f06935a5 862 enum vector_el_type type;
a06ea964
NC
863
864 /* skip '.' */
d50c751e 865 gas_assert (*ptr == '.');
a06ea964
NC
866 ptr++;
867
f11ad6bc 868 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
a06ea964
NC
869 {
870 width = 0;
871 goto elt_size;
872 }
873 width = strtoul (ptr, &ptr, 10);
874 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
875 {
876 first_error_fmt (_("bad size %d in vector width specifier"), width);
877 return FALSE;
878 }
879
dc1e8a47 880 elt_size:
a06ea964
NC
881 switch (TOLOWER (*ptr))
882 {
883 case 'b':
884 type = NT_b;
885 element_size = 8;
886 break;
887 case 'h':
888 type = NT_h;
889 element_size = 16;
890 break;
891 case 's':
892 type = NT_s;
893 element_size = 32;
894 break;
895 case 'd':
896 type = NT_d;
897 element_size = 64;
898 break;
899 case 'q':
582e12bf 900 if (reg_type == REG_TYPE_ZN || width == 1)
a06ea964
NC
901 {
902 type = NT_q;
903 element_size = 128;
904 break;
905 }
906 /* fall through. */
907 default:
908 if (*ptr != '\0')
909 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
910 else
911 first_error (_("missing element size"));
912 return FALSE;
913 }
65a55fbb
TC
914 if (width != 0 && width * element_size != 64
915 && width * element_size != 128
916 && !(width == 2 && element_size == 16)
917 && !(width == 4 && element_size == 8))
a06ea964
NC
918 {
919 first_error_fmt (_
920 ("invalid element size %d and vector size combination %c"),
921 width, *ptr);
922 return FALSE;
923 }
924 ptr++;
925
926 parsed_type->type = type;
927 parsed_type->width = width;
928
929 *str = ptr;
930
931 return TRUE;
932}
933
d50c751e
RS
934/* *STR contains an SVE zero/merge predication suffix. Parse it into
935 *PARSED_TYPE and point *STR at the end of the suffix. */
936
937static bfd_boolean
938parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
939{
940 char *ptr = *str;
941
942 /* Skip '/'. */
943 gas_assert (*ptr == '/');
944 ptr++;
945 switch (TOLOWER (*ptr))
946 {
947 case 'z':
948 parsed_type->type = NT_zero;
949 break;
950 case 'm':
951 parsed_type->type = NT_merge;
952 break;
953 default:
954 if (*ptr != '\0' && *ptr != ',')
955 first_error_fmt (_("unexpected character `%c' in predication type"),
956 *ptr);
957 else
958 first_error (_("missing predication type"));
959 return FALSE;
960 }
961 parsed_type->width = 0;
962 *str = ptr + 1;
963 return TRUE;
964}
965
a06ea964
NC
966/* Parse a register of the type TYPE.
967
968 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
969 name or the parsed register is not of TYPE.
970
971 Otherwise return the register number, and optionally fill in the actual
972 type of the register in *RTYPE when multiple alternatives were given, and
973 return the register shape and element index information in *TYPEINFO.
974
975 IN_REG_LIST should be set with TRUE if the caller is parsing a register
976 list. */
977
978static int
979parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
8f9a77af 980 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
a06ea964
NC
981{
982 char *str = *ccp;
983 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
984 struct vector_type_el atype;
985 struct vector_type_el parsetype;
a06ea964
NC
986 bfd_boolean is_typed_vecreg = FALSE;
987
988 atype.defined = 0;
989 atype.type = NT_invtype;
990 atype.width = -1;
991 atype.index = 0;
992
993 if (reg == NULL)
994 {
995 if (typeinfo)
996 *typeinfo = atype;
997 set_default_error ();
998 return PARSE_FAIL;
999 }
1000
1001 if (! aarch64_check_reg_type (reg, type))
1002 {
1003 DEBUG_TRACE ("reg type check failed");
1004 set_default_error ();
1005 return PARSE_FAIL;
1006 }
1007 type = reg->type;
1008
f11ad6bc 1009 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
d50c751e 1010 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
a06ea964 1011 {
d50c751e
RS
1012 if (*str == '.')
1013 {
1014 if (!parse_vector_type_for_operand (type, &parsetype, &str))
1015 return PARSE_FAIL;
1016 }
1017 else
1018 {
1019 if (!parse_predication_for_operand (&parsetype, &str))
1020 return PARSE_FAIL;
1021 }
a235d3ae 1022
a06ea964
NC
1023 /* Register if of the form Vn.[bhsdq]. */
1024 is_typed_vecreg = TRUE;
1025
f11ad6bc
RS
1026 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
1027 {
1028 /* The width is always variable; we don't allow an integer width
1029 to be specified. */
1030 gas_assert (parsetype.width == 0);
1031 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
1032 }
1033 else if (parsetype.width == 0)
a06ea964
NC
1034 /* Expect index. In the new scheme we cannot have
1035 Vn.[bhsdq] represent a scalar. Therefore any
1036 Vn.[bhsdq] should have an index following it.
33eaf5de 1037 Except in reglists of course. */
a06ea964
NC
1038 atype.defined |= NTA_HASINDEX;
1039 else
1040 atype.defined |= NTA_HASTYPE;
1041
1042 atype.type = parsetype.type;
1043 atype.width = parsetype.width;
1044 }
1045
1046 if (skip_past_char (&str, '['))
1047 {
1048 expressionS exp;
1049
1050 /* Reject Sn[index] syntax. */
1051 if (!is_typed_vecreg)
1052 {
1053 first_error (_("this type of register can't be indexed"));
1054 return PARSE_FAIL;
1055 }
1056
535b785f 1057 if (in_reg_list)
a06ea964
NC
1058 {
1059 first_error (_("index not allowed inside register list"));
1060 return PARSE_FAIL;
1061 }
1062
1063 atype.defined |= NTA_HASINDEX;
1064
1065 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1066
1067 if (exp.X_op != O_constant)
1068 {
1069 first_error (_("constant expression required"));
1070 return PARSE_FAIL;
1071 }
1072
1073 if (! skip_past_char (&str, ']'))
1074 return PARSE_FAIL;
1075
1076 atype.index = exp.X_add_number;
1077 }
1078 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1079 {
1080 /* Indexed vector register expected. */
1081 first_error (_("indexed vector register expected"));
1082 return PARSE_FAIL;
1083 }
1084
1085 /* A vector reg Vn should be typed or indexed. */
1086 if (type == REG_TYPE_VN && atype.defined == 0)
1087 {
1088 first_error (_("invalid use of vector register"));
1089 }
1090
1091 if (typeinfo)
1092 *typeinfo = atype;
1093
1094 if (rtype)
1095 *rtype = type;
1096
1097 *ccp = str;
1098
1099 return reg->number;
1100}
1101
1102/* Parse register.
1103
1104 Return the register number on success; return PARSE_FAIL otherwise.
1105
1106 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1107 the register (e.g. NEON double or quad reg when either has been requested).
1108
1109 If this is a NEON vector register with additional type information, fill
1110 in the struct pointed to by VECTYPE (if non-NULL).
1111
1112 This parser does not handle register list. */
1113
1114static int
1115aarch64_reg_parse (char **ccp, aarch64_reg_type type,
8f9a77af 1116 aarch64_reg_type *rtype, struct vector_type_el *vectype)
a06ea964 1117{
8f9a77af 1118 struct vector_type_el atype;
a06ea964
NC
1119 char *str = *ccp;
1120 int reg = parse_typed_reg (&str, type, rtype, &atype,
1121 /*in_reg_list= */ FALSE);
1122
1123 if (reg == PARSE_FAIL)
1124 return PARSE_FAIL;
1125
1126 if (vectype)
1127 *vectype = atype;
1128
1129 *ccp = str;
1130
1131 return reg;
1132}
1133
1134static inline bfd_boolean
8f9a77af 1135eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964
NC
1136{
1137 return
1138 e1.type == e2.type
1139 && e1.defined == e2.defined
1140 && e1.width == e2.width && e1.index == e2.index;
1141}
1142
10d76650
RS
1143/* This function parses a list of vector registers of type TYPE.
1144 On success, it returns the parsed register list information in the
1145 following encoded format:
a06ea964
NC
1146
1147 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1148 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1149
1150 The information of the register shape and/or index is returned in
1151 *VECTYPE.
1152
1153 It returns PARSE_FAIL if the register list is invalid.
1154
1155 The list contains one to four registers.
1156 Each register can be one of:
1157 <Vt>.<T>[<index>]
1158 <Vt>.<T>
1159 All <T> should be identical.
1160 All <index> should be identical.
1161 There are restrictions on <Vt> numbers which are checked later
1162 (by reg_list_valid_p). */
1163
1164static int
10d76650
RS
1165parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1166 struct vector_type_el *vectype)
a06ea964
NC
1167{
1168 char *str = *ccp;
1169 int nb_regs;
8f9a77af 1170 struct vector_type_el typeinfo, typeinfo_first;
a06ea964
NC
1171 int val, val_range;
1172 int in_range;
1173 int ret_val;
1174 int i;
1175 bfd_boolean error = FALSE;
1176 bfd_boolean expect_index = FALSE;
1177
1178 if (*str != '{')
1179 {
1180 set_syntax_error (_("expecting {"));
1181 return PARSE_FAIL;
1182 }
1183 str++;
1184
1185 nb_regs = 0;
1186 typeinfo_first.defined = 0;
1187 typeinfo_first.type = NT_invtype;
1188 typeinfo_first.width = -1;
1189 typeinfo_first.index = 0;
1190 ret_val = 0;
1191 val = -1;
1192 val_range = -1;
1193 in_range = 0;
1194 do
1195 {
1196 if (in_range)
1197 {
1198 str++; /* skip over '-' */
1199 val_range = val;
1200 }
10d76650 1201 val = parse_typed_reg (&str, type, NULL, &typeinfo,
a06ea964
NC
1202 /*in_reg_list= */ TRUE);
1203 if (val == PARSE_FAIL)
1204 {
1205 set_first_syntax_error (_("invalid vector register in list"));
1206 error = TRUE;
1207 continue;
1208 }
1209 /* reject [bhsd]n */
f11ad6bc 1210 if (type == REG_TYPE_VN && typeinfo.defined == 0)
a06ea964
NC
1211 {
1212 set_first_syntax_error (_("invalid scalar register in list"));
1213 error = TRUE;
1214 continue;
1215 }
1216
1217 if (typeinfo.defined & NTA_HASINDEX)
1218 expect_index = TRUE;
1219
1220 if (in_range)
1221 {
1222 if (val < val_range)
1223 {
1224 set_first_syntax_error
1225 (_("invalid range in vector register list"));
1226 error = TRUE;
1227 }
1228 val_range++;
1229 }
1230 else
1231 {
1232 val_range = val;
1233 if (nb_regs == 0)
1234 typeinfo_first = typeinfo;
8f9a77af 1235 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1236 {
1237 set_first_syntax_error
1238 (_("type mismatch in vector register list"));
1239 error = TRUE;
1240 }
1241 }
1242 if (! error)
1243 for (i = val_range; i <= val; i++)
1244 {
1245 ret_val |= i << (5 * nb_regs);
1246 nb_regs++;
1247 }
1248 in_range = 0;
1249 }
1250 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1251
1252 skip_whitespace (str);
1253 if (*str != '}')
1254 {
1255 set_first_syntax_error (_("end of vector register list not found"));
1256 error = TRUE;
1257 }
1258 str++;
1259
1260 skip_whitespace (str);
1261
1262 if (expect_index)
1263 {
1264 if (skip_past_char (&str, '['))
1265 {
1266 expressionS exp;
1267
1268 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1269 if (exp.X_op != O_constant)
1270 {
1271 set_first_syntax_error (_("constant expression required."));
1272 error = TRUE;
1273 }
1274 if (! skip_past_char (&str, ']'))
1275 error = TRUE;
1276 else
1277 typeinfo_first.index = exp.X_add_number;
1278 }
1279 else
1280 {
1281 set_first_syntax_error (_("expected index"));
1282 error = TRUE;
1283 }
1284 }
1285
1286 if (nb_regs > 4)
1287 {
1288 set_first_syntax_error (_("too many registers in vector register list"));
1289 error = TRUE;
1290 }
1291 else if (nb_regs == 0)
1292 {
1293 set_first_syntax_error (_("empty vector register list"));
1294 error = TRUE;
1295 }
1296
1297 *ccp = str;
1298 if (! error)
1299 *vectype = typeinfo_first;
1300
1301 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1302}
1303
1304/* Directives: register aliases. */
1305
1306static reg_entry *
1307insert_reg_alias (char *str, int number, aarch64_reg_type type)
1308{
1309 reg_entry *new;
1310 const char *name;
1311
629310ab 1312 if ((new = str_hash_find (aarch64_reg_hsh, str)) != 0)
a06ea964
NC
1313 {
1314 if (new->builtin)
1315 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1316 str);
1317
1318 /* Only warn about a redefinition if it's not defined as the
1319 same register. */
1320 else if (new->number != number || new->type != type)
1321 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1322
1323 return NULL;
1324 }
1325
1326 name = xstrdup (str);
add39d23 1327 new = XNEW (reg_entry);
a06ea964
NC
1328
1329 new->name = name;
1330 new->number = number;
1331 new->type = type;
1332 new->builtin = FALSE;
1333
fe0e921f 1334 str_hash_insert (aarch64_reg_hsh, name, new, 0);
a06ea964
NC
1335
1336 return new;
1337}
1338
1339/* Look for the .req directive. This is of the form:
1340
1341 new_register_name .req existing_register_name
1342
1343 If we find one, or if it looks sufficiently like one that we want to
1344 handle any error here, return TRUE. Otherwise return FALSE. */
1345
1346static bfd_boolean
1347create_register_alias (char *newname, char *p)
1348{
1349 const reg_entry *old;
1350 char *oldname, *nbuf;
1351 size_t nlen;
1352
1353 /* The input scrubber ensures that whitespace after the mnemonic is
1354 collapsed to single spaces. */
1355 oldname = p;
1356 if (strncmp (oldname, " .req ", 6) != 0)
1357 return FALSE;
1358
1359 oldname += 6;
1360 if (*oldname == '\0')
1361 return FALSE;
1362
629310ab 1363 old = str_hash_find (aarch64_reg_hsh, oldname);
a06ea964
NC
1364 if (!old)
1365 {
1366 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1367 return TRUE;
1368 }
1369
1370 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1371 the desired alias name, and p points to its end. If not, then
1372 the desired alias name is in the global original_case_string. */
1373#ifdef TC_CASE_SENSITIVE
1374 nlen = p - newname;
1375#else
1376 newname = original_case_string;
1377 nlen = strlen (newname);
1378#endif
1379
29a2809e 1380 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1381
1382 /* Create aliases under the new name as stated; an all-lowercase
1383 version of the new name; and an all-uppercase version of the new
1384 name. */
1385 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1386 {
1387 for (p = nbuf; *p; p++)
1388 *p = TOUPPER (*p);
1389
1390 if (strncmp (nbuf, newname, nlen))
1391 {
1392 /* If this attempt to create an additional alias fails, do not bother
1393 trying to create the all-lower case alias. We will fail and issue
1394 a second, duplicate error message. This situation arises when the
1395 programmer does something like:
1396 foo .req r0
1397 Foo .req r1
1398 The second .req creates the "Foo" alias but then fails to create
1399 the artificial FOO alias because it has already been created by the
1400 first .req. */
1401 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1402 {
1403 free (nbuf);
1404 return TRUE;
1405 }
a06ea964
NC
1406 }
1407
1408 for (p = nbuf; *p; p++)
1409 *p = TOLOWER (*p);
1410
1411 if (strncmp (nbuf, newname, nlen))
1412 insert_reg_alias (nbuf, old->number, old->type);
1413 }
1414
e1fa0163 1415 free (nbuf);
a06ea964
NC
1416 return TRUE;
1417}
1418
1419/* Should never be called, as .req goes between the alias and the
1420 register name, not at the beginning of the line. */
1421static void
1422s_req (int a ATTRIBUTE_UNUSED)
1423{
1424 as_bad (_("invalid syntax for .req directive"));
1425}
1426
1427/* The .unreq directive deletes an alias which was previously defined
1428 by .req. For example:
1429
1430 my_alias .req r11
1431 .unreq my_alias */
1432
1433static void
1434s_unreq (int a ATTRIBUTE_UNUSED)
1435{
1436 char *name;
1437 char saved_char;
1438
1439 name = input_line_pointer;
1440
1441 while (*input_line_pointer != 0
1442 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1443 ++input_line_pointer;
1444
1445 saved_char = *input_line_pointer;
1446 *input_line_pointer = 0;
1447
1448 if (!*name)
1449 as_bad (_("invalid syntax for .unreq directive"));
1450 else
1451 {
629310ab 1452 reg_entry *reg = str_hash_find (aarch64_reg_hsh, name);
a06ea964
NC
1453
1454 if (!reg)
1455 as_bad (_("unknown register alias '%s'"), name);
1456 else if (reg->builtin)
1457 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1458 name);
1459 else
1460 {
1461 char *p;
1462 char *nbuf;
1463
629310ab 1464 str_hash_delete (aarch64_reg_hsh, name);
a06ea964
NC
1465 free ((char *) reg->name);
1466 free (reg);
1467
1468 /* Also locate the all upper case and all lower case versions.
1469 Do not complain if we cannot find one or the other as it
1470 was probably deleted above. */
1471
1472 nbuf = strdup (name);
1473 for (p = nbuf; *p; p++)
1474 *p = TOUPPER (*p);
629310ab 1475 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1476 if (reg)
1477 {
629310ab 1478 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1479 free ((char *) reg->name);
1480 free (reg);
1481 }
1482
1483 for (p = nbuf; *p; p++)
1484 *p = TOLOWER (*p);
629310ab 1485 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1486 if (reg)
1487 {
629310ab 1488 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1489 free ((char *) reg->name);
1490 free (reg);
1491 }
1492
1493 free (nbuf);
1494 }
1495 }
1496
1497 *input_line_pointer = saved_char;
1498 demand_empty_rest_of_line ();
1499}
1500
1501/* Directives: Instruction set selection. */
1502
1503#ifdef OBJ_ELF
1504/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1505 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1506 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1507 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1508
1509/* Create a new mapping symbol for the transition to STATE. */
1510
1511static void
1512make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1513{
1514 symbolS *symbolP;
1515 const char *symname;
1516 int type;
1517
1518 switch (state)
1519 {
1520 case MAP_DATA:
1521 symname = "$d";
1522 type = BSF_NO_FLAGS;
1523 break;
1524 case MAP_INSN:
1525 symname = "$x";
1526 type = BSF_NO_FLAGS;
1527 break;
1528 default:
1529 abort ();
1530 }
1531
e01e1cee 1532 symbolP = symbol_new (symname, now_seg, frag, value);
a06ea964
NC
1533 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1534
1535 /* Save the mapping symbols for future reference. Also check that
1536 we do not place two mapping symbols at the same offset within a
1537 frag. We'll handle overlap between frags in
1538 check_mapping_symbols.
1539
1540 If .fill or other data filling directive generates zero sized data,
1541 the mapping symbol for the following code will have the same value
1542 as the one generated for the data filling directive. In this case,
1543 we replace the old symbol with the new one at the same address. */
1544 if (value == 0)
1545 {
1546 if (frag->tc_frag_data.first_map != NULL)
1547 {
1548 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1549 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1550 &symbol_lastP);
1551 }
1552 frag->tc_frag_data.first_map = symbolP;
1553 }
1554 if (frag->tc_frag_data.last_map != NULL)
1555 {
1556 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1557 S_GET_VALUE (symbolP));
1558 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1559 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1560 &symbol_lastP);
1561 }
1562 frag->tc_frag_data.last_map = symbolP;
1563}
1564
1565/* We must sometimes convert a region marked as code to data during
1566 code alignment, if an odd number of bytes have to be padded. The
1567 code mapping symbol is pushed to an aligned address. */
1568
1569static void
1570insert_data_mapping_symbol (enum mstate state,
1571 valueT value, fragS * frag, offsetT bytes)
1572{
1573 /* If there was already a mapping symbol, remove it. */
1574 if (frag->tc_frag_data.last_map != NULL
1575 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1576 frag->fr_address + value)
1577 {
1578 symbolS *symp = frag->tc_frag_data.last_map;
1579
1580 if (value == 0)
1581 {
1582 know (frag->tc_frag_data.first_map == symp);
1583 frag->tc_frag_data.first_map = NULL;
1584 }
1585 frag->tc_frag_data.last_map = NULL;
1586 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1587 }
1588
1589 make_mapping_symbol (MAP_DATA, value, frag);
1590 make_mapping_symbol (state, value + bytes, frag);
1591}
1592
1593static void mapping_state_2 (enum mstate state, int max_chars);
1594
1595/* Set the mapping state to STATE. Only call this when about to
1596 emit some STATE bytes to the file. */
1597
1598void
1599mapping_state (enum mstate state)
1600{
1601 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1602
a578ef7e
JW
1603 if (state == MAP_INSN)
1604 /* AArch64 instructions require 4-byte alignment. When emitting
1605 instructions into any section, record the appropriate section
1606 alignment. */
1607 record_alignment (now_seg, 2);
1608
448eb63d
RL
1609 if (mapstate == state)
1610 /* The mapping symbol has already been emitted.
1611 There is nothing else to do. */
1612 return;
1613
c1baaddf 1614#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1615 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1616 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1617 evaluated later in the next else. */
a06ea964 1618 return;
c1baaddf
RL
1619 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1620 {
1621 /* Only add the symbol if the offset is > 0:
1622 if we're at the first frag, check it's size > 0;
1623 if we're not at the first frag, then for sure
1624 the offset is > 0. */
1625 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1626 const int add_symbol = (frag_now != frag_first)
1627 || (frag_now_fix () > 0);
1628
1629 if (add_symbol)
1630 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1631 }
1632#undef TRANSITION
a06ea964
NC
1633
1634 mapping_state_2 (state, 0);
a06ea964
NC
1635}
1636
1637/* Same as mapping_state, but MAX_CHARS bytes have already been
1638 allocated. Put the mapping symbol that far back. */
1639
1640static void
1641mapping_state_2 (enum mstate state, int max_chars)
1642{
1643 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1644
1645 if (!SEG_NORMAL (now_seg))
1646 return;
1647
1648 if (mapstate == state)
1649 /* The mapping symbol has already been emitted.
1650 There is nothing else to do. */
1651 return;
1652
1653 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1654 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1655}
1656#else
1657#define mapping_state(x) /* nothing */
1658#define mapping_state_2(x, y) /* nothing */
1659#endif
1660
1661/* Directives: sectioning and alignment. */
1662
1663static void
1664s_bss (int ignore ATTRIBUTE_UNUSED)
1665{
1666 /* We don't support putting frags in the BSS segment, we fake it by
1667 marking in_bss, then looking at s_skip for clues. */
1668 subseg_set (bss_section, 0);
1669 demand_empty_rest_of_line ();
1670 mapping_state (MAP_DATA);
1671}
1672
1673static void
1674s_even (int ignore ATTRIBUTE_UNUSED)
1675{
1676 /* Never make frag if expect extra pass. */
1677 if (!need_pass_2)
1678 frag_align (1, 0, 0);
1679
1680 record_alignment (now_seg, 1);
1681
1682 demand_empty_rest_of_line ();
1683}
1684
1685/* Directives: Literal pools. */
1686
1687static literal_pool *
1688find_literal_pool (int size)
1689{
1690 literal_pool *pool;
1691
1692 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1693 {
1694 if (pool->section == now_seg
1695 && pool->sub_section == now_subseg && pool->size == size)
1696 break;
1697 }
1698
1699 return pool;
1700}
1701
1702static literal_pool *
1703find_or_make_literal_pool (int size)
1704{
1705 /* Next literal pool ID number. */
1706 static unsigned int latest_pool_num = 1;
1707 literal_pool *pool;
1708
1709 pool = find_literal_pool (size);
1710
1711 if (pool == NULL)
1712 {
1713 /* Create a new pool. */
add39d23 1714 pool = XNEW (literal_pool);
a06ea964
NC
1715 if (!pool)
1716 return NULL;
1717
1718 /* Currently we always put the literal pool in the current text
1719 section. If we were generating "small" model code where we
1720 knew that all code and initialised data was within 1MB then
1721 we could output literals to mergeable, read-only data
1722 sections. */
1723
1724 pool->next_free_entry = 0;
1725 pool->section = now_seg;
1726 pool->sub_section = now_subseg;
1727 pool->size = size;
1728 pool->next = list_of_pools;
1729 pool->symbol = NULL;
1730
1731 /* Add it to the list. */
1732 list_of_pools = pool;
1733 }
1734
1735 /* New pools, and emptied pools, will have a NULL symbol. */
1736 if (pool->symbol == NULL)
1737 {
1738 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
e01e1cee 1739 &zero_address_frag, 0);
a06ea964
NC
1740 pool->id = latest_pool_num++;
1741 }
1742
1743 /* Done. */
1744 return pool;
1745}
1746
1747/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1748 Return TRUE on success, otherwise return FALSE. */
1749static bfd_boolean
1750add_to_lit_pool (expressionS *exp, int size)
1751{
1752 literal_pool *pool;
1753 unsigned int entry;
1754
1755 pool = find_or_make_literal_pool (size);
1756
1757 /* Check if this literal value is already in the pool. */
1758 for (entry = 0; entry < pool->next_free_entry; entry++)
1759 {
55d9b4c1
NC
1760 expressionS * litexp = & pool->literals[entry].exp;
1761
1762 if ((litexp->X_op == exp->X_op)
a06ea964 1763 && (exp->X_op == O_constant)
55d9b4c1
NC
1764 && (litexp->X_add_number == exp->X_add_number)
1765 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1766 break;
1767
55d9b4c1 1768 if ((litexp->X_op == exp->X_op)
a06ea964 1769 && (exp->X_op == O_symbol)
55d9b4c1
NC
1770 && (litexp->X_add_number == exp->X_add_number)
1771 && (litexp->X_add_symbol == exp->X_add_symbol)
1772 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1773 break;
1774 }
1775
1776 /* Do we need to create a new entry? */
1777 if (entry == pool->next_free_entry)
1778 {
1779 if (entry >= MAX_LITERAL_POOL_SIZE)
1780 {
1781 set_syntax_error (_("literal pool overflow"));
1782 return FALSE;
1783 }
1784
55d9b4c1 1785 pool->literals[entry].exp = *exp;
a06ea964 1786 pool->next_free_entry += 1;
55d9b4c1
NC
1787 if (exp->X_op == O_big)
1788 {
1789 /* PR 16688: Bignums are held in a single global array. We must
1790 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1791 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1792 exp->X_add_number);
55d9b4c1
NC
1793 memcpy (pool->literals[entry].bignum, generic_bignum,
1794 CHARS_PER_LITTLENUM * exp->X_add_number);
1795 }
1796 else
1797 pool->literals[entry].bignum = NULL;
a06ea964
NC
1798 }
1799
1800 exp->X_op = O_symbol;
1801 exp->X_add_number = ((int) entry) * size;
1802 exp->X_add_symbol = pool->symbol;
1803
1804 return TRUE;
1805}
1806
1807/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 1808 a later date assign it a value. That's what these functions do. */
a06ea964
NC
1809
1810static void
1811symbol_locate (symbolS * symbolP,
1812 const char *name,/* It is copied, the caller can modify. */
1813 segT segment, /* Segment identifier (SEG_<something>). */
1814 valueT valu, /* Symbol value. */
1815 fragS * frag) /* Associated fragment. */
1816{
e57e6ddc 1817 size_t name_length;
a06ea964
NC
1818 char *preserved_copy_of_name;
1819
1820 name_length = strlen (name) + 1; /* +1 for \0. */
1821 obstack_grow (&notes, name, name_length);
1822 preserved_copy_of_name = obstack_finish (&notes);
1823
1824#ifdef tc_canonicalize_symbol_name
1825 preserved_copy_of_name =
1826 tc_canonicalize_symbol_name (preserved_copy_of_name);
1827#endif
1828
1829 S_SET_NAME (symbolP, preserved_copy_of_name);
1830
1831 S_SET_SEGMENT (symbolP, segment);
1832 S_SET_VALUE (symbolP, valu);
1833 symbol_clear_list_pointers (symbolP);
1834
1835 symbol_set_frag (symbolP, frag);
1836
1837 /* Link to end of symbol chain. */
1838 {
1839 extern int symbol_table_frozen;
1840
1841 if (symbol_table_frozen)
1842 abort ();
1843 }
1844
1845 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1846
1847 obj_symbol_new_hook (symbolP);
1848
1849#ifdef tc_symbol_new_hook
1850 tc_symbol_new_hook (symbolP);
1851#endif
1852
1853#ifdef DEBUG_SYMS
1854 verify_symbol_chain (symbol_rootP, symbol_lastP);
1855#endif /* DEBUG_SYMS */
1856}
1857
1858
1859static void
1860s_ltorg (int ignored ATTRIBUTE_UNUSED)
1861{
1862 unsigned int entry;
1863 literal_pool *pool;
1864 char sym_name[20];
1865 int align;
1866
67a32447 1867 for (align = 2; align <= 4; align++)
a06ea964
NC
1868 {
1869 int size = 1 << align;
1870
1871 pool = find_literal_pool (size);
1872 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1873 continue;
1874
a06ea964
NC
1875 /* Align pool as you have word accesses.
1876 Only make a frag if we have to. */
1877 if (!need_pass_2)
1878 frag_align (align, 0, 0);
1879
7ea12e5c
NC
1880 mapping_state (MAP_DATA);
1881
a06ea964
NC
1882 record_alignment (now_seg, align);
1883
1884 sprintf (sym_name, "$$lit_\002%x", pool->id);
1885
1886 symbol_locate (pool->symbol, sym_name, now_seg,
1887 (valueT) frag_now_fix (), frag_now);
1888 symbol_table_insert (pool->symbol);
1889
1890 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1891 {
1892 expressionS * exp = & pool->literals[entry].exp;
1893
1894 if (exp->X_op == O_big)
1895 {
1896 /* PR 16688: Restore the global bignum value. */
1897 gas_assert (pool->literals[entry].bignum != NULL);
1898 memcpy (generic_bignum, pool->literals[entry].bignum,
1899 CHARS_PER_LITTLENUM * exp->X_add_number);
1900 }
1901
1902 /* First output the expression in the instruction to the pool. */
1903 emit_expr (exp, size); /* .word|.xword */
1904
1905 if (exp->X_op == O_big)
1906 {
1907 free (pool->literals[entry].bignum);
1908 pool->literals[entry].bignum = NULL;
1909 }
1910 }
a06ea964
NC
1911
1912 /* Mark the pool as empty. */
1913 pool->next_free_entry = 0;
1914 pool->symbol = NULL;
1915 }
1916}
1917
1918#ifdef OBJ_ELF
1919/* Forward declarations for functions below, in the MD interface
1920 section. */
1921static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1922static struct reloc_table_entry * find_reloc_table_entry (char **);
1923
1924/* Directives: Data. */
1925/* N.B. the support for relocation suffix in this directive needs to be
1926 implemented properly. */
1927
1928static void
1929s_aarch64_elf_cons (int nbytes)
1930{
1931 expressionS exp;
1932
1933#ifdef md_flush_pending_output
1934 md_flush_pending_output ();
1935#endif
1936
1937 if (is_it_end_of_statement ())
1938 {
1939 demand_empty_rest_of_line ();
1940 return;
1941 }
1942
1943#ifdef md_cons_align
1944 md_cons_align (nbytes);
1945#endif
1946
1947 mapping_state (MAP_DATA);
1948 do
1949 {
1950 struct reloc_table_entry *reloc;
1951
1952 expression (&exp);
1953
1954 if (exp.X_op != O_symbol)
1955 emit_expr (&exp, (unsigned int) nbytes);
1956 else
1957 {
1958 skip_past_char (&input_line_pointer, '#');
1959 if (skip_past_char (&input_line_pointer, ':'))
1960 {
1961 reloc = find_reloc_table_entry (&input_line_pointer);
1962 if (reloc == NULL)
1963 as_bad (_("unrecognized relocation suffix"));
1964 else
1965 as_bad (_("unimplemented relocation suffix"));
1966 ignore_rest_of_line ();
1967 return;
1968 }
1969 else
1970 emit_expr (&exp, (unsigned int) nbytes);
1971 }
1972 }
1973 while (*input_line_pointer++ == ',');
1974
1975 /* Put terminator back into stream. */
1976 input_line_pointer--;
1977 demand_empty_rest_of_line ();
1978}
1979
f166ae01
SN
1980/* Mark symbol that it follows a variant PCS convention. */
1981
1982static void
1983s_variant_pcs (int ignored ATTRIBUTE_UNUSED)
1984{
1985 char *name;
1986 char c;
1987 symbolS *sym;
1988 asymbol *bfdsym;
1989 elf_symbol_type *elfsym;
1990
1991 c = get_symbol_name (&name);
1992 if (!*name)
1993 as_bad (_("Missing symbol name in directive"));
1994 sym = symbol_find_or_make (name);
1995 restore_line_pointer (c);
1996 demand_empty_rest_of_line ();
1997 bfdsym = symbol_get_bfdsym (sym);
c1229f84 1998 elfsym = elf_symbol_from (bfdsym);
f166ae01
SN
1999 gas_assert (elfsym);
2000 elfsym->internal_elf_sym.st_other |= STO_AARCH64_VARIANT_PCS;
2001}
a06ea964
NC
2002#endif /* OBJ_ELF */
2003
2004/* Output a 32-bit word, but mark as an instruction. */
2005
2006static void
2007s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
2008{
2009 expressionS exp;
2010
2011#ifdef md_flush_pending_output
2012 md_flush_pending_output ();
2013#endif
2014
2015 if (is_it_end_of_statement ())
2016 {
2017 demand_empty_rest_of_line ();
2018 return;
2019 }
2020
a97902de 2021 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
2022 MAP_DATA symbol pending. So we only align the address during
2023 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 2024 For other sections, this is not guaranteed. */
c1baaddf 2025 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 2026 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 2027 frag_align_code (2, 0);
c1baaddf 2028
a06ea964
NC
2029#ifdef OBJ_ELF
2030 mapping_state (MAP_INSN);
2031#endif
2032
2033 do
2034 {
2035 expression (&exp);
2036 if (exp.X_op != O_constant)
2037 {
2038 as_bad (_("constant expression required"));
2039 ignore_rest_of_line ();
2040 return;
2041 }
2042
2043 if (target_big_endian)
2044 {
2045 unsigned int val = exp.X_add_number;
2046 exp.X_add_number = SWAP_32 (val);
2047 }
2048 emit_expr (&exp, 4);
2049 }
2050 while (*input_line_pointer++ == ',');
2051
2052 /* Put terminator back into stream. */
2053 input_line_pointer--;
2054 demand_empty_rest_of_line ();
2055}
2056
3a67e1a6
ST
2057static void
2058s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
2059{
2060 demand_empty_rest_of_line ();
2061 struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
2062 fde->pauth_key = AARCH64_PAUTH_KEY_B;
2063}
2064
a06ea964 2065#ifdef OBJ_ELF
43a357f9
RL
2066/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
2067
2068static void
2069s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2070{
2071 expressionS exp;
2072
2073 expression (&exp);
2074 frag_grow (4);
2075 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2076 BFD_RELOC_AARCH64_TLSDESC_ADD);
2077
2078 demand_empty_rest_of_line ();
2079}
2080
a06ea964
NC
2081/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2082
2083static void
2084s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2085{
2086 expressionS exp;
2087
2088 /* Since we're just labelling the code, there's no need to define a
2089 mapping symbol. */
2090 expression (&exp);
2091 /* Make sure there is enough room in this frag for the following
2092 blr. This trick only works if the blr follows immediately after
2093 the .tlsdesc directive. */
2094 frag_grow (4);
2095 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2096 BFD_RELOC_AARCH64_TLSDESC_CALL);
2097
2098 demand_empty_rest_of_line ();
2099}
43a357f9
RL
2100
2101/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2102
2103static void
2104s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2105{
2106 expressionS exp;
2107
2108 expression (&exp);
2109 frag_grow (4);
2110 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2111 BFD_RELOC_AARCH64_TLSDESC_LDR);
2112
2113 demand_empty_rest_of_line ();
2114}
a06ea964
NC
2115#endif /* OBJ_ELF */
2116
2117static void s_aarch64_arch (int);
2118static void s_aarch64_cpu (int);
ae527cd8 2119static void s_aarch64_arch_extension (int);
a06ea964
NC
2120
2121/* This table describes all the machine specific pseudo-ops the assembler
2122 has to support. The fields are:
2123 pseudo-op name without dot
2124 function to call to execute this pseudo-op
2125 Integer arg to pass to the function. */
2126
2127const pseudo_typeS md_pseudo_table[] = {
2128 /* Never called because '.req' does not start a line. */
2129 {"req", s_req, 0},
2130 {"unreq", s_unreq, 0},
2131 {"bss", s_bss, 0},
2132 {"even", s_even, 0},
2133 {"ltorg", s_ltorg, 0},
2134 {"pool", s_ltorg, 0},
2135 {"cpu", s_aarch64_cpu, 0},
2136 {"arch", s_aarch64_arch, 0},
ae527cd8 2137 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964 2138 {"inst", s_aarch64_inst, 0},
3a67e1a6 2139 {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
a06ea964 2140#ifdef OBJ_ELF
43a357f9 2141 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2142 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2143 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
2144 {"word", s_aarch64_elf_cons, 4},
2145 {"long", s_aarch64_elf_cons, 4},
2146 {"xword", s_aarch64_elf_cons, 8},
2147 {"dword", s_aarch64_elf_cons, 8},
f166ae01 2148 {"variant_pcs", s_variant_pcs, 0},
a06ea964 2149#endif
b20d3859 2150 {"float16", float_cons, 'h'},
eb5bbc48 2151 {"bfloat16", float_cons, 'b'},
a06ea964
NC
2152 {0, 0, 0}
2153};
2154\f
2155
2156/* Check whether STR points to a register name followed by a comma or the
2157 end of line; REG_TYPE indicates which register types are checked
2158 against. Return TRUE if STR is such a register name; otherwise return
2159 FALSE. The function does not intend to produce any diagnostics, but since
2160 the register parser aarch64_reg_parse, which is called by this function,
2161 does produce diagnostics, we call clear_error to clear any diagnostics
2162 that may be generated by aarch64_reg_parse.
