]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
757e8ba2 3 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
718f9c0f 36#include "diagnostic-core.h"
eab5c70a 37#include "cselib.h"
3932261a 38#include "splay-tree.h"
ac606739 39#include "ggc.h"
d23c55c2 40#include "langhooks.h"
0d446150 41#include "timevar.h"
7ee2468b 42#include "dumpfile.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
6fb5fa3c 45#include "df.h"
55b34b5f
RG
46#include "tree-ssa-alias.h"
47#include "pointer-set.h"
48#include "tree-flow.h"
ea900239
DB
49
50/* The aliasing API provided here solves related but different problems:
51
c22cacf3 52 Say there exists (in c)
ea900239
DB
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
073a8998 78 a store through a pointer to an X can overwrite any field that is
ea900239
DB
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 90 instances do not escape across the compilation boundary.
ea900239
DB
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99*/
3932261a
MM
100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
3932261a 105
01d28c3f 106 struct S { int i; double d; };
3932261a
MM
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
c22cacf3
MS
112 struct S
113 / \
3932261a 114 / \
c22cacf3
MS
115 |/_ _\|
116 int double
3932261a 117
ac3d9668
RK
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
3bdf5ad1
RK
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
95bd1dd7 124 past immediate descendants, however, since we propagate all
3bdf5ad1 125 grandchildren up one level.
3932261a
MM
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
7e5487a2 131struct GTY(()) alias_set_entry_d {
3932261a 132 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 133 alias_set_type alias_set;
3932261a 134
4c067742
RG
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
3932261a 139 /* The children of the alias set. These are not just the immediate
95bd1dd7 140 children, but, in fact, all descendants. So, if we have:
3932261a 141
ca7fd9cd 142 struct T { struct S s; float f; }
3932261a
MM
143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
b604074c 146 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c 147};
7e5487a2 148typedef struct alias_set_entry_d *alias_set_entry;
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
153static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04 157static int insert_subset_children (splay_tree_node, void*);
4862826d 158static alias_set_entry get_alias_set_entry (alias_set_type);
175a7536 159static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
4682ae04 160static tree decl_for_component_ref (tree);
4f588890 161static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 162
aa317c97 163static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
164
165/* Set up all info needed to perform alias analysis on memory references. */
166
d4b60170 167/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
168#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
169
ea64ef27 170/* Cap the number of passes we make over the insns propagating alias
ac3d9668 171 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 172#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 173
9ae8ffe7
JL
174/* reg_base_value[N] gives an address to which register N is related.
175 If all sets after the first add or subtract to the current value
176 or otherwise modify it so it does not point to a different top level
177 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
178 of the first set.
179
180 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 181 expressions represent three types of base:
b3b5ad95 182
9fc37b2b
RS
183 1. incoming arguments. There is just one ADDRESS to represent all
184 arguments, since we do not know at this level whether accesses
185 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 186
9fc37b2b
RS
187 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
188 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
189 Each of these rtxes has a separate ADDRESS associated with it,
190 each with a negative id.
191
192 GCC is (and is required to be) precise in which register it
193 chooses to access a particular region of stack. We can therefore
194 assume that accesses based on one of these rtxes do not alias
195 accesses based on another of these rtxes.
196
197 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
198 Each such piece of memory has a separate ADDRESS associated
199 with it, each with an id greater than 0.
200
201 Accesses based on one ADDRESS do not alias accesses based on other
202 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
203 alias globals either; the ADDRESSes have Pmode to indicate this.
204 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
205 indicate this. */
2a2c8203 206
08c79682 207static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 208static rtx *new_reg_base_value;
c582d54a 209
9fc37b2b
RS
210/* The single VOIDmode ADDRESS that represents all argument bases.
211 It has id 0. */
212static GTY(()) rtx arg_base_value;
213
214/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
215static int unique_id;
216
c582d54a
JH
217/* We preserve the copy of old array around to avoid amount of garbage
218 produced. About 8% of garbage produced were attributed to this
219 array. */
08c79682 220static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 221
9e412ca3
RS
222/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
223 registers. */
224#define UNIQUE_BASE_VALUE_SP -1
225#define UNIQUE_BASE_VALUE_ARGP -2
226#define UNIQUE_BASE_VALUE_FP -3
227#define UNIQUE_BASE_VALUE_HFP -4
228
7bf84454
RS
229#define static_reg_base_value \
230 (this_target_rtl->x_static_reg_base_value)
bf1660a6 231
08c79682
KH
232#define REG_BASE_VALUE(X) \
233 (REGNO (X) < VEC_length (rtx, reg_base_value) \
234 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 235
c13e8210 236/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 237 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 238 and does not change until end_alias_analysis is called. */
9ff3c7ca 239static GTY(()) VEC(rtx,gc) *reg_known_value;
9ae8ffe7
JL
240
241/* Vector recording for each reg_known_value whether it is due to a
242 REG_EQUIV note. Future passes (viz., reload) may replace the
243 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
244 dependences that would be introduced if that happens.
245
246 The REG_EQUIV notes created in assign_parms may mention the arg
247 pointer, and there are explicit insns in the RTL that modify the
248 arg pointer. Thus we must ensure that such insns don't get
249 scheduled across each other because that would invalidate the
250 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
251 wrong, but solving the problem in the scheduler will likely give
252 better code, so we do it here. */
9ff3c7ca 253static sbitmap reg_known_equiv_p;
9ae8ffe7 254
2a2c8203
JC
255/* True when scanning insns from the start of the rtl to the
256 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 257static bool copying_arguments;
9ae8ffe7 258
1a5640b4
KH
259DEF_VEC_P(alias_set_entry);
260DEF_VEC_ALLOC_P(alias_set_entry,gc);
261
3932261a 262/* The splay-tree used to store the various alias set entries. */
1a5640b4 263static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 264\f
55b34b5f
RG
265/* Build a decomposed reference object for querying the alias-oracle
266 from the MEM rtx and store it in *REF.
267 Returns false if MEM is not suitable for the alias-oracle. */
268
269static bool
270ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271{
272 tree expr = MEM_EXPR (mem);
273 tree base;
274
275 if (!expr)
276 return false;
277
278 ao_ref_init (ref, expr);
279
280 /* Get the base of the reference and see if we have to reject or
281 adjust it. */
282 base = ao_ref_base (ref);
283 if (base == NULL_TREE)
284 return false;
285
366f945f
RG
286 /* The tree oracle doesn't like to have these. */
287 if (TREE_CODE (base) == FUNCTION_DECL
288 || TREE_CODE (base) == LABEL_DECL)
289 return false;
290
55b34b5f
RG
291 /* If this is a pointer dereference of a non-SSA_NAME punt.
292 ??? We could replace it with a pointer to anything. */
70f34814
RG
293 if ((INDIRECT_REF_P (base)
294 || TREE_CODE (base) == MEM_REF)
55b34b5f
RG
295 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
296 return false;
d15adbeb
RG
297 if (TREE_CODE (base) == TARGET_MEM_REF
298 && TMR_BASE (base)
299 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
300 return false;
55b34b5f
RG
301
302 /* If this is a reference based on a partitioned decl replace the
303 base with an INDIRECT_REF of the pointer representative we
304 created during stack slot partitioning. */
305 if (TREE_CODE (base) == VAR_DECL
306 && ! TREE_STATIC (base)
307 && cfun->gimple_df->decls_to_pointers != NULL)
308 {
309 void *namep;
310 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
311 if (namep)
70f34814 312 ref->base = build_simple_mem_ref (*(tree *)namep);
55b34b5f 313 }
d15adbeb 314 else if (TREE_CODE (base) == TARGET_MEM_REF
4d948885
RG
315 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
316 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
317 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
d15adbeb
RG
318 && cfun->gimple_df->decls_to_pointers != NULL)
319 {
320 void *namep;
321 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
4d948885 322 TREE_OPERAND (TMR_BASE (base), 0));
d15adbeb
RG
323 if (namep)
324 ref->base = build_simple_mem_ref (*(tree *)namep);
325 }
55b34b5f
RG
326
327 ref->ref_alias_set = MEM_ALIAS_SET (mem);
328
f68396a1
RG
329 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
330 is conservative, so trust it. */
527210c4 331 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 332 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 333 return true;
366f945f 334
b0e96404
RG
335 /* If the base decl is a parameter we can have negative MEM_OFFSET in
336 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
337 here. */
527210c4
RS
338 if (MEM_OFFSET (mem) < 0
339 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
b0e96404
RG
340 return true;
341
f68396a1
RG
342 /* Otherwise continue and refine size and offset we got from analyzing
343 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
344
527210c4 345 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 346 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
347
348 /* The MEM may extend into adjacent fields, so adjust max_size if
349 necessary. */
350 if (ref->max_size != -1
351 && ref->size > ref->max_size)
352 ref->max_size = ref->size;
353
354 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
355 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
356 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
357 && (ref->offset < 0
358 || (DECL_P (ref->base)
359 && (!host_integerp (DECL_SIZE (ref->base), 1)
360 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
361 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
362 return false;
55b34b5f
RG
363
364 return true;
365}
366
367/* Query the alias-oracle on whether the two memory rtx X and MEM may
368 alias. If TBAA_P is set also apply TBAA. Returns true if the
369 two rtxen may alias, false otherwise. */
370
371static bool
372rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
373{
374 ao_ref ref1, ref2;
375
376 if (!ao_ref_from_mem (&ref1, x)
377 || !ao_ref_from_mem (&ref2, mem))
378 return true;
379
55e3bc4c
RG
380 return refs_may_alias_p_1 (&ref1, &ref2,
381 tbaa_p
382 && MEM_ALIAS_SET (x) != 0
383 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
384}
385
3932261a
MM
386/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
387 such an entry, or NULL otherwise. */
388
9ddb66ca 389static inline alias_set_entry
4862826d 390get_alias_set_entry (alias_set_type alias_set)
3932261a 391{
1a5640b4 392 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
393}
394
ac3d9668
RK
395/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
396 the two MEMs cannot alias each other. */
3932261a 397
9ddb66ca 398static inline int
4f588890 399mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 400{
3932261a
MM
401/* Perform a basic sanity check. Namely, that there are no alias sets
402 if we're not using strict aliasing. This helps to catch bugs
403 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
404 where a MEM is allocated in some way other than by the use of
405 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
406 use alias sets to indicate that spilled registers cannot alias each
407 other, we might need to remove this check. */
298e6adc
NS
408 gcc_assert (flag_strict_aliasing
409 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 410
1da68f56
RK
411 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
412}
3932261a 413
1da68f56
RK
414/* Insert the NODE into the splay tree given by DATA. Used by
415 record_alias_subset via splay_tree_foreach. */
416
417static int
4682ae04 418insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
419{
420 splay_tree_insert ((splay_tree) data, node->key, node->value);
421
422 return 0;
423}
424
c58936b6
DB
425/* Return true if the first alias set is a subset of the second. */
426
427bool
4862826d 428alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
429{
430 alias_set_entry ase;
431
432 /* Everything is a subset of the "aliases everything" set. */
433 if (set2 == 0)
434 return true;
435
436 /* Otherwise, check if set1 is a subset of set2. */
437 ase = get_alias_set_entry (set2);
438 if (ase != 0
038a39d1 439 && (ase->has_zero_child
a7a512be
RG
440 || splay_tree_lookup (ase->children,
441 (splay_tree_key) set1)))
c58936b6
DB
442 return true;
443 return false;
444}
445
1da68f56
RK
446/* Return 1 if the two specified alias sets may conflict. */
447
448int
4862826d 449alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
450{
451 alias_set_entry ase;
452
836f7794
EB
453 /* The easy case. */
454 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 455 return 1;
3932261a 456
3bdf5ad1 457 /* See if the first alias set is a subset of the second. */
1da68f56 458 ase = get_alias_set_entry (set1);
2bf105ab
RK
459 if (ase != 0
460 && (ase->has_zero_child
461 || splay_tree_lookup (ase->children,
1da68f56
RK
462 (splay_tree_key) set2)))
463 return 1;
3932261a
MM
464
465 /* Now do the same, but with the alias sets reversed. */
1da68f56 466 ase = get_alias_set_entry (set2);
2bf105ab
RK
467 if (ase != 0
468 && (ase->has_zero_child
469 || splay_tree_lookup (ase->children,
1da68f56
RK
470 (splay_tree_key) set1)))
471 return 1;
3932261a 472
1da68f56 473 /* The two alias sets are distinct and neither one is the
836f7794 474 child of the other. Therefore, they cannot conflict. */
1da68f56 475 return 0;
3932261a 476}
5399d643 477
836f7794 478/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
479
480int
4862826d 481alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
482{
483 if (set1 == 0 || set2 == 0 || set1 == set2)
484 return 1;
485
486 return 0;
487}
488
1da68f56
RK
489/* Return 1 if any MEM object of type T1 will always conflict (using the
490 dependency routines in this file) with any MEM object of type T2.
