]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
gcc/ada/
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
ea0cb7ae 1/* Alias analysis for GNU C
711789cc 2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
ea0cb7ae 3 Contributed by John Carr (jfc@mit.edu).
4
f12b58b3 5This file is part of GCC.
ea0cb7ae 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
f12b58b3 10version.
ea0cb7ae 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
ea0cb7ae 16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
ea0cb7ae 20
21#include "config.h"
405711de 22#include "system.h"
805e22b2 23#include "coretypes.h"
24#include "tm.h"
ea0cb7ae 25#include "rtl.h"
142131ed 26#include "tree.h"
9ed99284 27#include "varasm.h"
28#include "expr.h"
7953c610 29#include "tm_p.h"
0a893c29 30#include "function.h"
4c74e6d9 31#include "alias.h"
32#include "emit-rtl.h"
ea0cb7ae 33#include "regs.h"
34#include "hard-reg-set.h"
080f162d 35#include "basic-block.h"
ea0cb7ae 36#include "flags.h"
0b205f4c 37#include "diagnostic-core.h"
1617c276 38#include "cselib.h"
a5b1863e 39#include "splay-tree.h"
c2e94b25 40#include "ggc.h"
b0278d39 41#include "langhooks.h"
376c21d1 42#include "timevar.h"
b9ed1410 43#include "dumpfile.h"
4f8e9d5c 44#include "target.h"
3072d30e 45#include "df.h"
3a443843 46#include "tree-ssa-alias.h"
47#include "pointer-set.h"
073c1fd5 48#include "gimple.h"
49#include "gimple-ssa.h"
f7d118a9 50
51/* The aliasing API provided here solves related but different problems:
52
a0c938f0 53 Say there exists (in c)
f7d118a9 54
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
59
60 struct Y y2, *py;
61 struct Z z2, *pz;
62
63
3c62ebbd 64 py = &x1.y1;
f7d118a9 65 px2 = &x1;
66
67 Consider the four questions:
68
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
f7d118a9 71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
9d75589a 78 a store through a pointer to an X can overwrite any field that is
f7d118a9 79 contained (recursively) in an X (unless we know that px1 != px2).
80
3c62ebbd 81 The last two questions can be solved in the same way as the first
82 two questions but this is too conservative. The observation is
83 that in some cases we can know which (if any) fields are addressed
84 and if those addresses are used in bad ways. This analysis may be
85 language specific. In C, arbitrary operations may be applied to
86 pointers. However, there is some indication that this may be too
87 conservative for some C++ types.
f7d118a9 88
89 The pass ipa-type-escape does this analysis for the types whose
a0c938f0 90 instances do not escape across the compilation boundary.
f7d118a9 91
92 Historically in GCC, these two problems were combined and a single
3c62ebbd 93 data structure that was used to represent the solution to these
f7d118a9 94 problems. We now have two similar but different data structures,
3c62ebbd 95 The data structure to solve the last two questions is similar to
96 the first, but does not contain the fields whose address are never
97 taken. For types that do escape the compilation unit, the data
98 structures will have identical information.
f7d118a9 99*/
a5b1863e 100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
5badbbc0 103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
a5b1863e 105
8e2ef041 106 struct S { int i; double d; };
a5b1863e 107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
a0c938f0 112 struct S
113 / \
a5b1863e 114 / \
a0c938f0 115 |/_ _\|
116 int double
a5b1863e 117
5badbbc0 118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
f7c44134 122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
d716ce75 124 past immediate descendants, however, since we propagate all
f7c44134 125 grandchildren up one level.