2163 Also, the function returns FALSE directly if there is any user error
2164 present at the function entry. This prevents the existing diagnostics
2165 state from being spoiled.
2166 The function currently serves parse_constant_immediate and
2167 parse_big_immediate only. */
2168static bfd_boolean
2169reg_name_p (char *str, aarch64_reg_type reg_type)
2170{
2171 int reg;
2172
2173 /* Prevent the diagnostics state from being spoiled. */
2174 if (error_p ())
2175 return FALSE;
2176
2177 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2178
2179 /* Clear the parsing error that may be set by the reg parser. */
2180 clear_error ();
2181
2182 if (reg == PARSE_FAIL)
2183 return FALSE;
2184
2185 skip_whitespace (str);
f405494f 2186 if (*str == ',' || is_end_of_line[(unsigned char) *str])
a06ea964
NC
2187 return TRUE;
2188
2189 return FALSE;
2190}
2191
2192/* Parser functions used exclusively in instruction operands. */
2193
2194/* Parse an immediate expression which may not be constant.
2195
2196 To prevent the expression parser from pushing a register name
2197 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2198 done to find out whether STR is a register of type REG_TYPE followed
2199 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964
NC
2200
2201static bfd_boolean
1799c0d0
RS
2202parse_immediate_expression (char **str, expressionS *exp,
2203 aarch64_reg_type reg_type)
a06ea964 2204{
1799c0d0 2205 if (reg_name_p (*str, reg_type))
a06ea964
NC
2206 {
2207 set_recoverable_error (_("immediate operand required"));
2208 return FALSE;
2209 }
2210
2211 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2212
2213 if (exp->X_op == O_absent)
2214 {
2215 set_fatal_syntax_error (_("missing immediate expression"));
2216 return FALSE;
2217 }
2218
2219 return TRUE;
2220}
2221
2222/* Constant immediate-value read function for use in insn parsing.
2223 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2224 leading #); *VAL receives the value. REG_TYPE says which register
2225 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2226
2227 Return TRUE on success; otherwise return FALSE. */
2228
2229static bfd_boolean
1799c0d0 2230parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2231{
2232 expressionS exp;
2233
1799c0d0 2234 if (! parse_immediate_expression (str, &exp, reg_type))
a06ea964
NC
2235 return FALSE;
2236
2237 if (exp.X_op != O_constant)
2238 {
2239 set_syntax_error (_("constant expression required"));
2240 return FALSE;
2241 }
2242
2243 *val = exp.X_add_number;
2244 return TRUE;
2245}
2246
2247static uint32_t
2248encode_imm_float_bits (uint32_t imm)
2249{
2250 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2251 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2252}
2253
62b0d0d5
YZ
2254/* Return TRUE if the single-precision floating-point value encoded in IMM
2255 can be expressed in the AArch64 8-bit signed floating-point format with
2256 3-bit exponent and normalized 4 bits of precision; in other words, the
2257 floating-point value must be expressable as
2258 (+/-) n / 16 * power (2, r)
2259 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2260
a06ea964
NC
2261static bfd_boolean
2262aarch64_imm_float_p (uint32_t imm)
2263{
62b0d0d5
YZ
2264 /* If a single-precision floating-point value has the following bit
2265 pattern, it can be expressed in the AArch64 8-bit floating-point
2266 format:
2267
2268 3 32222222 2221111111111
a06ea964 2269 1 09876543 21098765432109876543210
62b0d0d5
YZ
2270 n Eeeeeexx xxxx0000000000000000000
2271
2272 where n, e and each x are either 0 or 1 independently, with
2273 E == ~ e. */
a06ea964 2274
62b0d0d5
YZ
2275 uint32_t pattern;
2276
2277 /* Prepare the pattern for 'Eeeeee'. */
2278 if (((imm >> 30) & 0x1) == 0)
2279 pattern = 0x3e000000;
a06ea964 2280 else
62b0d0d5
YZ
2281 pattern = 0x40000000;
2282
2283 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2284 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2285}
2286
04a3379a
RS
2287/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2288 as an IEEE float without any loss of precision. Store the value in
2289 *FPWORD if so. */
62b0d0d5 2290
a06ea964 2291static bfd_boolean
04a3379a 2292can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2293{
2294 /* If a double-precision floating-point value has the following bit
04a3379a 2295 pattern, it can be expressed in a float:
62b0d0d5 2296
04a3379a
RS
2297 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2298 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2299 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2300
04a3379a
RS
2301 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2302 if Eeee_eeee != 1111_1111
2303
2304 where n, e, s and S are either 0 or 1 independently and where ~ is the
2305 inverse of E. */
62b0d0d5
YZ
2306
2307 uint32_t pattern;
2308 uint32_t high32 = imm >> 32;
04a3379a 2309 uint32_t low32 = imm;
62b0d0d5 2310
04a3379a
RS
2311 /* Lower 29 bits need to be 0s. */
2312 if ((imm & 0x1fffffff) != 0)
62b0d0d5
YZ
2313 return FALSE;
2314
2315 /* Prepare the pattern for 'Eeeeeeeee'. */
2316 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2317 pattern = 0x38000000;
62b0d0d5
YZ
2318 else
2319 pattern = 0x40000000;
2320
04a3379a
RS
2321 /* Check E~~~. */
2322 if ((high32 & 0x78000000) != pattern)
62b0d0d5 2323 return FALSE;
04a3379a
RS
2324
2325 /* Check Eeee_eeee != 1111_1111. */
2326 if ((high32 & 0x7ff00000) == 0x47f00000)
2327 return FALSE;
2328
2329 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2330 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2331 | (low32 >> 29)); /* 3 S bits. */
2332 return TRUE;
62b0d0d5
YZ
2333}
2334
165d4950
RS
2335/* Return true if we should treat OPERAND as a double-precision
2336 floating-point operand rather than a single-precision one. */
2337static bfd_boolean
2338double_precision_operand_p (const aarch64_opnd_info *operand)
2339{
2340 /* Check for unsuffixed SVE registers, which are allowed
2341 for LDR and STR but not in instructions that require an
2342 immediate. We get better error messages if we arbitrarily
2343 pick one size, parse the immediate normally, and then
2344 report the match failure in the normal way. */
2345 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2346 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2347}
2348
62b0d0d5
YZ
2349/* Parse a floating-point immediate. Return TRUE on success and return the
2350 value in *IMMED in the format of IEEE754 single-precision encoding.
2351 *CCP points to the start of the string; DP_P is TRUE when the immediate
2352 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2353 hexadecimal representation is involved). REG_TYPE says which register
2354 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2355
874d7e6e
RS
2356 This routine accepts any IEEE float; it is up to the callers to reject
2357 invalid ones. */
62b0d0d5
YZ
2358
2359static bfd_boolean
1799c0d0
RS
2360parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2361 aarch64_reg_type reg_type)
a06ea964
NC
2362{
2363 char *str = *ccp;
2364 char *fpnum;
2365 LITTLENUM_TYPE words[MAX_LITTLENUMS];
62b0d0d5
YZ
2366 int64_t val = 0;
2367 unsigned fpword = 0;
2368 bfd_boolean hex_p = FALSE;
a06ea964
NC
2369
2370 skip_past_char (&str, '#');
2371
a06ea964
NC
2372 fpnum = str;
2373 skip_whitespace (fpnum);
2374
2375 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2376 {
2377 /* Support the hexadecimal representation of the IEEE754 encoding.
2378 Double-precision is expected when DP_P is TRUE, otherwise the
2379 representation should be in single-precision. */
1799c0d0 2380 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2381 goto invalid_fp;
2382
2383 if (dp_p)
2384 {
04a3379a 2385 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2386 goto invalid_fp;
2387 }
2388 else if ((uint64_t) val > 0xffffffff)
2389 goto invalid_fp;
2390 else
2391 fpword = val;
2392
2393 hex_p = TRUE;
2394 }
66881839
TC
2395 else if (reg_name_p (str, reg_type))
2396 {
2397 set_recoverable_error (_("immediate operand required"));
2398 return FALSE;
a06ea964
NC
2399 }
2400
62b0d0d5 2401 if (! hex_p)
a06ea964 2402 {
a06ea964
NC
2403 int i;
2404
62b0d0d5
YZ
2405 if ((str = atof_ieee (str, 's', words)) == NULL)
2406 goto invalid_fp;
2407
a06ea964
NC
2408 /* Our FP word must be 32 bits (single-precision FP). */
2409 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2410 {
2411 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2412 fpword |= words[i];
2413 }
62b0d0d5 2414 }
a06ea964 2415
874d7e6e
RS
2416 *immed = fpword;
2417 *ccp = str;
2418 return TRUE;
a06ea964 2419
dc1e8a47 2420 invalid_fp:
a06ea964
NC
2421 set_fatal_syntax_error (_("invalid floating-point constant"));
2422 return FALSE;
2423}
2424
2425/* Less-generic immediate-value read function with the possibility of loading
2426 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2427 instructions.
2428
2429 To prevent the expression parser from pushing a register name into the
2430 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2431 out whether STR is a register of type REG_TYPE followed by a comma or
2432 the end of line. Return FALSE if STR is such a register. */
a06ea964
NC
2433
2434static bfd_boolean
1799c0d0 2435parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2436{
2437 char *ptr = *str;
2438
1799c0d0 2439 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2440 {
2441 set_syntax_error (_("immediate operand required"));
2442 return FALSE;
2443 }
2444
2445 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2446
2447 if (inst.reloc.exp.X_op == O_constant)
2448 *imm = inst.reloc.exp.X_add_number;
2449
2450 *str = ptr;
2451
2452 return TRUE;
2453}
2454
2455/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2456 if NEED_LIBOPCODES is non-zero, the fixup will need
2457 assistance from the libopcodes. */
2458
2459static inline void
2460aarch64_set_gas_internal_fixup (struct reloc *reloc,
2461 const aarch64_opnd_info *operand,
2462 int need_libopcodes_p)
2463{
2464 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2465 reloc->opnd = operand->type;
2466 if (need_libopcodes_p)
2467 reloc->need_libopcodes_p = 1;
2468};
2469
2470/* Return TRUE if the instruction needs to be fixed up later internally by
2471 the GAS; otherwise return FALSE. */
2472
2473static inline bfd_boolean
2474aarch64_gas_internal_fixup_p (void)
2475{
2476 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2477}
2478
33eaf5de 2479/* Assign the immediate value to the relevant field in *OPERAND if
a06ea964
NC
2480 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2481 needs an internal fixup in a later stage.
2482 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2483 IMM.VALUE that may get assigned with the constant. */
2484static inline void
2485assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2486 aarch64_opnd_info *operand,
2487 int addr_off_p,
2488 int need_libopcodes_p,
2489 int skip_p)
2490{
2491 if (reloc->exp.X_op == O_constant)
2492 {
2493 if (addr_off_p)
2494 operand->addr.offset.imm = reloc->exp.X_add_number;
2495 else
2496 operand->imm.value = reloc->exp.X_add_number;
2497 reloc->type = BFD_RELOC_UNUSED;
2498 }
2499 else
2500 {
2501 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2502 /* Tell libopcodes to ignore this operand or not. This is helpful
2503 when one of the operands needs to be fixed up later but we need
2504 libopcodes to check the other operands. */
2505 operand->skip = skip_p;
2506 }
2507}
2508
2509/* Relocation modifiers. Each entry in the table contains the textual
2510 name for the relocation which may be placed before a symbol used as
2511 a load/store offset, or add immediate. It must be surrounded by a
2512 leading and trailing colon, for example:
2513
2514 ldr x0, [x1, #:rello:varsym]
2515 add x0, x1, #:rello:varsym */
2516
2517struct reloc_table_entry
2518{
2519 const char *name;
2520 int pc_rel;
6f4a313b 2521 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2522 bfd_reloc_code_real_type adrp_type;
2523 bfd_reloc_code_real_type movw_type;
2524 bfd_reloc_code_real_type add_type;
2525 bfd_reloc_code_real_type ldst_type;
74ad790c 2526 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2527};
2528
2529static struct reloc_table_entry reloc_table[] = {
2530 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2531 {"lo12", 0,
6f4a313b 2532 0, /* adr_type */
a06ea964
NC
2533 0,
2534 0,
2535 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2536 BFD_RELOC_AARCH64_LDST_LO12,
2537 0},
a06ea964
NC
2538
2539 /* Higher 21 bits of pc-relative page offset: ADRP */
2540 {"pg_hi21", 1,
6f4a313b 2541 0, /* adr_type */
a06ea964
NC
2542 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2543 0,
2544 0,
74ad790c 2545 0,
a06ea964
NC
2546 0},
2547
2548 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2549 {"pg_hi21_nc", 1,
6f4a313b 2550 0, /* adr_type */
a06ea964
NC
2551 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2552 0,
2553 0,
74ad790c 2554 0,
a06ea964
NC
2555 0},
2556
2557 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2558 {"abs_g0", 0,
6f4a313b 2559 0, /* adr_type */
a06ea964
NC
2560 0,
2561 BFD_RELOC_AARCH64_MOVW_G0,
2562 0,
74ad790c 2563 0,
a06ea964
NC
2564 0},
2565
2566 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2567 {"abs_g0_s", 0,
6f4a313b 2568 0, /* adr_type */
a06ea964
NC
2569 0,
2570 BFD_RELOC_AARCH64_MOVW_G0_S,
2571 0,
74ad790c 2572 0,
a06ea964
NC
2573 0},
2574
2575 /* Less significant bits 0-15 of address/value: MOVK, no check */
2576 {"abs_g0_nc", 0,
6f4a313b 2577 0, /* adr_type */
a06ea964
NC
2578 0,
2579 BFD_RELOC_AARCH64_MOVW_G0_NC,
2580 0,
74ad790c 2581 0,
a06ea964
NC
2582 0},
2583
2584 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2585 {"abs_g1", 0,
6f4a313b 2586 0, /* adr_type */
a06ea964
NC
2587 0,
2588 BFD_RELOC_AARCH64_MOVW_G1,
2589 0,
74ad790c 2590 0,
a06ea964
NC
2591 0},
2592
2593 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2594 {"abs_g1_s", 0,
6f4a313b 2595 0, /* adr_type */
a06ea964
NC
2596 0,
2597 BFD_RELOC_AARCH64_MOVW_G1_S,
2598 0,
74ad790c 2599 0,
a06ea964
NC
2600 0},
2601
2602 /* Less significant bits 16-31 of address/value: MOVK, no check */
2603 {"abs_g1_nc", 0,
6f4a313b 2604 0, /* adr_type */
a06ea964
NC
2605 0,
2606 BFD_RELOC_AARCH64_MOVW_G1_NC,
2607 0,
74ad790c 2608 0,
a06ea964
NC
2609 0},
2610
2611 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2612 {"abs_g2", 0,
6f4a313b 2613 0, /* adr_type */
a06ea964
NC
2614 0,
2615 BFD_RELOC_AARCH64_MOVW_G2,
2616 0,
74ad790c 2617 0,
a06ea964
NC
2618 0},
2619
2620 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2621 {"abs_g2_s", 0,
6f4a313b 2622 0, /* adr_type */
a06ea964
NC
2623 0,
2624 BFD_RELOC_AARCH64_MOVW_G2_S,
2625 0,
74ad790c 2626 0,
a06ea964
NC
2627 0},
2628
2629 /* Less significant bits 32-47 of address/value: MOVK, no check */
2630 {"abs_g2_nc", 0,
6f4a313b 2631 0, /* adr_type */
a06ea964
NC
2632 0,
2633 BFD_RELOC_AARCH64_MOVW_G2_NC,
2634 0,
74ad790c 2635 0,
a06ea964
NC
2636 0},
2637
2638 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2639 {"abs_g3", 0,
6f4a313b 2640 0, /* adr_type */
a06ea964
NC
2641 0,
2642 BFD_RELOC_AARCH64_MOVW_G3,
2643 0,
74ad790c 2644 0,
a06ea964 2645 0},
4aa2c5e2 2646
32247401
RL
2647 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2648 {"prel_g0", 1,
2649 0, /* adr_type */
2650 0,
2651 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2652 0,
2653 0,
2654 0},
2655
2656 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2657 {"prel_g0_nc", 1,
2658 0, /* adr_type */
2659 0,
2660 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2661 0,
2662 0,
2663 0},
2664
2665 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2666 {"prel_g1", 1,
2667 0, /* adr_type */
2668 0,
2669 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2670 0,
2671 0,
2672 0},
2673
2674 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2675 {"prel_g1_nc", 1,
2676 0, /* adr_type */
2677 0,
2678 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2679 0,
2680 0,
2681 0},
2682
2683 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2684 {"prel_g2", 1,
2685 0, /* adr_type */
2686 0,
2687 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2688 0,
2689 0,
2690 0},
2691
2692 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2693 {"prel_g2_nc", 1,
2694 0, /* adr_type */
2695 0,
2696 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2697 0,
2698 0,
2699 0},
2700
2701 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2702 {"prel_g3", 1,
2703 0, /* adr_type */
2704 0,
2705 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2706 0,
2707 0,
2708 0},
2709
a06ea964
NC
2710 /* Get to the page containing GOT entry for a symbol. */
2711 {"got", 1,
6f4a313b 2712 0, /* adr_type */
a06ea964
NC
2713 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2714 0,
2715 0,
74ad790c 2716 0,
4aa2c5e2
MS
2717 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2718
a06ea964
NC
2719 /* 12 bit offset into the page containing GOT entry for that symbol. */
2720 {"got_lo12", 0,
6f4a313b 2721 0, /* adr_type */
a06ea964
NC
2722 0,
2723 0,
2724 0,
74ad790c
MS
2725 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2726 0},
a06ea964 2727
ca632371
RL
2728 /* 0-15 bits of address/value: MOVk, no check. */
2729 {"gotoff_g0_nc", 0,
2730 0, /* adr_type */
2731 0,
2732 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2733 0,
2734 0,
2735 0},
2736
654248e7
RL
2737 /* Most significant bits 16-31 of address/value: MOVZ. */
2738 {"gotoff_g1", 0,
2739 0, /* adr_type */
2740 0,
2741 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2742 0,
2743 0,
2744 0},
2745
87f5fbcc
RL
2746 /* 15 bit offset into the page containing GOT entry for that symbol. */
2747 {"gotoff_lo15", 0,
2748 0, /* adr_type */
2749 0,
2750 0,
2751 0,
2752 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2753 0},
2754
3b957e5b
RL
2755 /* Get to the page containing GOT TLS entry for a symbol */
2756 {"gottprel_g0_nc", 0,
2757 0, /* adr_type */
2758 0,
2759 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2760 0,
2761 0,
2762 0},
2763
2764 /* Get to the page containing GOT TLS entry for a symbol */
2765 {"gottprel_g1", 0,
2766 0, /* adr_type */
2767 0,
2768 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2769 0,
2770 0,
2771 0},
2772
a06ea964
NC
2773 /* Get to the page containing GOT TLS entry for a symbol */
2774 {"tlsgd", 0,
3c12b054 2775 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2776 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2777 0,
2778 0,
74ad790c 2779 0,
a06ea964
NC
2780 0},
2781
2782 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2783 {"tlsgd_lo12", 0,
6f4a313b 2784 0, /* adr_type */
a06ea964
NC
2785 0,
2786 0,
2787 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2788 0,
a06ea964
NC
2789 0},
2790
3e8286c0
RL
2791 /* Lower 16 bits address/value: MOVk. */
2792 {"tlsgd_g0_nc", 0,
2793 0, /* adr_type */
2794 0,
2795 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2796 0,
2797 0,
2798 0},
2799
1aa66fb1
RL
2800 /* Most significant bits 16-31 of address/value: MOVZ. */
2801 {"tlsgd_g1", 0,
2802 0, /* adr_type */
2803 0,
2804 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2805 0,
2806 0,
2807 0},
2808
a06ea964
NC
2809 /* Get to the page containing GOT TLS entry for a symbol */
2810 {"tlsdesc", 0,
389b8029 2811 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2812 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2813 0,
2814 0,
74ad790c 2815 0,
1ada945d 2816 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2817
2818 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2819 {"tlsdesc_lo12", 0,
6f4a313b 2820 0, /* adr_type */
a06ea964
NC
2821 0,
2822 0,
f955cccf 2823 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
74ad790c
MS
2824 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2825 0},
a06ea964 2826
6c37fedc
JW
2827 /* Get to the page containing GOT TLS entry for a symbol.
2828 The same as GD, we allocate two consecutive GOT slots
2829 for module index and module offset, the only difference
33eaf5de 2830 with GD is the module offset should be initialized to
6c37fedc
JW
2831 zero without any outstanding runtime relocation. */
2832 {"tlsldm", 0,
2833 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2834 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2835 0,
2836 0,
2837 0,
2838 0},
2839
a12fad50
JW
2840 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2841 {"tlsldm_lo12_nc", 0,
2842 0, /* adr_type */
2843 0,
2844 0,
2845 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2846 0,
2847 0},
2848
70151fb5
JW
2849 /* 12 bit offset into the module TLS base address. */
2850 {"dtprel_lo12", 0,
2851 0, /* adr_type */
2852 0,
2853 0,
2854 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2855 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2856 0},
2857
13289c10
JW
2858 /* Same as dtprel_lo12, no overflow check. */
2859 {"dtprel_lo12_nc", 0,
2860 0, /* adr_type */
2861 0,
2862 0,
2863 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2864 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2865 0},
2866
49df5539
JW
2867 /* bits[23:12] of offset to the module TLS base address. */
2868 {"dtprel_hi12", 0,
2869 0, /* adr_type */
2870 0,
2871 0,
2872 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2873 0,
2874 0},
2875
2876 /* bits[15:0] of offset to the module TLS base address. */
2877 {"dtprel_g0", 0,
2878 0, /* adr_type */
2879 0,
2880 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2881 0,
2882 0,
2883 0},
2884
2885 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2886 {"dtprel_g0_nc", 0,
2887 0, /* adr_type */
2888 0,
2889 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2890 0,
2891 0,
2892 0},
2893
2894 /* bits[31:16] of offset to the module TLS base address. */
2895 {"dtprel_g1", 0,
2896 0, /* adr_type */
2897 0,
2898 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2899 0,
2900 0,
2901 0},
2902
2903 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2904 {"dtprel_g1_nc", 0,
2905 0, /* adr_type */
2906 0,
2907 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2908 0,
2909 0,
2910 0},
2911
2912 /* bits[47:32] of offset to the module TLS base address. */
2913 {"dtprel_g2", 0,
2914 0, /* adr_type */
2915 0,
2916 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2917 0,
2918 0,
2919 0},
2920
43a357f9
RL
2921 /* Lower 16 bit offset into GOT entry for a symbol */
2922 {"tlsdesc_off_g0_nc", 0,
2923 0, /* adr_type */
2924 0,
2925 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2926 0,
2927 0,
2928 0},
2929
2930 /* Higher 16 bit offset into GOT entry for a symbol */
2931 {"tlsdesc_off_g1", 0,
2932 0, /* adr_type */
2933 0,
2934 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2935 0,
2936 0,
2937 0},
2938
a06ea964
NC
2939 /* Get to the page containing GOT TLS entry for a symbol */
2940 {"gottprel", 0,
6f4a313b 2941 0, /* adr_type */
a06ea964
NC
2942 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2943 0,
2944 0,
74ad790c 2945 0,
043bf05a 2946 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2947
2948 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2949 {"gottprel_lo12", 0,
6f4a313b 2950 0, /* adr_type */
a06ea964
NC
2951 0,
2952 0,
2953 0,
74ad790c
MS
2954 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2955 0},
a06ea964
NC
2956
2957 /* Get tp offset for a symbol. */
2958 {"tprel", 0,
6f4a313b 2959 0, /* adr_type */
a06ea964
NC
2960 0,
2961 0,
2962 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2963 0,
a06ea964
NC
2964 0},
2965
2966 /* Get tp offset for a symbol. */
2967 {"tprel_lo12", 0,
6f4a313b 2968 0, /* adr_type */
a06ea964
NC
2969 0,
2970 0,
2971 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
84f1b9fb 2972 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
a06ea964
NC
2973 0},
2974
2975 /* Get tp offset for a symbol. */
2976 {"tprel_hi12", 0,
6f4a313b 2977 0, /* adr_type */
a06ea964
NC
2978 0,
2979 0,
2980 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2981 0,
a06ea964
NC
2982 0},
2983
2984 /* Get tp offset for a symbol. */
2985 {"tprel_lo12_nc", 0,
6f4a313b 2986 0, /* adr_type */
a06ea964
NC
2987 0,
2988 0,
2989 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
84f1b9fb 2990 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
a06ea964
NC
2991 0},
2992
2993 /* Most significant bits 32-47 of address/value: MOVZ. */
2994 {"tprel_g2", 0,
6f4a313b 2995 0, /* adr_type */
a06ea964
NC
2996 0,
2997 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2998 0,
74ad790c 2999 0,
a06ea964
NC
3000 0},
3001
3002 /* Most significant bits 16-31 of address/value: MOVZ. */
3003 {"tprel_g1", 0,
6f4a313b 3004 0, /* adr_type */
a06ea964
NC
3005 0,
3006 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
3007 0,
74ad790c 3008 0,
a06ea964
NC
3009 0},
3010
3011 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
3012 {"tprel_g1_nc", 0,
6f4a313b 3013 0, /* adr_type */
a06ea964
NC
3014 0,
3015 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
3016 0,
74ad790c 3017 0,
a06ea964
NC
3018 0},
3019
3020 /* Most significant bits 0-15 of address/value: MOVZ. */
3021 {"tprel_g0", 0,
6f4a313b 3022 0, /* adr_type */
a06ea964
NC
3023 0,
3024 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
3025 0,
74ad790c 3026 0,
a06ea964
NC
3027 0},
3028
3029 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
3030 {"tprel_g0_nc", 0,
6f4a313b 3031 0, /* adr_type */
a06ea964
NC
3032 0,
3033 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
3034 0,
74ad790c 3035 0,
a06ea964 3036 0},
a921b5bd
JW
3037
3038 /* 15bit offset from got entry to base address of GOT table. */
3039 {"gotpage_lo15", 0,
3040 0,
3041 0,
3042 0,
3043 0,
3044 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
3045 0},
3d715ce4
JW
3046
3047 /* 14bit offset from got entry to base address of GOT table. */
3048 {"gotpage_lo14", 0,
3049 0,
3050 0,
3051 0,
3052 0,
3053 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
3054 0},
a06ea964
NC
3055};
3056
3057/* Given the address of a pointer pointing to the textual name of a
3058 relocation as may appear in assembler source, attempt to find its
3059 details in reloc_table. The pointer will be updated to the character
3060 after the trailing colon. On failure, NULL will be returned;
3061 otherwise return the reloc_table_entry. */
3062
3063static struct reloc_table_entry *
3064find_reloc_table_entry (char **str)
3065{
3066 unsigned int i;
3067 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
3068 {
3069 int length = strlen (reloc_table[i].name);
3070
3071 if (strncasecmp (reloc_table[i].name, *str, length) == 0
3072 && (*str)[length] == ':')
3073 {
3074 *str += (length + 1);
3075 return &reloc_table[i];
3076 }
3077 }
3078
3079 return NULL;
3080}
3081
3082/* Mode argument to parse_shift and parser_shifter_operand. */
3083enum parse_shift_mode
3084{
98907a70 3085 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
3086 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3087 "#imm{,lsl #n}" */
3088 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3089 "#imm" */
3090 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 3091 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 3092 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 3093 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
3094 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3095};
3096
3097/* Parse a <shift> operator on an AArch64 data processing instruction.
3098 Return TRUE on success; otherwise return FALSE. */
3099static bfd_boolean
3100parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3101{
3102 const struct aarch64_name_value_pair *shift_op;
3103 enum aarch64_modifier_kind kind;
3104 expressionS exp;
3105 int exp_has_prefix;
3106 char *s = *str;
3107 char *p = s;
3108
3109 for (p = *str; ISALPHA (*p); p++)
3110 ;
3111
3112 if (p == *str)
3113 {
3114 set_syntax_error (_("shift expression expected"));
3115 return FALSE;
3116 }
3117
629310ab 3118 shift_op = str_hash_find_n (aarch64_shift_hsh, *str, p - *str);
a06ea964
NC
3119
3120 if (shift_op == NULL)
3121 {
3122 set_syntax_error (_("shift operator expected"));
3123 return FALSE;
3124 }
3125
3126 kind = aarch64_get_operand_modifier (shift_op);
3127
3128 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3129 {
3130 set_syntax_error (_("invalid use of 'MSL'"));
3131 return FALSE;
3132 }
3133
2442d846 3134 if (kind == AARCH64_MOD_MUL
98907a70
RS
3135 && mode != SHIFTED_MUL
3136 && mode != SHIFTED_MUL_VL)
2442d846
RS
3137 {
3138 set_syntax_error (_("invalid use of 'MUL'"));
3139 return FALSE;
3140 }
3141
a06ea964
NC
3142 switch (mode)
3143 {
3144 case SHIFTED_LOGIC_IMM:
535b785f 3145 if (aarch64_extend_operator_p (kind))
a06ea964
NC
3146 {
3147 set_syntax_error (_("extending shift is not permitted"));
3148 return FALSE;
3149 }
3150 break;
3151
3152 case SHIFTED_ARITH_IMM:
3153 if (kind == AARCH64_MOD_ROR)
3154 {
3155 set_syntax_error (_("'ROR' shift is not permitted"));
3156 return FALSE;
3157 }
3158 break;
3159
3160 case SHIFTED_LSL:
3161 if (kind != AARCH64_MOD_LSL)
3162 {
3163 set_syntax_error (_("only 'LSL' shift is permitted"));
3164 return FALSE;
3165 }
3166 break;
3167
2442d846
RS
3168 case SHIFTED_MUL:
3169 if (kind != AARCH64_MOD_MUL)
3170 {
3171 set_syntax_error (_("only 'MUL' is permitted"));
3172 return FALSE;
3173 }
3174 break;
3175
98907a70
RS
3176 case SHIFTED_MUL_VL:
3177 /* "MUL VL" consists of two separate tokens. Require the first
3178 token to be "MUL" and look for a following "VL". */
3179 if (kind == AARCH64_MOD_MUL)
3180 {
3181 skip_whitespace (p);
3182 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3183 {
3184 p += 2;
3185 kind = AARCH64_MOD_MUL_VL;
3186 break;
3187 }
3188 }
3189 set_syntax_error (_("only 'MUL VL' is permitted"));
3190 return FALSE;
3191
a06ea964
NC
3192 case SHIFTED_REG_OFFSET:
3193 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3194 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3195 {
3196 set_fatal_syntax_error
3197 (_("invalid shift for the register offset addressing mode"));
3198 return FALSE;
3199 }
3200 break;
3201
3202 case SHIFTED_LSL_MSL:
3203 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3204 {
3205 set_syntax_error (_("invalid shift operator"));
3206 return FALSE;
3207 }
3208 break;
3209
3210 default:
3211 abort ();
3212 }
3213
3214 /* Whitespace can appear here if the next thing is a bare digit. */
3215 skip_whitespace (p);
3216
3217 /* Parse shift amount. */
3218 exp_has_prefix = 0;
98907a70 3219 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3220 exp.X_op = O_absent;
3221 else
3222 {
3223 if (is_immediate_prefix (*p))
3224 {
3225 p++;
3226 exp_has_prefix = 1;
3227 }
3228 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3229 }
98907a70
RS
3230 if (kind == AARCH64_MOD_MUL_VL)
3231 /* For consistency, give MUL VL the same shift amount as an implicit
3232 MUL #1. */
3233 operand->shifter.amount = 1;
3234 else if (exp.X_op == O_absent)
a06ea964 3235 {
535b785f 3236 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
a06ea964
NC
3237 {
3238 set_syntax_error (_("missing shift amount"));
3239 return FALSE;
3240 }
3241 operand->shifter.amount = 0;
3242 }
3243 else if (exp.X_op != O_constant)
3244 {
3245 set_syntax_error (_("constant shift amount required"));
3246 return FALSE;
3247 }
2442d846
RS
3248 /* For parsing purposes, MUL #n has no inherent range. The range
3249 depends on the operand and will be checked by operand-specific
3250 routines. */
3251 else if (kind != AARCH64_MOD_MUL
3252 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3253 {
3254 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3255 return FALSE;
3256 }
3257 else
3258 {
3259 operand->shifter.amount = exp.X_add_number;
3260 operand->shifter.amount_present = 1;
3261 }
3262
3263 operand->shifter.operator_present = 1;
3264 operand->shifter.kind = kind;
3265
3266 *str = p;
3267 return TRUE;
3268}
3269
3270/* Parse a <shifter_operand> for a data processing instruction:
3271
3272 #<immediate>
3273 #<immediate>, LSL #imm
3274
3275 Validation of immediate operands is deferred to md_apply_fix.
3276
3277 Return TRUE on success; otherwise return FALSE. */
3278
3279static bfd_boolean
3280parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3281 enum parse_shift_mode mode)
3282{
3283 char *p;
3284
3285 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3286 return FALSE;
3287
3288 p = *str;
3289
3290 /* Accept an immediate expression. */
3291 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3292 return FALSE;
3293
3294 /* Accept optional LSL for arithmetic immediate values. */
3295 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3296 if (! parse_shift (&p, operand, SHIFTED_LSL))
3297 return FALSE;
3298
3299 /* Not accept any shifter for logical immediate values. */
3300 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3301 && parse_shift (&p, operand, mode))
3302 {
3303 set_syntax_error (_("unexpected shift operator"));
3304 return FALSE;
3305 }
3306
3307 *str = p;
3308 return TRUE;
3309}
3310
3311/* Parse a <shifter_operand> for a data processing instruction:
3312
3313 <Rm>
3314 <Rm>, <shift>
3315 #<immediate>
3316 #<immediate>, LSL #imm
3317
3318 where <shift> is handled by parse_shift above, and the last two
3319 cases are handled by the function above.