491 This is used when allocating temporary storage. If T1 and/or T2 are
492 NULL_TREE, it means we know nothing about the storage. */
493
494int
4682ae04 495objects_must_conflict_p (tree t1, tree t2)
1da68f56 496{
4862826d 497 alias_set_type set1, set2;
82d610ec 498
e8ea2809
RK
499 /* If neither has a type specified, we don't know if they'll conflict
500 because we may be using them to store objects of various types, for
501 example the argument and local variables areas of inlined functions. */
981a4c34 502 if (t1 == 0 && t2 == 0)
e8ea2809
RK
503 return 0;
504
1da68f56
RK
505 /* If they are the same type, they must conflict. */
506 if (t1 == t2
507 /* Likewise if both are volatile. */
508 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
509 return 1;
510
82d610ec
RK
511 set1 = t1 ? get_alias_set (t1) : 0;
512 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 513
836f7794
EB
514 /* We can't use alias_sets_conflict_p because we must make sure
515 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
516 t2 for which a pair of subobjects of these respective subtypes
517 overlaps on the stack. */
836f7794 518 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
519}
520\f
2039d7aa
RH
521/* Return true if all nested component references handled by
522 get_inner_reference in T are such that we should use the alias set
523 provided by the object at the heart of T.
524
525 This is true for non-addressable components (which don't have their
526 own alias set), as well as components of objects in alias set zero.
527 This later point is a special case wherein we wish to override the
528 alias set used by the component, but we don't have per-FIELD_DECL
529 assignable alias sets. */
530
531bool
22ea9ec0 532component_uses_parent_alias_set (const_tree t)
6e24b709 533{
afe84921
RH
534 while (1)
535 {
2039d7aa 536 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 537 if (!handled_component_p (t))
2039d7aa 538 return false;
afe84921
RH
539
540 switch (TREE_CODE (t))
541 {
542 case COMPONENT_REF:
543 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 544 return true;
afe84921
RH
545 break;
546
547 case ARRAY_REF:
548 case ARRAY_RANGE_REF:
549 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 550 return true;
afe84921
RH
551 break;
552
553 case REALPART_EXPR:
554 case IMAGPART_EXPR:
555 break;
556
557 default:
558 /* Bitfields and casts are never addressable. */
2039d7aa 559 return true;
afe84921
RH
560 }
561
562 t = TREE_OPERAND (t, 0);
2039d7aa
RH
563 if (get_alias_set (TREE_TYPE (t)) == 0)
564 return true;
afe84921 565 }
6e24b709
RK
566}
567
5006671f
RG
568/* Return the alias set for the memory pointed to by T, which may be
569 either a type or an expression. Return -1 if there is nothing
570 special about dereferencing T. */
571
572static alias_set_type
573get_deref_alias_set_1 (tree t)
574{
575 /* If we're not doing any alias analysis, just assume everything
576 aliases everything else. */
577 if (!flag_strict_aliasing)
578 return 0;
579
5b21f0f3 580 /* All we care about is the type. */
5006671f 581 if (! TYPE_P (t))
5b21f0f3 582 t = TREE_TYPE (t);
5006671f
RG
583
584 /* If we have an INDIRECT_REF via a void pointer, we don't
585 know anything about what that might alias. Likewise if the
586 pointer is marked that way. */
587 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
588 || TYPE_REF_CAN_ALIAS_ALL (t))
589 return 0;
590
591 return -1;
592}
593
594/* Return the alias set for the memory pointed to by T, which may be
595 either a type or an expression. */
596
597alias_set_type
598get_deref_alias_set (tree t)
599{
600 alias_set_type set = get_deref_alias_set_1 (t);
601
602 /* Fall back to the alias-set of the pointed-to type. */
603 if (set == -1)
604 {
605 if (! TYPE_P (t))
606 t = TREE_TYPE (t);
607 set = get_alias_set (TREE_TYPE (t));
608 }
609
610 return set;
611}
612
3bdf5ad1
RK
613/* Return the alias set for T, which may be either a type or an
614 expression. Call language-specific routine for help, if needed. */
615
4862826d 616alias_set_type
4682ae04 617get_alias_set (tree t)
3bdf5ad1 618{
4862826d 619 alias_set_type set;
3bdf5ad1
RK
620
621 /* If we're not doing any alias analysis, just assume everything
622 aliases everything else. Also return 0 if this or its type is
623 an error. */
624 if (! flag_strict_aliasing || t == error_mark_node
625 || (! TYPE_P (t)
626 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
627 return 0;
628
629 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
630 language-specific routine may make mutually-recursive calls to each other
631 to figure out what to do. At each juncture, we see if this is a tree
632 that the language may need to handle specially. First handle things that
738cc472 633 aren't types. */
f824e5c3 634 if (! TYPE_P (t))
3bdf5ad1 635 {
ebcc3d93 636 tree inner;
738cc472 637
70f34814
RG
638 /* Give the language a chance to do something with this tree
639 before we look at it. */
8ac61af7 640 STRIP_NOPS (t);
ae2bcd98 641 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
642 if (set != -1)
643 return set;
644
70f34814 645 /* Get the base object of the reference. */
ebcc3d93 646 inner = t;
6fce44af 647 while (handled_component_p (inner))
738cc472 648 {
70f34814
RG
649 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
650 the type of any component references that wrap it to
651 determine the alias-set. */
652 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
653 t = TREE_OPERAND (inner, 0);
6fce44af 654 inner = TREE_OPERAND (inner, 0);
738cc472
RK
655 }
656
70f34814
RG
657 /* Handle pointer dereferences here, they can override the
658 alias-set. */
1b096a0a 659 if (INDIRECT_REF_P (inner))
738cc472 660 {
5006671f
RG
661 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
662 if (set != -1)
663 return set;
738cc472 664 }
4b228e61
RG
665 else if (TREE_CODE (inner) == TARGET_MEM_REF)
666 return get_deref_alias_set (TMR_OFFSET (inner));
70f34814
RG
667 else if (TREE_CODE (inner) == MEM_REF)
668 {
669 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
670 if (set != -1)
671 return set;
672 }
673
674 /* If the innermost reference is a MEM_REF that has a
675 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
676 using the memory access type for determining the alias-set. */
677 if (TREE_CODE (inner) == MEM_REF
7be7d292
EB
678 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
679 != TYPE_MAIN_VARIANT
680 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
70f34814 681 return get_deref_alias_set (TREE_OPERAND (inner, 1));
738cc472
RK
682
683 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 684 to, processing conversions as above. */
2039d7aa 685 while (component_uses_parent_alias_set (t))
f47e9b4e 686 {
6fce44af 687 t = TREE_OPERAND (t, 0);
8ac61af7
RK
688 STRIP_NOPS (t);
689 }
f824e5c3 690
738cc472
RK
691 /* If we've already determined the alias set for a decl, just return
692 it. This is necessary for C++ anonymous unions, whose component
693 variables don't look like union members (boo!). */
5755cd38 694 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 695 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
696 return MEM_ALIAS_SET (DECL_RTL (t));
697
f824e5c3
RK
698 /* Now all we care about is the type. */
699 t = TREE_TYPE (t);
3bdf5ad1
RK
700 }
701
3bdf5ad1 702 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 703 variant. */
3bdf5ad1 704 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
705
706 /* Always use the canonical type as well. If this is a type that
707 requires structural comparisons to identify compatible types
708 use alias set zero. */
709 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
710 {
711 /* Allow the language to specify another alias set for this
712 type. */
713 set = lang_hooks.get_alias_set (t);
714 if (set != -1)
715 return set;
716 return 0;
717 }
7be7d292 718
daad0278 719 t = TYPE_CANONICAL (t);
7be7d292 720
96d91dcf
RG
721 /* The canonical type should not require structural equality checks. */
722 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
daad0278
RG
723
724 /* If this is a type with a known alias set, return it. */
738cc472 725 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
726 return TYPE_ALIAS_SET (t);
727
36784d0e
RG
728 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
729 if (!COMPLETE_TYPE_P (t))
730 {
731 /* For arrays with unknown size the conservative answer is the
732 alias set of the element type. */
733 if (TREE_CODE (t) == ARRAY_TYPE)
734 return get_alias_set (TREE_TYPE (t));
735
736 /* But return zero as a conservative answer for incomplete types. */
737 return 0;
738 }
739
3bdf5ad1 740 /* See if the language has special handling for this type. */
ae2bcd98 741 set = lang_hooks.get_alias_set (t);
8ac61af7 742 if (set != -1)
738cc472 743 return set;
2bf105ab 744
3bdf5ad1
RK
745 /* There are no objects of FUNCTION_TYPE, so there's no point in
746 using up an alias set for them. (There are, of course, pointers
747 and references to functions, but that's different.) */
7be7d292 748 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 749 set = 0;
74d86f4f
RH
750
751 /* Unless the language specifies otherwise, let vector types alias
752 their components. This avoids some nasty type punning issues in
753 normal usage. And indeed lets vectors be treated more like an
754 array slice. */
755 else if (TREE_CODE (t) == VECTOR_TYPE)
756 set = get_alias_set (TREE_TYPE (t));
757
4653cae5
RG
758 /* Unless the language specifies otherwise, treat array types the
759 same as their components. This avoids the asymmetry we get
760 through recording the components. Consider accessing a
761 character(kind=1) through a reference to a character(kind=1)[1:1].
762 Or consider if we want to assign integer(kind=4)[0:D.1387] and
763 integer(kind=4)[4] the same alias set or not.
764 Just be pragmatic here and make sure the array and its element
765 type get the same alias set assigned. */
7be7d292 766 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
4653cae5
RG
767 set = get_alias_set (TREE_TYPE (t));
768
0ceb0201
RG
769 /* From the former common C and C++ langhook implementation:
770
771 Unfortunately, there is no canonical form of a pointer type.
772 In particular, if we have `typedef int I', then `int *', and
773 `I *' are different types. So, we have to pick a canonical
774 representative. We do this below.
775
776 Technically, this approach is actually more conservative that
777 it needs to be. In particular, `const int *' and `int *'
778 should be in different alias sets, according to the C and C++
779 standard, since their types are not the same, and so,
780 technically, an `int **' and `const int **' cannot point at
781 the same thing.
782
783 But, the standard is wrong. In particular, this code is
784 legal C++:
785
786 int *ip;
787 int **ipp = &ip;
788 const int* const* cipp = ipp;
789 And, it doesn't make sense for that to be legal unless you
790 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
791 the pointed-to types. This issue has been reported to the
792 C++ committee.
793
794 In addition to the above canonicalization issue, with LTO
795 we should also canonicalize `T (*)[]' to `T *' avoiding
796 alias issues with pointer-to element types and pointer-to
797 array types.