a5b1863e 126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
26dbec0a 131struct GTY(()) alias_set_entry_d {
a5b1863e 132 /* The alias set number, as stored in MEM_ALIAS_SET. */
32c2fdea 133 alias_set_type alias_set;
a5b1863e 134
1e020227 135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
a5b1863e 139 /* The children of the alias set. These are not just the immediate
d716ce75 140 children, but, in fact, all descendants. So, if we have:
a5b1863e 141
9342ee68 142 struct T { struct S s; float f; }
a5b1863e 143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
318dcdd8 146 splay_tree GTY((param1_is (int), param2_is (int))) children;
318dcdd8 147};
26dbec0a 148typedef struct alias_set_entry_d *alias_set_entry;
ea0cb7ae 149
7ecb5bb2 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
aecda0d6 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
81a410b1 152static void record_set (rtx, const_rtx, void *);
5abc99e4 153static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
aecda0d6 154 enum machine_mode);
155static rtx find_base_value (rtx);
52d07779 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
aecda0d6 157static int insert_subset_children (splay_tree_node, void*);
32c2fdea 158static alias_set_entry get_alias_set_entry (alias_set_type);
658f1736 159static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
aecda0d6 160static tree decl_for_component_ref (tree);
cb456db5 161static int write_dependence_p (const_rtx,
162 const_rtx, enum machine_mode, rtx,
163 bool, bool, bool);
aecda0d6 164
a80f1c6c 165static void memory_modified_1 (rtx, const_rtx, void *);
ea0cb7ae 166
167/* Set up all info needed to perform alias analysis on memory references. */
168
083a2b5e 169/* Returns the size in bytes of the mode of X. */
ea0cb7ae 170#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
171
37b864db 172/* Cap the number of passes we make over the insns propagating alias
2808fda8 173 information through set chains.
174 ??? 10 is a completely arbitrary choice. This should be based on the
175 maximum loop depth in the CFG, but we do not have this information
176 available (even if current_loops _is_ available). */
37b864db 177#define MAX_ALIAS_LOOP_PASSES 10
9342ee68 178
ea0cb7ae 179/* reg_base_value[N] gives an address to which register N is related.
180 If all sets after the first add or subtract to the current value
181 or otherwise modify it so it does not point to a different top level
182 object, reg_base_value[N] is equal to the address part of the source
e7c893ba 183 of the first set.
184
185 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
4e56ceb1 186 expressions represent three types of base:
3a935f06 187
4e56ceb1 188 1. incoming arguments. There is just one ADDRESS to represent all
189 arguments, since we do not know at this level whether accesses
190 based on different arguments can alias. The ADDRESS has id 0.
3a935f06 191
4e56ceb1 192 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
193 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
194 Each of these rtxes has a separate ADDRESS associated with it,
195 each with a negative id.
196
197 GCC is (and is required to be) precise in which register it
198 chooses to access a particular region of stack. We can therefore
199 assume that accesses based on one of these rtxes do not alias
200 accesses based on another of these rtxes.
201
202 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
203 Each such piece of memory has a separate ADDRESS associated
204 with it, each with an id greater than 0.
205
206 Accesses based on one ADDRESS do not alias accesses based on other
207 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
208 alias globals either; the ADDRESSes have Pmode to indicate this.
209 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
210 indicate this. */
e7c893ba 211
f1f41a6c 212static GTY(()) vec<rtx, va_gc> *reg_base_value;
c2e94b25 213static rtx *new_reg_base_value;
e5b19a8c 214
4e56ceb1 215/* The single VOIDmode ADDRESS that represents all argument bases.