3320
3321 Validation of immediate operands is deferred to md_apply_fix.
3322
3323 Return TRUE on success; otherwise return FALSE. */
3324
3325static bfd_boolean
3326parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3327 enum parse_shift_mode mode)
3328{
e1b988bb
RS
3329 const reg_entry *reg;
3330 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3331 enum aarch64_operand_class opd_class
3332 = aarch64_get_operand_class (operand->type);
3333
e1b988bb
RS
3334 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3335 if (reg)
a06ea964
NC
3336 {
3337 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3338 {
3339 set_syntax_error (_("unexpected register in the immediate operand"));
3340 return FALSE;
3341 }
3342
e1b988bb 3343 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
a06ea964 3344 {
e1b988bb 3345 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
a06ea964
NC
3346 return FALSE;
3347 }
3348
e1b988bb
RS
3349 operand->reg.regno = reg->number;
3350 operand->qualifier = qualifier;
a06ea964
NC
3351
3352 /* Accept optional shift operation on register. */
3353 if (! skip_past_comma (str))
3354 return TRUE;
3355
3356 if (! parse_shift (str, operand, mode))
3357 return FALSE;
3358
3359 return TRUE;
3360 }
3361 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3362 {
3363 set_syntax_error
3364 (_("integer register expected in the extended/shifted operand "
3365 "register"));
3366 return FALSE;
3367 }
3368
3369 /* We have a shifted immediate variable. */
3370 return parse_shifter_operand_imm (str, operand, mode);
3371}
3372
3373/* Return TRUE on success; return FALSE otherwise. */
3374
3375static bfd_boolean
3376parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3377 enum parse_shift_mode mode)
3378{
3379 char *p = *str;
3380
3381 /* Determine if we have the sequence of characters #: or just :
3382 coming next. If we do, then we check for a :rello: relocation
3383 modifier. If we don't, punt the whole lot to
3384 parse_shifter_operand. */
3385
3386 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3387 {
3388 struct reloc_table_entry *entry;
3389
3390 if (p[0] == '#')
3391 p += 2;
3392 else
3393 p++;
3394 *str = p;
3395
3396 /* Try to parse a relocation. Anything else is an error. */
3397 if (!(entry = find_reloc_table_entry (str)))
3398 {
3399 set_syntax_error (_("unknown relocation modifier"));
3400 return FALSE;
3401 }
3402
3403 if (entry->add_type == 0)
3404 {
3405 set_syntax_error
3406 (_("this relocation modifier is not allowed on this instruction"));
3407 return FALSE;
3408 }
3409
3410 /* Save str before we decompose it. */
3411 p = *str;
3412
3413 /* Next, we parse the expression. */
3414 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3415 return FALSE;
3416
3417 /* Record the relocation type (use the ADD variant here). */
3418 inst.reloc.type = entry->add_type;
3419 inst.reloc.pc_rel = entry->pc_rel;
3420
3421 /* If str is empty, we've reached the end, stop here. */
3422 if (**str == '\0')
3423 return TRUE;
3424
55d9b4c1 3425 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3426 recover the variable name and continue parsing for the shifter. */
3427 *str = p;
3428 return parse_shifter_operand_imm (str, operand, mode);
3429 }
3430
3431 return parse_shifter_operand (str, operand, mode);
3432}
3433
3434/* Parse all forms of an address expression. Information is written
3435 to *OPERAND and/or inst.reloc.
3436
3437 The A64 instruction set has the following addressing modes:
3438
3439 Offset
4df068de
RS
3440 [base] // in SIMD ld/st structure
3441 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3442 [base{,#imm}]
3443 [base,Xm{,LSL #imm}]
3444 [base,Xm,SXTX {#imm}]
3445 [base,Wm,(S|U)XTW {#imm}]
3446 Pre-indexed
1820262b 3447 [base]! // in ldraa/ldrab exclusive
a06ea964
NC
3448 [base,#imm]!
3449 Post-indexed
3450 [base],#imm
4df068de 3451 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3452 PC-relative (literal)
3453 label
4df068de 3454 SVE:
98907a70 3455 [base,#imm,MUL VL]
4df068de
RS
3456 [base,Zm.D{,LSL #imm}]
3457 [base,Zm.S,(S|U)XTW {#imm}]
3458 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3459 [Zn.S,#imm]
3460 [Zn.D,#imm]
c469c864 3461 [Zn.S{, Xm}]
4df068de
RS
3462 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3463 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3464 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3465
3466 (As a convenience, the notation "=immediate" is permitted in conjunction
3467 with the pc-relative literal load instructions to automatically place an
3468 immediate value or symbolic address in a nearby literal pool and generate
3469 a hidden label which references it.)
3470
3471 Upon a successful parsing, the address structure in *OPERAND will be
3472 filled in the following way:
3473
3474 .base_regno = <base>
3475 .offset.is_reg // 1 if the offset is a register
3476 .offset.imm = <imm>
3477 .offset.regno = <Rm>
3478
3479 For different addressing modes defined in the A64 ISA:
3480
3481 Offset
3482 .pcrel=0; .preind=1; .postind=0; .writeback=0
3483 Pre-indexed
3484 .pcrel=0; .preind=1; .postind=0; .writeback=1
3485 Post-indexed
3486 .pcrel=0; .preind=0; .postind=1; .writeback=1
3487 PC-relative (literal)
3488 .pcrel=1; .preind=1; .postind=0; .writeback=0
3489
3490 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3491 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3492 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3493 corresponding register.
a06ea964 3494
4df068de 3495 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3496 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3497 is the type of shifter that is allowed for immediate offsets,
3498 or SHIFTED_NONE if none.
3499
3500 In all other respects, it is the caller's responsibility to check
3501 for addressing modes not supported by the instruction, and to set
3502 inst.reloc.type. */
a06ea964
NC
3503
3504static bfd_boolean
4df068de
RS
3505parse_address_main (char **str, aarch64_opnd_info *operand,
3506 aarch64_opnd_qualifier_t *base_qualifier,
3507 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3508 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3509 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3510{
3511 char *p = *str;
e1b988bb 3512 const reg_entry *reg;
a06ea964
NC
3513 expressionS *exp = &inst.reloc.exp;
3514
4df068de
RS
3515 *base_qualifier = AARCH64_OPND_QLF_NIL;
3516 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3517 if (! skip_past_char (&p, '['))
3518 {
3519 /* =immediate or label. */
3520 operand->addr.pcrel = 1;
3521 operand->addr.preind = 1;
3522
f41aef5f
RE
3523 /* #:<reloc_op>:<symbol> */
3524 skip_past_char (&p, '#');
73866052 3525 if (skip_past_char (&p, ':'))
f41aef5f 3526 {
6f4a313b 3527 bfd_reloc_code_real_type ty;
f41aef5f
RE
3528 struct reloc_table_entry *entry;
3529
3530 /* Try to parse a relocation modifier. Anything else is
3531 an error. */
3532 entry = find_reloc_table_entry (&p);
3533 if (! entry)
3534 {
3535 set_syntax_error (_("unknown relocation modifier"));
3536 return FALSE;
3537 }
3538
6f4a313b
MS
3539 switch (operand->type)
3540 {
3541 case AARCH64_OPND_ADDR_PCREL21:
3542 /* adr */
3543 ty = entry->adr_type;
3544 break;
3545
3546 default:
74ad790c 3547 ty = entry->ld_literal_type;
6f4a313b
MS
3548 break;
3549 }
3550
3551 if (ty == 0)
f41aef5f
RE
3552 {
3553 set_syntax_error
3554 (_("this relocation modifier is not allowed on this "
3555 "instruction"));
3556 return FALSE;
3557 }
3558
3559 /* #:<reloc_op>: */
3560 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3561 {
3562 set_syntax_error (_("invalid relocation expression"));
3563 return FALSE;
3564 }
a06ea964 3565
f41aef5f 3566 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3567 /* Record the relocation type. */
3568 inst.reloc.type = ty;
f41aef5f
RE
3569 inst.reloc.pc_rel = entry->pc_rel;
3570 }
3571 else
a06ea964 3572 {
f41aef5f
RE
3573
3574 if (skip_past_char (&p, '='))
3575 /* =immediate; need to generate the literal in the literal pool. */
3576 inst.gen_lit_pool = 1;
3577
3578 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3579 {
3580 set_syntax_error (_("invalid address"));
3581 return FALSE;
3582 }
a06ea964
NC
3583 }
3584
3585 *str = p;
3586 return TRUE;
3587 }
3588
3589 /* [ */
3590
4df068de
RS
3591 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3592 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3593 {
4df068de 3594 set_syntax_error (_(get_reg_expected_msg (base_type)));
a06ea964
NC
3595 return FALSE;
3596 }
e1b988bb 3597 operand->addr.base_regno = reg->number;
a06ea964
NC
3598
3599 /* [Xn */
3600 if (skip_past_comma (&p))
3601 {
3602 /* [Xn, */
3603 operand->addr.preind = 1;
3604
4df068de 3605 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3606 if (reg)
a06ea964 3607 {
4df068de 3608 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3609 {
4df068de 3610 set_syntax_error (_(get_reg_expected_msg (offset_type)));
e1b988bb
RS
3611 return FALSE;
3612 }
3613
a06ea964 3614 /* [Xn,Rm */
e1b988bb 3615 operand->addr.offset.regno = reg->number;
a06ea964
NC
3616 operand->addr.offset.is_reg = 1;
3617 /* Shifted index. */
3618 if (skip_past_comma (&p))
3619 {
3620 /* [Xn,Rm, */
3621 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3622 /* Use the diagnostics set in parse_shift, so not set new
3623 error message here. */
3624 return FALSE;
3625 }
3626 /* We only accept:
c469c864 3627 [base,Xm] # For vector plus scalar SVE2 indexing.
a06ea964
NC
3628 [base,Xm{,LSL #imm}]
3629 [base,Xm,SXTX {#imm}]
3630 [base,Wm,(S|U)XTW {#imm}] */
3631 if (operand->shifter.kind == AARCH64_MOD_NONE
3632 || operand->shifter.kind == AARCH64_MOD_LSL
3633 || operand->shifter.kind == AARCH64_MOD_SXTX)
3634 {
4df068de 3635 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
3636 {
3637 set_syntax_error (_("invalid use of 32-bit register offset"));
3638 return FALSE;
3639 }
4df068de 3640 if (aarch64_get_qualifier_esize (*base_qualifier)
c469c864
MM
3641 != aarch64_get_qualifier_esize (*offset_qualifier)
3642 && (operand->type != AARCH64_OPND_SVE_ADDR_ZX
3643 || *base_qualifier != AARCH64_OPND_QLF_S_S
3644 || *offset_qualifier != AARCH64_OPND_QLF_X))
4df068de
RS
3645 {
3646 set_syntax_error (_("offset has different size from base"));
3647 return FALSE;
3648 }
a06ea964 3649 }
4df068de 3650 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
3651 {
3652 set_syntax_error (_("invalid use of 64-bit register offset"));
3653 return FALSE;
3654 }
3655 }
3656 else
3657 {
3658 /* [Xn,#:<reloc_op>:<symbol> */
3659 skip_past_char (&p, '#');
73866052 3660 if (skip_past_char (&p, ':'))
a06ea964
NC
3661 {
3662 struct reloc_table_entry *entry;
3663
3664 /* Try to parse a relocation modifier. Anything else is
3665 an error. */
3666 if (!(entry = find_reloc_table_entry (&p)))
3667 {
3668 set_syntax_error (_("unknown relocation modifier"));
3669 return FALSE;
3670 }
3671
3672 if (entry->ldst_type == 0)
3673 {
3674 set_syntax_error
3675 (_("this relocation modifier is not allowed on this "
3676 "instruction"));
3677 return FALSE;
3678 }
3679
3680 /* [Xn,#:<reloc_op>: */
3681 /* We now have the group relocation table entry corresponding to
3682 the name in the assembler source. Next, we parse the
3683 expression. */
3684 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3685 {
3686 set_syntax_error (_("invalid relocation expression"));
3687 return FALSE;
3688 }
3689
3690 /* [Xn,#:<reloc_op>:<expr> */
3691 /* Record the load/store relocation type. */
3692 inst.reloc.type = entry->ldst_type;
3693 inst.reloc.pc_rel = entry->pc_rel;
3694 }
98907a70 3695 else
a06ea964 3696 {
98907a70
RS
3697 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3698 {
3699 set_syntax_error (_("invalid expression in the address"));
3700 return FALSE;
3701 }
3702 /* [Xn,<expr> */
3703 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3704 /* [Xn,<expr>,<shifter> */
3705 if (! parse_shift (&p, operand, imm_shift_mode))
3706 return FALSE;
a06ea964 3707 }
a06ea964
NC
3708 }
3709 }
3710
3711 if (! skip_past_char (&p, ']'))
3712 {
3713 set_syntax_error (_("']' expected"));
3714 return FALSE;
3715 }
3716
3717 if (skip_past_char (&p, '!'))
3718 {
3719 if (operand->addr.preind && operand->addr.offset.is_reg)
3720 {
3721 set_syntax_error (_("register offset not allowed in pre-indexed "
3722 "addressing mode"));
3723 return FALSE;
3724 }
3725 /* [Xn]! */
3726 operand->addr.writeback = 1;
3727 }
3728 else if (skip_past_comma (&p))
3729 {
3730 /* [Xn], */
3731 operand->addr.postind = 1;
3732 operand->addr.writeback = 1;
3733
3734 if (operand->addr.preind)
3735 {
3736 set_syntax_error (_("cannot combine pre- and post-indexing"));
3737 return FALSE;
3738 }
3739
4df068de 3740 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 3741 if (reg)
a06ea964
NC
3742 {
3743 /* [Xn],Xm */
e1b988bb 3744 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 3745 {
e1b988bb 3746 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
a06ea964
NC
3747 return FALSE;
3748 }
e1b988bb
RS
3749
3750 operand->addr.offset.regno = reg->number;
a06ea964
NC
3751 operand->addr.offset.is_reg = 1;
3752 }
3753 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3754 {
3755 /* [Xn],#expr */
3756 set_syntax_error (_("invalid expression in the address"));
3757 return FALSE;
3758 }
3759 }
3760
3761 /* If at this point neither .preind nor .postind is set, we have a
1820262b
DB
3762 bare [Rn]{!}; only accept [Rn]! as a shorthand for [Rn,#0]! for ldraa and
3763 ldrab, accept [Rn] as a shorthand for [Rn,#0].
c469c864
MM
3764 For SVE2 vector plus scalar offsets, allow [Zn.<T>] as shorthand for
3765 [Zn.<T>, xzr]. */
a06ea964
NC
3766 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3767 {
550fd7bf 3768 if (operand->addr.writeback)
a06ea964 3769 {
1820262b
DB
3770 if (operand->type == AARCH64_OPND_ADDR_SIMM10)
3771 {
3772 /* Accept [Rn]! as a shorthand for [Rn,#0]! */
3773 operand->addr.offset.is_reg = 0;
3774 operand->addr.offset.imm = 0;
3775 operand->addr.preind = 1;
3776 }
3777 else
3778 {
3779 /* Reject [Rn]! */
3780 set_syntax_error (_("missing offset in the pre-indexed address"));
3781 return FALSE;
3782 }
a06ea964 3783 }
1820262b 3784 else
c469c864 3785 {
1820262b
DB
3786 operand->addr.preind = 1;
3787 if (operand->type == AARCH64_OPND_SVE_ADDR_ZX)
3788 {
3789 operand->addr.offset.is_reg = 1;
3790 operand->addr.offset.regno = REG_ZR;
3791 *offset_qualifier = AARCH64_OPND_QLF_X;
3792 }
3793 else
3794 {
3795 inst.reloc.exp.X_op = O_constant;
3796 inst.reloc.exp.X_add_number = 0;
3797 }
c469c864 3798 }
a06ea964
NC
3799 }
3800
3801 *str = p;
3802 return TRUE;
3803}
3804
73866052
RS
3805/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3806 on success. */
a06ea964 3807static bfd_boolean
73866052 3808parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 3809{
4df068de
RS
3810 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3811 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
98907a70 3812 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
4df068de
RS
3813}
3814
98907a70 3815/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
3816 The arguments have the same meaning as for parse_address_main.
3817 Return TRUE on success. */
3818static bfd_boolean
3819parse_sve_address (char **str, aarch64_opnd_info *operand,
3820 aarch64_opnd_qualifier_t *base_qualifier,
3821 aarch64_opnd_qualifier_t *offset_qualifier)
3822{
3823 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
3824 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3825 SHIFTED_MUL_VL);
a06ea964
NC
3826}
3827
3828/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3829 Return TRUE on success; otherwise return FALSE. */
3830static bfd_boolean
3831parse_half (char **str, int *internal_fixup_p)
3832{
671eeb28 3833 char *p = *str;
a06ea964 3834
a06ea964
NC
3835 skip_past_char (&p, '#');
3836
3837 gas_assert (internal_fixup_p);
3838 *internal_fixup_p = 0;
3839
3840 if (*p == ':')
3841 {
3842 struct reloc_table_entry *entry;
3843
3844 /* Try to parse a relocation. Anything else is an error. */
3845 ++p;
3846 if (!(entry = find_reloc_table_entry (&p)))
3847 {
3848 set_syntax_error (_("unknown relocation modifier"));
3849 return FALSE;
3850 }
3851
3852 if (entry->movw_type == 0)
3853 {
3854 set_syntax_error
3855 (_("this relocation modifier is not allowed on this instruction"));
3856 return FALSE;
3857 }
3858
3859 inst.reloc.type = entry->movw_type;
3860 }
3861 else
3862 *internal_fixup_p = 1;
3863
a06ea964
NC
3864 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3865 return FALSE;
3866
3867 *str = p;
3868 return TRUE;
3869}
3870
3871/* Parse an operand for an ADRP instruction:
3872 ADRP <Xd>, <label>
3873 Return TRUE on success; otherwise return FALSE. */
3874
3875static bfd_boolean
3876parse_adrp (char **str)
3877{
3878 char *p;
3879
3880 p = *str;
3881 if (*p == ':')
3882 {
3883 struct reloc_table_entry *entry;
3884
3885 /* Try to parse a relocation. Anything else is an error. */
3886 ++p;
3887 if (!(entry = find_reloc_table_entry (&p)))
3888 {
3889 set_syntax_error (_("unknown relocation modifier"));
3890 return FALSE;
3891 }
3892
3893 if (entry->adrp_type == 0)
3894 {
3895 set_syntax_error
3896 (_("this relocation modifier is not allowed on this instruction"));
3897 return FALSE;
3898 }
3899
3900 inst.reloc.type = entry->adrp_type;
3901 }
3902 else
3903 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3904
3905 inst.reloc.pc_rel = 1;
3906
3907 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3908 return FALSE;
3909
3910 *str = p;
3911 return TRUE;
3912}
3913
3914/* Miscellaneous. */
3915
245d2e3f
RS
3916/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3917 of SIZE tokens in which index I gives the token for field value I,
3918 or is null if field value I is invalid. REG_TYPE says which register
3919 names should be treated as registers rather than as symbolic immediates.
3920
3921 Return true on success, moving *STR past the operand and storing the
3922 field value in *VAL. */
3923
3924static int
3925parse_enum_string (char **str, int64_t *val, const char *const *array,
3926 size_t size, aarch64_reg_type reg_type)
3927{
3928 expressionS exp;
3929 char *p, *q;
3930 size_t i;
3931
3932 /* Match C-like tokens. */
3933 p = q = *str;
3934 while (ISALNUM (*q))
3935 q++;
3936
3937 for (i = 0; i < size; ++i)
3938 if (array[i]
3939 && strncasecmp (array[i], p, q - p) == 0
3940 && array[i][q - p] == 0)
3941 {
3942 *val = i;
3943 *str = q;
3944 return TRUE;
3945 }
3946
3947 if (!parse_immediate_expression (&p, &exp, reg_type))
3948 return FALSE;
3949
3950 if (exp.X_op == O_constant
3951 && (uint64_t) exp.X_add_number < size)
3952 {
3953 *val = exp.X_add_number;
3954 *str = p;
3955 return TRUE;
3956 }
3957
3958 /* Use the default error for this operand. */
3959 return FALSE;
3960}
3961
a06ea964
NC
3962/* Parse an option for a preload instruction. Returns the encoding for the
3963 option, or PARSE_FAIL. */
3964
3965static int
3966parse_pldop (char **str)
3967{
3968 char *p, *q;
3969 const struct aarch64_name_value_pair *o;
3970
3971 p = q = *str;
3972 while (ISALNUM (*q))
3973 q++;
3974
629310ab 3975 o = str_hash_find_n (aarch64_pldop_hsh, p, q - p);
a06ea964
NC
3976 if (!o)
3977 return PARSE_FAIL;
3978
3979 *str = q;
3980 return o->value;
3981}
3982
3983/* Parse an option for a barrier instruction. Returns the encoding for the
3984 option, or PARSE_FAIL. */
3985
3986static int
3987parse_barrier (char **str)
3988{
3989 char *p, *q;
05cfb0d8 3990 const struct aarch64_name_value_pair *o;
a06ea964
NC
3991
3992 p = q = *str;
3993 while (ISALPHA (*q))
3994 q++;
3995
629310ab 3996 o = str_hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
a06ea964
NC
3997 if (!o)
3998 return PARSE_FAIL;
3999
4000 *str = q;
4001 return o->value;
4002}
4003
1e6f4800
MW
4004/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
4005 return 0 if successful. Otherwise return PARSE_FAIL. */
4006
4007static int
4008parse_barrier_psb (char **str,
4009 const struct aarch64_name_value_pair ** hint_opt)
4010{
4011 char *p, *q;
4012 const struct aarch64_name_value_pair *o;
4013
4014 p = q = *str;
4015 while (ISALPHA (*q))
4016 q++;
4017
629310ab 4018 o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
1e6f4800
MW
4019 if (!o)
4020 {
4021 set_fatal_syntax_error
c2e5c986 4022 ( _("unknown or missing option to PSB/TSB"));
1e6f4800
MW
4023 return PARSE_FAIL;
4024 }
4025
4026 if (o->value != 0x11)
4027 {
4028 /* PSB only accepts option name 'CSYNC'. */
4029 set_syntax_error
c2e5c986 4030 (_("the specified option is not accepted for PSB/TSB"));
1e6f4800
MW
4031 return PARSE_FAIL;
4032 }
4033
4034 *str = q;
4035 *hint_opt = o;
4036 return 0;
4037}
4038
ff605452
SD
4039/* Parse an operand for BTI. Set *HINT_OPT to the hint-option record
4040 return 0 if successful. Otherwise return PARSE_FAIL. */
4041
4042static int
4043parse_bti_operand (char **str,
4044 const struct aarch64_name_value_pair ** hint_opt)
4045{
4046 char *p, *q;
4047 const struct aarch64_name_value_pair *o;
4048
4049 p = q = *str;
4050 while (ISALPHA (*q))
4051 q++;
4052
629310ab 4053 o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
ff605452
SD
4054 if (!o)
4055 {
4056 set_fatal_syntax_error
4057 ( _("unknown option to BTI"));
4058 return PARSE_FAIL;
4059 }
4060
4061 switch (o->value)
4062 {
4063 /* Valid BTI operands. */
4064 case HINT_OPD_C:
4065 case HINT_OPD_J:
4066 case HINT_OPD_JC:
4067 break;
4068
4069 default:
4070 set_syntax_error
4071 (_("unknown option to BTI"));
4072 return PARSE_FAIL;
4073 }
4074
4075 *str = q;
4076 *hint_opt = o;
4077 return 0;
4078}
4079
a06ea964 4080/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 4081 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
4082
4083 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
4084 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
4085
4086 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
4087 field, otherwise as a system register.
4088*/
a06ea964
NC
4089
4090static int
629310ab 4091parse_sys_reg (char **str, htab_t sys_regs,
561a72d4
TC
4092 int imple_defined_p, int pstatefield_p,
4093 uint32_t* flags)
a06ea964
NC
4094{
4095 char *p, *q;
fa63795f 4096 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
49eec193 4097 const aarch64_sys_reg *o;
a06ea964
NC
4098 int value;
4099
4100 p = buf;
4101 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4102 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4103 *p++ = TOLOWER (*q);
4104 *p = '\0';
fa63795f
AC
4105
4106 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4107 valid system register. This is enforced by construction of the hash
4108 table. */
4109 if (p - buf != q - *str)
4110 return PARSE_FAIL;
a06ea964 4111
629310ab 4112 o = str_hash_find (sys_regs, buf);
a06ea964
NC
4113 if (!o)
4114 {
4115 if (!imple_defined_p)
4116 return PARSE_FAIL;
4117 else
4118 {
df7b4545 4119 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 4120 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
4121
4122 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
4123 != 5)
a06ea964 4124 return PARSE_FAIL;
df7b4545 4125 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
4126 return PARSE_FAIL;
4127 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
561a72d4
TC
4128 if (flags)
4129 *flags = 0;
a06ea964
NC
4130 }
4131 }
4132 else
49eec193 4133 {
72ca8fad
MW
4134 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
4135 as_bad (_("selected processor does not support PSTATE field "
4136 "name '%s'"), buf);
f7cb161e 4137 if (!pstatefield_p
38cf07a6
AC
4138 && !aarch64_sys_ins_reg_supported_p (cpu_variant, o->name,
4139 o->value, o->flags, o->features))
72ca8fad
MW
4140 as_bad (_("selected processor does not support system register "
4141 "name '%s'"), buf);
f7cb161e 4142 if (aarch64_sys_reg_deprecated_p (o->flags))
49eec193 4143 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 4144 "removed in a future release"), buf);
49eec193 4145 value = o->value;
561a72d4
TC
4146 if (flags)
4147 *flags = o->flags;
49eec193 4148 }
a06ea964
NC
4149
4150 *str = q;
4151 return value;
4152}
4153
4154/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4155 for the option, or NULL. */
4156
4157static const aarch64_sys_ins_reg *
629310ab 4158parse_sys_ins_reg (char **str, htab_t sys_ins_regs)
a06ea964
NC
4159{
4160 char *p, *q;
fa63795f 4161 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
a06ea964
NC
4162 const aarch64_sys_ins_reg *o;
4163
4164 p = buf;
4165 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4166 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4167 *p++ = TOLOWER (*q);
4168 *p = '\0';
4169
fa63795f
AC
4170 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4171 valid system register. This is enforced by construction of the hash
4172 table. */
4173 if (p - buf != q - *str)
4174 return NULL;
4175
629310ab 4176 o = str_hash_find (sys_ins_regs, buf);
a06ea964
NC
4177 if (!o)
4178 return NULL;
4179
38cf07a6
AC
4180 if (!aarch64_sys_ins_reg_supported_p (cpu_variant,
4181 o->name, o->value, o->flags, 0))
d6bf7ce6
MW
4182 as_bad (_("selected processor does not support system register "
4183 "name '%s'"), buf);
f7cb161e
PW
4184 if (aarch64_sys_reg_deprecated_p (o->flags))
4185 as_warn (_("system register name '%s' is deprecated and may be "
4186 "removed in a future release"), buf);
d6bf7ce6 4187
a06ea964
NC
4188 *str = q;
4189 return o;
4190}
4191\f
4192#define po_char_or_fail(chr) do { \
4193 if (! skip_past_char (&str, chr)) \
4194 goto failure; \
4195} while (0)
4196
4197#define po_reg_or_fail(regtype) do { \
4198 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4199 if (val == PARSE_FAIL) \
4200 { \
4201 set_default_error (); \
4202 goto failure; \
4203 } \
4204 } while (0)
4205
e1b988bb
RS
4206#define po_int_reg_or_fail(reg_type) do { \
4207 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4208 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964
NC
4209 { \
4210 set_default_error (); \
4211 goto failure; \
4212 } \
e1b988bb
RS
4213 info->reg.regno = reg->number; \
4214 info->qualifier = qualifier; \
a06ea964
NC
4215 } while (0)
4216
4217#define po_imm_nc_or_fail() do { \
1799c0d0 4218 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4219 goto failure; \
4220 } while (0)
4221
4222#define po_imm_or_fail(min, max) do { \
1799c0d0 4223 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4224 goto failure; \
4225 if (val < min || val > max) \
4226 { \
4227 set_fatal_syntax_error (_("immediate value out of range "\
4228#min " to "#max)); \
4229 goto failure; \
4230 } \
4231 } while (0)
4232
245d2e3f
RS
4233#define po_enum_or_fail(array) do { \
4234 if (!parse_enum_string (&str, &val, array, \
4235 ARRAY_SIZE (array), imm_reg_type)) \
4236 goto failure; \
4237 } while (0)
4238
a06ea964
NC
4239#define po_misc_or_fail(expr) do { \
4240 if (!expr) \
4241 goto failure; \
4242 } while (0)
4243\f
4244/* encode the 12-bit imm field of Add/sub immediate */
4245static inline uint32_t
4246encode_addsub_imm (uint32_t imm)
4247{
4248 return imm << 10;
4249}
4250
4251/* encode the shift amount field of Add/sub immediate */
4252static inline uint32_t
4253encode_addsub_imm_shift_amount (uint32_t cnt)
4254{
4255 return cnt << 22;
4256}
4257
4258
4259/* encode the imm field of Adr instruction */
4260static inline uint32_t
4261encode_adr_imm (uint32_t imm)
4262{
4263 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4264 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4265}
4266
4267/* encode the immediate field of Move wide immediate */
4268static inline uint32_t
4269encode_movw_imm (uint32_t imm)
4270{
4271 return imm << 5;
4272}
4273
4274/* encode the 26-bit offset of unconditional branch */
4275static inline uint32_t
4276encode_branch_ofs_26 (uint32_t ofs)
4277{
4278 return ofs & ((1 << 26) - 1);
4279}
4280
4281/* encode the 19-bit offset of conditional branch and compare & branch */
4282static inline uint32_t
4283encode_cond_branch_ofs_19 (uint32_t ofs)
4284{
4285 return (ofs & ((1 << 19) - 1)) << 5;
4286}
4287
4288/* encode the 19-bit offset of ld literal */
4289static inline uint32_t
4290encode_ld_lit_ofs_19 (uint32_t ofs)
4291{
4292 return (ofs & ((1 << 19) - 1)) << 5;
4293}
4294
4295/* Encode the 14-bit offset of test & branch. */
4296static inline uint32_t
4297encode_tst_branch_ofs_14 (uint32_t ofs)
4298{
4299 return (ofs & ((1 << 14) - 1)) << 5;
4300}
4301
4302/* Encode the 16-bit imm field of svc/hvc/smc. */
4303static inline uint32_t
4304encode_svc_imm (uint32_t imm)
4305{
4306 return imm << 5;
4307}
4308
4309/* Reencode add(s) to sub(s), or sub(s) to add(s). */
4310static inline uint32_t
4311reencode_addsub_switch_add_sub (uint32_t opcode)
4312{
4313 return opcode ^ (1 << 30);
4314}
4315
4316static inline uint32_t
4317reencode_movzn_to_movz (uint32_t opcode)
4318{
4319 return opcode | (1 << 30);
4320}
4321
4322static inline uint32_t
4323reencode_movzn_to_movn (uint32_t opcode)
4324{
4325 return opcode & ~(1 << 30);
4326}
4327
4328/* Overall per-instruction processing. */
4329
4330/* We need to be able to fix up arbitrary expressions in some statements.
4331 This is so that we can handle symbols that are an arbitrary distance from
4332 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4333 which returns part of an address in a form which will be valid for
4334 a data instruction. We do this by pushing the expression into a symbol
4335 in the expr_section, and creating a fix for that. */
4336
4337static fixS *
4338fix_new_aarch64 (fragS * frag,
4339 int where,
f7cb161e
PW
4340 short int size,
4341 expressionS * exp,
4342 int pc_rel,
4343 int reloc)
a06ea964
NC
4344{
4345 fixS *new_fix;
4346
4347 switch (exp->X_op)
4348 {
4349 case O_constant:
4350 case O_symbol:
4351 case O_add:
4352 case O_subtract:
4353 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4354 break;
4355
4356 default:
4357 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4358 pc_rel, reloc);
4359 break;
4360 }
4361 return new_fix;
4362}
4363\f
4364/* Diagnostics on operands errors. */
4365
a52e6fd3
YZ
4366/* By default, output verbose error message.