798
799 Likewise we need to deal with the situation of incomplete
800 pointed-to types and make `*(struct X **)&a' and
801 `*(struct X {} **)&a' alias. Otherwise we will have to
802 guarantee that all pointer-to incomplete type variants
803 will be replaced by pointer-to complete type variants if
804 they are available.
805
806 With LTO the convenient situation of using `void *' to
807 access and store any pointer type will also become
808 more apparent (and `void *' is just another pointer-to
809 incomplete type). Assigning alias-set zero to `void *'
810 and all pointer-to incomplete types is a not appealing
811 solution. Assigning an effective alias-set zero only
812 affecting pointers might be - by recording proper subset
813 relationships of all pointer alias-sets.
814
815 Pointer-to function types are another grey area which
816 needs caution. Globbing them all into one alias-set
817 or the above effective zero set would work.
818
819 For now just assign the same alias-set to all pointers.
820 That's simple and avoids all the above problems. */
821 else if (POINTER_TYPE_P (t)
822 && t != ptr_type_node)
96d91dcf 823 set = get_alias_set (ptr_type_node);
0ceb0201 824
7be7d292 825 /* Otherwise make a new alias set for this type. */
3bdf5ad1 826 else
96d91dcf
RG
827 {
828 /* Each canonical type gets its own alias set, so canonical types
829 shouldn't form a tree. It doesn't really matter for types
830 we handle specially above, so only check it where it possibly
831 would result in a bogus alias set. */
832 gcc_checking_assert (TYPE_CANONICAL (t) == t);
833
834 set = new_alias_set ();
835 }
3bdf5ad1
RK
836
837 TYPE_ALIAS_SET (t) = set;
2bf105ab 838
7be7d292
EB
839 /* If this is an aggregate type or a complex type, we must record any
840 component aliasing information. */
1d79fd2c 841 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
842 record_component_aliases (t);
843
3bdf5ad1
RK
844 return set;
845}
846
847/* Return a brand-new alias set. */
848
4862826d 849alias_set_type
4682ae04 850new_alias_set (void)
3bdf5ad1 851{
3bdf5ad1 852 if (flag_strict_aliasing)
9ddb66ca 853 {
1a5640b4 854 if (alias_sets == 0)
0823efed
DN
855 VEC_safe_push (alias_set_entry, gc, alias_sets, (alias_set_entry) 0);
856 VEC_safe_push (alias_set_entry, gc, alias_sets, (alias_set_entry) 0);
1a5640b4 857 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 858 }
3bdf5ad1
RK
859 else
860 return 0;
861}
3932261a 862
01d28c3f
JM
863/* Indicate that things in SUBSET can alias things in SUPERSET, but that
864 not everything that aliases SUPERSET also aliases SUBSET. For example,
865 in C, a store to an `int' can alias a load of a structure containing an
866 `int', and vice versa. But it can't alias a load of a 'double' member
867 of the same structure. Here, the structure would be the SUPERSET and
868 `int' the SUBSET. This relationship is also described in the comment at
869 the beginning of this file.
870
871 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
872
873 It is illegal for SUPERSET to be zero; everything is implicitly a
874 subset of alias set zero. */
875
794511d2 876void
4862826d 877record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
878{
879 alias_set_entry superset_entry;
880 alias_set_entry subset_entry;
881
f47e9b4e
RK
882 /* It is possible in complex type situations for both sets to be the same,
883 in which case we can ignore this operation. */
884 if (superset == subset)
885 return;
886
298e6adc 887 gcc_assert (superset);
3932261a
MM
888
889 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 890 if (superset_entry == 0)
3932261a
MM
891 {
892 /* Create an entry for the SUPERSET, so that we have a place to
893 attach the SUBSET. */
a9429e29 894 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
3932261a 895 superset_entry->alias_set = superset;
ca7fd9cd 896 superset_entry->children
a9429e29
LB
897 = splay_tree_new_ggc (splay_tree_compare_ints,
898 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
899 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
570eb5c8 900 superset_entry->has_zero_child = 0;
1a5640b4 901 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
902 }
903
2bf105ab
RK
904 if (subset == 0)
905 superset_entry->has_zero_child = 1;
906 else
907 {
908 subset_entry = get_alias_set_entry (subset);
909 /* If there is an entry for the subset, enter all of its children
910 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 911 if (subset_entry)
2bf105ab
RK
912 {
913 if (subset_entry->has_zero_child)
914 superset_entry->has_zero_child = 1;
d4b60170 915
2bf105ab
RK
916 splay_tree_foreach (subset_entry->children, insert_subset_children,
917 superset_entry->children);
918 }
3932261a 919
2bf105ab 920 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 921 splay_tree_insert (superset_entry->children,
2bf105ab
RK
922 (splay_tree_key) subset, 0);
923 }
3932261a
MM
924}
925
a0c33338
RK
926/* Record that component types of TYPE, if any, are part of that type for
927 aliasing purposes. For record types, we only record component types
b5487346
EB
928 for fields that are not marked non-addressable. For array types, we
929 only record the component type if it is not marked non-aliased. */
a0c33338
RK
930
931void
4682ae04 932record_component_aliases (tree type)
a0c33338 933{
4862826d 934 alias_set_type superset = get_alias_set (type);
a0c33338
RK
935 tree field;
936
937 if (superset == 0)
938 return;
939
940 switch (TREE_CODE (type))
941 {
a0c33338
RK
942 case RECORD_TYPE:
943 case UNION_TYPE:
944 case QUAL_UNION_TYPE:
6614fd40 945 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 946 if (TYPE_BINFO (type))
ca7fd9cd
KH
947 {
948 int i;
fa743e8c 949 tree binfo, base_binfo;
c22cacf3 950
fa743e8c
NS
951 for (binfo = TYPE_BINFO (type), i = 0;
952 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
953 record_alias_subset (superset,
954 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 955 }
910ad8de 956 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 957 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 958 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
959 break;
960
1d79fd2c
JW
961 case COMPLEX_TYPE:
962 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
963 break;
964
4653cae5
RG
965 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
966 element type. */
967
a0c33338
RK
968 default:
969 break;
970 }
971}
972
3bdf5ad1
RK
973/* Allocate an alias set for use in storing and reading from the varargs
974 spill area. */
975
4862826d 976static GTY(()) alias_set_type varargs_set = -1;
f103e34d 977
4862826d 978alias_set_type
4682ae04 979get_varargs_alias_set (void)
3bdf5ad1 980{
cd3ce9b4
JM
981#if 1
982 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
983 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
984 consistently use the varargs alias set for loads from the varargs
985 area. So don't use it anywhere. */
986 return 0;
987#else
f103e34d
GK
988 if (varargs_set == -1)
989 varargs_set = new_alias_set ();
3bdf5ad1 990
f103e34d 991 return varargs_set;
cd3ce9b4 992#endif
3bdf5ad1
RK
993}
994
995/* Likewise, but used for the fixed portions of the frame, e.g., register
996 save areas. */
997
4862826d 998static GTY(()) alias_set_type frame_set = -1;
f103e34d 999
4862826d 1000alias_set_type
4682ae04 1001get_frame_alias_set (void)
3bdf5ad1 1002{
f103e34d
GK
1003 if (frame_set == -1)
1004 frame_set = new_alias_set ();
3bdf5ad1 1005
f103e34d 1006 return frame_set;
3bdf5ad1
RK
1007}
1008
9fc37b2b
RS
1009/* Create a new, unique base with id ID. */
1010
1011static rtx
1012unique_base_value (HOST_WIDE_INT id)
1013{
1014 return gen_rtx_ADDRESS (Pmode, id);
1015}
1016
1017/* Return true if accesses based on any other base value cannot alias
1018 those based on X. */
1019
1020static bool
1021unique_base_value_p (rtx x)
1022{
1023 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1024}
1025
1026/* Return true if X is known to be a base value. */
1027
1028static bool
1029known_base_value_p (rtx x)
1030{
1031 switch (GET_CODE (x))
1032 {
1033 case LABEL_REF:
1034 case SYMBOL_REF:
1035 return true;
1036
1037 case ADDRESS:
1038 /* Arguments may or may not be bases; we don't know for sure. */
1039 return GET_MODE (x) != VOIDmode;
1040
1041 default:
1042 return false;
1043 }
1044}
1045
2a2c8203
JC
1046/* Inside SRC, the source of a SET, find a base address. */
1047
9ae8ffe7 1048static rtx
4682ae04 1049find_base_value (rtx src)
9ae8ffe7 1050{
713f41f9 1051 unsigned int regno;
0aacc8ed 1052
53451050
RS
1053#if defined (FIND_BASE_TERM)
1054 /* Try machine-dependent ways to find the base term. */
1055 src = FIND_BASE_TERM (src);
1056#endif
1057
9ae8ffe7
JL
1058 switch (GET_CODE (src))
1059 {
1060 case SYMBOL_REF:
1061 case LABEL_REF:
1062 return src;
1063
1064 case REG:
fb6754f0 1065 regno = REGNO (src);
d4b60170 1066 /* At the start of a function, argument registers have known base
2a2c8203
JC
1067 values which may be lost later. Returning an ADDRESS
1068 expression here allows optimization based on argument values
1069 even when the argument registers are used for other purposes. */
713f41f9
BS
1070 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1071 return new_reg_base_value[regno];
73774bc7 1072
eaf407a5 1073 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1074 for non-fixed hard regs since it can result in a circular
1075 dependency chain for registers which have values at function entry.
eaf407a5
JL
1076
1077 The test above is not sufficient because the scheduler may move
1078 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1079 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 1080 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
1081 {
1082 /* If we're inside init_alias_analysis, use new_reg_base_value
1083 to reduce the number of relaxation iterations. */
1afdf91c 1084 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1085 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1086 return new_reg_base_value[regno];
1087
08c79682
KH
1088 if (VEC_index (rtx, reg_base_value, regno))
1089 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 1090 }
73774bc7 1091
e3f049a8 1092 return 0;
9ae8ffe7
JL
1093
1094 case MEM:
1095 /* Check for an argument passed in memory. Only record in the
1096 copying-arguments block; it is too hard to track changes
1097 otherwise. */
1098 if (copying_arguments
1099 && (XEXP (src, 0) == arg_pointer_rtx
1100 || (GET_CODE (XEXP (src, 0)) == PLUS
1101 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1102 return arg_base_value;
9ae8ffe7
JL
1103 return 0;
1104
1105 case CONST:
1106 src = XEXP (src, 0);
1107 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1108 break;
d4b60170 1109
ec5c56db 1110 /* ... fall through ... */
2a2c8203 1111
9ae8ffe7
JL
1112 case PLUS:
1113 case MINUS:
2a2c8203 1114 {
ec907dd8
JL
1115 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1116
0134bf2d
DE
1117 /* If either operand is a REG that is a known pointer, then it
1118 is the base. */
1119 if (REG_P (src_0) && REG_POINTER (src_0))
1120 return find_base_value (src_0);
1121 if (REG_P (src_1) && REG_POINTER (src_1))
1122 return find_base_value (src_1);
1123
ec907dd8
JL
1124 /* If either operand is a REG, then see if we already have
1125 a known value for it. */
0134bf2d 1126 if (REG_P (src_0))
ec907dd8
JL
1127 {
1128 temp = find_base_value (src_0);
d4b60170 1129 if (temp != 0)
ec907dd8
JL
1130 src_0 = temp;
1131 }
1132
0134bf2d 1133 if (REG_P (src_1))
ec907dd8
JL
1134 {
1135 temp = find_base_value (src_1);
d4b60170 1136 if (temp!= 0)
ec907dd8
JL
1137 src_1 = temp;
1138 }
2a2c8203 1139
0134bf2d
DE
1140 /* If either base is named object or a special address
1141 (like an argument or stack reference), then use it for the
1142 base term. */
9fc37b2b 1143 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1144 return src_0;
1145
9fc37b2b 1146 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1147 return src_1;
1148
d4b60170 1149 /* Guess which operand is the base address:
ec907dd8
JL
1150 If either operand is a symbol, then it is the base. If
1151 either operand is a CONST_INT, then the other is the base. */
481683e1 1152 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1153 return find_base_value (src_0);
481683e1 1154 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1155 return find_base_value (src_1);
1156
9ae8ffe7 1157 return 0;
2a2c8203
JC
1158 }
1159
1160 case LO_SUM:
1161 /* The standard form is (lo_sum reg sym) so look only at the
1162 second operand. */
1163 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1164
1165 case AND:
1166 /* If the second operand is constant set the base
ec5c56db 1167 address to the first operand. */
481683e1 1168 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1169 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1170 return 0;
1171
61f0131c 1172 case TRUNCATE:
5932a4d4 1173 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1174 handle this only if the target does not support different pointer or
1175 address modes depending on the address space. */
1176 if (!target_default_pointer_address_modes_p ())
1177 break;
61f0131c
R
1178 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1179 break;
1180 /* Fall through. */
9ae8ffe7 1181 case HIGH:
d288e53d
DE
1182 case PRE_INC:
1183 case PRE_DEC:
1184 case POST_INC:
1185 case POST_DEC:
1186 case PRE_MODIFY:
1187 case POST_MODIFY:
2a2c8203 1188 return find_base_value (XEXP (src, 0));
1d300e19 1189
0aacc8ed
RK
1190 case ZERO_EXTEND:
1191 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1192 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1193 handle this only if the target does not support different pointer or
1194 address modes depending on the address space. */
1195 if (!target_default_pointer_address_modes_p ())
1196 break;
1197
0aacc8ed
RK
1198 {
1199 rtx temp = find_base_value (XEXP (src, 0));
1200
5ae6cd0d 1201 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1202 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1203
1204 return temp;
1205 }
1206
1d300e19
KG
1207 default:
1208 break;
9ae8ffe7
JL
1209 }
1210
1211 return 0;
1212}
1213
9fc37b2b
RS
1214/* Called from init_alias_analysis indirectly through note_stores,
1215 or directly if DEST is a register with a REG_NOALIAS note attached.