216 It has id 0. */
217static GTY(()) rtx arg_base_value;
218
219/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
220static int unique_id;
221
e5b19a8c 222/* We preserve the copy of old array around to avoid amount of garbage
223 produced. About 8% of garbage produced were attributed to this
224 array. */
f1f41a6c 225static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
083a2b5e 226
86e87ef6 227/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
228 registers. */
229#define UNIQUE_BASE_VALUE_SP -1
230#define UNIQUE_BASE_VALUE_ARGP -2
231#define UNIQUE_BASE_VALUE_FP -3
232#define UNIQUE_BASE_VALUE_HFP -4
233
eb2c25b5 234#define static_reg_base_value \
235 (this_target_rtl->x_static_reg_base_value)
0c7f5242 236
f1f41a6c 237#define REG_BASE_VALUE(X) \
238 (REGNO (X) < vec_safe_length (reg_base_value) \
239 ? (*reg_base_value)[REGNO (X)] : 0)
ea0cb7ae 240
73f5c1e3 241/* Vector indexed by N giving the initial (unchanging) value known for
d6443ebe 242 pseudo-register N. This vector is initialized in init_alias_analysis,
12cb06ad 243 and does not change until end_alias_analysis is called. */
f1f41a6c 244static GTY(()) vec<rtx, va_gc> *reg_known_value;
ea0cb7ae 245
246/* Vector recording for each reg_known_value whether it is due to a
247 REG_EQUIV note. Future passes (viz., reload) may replace the
248 pseudo with the equivalent expression and so we account for the
5badbbc0 249 dependences that would be introduced if that happens.
250
251 The REG_EQUIV notes created in assign_parms may mention the arg
252 pointer, and there are explicit insns in the RTL that modify the
253 arg pointer. Thus we must ensure that such insns don't get
254 scheduled across each other because that would invalidate the
255 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
256 wrong, but solving the problem in the scheduler will likely give
257 better code, so we do it here. */
d6443ebe 258static sbitmap reg_known_equiv_p;
ea0cb7ae 259
e7c893ba 260/* True when scanning insns from the start of the rtl to the
261 NOTE_INSN_FUNCTION_BEG note. */
e5be0cc6 262static bool copying_arguments;
ea0cb7ae 263
8b435339 264
a5b1863e 265/* The splay-tree used to store the various alias set entries. */
f1f41a6c 266static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
5badbbc0 267\f
3a443843 268/* Build a decomposed reference object for querying the alias-oracle
269 from the MEM rtx and store it in *REF.
270 Returns false if MEM is not suitable for the alias-oracle. */
271
272static bool
273ao_ref_from_mem (ao_ref *ref, const_rtx mem)
274{
275 tree expr = MEM_EXPR (mem);
276 tree base;
277
278 if (!expr)
279 return false;
280
281 ao_ref_init (ref, expr);
282
283 /* Get the base of the reference and see if we have to reject or
284 adjust it. */
285 base = ao_ref_base (ref);
286 if (base == NULL_TREE)
287 return false;
288
9bbb37b8 289 /* The tree oracle doesn't like bases that are neither decls
290 nor indirect references of SSA names. */
291 if (!(DECL_P (base)
292 || (TREE_CODE (base) == MEM_REF
293 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
294 || (TREE_CODE (base) == TARGET_MEM_REF
295 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
7e9c660e 296 return false;
3a443843 297
298 /* If this is a reference based on a partitioned decl replace the
9bbb37b8 299 base with a MEM_REF of the pointer representative we
3a443843 300 created during stack slot partitioning. */
301 if (TREE_CODE (base) == VAR_DECL
9bbb37b8 302 && ! is_global_var (base)
3a443843 303 && cfun->gimple_df->decls_to_pointers != NULL)
304 {
305 void *namep;
306 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
307 if (namep)
182cf5a9 308 ref->base = build_simple_mem_ref (*(tree *)namep);
7e9c660e 309 }
3a443843 310
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
312
cbc80ce5 313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
da443c27 315 if (!MEM_OFFSET_KNOWN_P (mem)
5b2a69fa 316 || !MEM_SIZE_KNOWN_P (mem))
cbc80ce5 317 return true;
1f1e1860 318
3804203d 319 /* If the base decl is a parameter we can have negative MEM_OFFSET in
320 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
321 here. */
da443c27 322 if (MEM_OFFSET (mem) < 0
323 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
3804203d 324 return true;
325
cbc80ce5 326 /* Otherwise continue and refine size and offset we got from analyzing
327 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
328
da443c27 329 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
5b2a69fa 330 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
3804203d 331
332 /* The MEM may extend into adjacent fields, so adjust max_size if