4367 Disable the verbose error message by -mno-verbose-error. */
4368static int verbose_error_p = 1;
a06ea964
NC
4369
4370#ifdef DEBUG_AARCH64
4371/* N.B. this is only for the purpose of debugging. */
4372const char* operand_mismatch_kind_names[] =
4373{
4374 "AARCH64_OPDE_NIL",
4375 "AARCH64_OPDE_RECOVERABLE",
4376 "AARCH64_OPDE_SYNTAX_ERROR",
4377 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4378 "AARCH64_OPDE_INVALID_VARIANT",
4379 "AARCH64_OPDE_OUT_OF_RANGE",
4380 "AARCH64_OPDE_UNALIGNED",
4381 "AARCH64_OPDE_REG_LIST",
4382 "AARCH64_OPDE_OTHER_ERROR",
4383};
4384#endif /* DEBUG_AARCH64 */
4385
4386/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4387
4388 When multiple errors of different kinds are found in the same assembly
4389 line, only the error of the highest severity will be picked up for
4390 issuing the diagnostics. */
4391
4392static inline bfd_boolean
4393operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4394 enum aarch64_operand_error_kind rhs)
4395{
4396 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4397 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4398 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4399 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4400 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4401 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4402 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4403 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4404 return lhs > rhs;
4405}
4406
4407/* Helper routine to get the mnemonic name from the assembly instruction
4408 line; should only be called for the diagnosis purpose, as there is
4409 string copy operation involved, which may affect the runtime
4410 performance if used in elsewhere. */
4411
4412static const char*
4413get_mnemonic_name (const char *str)
4414{
4415 static char mnemonic[32];
4416 char *ptr;
4417
4418 /* Get the first 15 bytes and assume that the full name is included. */
4419 strncpy (mnemonic, str, 31);
4420 mnemonic[31] = '\0';
4421
4422 /* Scan up to the end of the mnemonic, which must end in white space,
4423 '.', or end of string. */
4424 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4425 ;
4426
4427 *ptr = '\0';
4428
4429 /* Append '...' to the truncated long name. */
4430 if (ptr - mnemonic == 31)
4431 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4432
4433 return mnemonic;
4434}
4435
4436static void
4437reset_aarch64_instruction (aarch64_instruction *instruction)
4438{
4439 memset (instruction, '\0', sizeof (aarch64_instruction));
4440 instruction->reloc.type = BFD_RELOC_UNUSED;
4441}
4442
33eaf5de 4443/* Data structures storing one user error in the assembly code related to
a06ea964
NC
4444 operands. */
4445
4446struct operand_error_record
4447{
4448 const aarch64_opcode *opcode;
4449 aarch64_operand_error detail;
4450 struct operand_error_record *next;
4451};
4452
4453typedef struct operand_error_record operand_error_record;
4454
4455struct operand_errors
4456{
4457 operand_error_record *head;
4458 operand_error_record *tail;
4459};
4460
4461typedef struct operand_errors operand_errors;
4462
4463/* Top-level data structure reporting user errors for the current line of
4464 the assembly code.
4465 The way md_assemble works is that all opcodes sharing the same mnemonic
4466 name are iterated to find a match to the assembly line. In this data
4467 structure, each of the such opcodes will have one operand_error_record
4468 allocated and inserted. In other words, excessive errors related with
4469 a single opcode are disregarded. */
4470operand_errors operand_error_report;
4471
4472/* Free record nodes. */
4473static operand_error_record *free_opnd_error_record_nodes = NULL;
4474
4475/* Initialize the data structure that stores the operand mismatch
4476 information on assembling one line of the assembly code. */
4477static void
4478init_operand_error_report (void)
4479{
4480 if (operand_error_report.head != NULL)
4481 {
4482 gas_assert (operand_error_report.tail != NULL);
4483 operand_error_report.tail->next = free_opnd_error_record_nodes;
4484 free_opnd_error_record_nodes = operand_error_report.head;
4485 operand_error_report.head = NULL;
4486 operand_error_report.tail = NULL;
4487 return;
4488 }
4489 gas_assert (operand_error_report.tail == NULL);
4490}
4491
4492/* Return TRUE if some operand error has been recorded during the
4493 parsing of the current assembly line using the opcode *OPCODE;
4494 otherwise return FALSE. */
4495static inline bfd_boolean
4496opcode_has_operand_error_p (const aarch64_opcode *opcode)
4497{
4498 operand_error_record *record = operand_error_report.head;
4499 return record && record->opcode == opcode;
4500}
4501
4502/* Add the error record *NEW_RECORD to operand_error_report. The record's
4503 OPCODE field is initialized with OPCODE.
4504 N.B. only one record for each opcode, i.e. the maximum of one error is
4505 recorded for each instruction template. */
4506
4507static void
4508add_operand_error_record (const operand_error_record* new_record)
4509{
4510 const aarch64_opcode *opcode = new_record->opcode;
4511 operand_error_record* record = operand_error_report.head;
4512
4513 /* The record may have been created for this opcode. If not, we need
4514 to prepare one. */
4515 if (! opcode_has_operand_error_p (opcode))
4516 {
4517 /* Get one empty record. */
4518 if (free_opnd_error_record_nodes == NULL)
4519 {
325801bd 4520 record = XNEW (operand_error_record);
a06ea964
NC
4521 }
4522 else
4523 {
4524 record = free_opnd_error_record_nodes;
4525 free_opnd_error_record_nodes = record->next;
4526 }
4527 record->opcode = opcode;
4528 /* Insert at the head. */
4529 record->next = operand_error_report.head;
4530 operand_error_report.head = record;
4531 if (operand_error_report.tail == NULL)
4532 operand_error_report.tail = record;
4533 }
4534 else if (record->detail.kind != AARCH64_OPDE_NIL
4535 && record->detail.index <= new_record->detail.index
4536 && operand_error_higher_severity_p (record->detail.kind,
4537 new_record->detail.kind))
4538 {
4539 /* In the case of multiple errors found on operands related with a
4540 single opcode, only record the error of the leftmost operand and
4541 only if the error is of higher severity. */
4542 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4543 " the existing error %s on operand %d",
4544 operand_mismatch_kind_names[new_record->detail.kind],
4545 new_record->detail.index,
4546 operand_mismatch_kind_names[record->detail.kind],
4547 record->detail.index);
4548 return;
4549 }
4550
4551 record->detail = new_record->detail;
4552}
4553
4554static inline void
4555record_operand_error_info (const aarch64_opcode *opcode,
4556 aarch64_operand_error *error_info)
4557{
4558 operand_error_record record;
4559 record.opcode = opcode;
4560 record.detail = *error_info;
4561 add_operand_error_record (&record);
4562}
4563
4564/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4565 error message *ERROR, for operand IDX (count from 0). */
4566
4567static void
4568record_operand_error (const aarch64_opcode *opcode, int idx,
4569 enum aarch64_operand_error_kind kind,
4570 const char* error)
4571{
4572 aarch64_operand_error info;
4573 memset(&info, 0, sizeof (info));
4574 info.index = idx;
4575 info.kind = kind;
4576 info.error = error;
2a9b2c1a 4577 info.non_fatal = FALSE;
a06ea964
NC
4578 record_operand_error_info (opcode, &info);
4579}
4580
4581static void
4582record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4583 enum aarch64_operand_error_kind kind,
4584 const char* error, const int *extra_data)
4585{
4586 aarch64_operand_error info;
4587 info.index = idx;
4588 info.kind = kind;
4589 info.error = error;
4590 info.data[0] = extra_data[0];
4591 info.data[1] = extra_data[1];
4592 info.data[2] = extra_data[2];
2a9b2c1a 4593 info.non_fatal = FALSE;
a06ea964
NC
4594 record_operand_error_info (opcode, &info);
4595}
4596
4597static void
4598record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4599 const char* error, int lower_bound,
4600 int upper_bound)
4601{
4602 int data[3] = {lower_bound, upper_bound, 0};
4603 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4604 error, data);
4605}
4606
4607/* Remove the operand error record for *OPCODE. */
4608static void ATTRIBUTE_UNUSED
4609remove_operand_error_record (const aarch64_opcode *opcode)
4610{
4611 if (opcode_has_operand_error_p (opcode))
4612 {
4613 operand_error_record* record = operand_error_report.head;
4614 gas_assert (record != NULL && operand_error_report.tail != NULL);
4615 operand_error_report.head = record->next;
4616 record->next = free_opnd_error_record_nodes;
4617 free_opnd_error_record_nodes = record;
4618 if (operand_error_report.head == NULL)
4619 {
4620 gas_assert (operand_error_report.tail == record);
4621 operand_error_report.tail = NULL;
4622 }
4623 }
4624}
4625
4626/* Given the instruction in *INSTR, return the index of the best matched
4627 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4628
4629 Return -1 if there is no qualifier sequence; return the first match
4630 if there is multiple matches found. */
4631
4632static int
4633find_best_match (const aarch64_inst *instr,
4634 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4635{
4636 int i, num_opnds, max_num_matched, idx;
4637
4638 num_opnds = aarch64_num_of_operands (instr->opcode);
4639 if (num_opnds == 0)
4640 {
4641 DEBUG_TRACE ("no operand");
4642 return -1;
4643 }
4644
4645 max_num_matched = 0;
4989adac 4646 idx = 0;
a06ea964
NC
4647
4648 /* For each pattern. */
4649 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4650 {
4651 int j, num_matched;
4652 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4653
4654 /* Most opcodes has much fewer patterns in the list. */
535b785f 4655 if (empty_qualifier_sequence_p (qualifiers))
a06ea964
NC
4656 {
4657 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
4658 break;
4659 }
4660
4661 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4662 if (*qualifiers == instr->operands[j].qualifier)
4663 ++num_matched;
4664
4665 if (num_matched > max_num_matched)
4666 {
4667 max_num_matched = num_matched;
4668 idx = i;
4669 }
4670 }
4671
4672 DEBUG_TRACE ("return with %d", idx);
4673 return idx;
4674}
4675
33eaf5de 4676/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
a06ea964
NC
4677 corresponding operands in *INSTR. */
4678
4679static inline void
4680assign_qualifier_sequence (aarch64_inst *instr,
4681 const aarch64_opnd_qualifier_t *qualifiers)
4682{
4683 int i = 0;
4684 int num_opnds = aarch64_num_of_operands (instr->opcode);
4685 gas_assert (num_opnds);
4686 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4687 instr->operands[i].qualifier = *qualifiers;
4688}
4689
4690/* Print operands for the diagnosis purpose. */
4691
4692static void
4693print_operands (char *buf, const aarch64_opcode *opcode,
4694 const aarch64_opnd_info *opnds)
4695{
4696 int i;
4697
4698 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4699 {
08d3b0cc 4700 char str[128];
a06ea964
NC
4701
4702 /* We regard the opcode operand info more, however we also look into
4703 the inst->operands to support the disassembling of the optional
4704 operand.
4705 The two operand code should be the same in all cases, apart from
4706 when the operand can be optional. */
4707 if (opcode->operands[i] == AARCH64_OPND_NIL
4708 || opnds[i].type == AARCH64_OPND_NIL)
4709 break;
4710
4711 /* Generate the operand string in STR. */
7d02540a 4712 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
38cf07a6 4713 NULL, cpu_variant);
a06ea964
NC
4714
4715 /* Delimiter. */
4716 if (str[0] != '\0')
ad43e107 4717 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
4718
4719 /* Append the operand string. */
4720 strcat (buf, str);
4721 }
4722}
4723
4724/* Send to stderr a string as information. */
4725
4726static void
4727output_info (const char *format, ...)
4728{
3b4dbbbf 4729 const char *file;
a06ea964
NC
4730 unsigned int line;
4731 va_list args;
4732
3b4dbbbf 4733 file = as_where (&line);
a06ea964
NC
4734 if (file)
4735 {
4736 if (line != 0)
4737 fprintf (stderr, "%s:%u: ", file, line);
4738 else
4739 fprintf (stderr, "%s: ", file);
4740 }
4741 fprintf (stderr, _("Info: "));
4742 va_start (args, format);
4743 vfprintf (stderr, format, args);
4744 va_end (args);
4745 (void) putc ('\n', stderr);
4746}
4747
4748/* Output one operand error record. */
4749
4750static void
4751output_operand_error_record (const operand_error_record *record, char *str)
4752{
28f013d5
JB
4753 const aarch64_operand_error *detail = &record->detail;
4754 int idx = detail->index;
a06ea964 4755 const aarch64_opcode *opcode = record->opcode;
28f013d5 4756 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4757 : AARCH64_OPND_NIL);
a06ea964 4758
7d02540a
TC
4759 typedef void (*handler_t)(const char *format, ...);
4760 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4761
a06ea964
NC
4762 switch (detail->kind)
4763 {
4764 case AARCH64_OPDE_NIL:
4765 gas_assert (0);
4766 break;
a06ea964
NC
4767 case AARCH64_OPDE_SYNTAX_ERROR:
4768 case AARCH64_OPDE_RECOVERABLE:
4769 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4770 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4771 /* Use the prepared error message if there is, otherwise use the
4772 operand description string to describe the error. */
4773 if (detail->error != NULL)
4774 {
28f013d5 4775 if (idx < 0)
7d02540a 4776 handler (_("%s -- `%s'"), detail->error, str);
a06ea964 4777 else
7d02540a
TC
4778 handler (_("%s at operand %d -- `%s'"),
4779 detail->error, idx + 1, str);
a06ea964
NC
4780 }
4781 else
28f013d5
JB
4782 {
4783 gas_assert (idx >= 0);
7d02540a
TC
4784 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4785 aarch64_get_operand_desc (opd_code), str);
28f013d5 4786 }
a06ea964
NC
4787 break;
4788
4789 case AARCH64_OPDE_INVALID_VARIANT:
7d02540a 4790 handler (_("operand mismatch -- `%s'"), str);
a06ea964
NC
4791 if (verbose_error_p)
4792 {
4793 /* We will try to correct the erroneous instruction and also provide
4794 more information e.g. all other valid variants.
4795
4796 The string representation of the corrected instruction and other
4797 valid variants are generated by
4798
4799 1) obtaining the intermediate representation of the erroneous
4800 instruction;
4801 2) manipulating the IR, e.g. replacing the operand qualifier;
4802 3) printing out the instruction by calling the printer functions
4803 shared with the disassembler.
4804
4805 The limitation of this method is that the exact input assembly
4806 line cannot be accurately reproduced in some cases, for example an
4807 optional operand present in the actual assembly line will be
4808 omitted in the output; likewise for the optional syntax rules,
4809 e.g. the # before the immediate. Another limitation is that the
4810 assembly symbols and relocation operations in the assembly line
4811 currently cannot be printed out in the error report. Last but not
4812 least, when there is other error(s) co-exist with this error, the
4813 'corrected' instruction may be still incorrect, e.g. given
4814 'ldnp h0,h1,[x0,#6]!'
4815 this diagnosis will provide the version:
4816 'ldnp s0,s1,[x0,#6]!'
4817 which is still not right. */
4818 size_t len = strlen (get_mnemonic_name (str));
4819 int i, qlf_idx;
4820 bfd_boolean result;
08d3b0cc 4821 char buf[2048];
a06ea964
NC
4822 aarch64_inst *inst_base = &inst.base;
4823 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4824
4825 /* Init inst. */
4826 reset_aarch64_instruction (&inst);
4827 inst_base->opcode = opcode;
4828
4829 /* Reset the error report so that there is no side effect on the
4830 following operand parsing. */
4831 init_operand_error_report ();
4832
4833 /* Fill inst. */
4834 result = parse_operands (str + len, opcode)
4835 && programmer_friendly_fixup (&inst);
4836 gas_assert (result);
4837 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
7e84b55d 4838 NULL, NULL, insn_sequence);
a06ea964
NC
4839 gas_assert (!result);
4840
4841 /* Find the most matched qualifier sequence. */
4842 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4843 gas_assert (qlf_idx > -1);
4844
4845 /* Assign the qualifiers. */
4846 assign_qualifier_sequence (inst_base,
4847 opcode->qualifiers_list[qlf_idx]);
4848
4849 /* Print the hint. */
4850 output_info (_(" did you mean this?"));
08d3b0cc 4851 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4852 print_operands (buf, opcode, inst_base->operands);
4853 output_info (_(" %s"), buf);
4854
4855 /* Print out other variant(s) if there is any. */
4856 if (qlf_idx != 0 ||
4857 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4858 output_info (_(" other valid variant(s):"));
4859
4860 /* For each pattern. */
4861 qualifiers_list = opcode->qualifiers_list;
4862 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4863 {
4864 /* Most opcodes has much fewer patterns in the list.
4865 First NIL qualifier indicates the end in the list. */
535b785f 4866 if (empty_qualifier_sequence_p (*qualifiers_list))
a06ea964
NC
4867 break;
4868
4869 if (i != qlf_idx)
4870 {
4871 /* Mnemonics name. */
08d3b0cc 4872 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4873
4874 /* Assign the qualifiers. */
4875 assign_qualifier_sequence (inst_base, *qualifiers_list);
4876
4877 /* Print instruction. */
4878 print_operands (buf, opcode, inst_base->operands);
4879
4880 output_info (_(" %s"), buf);
4881 }
4882 }
4883 }
4884 break;
4885
0c608d6b 4886 case AARCH64_OPDE_UNTIED_OPERAND:
7d02540a
TC
4887 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4888 detail->index + 1, str);
0c608d6b
RS
4889 break;
4890
a06ea964 4891 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712 4892 if (detail->data[0] != detail->data[1])
7d02540a
TC
4893 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4894 detail->error ? detail->error : _("immediate value"),
4895 detail->data[0], detail->data[1], idx + 1, str);
f5555712 4896 else
7d02540a
TC
4897 handler (_("%s must be %d at operand %d -- `%s'"),
4898 detail->error ? detail->error : _("immediate value"),
4899 detail->data[0], idx + 1, str);
a06ea964
NC
4900 break;
4901
4902 case AARCH64_OPDE_REG_LIST:
4903 if (detail->data[0] == 1)
7d02540a
TC
4904 handler (_("invalid number of registers in the list; "
4905 "only 1 register is expected at operand %d -- `%s'"),
4906 idx + 1, str);
a06ea964 4907 else
7d02540a
TC
4908 handler (_("invalid number of registers in the list; "
4909 "%d registers are expected at operand %d -- `%s'"),
4910 detail->data[0], idx + 1, str);
a06ea964
NC
4911 break;
4912
4913 case AARCH64_OPDE_UNALIGNED:
7d02540a
TC
4914 handler (_("immediate value must be a multiple of "
4915 "%d at operand %d -- `%s'"),
4916 detail->data[0], idx + 1, str);
a06ea964
NC
4917 break;
4918
4919 default:
4920 gas_assert (0);
4921 break;
4922 }
4923}
4924
4925/* Process and output the error message about the operand mismatching.
4926
4927 When this function is called, the operand error information had
4928 been collected for an assembly line and there will be multiple
33eaf5de 4929 errors in the case of multiple instruction templates; output the
7d02540a
TC
4930 error message that most closely describes the problem.
4931
4932 The errors to be printed can be filtered on printing all errors
4933 or only non-fatal errors. This distinction has to be made because
4934 the error buffer may already be filled with fatal errors we don't want to
4935 print due to the different instruction templates. */
a06ea964
NC
4936
4937static void
7d02540a 4938output_operand_error_report (char *str, bfd_boolean non_fatal_only)
a06ea964
NC
4939{
4940 int largest_error_pos;
4941 const char *msg = NULL;
4942 enum aarch64_operand_error_kind kind;
4943 operand_error_record *curr;
4944 operand_error_record *head = operand_error_report.head;
4945 operand_error_record *record = NULL;
4946
4947 /* No error to report. */
4948 if (head == NULL)
4949 return;
4950
4951 gas_assert (head != NULL && operand_error_report.tail != NULL);
4952
4953 /* Only one error. */
4954 if (head == operand_error_report.tail)
4955 {
7d02540a
TC
4956 /* If the only error is a non-fatal one and we don't want to print it,
4957 just exit. */
4958 if (!non_fatal_only || head->detail.non_fatal)
4959 {
4960 DEBUG_TRACE ("single opcode entry with error kind: %s",
4961 operand_mismatch_kind_names[head->detail.kind]);
4962 output_operand_error_record (head, str);
4963 }
a06ea964
NC
4964 return;
4965 }
4966
4967 /* Find the error kind of the highest severity. */
33eaf5de 4968 DEBUG_TRACE ("multiple opcode entries with error kind");
a06ea964
NC
4969 kind = AARCH64_OPDE_NIL;
4970 for (curr = head; curr != NULL; curr = curr->next)
4971 {
4972 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4973 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
a68f4cd2
TC
4974 if (operand_error_higher_severity_p (curr->detail.kind, kind)
4975 && (!non_fatal_only || (non_fatal_only && curr->detail.non_fatal)))
a06ea964
NC
4976 kind = curr->detail.kind;
4977 }
a68f4cd2
TC
4978
4979 gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);
a06ea964
NC
4980
4981 /* Pick up one of errors of KIND to report. */
4982 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4983 for (curr = head; curr != NULL; curr = curr->next)
4984 {
7d02540a
TC
4985 /* If we don't want to print non-fatal errors then don't consider them
4986 at all. */
4987 if (curr->detail.kind != kind
af81c43b 4988 || (non_fatal_only && !curr->detail.non_fatal))
a06ea964
NC
4989 continue;
4990 /* If there are multiple errors, pick up the one with the highest
4991 mismatching operand index. In the case of multiple errors with
4992 the equally highest operand index, pick up the first one or the
4993 first one with non-NULL error message. */
4994 if (curr->detail.index > largest_error_pos
4995 || (curr->detail.index == largest_error_pos && msg == NULL
4996 && curr->detail.error != NULL))
4997 {
4998 largest_error_pos = curr->detail.index;
4999 record = curr;
5000 msg = record->detail.error;
5001 }
5002 }
5003
7d02540a
TC
5004 /* The way errors are collected in the back-end is a bit non-intuitive. But
5005 essentially, because each operand template is tried recursively you may
5006 always have errors collected from the previous tried OPND. These are
5007 usually skipped if there is one successful match. However now with the
5008 non-fatal errors we have to ignore those previously collected hard errors
5009 when we're only interested in printing the non-fatal ones. This condition
5010 prevents us from printing errors that are not appropriate, since we did
5011 match a condition, but it also has warnings that it wants to print. */
5012 if (non_fatal_only && !record)
5013 return;
5014
a06ea964
NC
5015 gas_assert (largest_error_pos != -2 && record != NULL);
5016 DEBUG_TRACE ("Pick up error kind %s to report",
5017 operand_mismatch_kind_names[record->detail.kind]);
5018
5019 /* Output. */
5020 output_operand_error_record (record, str);
5021}
5022\f
5023/* Write an AARCH64 instruction to buf - always little-endian. */
5024static void
5025put_aarch64_insn (char *buf, uint32_t insn)
5026{
5027 unsigned char *where = (unsigned char *) buf;
5028 where[0] = insn;
5029 where[1] = insn >> 8;
5030 where[2] = insn >> 16;
5031 where[3] = insn >> 24;
5032}
5033
5034static uint32_t
5035get_aarch64_insn (char *buf)
5036{
5037 unsigned char *where = (unsigned char *) buf;
5038 uint32_t result;
4f7cc141
AM
5039 result = ((where[0] | (where[1] << 8) | (where[2] << 16)
5040 | ((uint32_t) where[3] << 24)));
a06ea964
NC
5041 return result;
5042}
5043
5044static void
5045output_inst (struct aarch64_inst *new_inst)
5046{
5047 char *to = NULL;
5048
5049 to = frag_more (INSN_SIZE);
5050
5051 frag_now->tc_frag_data.recorded = 1;
5052
5053 put_aarch64_insn (to, inst.base.value);
5054
5055 if (inst.reloc.type != BFD_RELOC_UNUSED)
5056 {
5057 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
5058 INSN_SIZE, &inst.reloc.exp,
5059 inst.reloc.pc_rel,
5060 inst.reloc.type);
5061 DEBUG_TRACE ("Prepared relocation fix up");
5062 /* Don't check the addend value against the instruction size,
5063 that's the job of our code in md_apply_fix(). */
5064 fixp->fx_no_overflow = 1;
5065 if (new_inst != NULL)
5066 fixp->tc_fix_data.inst = new_inst;
5067 if (aarch64_gas_internal_fixup_p ())
5068 {
5069 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
5070 fixp->tc_fix_data.opnd = inst.reloc.opnd;
5071 fixp->fx_addnumber = inst.reloc.flags;
5072 }
5073 }
5074
5075 dwarf2_emit_insn (INSN_SIZE);
5076}
5077
5078/* Link together opcodes of the same name. */
5079
5080struct templates
5081{
5082 aarch64_opcode *opcode;
5083 struct templates *next;
5084};
5085
5086typedef struct templates templates;
5087
5088static templates *
5089lookup_mnemonic (const char *start, int len)
5090{
5091 templates *templ = NULL;
5092
629310ab 5093 templ = str_hash_find_n (aarch64_ops_hsh, start, len);
a06ea964
NC
5094 return templ;
5095}
5096
5097/* Subroutine of md_assemble, responsible for looking up the primary
5098 opcode from the mnemonic the user wrote. STR points to the
5099 beginning of the mnemonic. */
5100
5101static templates *
5102opcode_lookup (char **str)
5103{
bb7eff52 5104 char *end, *base, *dot;
a06ea964
NC
5105 const aarch64_cond *cond;
5106 char condname[16];
5107 int len;
5108
5109 /* Scan up to the end of the mnemonic, which must end in white space,
5110 '.', or end of string. */
bb7eff52 5111 dot = 0;
a06ea964 5112 for (base = end = *str; is_part_of_name(*end); end++)
bb7eff52
RS
5113 if (*end == '.' && !dot)
5114 dot = end;
a06ea964 5115
bb7eff52 5116 if (end == base || dot == base)
a06ea964
NC
5117 return 0;
5118
5119 inst.cond = COND_ALWAYS;
5120
5121 /* Handle a possible condition. */
bb7eff52 5122 if (dot)
a06ea964 5123 {
629310ab 5124 cond = str_hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
a06ea964
NC
5125 if (cond)
5126 {
5127 inst.cond = cond->value;
bb7eff52 5128 *str = end;
a06ea964
NC
5129 }
5130 else
5131 {
bb7eff52 5132 *str = dot;
a06ea964
NC
5133 return 0;
5134 }
bb7eff52 5135 len = dot - base;
a06ea964
NC
5136 }
5137 else
bb7eff52
RS
5138 {
5139 *str = end;
5140 len = end - base;
5141 }
a06ea964
NC
5142
5143 if (inst.cond == COND_ALWAYS)
5144 {
5145 /* Look for unaffixed mnemonic. */
5146 return lookup_mnemonic (base, len);
5147 }
5148 else if (len <= 13)
5149 {
5150 /* append ".c" to mnemonic if conditional */
5151 memcpy (condname, base, len);
5152 memcpy (condname + len, ".c", 2);
5153 base = condname;
5154 len += 2;
5155 return lookup_mnemonic (base, len);
5156 }
5157
5158 return NULL;
5159}
5160
8f9a77af
RS
5161/* Internal helper routine converting a vector_type_el structure *VECTYPE
5162 to a corresponding operand qualifier. */
a06ea964
NC
5163
5164static inline aarch64_opnd_qualifier_t
8f9a77af 5165vectype_to_qualifier (const struct vector_type_el *vectype)
a06ea964 5166{
f06935a5 5167 /* Element size in bytes indexed by vector_el_type. */
a06ea964
NC
5168 const unsigned char ele_size[5]
5169 = {1, 2, 4, 8, 16};
65f2205d
MW
5170 const unsigned int ele_base [5] =
5171 {
a3b3345a 5172 AARCH64_OPND_QLF_V_4B,
3067d3b9 5173 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
5174 AARCH64_OPND_QLF_V_2S,
5175 AARCH64_OPND_QLF_V_1D,
5176 AARCH64_OPND_QLF_V_1Q
5177 };
a06ea964
NC
5178
5179 if (!vectype->defined || vectype->type == NT_invtype)
5180 goto vectype_conversion_fail;
5181
d50c751e
RS
5182 if (vectype->type == NT_zero)
5183 return AARCH64_OPND_QLF_P_Z;
5184 if (vectype->type == NT_merge)
5185 return AARCH64_OPND_QLF_P_M;
5186
a06ea964
NC
5187 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5188
f11ad6bc 5189 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
00c2093f
TC
5190 {
5191 /* Special case S_4B. */
5192 if (vectype->type == NT_b && vectype->width == 4)
5193 return AARCH64_OPND_QLF_S_4B;
5194
df678013
MM
5195 /* Special case S_2H. */
5196 if (vectype->type == NT_h && vectype->width == 2)
5197 return AARCH64_OPND_QLF_S_2H;
5198
00c2093f
TC
5199 /* Vector element register. */
5200 return AARCH64_OPND_QLF_S_B + vectype->type;
5201 }
a06ea964
NC
5202 else
5203 {
5204 /* Vector register. */
5205 int reg_size = ele_size[vectype->type] * vectype->width;
5206 unsigned offset;
65f2205d 5207 unsigned shift;
3067d3b9 5208 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 5209 goto vectype_conversion_fail;
65f2205d
MW
5210
5211 /* The conversion is by calculating the offset from the base operand
5212 qualifier for the vector type. The operand qualifiers are regular
5213 enough that the offset can established by shifting the vector width by
5214 a vector-type dependent amount. */
5215 shift = 0;
5216 if (vectype->type == NT_b)
a3b3345a 5217 shift = 3;
3067d3b9 5218 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
5219 shift = 2;
5220 else if (vectype->type >= NT_d)
5221 shift = 1;
5222 else
5223 gas_assert (0);
5224
5225 offset = ele_base [vectype->type] + (vectype->width >> shift);
a3b3345a 5226 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
65f2205d
MW
5227 && offset <= AARCH64_OPND_QLF_V_1Q);
5228 return offset;
a06ea964
NC
5229 }
5230
dc1e8a47 5231 vectype_conversion_fail:
a06ea964
NC
5232 first_error (_("bad vector arrangement type"));
5233 return AARCH64_OPND_QLF_NIL;
5234}
5235
5236/* Process an optional operand that is found omitted from the assembly line.
5237 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5238 instruction's opcode entry while IDX is the index of this omitted operand.
5239 */
5240
5241static void
5242process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5243 int idx, aarch64_opnd_info *operand)
5244{
5245 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5246 gas_assert (optional_operand_p (opcode, idx));
5247 gas_assert (!operand->present);
5248
5249 switch (type)
5250 {
5251 case AARCH64_OPND_Rd:
5252 case AARCH64_OPND_Rn:
5253 case AARCH64_OPND_Rm:
5254 case AARCH64_OPND_Rt:
5255 case AARCH64_OPND_Rt2:
bd7ceb8d 5256 case AARCH64_OPND_Rt_SP:
a06ea964
NC
5257 case AARCH64_OPND_Rs:
5258 case AARCH64_OPND_Ra:
5259 case AARCH64_OPND_Rt_SYS:
5260 case AARCH64_OPND_Rd_SP:
5261 case AARCH64_OPND_Rn_SP:
c84364ec 5262 case AARCH64_OPND_Rm_SP:
a06ea964
NC
5263 case AARCH64_OPND_Fd:
5264 case AARCH64_OPND_Fn:
5265 case AARCH64_OPND_Fm:
5266 case AARCH64_OPND_Fa:
5267 case AARCH64_OPND_Ft:
5268 case AARCH64_OPND_Ft2:
5269 case AARCH64_OPND_Sd:
5270 case AARCH64_OPND_Sn:
5271 case AARCH64_OPND_Sm:
f42f1a1d 5272 case AARCH64_OPND_Va:
a06ea964
NC
5273 case AARCH64_OPND_Vd:
5274 case AARCH64_OPND_Vn:
5275 case AARCH64_OPND_Vm:
5276 case AARCH64_OPND_VdD1:
5277 case AARCH64_OPND_VnD1:
5278 operand->reg.regno = default_value;
5279 break;
5280
5281 case AARCH64_OPND_Ed:
5282 case AARCH64_OPND_En:
5283 case AARCH64_OPND_Em:
369c9167 5284 case AARCH64_OPND_Em16:
f42f1a1d 5285 case AARCH64_OPND_SM3_IMM2:
a06ea964
NC
5286 operand->reglane.regno = default_value;
5287 break;
5288
5289 case AARCH64_OPND_IDX:
5290 case AARCH64_OPND_BIT_NUM:
5291 case AARCH64_OPND_IMMR:
5292 case AARCH64_OPND_IMMS:
5293 case AARCH64_OPND_SHLL_IMM:
5294 case AARCH64_OPND_IMM_VLSL:
5295 case AARCH64_OPND_IMM_VLSR:
5296 case AARCH64_OPND_CCMP_IMM:
5297 case AARCH64_OPND_FBITS:
5298 case AARCH64_OPND_UIMM4:
5299 case AARCH64_OPND_UIMM3_OP1:
5300 case AARCH64_OPND_UIMM3_OP2:
5301 case AARCH64_OPND_IMM:
f42f1a1d 5302 case AARCH64_OPND_IMM_2:
a06ea964
NC
5303 case AARCH64_OPND_WIDTH:
5304 case AARCH64_OPND_UIMM7:
5305 case AARCH64_OPND_NZCV:
245d2e3f
RS
5306 case AARCH64_OPND_SVE_PATTERN:
5307 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
5308 operand->imm.value = default_value;
5309 break;
5310
2442d846
RS
5311 case AARCH64_OPND_SVE_PATTERN_SCALED:
5312 operand->imm.value = default_value;
5313 operand->shifter.kind = AARCH64_MOD_MUL;
5314 operand->shifter.amount = 1;
5315 break;
5316
a06ea964
NC
5317 case AARCH64_OPND_EXCEPTION:
5318 inst.reloc.type = BFD_RELOC_UNUSED;
5319 break;
5320
5321 case AARCH64_OPND_BARRIER_ISB:
5322 operand->barrier = aarch64_barrier_options + default_value;
ff605452
SD
5323 break;
5324
5325 case AARCH64_OPND_BTI_TARGET:
5326 operand->hint_option = aarch64_hint_options + default_value;
5327 break;
a06ea964
NC
5328
5329 default:
5330 break;
5331 }
5332}
5333
5334/* Process the relocation type for move wide instructions.