1216 SET is null in the latter case. */
9ae8ffe7 1217
d4b60170 1218/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
1219 register N has been set in this function. */
1220static char *reg_seen;
1221
2a2c8203 1222static void
7bc980e1 1223record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1224{
b3694847 1225 unsigned regno;
9ae8ffe7 1226 rtx src;
c28b4e40 1227 int n;
9ae8ffe7 1228
f8cfc6aa 1229 if (!REG_P (dest))
9ae8ffe7
JL
1230 return;
1231
fb6754f0 1232 regno = REGNO (dest);
9ae8ffe7 1233
7a40b8b1 1234 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1235
c28b4e40
JW
1236 /* If this spans multiple hard registers, then we must indicate that every
1237 register has an unusable value. */
1238 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1239 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1240 else
1241 n = 1;
1242 if (n != 1)
1243 {
1244 while (--n >= 0)
1245 {
1246 reg_seen[regno + n] = 1;
1247 new_reg_base_value[regno + n] = 0;
1248 }
1249 return;
1250 }
1251
9ae8ffe7
JL
1252 if (set)
1253 {
1254 /* A CLOBBER wipes out any old value but does not prevent a previously
1255 unset register from acquiring a base address (i.e. reg_seen is not
1256 set). */
1257 if (GET_CODE (set) == CLOBBER)
1258 {
ec907dd8 1259 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1260 return;
1261 }
1262 src = SET_SRC (set);
1263 }
1264 else
1265 {
9fc37b2b 1266 /* There's a REG_NOALIAS note against DEST. */
9ae8ffe7
JL
1267 if (reg_seen[regno])
1268 {
ec907dd8 1269 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1270 return;
1271 }
1272 reg_seen[regno] = 1;
9fc37b2b 1273 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1274 return;
1275 }
1276
5da6f168
RS
1277 /* If this is not the first set of REGNO, see whether the new value
1278 is related to the old one. There are two cases of interest:
1279
1280 (1) The register might be assigned an entirely new value
1281 that has the same base term as the original set.
1282
1283 (2) The set might be a simple self-modification that
1284 cannot change REGNO's base value.
1285
1286 If neither case holds, reject the original base value as invalid.
1287 Note that the following situation is not detected:
1288
c22cacf3 1289 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1290
9ae8ffe7
JL
1291 ANSI C does not allow computing the difference of addresses
1292 of distinct top level objects. */
5da6f168
RS
1293 if (new_reg_base_value[regno] != 0
1294 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1295 switch (GET_CODE (src))
1296 {
2a2c8203 1297 case LO_SUM:
9ae8ffe7
JL
1298 case MINUS:
1299 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1300 new_reg_base_value[regno] = 0;
9ae8ffe7 1301 break;
61f0131c
R
1302 case PLUS:
1303 /* If the value we add in the PLUS is also a valid base value,
1304 this might be the actual base value, and the original value
1305 an index. */
1306 {
1307 rtx other = NULL_RTX;
1308
1309 if (XEXP (src, 0) == dest)
1310 other = XEXP (src, 1);
1311 else if (XEXP (src, 1) == dest)
1312 other = XEXP (src, 0);
1313
1314 if (! other || find_base_value (other))
1315 new_reg_base_value[regno] = 0;
1316 break;
1317 }
9ae8ffe7 1318 case AND:
481683e1 1319 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1320 new_reg_base_value[regno] = 0;
9ae8ffe7 1321 break;
9ae8ffe7 1322 default:
ec907dd8 1323 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1324 break;
1325 }
1326 /* If this is the first set of a register, record the value. */
1327 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1328 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1329 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1330
1331 reg_seen[regno] = 1;
1332}
1333
8fd0a474
AM
1334/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1335 using hard registers with non-null REG_BASE_VALUE for renaming. */
1336rtx
1337get_reg_base_value (unsigned int regno)
1338{
1339 return VEC_index (rtx, reg_base_value, regno);
1340}
1341
bb1acb3e
RH
1342/* If a value is known for REGNO, return it. */
1343
c22cacf3 1344rtx
bb1acb3e
RH
1345get_reg_known_value (unsigned int regno)
1346{
1347 if (regno >= FIRST_PSEUDO_REGISTER)
1348 {
1349 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1350 if (regno < VEC_length (rtx, reg_known_value))
1351 return VEC_index (rtx, reg_known_value, regno);
bb1acb3e
RH
1352 }
1353 return NULL;
43fe47ca
JW
1354}
1355
bb1acb3e
RH
1356/* Set it. */
1357
1358static void
1359set_reg_known_value (unsigned int regno, rtx val)
1360{
1361 if (regno >= FIRST_PSEUDO_REGISTER)
1362 {
1363 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1364 if (regno < VEC_length (rtx, reg_known_value))
1365 VEC_replace (rtx, reg_known_value, regno, val);
bb1acb3e
RH
1366 }
1367}
1368
1369/* Similarly for reg_known_equiv_p. */
1370
1371bool
1372get_reg_known_equiv_p (unsigned int regno)
1373{
1374 if (regno >= FIRST_PSEUDO_REGISTER)
1375 {
1376 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1377 if (regno < VEC_length (rtx, reg_known_value))
1378 return TEST_BIT (reg_known_equiv_p, regno);
bb1acb3e
RH
1379 }
1380 return false;
1381}
1382
1383static void
1384set_reg_known_equiv_p (unsigned int regno, bool val)
1385{
1386 if (regno >= FIRST_PSEUDO_REGISTER)
1387 {
1388 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1389 if (regno < VEC_length (rtx, reg_known_value))
1390 {
1391 if (val)
1392 SET_BIT (reg_known_equiv_p, regno);
1393 else
1394 RESET_BIT (reg_known_equiv_p, regno);
1395 }
bb1acb3e
RH
1396 }
1397}
1398
1399
db048faf
MM
1400/* Returns a canonical version of X, from the point of view alias
1401 analysis. (For example, if X is a MEM whose address is a register,
1402 and the register has a known value (say a SYMBOL_REF), then a MEM
1403 whose address is the SYMBOL_REF is returned.) */
1404
1405rtx
4682ae04 1406canon_rtx (rtx x)
9ae8ffe7
JL
1407{
1408 /* Recursively look for equivalences. */
f8cfc6aa 1409 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1410 {
1411 rtx t = get_reg_known_value (REGNO (x));
1412 if (t == x)
1413 return x;
1414 if (t)
1415 return canon_rtx (t);
1416 }
1417
1418 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1419 {
1420 rtx x0 = canon_rtx (XEXP (x, 0));
1421 rtx x1 = canon_rtx (XEXP (x, 1));
1422
1423 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1424 {
481683e1 1425 if (CONST_INT_P (x0))
0a81f074 1426 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
481683e1 1427 else if (CONST_INT_P (x1))
0a81f074 1428 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
38a448ca 1429 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1430 }
1431 }
d4b60170 1432
9ae8ffe7
JL
1433 /* This gives us much better alias analysis when called from
1434 the loop optimizer. Note we want to leave the original
1435 MEM alone, but need to return the canonicalized MEM with
1436 all the flags with their original values. */
3c0cb5de 1437 else if (MEM_P (x))
f1ec5147 1438 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1439
9ae8ffe7
JL
1440 return x;
1441}
1442
1443/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1444 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1445
1446 We use the data in reg_known_value above to see if two registers with
1447 different numbers are, in fact, equivalent. */
1448
1449static int
ed7a4b4b 1450rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1451{
b3694847
SS
1452 int i;
1453 int j;
1454 enum rtx_code code;
1455 const char *fmt;
9ae8ffe7
JL
1456
1457 if (x == 0 && y == 0)
1458 return 1;
1459 if (x == 0 || y == 0)
1460 return 0;
d4b60170 1461
9ae8ffe7
JL
1462 if (x == y)
1463 return 1;
1464
1465 code = GET_CODE (x);
1466 /* Rtx's of different codes cannot be equal. */
1467 if (code != GET_CODE (y))
1468 return 0;
1469
1470 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1471 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1472
1473 if (GET_MODE (x) != GET_MODE (y))
1474 return 0;
1475
db048faf
MM
1476 /* Some RTL can be compared without a recursive examination. */
1477 switch (code)
1478 {
1479 case REG:
1480 return REGNO (x) == REGNO (y);
1481
1482 case LABEL_REF:
1483 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1484
db048faf
MM
1485 case SYMBOL_REF:
1486 return XSTR (x, 0) == XSTR (y, 0);
1487
40e02b4a 1488 case VALUE:
db048faf
MM
1489 case CONST_INT:
1490 case CONST_DOUBLE:
091a3ac7 1491 case CONST_FIXED:
db048faf
MM
1492 /* There's no need to compare the contents of CONST_DOUBLEs or
1493 CONST_INTs because pointer equality is a good enough
1494 comparison for these nodes. */
1495 return 0;
1496
db048faf
MM
1497 default:
1498 break;
1499 }
9ae8ffe7 1500
45183e03
JH
1501 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1502 if (code == PLUS)
9ae8ffe7
JL
1503 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1504 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1505 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1506 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1507 /* For commutative operations, the RTX match if the operand match in any
1508 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1509 if (COMMUTATIVE_P (x))
45183e03
JH
1510 {
1511 rtx xop0 = canon_rtx (XEXP (x, 0));
1512 rtx yop0 = canon_rtx (XEXP (y, 0));
1513 rtx yop1 = canon_rtx (XEXP (y, 1));
1514
1515 return ((rtx_equal_for_memref_p (xop0, yop0)
1516 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1517 || (rtx_equal_for_memref_p (xop0, yop1)
1518 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1519 }
ec8e098d 1520 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1521 {
1522 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1523 canon_rtx (XEXP (y, 0)))
45183e03
JH
1524 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1525 canon_rtx (XEXP (y, 1))));
1526 }
ec8e098d 1527 else if (UNARY_P (x))
45183e03 1528 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1529 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1530
1531 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1532 fail to match, return 0 for the whole things.