333 necessary. */
334 if (ref->max_size != -1
335 && ref->size > ref->max_size)
336 ref->max_size = ref->size;
337
338 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (ref->offset < 0
342 || (DECL_P (ref->base)
cd4547bf 343 && (!tree_fits_uhwi_p (DECL_SIZE (ref->base))
8c53c46c 344 || (tree_to_uhwi (DECL_SIZE (ref->base))
345 < (unsigned HOST_WIDE_INT) (ref->offset + ref->size))))))
3804203d 346 return false;
3a443843 347
348 return true;
349}
350
351/* Query the alias-oracle on whether the two memory rtx X and MEM may
352 alias. If TBAA_P is set also apply TBAA. Returns true if the
353 two rtxen may alias, false otherwise. */
354
355static bool
356rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
357{
358 ao_ref ref1, ref2;
359
360 if (!ao_ref_from_mem (&ref1, x)
361 || !ao_ref_from_mem (&ref2, mem))
362 return true;
363
33dda198 364 return refs_may_alias_p_1 (&ref1, &ref2,
365 tbaa_p
366 && MEM_ALIAS_SET (x) != 0
367 && MEM_ALIAS_SET (mem) != 0);
3a443843 368}
369
a5b1863e 370/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
371 such an entry, or NULL otherwise. */
372
56bbdce4 373static inline alias_set_entry
32c2fdea 374get_alias_set_entry (alias_set_type alias_set)
a5b1863e 375{
f1f41a6c 376 return (*alias_sets)[alias_set];
a5b1863e 377}
378
5badbbc0 379/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
380 the two MEMs cannot alias each other. */
a5b1863e 381
56bbdce4 382static inline int
52d07779 383mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
a5b1863e 384{
a5b1863e 385/* Perform a basic sanity check. Namely, that there are no alias sets
386 if we're not using strict aliasing. This helps to catch bugs
387 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
388 where a MEM is allocated in some way other than by the use of
389 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
390 use alias sets to indicate that spilled registers cannot alias each
391 other, we might need to remove this check. */
64db345d 392 gcc_assert (flag_strict_aliasing
393 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
a5b1863e 394
387bc205 395 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
396}
a5b1863e 397
387bc205 398/* Insert the NODE into the splay tree given by DATA. Used by
399 record_alias_subset via splay_tree_foreach. */
400
401static int
aecda0d6 402insert_subset_children (splay_tree_node node, void *data)
387bc205 403{
404 splay_tree_insert ((splay_tree) data, node->key, node->value);
405
406 return 0;
407}
408
7d1f52b2 409/* Return true if the first alias set is a subset of the second. */
410
411bool
32c2fdea 412alias_set_subset_of (alias_set_type set1, alias_set_type set2)
7d1f52b2 413{
414 alias_set_entry ase;
415
416 /* Everything is a subset of the "aliases everything" set. */
417 if (set2 == 0)
418 return true;
419
420 /* Otherwise, check if set1 is a subset of set2. */
421 ase = get_alias_set_entry (set2);
422 if (ase != 0
a5b373b8 423 && (ase->has_zero_child
6c711ccf 424 || splay_tree_lookup (ase->children,
425 (splay_tree_key) set1)))
7d1f52b2 426 return true;
427 return false;
428}
429
387bc205 430/* Return 1 if the two specified alias sets may conflict. */
431
432int
32c2fdea 433alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
387bc205 434{
435 alias_set_entry ase;
436
879f881c 437 /* The easy case. */
438 if (alias_sets_must_conflict_p (set1, set2))
387bc205 439 return 1;
a5b1863e 440
f7c44134 441 /* See if the first alias set is a subset of the second. */
387bc205 442 ase = get_alias_set_entry (set1);
851dfbff 443 if (ase != 0
444 && (ase->has_zero_child
445 || splay_tree_lookup (ase->children,
387bc205 446 (splay_tree_key) set2)))
447 return 1;
a5b1863e 448
449 /* Now do the same, but with the alias sets reversed. */
387bc205 450 ase = get_alias_set_entry (set2);
851dfbff 451 if (ase != 0
452 && (ase->has_zero_child
453 || splay_tree_lookup (ase->children,
387bc205 454 (splay_tree_key) set1)))
455 return 1;
a5b1863e 456
387bc205 457 /* The two alias sets are distinct and neither one is the
879f881c 458 child of the other. Therefore, they cannot conflict. */
387bc205 459 return 0;
a5b1863e 460}
c1628b55 461
879f881c 462/* Return 1 if the two specified alias sets will always conflict. */
c1628b55 463
464int
32c2fdea 465alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
c1628b55 466{
467 if (set1 == 0 || set2 == 0 || set1 == set2)
468 return 1;
469
470 return 0;
471}
472
387bc205 473/* Return 1 if any MEM object of type T1 will always conflict (using the
474 dependency routines in this file) with any MEM object of type T2.