5335 Return TRUE on success; otherwise return FALSE. */
5336
5337static bfd_boolean
5338process_movw_reloc_info (void)
5339{
5340 int is32;
5341 unsigned shift;
5342
5343 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5344
5345 if (inst.base.opcode->op == OP_MOVK)
5346 switch (inst.reloc.type)
5347 {
5348 case BFD_RELOC_AARCH64_MOVW_G0_S:
5349 case BFD_RELOC_AARCH64_MOVW_G1_S:
5350 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5351 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5352 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5353 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5354 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
1aa66fb1 5355 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 5356 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 5357 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
5358 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5359 set_syntax_error
5360 (_("the specified relocation type is not allowed for MOVK"));
5361 return FALSE;
5362 default:
5363 break;
5364 }
5365
5366 switch (inst.reloc.type)
5367 {
5368 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 5369 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 5370 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 5371 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
5372 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5373 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
43a357f9 5374 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 5375 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 5376 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
5377 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5378 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
5379 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5380 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5381 shift = 0;
5382 break;
5383 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 5384 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 5385 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 5386 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
5387 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5388 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
43a357f9 5389 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 5390 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 5391 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
5392 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5393 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
5394 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5395 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5396 shift = 16;
5397 break;
5398 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 5399 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 5400 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5401 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5402 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
49df5539 5403 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
5404 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5405 if (is32)
5406 {
5407 set_fatal_syntax_error
5408 (_("the specified relocation type is not allowed for 32-bit "
5409 "register"));
5410 return FALSE;
5411 }
5412 shift = 32;
5413 break;
5414 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 5415 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
5416 if (is32)
5417 {
5418 set_fatal_syntax_error
5419 (_("the specified relocation type is not allowed for 32-bit "
5420 "register"));
5421 return FALSE;
5422 }
5423 shift = 48;
5424 break;
5425 default:
5426 /* More cases should be added when more MOVW-related relocation types
5427 are supported in GAS. */
5428 gas_assert (aarch64_gas_internal_fixup_p ());
5429 /* The shift amount should have already been set by the parser. */
5430 return TRUE;
5431 }
5432 inst.base.operands[1].shifter.amount = shift;
5433 return TRUE;
5434}
5435
33eaf5de 5436/* A primitive log calculator. */
a06ea964
NC
5437
5438static inline unsigned int
5439get_logsz (unsigned int size)
5440{
5441 const unsigned char ls[16] =
5442 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5443 if (size > 16)
5444 {
5445 gas_assert (0);
5446 return -1;
5447 }
5448 gas_assert (ls[size - 1] != (unsigned char)-1);
5449 return ls[size - 1];
5450}
5451
5452/* Determine and return the real reloc type code for an instruction
5453 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5454
5455static inline bfd_reloc_code_real_type
5456ldst_lo12_determine_real_reloc_type (void)
5457{
4c562523 5458 unsigned logsz;
a06ea964
NC
5459 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5460 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5461
84f1b9fb 5462 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
4c562523
JW
5463 {
5464 BFD_RELOC_AARCH64_LDST8_LO12,
5465 BFD_RELOC_AARCH64_LDST16_LO12,
5466 BFD_RELOC_AARCH64_LDST32_LO12,
5467 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 5468 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
5469 },
5470 {
5471 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5472 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5473 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5474 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5475 BFD_RELOC_AARCH64_NONE
5476 },
5477 {
5478 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5479 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5480 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5481 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5482 BFD_RELOC_AARCH64_NONE
84f1b9fb
RL
5483 },
5484 {
5485 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5486 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5487 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5488 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5489 BFD_RELOC_AARCH64_NONE
5490 },
5491 {
5492 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5493 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5494 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5495 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5496 BFD_RELOC_AARCH64_NONE
4c562523 5497 }
a06ea964
NC
5498 };
5499
4c562523
JW
5500 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5501 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5502 || (inst.reloc.type
84f1b9fb
RL
5503 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5504 || (inst.reloc.type
5505 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5506 || (inst.reloc.type
5507 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
a06ea964
NC
5508 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5509
5510 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5511 opd1_qlf =
5512 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5513 1, opd0_qlf, 0);
5514 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5515
5516 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523 5517 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
84f1b9fb
RL
5518 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5519 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5520 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
4c562523
JW
5521 gas_assert (logsz <= 3);
5522 else
5523 gas_assert (logsz <= 4);
a06ea964 5524
4c562523 5525 /* In reloc.c, these pseudo relocation types should be defined in similar
33eaf5de 5526 order as above reloc_ldst_lo12 array. Because the array index calculation
4c562523
JW
5527 below relies on this. */
5528 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
5529}
5530
5531/* Check whether a register list REGINFO is valid. The registers must be
5532 numbered in increasing order (modulo 32), in increments of one or two.
5533
5534 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5535 increments of two.
5536
5537 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5538
5539static bfd_boolean
5540reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5541{
5542 uint32_t i, nb_regs, prev_regno, incr;
5543
5544 nb_regs = 1 + (reginfo & 0x3);
5545 reginfo >>= 2;
5546 prev_regno = reginfo & 0x1f;
5547 incr = accept_alternate ? 2 : 1;
5548
5549 for (i = 1; i < nb_regs; ++i)
5550 {
5551 uint32_t curr_regno;
5552 reginfo >>= 5;
5553 curr_regno = reginfo & 0x1f;
5554 if (curr_regno != ((prev_regno + incr) & 0x1f))
5555 return FALSE;
5556 prev_regno = curr_regno;
5557 }
5558
5559 return TRUE;
5560}
5561
5562/* Generic instruction operand parser. This does no encoding and no
5563 semantic validation; it merely squirrels values away in the inst
5564 structure. Returns TRUE or FALSE depending on whether the
5565 specified grammar matched. */
5566
5567static bfd_boolean
5568parse_operands (char *str, const aarch64_opcode *opcode)
5569{
5570 int i;
5571 char *backtrack_pos = 0;
5572 const enum aarch64_opnd *operands = opcode->operands;
1799c0d0 5573 aarch64_reg_type imm_reg_type;
a06ea964
NC
5574
5575 clear_error ();
5576 skip_whitespace (str);
5577
c0890d26 5578 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5b2b928e 5579 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
c0890d26
RS
5580 else
5581 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
1799c0d0 5582
a06ea964
NC
5583 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5584 {
5585 int64_t val;
e1b988bb 5586 const reg_entry *reg;
a06ea964
NC
5587 int comma_skipped_p = 0;
5588 aarch64_reg_type rtype;
8f9a77af 5589 struct vector_type_el vectype;
4df068de 5590 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 5591 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 5592 aarch64_reg_type reg_type;
a06ea964
NC
5593
5594 DEBUG_TRACE ("parse operand %d", i);
5595
5596 /* Assign the operand code. */
5597 info->type = operands[i];
5598
5599 if (optional_operand_p (opcode, i))
5600 {
5601 /* Remember where we are in case we need to backtrack. */
5602 gas_assert (!backtrack_pos);
5603 backtrack_pos = str;
5604 }
5605
33eaf5de 5606 /* Expect comma between operands; the backtrack mechanism will take
a06ea964
NC
5607 care of cases of omitted optional operand. */
5608 if (i > 0 && ! skip_past_char (&str, ','))
5609 {
5610 set_syntax_error (_("comma expected between operands"));
5611 goto failure;
5612 }
5613 else
5614 comma_skipped_p = 1;
5615
5616 switch (operands[i])
5617 {
5618 case AARCH64_OPND_Rd:
5619 case AARCH64_OPND_Rn:
5620 case AARCH64_OPND_Rm:
5621 case AARCH64_OPND_Rt:
5622 case AARCH64_OPND_Rt2:
5623 case AARCH64_OPND_Rs:
5624 case AARCH64_OPND_Ra:
5625 case AARCH64_OPND_Rt_SYS:
ee804238 5626 case AARCH64_OPND_PAIRREG:
047cd301 5627 case AARCH64_OPND_SVE_Rm:
e1b988bb 5628 po_int_reg_or_fail (REG_TYPE_R_Z);
a06ea964
NC
5629 break;
5630
5631 case AARCH64_OPND_Rd_SP:
5632 case AARCH64_OPND_Rn_SP:
bd7ceb8d 5633 case AARCH64_OPND_Rt_SP:
047cd301 5634 case AARCH64_OPND_SVE_Rn_SP:
c84364ec 5635 case AARCH64_OPND_Rm_SP:
e1b988bb 5636 po_int_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
5637 break;
5638
5639 case AARCH64_OPND_Rm_EXT:
5640 case AARCH64_OPND_Rm_SFT:
5641 po_misc_or_fail (parse_shifter_operand
5642 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5643 ? SHIFTED_ARITH_IMM
5644 : SHIFTED_LOGIC_IMM)));
5645 if (!info->shifter.operator_present)
5646 {
5647 /* Default to LSL if not present. Libopcodes prefers shifter
5648 kind to be explicit. */
5649 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5650 info->shifter.kind = AARCH64_MOD_LSL;
5651 /* For Rm_EXT, libopcodes will carry out further check on whether
5652 or not stack pointer is used in the instruction (Recall that
5653 "the extend operator is not optional unless at least one of
5654 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5655 }
5656 break;
5657
5658 case AARCH64_OPND_Fd:
5659 case AARCH64_OPND_Fn:
5660 case AARCH64_OPND_Fm:
5661 case AARCH64_OPND_Fa:
5662 case AARCH64_OPND_Ft:
5663 case AARCH64_OPND_Ft2:
5664 case AARCH64_OPND_Sd:
5665 case AARCH64_OPND_Sn:
5666 case AARCH64_OPND_Sm:
047cd301
RS
5667 case AARCH64_OPND_SVE_VZn:
5668 case AARCH64_OPND_SVE_Vd:
5669 case AARCH64_OPND_SVE_Vm:
5670 case AARCH64_OPND_SVE_Vn:
a06ea964
NC
5671 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5672 if (val == PARSE_FAIL)
5673 {
5674 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5675 goto failure;
5676 }
5677 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5678
5679 info->reg.regno = val;
5680 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5681 break;
5682
f11ad6bc
RS
5683 case AARCH64_OPND_SVE_Pd:
5684 case AARCH64_OPND_SVE_Pg3:
5685 case AARCH64_OPND_SVE_Pg4_5:
5686 case AARCH64_OPND_SVE_Pg4_10:
5687 case AARCH64_OPND_SVE_Pg4_16:
5688 case AARCH64_OPND_SVE_Pm:
5689 case AARCH64_OPND_SVE_Pn:
5690 case AARCH64_OPND_SVE_Pt:
5691 reg_type = REG_TYPE_PN;
5692 goto vector_reg;
5693
5694 case AARCH64_OPND_SVE_Za_5:
5695 case AARCH64_OPND_SVE_Za_16:
5696 case AARCH64_OPND_SVE_Zd:
5697 case AARCH64_OPND_SVE_Zm_5:
5698 case AARCH64_OPND_SVE_Zm_16:
5699 case AARCH64_OPND_SVE_Zn:
5700 case AARCH64_OPND_SVE_Zt:
5701 reg_type = REG_TYPE_ZN;
5702 goto vector_reg;
5703
f42f1a1d 5704 case AARCH64_OPND_Va:
a06ea964
NC
5705 case AARCH64_OPND_Vd:
5706 case AARCH64_OPND_Vn:
5707 case AARCH64_OPND_Vm:
f11ad6bc
RS
5708 reg_type = REG_TYPE_VN;
5709 vector_reg:
5710 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5711 if (val == PARSE_FAIL)
5712 {
f11ad6bc 5713 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5714 goto failure;
5715 }
5716 if (vectype.defined & NTA_HASINDEX)
5717 goto failure;
5718
5719 info->reg.regno = val;
f11ad6bc
RS
5720 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5721 && vectype.type == NT_invtype)
5722 /* Unqualified Pn and Zn registers are allowed in certain
5723 contexts. Rely on F_STRICT qualifier checking to catch
5724 invalid uses. */
5725 info->qualifier = AARCH64_OPND_QLF_NIL;
5726 else
5727 {
5728 info->qualifier = vectype_to_qualifier (&vectype);
5729 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5730 goto failure;
5731 }
a06ea964
NC
5732 break;
5733
5734 case AARCH64_OPND_VdD1:
5735 case AARCH64_OPND_VnD1:
5736 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5737 if (val == PARSE_FAIL)
5738 {
5739 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5740 goto failure;
5741 }
5742 if (vectype.type != NT_d || vectype.index != 1)
5743 {
5744 set_fatal_syntax_error
5745 (_("the top half of a 128-bit FP/SIMD register is expected"));
5746 goto failure;
5747 }
5748 info->reg.regno = val;
5749 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5750 here; it is correct for the purpose of encoding/decoding since
5751 only the register number is explicitly encoded in the related
5752 instructions, although this appears a bit hacky. */
5753 info->qualifier = AARCH64_OPND_QLF_S_D;
5754 break;
5755
582e12bf
RS
5756 case AARCH64_OPND_SVE_Zm3_INDEX:
5757 case AARCH64_OPND_SVE_Zm3_22_INDEX:
116adc27 5758 case AARCH64_OPND_SVE_Zm3_11_INDEX:
31e36ab3 5759 case AARCH64_OPND_SVE_Zm4_11_INDEX:
582e12bf 5760 case AARCH64_OPND_SVE_Zm4_INDEX:
f11ad6bc
RS
5761 case AARCH64_OPND_SVE_Zn_INDEX:
5762 reg_type = REG_TYPE_ZN;
5763 goto vector_reg_index;
5764
a06ea964
NC
5765 case AARCH64_OPND_Ed:
5766 case AARCH64_OPND_En:
5767 case AARCH64_OPND_Em:
369c9167 5768 case AARCH64_OPND_Em16:
f42f1a1d 5769 case AARCH64_OPND_SM3_IMM2:
f11ad6bc
RS
5770 reg_type = REG_TYPE_VN;
5771 vector_reg_index:
5772 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5773 if (val == PARSE_FAIL)
5774 {
f11ad6bc 5775 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5776 goto failure;
5777 }
5778 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5779 goto failure;
5780
5781 info->reglane.regno = val;
5782 info->reglane.index = vectype.index;
5783 info->qualifier = vectype_to_qualifier (&vectype);
5784 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5785 goto failure;
5786 break;
5787
f11ad6bc
RS
5788 case AARCH64_OPND_SVE_ZnxN:
5789 case AARCH64_OPND_SVE_ZtxN:
5790 reg_type = REG_TYPE_ZN;
5791 goto vector_reg_list;
5792
a06ea964
NC
5793 case AARCH64_OPND_LVn:
5794 case AARCH64_OPND_LVt:
5795 case AARCH64_OPND_LVt_AL:
5796 case AARCH64_OPND_LEt:
f11ad6bc
RS
5797 reg_type = REG_TYPE_VN;
5798 vector_reg_list:
5799 if (reg_type == REG_TYPE_ZN
5800 && get_opcode_dependent_value (opcode) == 1
5801 && *str != '{')
a06ea964 5802 {
f11ad6bc
RS
5803 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5804 if (val == PARSE_FAIL)
5805 {
5806 first_error (_(get_reg_expected_msg (reg_type)));
5807 goto failure;
5808 }
5809 info->reglist.first_regno = val;
5810 info->reglist.num_regs = 1;
5811 }
5812 else
5813 {
5814 val = parse_vector_reg_list (&str, reg_type, &vectype);
5815 if (val == PARSE_FAIL)
5816 goto failure;
163b2c58 5817
f11ad6bc
RS
5818 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5819 {
5820 set_fatal_syntax_error (_("invalid register list"));
5821 goto failure;
5822 }
163b2c58
BW
5823
5824 if (vectype.width != 0 && *str != ',')
5825 {
5826 set_fatal_syntax_error
5827 (_("expected element type rather than vector type"));
5828 goto failure;
5829 }
5830
f11ad6bc
RS
5831 info->reglist.first_regno = (val >> 2) & 0x1f;
5832 info->reglist.num_regs = (val & 0x3) + 1;
a06ea964 5833 }
a06ea964
NC
5834 if (operands[i] == AARCH64_OPND_LEt)
5835 {
5836 if (!(vectype.defined & NTA_HASINDEX))
5837 goto failure;
5838 info->reglist.has_index = 1;
5839 info->reglist.index = vectype.index;
5840 }
f11ad6bc
RS
5841 else
5842 {
5843 if (vectype.defined & NTA_HASINDEX)
5844 goto failure;
5845 if (!(vectype.defined & NTA_HASTYPE))
5846 {
5847 if (reg_type == REG_TYPE_ZN)
5848 set_fatal_syntax_error (_("missing type suffix"));
5849 goto failure;
5850 }
5851 }
a06ea964
NC
5852 info->qualifier = vectype_to_qualifier (&vectype);
5853 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5854 goto failure;
5855 break;
5856
a6a51754
RL
5857 case AARCH64_OPND_CRn:
5858 case AARCH64_OPND_CRm:
a06ea964 5859 {
a6a51754
RL
5860 char prefix = *(str++);
5861 if (prefix != 'c' && prefix != 'C')
5862 goto failure;
5863
5864 po_imm_nc_or_fail ();
5865 if (val > 15)
5866 {
5867 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5868 goto failure;
5869 }
5870 info->qualifier = AARCH64_OPND_QLF_CR;
5871 info->imm.value = val;
5872 break;
a06ea964 5873 }
a06ea964
NC
5874
5875 case AARCH64_OPND_SHLL_IMM:
5876 case AARCH64_OPND_IMM_VLSR:
5877 po_imm_or_fail (1, 64);
5878 info->imm.value = val;
5879 break;
5880
5881 case AARCH64_OPND_CCMP_IMM:
e950b345 5882 case AARCH64_OPND_SIMM5:
a06ea964 5883 case AARCH64_OPND_FBITS:
b83b4b13 5884 case AARCH64_OPND_TME_UIMM16:
a06ea964 5885 case AARCH64_OPND_UIMM4:
193614f2
SD
5886 case AARCH64_OPND_UIMM4_ADDG:
5887 case AARCH64_OPND_UIMM10:
a06ea964
NC
5888 case AARCH64_OPND_UIMM3_OP1:
5889 case AARCH64_OPND_UIMM3_OP2:
5890 case AARCH64_OPND_IMM_VLSL:
5891 case AARCH64_OPND_IMM:
f42f1a1d 5892 case AARCH64_OPND_IMM_2:
a06ea964 5893 case AARCH64_OPND_WIDTH:
e950b345
RS
5894 case AARCH64_OPND_SVE_INV_LIMM:
5895 case AARCH64_OPND_SVE_LIMM:
5896 case AARCH64_OPND_SVE_LIMM_MOV:
5897 case AARCH64_OPND_SVE_SHLIMM_PRED:
5898 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
28ed815a 5899 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
e950b345
RS
5900 case AARCH64_OPND_SVE_SHRIMM_PRED:
5901 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3c17238b 5902 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
e950b345
RS
5903 case AARCH64_OPND_SVE_SIMM5:
5904 case AARCH64_OPND_SVE_SIMM5B:
5905 case AARCH64_OPND_SVE_SIMM6:
5906 case AARCH64_OPND_SVE_SIMM8:
5907 case AARCH64_OPND_SVE_UIMM3:
5908 case AARCH64_OPND_SVE_UIMM7:
5909 case AARCH64_OPND_SVE_UIMM8:
5910 case AARCH64_OPND_SVE_UIMM8_53:
c2c4ff8d
SN
5911 case AARCH64_OPND_IMM_ROT1:
5912 case AARCH64_OPND_IMM_ROT2:
5913 case AARCH64_OPND_IMM_ROT3:
582e12bf
RS
5914 case AARCH64_OPND_SVE_IMM_ROT1:
5915 case AARCH64_OPND_SVE_IMM_ROT2:
adccc507 5916 case AARCH64_OPND_SVE_IMM_ROT3:
a06ea964
NC
5917 po_imm_nc_or_fail ();
5918 info->imm.value = val;
5919 break;
5920
e950b345
RS
5921 case AARCH64_OPND_SVE_AIMM:
5922 case AARCH64_OPND_SVE_ASIMM:
5923 po_imm_nc_or_fail ();
5924 info->imm.value = val;
5925 skip_whitespace (str);
5926 if (skip_past_comma (&str))
5927 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5928 else
5929 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5930 break;
5931
245d2e3f
RS
5932 case AARCH64_OPND_SVE_PATTERN:
5933 po_enum_or_fail (aarch64_sve_pattern_array);
5934 info->imm.value = val;
5935 break;
5936
2442d846
RS
5937 case AARCH64_OPND_SVE_PATTERN_SCALED:
5938 po_enum_or_fail (aarch64_sve_pattern_array);
5939 info->imm.value = val;
5940 if (skip_past_comma (&str)
5941 && !parse_shift (&str, info, SHIFTED_MUL))
5942 goto failure;
5943 if (!info->shifter.operator_present)
5944 {
5945 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5946 info->shifter.kind = AARCH64_MOD_MUL;
5947 info->shifter.amount = 1;
5948 }
5949 break;
5950
245d2e3f
RS
5951 case AARCH64_OPND_SVE_PRFOP:
5952 po_enum_or_fail (aarch64_sve_prfop_array);
5953 info->imm.value = val;
5954 break;
5955
a06ea964
NC
5956 case AARCH64_OPND_UIMM7:
5957 po_imm_or_fail (0, 127);
5958 info->imm.value = val;
5959 break;
5960
5961 case AARCH64_OPND_IDX:
f42f1a1d 5962 case AARCH64_OPND_MASK:
a06ea964
NC
5963 case AARCH64_OPND_BIT_NUM:
5964 case AARCH64_OPND_IMMR:
5965 case AARCH64_OPND_IMMS:
5966 po_imm_or_fail (0, 63);
5967 info->imm.value = val;
5968 break;
5969
5970 case AARCH64_OPND_IMM0:
5971 po_imm_nc_or_fail ();
5972 if (val != 0)
5973 {
5974 set_fatal_syntax_error (_("immediate zero expected"));
5975 goto failure;
5976 }
5977 info->imm.value = 0;
5978 break;
5979
5980 case AARCH64_OPND_FPIMM0:
5981 {
5982 int qfloat;
5983 bfd_boolean res1 = FALSE, res2 = FALSE;
5984 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5985 it is probably not worth the effort to support it. */
1799c0d0
RS
5986 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5987 imm_reg_type))
6a9deabe
RS
5988 && (error_p ()
5989 || !(res2 = parse_constant_immediate (&str, &val,
5990 imm_reg_type))))
a06ea964
NC
5991 goto failure;
5992 if ((res1 && qfloat == 0) || (res2 && val == 0))
5993 {
5994 info->imm.value = 0;
5995 info->imm.is_fp = 1;
5996 break;
5997 }
5998 set_fatal_syntax_error (_("immediate zero expected"));
5999 goto failure;
6000 }
6001
6002 case AARCH64_OPND_IMM_MOV:
6003 {
6004 char *saved = str;
8db49cc2
WN
6005 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
6006 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
6007 goto failure;
6008 str = saved;
6009 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6010 GE_OPT_PREFIX, 1));
6011 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
6012 later. fix_mov_imm_insn will try to determine a machine
6013 instruction (MOVZ, MOVN or ORR) for it and will issue an error
6014 message if the immediate cannot be moved by a single
6015 instruction. */
6016 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6017 inst.base.operands[i].skip = 1;
6018 }
6019 break;
6020
6021 case AARCH64_OPND_SIMD_IMM:
6022 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 6023 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
6024 goto failure;
6025 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6026 /* addr_off_p */ 0,
6027 /* need_libopcodes_p */ 1,
6028 /* skip_p */ 1);
6029 /* Parse shift.
6030 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
6031 shift, we don't check it here; we leave the checking to
6032 the libopcodes (operand_general_constraint_met_p). By
6033 doing this, we achieve better diagnostics. */
6034 if (skip_past_comma (&str)
6035 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
6036 goto failure;
6037 if (!info->shifter.operator_present
6038 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
6039 {
6040 /* Default to LSL if not present. Libopcodes prefers shifter
6041 kind to be explicit. */
6042 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6043 info->shifter.kind = AARCH64_MOD_LSL;
6044 }
6045 break;
6046
6047 case AARCH64_OPND_FPIMM:
6048 case AARCH64_OPND_SIMD_FPIMM:
165d4950 6049 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
6050 {
6051 int qfloat;
165d4950
RS
6052 bfd_boolean dp_p;
6053
6054 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 6055 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 6056 || !aarch64_imm_float_p (qfloat))
a06ea964 6057 {
6a9deabe
RS
6058 if (!error_p ())
6059 set_fatal_syntax_error (_("invalid floating-point"
6060 " constant"));
a06ea964
NC
6061 goto failure;
6062 }
6063 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
6064 inst.base.operands[i].imm.is_fp = 1;
6065 }
6066 break;
6067
165d4950
RS
6068 case AARCH64_OPND_SVE_I1_HALF_ONE:
6069 case AARCH64_OPND_SVE_I1_HALF_TWO:
6070 case AARCH64_OPND_SVE_I1_ZERO_ONE:
6071 {
6072 int qfloat;
6073 bfd_boolean dp_p;
6074
6075 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6076 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
6077 {
6078 if (!error_p ())
6079 set_fatal_syntax_error (_("invalid floating-point"
6080 " constant"));
6081 goto failure;
6082 }
6083 inst.base.operands[i].imm.value = qfloat;
6084 inst.base.operands[i].imm.is_fp = 1;
6085 }
6086 break;
6087
a06ea964
NC
6088 case AARCH64_OPND_LIMM:
6089 po_misc_or_fail (parse_shifter_operand (&str, info,
6090 SHIFTED_LOGIC_IMM));
6091 if (info->shifter.operator_present)
6092 {
6093 set_fatal_syntax_error
6094 (_("shift not allowed for bitmask immediate"));
6095 goto failure;
6096 }
6097 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6098 /* addr_off_p */ 0,
6099 /* need_libopcodes_p */ 1,
6100 /* skip_p */ 1);
6101 break;
6102
6103 case AARCH64_OPND_AIMM:
6104 if (opcode->op == OP_ADD)
6105 /* ADD may have relocation types. */
6106 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
6107 SHIFTED_ARITH_IMM));
6108 else
6109 po_misc_or_fail (parse_shifter_operand (&str, info,
6110 SHIFTED_ARITH_IMM));
6111 switch (inst.reloc.type)
6112 {
6113 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6114 info->shifter.amount = 12;
6115 break;
6116 case BFD_RELOC_UNUSED:
6117 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6118 if (info->shifter.kind != AARCH64_MOD_NONE)
6119 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
6120 inst.reloc.pc_rel = 0;
6121 break;
6122 default:
6123 break;
6124 }
6125 info->imm.value = 0;
6126 if (!info->shifter.operator_present)
6127 {
6128 /* Default to LSL if not present. Libopcodes prefers shifter
6129 kind to be explicit. */
6130 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6131 info->shifter.kind = AARCH64_MOD_LSL;
6132 }
6133 break;
6134
6135 case AARCH64_OPND_HALF:
6136 {
6137 /* #<imm16> or relocation. */
6138 int internal_fixup_p;
6139 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
6140 if (internal_fixup_p)
6141 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6142 skip_whitespace (str);
6143 if (skip_past_comma (&str))
6144 {
6145 /* {, LSL #<shift>} */
6146 if (! aarch64_gas_internal_fixup_p ())
6147 {
6148 set_fatal_syntax_error (_("can't mix relocation modifier "
6149 "with explicit shift"));
6150 goto failure;
6151 }
6152 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
6153 }
6154 else
6155 inst.base.operands[i].shifter.amount = 0;
6156 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
6157 inst.base.operands[i].imm.value = 0;
6158 if (! process_movw_reloc_info ())
6159 goto failure;
6160 }
6161 break;
6162
6163 case AARCH64_OPND_EXCEPTION:
09c1e68a 6164 case AARCH64_OPND_UNDEFINED:
1799c0d0
RS
6165 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
6166 imm_reg_type));
a06ea964
NC
6167 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6168 /* addr_off_p */ 0,
6169 /* need_libopcodes_p */ 0,
6170 /* skip_p */ 1);
6171 break;
6172
6173 case AARCH64_OPND_NZCV:
6174 {
629310ab 6175 const asm_nzcv *nzcv = str_hash_find_n (aarch64_nzcv_hsh, str, 4);
a06ea964
NC
6176 if (nzcv != NULL)
6177 {
6178 str += 4;
6179 info->imm.value = nzcv->value;
6180 break;
6181 }
6182 po_imm_or_fail (0, 15);
6183 info->imm.value = val;
6184 }
6185 break;
6186
6187 case AARCH64_OPND_COND:
68a64283 6188 case AARCH64_OPND_COND1:
bb7eff52
RS
6189 {
6190 char *start = str;
6191 do
6192 str++;
6193 while (ISALPHA (*str));
629310ab 6194 info->cond = str_hash_find_n (aarch64_cond_hsh, start, str - start);
bb7eff52
RS
6195 if (info->cond == NULL)
6196 {
6197 set_syntax_error (_("invalid condition"));
6198 goto failure;
6199 }
6200 else if (operands[i] == AARCH64_OPND_COND1
6201 && (info->cond->value & 0xe) == 0xe)
6202 {
6203 /* Do not allow AL or NV. */
6204 set_default_error ();
6205 goto failure;
6206 }
6207 }
a06ea964
NC
6208 break;
6209
6210 case AARCH64_OPND_ADDR_ADRP:
6211 po_misc_or_fail (parse_adrp (&str));
6212 /* Clear the value as operand needs to be relocated. */
6213 info->imm.value = 0;
6214 break;
6215
6216 case AARCH64_OPND_ADDR_PCREL14:
6217 case AARCH64_OPND_ADDR_PCREL19:
6218 case AARCH64_OPND_ADDR_PCREL21:
6219 case AARCH64_OPND_ADDR_PCREL26:
73866052 6220 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6221 if (!info->addr.pcrel)
6222 {
6223 set_syntax_error (_("invalid pc-relative address"));
6224 goto failure;
6225 }
6226 if (inst.gen_lit_pool
6227 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6228 {
6229 /* Only permit "=value" in the literal load instructions.