1533
1534 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1535
1536 fmt = GET_RTX_FORMAT (code);
1537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1538 {
1539 switch (fmt[i])
1540 {
9ae8ffe7
JL
1541 case 'i':
1542 if (XINT (x, i) != XINT (y, i))
1543 return 0;
1544 break;
1545
9ae8ffe7
JL
1546 case 'E':
1547 /* Two vectors must have the same length. */
1548 if (XVECLEN (x, i) != XVECLEN (y, i))
1549 return 0;
1550
1551 /* And the corresponding elements must match. */
1552 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1553 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1554 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1555 return 0;
1556 break;
1557
1558 case 'e':
45183e03
JH
1559 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1560 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1561 return 0;
1562 break;
1563
3237ac18
AH
1564 /* This can happen for asm operands. */
1565 case 's':
1566 if (strcmp (XSTR (x, i), XSTR (y, i)))
1567 return 0;
1568 break;
1569
aee21ba9
JL
1570 /* This can happen for an asm which clobbers memory. */
1571 case '0':
1572 break;
1573
9ae8ffe7
JL
1574 /* It is believed that rtx's at this level will never
1575 contain anything but integers and other rtx's,
1576 except for within LABEL_REFs and SYMBOL_REFs. */
1577 default:
298e6adc 1578 gcc_unreachable ();
9ae8ffe7
JL
1579 }
1580 }
1581 return 1;
1582}
1583
9e412ca3 1584static rtx
4682ae04 1585find_base_term (rtx x)
9ae8ffe7 1586{
eab5c70a 1587 cselib_val *val;
6f2ffb4b
AO
1588 struct elt_loc_list *l, *f;
1589 rtx ret;
eab5c70a 1590
b949ea8b
JW
1591#if defined (FIND_BASE_TERM)
1592 /* Try machine-dependent ways to find the base term. */
1593 x = FIND_BASE_TERM (x);
1594#endif
1595
9ae8ffe7
JL
1596 switch (GET_CODE (x))
1597 {
1598 case REG:
1599 return REG_BASE_VALUE (x);
1600
d288e53d 1601 case TRUNCATE:
5932a4d4 1602 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1603 handle this only if the target does not support different pointer or
1604 address modes depending on the address space. */
1605 if (!target_default_pointer_address_modes_p ())
1606 return 0;
d288e53d 1607 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1608 return 0;
d288e53d 1609 /* Fall through. */
9ae8ffe7 1610 case HIGH:
6d849a2a
JL
1611 case PRE_INC:
1612 case PRE_DEC:
1613 case POST_INC:
1614 case POST_DEC:
d288e53d
DE
1615 case PRE_MODIFY:
1616 case POST_MODIFY:
6d849a2a
JL
1617 return find_base_term (XEXP (x, 0));
1618
1abade85
RK
1619 case ZERO_EXTEND:
1620 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1621 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1622 handle this only if the target does not support different pointer or
1623 address modes depending on the address space. */
1624 if (!target_default_pointer_address_modes_p ())
1625 return 0;
1626
1abade85
RK
1627 {
1628 rtx temp = find_base_term (XEXP (x, 0));
1629
5ae6cd0d 1630 if (temp != 0 && CONSTANT_P (temp))
1abade85 1631 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1632
1633 return temp;
1634 }
1635
eab5c70a
BS
1636 case VALUE:
1637 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1638 ret = NULL_RTX;
1639
40e02b4a 1640 if (!val)
6f2ffb4b
AO
1641 return ret;
1642
1643 f = val->locs;
1644 /* Temporarily reset val->locs to avoid infinite recursion. */
1645 val->locs = NULL;
1646
1647 for (l = f; l; l = l->next)
1648 if (GET_CODE (l->loc) == VALUE
1649 && CSELIB_VAL_PTR (l->loc)->locs
1650 && !CSELIB_VAL_PTR (l->loc)->locs->next
1651 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1652 continue;
1653 else if ((ret = find_base_term (l->loc)) != 0)
1654 break;
1655
1656 val->locs = f;
1657 return ret;
eab5c70a 1658
023f059b
JJ
1659 case LO_SUM:
1660 /* The standard form is (lo_sum reg sym) so look only at the
1661 second operand. */
1662 return find_base_term (XEXP (x, 1));
1663
9ae8ffe7
JL
1664 case CONST:
1665 x = XEXP (x, 0);
1666 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1667 return 0;
938d968e 1668 /* Fall through. */
9ae8ffe7
JL
1669 case PLUS:
1670 case MINUS:
1671 {
3c567fae
JL
1672 rtx tmp1 = XEXP (x, 0);
1673 rtx tmp2 = XEXP (x, 1);
1674
f5143c46 1675 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1676 the two operands represents the real base address. Otherwise this
1677 routine may return the index register instead of the base register.
1678
1679 That may cause us to believe no aliasing was possible, when in
1680 fact aliasing is possible.
1681
1682 We use a few simple tests to guess the base register. Additional
1683 tests can certainly be added. For example, if one of the operands
1684 is a shift or multiply, then it must be the index register and the
1685 other operand is the base register. */
ca7fd9cd 1686
b949ea8b
JW
1687 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1688 return find_base_term (tmp2);
1689
3c567fae
JL
1690 /* If either operand is known to be a pointer, then use it
1691 to determine the base term. */
3502dc9c 1692 if (REG_P (tmp1) && REG_POINTER (tmp1))
7eba2d1f
LM
1693 {
1694 rtx base = find_base_term (tmp1);
1695 if (base)
1696 return base;
1697 }
3c567fae 1698
3502dc9c 1699 if (REG_P (tmp2) && REG_POINTER (tmp2))
7eba2d1f
LM
1700 {
1701 rtx base = find_base_term (tmp2);
1702 if (base)
1703 return base;
1704 }
3c567fae
JL
1705
1706 /* Neither operand was known to be a pointer. Go ahead and find the
1707 base term for both operands. */
1708 tmp1 = find_base_term (tmp1);
1709 tmp2 = find_base_term (tmp2);
1710
1711 /* If either base term is named object or a special address
1712 (like an argument or stack reference), then use it for the
1713 base term. */
9fc37b2b 1714 if (tmp1 != 0 && known_base_value_p (tmp1))
3c567fae
JL
1715 return tmp1;
1716
9fc37b2b 1717 if (tmp2 != 0 && known_base_value_p (tmp2))
3c567fae
JL
1718 return tmp2;
1719
1720 /* We could not determine which of the two operands was the
1721 base register and which was the index. So we can determine
1722 nothing from the base alias check. */
1723 return 0;
9ae8ffe7
JL
1724 }
1725
1726 case AND:
481683e1 1727 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 1728 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1729 return 0;
1730
1731 case SYMBOL_REF:
1732 case LABEL_REF:
1733 return x;
1734
1735 default:
1736 return 0;
1737 }
1738}
1739
9e412ca3
RS
1740/* Return true if accesses to address X may alias accesses based
1741 on the stack pointer. */
1742
1743bool
1744may_be_sp_based_p (rtx x)
1745{
1746 rtx base = find_base_term (x);
1747 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1748}
1749
9ae8ffe7
JL
1750/* Return 0 if the addresses X and Y are known to point to different
1751 objects, 1 if they might be pointers to the same object. */
1752
1753static int
4682ae04
AJ
1754base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1755 enum machine_mode y_mode)
9ae8ffe7
JL
1756{
1757 rtx x_base = find_base_term (x);
1758 rtx y_base = find_base_term (y);
1759
1c72c7f6
JC
1760 /* If the address itself has no known base see if a known equivalent
1761 value has one. If either address still has no known base, nothing
1762 is known about aliasing. */
1763 if (x_base == 0)
1764 {
1765 rtx x_c;
d4b60170 1766
1c72c7f6
JC
1767 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1768 return 1;
d4b60170 1769
1c72c7f6
JC
1770 x_base = find_base_term (x_c);
1771 if (x_base == 0)
1772 return 1;
1773 }
9ae8ffe7 1774
1c72c7f6
JC
1775 if (y_base == 0)
1776 {
1777 rtx y_c;
1778 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1779 return 1;
d4b60170 1780
1c72c7f6
JC
1781 y_base = find_base_term (y_c);
1782 if (y_base == 0)
1783 return 1;
1784 }
1785
1786 /* If the base addresses are equal nothing is known about aliasing. */
1787 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1788 return 1;
1789
435da628
UB
1790 /* The base addresses are different expressions. If they are not accessed
1791 via AND, there is no conflict. We can bring knowledge of object
1792 alignment into play here. For example, on alpha, "char a, b;" can
1793 alias one another, though "char a; long b;" cannot. AND addesses may
1794 implicitly alias surrounding objects; i.e. unaligned access in DImode
1795 via AND address can alias all surrounding object types except those
1796 with aligment 8 or higher. */
1797 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1798 return 1;
1799 if (GET_CODE (x) == AND
481683e1 1800 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
1801 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1802 return 1;
1803 if (GET_CODE (y) == AND
481683e1 1804 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
1805 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1806 return 1;
1807
1808 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1809 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1810 return 0;
9ae8ffe7 1811
9fc37b2b 1812 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
1813 return 0;
1814
0d3c82d6 1815 return 1;
9ae8ffe7
JL
1816}
1817
a5628378
AO
1818/* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1819 whose UID is greater than the int uid that D points to. */
1820
1821static int
1822refs_newer_value_cb (rtx *x, void *d)
1823{
1824 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1825 return 1;
1826
1827 return 0;
1828}
1829
1830/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1831 that of V. */
1832
1833static bool
1834refs_newer_value_p (rtx expr, rtx v)
1835{
1836 int minuid = CSELIB_VAL_PTR (v)->uid;
1837
1838 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1839}
1840
eab5c70a
BS
1841/* Convert the address X into something we can use. This is done by returning
1842 it unchanged unless it is a value; in the latter case we call cselib to get
1843 a more useful rtx. */
3bdf5ad1 1844
a13d4ebf 1845rtx
4682ae04 1846get_addr (rtx x)
eab5c70a
BS
1847{
1848 cselib_val *v;
1849 struct elt_loc_list *l;
1850
1851 if (GET_CODE (x) != VALUE)
1852 return x;
1853 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1854 if (v)
1855 {
0f68ba3e
AO
1856 bool have_equivs = cselib_have_permanent_equivalences ();
1857 if (have_equivs)
1858 v = canonical_cselib_val (v);
40e02b4a
JH
1859 for (l = v->locs; l; l = l->next)
1860 if (CONSTANT_P (l->loc))
1861 return l->loc;
1862 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
1863 if (!REG_P (l->loc) && !MEM_P (l->loc)
1864 /* Avoid infinite recursion when potentially dealing with
1865 var-tracking artificial equivalences, by skipping the
1866 equivalences themselves, and not choosing expressions
1867 that refer to newer VALUEs. */
1868 && (!have_equivs
1869 || (GET_CODE (l->loc) != VALUE
1870 && !refs_newer_value_p (l->loc, x))))
a5628378 1871 return l->loc;
0f68ba3e
AO
1872 if (have_equivs)
1873 {
1874 for (l = v->locs; l; l = l->next)
1875 if (REG_P (l->loc)
1876 || (GET_CODE (l->loc) != VALUE
1877 && !refs_newer_value_p (l->loc, x)))
1878 return l->loc;
1879 /* Return the canonical value. */
1880 return v->val_rtx;
1881 }
1882 if (v->locs)
1883 return v->locs->loc;
40e02b4a 1884 }
eab5c70a
BS
1885 return x;
1886}
1887
39cec1ac
MH
1888/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1889 where SIZE is the size in bytes of the memory reference. If ADDR
1890 is not modified by the memory reference then ADDR is returned. */
1891
04e2b4d3 1892static rtx
4682ae04 1893addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1894{
1895 int offset = 0;
ca7fd9cd 1896
39cec1ac
MH
1897 switch (GET_CODE (addr))
1898 {
1899 case PRE_INC:
1900 offset = (n_refs + 1) * size;
1901 break;
1902 case PRE_DEC:
1903 offset = -(n_refs + 1) * size;
1904 break;
1905 case POST_INC:
1906 offset = n_refs * size;
1907 break;
1908 case POST_DEC:
1909 offset = -n_refs * size;
1910 break;
1911
1912 default:
1913 return addr;
1914 }
ca7fd9cd 1915
39cec1ac 1916 if (offset)
45183e03 1917 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1918 GEN_INT (offset));
39cec1ac
MH
1919 else
1920 addr = XEXP (addr, 0);
45183e03 1921 addr = canon_rtx (addr);
39cec1ac
MH
1922
1923 return addr;
1924}
1925
f47e08d9
RG
1926/* Return one if X and Y (memory addresses) reference the
1927 same location in memory or if the references overlap.