475 This is used when allocating temporary storage. If T1 and/or T2 are
476 NULL_TREE, it means we know nothing about the storage. */
477
478int
aecda0d6 479objects_must_conflict_p (tree t1, tree t2)
387bc205 480{
32c2fdea 481 alias_set_type set1, set2;
2bedf233 482
218eb8d0 483 /* If neither has a type specified, we don't know if they'll conflict
484 because we may be using them to store objects of various types, for
485 example the argument and local variables areas of inlined functions. */
8f2ba9c9 486 if (t1 == 0 && t2 == 0)
218eb8d0 487 return 0;
488
387bc205 489 /* If they are the same type, they must conflict. */
490 if (t1 == t2
491 /* Likewise if both are volatile. */
492 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
493 return 1;
494
2bedf233 495 set1 = t1 ? get_alias_set (t1) : 0;
496 set2 = t2 ? get_alias_set (t2) : 0;
387bc205 497
879f881c 498 /* We can't use alias_sets_conflict_p because we must make sure
499 that every subtype of t1 will conflict with every subtype of
2bedf233 500 t2 for which a pair of subobjects of these respective subtypes
501 overlaps on the stack. */
879f881c 502 return alias_sets_must_conflict_p (set1, set2);
387bc205 503}
504\f
d400f5e1 505/* Return the outermost parent of component present in the chain of
506 component references handled by get_inner_reference in T with the
507 following property:
508 - the component is non-addressable, or
509 - the parent has alias set zero,
510 or NULL_TREE if no such parent exists. In the former cases, the alias
511 set of this parent is the alias set that must be used for T itself. */
512
513tree
514component_uses_parent_alias_set_from (const_tree t)
bd32979f 515{
d400f5e1 516 const_tree found = NULL_TREE;
1f9b622b 517
d400f5e1 518 while (handled_component_p (t))
519 {
1f9b622b 520 switch (TREE_CODE (t))
521 {
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
d400f5e1 524 found = t;
1f9b622b 525 break;
526
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
d400f5e1 530 found = t;
1f9b622b 531 break;
532
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
536
d400f5e1 537 case BIT_FIELD_REF:
538 case VIEW_CONVERT_EXPR:
1f9b622b 539 /* Bitfields and casts are never addressable. */
d400f5e1 540 found = t;
541 break;
542
543 default:
544 gcc_unreachable ();
1f9b622b 545 }
546
d400f5e1 547 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
548 found = t;
549
1f9b622b 550 t = TREE_OPERAND (t, 0);
551 }
d400f5e1 552
553 if (found)
554 return TREE_OPERAND (found, 0);
555
556 return NULL_TREE;
bd32979f 557}
558
bd93e4f8 559
560/* Return whether the pointer-type T effective for aliasing may
561 access everything and thus the reference has to be assigned
562 alias-set zero. */
563
564static bool
565ref_all_alias_ptr_type_p (const_tree t)
566{
567 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t));
569}
570
dd277d48 571/* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
574
575static alias_set_type
576get_deref_alias_set_1 (tree t)
577{
8115f0af 578 /* All we care about is the type. */
dd277d48 579 if (! TYPE_P (t))
8115f0af 580 t = TREE_TYPE (t);
dd277d48 581
582 /* If we have an INDIRECT_REF via a void pointer, we don't
583 know anything about what that might alias. Likewise if the
584 pointer is marked that way. */
bd93e4f8 585 if (ref_all_alias_ptr_type_p (t))
dd277d48 586 return 0;
587
588 return -1;
589}
590
591/* Return the alias set for the memory pointed to by T, which may be
592 either a type or an expression. */