6230 The literal will be generated by programmer_friendly_fixup. */
6231 set_syntax_error (_("invalid use of \"=immediate\""));
6232 goto failure;
6233 }
6234 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6235 {
6236 set_syntax_error (_("unrecognized relocation suffix"));
6237 goto failure;
6238 }
6239 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6240 {
6241 info->imm.value = inst.reloc.exp.X_add_number;
6242 inst.reloc.type = BFD_RELOC_UNUSED;
6243 }
6244 else
6245 {
6246 info->imm.value = 0;
f41aef5f
RE
6247 if (inst.reloc.type == BFD_RELOC_UNUSED)
6248 switch (opcode->iclass)
6249 {
6250 case compbranch:
6251 case condbranch:
6252 /* e.g. CBZ or B.COND */
6253 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6254 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6255 break;
6256 case testbranch:
6257 /* e.g. TBZ */
6258 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6259 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6260 break;
6261 case branch_imm:
6262 /* e.g. B or BL */
6263 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6264 inst.reloc.type =
6265 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6266 : BFD_RELOC_AARCH64_JUMP26;
6267 break;
6268 case loadlit:
6269 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6270 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6271 break;
6272 case pcreladdr:
6273 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6274 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6275 break;
6276 default:
6277 gas_assert (0);
6278 abort ();
6279 }
a06ea964
NC
6280 inst.reloc.pc_rel = 1;
6281 }
6282 break;
6283
6284 case AARCH64_OPND_ADDR_SIMPLE:
6285 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
6286 {
6287 /* [<Xn|SP>{, #<simm>}] */
6288 char *start = str;
6289 /* First use the normal address-parsing routines, to get
6290 the usual syntax errors. */
73866052 6291 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
6292 if (info->addr.pcrel || info->addr.offset.is_reg
6293 || !info->addr.preind || info->addr.postind
550fd7bf 6294 || info->addr.writeback)
e1b988bb
RS
6295 {
6296 set_syntax_error (_("invalid addressing mode"));
6297 goto failure;
6298 }
6299
6300 /* Then retry, matching the specific syntax of these addresses. */
6301 str = start;
6302 po_char_or_fail ('[');
6303 po_reg_or_fail (REG_TYPE_R64_SP);
6304 /* Accept optional ", #0". */
6305 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6306 && skip_past_char (&str, ','))
6307 {
6308 skip_past_char (&str, '#');
6309 if (! skip_past_char (&str, '0'))
6310 {
6311 set_fatal_syntax_error
6312 (_("the optional immediate offset can only be 0"));
6313 goto failure;
6314 }
6315 }
6316 po_char_or_fail (']');
6317 break;
6318 }
a06ea964
NC
6319
6320 case AARCH64_OPND_ADDR_REGOFF:
6321 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 6322 po_misc_or_fail (parse_address (&str, info));
4df068de 6323 regoff_addr:
a06ea964
NC
6324 if (info->addr.pcrel || !info->addr.offset.is_reg
6325 || !info->addr.preind || info->addr.postind
6326 || info->addr.writeback)
6327 {
6328 set_syntax_error (_("invalid addressing mode"));
6329 goto failure;
6330 }
6331 if (!info->shifter.operator_present)
6332 {
6333 /* Default to LSL if not present. Libopcodes prefers shifter
6334 kind to be explicit. */
6335 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6336 info->shifter.kind = AARCH64_MOD_LSL;
6337 }
6338 /* Qualifier to be deduced by libopcodes. */
6339 break;
6340
6341 case AARCH64_OPND_ADDR_SIMM7:
73866052 6342 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6343 if (info->addr.pcrel || info->addr.offset.is_reg
6344 || (!info->addr.preind && !info->addr.postind))
6345 {
6346 set_syntax_error (_("invalid addressing mode"));
6347 goto failure;
6348 }
73866052
RS
6349 if (inst.reloc.type != BFD_RELOC_UNUSED)
6350 {
6351 set_syntax_error (_("relocation not allowed"));
6352 goto failure;
6353 }
a06ea964
NC
6354 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6355 /* addr_off_p */ 1,
6356 /* need_libopcodes_p */ 1,
6357 /* skip_p */ 0);
6358 break;
6359
6360 case AARCH64_OPND_ADDR_SIMM9:
6361 case AARCH64_OPND_ADDR_SIMM9_2:
fb3265b3
SD
6362 case AARCH64_OPND_ADDR_SIMM11:
6363 case AARCH64_OPND_ADDR_SIMM13:
73866052 6364 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6365 if (info->addr.pcrel || info->addr.offset.is_reg
6366 || (!info->addr.preind && !info->addr.postind)
6367 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6368 && info->addr.writeback))
6369 {
6370 set_syntax_error (_("invalid addressing mode"));
6371 goto failure;
6372 }
6373 if (inst.reloc.type != BFD_RELOC_UNUSED)
6374 {
6375 set_syntax_error (_("relocation not allowed"));
6376 goto failure;
6377 }
6378 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6379 /* addr_off_p */ 1,
6380 /* need_libopcodes_p */ 1,
6381 /* skip_p */ 0);
6382 break;
6383
3f06e550 6384 case AARCH64_OPND_ADDR_SIMM10:
f42f1a1d 6385 case AARCH64_OPND_ADDR_OFFSET:
3f06e550
SN
6386 po_misc_or_fail (parse_address (&str, info));
6387 if (info->addr.pcrel || info->addr.offset.is_reg
6388 || !info->addr.preind || info->addr.postind)
6389 {
6390 set_syntax_error (_("invalid addressing mode"));
6391 goto failure;
6392 }
6393 if (inst.reloc.type != BFD_RELOC_UNUSED)
6394 {
6395 set_syntax_error (_("relocation not allowed"));
6396 goto failure;
6397 }
6398 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6399 /* addr_off_p */ 1,
6400 /* need_libopcodes_p */ 1,
6401 /* skip_p */ 0);
6402 break;
6403
a06ea964 6404 case AARCH64_OPND_ADDR_UIMM12:
73866052 6405 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6406 if (info->addr.pcrel || info->addr.offset.is_reg
6407 || !info->addr.preind || info->addr.writeback)
6408 {
6409 set_syntax_error (_("invalid addressing mode"));
6410 goto failure;
6411 }
6412 if (inst.reloc.type == BFD_RELOC_UNUSED)
6413 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
6414 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6415 || (inst.reloc.type
6416 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6417 || (inst.reloc.type
84f1b9fb
RL
6418 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6419 || (inst.reloc.type
6420 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6421 || (inst.reloc.type
6422 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
a06ea964
NC
6423 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6424 /* Leave qualifier to be determined by libopcodes. */
6425 break;
6426
6427 case AARCH64_OPND_SIMD_ADDR_POST:
6428 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 6429 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6430 if (!info->addr.postind || !info->addr.writeback)
6431 {
6432 set_syntax_error (_("invalid addressing mode"));
6433 goto failure;
6434 }
6435 if (!info->addr.offset.is_reg)
6436 {
6437 if (inst.reloc.exp.X_op == O_constant)
6438 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6439 else
6440 {
6441 set_fatal_syntax_error
ab3b8fcf 6442 (_("writeback value must be an immediate constant"));
a06ea964
NC
6443 goto failure;
6444 }
6445 }
6446 /* No qualifier. */
6447 break;
6448
582e12bf 6449 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
8382113f 6450 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
98907a70
RS
6451 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6452 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6453 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6454 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6455 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6456 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
6457 case AARCH64_OPND_SVE_ADDR_RI_U6:
6458 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6459 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6460 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
6461 /* [X<n>{, #imm, MUL VL}]
6462 [X<n>{, #imm}]
4df068de
RS
6463 but recognizing SVE registers. */
6464 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6465 &offset_qualifier));
6466 if (base_qualifier != AARCH64_OPND_QLF_X)
6467 {
6468 set_syntax_error (_("invalid addressing mode"));
6469 goto failure;
6470 }
6471 sve_regimm:
6472 if (info->addr.pcrel || info->addr.offset.is_reg
6473 || !info->addr.preind || info->addr.writeback)
6474 {
6475 set_syntax_error (_("invalid addressing mode"));
6476 goto failure;
6477 }
6478 if (inst.reloc.type != BFD_RELOC_UNUSED
6479 || inst.reloc.exp.X_op != O_constant)
6480 {
6481 /* Make sure this has priority over
6482 "invalid addressing mode". */
6483 set_fatal_syntax_error (_("constant offset required"));
6484 goto failure;
6485 }
6486 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6487 break;
6488
c8d59609
NC
6489 case AARCH64_OPND_SVE_ADDR_R:
6490 /* [<Xn|SP>{, <R><m>}]
6491 but recognizing SVE registers. */
6492 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6493 &offset_qualifier));
6494 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6495 {
6496 offset_qualifier = AARCH64_OPND_QLF_X;
6497 info->addr.offset.is_reg = 1;
6498 info->addr.offset.regno = 31;
6499 }
6500 else if (base_qualifier != AARCH64_OPND_QLF_X
6501 || offset_qualifier != AARCH64_OPND_QLF_X)
6502 {
6503 set_syntax_error (_("invalid addressing mode"));
6504 goto failure;
6505 }
6506 goto regoff_addr;
6507
4df068de
RS
6508 case AARCH64_OPND_SVE_ADDR_RR:
6509 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6510 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6511 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6512 case AARCH64_OPND_SVE_ADDR_RX:
6513 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6514 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6515 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6516 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6517 but recognizing SVE registers. */
6518 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6519 &offset_qualifier));
6520 if (base_qualifier != AARCH64_OPND_QLF_X
6521 || offset_qualifier != AARCH64_OPND_QLF_X)
6522 {
6523 set_syntax_error (_("invalid addressing mode"));
6524 goto failure;
6525 }
6526 goto regoff_addr;
6527
6528 case AARCH64_OPND_SVE_ADDR_RZ:
6529 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6530 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6531 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6532 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6533 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6534 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6535 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6536 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6537 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6538 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6539 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6540 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6541 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6542 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6543 &offset_qualifier));
6544 if (base_qualifier != AARCH64_OPND_QLF_X
6545 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6546 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6547 {
6548 set_syntax_error (_("invalid addressing mode"));
6549 goto failure;
6550 }
6551 info->qualifier = offset_qualifier;
6552 goto regoff_addr;
6553
c469c864
MM
6554 case AARCH64_OPND_SVE_ADDR_ZX:
6555 /* [Zn.<T>{, <Xm>}]. */
6556 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6557 &offset_qualifier));
6558 /* Things to check:
6559 base_qualifier either S_S or S_D
6560 offset_qualifier must be X
6561 */
6562 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6563 && base_qualifier != AARCH64_OPND_QLF_S_D)
6564 || offset_qualifier != AARCH64_OPND_QLF_X)
6565 {
6566 set_syntax_error (_("invalid addressing mode"));
6567 goto failure;
6568 }
6569 info->qualifier = base_qualifier;
6570 if (!info->addr.offset.is_reg || info->addr.pcrel
6571 || !info->addr.preind || info->addr.writeback
6572 || info->shifter.operator_present != 0)
6573 {
6574 set_syntax_error (_("invalid addressing mode"));
6575 goto failure;
6576 }
6577 info->shifter.kind = AARCH64_MOD_LSL;
6578 break;
6579
6580
4df068de
RS
6581 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6582 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6583 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6584 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6585 /* [Z<n>.<T>{, #imm}] */
6586 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6587 &offset_qualifier));
6588 if (base_qualifier != AARCH64_OPND_QLF_S_S
6589 && base_qualifier != AARCH64_OPND_QLF_S_D)
6590 {
6591 set_syntax_error (_("invalid addressing mode"));
6592 goto failure;
6593 }
6594 info->qualifier = base_qualifier;
6595 goto sve_regimm;
6596
6597 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6598 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6599 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6600 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6601 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6602
6603 We don't reject:
6604
6605 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6606
6607 here since we get better error messages by leaving it to
6608 the qualifier checking routines. */
6609 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6610 &offset_qualifier));
6611 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6612 && base_qualifier != AARCH64_OPND_QLF_S_D)
6613 || offset_qualifier != base_qualifier)
6614 {
6615 set_syntax_error (_("invalid addressing mode"));
6616 goto failure;
6617 }
6618 info->qualifier = base_qualifier;
6619 goto regoff_addr;
6620
a06ea964 6621 case AARCH64_OPND_SYSREG:
7d02540a
TC
6622 {
6623 uint32_t sysreg_flags;
6624 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6625 &sysreg_flags)) == PARSE_FAIL)
6626 {
6627 set_syntax_error (_("unknown or missing system register name"));
6628 goto failure;
6629 }
6630 inst.base.operands[i].sysreg.value = val;
6631 inst.base.operands[i].sysreg.flags = sysreg_flags;
6632 break;
6633 }
a06ea964
NC
6634
6635 case AARCH64_OPND_PSTATEFIELD:
561a72d4 6636 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
a3251895 6637 == PARSE_FAIL)
a06ea964
NC
6638 {
6639 set_syntax_error (_("unknown or missing PSTATE field name"));
6640 goto failure;
6641 }
6642 inst.base.operands[i].pstatefield = val;
6643 break;
6644
6645 case AARCH64_OPND_SYSREG_IC:
6646 inst.base.operands[i].sysins_op =
6647 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6648 goto sys_reg_ins;
2ac435d4 6649
a06ea964
NC
6650 case AARCH64_OPND_SYSREG_DC:
6651 inst.base.operands[i].sysins_op =
6652 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6653 goto sys_reg_ins;
2ac435d4 6654
a06ea964
NC
6655 case AARCH64_OPND_SYSREG_AT:
6656 inst.base.operands[i].sysins_op =
6657 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6658 goto sys_reg_ins;
2ac435d4
SD
6659
6660 case AARCH64_OPND_SYSREG_SR:
6661 inst.base.operands[i].sysins_op =
6662 parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
6663 goto sys_reg_ins;
6664
a06ea964
NC
6665 case AARCH64_OPND_SYSREG_TLBI:
6666 inst.base.operands[i].sysins_op =
6667 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
dc1e8a47 6668 sys_reg_ins:
a06ea964
NC
6669 if (inst.base.operands[i].sysins_op == NULL)
6670 {
6671 set_fatal_syntax_error ( _("unknown or missing operation name"));
6672 goto failure;
6673 }
6674 break;
6675
6676 case AARCH64_OPND_BARRIER:
6677 case AARCH64_OPND_BARRIER_ISB:
6678 val = parse_barrier (&str);
6679 if (val != PARSE_FAIL
6680 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6681 {
6682 /* ISB only accepts options name 'sy'. */
6683 set_syntax_error
6684 (_("the specified option is not accepted in ISB"));
6685 /* Turn off backtrack as this optional operand is present. */
6686 backtrack_pos = 0;
6687 goto failure;
6688 }
fd195909
PW
6689 if (val != PARSE_FAIL
6690 && operands[i] == AARCH64_OPND_BARRIER)
6691 {
6692 /* Regular barriers accept options CRm (C0-C15).
6693 DSB nXS barrier variant accepts values > 15. */
6694 po_imm_or_fail (0, 15);
6695 }
a06ea964
NC
6696 /* This is an extension to accept a 0..15 immediate. */
6697 if (val == PARSE_FAIL)
6698 po_imm_or_fail (0, 15);
6699 info->barrier = aarch64_barrier_options + val;
6700 break;
6701
fd195909
PW
6702 case AARCH64_OPND_BARRIER_DSB_NXS:
6703 val = parse_barrier (&str);
6704 if (val != PARSE_FAIL)
6705 {
6706 /* DSB nXS barrier variant accept only <option>nXS qualifiers. */
6707 if (!(val == 16 || val == 20 || val == 24 || val == 28))
6708 {
6709 set_syntax_error (_("the specified option is not accepted in DSB"));
6710 /* Turn off backtrack as this optional operand is present. */
6711 backtrack_pos = 0;
6712 goto failure;
6713 }
6714 }
6715 else
6716 {
6717 /* DSB nXS barrier variant accept 5-bit unsigned immediate, with
6718 possible values 16, 20, 24 or 28 , encoded as val<3:2>. */
6719 if (! parse_constant_immediate (&str, &val, imm_reg_type))
6720 goto failure;
6721 if (!(val == 16 || val == 20 || val == 24 || val == 28))
6722 {
6723 set_syntax_error (_("immediate value must be 16, 20, 24, 28"));
6724 goto failure;
6725 }
6726 }
6727 /* Option index is encoded as 2-bit value in val<3:2>. */
6728 val = (val >> 2) - 4;
6729 info->barrier = aarch64_barrier_dsb_nxs_options + val;
6730 break;
6731
a06ea964
NC
6732 case AARCH64_OPND_PRFOP:
6733 val = parse_pldop (&str);
6734 /* This is an extension to accept a 0..31 immediate. */
6735 if (val == PARSE_FAIL)
6736 po_imm_or_fail (0, 31);
6737 inst.base.operands[i].prfop = aarch64_prfops + val;
6738 break;
6739
1e6f4800
MW
6740 case AARCH64_OPND_BARRIER_PSB:
6741 val = parse_barrier_psb (&str, &(info->hint_option));
6742 if (val == PARSE_FAIL)
6743 goto failure;
6744 break;
6745
ff605452
SD
6746 case AARCH64_OPND_BTI_TARGET:
6747 val = parse_bti_operand (&str, &(info->hint_option));
6748 if (val == PARSE_FAIL)
6749 goto failure;
6750 break;
6751
a06ea964
NC
6752 default:
6753 as_fatal (_("unhandled operand code %d"), operands[i]);
6754 }
6755
6756 /* If we get here, this operand was successfully parsed. */
6757 inst.base.operands[i].present = 1;
6758 continue;
6759
dc1e8a47 6760 failure:
a06ea964
NC
6761 /* The parse routine should already have set the error, but in case
6762 not, set a default one here. */
6763 if (! error_p ())
6764 set_default_error ();
6765
6766 if (! backtrack_pos)
6767 goto parse_operands_return;
6768
f4c51f60
JW
6769 {
6770 /* We reach here because this operand is marked as optional, and
6771 either no operand was supplied or the operand was supplied but it
6772 was syntactically incorrect. In the latter case we report an
6773 error. In the former case we perform a few more checks before
6774 dropping through to the code to insert the default operand. */
6775
6776 char *tmp = backtrack_pos;
6777 char endchar = END_OF_INSN;
6778
6779 if (i != (aarch64_num_of_operands (opcode) - 1))
6780 endchar = ',';
6781 skip_past_char (&tmp, ',');
6782
6783 if (*tmp != endchar)
6784 /* The user has supplied an operand in the wrong format. */
6785 goto parse_operands_return;
6786
6787 /* Make sure there is not a comma before the optional operand.
6788 For example the fifth operand of 'sys' is optional:
6789
6790 sys #0,c0,c0,#0, <--- wrong
6791 sys #0,c0,c0,#0 <--- correct. */
6792 if (comma_skipped_p && i && endchar == END_OF_INSN)
6793 {
6794 set_fatal_syntax_error
6795 (_("unexpected comma before the omitted optional operand"));
6796 goto parse_operands_return;
6797 }
6798 }
6799
a06ea964
NC
6800 /* Reaching here means we are dealing with an optional operand that is
6801 omitted from the assembly line. */
6802 gas_assert (optional_operand_p (opcode, i));
6803 info->present = 0;
6804 process_omitted_operand (operands[i], opcode, i, info);
6805
6806 /* Try again, skipping the optional operand at backtrack_pos. */
6807 str = backtrack_pos;
6808 backtrack_pos = 0;
6809
a06ea964
NC
6810 /* Clear any error record after the omitted optional operand has been
6811 successfully handled. */
6812 clear_error ();
6813 }
6814
6815 /* Check if we have parsed all the operands. */
6816 if (*str != '\0' && ! error_p ())
6817 {
6818 /* Set I to the index of the last present operand; this is
6819 for the purpose of diagnostics. */
6820 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6821 ;
6822 set_fatal_syntax_error
6823 (_("unexpected characters following instruction"));
6824 }
6825
dc1e8a47 6826 parse_operands_return:
a06ea964
NC
6827
6828 if (error_p ())
6829 {
6830 DEBUG_TRACE ("parsing FAIL: %s - %s",
6831 operand_mismatch_kind_names[get_error_kind ()],
6832 get_error_message ());
6833 /* Record the operand error properly; this is useful when there
6834 are multiple instruction templates for a mnemonic name, so that
6835 later on, we can select the error that most closely describes
6836 the problem. */
6837 record_operand_error (opcode, i, get_error_kind (),
6838 get_error_message ());
6839 return FALSE;
6840 }
6841 else
6842 {
6843 DEBUG_TRACE ("parsing SUCCESS");
6844 return TRUE;
6845 }
6846}
6847
6848/* It does some fix-up to provide some programmer friendly feature while
6849 keeping the libopcodes happy, i.e. libopcodes only accepts
6850 the preferred architectural syntax.
6851 Return FALSE if there is any failure; otherwise return TRUE. */
6852
6853static bfd_boolean
6854programmer_friendly_fixup (aarch64_instruction *instr)
6855{
6856 aarch64_inst *base = &instr->base;
6857 const aarch64_opcode *opcode = base->opcode;
6858 enum aarch64_op op = opcode->op;
6859 aarch64_opnd_info *operands = base->operands;
6860
6861 DEBUG_TRACE ("enter");
6862
6863 switch (opcode->iclass)
6864 {
6865 case testbranch:
6866 /* TBNZ Xn|Wn, #uimm6, label
6867 Test and Branch Not Zero: conditionally jumps to label if bit number
6868 uimm6 in register Xn is not zero. The bit number implies the width of
6869 the register, which may be written and should be disassembled as Wn if
6870 uimm is less than 32. */
6871 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6872 {
6873 if (operands[1].imm.value >= 32)
6874 {
6875 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6876 0, 31);
6877 return FALSE;
6878 }
6879 operands[0].qualifier = AARCH64_OPND_QLF_X;
6880 }
6881 break;
6882 case loadlit:
6883 /* LDR Wt, label | =value
6884 As a convenience assemblers will typically permit the notation
6885 "=value" in conjunction with the pc-relative literal load instructions
6886 to automatically place an immediate value or symbolic address in a
6887 nearby literal pool and generate a hidden label which references it.
6888 ISREG has been set to 0 in the case of =value. */
6889 if (instr->gen_lit_pool
6890 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6891 {
6892 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6893 if (op == OP_LDRSW_LIT)
6894 size = 4;
6895 if (instr->reloc.exp.X_op != O_constant
67a32447 6896 && instr->reloc.exp.X_op != O_big
a06ea964
NC
6897 && instr->reloc.exp.X_op != O_symbol)
6898 {
6899 record_operand_error (opcode, 1,
6900 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6901 _("constant expression expected"));
6902 return FALSE;
6903 }
6904 if (! add_to_lit_pool (&instr->reloc.exp, size))
6905 {
6906 record_operand_error (opcode, 1,
6907 AARCH64_OPDE_OTHER_ERROR,
6908 _("literal pool insertion failed"));
6909 return FALSE;
6910 }
6911 }
6912 break;
a06ea964
NC
6913 case log_shift:
6914 case bitfield:
6915 /* UXT[BHW] Wd, Wn
6916 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6917 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6918 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6919 A programmer-friendly assembler should accept a destination Xd in
6920 place of Wd, however that is not the preferred form for disassembly.
6921 */
6922 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6923 && operands[1].qualifier == AARCH64_OPND_QLF_W
6924 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6925 operands[0].qualifier = AARCH64_OPND_QLF_W;
6926 break;
6927
6928 case addsub_ext:
6929 {
6930 /* In the 64-bit form, the final register operand is written as Wm
6931 for all but the (possibly omitted) UXTX/LSL and SXTX
6932 operators.
6933 As a programmer-friendly assembler, we accept e.g.
6934 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6935 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6936 int idx = aarch64_operand_index (opcode->operands,
6937 AARCH64_OPND_Rm_EXT);
6938 gas_assert (idx == 1 || idx == 2);
6939 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6940 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6941 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6942 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6943 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6944 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6945 }
6946 break;
6947
6948 default:
6949 break;
6950 }
6951
6952 DEBUG_TRACE ("exit with SUCCESS");
6953 return TRUE;
6954}
6955
5c47e525 6956/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
6957
6958static void
6959warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6960{
6961 aarch64_inst *base = &instr->base;
6962 const aarch64_opcode *opcode = base->opcode;
6963 const aarch64_opnd_info *opnds = base->operands;
6964 switch (opcode->iclass)
6965 {
6966 case ldst_pos:
6967 case ldst_imm9:
3f06e550 6968 case ldst_imm10:
54a28c4c
JW
6969 case ldst_unscaled:
6970 case ldst_unpriv:
5c47e525
RE
6971 /* Loading/storing the base register is unpredictable if writeback. */
6972 if ((aarch64_get_operand_class (opnds[0].type)
6973 == AARCH64_OPND_CLASS_INT_REG)
6974 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 6975 && opnds[1].addr.base_regno != REG_SP
69105ce4
SD
6976 /* Exempt STG/STZG/ST2G/STZ2G. */
6977 && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
54a28c4c 6978 && opnds[1].addr.writeback)
5c47e525 6979 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c 6980 break;
503ba600 6981
54a28c4c
JW
6982 case ldstpair_off:
6983 case ldstnapair_offs:
6984 case ldstpair_indexed:
5c47e525
RE
6985 /* Loading/storing the base register is unpredictable if writeback. */
6986 if ((aarch64_get_operand_class (opnds[0].type)
6987 == AARCH64_OPND_CLASS_INT_REG)
6988 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6989 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 6990 && opnds[2].addr.base_regno != REG_SP
fb3265b3
SD
6991 /* Exempt STGP. */
6992 && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
54a28c4c 6993 && opnds[2].addr.writeback)
5c47e525
RE
6994 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6995 /* Load operations must load different registers. */
54a28c4c
JW
6996 if ((opcode->opcode & (1 << 22))
6997 && opnds[0].reg.regno == opnds[1].reg.regno)
6998 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6999 break;
ee943970
RR
7000
7001 case ldstexcl:
7002 /* It is unpredictable if the destination and status registers are the
7003 same. */
7004 if ((aarch64_get_operand_class (opnds[0].type)
7005 == AARCH64_OPND_CLASS_INT_REG)
7006 && (aarch64_get_operand_class (opnds[1].type)
7007 == AARCH64_OPND_CLASS_INT_REG)
7008 && (opnds[0].reg.regno == opnds[1].reg.regno
7009 || opnds[0].reg.regno == opnds[2].reg.regno))
7010 as_warn (_("unpredictable: identical transfer and status registers"
7011 " --`%s'"),
7012 str);
7013
7014 break;
7015
54a28c4c
JW
7016 default:
7017 break;
7018 }
7019}
7020
4f5d2536
TC
7021static void
7022force_automatic_sequence_close (void)
7023{
7024 if (now_instr_sequence.instr)
7025 {
7026 as_warn (_("previous `%s' sequence has not been closed"),
7027 now_instr_sequence.instr->opcode->name);
7028 init_insn_sequence (NULL, &now_instr_sequence);
7029 }
7030}
7031
a06ea964
NC
7032/* A wrapper function to interface with libopcodes on encoding and
7033 record the error message if there is any.
7034
7035 Return TRUE on success; otherwise return FALSE. */
7036
7037static bfd_boolean
7038do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
7039 aarch64_insn *code)
7040{
7041 aarch64_operand_error error_info;
7d02540a 7042 memset (&error_info, '\0', sizeof (error_info));
a06ea964 7043 error_info.kind = AARCH64_OPDE_NIL;
7e84b55d 7044 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
7d02540a 7045 && !error_info.non_fatal)
a06ea964 7046 return TRUE;
7d02540a
TC
7047
7048 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
7049 record_operand_error_info (opcode, &error_info);
7050 return error_info.non_fatal;
a06ea964
NC
7051}
7052
7053#ifdef DEBUG_AARCH64
7054static inline void
7055dump_opcode_operands (const aarch64_opcode *opcode)
7056{
7057 int i = 0;
7058 while (opcode->operands[i] != AARCH64_OPND_NIL)
7059 {
7060 aarch64_verbose ("\t\t opnd%d: %s", i,
7061 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
7062 ? aarch64_get_operand_name (opcode->operands[i])
7063 : aarch64_get_operand_desc (opcode->operands[i]));
7064 ++i;
7065 }
7066}
7067#endif /* DEBUG_AARCH64 */
7068
7069/* This is the guts of the machine-dependent assembler. STR points to a
7070 machine dependent instruction. This function is supposed to emit
7071 the frags/bytes it assembles to. */
7072
7073void
7074md_assemble (char *str)
7075{
7076 char *p = str;
7077 templates *template;
7078 aarch64_opcode *opcode;
7079 aarch64_inst *inst_base;
7080 unsigned saved_cond;
7081
7082 /* Align the previous label if needed. */
7083 if (last_label_seen != NULL)
7084 {
7085 symbol_set_frag (last_label_seen, frag_now);
7086 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7087 S_SET_SEGMENT (last_label_seen, now_seg);
7088 }
7089
7e84b55d
TC
7090 /* Update the current insn_sequence from the segment. */
7091 insn_sequence = &seg_info (now_seg)->tc_segment_info_data.insn_sequence;
7092
a06ea964
NC
7093 inst.reloc.type = BFD_RELOC_UNUSED;
7094
7095 DEBUG_TRACE ("\n\n");
7096 DEBUG_TRACE ("==============================");
7097 DEBUG_TRACE ("Enter md_assemble with %s", str);
7098
7099 template = opcode_lookup (&p);
7100 if (!template)
7101 {
7102 /* It wasn't an instruction, but it might be a register alias of
7103 the form alias .req reg directive. */
7104 if (!create_register_alias (str, p))
7105 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
7106 str);
7107 return;
7108 }
7109
7110 skip_whitespace (p);
7111 if (*p == ',')
7112 {
7113 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
7114 get_mnemonic_name (str), str);
7115 return;
7116 }
7117
7118 init_operand_error_report ();
7119
eb9d6cc9
RL
7120 /* Sections are assumed to start aligned. In executable section, there is no
7121 MAP_DATA symbol pending. So we only align the address during
7122 MAP_DATA --> MAP_INSN transition.
7123 For other sections, this is not guaranteed. */
7124 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
7125 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
7126 frag_align_code (2, 0);
7127
a06ea964
NC
7128 saved_cond = inst.cond;
7129 reset_aarch64_instruction (&inst);
7130 inst.cond = saved_cond;
7131
7132 /* Iterate through all opcode entries with the same mnemonic name. */
7133 do
7134 {
7135 opcode = template->opcode;
7136
7137 DEBUG_TRACE ("opcode %s found", opcode->name);
7138#ifdef DEBUG_AARCH64
7139 if (debug_dump)
7140 dump_opcode_operands (opcode);
7141#endif /* DEBUG_AARCH64 */
7142
a06ea964
NC
7143 mapping_state (MAP_INSN);
7144
7145 inst_base = &inst.base;
7146 inst_base->opcode = opcode;
7147
7148 /* Truly conditionally executed instructions, e.g. b.cond. */
7149 if (opcode->flags & F_COND)
7150 {
7151 gas_assert (inst.cond != COND_ALWAYS);
7152 inst_base->cond = get_cond_from_value (inst.cond);
7153 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
7154 }
7155 else if (inst.cond != COND_ALWAYS)
7156 {
7157 /* It shouldn't arrive here, where the assembly looks like a
7158 conditional instruction but the found opcode is unconditional. */
7159 gas_assert (0);
7160 continue;
7161 }
7162
7163 if (parse_operands (p, opcode)
7164 && programmer_friendly_fixup (&inst)
7165 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
7166 {
3f06bfce
YZ
7167 /* Check that this instruction is supported for this CPU. */
7168 if (!opcode->avariant
93d8990c 7169 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
3f06bfce
YZ
7170 {
7171 as_bad (_("selected processor does not support `%s'"), str);
7172 return;
7173 }
7174
54a28c4c
JW
7175 warn_unpredictable_ldst (&inst, str);
7176
a06ea964
NC
7177 if (inst.reloc.type == BFD_RELOC_UNUSED
7178 || !inst.reloc.need_libopcodes_p)
7179 output_inst (NULL);
7180 else
7181 {
7182 /* If there is relocation generated for the instruction,
7183 store the instruction information for the future fix-up. */
7184 struct aarch64_inst *copy;
7185 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 7186 copy = XNEW (struct aarch64_inst);
a06ea964
NC
7187 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
7188 output_inst (copy);
7189 }
7d02540a
TC
7190
7191 /* Issue non-fatal messages if any. */
7192 output_operand_error_report (str, TRUE);
a06ea964
NC
7193 return;
7194 }
7195
7196 template = template->next;
7197 if (template != NULL)
7198 {
7199 reset_aarch64_instruction (&inst);
7200 inst.cond = saved_cond;
7201 }
7202 }
7203 while (template != NULL);
7204
7205 /* Issue the error messages if any. */
7d02540a 7206 output_operand_error_report (str, FALSE);
a06ea964
NC
7207}
7208
7209/* Various frobbings of labels and their addresses. */
7210
7211void
7212aarch64_start_line_hook (void)
7213{
7214 last_label_seen = NULL;
7215}
7216
7217void
7218aarch64_frob_label (symbolS * sym)
7219{
7220 last_label_seen = sym;
7221
7222 dwarf2_emit_label (sym);
7223}
7224
4f5d2536
TC
7225void
7226aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
7227{
7228 /* Check to see if we have a block to close. */
7229 force_automatic_sequence_close ();
7230}
7231
a06ea964
NC
7232int
7233aarch64_data_in_code (void)
7234{
7235 if (!strncmp (input_line_pointer + 1, "data:", 5))
7236 {
7237 *input_line_pointer = '/';
7238 input_line_pointer += 5;
7239 *input_line_pointer = 0;
7240 return 1;
7241 }
7242
7243 return 0;
7244}
7245
7246char *
7247aarch64_canonicalize_symbol_name (char *name)
7248{
7249 int len;
7250
7251 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
7252 *(name + len - 5) = 0;
7253
7254 return name;
7255}
7256\f
7257/* Table of all register names defined by default. The user can
7258 define additional names with .req. Note that all register names
7259 should appear in both upper and lowercase variants. Some registers
7260 also have mixed-case names. */
7261
7262#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8975f864 7263#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
a06ea964 7264#define REGNUM(p,n,t) REGDEF(p##n, n, t)
f11ad6bc 7265#define REGSET16(p,t) \
a06ea964
NC
7266 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7267 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7268 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc
RS
7269 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7270#define REGSET31(p,t) \
7271 REGSET16(p, t), \
a06ea964
NC
7272 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
7273 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
7274 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
7275 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
7276#define REGSET(p,t) \
7277 REGSET31(p,t), REGNUM(p,31,t)
7278
7279/* These go into aarch64_reg_hsh hash-table. */
7280static const reg_entry reg_names[] = {
7281 /* Integer registers. */
7282 REGSET31 (x, R_64), REGSET31 (X, R_64),
7283 REGSET31 (w, R_32), REGSET31 (W, R_32),
7284
8975f864 7285 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
f10e937a 7286 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
8975f864
RR
7287 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
7288 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
a06ea964
NC
7289 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
7290 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
7291
7292 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
7293 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
7294
a06ea964
NC
7295 /* Floating-point single precision registers. */
7296 REGSET (s, FP_S), REGSET (S, FP_S),
7297
7298 /* Floating-point double precision registers. */
7299 REGSET (d, FP_D), REGSET (D, FP_D),
7300
7301 /* Floating-point half precision registers. */
7302 REGSET (h, FP_H), REGSET (H, FP_H),
7303
7304 /* Floating-point byte precision registers. */
7305 REGSET (b, FP_B), REGSET (B, FP_B),
7306
7307 /* Floating-point quad precision registers. */
7308 REGSET (q, FP_Q), REGSET (Q, FP_Q),
7309
7310 /* FP/SIMD registers. */
7311 REGSET (v, VN), REGSET (V, VN),
f11ad6bc
RS
7312
7313 /* SVE vector registers. */
7314 REGSET (z, ZN), REGSET (Z, ZN),
7315
7316 /* SVE predicate registers. */
7317 REGSET16 (p, PN), REGSET16 (P, PN)
a06ea964
NC
7318};
7319
7320#undef REGDEF
8975f864 7321#undef REGDEF_ALIAS
a06ea964 7322#undef REGNUM
f11ad6bc
RS
7323#undef REGSET16
7324#undef REGSET31
a06ea964
NC
7325#undef REGSET
7326
7327#define N 1
7328#define n 0
7329#define Z 1
7330#define z 0
7331#define C 1
7332#define c 0
7333#define V 1
7334#define v 0
7335#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7336static const asm_nzcv nzcv_names[] = {
7337 {"nzcv", B (n, z, c, v)},
7338 {"nzcV", B (n, z, c, V)},
7339 {"nzCv", B (n, z, C, v)},
7340 {"nzCV", B (n, z, C, V)},
7341 {"nZcv", B (n, Z, c, v)},
7342 {"nZcV", B (n, Z, c, V)},
7343 {"nZCv", B (n, Z, C, v)},
7344 {"nZCV", B (n, Z, C, V)},
7345 {"Nzcv", B (N, z, c, v)},
7346 {"NzcV", B (N, z, c, V)},
7347 {"NzCv", B (N, z, C, v)},
7348 {"NzCV", B (N, z, C, V)},
7349 {"NZcv", B (N, Z, c, v)},
7350 {"NZcV", B (N, Z, c, V)},
7351 {"NZCv", B (N, Z, C, v)},
7352 {"NZCV", B (N, Z, C, V)}
7353};
7354
7355#undef N
7356#undef n
7357#undef Z
7358#undef z
7359#undef C
7360#undef c
7361#undef V
7362#undef v
7363#undef B
7364\f
7365/* MD interface: bits in the object file. */
7366
7367/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7368 for use in the a.out file, and stores them in the array pointed to by buf.
7369 This knows about the endian-ness of the target machine and does
7370 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7371 2 (short) and 4 (long) Floating numbers are put out as a series of
7372 LITTLENUMS (shorts, here at least). */
7373
7374void
7375md_number_to_chars (char *buf, valueT val, int n)
7376{
7377 if (target_big_endian)
7378 number_to_chars_bigendian (buf, val, n);
7379 else
7380 number_to_chars_littleendian (buf, val, n);
7381}
7382
7383/* MD interface: Sections. */
7384
7385/* Estimate the size of a frag before relaxing. Assume everything fits in
7386 4 bytes. */
7387
7388int
7389md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7390{
7391 fragp->fr_var = 4;
7392 return 4;
7393}
7394
7395/* Round up a section size to the appropriate boundary. */
7396
7397valueT
7398md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7399{
7400 return size;
7401}
7402
7403/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
7404 of an rs_align_code fragment.
7405
7406 Here we fill the frag with the appropriate info for padding the
7407 output stream. The resulting frag will consist of a fixed (fr_fix)
7408 and of a repeating (fr_var) part.
7409
7410 The fixed content is always emitted before the repeating content and
7411 these two parts are used as follows in constructing the output:
7412 - the fixed part will be used to align to a valid instruction word
7413 boundary, in case that we start at a misaligned address; as no
7414 executable instruction can live at the misaligned location, we
7415 simply fill with zeros;
7416 - the variable part will be used to cover the remaining padding and
7417 we fill using the AArch64 NOP instruction.
7418
7419 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7420 enough storage space for up to 3 bytes for padding the back to a valid
7421 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
7422
7423void
7424aarch64_handle_align (fragS * fragP)
7425{
7426 /* NOP = d503201f */
7427 /* AArch64 instructions are always little-endian. */
d9235011 7428 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
7429
7430 int bytes, fix, noop_size;
7431 char *p;
a06ea964
NC
7432
7433 if (fragP->fr_type != rs_align_code)
7434 return;
7435
7436 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7437 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
7438
7439#ifdef OBJ_ELF
7440 gas_assert (fragP->tc_frag_data.recorded);
7441#endif
7442
a06ea964 7443 noop_size = sizeof (aarch64_noop);
a06ea964 7444
f803aa8e
DPT
7445 fix = bytes & (noop_size - 1);
7446 if (fix)
a06ea964 7447 {
a06ea964
NC
7448#ifdef OBJ_ELF
7449 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7450#endif
7451 memset (p, 0, fix);
7452 p += fix;
f803aa8e 7453 fragP->fr_fix += fix;
a06ea964
NC
7454 }
7455
f803aa8e
DPT
7456 if (noop_size)
7457 memcpy (p, aarch64_noop, noop_size);
7458 fragP->fr_var = noop_size;
a06ea964
NC
7459}
7460
7461/* Perform target specific initialisation of a frag.