1928 Return zero if they do not overlap, else return
1929 minus one in which case they still might reference the same location.
1930
1931 C is an offset accumulator. When
9ae8ffe7
JL
1932 C is nonzero, we are testing aliases between X and Y + C.
1933 XSIZE is the size in bytes of the X reference,
1934 similarly YSIZE is the size in bytes for Y.
45183e03 1935 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1936
1937 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1938 referenced (the reference was BLKmode), so make the most pessimistic
1939 assumptions.
1940
c02f035f
RH
1941 If XSIZE or YSIZE is negative, we may access memory outside the object
1942 being referenced as a side effect. This can happen when using AND to
1943 align memory references, as is done on the Alpha.
1944
9ae8ffe7 1945 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
1946 local variables had their addresses taken, but that's too hard now.
1947
1948 ??? Contrary to the tree alias oracle this does not return
1949 one for X + non-constant and Y + non-constant when X and Y are equal.
1950 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 1951
9ae8ffe7 1952static int
4682ae04 1953memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1954{
eab5c70a 1955 if (GET_CODE (x) == VALUE)
5312b066
JJ
1956 {
1957 if (REG_P (y))
1958 {
24f8d71e
JJ
1959 struct elt_loc_list *l = NULL;
1960 if (CSELIB_VAL_PTR (x))
a5628378
AO
1961 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1962 l; l = l->next)
24f8d71e
JJ
1963 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1964 break;
5312b066
JJ
1965 if (l)
1966 x = y;
1967 else
1968 x = get_addr (x);
1969 }
1970 /* Don't call get_addr if y is the same VALUE. */
1971 else if (x != y)
1972 x = get_addr (x);
1973 }
eab5c70a 1974 if (GET_CODE (y) == VALUE)
5312b066
JJ
1975 {
1976 if (REG_P (x))
1977 {
24f8d71e
JJ
1978 struct elt_loc_list *l = NULL;
1979 if (CSELIB_VAL_PTR (y))
a5628378
AO
1980 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1981 l; l = l->next)
24f8d71e
JJ
1982 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1983 break;
5312b066
JJ
1984 if (l)
1985 y = x;
1986 else
1987 y = get_addr (y);
1988 }
1989 /* Don't call get_addr if x is the same VALUE. */
1990 else if (y != x)
1991 y = get_addr (y);
1992 }
9ae8ffe7
JL
1993 if (GET_CODE (x) == HIGH)
1994 x = XEXP (x, 0);
1995 else if (GET_CODE (x) == LO_SUM)
1996 x = XEXP (x, 1);
1997 else
45183e03 1998 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1999 if (GET_CODE (y) == HIGH)
2000 y = XEXP (y, 0);
2001 else if (GET_CODE (y) == LO_SUM)
2002 y = XEXP (y, 1);
2003 else
45183e03 2004 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
2005
2006 if (rtx_equal_for_memref_p (x, y))
2007 {
c02f035f 2008 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
2009 return 1;
2010 if (c >= 0 && xsize > c)
2011 return 1;
2012 if (c < 0 && ysize+c > 0)
2013 return 1;
2014 return 0;
2015 }
2016
6e73e666
JC
2017 /* This code used to check for conflicts involving stack references and
2018 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2019
2020 if (GET_CODE (x) == PLUS)
2021 {
2022 /* The fact that X is canonicalized means that this
2023 PLUS rtx is canonicalized. */
2024 rtx x0 = XEXP (x, 0);
2025 rtx x1 = XEXP (x, 1);
2026
2027 if (GET_CODE (y) == PLUS)
2028 {
2029 /* The fact that Y is canonicalized means that this
2030 PLUS rtx is canonicalized. */
2031 rtx y0 = XEXP (y, 0);
2032 rtx y1 = XEXP (y, 1);
2033
2034 if (rtx_equal_for_memref_p (x1, y1))
2035 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2036 if (rtx_equal_for_memref_p (x0, y0))
2037 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2038 if (CONST_INT_P (x1))
63be02db 2039 {
481683e1 2040 if (CONST_INT_P (y1))
63be02db
JM
2041 return memrefs_conflict_p (xsize, x0, ysize, y0,
2042 c - INTVAL (x1) + INTVAL (y1));
2043 else
2044 return memrefs_conflict_p (xsize, x0, ysize, y,
2045 c - INTVAL (x1));
2046 }
481683e1 2047 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2048 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2049
f47e08d9 2050 return -1;
9ae8ffe7 2051 }
481683e1 2052 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2053 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2054 }
2055 else if (GET_CODE (y) == PLUS)
2056 {
2057 /* The fact that Y is canonicalized means that this
2058 PLUS rtx is canonicalized. */
2059 rtx y0 = XEXP (y, 0);
2060 rtx y1 = XEXP (y, 1);
2061
481683e1 2062 if (CONST_INT_P (y1))
9ae8ffe7
JL
2063 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2064 else
f47e08d9 2065 return -1;
9ae8ffe7
JL
2066 }
2067
2068 if (GET_CODE (x) == GET_CODE (y))
2069 switch (GET_CODE (x))
2070 {
2071 case MULT:
2072 {
2073 /* Handle cases where we expect the second operands to be the
2074 same, and check only whether the first operand would conflict
2075 or not. */
2076 rtx x0, y0;
2077 rtx x1 = canon_rtx (XEXP (x, 1));
2078 rtx y1 = canon_rtx (XEXP (y, 1));
2079 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2080 return -1;
9ae8ffe7
JL
2081 x0 = canon_rtx (XEXP (x, 0));
2082 y0 = canon_rtx (XEXP (y, 0));
2083 if (rtx_equal_for_memref_p (x0, y0))
2084 return (xsize == 0 || ysize == 0
2085 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2086
2087 /* Can't properly adjust our sizes. */
481683e1 2088 if (!CONST_INT_P (x1))
f47e08d9 2089 return -1;
9ae8ffe7
JL
2090 xsize /= INTVAL (x1);
2091 ysize /= INTVAL (x1);
2092 c /= INTVAL (x1);
2093 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2094 }
1d300e19
KG
2095
2096 default:
2097 break;
9ae8ffe7
JL
2098 }
2099
a9bf4fe2
AO
2100 /* Deal with alignment ANDs by adjusting offset and size so as to
2101 cover the maximum range, without taking any previously known
2102 alignment into account. */
481683e1 2103 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2104 {
a9bf4fe2
AO
2105 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2106 unsigned HOST_WIDE_INT uc = sc;
2107 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2108 {
2109 xsize -= sc + 1;
fe8fb1c4 2110 c -= sc + 1;
a9bf4fe2
AO
2111 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2112 ysize, y, c);
2113 }
56ee9281 2114 }
481683e1 2115 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2116 {
a9bf4fe2
AO
2117 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2118 unsigned HOST_WIDE_INT uc = sc;
2119 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2120 {
2121 ysize -= sc + 1;
fe8fb1c4 2122 c += sc + 1;
a9bf4fe2
AO
2123 return memrefs_conflict_p (xsize, x,
2124 ysize, canon_rtx (XEXP (y, 0)), c);
2125 }
c02f035f 2126 }
9ae8ffe7
JL
2127
2128 if (CONSTANT_P (x))
2129 {
481683e1 2130 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2131 {
2132 c += (INTVAL (y) - INTVAL (x));
c02f035f 2133 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
2134 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2135 }
2136
2137 if (GET_CODE (x) == CONST)
2138 {
2139 if (GET_CODE (y) == CONST)
2140 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2141 ysize, canon_rtx (XEXP (y, 0)), c);
2142 else
2143 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2144 ysize, y, c);
2145 }
2146 if (GET_CODE (y) == CONST)
2147 return memrefs_conflict_p (xsize, x, ysize,
2148 canon_rtx (XEXP (y, 0)), c);
2149
2150 if (CONSTANT_P (y))
b949ea8b 2151 return (xsize <= 0 || ysize <= 0
c02f035f 2152 || (rtx_equal_for_memref_p (x, y)
b949ea8b 2153 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7 2154
f47e08d9 2155 return -1;
9ae8ffe7 2156 }
f47e08d9
RG
2157
2158 return -1;
9ae8ffe7
JL
2159}
2160
2161/* Functions to compute memory dependencies.
2162
2163 Since we process the insns in execution order, we can build tables
2164 to keep track of what registers are fixed (and not aliased), what registers
2165 are varying in known ways, and what registers are varying in unknown
2166 ways.
2167
2168 If both memory references are volatile, then there must always be a
2169 dependence between the two references, since their order can not be
2170 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2171 though.
9ae8ffe7 2172
53d9622b
RS
2173 We also must allow AND addresses, because they may generate accesses
2174 outside the object being referenced. This is used to generate aligned
2175 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2176 storeqi_unaligned pattern. */
9ae8ffe7
JL
2177
2178/* Read dependence: X is read after read in MEM takes place. There can
2179 only be a dependence here if both reads are volatile. */
2180
2181int
4f588890 2182read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7
JL
2183{
2184 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2185}
2186
998d7deb
RH
2187/* Return true if we can determine that the fields referenced cannot
2188 overlap for any pair of objects. */
2189
2190static bool
175a7536 2191nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
998d7deb 2192{
175a7536 2193 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
4f588890 2194 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb 2195
175a7536
MM
2196 if (!flag_strict_aliasing
2197 || !x || !y
2198 || TREE_CODE (x) != COMPONENT_REF
2199 || TREE_CODE (y) != COMPONENT_REF)
4c7af939
AB
2200 return false;
2201
998d7deb
RH
2202 do
2203 {
2204 /* The comparison has to be done at a common type, since we don't
d6a7951f 2205 know how the inheritance hierarchy works. */
998d7deb
RH
2206 orig_y = y;
2207 do
2208 {
2209 fieldx = TREE_OPERAND (x, 1);
c05a0766 2210 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
2211
2212 y = orig_y;
2213 do
2214 {
2215 fieldy = TREE_OPERAND (y, 1);
c05a0766 2216 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
2217
2218 if (typex == typey)
2219 goto found;
2220
2221 y = TREE_OPERAND (y, 0);
2222 }
2223 while (y && TREE_CODE (y) == COMPONENT_REF);
2224
2225 x = TREE_OPERAND (x, 0);
2226 }
2227 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 2228 /* Never found a common type. */
c05a0766 2229 return false;
998d7deb
RH
2230
2231 found:
2232 /* If we're left with accessing different fields of a structure,
2233 then no overlap. */
2234 if (TREE_CODE (typex) == RECORD_TYPE
2235 && fieldx != fieldy)
2236 return true;
2237
2238 /* The comparison on the current field failed. If we're accessing
2239 a very nested structure, look at the next outer level. */
2240 x = TREE_OPERAND (x, 0);
2241 y = TREE_OPERAND (y, 0);
2242 }
2243 while (x && y
2244 && TREE_CODE (x) == COMPONENT_REF
2245 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2246
998d7deb
RH
2247 return false;
2248}
2249
2250/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2251
2252static tree
4682ae04 2253decl_for_component_ref (tree x)
998d7deb
RH
2254{
2255 do
2256 {
2257 x = TREE_OPERAND (x, 0);
2258 }
2259 while (x && TREE_CODE (x) == COMPONENT_REF);
2260
2261 return x && DECL_P (x) ? x : NULL_TREE;
2262}
2263
527210c4
RS
2264/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2265 for the offset of the field reference. *KNOWN_P says whether the
2266 offset is known. */
998d7deb 2267
527210c4
RS
2268static void
2269adjust_offset_for_component_ref (tree x, bool *known_p,
2270 HOST_WIDE_INT *offset)
998d7deb 2271{
527210c4
RS
2272 if (!*known_p)
2273 return;
ca7fd9cd 2274 do
998d7deb 2275 {
527210c4 2276 tree xoffset = component_ref_field_offset (x);
998d7deb
RH
2277 tree field = TREE_OPERAND (x, 1);
2278
527210c4
RS
2279 if (! host_integerp (xoffset, 1))
2280 {
2281 *known_p = false;
2282 return;
2283 }
2284 *offset += (tree_low_cst (xoffset, 1)
998d7deb
RH
2285 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2286 / BITS_PER_UNIT));
2287
2288 x = TREE_OPERAND (x, 0);
2289 }
2290 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2291}
2292
95bd1dd7 2293/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2294 X and Y and they do not overlap.
2295 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2296
2e4e39f6 2297int
c6ea834c 2298nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2299{
998d7deb 2300 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2301 rtx rtlx, rtly;
2302 rtx basex, basey;
527210c4
RS
2303 bool moffsetx_known_p, moffsety_known_p;
2304 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
a4311dfe
RK
2305 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2306
998d7deb
RH
2307 /* Unless both have exprs, we can't tell anything. */
2308 if (exprx == 0 || expry == 0)
2309 return 0;
2b22e382
RG
2310
2311 /* For spill-slot accesses make sure we have valid offsets. */
2312 if ((exprx == get_spill_slot_decl (false)
527210c4 2313 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2314 || (expry == get_spill_slot_decl (false)
527210c4 2315 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2316 return 0;
c22cacf3 2317
998d7deb 2318 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2319 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2320 if (moffsetx_known_p)
2321 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2322 if (TREE_CODE (exprx) == COMPONENT_REF)
2323 {
2e0c984c
RG
2324 tree t = decl_for_component_ref (exprx);
2325 if (! t)
2326 return 0;
527210c4 2327 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2328 exprx = t;
998d7deb 2329 }
c67a1cf6 2330
527210c4
RS
2331 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2332 if (moffsety_known_p)
2333 moffsety = MEM_OFFSET (y);
998d7deb
RH
2334 if (TREE_CODE (expry) == COMPONENT_REF)
2335 {
2e0c984c
RG
2336 tree t = decl_for_component_ref (expry);
2337 if (! t)
2338 return 0;
527210c4 2339 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2340 expry = t;
998d7deb
RH
2341 }
2342
2343 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2344 return 0;
2345
1307c758
RG
2346 /* With invalid code we can end up storing into the constant pool.
2347 Bail out to avoid ICEing when creating RTL for this.
2348 See gfortran.dg/lto/20091028-2_0.f90. */
2349 if (TREE_CODE (exprx) == CONST_DECL
2350 || TREE_CODE (expry) == CONST_DECL)
2351 return 1;
2352
998d7deb
RH
2353 rtlx = DECL_RTL (exprx);
2354 rtly = DECL_RTL (expry);
a4311dfe 2355
1edcd60b
RK
2356 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2357 can't overlap unless they are the same because we never reuse that part
2358 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2359 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2360 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2361 return 1;
2362
5932a4d4 2363 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2364 potentially overlap), we cannot easily tell from the addresses
2365 whether the references overlap. */
2366 if (MEM_P (rtlx) && MEM_P (rtly)
2367 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2368 return 0;
2369
a4311dfe
RK
2370 /* Get the base and offsets of both decls. If either is a register, we
2371 know both are and are the same, so use that as the base. The only
2372 we can avoid overlap is if we can deduce that they are nonoverlapping
2373 pieces of that decl, which is very rare. */
3c0cb5de 2374 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2375 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2376 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2377
3c0cb5de 2378 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2379 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2380 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2381
d746694a 2382 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2383 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2384 stack frame. Otherwise a different base means we can't tell if they
2385 overlap or not. */
2386 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2387 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2388 || (CONSTANT_P (basex) && REG_P (basey)
2389 && REGNO_PTR_FRAME_P (REGNO (basey)))
2390 || (CONSTANT_P (basey) && REG_P (basex)
2391 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2392
c6ea834c
BM
2393 /* Offset based disambiguation not appropriate for loop invariant */
2394 if (loop_invariant)
2395 return 0;
2396
3c0cb5de 2397 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2398 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2399 : -1);
3c0cb5de 2400 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2401 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2402 : -1);
a4311dfe 2403
0af5bc3e
RK
2404 /* If we have an offset for either memref, it can update the values computed
2405 above. */
527210c4
RS
2406 if (moffsetx_known_p)
2407 offsetx += moffsetx, sizex -= moffsetx;
2408 if (moffsety_known_p)
2409 offsety += moffsety, sizey -= moffsety;
a4311dfe 2410
0af5bc3e 2411 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2412 We can't do this if the offset isn't known because we must view this
0af5bc3e 2413 memref as being anywhere inside the DECL's MEM. */
527210c4 2414 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2415 sizex = MEM_SIZE (x);
527210c4 2416 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2417 sizey = MEM_SIZE (y);
a4311dfe
RK
2418
2419 /* Put the values of the memref with the lower offset in X's values. */
2420 if (offsetx > offsety)
2421 {
2422 tem = offsetx, offsetx = offsety, offsety = tem;
2423 tem = sizex, sizex = sizey, sizey = tem;
2424 }
2425
2426 /* If we don't know the size of the lower-offset value, we can't tell
2427 if they conflict. Otherwise, we do the test. */
a6f7c915 2428 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2429}
2430
9362286d
SB
2431/* Helper for true_dependence and canon_true_dependence.
2432 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2433
9362286d
SB
2434 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2435 NULL_RTX, and the canonical addresses of MEM and X are both computed
2436 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2437
2438 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2439
2440 Returns 1 if there is a true dependence, 0 otherwise. */
2441
2442static int
2443true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2444 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2445{
49982682 2446 rtx base;
f47e08d9 2447 int ret;
9ae8ffe7 2448
9362286d
SB
2449 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2450 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2451
9ae8ffe7
JL
2452 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2453 return 1;
2454
c4484b8f 2455 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2456 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2457 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2458 return 1;
2459 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2460 return 1;
9cd9e512
RH
2461 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2462 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2463 return 1;
c4484b8f 2464
389fdba0
RH
2465 /* Read-only memory is by definition never modified, and therefore can't
2466 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2467 but stupid user tricks can produce them, so don't die. */
389fdba0 2468 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2469 return 0;
2470
5932a4d4 2471 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2472 potentially overlap), we cannot easily tell from the addresses
2473 whether the references overlap. */
2474 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2475 return 1;
2476
9362286d
SB
2477 if (! mem_addr)
2478 {
2479 mem_addr = XEXP (mem, 0);
2480 if (mem_mode == VOIDmode)
2481 mem_mode = GET_MODE (mem);
2482 }
2483
2484 if (! x_addr)
2147c71c 2485 {
a522de15
SB
2486 x_addr = XEXP (x, 0);
2487 if (!((GET_CODE (x_addr) == VALUE
2488 && GET_CODE (mem_addr) != VALUE
2489 && reg_mentioned_p (x_addr, mem_addr))
2490 || (GET_CODE (x_addr) != VALUE
2491 && GET_CODE (mem_addr) == VALUE
2492 && reg_mentioned_p (mem_addr, x_addr))))
2493 {
2494 x_addr = get_addr (x_addr);
2495 if (! mem_canonicalized)
2496 mem_addr = get_addr (mem_addr);
2497 }
2147c71c 2498 }
eab5c70a 2499
55efb413
JW
2500 base = find_base_term (x_addr);
2501 if (base && (GET_CODE (base) == LABEL_REF
2502 || (GET_CODE (base) == SYMBOL_REF
2503 && CONSTANT_POOL_ADDRESS_P (base))))
2504 return 0;
2505
eab5c70a 2506 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2507 return 0;
2508
eab5c70a 2509 x_addr = canon_rtx (x_addr);
9362286d
SB
2510 if (!mem_canonicalized)
2511 mem_addr = canon_rtx (mem_addr);
6e73e666 2512
f47e08d9
RG
2513 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2514 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2515 return ret;
2516
a95b3cc7 2517 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2518 return 0;
2519
c6ea834c 2520 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2521 return 0;
175a7536
MM
2522
2523 if (nonoverlapping_component_refs_p (mem, x))
2524 return 0;
0211b6ab 2525
55b34b5f 2526 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2527}
2528
9362286d
SB
2529/* True dependence: X is read after store in MEM takes place. */
2530
2531int
53d9622b 2532true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
9362286d
SB
2533{
2534 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2535 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2536}
2537
a13d4ebf 2538/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2539 Variant of true_dependence which assumes MEM has already been
2540 canonicalized (hence we no longer do that here).