7462 Note - despite the name this initialisation is not done when the frag
7463 is created, but only when its type is assigned. A frag can be created
7464 and used a long time before its type is set, so beware of assuming that
33eaf5de 7465 this initialisation is performed first. */
a06ea964
NC
7466
7467#ifndef OBJ_ELF
7468void
7469aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7470 int max_chars ATTRIBUTE_UNUSED)
7471{
7472}
7473
7474#else /* OBJ_ELF is defined. */
7475void
7476aarch64_init_frag (fragS * fragP, int max_chars)
7477{
7478 /* Record a mapping symbol for alignment frags. We will delete this
7479 later if the alignment ends up empty. */
7480 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
7481 fragP->tc_frag_data.recorded = 1;
7482
e8d84ca1
NC
7483 /* PR 21809: Do not set a mapping state for debug sections
7484 - it just confuses other tools. */
fd361982 7485 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
e8d84ca1
NC
7486 return;
7487
c7ad08e6 7488 switch (fragP->fr_type)
a06ea964 7489 {
c7ad08e6
RL
7490 case rs_align_test:
7491 case rs_fill:
7492 mapping_state_2 (MAP_DATA, max_chars);
7493 break;
7ea12e5c
NC
7494 case rs_align:
7495 /* PR 20364: We can get alignment frags in code sections,
7496 so do not just assume that we should use the MAP_DATA state. */
7497 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7498 break;
c7ad08e6
RL
7499 case rs_align_code:
7500 mapping_state_2 (MAP_INSN, max_chars);
7501 break;
7502 default:
7503 break;
a06ea964
NC
7504 }
7505}
7506\f
7507/* Initialize the DWARF-2 unwind information for this procedure. */
7508
7509void
7510tc_aarch64_frame_initial_instructions (void)
7511{
7512 cfi_add_CFA_def_cfa (REG_SP, 0);
7513}
7514#endif /* OBJ_ELF */
7515
7516/* Convert REGNAME to a DWARF-2 register number. */
7517
7518int
7519tc_aarch64_regname_to_dw2regnum (char *regname)
7520{
7521 const reg_entry *reg = parse_reg (&regname);
7522 if (reg == NULL)
7523 return -1;
7524
7525 switch (reg->type)
7526 {
7527 case REG_TYPE_SP_32:
7528 case REG_TYPE_SP_64:
7529 case REG_TYPE_R_32:
7530 case REG_TYPE_R_64:
a2cac51c
RH
7531 return reg->number;
7532
a06ea964
NC
7533 case REG_TYPE_FP_B:
7534 case REG_TYPE_FP_H:
7535 case REG_TYPE_FP_S:
7536 case REG_TYPE_FP_D:
7537 case REG_TYPE_FP_Q:
a2cac51c
RH
7538 return reg->number + 64;
7539
a06ea964
NC
7540 default:
7541 break;
7542 }
7543 return -1;
7544}
7545
cec5225b
YZ
7546/* Implement DWARF2_ADDR_SIZE. */
7547
7548int
7549aarch64_dwarf2_addr_size (void)
7550{
7551#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7552 if (ilp32_p)
7553 return 4;
7554#endif
7555 return bfd_arch_bits_per_address (stdoutput) / 8;
7556}
7557
a06ea964
NC
7558/* MD interface: Symbol and relocation handling. */
7559
7560/* Return the address within the segment that a PC-relative fixup is
7561 relative to. For AArch64 PC-relative fixups applied to instructions
7562 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7563
7564long
7565md_pcrel_from_section (fixS * fixP, segT seg)
7566{
7567 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7568
7569 /* If this is pc-relative and we are going to emit a relocation
7570 then we just want to put out any pipeline compensation that the linker
7571 will need. Otherwise we want to use the calculated base. */
7572 if (fixP->fx_pcrel
7573 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7574 || aarch64_force_relocation (fixP)))
7575 base = 0;
7576
7577 /* AArch64 should be consistent for all pc-relative relocations. */
7578 return base + AARCH64_PCREL_OFFSET;
7579}
7580
7581/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7582 Otherwise we have no need to default values of symbols. */
7583
7584symbolS *
7585md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7586{
7587#ifdef OBJ_ELF
7588 if (name[0] == '_' && name[1] == 'G'
7589 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7590 {
7591 if (!GOT_symbol)
7592 {
7593 if (symbol_find (name))
7594 as_bad (_("GOT already in the symbol table"));
7595
7596 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 7597 &zero_address_frag, 0);
a06ea964
NC
7598 }
7599
7600 return GOT_symbol;
7601 }
7602#endif
7603
7604 return 0;
7605}
7606
7607/* Return non-zero if the indicated VALUE has overflowed the maximum
7608 range expressible by a unsigned number with the indicated number of
7609 BITS. */
7610
7611static bfd_boolean
7612unsigned_overflow (valueT value, unsigned bits)
7613{
7614 valueT lim;
7615 if (bits >= sizeof (valueT) * 8)
7616 return FALSE;
7617 lim = (valueT) 1 << bits;
7618 return (value >= lim);
7619}
7620
7621
7622/* Return non-zero if the indicated VALUE has overflowed the maximum
7623 range expressible by an signed number with the indicated number of
7624 BITS. */
7625
7626static bfd_boolean
7627signed_overflow (offsetT value, unsigned bits)
7628{
7629 offsetT lim;
7630 if (bits >= sizeof (offsetT) * 8)
7631 return FALSE;
7632 lim = (offsetT) 1 << (bits - 1);
7633 return (value < -lim || value >= lim);
7634}
7635
7636/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7637 unsigned immediate offset load/store instruction, try to encode it as
7638 an unscaled, 9-bit, signed immediate offset load/store instruction.
7639 Return TRUE if it is successful; otherwise return FALSE.
7640
7641 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7642 in response to the standard LDR/STR mnemonics when the immediate offset is
7643 unambiguous, i.e. when it is negative or unaligned. */
7644
7645static bfd_boolean
7646try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7647{
7648 int idx;
7649 enum aarch64_op new_op;
7650 const aarch64_opcode *new_opcode;
7651
7652 gas_assert (instr->opcode->iclass == ldst_pos);
7653
7654 switch (instr->opcode->op)
7655 {
7656 case OP_LDRB_POS:new_op = OP_LDURB; break;
7657 case OP_STRB_POS: new_op = OP_STURB; break;
7658 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7659 case OP_LDRH_POS: new_op = OP_LDURH; break;
7660 case OP_STRH_POS: new_op = OP_STURH; break;
7661 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7662 case OP_LDR_POS: new_op = OP_LDUR; break;
7663 case OP_STR_POS: new_op = OP_STUR; break;
7664 case OP_LDRF_POS: new_op = OP_LDURV; break;
7665 case OP_STRF_POS: new_op = OP_STURV; break;
7666 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7667 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7668 default: new_op = OP_NIL; break;
7669 }
7670
7671 if (new_op == OP_NIL)
7672 return FALSE;
7673
7674 new_opcode = aarch64_get_opcode (new_op);
7675 gas_assert (new_opcode != NULL);
7676
7677 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7678 instr->opcode->op, new_opcode->op);
7679
7680 aarch64_replace_opcode (instr, new_opcode);
7681
7682 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7683 qualifier matching may fail because the out-of-date qualifier will
7684 prevent the operand being updated with a new and correct qualifier. */
7685 idx = aarch64_operand_index (instr->opcode->operands,
7686 AARCH64_OPND_ADDR_SIMM9);
7687 gas_assert (idx == 1);
7688 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7689
7690 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7691
7e84b55d
TC
7692 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
7693 insn_sequence))
a06ea964
NC
7694 return FALSE;
7695
7696 return TRUE;
7697}
7698
7699/* Called by fix_insn to fix a MOV immediate alias instruction.
7700
7701 Operand for a generic move immediate instruction, which is an alias
7702 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7703 a 32-bit/64-bit immediate value into general register. An assembler error
7704 shall result if the immediate cannot be created by a single one of these
7705 instructions. If there is a choice, then to ensure reversability an
7706 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7707
7708static void
7709fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7710{
7711 const aarch64_opcode *opcode;
7712
7713 /* Need to check if the destination is SP/ZR. The check has to be done
7714 before any aarch64_replace_opcode. */
7715 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7716 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7717
7718 instr->operands[1].imm.value = value;
7719 instr->operands[1].skip = 0;
7720
7721 if (try_mov_wide_p)
7722 {
7723 /* Try the MOVZ alias. */
7724 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7725 aarch64_replace_opcode (instr, opcode);
7726 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7727 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7728 {
7729 put_aarch64_insn (buf, instr->value);
7730 return;
7731 }
7732 /* Try the MOVK alias. */
7733 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7734 aarch64_replace_opcode (instr, opcode);
7735 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7736 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7737 {
7738 put_aarch64_insn (buf, instr->value);
7739 return;
7740 }
7741 }
7742
7743 if (try_mov_bitmask_p)
7744 {
7745 /* Try the ORR alias. */
7746 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7747 aarch64_replace_opcode (instr, opcode);
7748 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7749 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7750 {
7751 put_aarch64_insn (buf, instr->value);
7752 return;
7753 }
7754 }
7755
7756 as_bad_where (fixP->fx_file, fixP->fx_line,
7757 _("immediate cannot be moved by a single instruction"));
7758}
7759
7760/* An instruction operand which is immediate related may have symbol used
7761 in the assembly, e.g.
7762
7763 mov w0, u32
7764 .set u32, 0x00ffff00
7765
7766 At the time when the assembly instruction is parsed, a referenced symbol,
7767 like 'u32' in the above example may not have been seen; a fixS is created
7768 in such a case and is handled here after symbols have been resolved.
7769 Instruction is fixed up with VALUE using the information in *FIXP plus
7770 extra information in FLAGS.
7771
7772 This function is called by md_apply_fix to fix up instructions that need
7773 a fix-up described above but does not involve any linker-time relocation. */
7774
7775static void
7776fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7777{
7778 int idx;
7779 uint32_t insn;
7780 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7781 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7782 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7783
7784 if (new_inst)
7785 {
7786 /* Now the instruction is about to be fixed-up, so the operand that
7787 was previously marked as 'ignored' needs to be unmarked in order
7788 to get the encoding done properly. */
7789 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7790 new_inst->operands[idx].skip = 0;
7791 }
7792
7793 gas_assert (opnd != AARCH64_OPND_NIL);
7794
7795 switch (opnd)
7796 {
7797 case AARCH64_OPND_EXCEPTION:
09c1e68a 7798 case AARCH64_OPND_UNDEFINED:
a06ea964
NC
7799 if (unsigned_overflow (value, 16))
7800 as_bad_where (fixP->fx_file, fixP->fx_line,
7801 _("immediate out of range"));
7802 insn = get_aarch64_insn (buf);
09c1e68a 7803 insn |= (opnd == AARCH64_OPND_EXCEPTION) ? encode_svc_imm (value) : value;
a06ea964
NC
7804 put_aarch64_insn (buf, insn);
7805 break;
7806
7807 case AARCH64_OPND_AIMM:
7808 /* ADD or SUB with immediate.
7809 NOTE this assumes we come here with a add/sub shifted reg encoding
7810 3 322|2222|2 2 2 21111 111111
7811 1 098|7654|3 2 1 09876 543210 98765 43210
7812 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7813 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7814 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7815 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7816 ->
7817 3 322|2222|2 2 221111111111
7818 1 098|7654|3 2 109876543210 98765 43210
7819 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7820 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7821 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7822 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7823 Fields sf Rn Rd are already set. */
7824 insn = get_aarch64_insn (buf);
7825 if (value < 0)
7826 {
7827 /* Add <-> sub. */
7828 insn = reencode_addsub_switch_add_sub (insn);
7829 value = -value;
7830 }
7831
7832 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7833 && unsigned_overflow (value, 12))
7834 {
7835 /* Try to shift the value by 12 to make it fit. */
7836 if (((value >> 12) << 12) == value
7837 && ! unsigned_overflow (value, 12 + 12))
7838 {
7839 value >>= 12;
7840 insn |= encode_addsub_imm_shift_amount (1);
7841 }
7842 }
7843
7844 if (unsigned_overflow (value, 12))
7845 as_bad_where (fixP->fx_file, fixP->fx_line,
7846 _("immediate out of range"));
7847
7848 insn |= encode_addsub_imm (value);
7849
7850 put_aarch64_insn (buf, insn);
7851 break;
7852
7853 case AARCH64_OPND_SIMD_IMM:
7854 case AARCH64_OPND_SIMD_IMM_SFT:
7855 case AARCH64_OPND_LIMM:
7856 /* Bit mask immediate. */
7857 gas_assert (new_inst != NULL);
7858 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7859 new_inst->operands[idx].imm.value = value;
7860 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7861 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7862 put_aarch64_insn (buf, new_inst->value);
7863 else
7864 as_bad_where (fixP->fx_file, fixP->fx_line,
7865 _("invalid immediate"));
7866 break;
7867
7868 case AARCH64_OPND_HALF:
7869 /* 16-bit unsigned immediate. */
7870 if (unsigned_overflow (value, 16))
7871 as_bad_where (fixP->fx_file, fixP->fx_line,
7872 _("immediate out of range"));
7873 insn = get_aarch64_insn (buf);
7874 insn |= encode_movw_imm (value & 0xffff);
7875 put_aarch64_insn (buf, insn);
7876 break;
7877
7878 case AARCH64_OPND_IMM_MOV:
7879 /* Operand for a generic move immediate instruction, which is
7880 an alias instruction that generates a single MOVZ, MOVN or ORR
7881 instruction to loads a 32-bit/64-bit immediate value into general
7882 register. An assembler error shall result if the immediate cannot be
7883 created by a single one of these instructions. If there is a choice,
7884 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7885 and MOVZ or MOVN to ORR. */
7886 gas_assert (new_inst != NULL);
7887 fix_mov_imm_insn (fixP, buf, new_inst, value);
7888 break;
7889
7890 case AARCH64_OPND_ADDR_SIMM7:
7891 case AARCH64_OPND_ADDR_SIMM9:
7892 case AARCH64_OPND_ADDR_SIMM9_2:
3f06e550 7893 case AARCH64_OPND_ADDR_SIMM10:
a06ea964 7894 case AARCH64_OPND_ADDR_UIMM12:
fb3265b3
SD
7895 case AARCH64_OPND_ADDR_SIMM11:
7896 case AARCH64_OPND_ADDR_SIMM13:
a06ea964
NC
7897 /* Immediate offset in an address. */
7898 insn = get_aarch64_insn (buf);
7899
7900 gas_assert (new_inst != NULL && new_inst->value == insn);
7901 gas_assert (new_inst->opcode->operands[1] == opnd
7902 || new_inst->opcode->operands[2] == opnd);
7903
7904 /* Get the index of the address operand. */
7905 if (new_inst->opcode->operands[1] == opnd)
7906 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7907 idx = 1;
7908 else
7909 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7910 idx = 2;
7911
7912 /* Update the resolved offset value. */
7913 new_inst->operands[idx].addr.offset.imm = value;
7914
7915 /* Encode/fix-up. */
7916 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7917 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7918 {
7919 put_aarch64_insn (buf, new_inst->value);
7920 break;
7921 }
7922 else if (new_inst->opcode->iclass == ldst_pos
7923 && try_to_encode_as_unscaled_ldst (new_inst))
7924 {
7925 put_aarch64_insn (buf, new_inst->value);
7926 break;
7927 }
7928
7929 as_bad_where (fixP->fx_file, fixP->fx_line,
7930 _("immediate offset out of range"));
7931 break;
7932
7933 default:
7934 gas_assert (0);
7935 as_fatal (_("unhandled operand code %d"), opnd);
7936 }
7937}
7938
7939/* Apply a fixup (fixP) to segment data, once it has been determined
7940 by our caller that we have all the info we need to fix it up.
7941
7942 Parameter valP is the pointer to the value of the bits. */
7943
7944void
7945md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7946{
7947 offsetT value = *valP;
7948 uint32_t insn;
7949 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7950 int scale;
7951 unsigned flags = fixP->fx_addnumber;
7952
7953 DEBUG_TRACE ("\n\n");
7954 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7955 DEBUG_TRACE ("Enter md_apply_fix");
7956
7957 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7958
7959 /* Note whether this will delete the relocation. */
7960
7961 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7962 fixP->fx_done = 1;
7963
7964 /* Process the relocations. */
7965 switch (fixP->fx_r_type)
7966 {
7967 case BFD_RELOC_NONE:
7968 /* This will need to go in the object file. */
7969 fixP->fx_done = 0;
7970 break;
7971
7972 case BFD_RELOC_8:
7973 case BFD_RELOC_8_PCREL:
7974 if (fixP->fx_done || !seg->use_rela_p)
7975 md_number_to_chars (buf, value, 1);
7976 break;
7977
7978 case BFD_RELOC_16:
7979 case BFD_RELOC_16_PCREL:
7980 if (fixP->fx_done || !seg->use_rela_p)
7981 md_number_to_chars (buf, value, 2);
7982 break;
7983
7984 case BFD_RELOC_32:
7985 case BFD_RELOC_32_PCREL:
7986 if (fixP->fx_done || !seg->use_rela_p)
7987 md_number_to_chars (buf, value, 4);
7988 break;
7989
7990 case BFD_RELOC_64:
7991 case BFD_RELOC_64_PCREL:
7992 if (fixP->fx_done || !seg->use_rela_p)
7993 md_number_to_chars (buf, value, 8);
7994 break;
7995
7996 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7997 /* We claim that these fixups have been processed here, even if
7998 in fact we generate an error because we do not have a reloc
7999 for them, so tc_gen_reloc() will reject them. */
8000 fixP->fx_done = 1;
8001 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
8002 {
8003 as_bad_where (fixP->fx_file, fixP->fx_line,
8004 _("undefined symbol %s used as an immediate value"),
8005 S_GET_NAME (fixP->fx_addsy));
8006 goto apply_fix_return;
8007 }
8008 fix_insn (fixP, flags, value);
8009 break;
8010
8011 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
8012 if (fixP->fx_done || !seg->use_rela_p)
8013 {
89d2a2a3
MS
8014 if (value & 3)
8015 as_bad_where (fixP->fx_file, fixP->fx_line,
8016 _("pc-relative load offset not word aligned"));
8017 if (signed_overflow (value, 21))
8018 as_bad_where (fixP->fx_file, fixP->fx_line,
8019 _("pc-relative load offset out of range"));
a06ea964
NC
8020 insn = get_aarch64_insn (buf);
8021 insn |= encode_ld_lit_ofs_19 (value >> 2);
8022 put_aarch64_insn (buf, insn);
8023 }
8024 break;
8025
8026 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
8027 if (fixP->fx_done || !seg->use_rela_p)
8028 {
89d2a2a3
MS
8029 if (signed_overflow (value, 21))
8030 as_bad_where (fixP->fx_file, fixP->fx_line,
8031 _("pc-relative address offset out of range"));
a06ea964
NC
8032 insn = get_aarch64_insn (buf);
8033 insn |= encode_adr_imm (value);
8034 put_aarch64_insn (buf, insn);
8035 }
8036 break;
8037
8038 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
8039 if (fixP->fx_done || !seg->use_rela_p)
8040 {
89d2a2a3
MS
8041 if (value & 3)
8042 as_bad_where (fixP->fx_file, fixP->fx_line,
8043 _("conditional branch target not word aligned"));
8044 if (signed_overflow (value, 21))
8045 as_bad_where (fixP->fx_file, fixP->fx_line,
8046 _("conditional branch out of range"));
a06ea964
NC
8047 insn = get_aarch64_insn (buf);
8048 insn |= encode_cond_branch_ofs_19 (value >> 2);
8049 put_aarch64_insn (buf, insn);
8050 }
8051 break;
8052
8053 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
8054 if (fixP->fx_done || !seg->use_rela_p)
8055 {
89d2a2a3
MS
8056 if (value & 3)
8057 as_bad_where (fixP->fx_file, fixP->fx_line,
8058 _("conditional branch target not word aligned"));
8059 if (signed_overflow (value, 16))
8060 as_bad_where (fixP->fx_file, fixP->fx_line,
8061 _("conditional branch out of range"));
a06ea964
NC
8062 insn = get_aarch64_insn (buf);
8063 insn |= encode_tst_branch_ofs_14 (value >> 2);
8064 put_aarch64_insn (buf, insn);
8065 }
8066 break;
8067
a06ea964 8068 case BFD_RELOC_AARCH64_CALL26:
f09c556a 8069 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
8070 if (fixP->fx_done || !seg->use_rela_p)
8071 {
89d2a2a3
MS
8072 if (value & 3)
8073 as_bad_where (fixP->fx_file, fixP->fx_line,
8074 _("branch target not word aligned"));
8075 if (signed_overflow (value, 28))
8076 as_bad_where (fixP->fx_file, fixP->fx_line,
8077 _("branch out of range"));
a06ea964
NC
8078 insn = get_aarch64_insn (buf);
8079 insn |= encode_branch_ofs_26 (value >> 2);
8080 put_aarch64_insn (buf, insn);
8081 }
8082 break;
8083
8084 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 8085 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 8086 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 8087 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
8088 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8089 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
a06ea964
NC
8090 scale = 0;
8091 goto movw_common;
8092 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 8093 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 8094 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 8095 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
8096 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8097 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
a06ea964
NC
8098 scale = 16;
8099 goto movw_common;
43a357f9
RL
8100 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8101 scale = 0;
8102 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8103 /* Should always be exported to object file, see
8104 aarch64_force_relocation(). */
8105 gas_assert (!fixP->fx_done);
8106 gas_assert (seg->use_rela_p);
8107 goto movw_common;
8108 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8109 scale = 16;
8110 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8111 /* Should always be exported to object file, see
8112 aarch64_force_relocation(). */
8113 gas_assert (!fixP->fx_done);
8114 gas_assert (seg->use_rela_p);
8115 goto movw_common;
a06ea964 8116 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 8117 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 8118 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
8119 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
8120 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
a06ea964
NC
8121 scale = 32;
8122 goto movw_common;
8123 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 8124 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
8125 scale = 48;
8126 movw_common:
8127 if (fixP->fx_done || !seg->use_rela_p)
8128 {
8129 insn = get_aarch64_insn (buf);
8130
8131 if (!fixP->fx_done)
8132 {
8133 /* REL signed addend must fit in 16 bits */
8134 if (signed_overflow (value, 16))
8135 as_bad_where (fixP->fx_file, fixP->fx_line,
8136 _("offset out of range"));
8137 }
8138 else
8139 {
8140 /* Check for overflow and scale. */
8141 switch (fixP->fx_r_type)
8142 {
8143 case BFD_RELOC_AARCH64_MOVW_G0:
8144 case BFD_RELOC_AARCH64_MOVW_G1:
8145 case BFD_RELOC_AARCH64_MOVW_G2:
8146 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 8147 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 8148 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
8149 if (unsigned_overflow (value, scale + 16))
8150 as_bad_where (fixP->fx_file, fixP->fx_line,
8151 _("unsigned value out of range"));
8152 break;
8153 case BFD_RELOC_AARCH64_MOVW_G0_S:
8154 case BFD_RELOC_AARCH64_MOVW_G1_S:
8155 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
8156 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8157 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8158 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
a06ea964
NC
8159 /* NOTE: We can only come here with movz or movn. */
8160 if (signed_overflow (value, scale + 16))
8161 as_bad_where (fixP->fx_file, fixP->fx_line,
8162 _("signed value out of range"));
8163 if (value < 0)
8164 {
8165 /* Force use of MOVN. */
8166 value = ~value;
8167 insn = reencode_movzn_to_movn (insn);
8168 }
8169 else
8170 {
8171 /* Force use of MOVZ. */
8172 insn = reencode_movzn_to_movz (insn);
8173 }
8174 break;
8175 default:
8176 /* Unchecked relocations. */
8177 break;
8178 }
8179 value >>= scale;
8180 }
8181
8182 /* Insert value into MOVN/MOVZ/MOVK instruction. */
8183 insn |= encode_movw_imm (value & 0xffff);
8184
8185 put_aarch64_insn (buf, insn);
8186 }
8187 break;
8188
a6bb11b2
YZ
8189 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8190 fixP->fx_r_type = (ilp32_p
8191 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
8192 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8193 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8194 /* Should always be exported to object file, see
8195 aarch64_force_relocation(). */
8196 gas_assert (!fixP->fx_done);
8197 gas_assert (seg->use_rela_p);
8198 break;
8199
8200 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8201 fixP->fx_r_type = (ilp32_p
8202 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
f955cccf 8203 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
a6bb11b2
YZ
8204 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8205 /* Should always be exported to object file, see
8206 aarch64_force_relocation(). */
8207 gas_assert (!fixP->fx_done);
8208 gas_assert (seg->use_rela_p);
8209 break;
8210
f955cccf 8211 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8212 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8213 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8214 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8215 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8216 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 8217 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8218 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8219 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8220 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8221 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8222 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8223 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8224 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8225 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8226 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8227 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 8228 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8229 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8230 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8231 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8232 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8233 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8234 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8235 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8236 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8237 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8238 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8239 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8240 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8241 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8242 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8243 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8244 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8245 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8246 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8247 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8248 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8249 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8250 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8251 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8252 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8253 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8254 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8255 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8256 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8257 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8258 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8259 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8260 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8261 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8262 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8263 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8264 /* Should always be exported to object file, see
8265 aarch64_force_relocation(). */
8266 gas_assert (!fixP->fx_done);
8267 gas_assert (seg->use_rela_p);
8268 break;
8269
a6bb11b2
YZ
8270 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8271 /* Should always be exported to object file, see
8272 aarch64_force_relocation(). */
8273 fixP->fx_r_type = (ilp32_p
8274 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
8275 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
8276 gas_assert (!fixP->fx_done);
8277 gas_assert (seg->use_rela_p);
8278 break;
8279
a06ea964 8280 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
8281 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8282 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8283 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8284 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8285 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8286 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8287 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8288 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
8289 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8290 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
8291 case BFD_RELOC_AARCH64_LDST16_LO12:
8292 case BFD_RELOC_AARCH64_LDST32_LO12:
8293 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 8294 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
8295 /* Should always be exported to object file, see
8296 aarch64_force_relocation(). */
8297 gas_assert (!fixP->fx_done);
8298 gas_assert (seg->use_rela_p);
8299 break;
8300
8301 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 8302 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 8303 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
8304 break;
8305
b97e87cc
NC
8306 case BFD_RELOC_UNUSED:
8307 /* An error will already have been reported. */
8308 break;
8309
a06ea964
NC
8310 default:
8311 as_bad_where (fixP->fx_file, fixP->fx_line,
8312 _("unexpected %s fixup"),
8313 bfd_get_reloc_code_name (fixP->fx_r_type));
8314 break;
8315 }
8316
dc1e8a47 8317 apply_fix_return:
a06ea964
NC
8318 /* Free the allocated the struct aarch64_inst.
8319 N.B. currently there are very limited number of fix-up types actually use
8320 this field, so the impact on the performance should be minimal . */
9fbb53c7 8321 free (fixP->tc_fix_data.inst);
a06ea964
NC
8322
8323 return;
8324}
8325
8326/* Translate internal representation of relocation info to BFD target
8327 format. */
8328
8329arelent *
8330tc_gen_reloc (asection * section, fixS * fixp)
8331{
8332 arelent *reloc;
8333 bfd_reloc_code_real_type code;
8334
325801bd 8335 reloc = XNEW (arelent);
a06ea964 8336
325801bd 8337 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
8338 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8339 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8340
8341 if (fixp->fx_pcrel)
8342 {
8343 if (section->use_rela_p)
8344 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8345 else
8346 fixp->fx_offset = reloc->address;
8347 }
8348 reloc->addend = fixp->fx_offset;
8349
8350 code = fixp->fx_r_type;
8351 switch (code)
8352 {
8353 case BFD_RELOC_16:
8354 if (fixp->fx_pcrel)
8355 code = BFD_RELOC_16_PCREL;
8356 break;
8357
8358 case BFD_RELOC_32:
8359 if (fixp->fx_pcrel)
8360 code = BFD_RELOC_32_PCREL;
8361 break;
8362
8363 case BFD_RELOC_64:
8364 if (fixp->fx_pcrel)
8365 code = BFD_RELOC_64_PCREL;
8366 break;
8367
8368 default:
8369 break;
8370 }
8371
8372 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8373 if (reloc->howto == NULL)
8374 {
8375 as_bad_where (fixp->fx_file, fixp->fx_line,
8376 _
8377 ("cannot represent %s relocation in this object file format"),
8378 bfd_get_reloc_code_name (code));
8379 return NULL;
8380 }
8381
8382 return reloc;
8383}
8384
8385/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8386
8387void
8388cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8389{
8390 bfd_reloc_code_real_type type;
8391 int pcrel = 0;
8392
8393 /* Pick a reloc.