9362286d
SB
2541 The mem_addr argument has been added, since true_dependence_1 computed
2542 this value prior to canonicalizing. */
a13d4ebf
AM
2543
2544int
4f588890 2545canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2546 const_rtx x, rtx x_addr)
a13d4ebf 2547{
9362286d 2548 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2549 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2550}
2551
da7d8304 2552/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2553 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2554
2c72b78f 2555static int
4f588890 2556write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2557{
6e73e666 2558 rtx x_addr, mem_addr;
49982682 2559 rtx base;
f47e08d9 2560 int ret;
6e73e666 2561
9ae8ffe7
JL
2562 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2563 return 1;
2564
c4484b8f
RH
2565 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2566 This is used in epilogue deallocation functions. */
2567 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2568 return 1;
2569 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2570 return 1;
9cd9e512
RH
2571 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2572 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2573 return 1;
c4484b8f 2574
389fdba0
RH
2575 /* A read from read-only memory can't conflict with read-write memory. */
2576 if (!writep && MEM_READONLY_P (mem))
2577 return 0;
55efb413 2578
5932a4d4 2579 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2580 potentially overlap), we cannot easily tell from the addresses
2581 whether the references overlap. */
2582 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2583 return 1;
2584
2147c71c
L
2585 x_addr = XEXP (x, 0);
2586 mem_addr = XEXP (mem, 0);
2587 if (!((GET_CODE (x_addr) == VALUE
2588 && GET_CODE (mem_addr) != VALUE
2589 && reg_mentioned_p (x_addr, mem_addr))
2590 || (GET_CODE (x_addr) != VALUE
2591 && GET_CODE (mem_addr) == VALUE
2592 && reg_mentioned_p (mem_addr, x_addr))))
2593 {
2594 x_addr = get_addr (x_addr);
2595 mem_addr = get_addr (mem_addr);
2596 }
55efb413 2597
49982682
JW
2598 if (! writep)
2599 {
55efb413 2600 base = find_base_term (mem_addr);
49982682
JW
2601 if (base && (GET_CODE (base) == LABEL_REF
2602 || (GET_CODE (base) == SYMBOL_REF
2603 && CONSTANT_POOL_ADDRESS_P (base))))
2604 return 0;
2605 }
2606
eab5c70a
BS
2607 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2608 GET_MODE (mem)))
41472af8
MM
2609 return 0;
2610
eab5c70a
BS
2611 x_addr = canon_rtx (x_addr);
2612 mem_addr = canon_rtx (mem_addr);
6e73e666 2613
f47e08d9
RG
2614 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2615 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2616 return ret;
2617
c6ea834c 2618 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
2619 return 0;
2620
55b34b5f 2621 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
2622}
2623
2624/* Anti dependence: X is written after read in MEM takes place. */
2625
2626int
4f588890 2627anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2628{
389fdba0 2629 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2630}
2631
2632/* Output dependence: X is written after store in MEM takes place. */
2633
2634int
4f588890 2635output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2636{
389fdba0 2637 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2638}
c14b9960 2639\f
6e73e666 2640
c6ea834c
BM
2641
2642/* Check whether X may be aliased with MEM. Don't do offset-based
2643 memory disambiguation & TBAA. */
2644int
2645may_alias_p (const_rtx mem, const_rtx x)
2646{
2647 rtx x_addr, mem_addr;
c6ea834c
BM
2648
2649 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2650 return 1;
2651
a95b3cc7
RG
2652 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2653 This is used in epilogue deallocation functions. */
2654 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2655 return 1;
2656 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 2657 return 1;
c6ea834c
BM
2658 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2659 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2660 return 1;
2661
2662 /* Read-only memory is by definition never modified, and therefore can't
2663 conflict with anything. We don't expect to find read-only set on MEM,
2664 but stupid user tricks can produce them, so don't die. */
2665 if (MEM_READONLY_P (x))
2666 return 0;
2667
5932a4d4 2668 /* If we have MEMs referring to different address spaces (which can
c6ea834c
BM
2669 potentially overlap), we cannot easily tell from the addresses
2670 whether the references overlap. */
2671 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2672 return 1;
2673
2674 x_addr = XEXP (x, 0);
2675 mem_addr = XEXP (mem, 0);
2676 if (!((GET_CODE (x_addr) == VALUE
2677 && GET_CODE (mem_addr) != VALUE
2678 && reg_mentioned_p (x_addr, mem_addr))
2679 || (GET_CODE (x_addr) != VALUE
2680 && GET_CODE (mem_addr) == VALUE
2681 && reg_mentioned_p (mem_addr, x_addr))))
2682 {
2683 x_addr = get_addr (x_addr);
2684 mem_addr = get_addr (mem_addr);
2685 }
2686
2687 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2688 return 0;
2689
2690 x_addr = canon_rtx (x_addr);
2691 mem_addr = canon_rtx (mem_addr);
2692
2693 if (nonoverlapping_memrefs_p (mem, x, true))
2694 return 0;
2695
c6ea834c
BM
2696 /* TBAA not valid for loop_invarint */
2697 return rtx_refs_may_alias_p (x, mem, false);
2698}
2699
6e73e666 2700void
b5deb7b6 2701init_alias_target (void)
6e73e666 2702{
b3694847 2703 int i;
6e73e666 2704
9fc37b2b
RS
2705 if (!arg_base_value)
2706 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2707
b5deb7b6
SL
2708 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2709
6e73e666
JC
2710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2711 /* Check whether this register can hold an incoming pointer
2712 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2713 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2714 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2715 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
2716 static_reg_base_value[i] = arg_base_value;
2717
757e8ba2
JJ
2718 static_reg_base_value[STACK_POINTER_REGNUM]
2719 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2720 static_reg_base_value[ARG_POINTER_REGNUM]
2721 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2722 static_reg_base_value[FRAME_POINTER_REGNUM]
2723 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e3339d0f 2724#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
757e8ba2
JJ
2725 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2726 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
2727#endif
2728}
2729
7b52eede
JH
2730/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2731 to be memory reference. */
2732static bool memory_modified;
2733static void
aa317c97 2734memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2735{
3c0cb5de 2736 if (MEM_P (x))
7b52eede 2737 {
9678086d 2738 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2739 memory_modified = true;
2740 }
2741}
2742
2743
2744/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2745 (i.e. address can be modified). */
7b52eede 2746bool
9678086d 2747memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2748{
2749 if (!INSN_P (insn))
2750 return false;
2751 memory_modified = false;
aa317c97 2752 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2753 return memory_modified;
2754}
2755
c13e8210
MM
2756/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2757 array. */
2758
9ae8ffe7 2759void
4682ae04 2760init_alias_analysis (void)
9ae8ffe7 2761{
c582d54a 2762 unsigned int maxreg = max_reg_num ();
ea64ef27 2763 int changed, pass;
b3694847
SS
2764 int i;
2765 unsigned int ui;
9ff3c7ca 2766 rtx insn, val;
9ae8ffe7 2767
0d446150
JH
2768 timevar_push (TV_ALIAS_ANALYSIS);
2769
9ff3c7ca
SB
2770 reg_known_value = VEC_alloc (rtx, gc, maxreg - FIRST_PSEUDO_REGISTER);
2771 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
9ae8ffe7 2772
08c79682 2773 /* If we have memory allocated from the previous run, use it. */
c582d54a 2774 if (old_reg_base_value)
08c79682
KH
2775 reg_base_value = old_reg_base_value;
2776
2777 if (reg_base_value)
2778 VEC_truncate (rtx, reg_base_value, 0);
2779
a590ac65 2780 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2781
5ed6ace5
MD
2782 new_reg_base_value = XNEWVEC (rtx, maxreg);
2783 reg_seen = XNEWVEC (char, maxreg);
ec907dd8
JL
2784
2785 /* The basic idea is that each pass through this loop will use the
2786 "constant" information from the previous pass to propagate alias
2787 information through another level of assignments.
2788
2789 This could get expensive if the assignment chains are long. Maybe
2790 we should throttle the number of iterations, possibly based on
6e73e666 2791 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2792
2793 We could propagate more information in the first pass by making use
6fb5fa3c 2794 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2795 for a pseudo is "constant".
2796
2797 A program with an uninitialized variable can cause an infinite loop
2798 here. Instead of doing a full dataflow analysis to detect such problems
2799 we just cap the number of iterations for the loop.
2800
2801 The state of the arrays for the set chain in question does not matter
2802 since the program has undefined behavior. */
6e73e666 2803
ea64ef27 2804 pass = 0;
6e73e666 2805 do
ec907dd8
JL
2806 {
2807 /* Assume nothing will change this iteration of the loop. */
2808 changed = 0;
2809
ec907dd8 2810 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
2811 start counting from one each iteration of the loop. */
2812 unique_id = 1;
ec907dd8 2813
f5143c46 2814 /* We're at the start of the function each iteration through the
ec907dd8 2815 loop, so we're copying arguments. */
83bbd9b6 2816 copying_arguments = true;
9ae8ffe7 2817
6e73e666 2818 /* Wipe the potential alias information clean for this pass. */
c582d54a 2819 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2820
6e73e666 2821 /* Wipe the reg_seen array clean. */
c582d54a 2822 memset (reg_seen, 0, maxreg);
9ae8ffe7 2823
6e73e666
JC
2824 /* Mark all hard registers which may contain an address.
2825 The stack, frame and argument pointers may contain an address.
2826 An argument register which can hold a Pmode value may contain
2827 an address even if it is not in BASE_REGS.
8072f69c 2828
6e73e666
JC
2829 The address expression is VOIDmode for an argument and
2830 Pmode for other registers. */
2831
7f243674
JL
2832 memcpy (new_reg_base_value, static_reg_base_value,
2833 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2834
ec907dd8
JL
2835 /* Walk the insns adding values to the new_reg_base_value array. */
2836 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2837 {
2c3c49de 2838 if (INSN_P (insn))
ec907dd8 2839 {
6e73e666 2840 rtx note, set;
efc9bd41
RK
2841
2842#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2843 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2844 insn chain until after reload has completed. Thus,
2845 there is no sense wasting time checking if INSN is in
2846 the prologue/epilogue until after reload has completed. */
2847 if (reload_completed
2848 && prologue_epilogue_contains (insn))
efc9bd41
RK
2849 continue;
2850#endif
2851
ec907dd8 2852 /* If this insn has a noalias note, process it, Otherwise,
c22cacf3
MS
2853 scan for sets. A simple set will have no side effects
2854 which could change the base value of any other register. */
6e73e666 2855
ec907dd8 2856 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2857 && REG_NOTES (insn) != 0
2858 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2859 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2860 else
84832317 2861 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2862
2863 set = single_set (insn);
2864
2865 if (set != 0
f8cfc6aa 2866 && REG_P (SET_DEST (set))
fb6754f0 2867 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2868 {
fb6754f0 2869 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2870 rtx src = SET_SRC (set);
bb1acb3e 2871 rtx t;
713f41f9 2872
a31830a7
SB
2873 note = find_reg_equal_equiv_note (insn);
2874 if (note && REG_NOTE_KIND (note) == REG_EQUAL
6fb5fa3c 2875 && DF_REG_DEF_COUNT (regno) != 1)
a31830a7
SB
2876 note = NULL_RTX;
2877
2878 if (note != NULL_RTX
713f41f9 2879 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2880 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2881 && ! reg_overlap_mentioned_p (SET_DEST (set),
2882 XEXP (note, 0)))
713f41f9 2883 {
bb1acb3e
RH
2884 set_reg_known_value (regno, XEXP (note, 0));
2885 set_reg_known_equiv_p (regno,
2886 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9 2887 }
6fb5fa3c 2888 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9 2889 && GET_CODE (src) == PLUS
f8cfc6aa 2890 && REG_P (XEXP (src, 0))
bb1acb3e 2891 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
481683e1 2892 && CONST_INT_P (XEXP (src, 1)))
713f41f9 2893 {
0a81f074
RS
2894 t = plus_constant (GET_MODE (src), t,
2895 INTVAL (XEXP (src, 1)));
bb1acb3e 2896 set_reg_known_value (regno, t);
9ff3c7ca 2897 set_reg_known_equiv_p (regno, false);
713f41f9 2898 }
6fb5fa3c 2899 else if (DF_REG_DEF_COUNT (regno) == 1
713f41f9
BS
2900 && ! rtx_varies_p (src, 1))
2901 {
bb1acb3e 2902 set_reg_known_value (regno, src);
9ff3c7ca 2903 set_reg_known_equiv_p (regno, false);
713f41f9 2904 }
6e73e666 2905 }
ec907dd8 2906 }
4b4bf941 2907 else if (NOTE_P (insn)
a38e7aa5 2908 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2909 copying_arguments = false;
6e73e666 2910 }
ec907dd8 2911
6e73e666 2912 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2913 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2914
c582d54a 2915 for (ui = 0; ui < maxreg; ui++)
6e73e666 2916 {
e51712db 2917 if (new_reg_base_value[ui]
08c79682 2918 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2919 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2920 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2921 {
08c79682 2922 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2923 changed = 1;
ec907dd8 2924 }
9ae8ffe7 2925 }
9ae8ffe7 2926 }
6e73e666 2927 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2928
2929 /* Fill in the remaining entries. */
9ff3c7ca
SB
2930 FOR_EACH_VEC_ELT (rtx, reg_known_value, i, val)
2931 {
2932 int regno = i + FIRST_PSEUDO_REGISTER;
2933 if (! val)
2934 set_reg_known_value (regno, regno_reg_rtx[regno]);
2935 }
9ae8ffe7 2936
e05e2395
MM
2937 /* Clean up. */
2938 free (new_reg_base_value);
ec907dd8 2939 new_reg_base_value = 0;
e05e2395 2940 free (reg_seen);
9ae8ffe7 2941 reg_seen = 0;
0d446150 2942 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2943}
2944
61630b27
JJ
2945/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2946 Special API for var-tracking pass purposes. */
2947
2948void
2949vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2950{
2951 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2952}
2953
9ae8ffe7 2954void
4682ae04 2955end_alias_analysis (void)
9ae8ffe7 2956{
c582d54a 2957 old_reg_base_value = reg_base_value;
9ff3c7ca
SB
2958 VEC_free (rtx, gc, reg_known_value);
2959 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 2960}
e2500fed
GK
2961
2962#include "gt-alias.h"