8394 FIXME: @@ Should look at CPU word size. */
8395 switch (size)
8396 {
8397 case 1:
8398 type = BFD_RELOC_8;
8399 break;
8400 case 2:
8401 type = BFD_RELOC_16;
8402 break;
8403 case 4:
8404 type = BFD_RELOC_32;
8405 break;
8406 case 8:
8407 type = BFD_RELOC_64;
8408 break;
8409 default:
8410 as_bad (_("cannot do %u-byte relocation"), size);
8411 type = BFD_RELOC_UNUSED;
8412 break;
8413 }
8414
8415 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8416}
8417
8418int
8419aarch64_force_relocation (struct fix *fixp)
8420{
8421 switch (fixp->fx_r_type)
8422 {
8423 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8424 /* Perform these "immediate" internal relocations
8425 even if the symbol is extern or weak. */
8426 return 0;
8427
a6bb11b2 8428 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
8429 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8430 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
8431 /* Pseudo relocs that need to be fixed up according to
8432 ilp32_p. */
8433 return 0;
8434
2c0a3565
MS
8435 case BFD_RELOC_AARCH64_ADD_LO12:
8436 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8437 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8438 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8439 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8440 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8441 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8442 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8443 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
8444 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8445 case BFD_RELOC_AARCH64_LDST128_LO12:
8446 case BFD_RELOC_AARCH64_LDST16_LO12:
8447 case BFD_RELOC_AARCH64_LDST32_LO12:
8448 case BFD_RELOC_AARCH64_LDST64_LO12:
8449 case BFD_RELOC_AARCH64_LDST8_LO12:
f955cccf 8450 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8451 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8452 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8453 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8454 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8455 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
8456 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8457 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 8458 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8459 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8460 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8461 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8462 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8463 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8464 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8465 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8466 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8467 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8468 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8469 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8470 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8471 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8472 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8473 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8474 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8475 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8476 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8477 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8478 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8479 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8480 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8481 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8482 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8483 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8484 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8485 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8486 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8487 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8488 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8489 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8490 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8491 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8492 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8493 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8494 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8495 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8496 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8497 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8498 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8499 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8500 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8501 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8502 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8503 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8504 /* Always leave these relocations for the linker. */
8505 return 1;
8506
8507 default:
8508 break;
8509 }
8510
8511 return generic_force_reloc (fixp);
8512}
8513
8514#ifdef OBJ_ELF
8515
3c0367d0
JW
8516/* Implement md_after_parse_args. This is the earliest time we need to decide
8517 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8518
8519void
8520aarch64_after_parse_args (void)
8521{
8522 if (aarch64_abi != AARCH64_ABI_NONE)
8523 return;
8524
8525 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8526 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8527 aarch64_abi = AARCH64_ABI_ILP32;
8528 else
8529 aarch64_abi = AARCH64_ABI_LP64;
8530}
8531
a06ea964
NC
8532const char *
8533elf64_aarch64_target_format (void)
8534{
12400dcc
AM
8535#ifdef TE_CLOUDABI
8536 /* FIXME: What to do for ilp32_p ? */
8537 if (target_big_endian)
8538 return "elf64-bigaarch64-cloudabi";
8539 else
8540 return "elf64-littleaarch64-cloudabi";
8541#else
a06ea964 8542 if (target_big_endian)
cec5225b 8543 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 8544 else
cec5225b 8545 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
12400dcc 8546#endif
a06ea964
NC
8547}
8548
8549void
8550aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8551{
8552 elf_frob_symbol (symp, puntp);
8553}
8554#endif
8555
8556/* MD interface: Finalization. */
8557
8558/* A good place to do this, although this was probably not intended
8559 for this kind of use. We need to dump the literal pool before
8560 references are made to a null symbol pointer. */
8561
8562void
8563aarch64_cleanup (void)
8564{
8565 literal_pool *pool;
8566
8567 for (pool = list_of_pools; pool; pool = pool->next)
8568 {
8569 /* Put it at the end of the relevant section. */
8570 subseg_set (pool->section, pool->sub_section);
8571 s_ltorg (0);
8572 }
8573}
8574
8575#ifdef OBJ_ELF
8576/* Remove any excess mapping symbols generated for alignment frags in
8577 SEC. We may have created a mapping symbol before a zero byte
8578 alignment; remove it if there's a mapping symbol after the
8579 alignment. */
8580static void
8581check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8582 void *dummy ATTRIBUTE_UNUSED)
8583{
8584 segment_info_type *seginfo = seg_info (sec);
8585 fragS *fragp;
8586
8587 if (seginfo == NULL || seginfo->frchainP == NULL)
8588 return;
8589
8590 for (fragp = seginfo->frchainP->frch_root;
8591 fragp != NULL; fragp = fragp->fr_next)
8592 {
8593 symbolS *sym = fragp->tc_frag_data.last_map;
8594 fragS *next = fragp->fr_next;
8595
8596 /* Variable-sized frags have been converted to fixed size by
8597 this point. But if this was variable-sized to start with,
8598 there will be a fixed-size frag after it. So don't handle
8599 next == NULL. */
8600 if (sym == NULL || next == NULL)
8601 continue;
8602
8603 if (S_GET_VALUE (sym) < next->fr_address)
8604 /* Not at the end of this frag. */
8605 continue;
8606 know (S_GET_VALUE (sym) == next->fr_address);
8607
8608 do
8609 {
8610 if (next->tc_frag_data.first_map != NULL)
8611 {
8612 /* Next frag starts with a mapping symbol. Discard this
8613 one. */
8614 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8615 break;
8616 }
8617
8618 if (next->fr_next == NULL)
8619 {
8620 /* This mapping symbol is at the end of the section. Discard
8621 it. */
8622 know (next->fr_fix == 0 && next->fr_var == 0);
8623 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8624 break;
8625 }
8626
8627 /* As long as we have empty frags without any mapping symbols,
8628 keep looking. */
8629 /* If the next frag is non-empty and does not start with a
8630 mapping symbol, then this mapping symbol is required. */
8631 if (next->fr_address != next->fr_next->fr_address)
8632 break;
8633
8634 next = next->fr_next;
8635 }
8636 while (next != NULL);
8637 }
8638}
8639#endif
8640
8641/* Adjust the symbol table. */
8642
8643void
8644aarch64_adjust_symtab (void)
8645{
8646#ifdef OBJ_ELF
8647 /* Remove any overlapping mapping symbols generated by alignment frags. */
8648 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8649 /* Now do generic ELF adjustments. */
8650 elf_adjust_symtab ();
8651#endif
8652}
8653
8654static void
629310ab 8655checked_hash_insert (htab_t table, const char *key, void *value)
a06ea964 8656{
fe0e921f 8657 str_hash_insert (table, key, value, 0);
a06ea964
NC
8658}
8659
fa63795f 8660static void
629310ab 8661sysreg_hash_insert (htab_t table, const char *key, void *value)
fa63795f
AC
8662{
8663 gas_assert (strlen (key) < AARCH64_MAX_SYSREG_NAME_LEN);
8664 checked_hash_insert (table, key, value);
8665}
8666
a06ea964
NC
8667static void
8668fill_instruction_hash_table (void)
8669{
8670 aarch64_opcode *opcode = aarch64_opcode_table;
8671
8672 while (opcode->name != NULL)
8673 {
8674 templates *templ, *new_templ;
629310ab 8675 templ = str_hash_find (aarch64_ops_hsh, opcode->name);
a06ea964 8676
add39d23 8677 new_templ = XNEW (templates);
a06ea964
NC
8678 new_templ->opcode = opcode;
8679 new_templ->next = NULL;
8680
8681 if (!templ)
8682 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8683 else
8684 {
8685 new_templ->next = templ->next;
8686 templ->next = new_templ;
8687 }
8688 ++opcode;
8689 }
8690}
8691
8692static inline void
8693convert_to_upper (char *dst, const char *src, size_t num)
8694{
8695 unsigned int i;
8696 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8697 *dst = TOUPPER (*src);
8698 *dst = '\0';
8699}
8700
8701/* Assume STR point to a lower-case string, allocate, convert and return
8702 the corresponding upper-case string. */
8703static inline const char*
8704get_upper_str (const char *str)
8705{
8706 char *ret;
8707 size_t len = strlen (str);
325801bd 8708 ret = XNEWVEC (char, len + 1);
a06ea964
NC
8709 convert_to_upper (ret, str, len);
8710 return ret;
8711}
8712
8713/* MD interface: Initialization. */
8714
8715void
8716md_begin (void)
8717{
8718 unsigned mach;
8719 unsigned int i;
8720
f16c3d4f
AM
8721 aarch64_ops_hsh = str_htab_create ();
8722 aarch64_cond_hsh = str_htab_create ();
8723 aarch64_shift_hsh = str_htab_create ();
8724 aarch64_sys_regs_hsh = str_htab_create ();
8725 aarch64_pstatefield_hsh = str_htab_create ();
8726 aarch64_sys_regs_ic_hsh = str_htab_create ();
8727 aarch64_sys_regs_dc_hsh = str_htab_create ();
8728 aarch64_sys_regs_at_hsh = str_htab_create ();
8729 aarch64_sys_regs_tlbi_hsh = str_htab_create ();
8730 aarch64_sys_regs_sr_hsh = str_htab_create ();
8731 aarch64_reg_hsh = str_htab_create ();
8732 aarch64_barrier_opt_hsh = str_htab_create ();
8733 aarch64_nzcv_hsh = str_htab_create ();
8734 aarch64_pldop_hsh = str_htab_create ();
8735 aarch64_hint_opt_hsh = str_htab_create ();
a06ea964
NC
8736
8737 fill_instruction_hash_table ();
8738
8739 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
fa63795f 8740 sysreg_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
a06ea964
NC
8741 (void *) (aarch64_sys_regs + i));
8742
8743 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
fa63795f 8744 sysreg_hash_insert (aarch64_pstatefield_hsh,
a06ea964
NC
8745 aarch64_pstatefields[i].name,
8746 (void *) (aarch64_pstatefields + i));
8747
875880c6 8748 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
fa63795f 8749 sysreg_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 8750 aarch64_sys_regs_ic[i].name,
a06ea964
NC
8751 (void *) (aarch64_sys_regs_ic + i));
8752
875880c6 8753 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
fa63795f 8754 sysreg_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 8755 aarch64_sys_regs_dc[i].name,
a06ea964
NC
8756 (void *) (aarch64_sys_regs_dc + i));
8757
875880c6 8758 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
fa63795f 8759 sysreg_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 8760 aarch64_sys_regs_at[i].name,
a06ea964
NC
8761 (void *) (aarch64_sys_regs_at + i));
8762
875880c6 8763 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
fa63795f 8764 sysreg_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 8765 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
8766 (void *) (aarch64_sys_regs_tlbi + i));
8767
2ac435d4 8768 for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
fa63795f 8769 sysreg_hash_insert (aarch64_sys_regs_sr_hsh,
2ac435d4
SD
8770 aarch64_sys_regs_sr[i].name,
8771 (void *) (aarch64_sys_regs_sr + i));
8772
a06ea964
NC
8773 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8774 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8775 (void *) (reg_names + i));
8776
8777 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8778 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8779 (void *) (nzcv_names + i));
8780
8781 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8782 {
8783 const char *name = aarch64_operand_modifiers[i].name;
8784 checked_hash_insert (aarch64_shift_hsh, name,
8785 (void *) (aarch64_operand_modifiers + i));
8786 /* Also hash the name in the upper case. */
8787 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8788 (void *) (aarch64_operand_modifiers + i));
8789 }
8790
8791 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8792 {
8793 unsigned int j;
8794 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8795 the same condition code. */
8796 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8797 {
8798 const char *name = aarch64_conds[i].names[j];
8799 if (name == NULL)
8800 break;
8801 checked_hash_insert (aarch64_cond_hsh, name,
8802 (void *) (aarch64_conds + i));
8803 /* Also hash the name in the upper case. */
8804 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8805 (void *) (aarch64_conds + i));
8806 }
8807 }
8808
8809 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8810 {
8811 const char *name = aarch64_barrier_options[i].name;
8812 /* Skip xx00 - the unallocated values of option. */
8813 if ((i & 0x3) == 0)
8814 continue;
8815 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8816 (void *) (aarch64_barrier_options + i));
8817 /* Also hash the name in the upper case. */
8818 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8819 (void *) (aarch64_barrier_options + i));
8820 }
8821
fd195909
PW
8822 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_dsb_nxs_options); i++)
8823 {
8824 const char *name = aarch64_barrier_dsb_nxs_options[i].name;
8825 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8826 (void *) (aarch64_barrier_dsb_nxs_options + i));
8827 /* Also hash the name in the upper case. */
8828 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8829 (void *) (aarch64_barrier_dsb_nxs_options + i));
8830 }
8831
a06ea964
NC
8832 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8833 {
8834 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
8835 /* Skip the unallocated hint encodings. */
8836 if (name == NULL)
a06ea964
NC
8837 continue;
8838 checked_hash_insert (aarch64_pldop_hsh, name,
8839 (void *) (aarch64_prfops + i));
8840 /* Also hash the name in the upper case. */
8841 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8842 (void *) (aarch64_prfops + i));
8843 }
8844
1e6f4800
MW
8845 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8846 {
8847 const char* name = aarch64_hint_options[i].name;
0a821c4f 8848 const char* upper_name = get_upper_str(name);
1e6f4800
MW
8849
8850 checked_hash_insert (aarch64_hint_opt_hsh, name,
8851 (void *) (aarch64_hint_options + i));
0a821c4f
AP
8852
8853 /* Also hash the name in the upper case if not the same. */
8854 if (strcmp (name, upper_name) != 0)
8855 checked_hash_insert (aarch64_hint_opt_hsh, upper_name,
8856 (void *) (aarch64_hint_options + i));
1e6f4800
MW
8857 }
8858
a06ea964
NC
8859 /* Set the cpu variant based on the command-line options. */
8860 if (!mcpu_cpu_opt)
8861 mcpu_cpu_opt = march_cpu_opt;
8862
8863 if (!mcpu_cpu_opt)
8864 mcpu_cpu_opt = &cpu_default;
8865
8866 cpu_variant = *mcpu_cpu_opt;
8867
8868 /* Record the CPU type. */
cec5225b 8869 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
8870
8871 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8872}
8873
8874/* Command line processing. */
8875
8876const char *md_shortopts = "m:";
8877
8878#ifdef AARCH64_BI_ENDIAN
8879#define OPTION_EB (OPTION_MD_BASE + 0)
8880#define OPTION_EL (OPTION_MD_BASE + 1)
8881#else
8882#if TARGET_BYTES_BIG_ENDIAN
8883#define OPTION_EB (OPTION_MD_BASE + 0)
8884#else
8885#define OPTION_EL (OPTION_MD_BASE + 1)
8886#endif
8887#endif
8888
8889struct option md_longopts[] = {
8890#ifdef OPTION_EB
8891 {"EB", no_argument, NULL, OPTION_EB},
8892#endif
8893#ifdef OPTION_EL
8894 {"EL", no_argument, NULL, OPTION_EL},
8895#endif
8896 {NULL, no_argument, NULL, 0}
8897};
8898
8899size_t md_longopts_size = sizeof (md_longopts);
8900
8901struct aarch64_option_table
8902{
e0471c16
TS
8903 const char *option; /* Option name to match. */
8904 const char *help; /* Help information. */
a06ea964
NC
8905 int *var; /* Variable to change. */
8906 int value; /* What to change it to. */
8907 char *deprecated; /* If non-null, print this message. */
8908};
8909
8910static struct aarch64_option_table aarch64_opts[] = {
8911 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8912 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8913 NULL},
8914#ifdef DEBUG_AARCH64
8915 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8916#endif /* DEBUG_AARCH64 */
8917 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8918 NULL},
a52e6fd3
YZ
8919 {"mno-verbose-error", N_("do not output verbose error messages"),
8920 &verbose_error_p, 0, NULL},
a06ea964
NC
8921 {NULL, NULL, NULL, 0, NULL}
8922};
8923
8924struct aarch64_cpu_option_table
8925{
e0471c16 8926 const char *name;
a06ea964
NC
8927 const aarch64_feature_set value;
8928 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8929 case. */
8930 const char *canonical_name;
8931};
8932
8933/* This list should, at a minimum, contain all the cpu names
8934 recognized by GCC. */
8935static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8936 {"all", AARCH64_ANY, NULL},
546053ac
DZ
8937 {"cortex-a34", AARCH64_FEATURE (AARCH64_ARCH_V8,
8938 AARCH64_FEATURE_CRC), "Cortex-A34"},
9c352f1c
JG
8939 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8940 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
8941 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8942 AARCH64_FEATURE_CRC), "Cortex-A53"},
8943 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8944 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
8945 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8946 AARCH64_FEATURE_CRC), "Cortex-A72"},
1aa70332
KT
8947 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8948 AARCH64_FEATURE_CRC), "Cortex-A73"},
1e292627 8949 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8950 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627
JG
8951 "Cortex-A55"},
8952 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8953 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627 8954 "Cortex-A75"},
c2a0f929 8955 {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8956 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8957 "Cortex-A76"},
546053ac
DZ
8958 {"cortex-a76ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8959 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8960 | AARCH64_FEATURE_DOTPROD
8961 | AARCH64_FEATURE_SSBS),
8962 "Cortex-A76AE"},
8963 {"cortex-a77", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8964 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8965 | AARCH64_FEATURE_DOTPROD
8966 | AARCH64_FEATURE_SSBS),
8967 "Cortex-A77"},
8968 {"cortex-a65", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8969 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8970 | AARCH64_FEATURE_DOTPROD
8971 | AARCH64_FEATURE_SSBS),
8972 "Cortex-A65"},
8973 {"cortex-a65ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8974 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8975 | AARCH64_FEATURE_DOTPROD
8976 | AARCH64_FEATURE_SSBS),
8977 "Cortex-A65AE"},
77718e5b
PW
8978 {"cortex-a78", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8979 AARCH64_FEATURE_F16
8980 | AARCH64_FEATURE_RCPC
8981 | AARCH64_FEATURE_DOTPROD
8982 | AARCH64_FEATURE_SSBS
8983 | AARCH64_FEATURE_PROFILE),
8984 "Cortex-A78"},
8985 {"cortex-a78ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8986 AARCH64_FEATURE_F16
8987 | AARCH64_FEATURE_RCPC
8988 | AARCH64_FEATURE_DOTPROD
8989 | AARCH64_FEATURE_SSBS
8990 | AARCH64_FEATURE_PROFILE),
8991 "Cortex-A78AE"},
c8fcc360
KT
8992 {"ares", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8993 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8994 | AARCH64_FEATURE_DOTPROD
8995 | AARCH64_FEATURE_PROFILE),
8996 "Ares"},
2412d878
EM
8997 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8998 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8999 "Samsung Exynos M1"},
2fe9c2a0 9000 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
9001 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
9002 | AARCH64_FEATURE_RDMA),
2fe9c2a0 9003 "Qualcomm Falkor"},
516dbc44
KT
9004 {"neoverse-e1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9005 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
9006 | AARCH64_FEATURE_DOTPROD
9007 | AARCH64_FEATURE_SSBS),
9008 "Neoverse E1"},
38e75bf2
KT
9009 {"neoverse-n1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9010 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
9011 | AARCH64_FEATURE_DOTPROD
9012 | AARCH64_FEATURE_PROFILE),
9013 "Neoverse N1"},
990e5268
AC
9014 {"neoverse-n2", AARCH64_FEATURE (AARCH64_ARCH_V8_5,
9015 AARCH64_FEATURE_BFLOAT16
9016 | AARCH64_FEATURE_I8MM
9017 | AARCH64_FEATURE_F16
9018 | AARCH64_FEATURE_SVE
9019 | AARCH64_FEATURE_SVE2
9020 | AARCH64_FEATURE_SVE2_BITPERM
9021 | AARCH64_FEATURE_MEMTAG
9022 | AARCH64_FEATURE_RNG),
9023 "Neoverse N2"},
c769fd6a
AC
9024 {"neoverse-v1", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
9025 AARCH64_FEATURE_PROFILE
9026 | AARCH64_FEATURE_CVADP
9027 | AARCH64_FEATURE_SVE
9028 | AARCH64_FEATURE_SSBS
9029 | AARCH64_FEATURE_RNG
9030 | AARCH64_FEATURE_F16
9031 | AARCH64_FEATURE_BFLOAT16
9032 | AARCH64_FEATURE_I8MM), "Neoverse V1"},
6b21c2bf 9033 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
9034 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
9035 | AARCH64_FEATURE_RDMA),
6b21c2bf 9036 "Qualcomm QDF24XX"},
eb5c42e5 9037 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
7605d944
SP
9038 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
9039 "Qualcomm Saphira"},
faade851
JW
9040 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
9041 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
9042 "Cavium ThunderX"},
9f99c22e
VP
9043 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
9044 AARCH64_FEATURE_CRYPTO),
0a8be2fe 9045 "Broadcom Vulcan"},
070cb956
PT
9046 /* The 'xgene-1' name is an older name for 'xgene1', which was used
9047 in earlier releases and is superseded by 'xgene1' in all
9048 tools. */
9877c63c 9049 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 9050 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
9051 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
9052 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
f1363b0f 9053 {"cortex-r82", AARCH64_ARCH_V8_R, "Cortex-R82"},
47e1f9de 9054 {"cortex-x1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
f9b1d75e
PW
9055 AARCH64_FEATURE_F16
9056 | AARCH64_FEATURE_RCPC
9057 | AARCH64_FEATURE_DOTPROD
9058 | AARCH64_FEATURE_SSBS
9059 | AARCH64_FEATURE_PROFILE),
9060 "Cortex-X1"},
a06ea964
NC
9061 {"generic", AARCH64_ARCH_V8, NULL},
9062
a06ea964
NC
9063 {NULL, AARCH64_ARCH_NONE, NULL}
9064};
9065
9066struct aarch64_arch_option_table
9067{
e0471c16 9068 const char *name;
a06ea964
NC
9069 const aarch64_feature_set value;
9070};
9071
9072/* This list should, at a minimum, contain all the architecture names
9073 recognized by GCC. */
9074static const struct aarch64_arch_option_table aarch64_archs[] = {
9075 {"all", AARCH64_ANY},
5a1ad39d 9076 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 9077 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 9078 {"armv8.2-a", AARCH64_ARCH_V8_2},
1924ff75 9079 {"armv8.3-a", AARCH64_ARCH_V8_3},
b6b9ca0c 9080 {"armv8.4-a", AARCH64_ARCH_V8_4},
70d56181 9081 {"armv8.5-a", AARCH64_ARCH_V8_5},
8ae2d3d9 9082 {"armv8.6-a", AARCH64_ARCH_V8_6},
8926e54e 9083 {"armv8.7-a", AARCH64_ARCH_V8_7},
95830c98 9084 {"armv8-r", AARCH64_ARCH_V8_R},
a06ea964
NC
9085 {NULL, AARCH64_ARCH_NONE}
9086};
9087
9088/* ISA extensions. */
9089struct aarch64_option_cpu_value_table
9090{
e0471c16 9091 const char *name;
a06ea964 9092 const aarch64_feature_set value;
93d8990c 9093 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
9094};
9095
9096static const struct aarch64_option_cpu_value_table aarch64_features[] = {
93d8990c
SN
9097 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
9098 AARCH64_ARCH_NONE},
2dc4b12f 9099 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
fa09f4ea 9100 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
93d8990c
SN
9101 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
9102 AARCH64_ARCH_NONE},
9103 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
9104 AARCH64_ARCH_NONE},
9105 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
fa09f4ea 9106 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
93d8990c
SN
9107 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
9108 AARCH64_ARCH_NONE},
9109 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
9110 AARCH64_ARCH_NONE},
9111 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
9112 AARCH64_ARCH_NONE},
9113 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
9114 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
9115 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
9116 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
d0f7791c
TC
9117 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
9118 AARCH64_FEATURE (AARCH64_FEATURE_FP
9119 | AARCH64_FEATURE_F16, 0)},
93d8990c
SN
9120 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
9121 AARCH64_ARCH_NONE},
c0890d26 9122 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
582e12bf
RS
9123 AARCH64_FEATURE (AARCH64_FEATURE_F16
9124 | AARCH64_FEATURE_SIMD
9125 | AARCH64_FEATURE_COMPNUM, 0)},
b83b4b13
SD
9126 {"tme", AARCH64_FEATURE (AARCH64_FEATURE_TME, 0),
9127 AARCH64_ARCH_NONE},
f482d304
RS
9128 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
9129 AARCH64_FEATURE (AARCH64_FEATURE_F16
9130 | AARCH64_FEATURE_SIMD, 0)},
d74d4880
SN
9131 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
9132 AARCH64_ARCH_NONE},
65a55fbb
TC
9133 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
9134 AARCH64_ARCH_NONE},
c0e7cef7
NC
9135 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
9136 AARCH64_ARCH_NONE},
68dfbb92
SD
9137 {"sb", AARCH64_FEATURE (AARCH64_FEATURE_SB, 0),
9138 AARCH64_ARCH_NONE},
2ac435d4
SD
9139 {"predres", AARCH64_FEATURE (AARCH64_FEATURE_PREDRES, 0),
9140 AARCH64_ARCH_NONE},
c0e7cef7
NC
9141 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
9142 AARCH64_ARCH_NONE},
b6b9ca0c
TC
9143 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
9144 AARCH64_ARCH_NONE},
d4340f89
JB
9145 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA3, 0),
9146 AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0)},
af4bcb4c
SD
9147 {"rng", AARCH64_FEATURE (AARCH64_FEATURE_RNG, 0),
9148 AARCH64_ARCH_NONE},
104fefee
SD
9149 {"ssbs", AARCH64_FEATURE (AARCH64_FEATURE_SSBS, 0),
9150 AARCH64_ARCH_NONE},
73b605ec
SD
9151 {"memtag", AARCH64_FEATURE (AARCH64_FEATURE_MEMTAG, 0),
9152 AARCH64_ARCH_NONE},
7ce2460a
MM
9153 {"sve2", AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0),
9154 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
9155 {"sve2-sm4", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SM4, 0),
9156 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9157 | AARCH64_FEATURE_SM4, 0)},
9158 {"sve2-aes", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_AES, 0),
9159 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9160 | AARCH64_FEATURE_AES, 0)},
9161 {"sve2-sha3", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SHA3, 0),
9162 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9163 | AARCH64_FEATURE_SHA3, 0)},
ccbdd22f 9164 {"sve2-bitperm", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_BITPERM, 0),
7ce2460a 9165 AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0)},
df678013
MM
9166 {"bf16", AARCH64_FEATURE (AARCH64_FEATURE_BFLOAT16, 0),
9167 AARCH64_ARCH_NONE},
8382113f
MM
9168 {"i8mm", AARCH64_FEATURE (AARCH64_FEATURE_I8MM, 0),
9169 AARCH64_ARCH_NONE},
9170 {"f32mm", AARCH64_FEATURE (AARCH64_FEATURE_F32MM, 0),
82e9597c 9171 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
8382113f 9172 {"f64mm", AARCH64_FEATURE (AARCH64_FEATURE_F64MM, 0),
82e9597c 9173 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
93d8990c 9174 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
a06ea964
NC
9175};
9176
9177struct aarch64_long_option_table
9178{
e0471c16
TS
9179 const char *option; /* Substring to match. */
9180 const char *help; /* Help information. */
17b9d67d 9181 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
9182 char *deprecated; /* If non-null, print this message. */
9183};
9184
93d8990c
SN
9185/* Transitive closure of features depending on set. */
9186static aarch64_feature_set
9187aarch64_feature_disable_set (aarch64_feature_set set)
9188{
9189 const struct aarch64_option_cpu_value_table *opt;
9190 aarch64_feature_set prev = 0;
9191
9192 while (prev != set) {
9193 prev = set;
9194 for (opt = aarch64_features; opt->name != NULL; opt++)
9195 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
9196 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
9197 }
9198 return set;
9199}
9200
9201/* Transitive closure of dependencies of set. */
9202static aarch64_feature_set
9203aarch64_feature_enable_set (aarch64_feature_set set)
9204{
9205 const struct aarch64_option_cpu_value_table *opt;
9206 aarch64_feature_set prev = 0;
9207
9208 while (prev != set) {
9209 prev = set;
9210 for (opt = aarch64_features; opt->name != NULL; opt++)
9211 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
9212 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
9213 }
9214 return set;
9215}
9216
a06ea964 9217static int
82b8a785 9218aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 9219 bfd_boolean ext_only)
a06ea964
NC
9220{
9221 /* We insist on extensions being added before being removed. We achieve
9222 this by using the ADDING_VALUE variable to indicate whether we are
9223 adding an extension (1) or removing it (0) and only allowing it to
9224 change in the order -1 -> 1 -> 0. */
9225 int adding_value = -1;
325801bd 9226 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
9227
9228 /* Copy the feature set, so that we can modify it. */
9229 *ext_set = **opt_p;
9230 *opt_p = ext_set;
9231
9232 while (str != NULL && *str != 0)
9233 {
9234 const struct aarch64_option_cpu_value_table *opt;
82b8a785 9235 const char *ext = NULL;
a06ea964
NC
9236 int optlen;
9237
ae527cd8 9238 if (!ext_only)
a06ea964 9239 {
ae527cd8
JB
9240 if (*str != '+')
9241 {
9242 as_bad (_("invalid architectural extension"));
9243 return 0;
9244 }
a06ea964 9245
ae527cd8
JB
9246 ext = strchr (++str, '+');
9247 }
a06ea964
NC
9248
9249 if (ext != NULL)
9250 optlen = ext - str;
9251 else
9252 optlen = strlen (str);
9253
9254 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
9255 {
9256 if (adding_value != 0)
9257 adding_value = 0;
9258 optlen -= 2;
9259 str += 2;
9260 }
9261 else if (optlen > 0)
9262 {
9263 if (adding_value == -1)
9264 adding_value = 1;
9265 else if (adding_value != 1)
9266 {
9267 as_bad (_("must specify extensions to add before specifying "
9268 "those to remove"));
9269 return FALSE;
9270 }
9271 }
9272
9273 if (optlen == 0)
9274 {
9275 as_bad (_("missing architectural extension"));
9276 return 0;
9277 }
9278
9279 gas_assert (adding_value != -1);
9280
9281 for (opt = aarch64_features; opt->name != NULL; opt++)
9282 if (strncmp (opt->name, str, optlen) == 0)
9283 {
93d8990c
SN
9284 aarch64_feature_set set;
9285
a06ea964
NC
9286 /* Add or remove the extension. */
9287 if (adding_value)
93d8990c
SN
9288 {
9289 set = aarch64_feature_enable_set (opt->value);
9290 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
9291 }
a06ea964 9292 else
93d8990c
SN
9293 {
9294 set = aarch64_feature_disable_set (opt->value);
9295 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
9296 }
a06ea964
NC
9297 break;
9298 }
9299
9300 if (opt->name == NULL)
9301 {
9302 as_bad (_("unknown architectural extension `%s'"), str);
9303 return 0;
9304 }
9305
9306 str = ext;
9307 };
9308
9309 return 1;
9310}
9311
9312static int
17b9d67d 9313aarch64_parse_cpu (const char *str)
a06ea964
NC
9314{
9315 const struct aarch64_cpu_option_table *opt;
82b8a785 9316 const char *ext = strchr (str, '+');
a06ea964
NC
9317 size_t optlen;
9318
9319 if (ext != NULL)
9320 optlen = ext - str;
9321 else
9322 optlen = strlen (str);
9323
9324 if (optlen == 0)
9325 {
9326 as_bad (_("missing cpu name `%s'"), str);
9327 return 0;
9328 }
9329
9330 for (opt = aarch64_cpus; opt->name != NULL; opt++)
9331 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9332 {
9333 mcpu_cpu_opt = &opt->value;
9334 if (ext != NULL)
ae527cd8 9335 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
9336
9337 return 1;
9338 }
9339
9340 as_bad (_("unknown cpu `%s'"), str);
9341 return 0;
9342}
9343
9344static int
17b9d67d 9345aarch64_parse_arch (const char *str)
a06ea964
NC
9346{
9347 const struct aarch64_arch_option_table *opt;
82b8a785 9348 const char *ext = strchr (str, '+');
a06ea964
NC
9349 size_t optlen;
9350
9351 if (ext != NULL)
9352 optlen = ext - str;
9353 else
9354 optlen = strlen (str);
9355
9356 if (optlen == 0)
9357 {
9358 as_bad (_("missing architecture name `%s'"), str);
9359 return 0;
9360 }
9361
9362 for (opt = aarch64_archs; opt->name != NULL; opt++)
9363 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9364 {
9365 march_cpu_opt = &opt->value;
9366 if (ext != NULL)
ae527cd8 9367 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
9368
9369 return 1;
9370 }
9371
9372 as_bad (_("unknown architecture `%s'\n"), str);
9373 return 0;
9374}
9375
69091a2c
YZ
9376/* ABIs. */
9377struct aarch64_option_abi_value_table
9378{
e0471c16 9379 const char *name;
69091a2c
YZ
9380 enum aarch64_abi_type value;
9381};
9382
9383static const struct aarch64_option_abi_value_table aarch64_abis[] = {
9384 {"ilp32", AARCH64_ABI_ILP32},
9385 {"lp64", AARCH64_ABI_LP64},
69091a2c
YZ
9386};
9387
9388static int
17b9d67d 9389aarch64_parse_abi (const char *str)
69091a2c 9390{
5703197e 9391 unsigned int i;
69091a2c 9392
5703197e 9393 if (str[0] == '\0')
69091a2c
YZ
9394 {
9395 as_bad (_("missing abi name `%s'"), str);
9396 return 0;
9397 }
9398
5703197e
TS
9399 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
9400 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 9401 {
5703197e 9402 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
9403 return 1;
9404 }
9405
9406 as_bad (_("unknown abi `%s'\n"), str);
9407 return 0;
9408}
9409
a06ea964 9410static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
9411#ifdef OBJ_ELF
9412 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
9413 aarch64_parse_abi, NULL},
9414#endif /* OBJ_ELF */
a06ea964
NC
9415 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
9416 aarch64_parse_cpu, NULL},
9417 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
9418 aarch64_parse_arch, NULL},
9419 {NULL, NULL, 0, NULL}
9420};
9421
9422int
17b9d67d 9423md_parse_option (int c, const char *arg)
a06ea964
NC
9424{
9425 struct aarch64_option_table *opt;
9426 struct aarch64_long_option_table *lopt;
9427
9428 switch (c)
9429 {
9430#ifdef OPTION_EB
9431 case OPTION_EB:
9432 target_big_endian = 1;
9433 break;
9434#endif
9435
9436#ifdef OPTION_EL
9437 case OPTION_EL:
9438 target_big_endian = 0;
9439 break;
9440#endif
9441
9442 case 'a':
9443 /* Listing option. Just ignore these, we don't support additional
9444 ones. */
9445 return 0;
9446
9447 default:
9448 for (opt = aarch64_opts; opt->option != NULL; opt++)
9449 {
9450 if (c == opt->option[0]
9451 && ((arg == NULL && opt->option[1] == 0)
9452 || streq (arg, opt->option + 1)))
9453 {
9454 /* If the option is deprecated, tell the user. */
9455 if (opt->deprecated != NULL)
9456 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
9457 arg ? arg : "", _(opt->deprecated));
9458
9459 if (opt->var != NULL)
9460 *opt->var = opt->value;
9461
9462 return 1;
9463 }
9464 }
9465
9466 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9467 {
9468 /* These options are expected to have an argument. */
9469 if (c == lopt->option[0]
9470 && arg != NULL
9471 && strncmp (arg, lopt->option + 1,
9472 strlen (lopt->option + 1)) == 0)
9473 {
9474 /* If the option is deprecated, tell the user. */
9475 if (lopt->deprecated != NULL)
9476 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9477 _(lopt->deprecated));
9478
9479 /* Call the sup-option parser. */
9480 return lopt->func (arg + strlen (lopt->option) - 1);
9481 }
9482 }
9483
9484 return 0;
9485 }
9486
9487 return 1;
9488}
9489
9490void
9491md_show_usage (FILE * fp)
9492{
9493 struct aarch64_option_table *opt;
9494 struct aarch64_long_option_table *lopt;
9495
9496 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9497
9498 for (opt = aarch64_opts; opt->option != NULL; opt++)
9499 if (opt->help != NULL)
9500 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9501
9502 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9503 if (lopt->help != NULL)
9504 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9505
9506#ifdef OPTION_EB
9507 fprintf (fp, _("\
9508 -EB assemble code for a big-endian cpu\n"));
9509#endif
9510
9511#ifdef OPTION_EL
9512 fprintf (fp, _("\
9513 -EL assemble code for a little-endian cpu\n"));
9514#endif
9515}
9516
9517/* Parse a .cpu directive. */
9518
9519static void
9520s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9521{
9522 const struct aarch64_cpu_option_table *opt;
9523 char saved_char;
9524 char *name;
9525 char *ext;
9526 size_t optlen;
9527
9528 name = input_line_pointer;
9529 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9530 input_line_pointer++;
9531 saved_char = *input_line_pointer;
9532 *input_line_pointer = 0;
9533
9534 ext = strchr (name, '+');
9535
9536 if (ext != NULL)
9537 optlen = ext - name;
9538 else
9539 optlen = strlen (name);
9540
9541 /* Skip the first "all" entry. */
9542 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9543 if (strlen (opt->name) == optlen
9544 && strncmp (name, opt->name, optlen) == 0)
9545 {
9546 mcpu_cpu_opt = &opt->value;
9547 if (ext != NULL)
ae527cd8 9548 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9549 return;
9550
9551 cpu_variant = *mcpu_cpu_opt;
9552
9553 *input_line_pointer = saved_char;
9554 demand_empty_rest_of_line ();
9555 return;
9556 }
9557 as_bad (_("unknown cpu `%s'"), name);
9558 *input_line_pointer = saved_char;
9559 ignore_rest_of_line ();
9560}
9561
9562
9563/* Parse a .arch directive. */
9564
9565static void
9566s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9567{
9568 const struct aarch64_arch_option_table *opt;
9569 char saved_char;
9570 char *name;
9571 char *ext;
9572 size_t optlen;
9573
9574 name = input_line_pointer;
9575 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9576 input_line_pointer++;
9577 saved_char = *input_line_pointer;
9578 *input_line_pointer = 0;
9579
9580 ext = strchr (name, '+');
9581
9582 if (ext != NULL)
9583 optlen = ext - name;
9584 else
9585 optlen = strlen (name);
9586
9587 /* Skip the first "all" entry. */
9588 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9589 if (strlen (opt->name) == optlen
9590 && strncmp (name, opt->name, optlen) == 0)
9591 {
9592 mcpu_cpu_opt = &opt->value;
9593 if (ext != NULL)
ae527cd8 9594 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9595 return;
9596
9597 cpu_variant = *mcpu_cpu_opt;
9598
9599 *input_line_pointer = saved_char;
9600 demand_empty_rest_of_line ();
9601 return;
9602 }
9603
9604 as_bad (_("unknown architecture `%s'\n"), name);
9605 *input_line_pointer = saved_char;
9606 ignore_rest_of_line ();
9607}
9608
ae527cd8
JB
9609/* Parse a .arch_extension directive. */
9610
9611static void
9612s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9613{
9614 char saved_char;
9615 char *ext = input_line_pointer;;
9616
9617 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9618 input_line_pointer++;
9619 saved_char = *input_line_pointer;
9620 *input_line_pointer = 0;
9621
9622 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9623 return;
9624
9625 cpu_variant = *mcpu_cpu_opt;
9626
9627 *input_line_pointer = saved_char;
9628 demand_empty_rest_of_line ();
9629}
9630
a06ea964
NC
9631/* Copy symbol information. */
9632
9633void
9634aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9635{
9636 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9637}
0b4eac57
SN
9638
9639#ifdef OBJ_ELF
9640/* Same as elf_copy_symbol_attributes, but without copying st_other.
9641 This is needed so AArch64 specific st_other values can be independently
9642 specified for an IFUNC resolver (that is called by the dynamic linker)
9643 and the symbol it resolves (aliased to the resolver). In particular,
9644 if a function symbol has special st_other value set via directives,
9645 then attaching an IFUNC resolver to that symbol should not override
9646 the st_other setting. Requiring the directive on the IFUNC resolver
9647 symbol would be unexpected and problematic in C code, where the two
9648 symbols appear as two independent function declarations. */
9649
9650void
9651aarch64_elf_copy_symbol_attributes (symbolS *dest, symbolS *src)
9652{
9653 struct elf_obj_sy *srcelf = symbol_get_obj (src);
9654 struct elf_obj_sy *destelf = symbol_get_obj (dest);
9655 if (srcelf->size)
9656 {
9657 if (destelf->size == NULL)
9658 destelf->size = XNEW (expressionS);
9659 *destelf->size = *srcelf->size;
9660 }
9661 else
9662 {
9fbb53c7 9663 free (destelf->size);
0b4eac57
SN
9664 destelf->size = NULL;
9665 }
9666 S_SET_SIZE (dest, S_GET_SIZE (src));
9667}
9668#endif