593
594alias_set_type
595get_deref_alias_set (tree t)
596{
bd93e4f8 597 /* If we're not doing any alias analysis, just assume everything
598 aliases everything else. */
599 if (!flag_strict_aliasing)
600 return 0;
601
dd277d48 602 alias_set_type set = get_deref_alias_set_1 (t);
603
604 /* Fall back to the alias-set of the pointed-to type. */
605 if (set == -1)
606 {
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
609 set = get_alias_set (TREE_TYPE (t));
610 }
611
612 return set;
613}
614
bd93e4f8 615/* Return the pointer-type relevant for TBAA purposes from the
616 memory reference tree *T or NULL_TREE in which case *T is
617 adjusted to point to the outermost component reference that
618 can be used for assigning an alias set. */
619
620static tree
621reference_alias_ptr_type_1 (tree *t)
622{
623 tree inner;
624
625 /* Get the base object of the reference. */
626 inner = *t;
627 while (handled_component_p (inner))
628 {
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 *t = TREE_OPERAND (inner, 0);
634 inner = TREE_OPERAND (inner, 0);
635 }
636
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
639 if (INDIRECT_REF_P (inner)
640 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
641 return TREE_TYPE (TREE_OPERAND (inner, 0));
642 else if (TREE_CODE (inner) == TARGET_MEM_REF)
643 return TREE_TYPE (TMR_OFFSET (inner));
644 else if (TREE_CODE (inner) == MEM_REF
645 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
646 return TREE_TYPE (TREE_OPERAND (inner, 1));
647
648 /* If the innermost reference is a MEM_REF that has a
649 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
650 using the memory access type for determining the alias-set. */
651 if (TREE_CODE (inner) == MEM_REF
652 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
653 != TYPE_MAIN_VARIANT
654 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
655 return TREE_TYPE (TREE_OPERAND (inner, 1));
656
d400f5e1 657 /* Otherwise, pick up the outermost object that we could have
658 a pointer to. */
659 tree tem = component_uses_parent_alias_set_from (*t);
660 if (tem)
661 *t = tem;
bd93e4f8 662
663 return NULL_TREE;
664}
665
666/* Return the pointer-type relevant for TBAA purposes from the
667 gimple memory reference tree T. This is the type to be used for
668 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
669 and guarantees that get_alias_set will return the same alias
670 set for T and the replacement. */
671
672tree
673reference_alias_ptr_type (tree t)
674{
675 tree ptype = reference_alias_ptr_type_1 (&t);
676 /* If there is a given pointer type for aliasing purposes, return it. */
677 if (ptype != NULL_TREE)
678 return ptype;
679
680 /* Otherwise build one from the outermost component reference we
681 may use. */
682 if (TREE_CODE (t) == MEM_REF
683 || TREE_CODE (t) == TARGET_MEM_REF)
684 return TREE_TYPE (TREE_OPERAND (t, 1));
685 else
686 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
687}
688
689/* Return whether the pointer-types T1 and T2 used to determine
690 two alias sets of two references will yield the same answer
691 from get_deref_alias_set. */
692
693bool
694alias_ptr_types_compatible_p (tree t1, tree t2)
695{
696 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
697 return true;
698
699 if (ref_all_alias_ptr_type_p (t1)
700 || ref_all_alias_ptr_type_p (t2))
701 return false;
702
703 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
704 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
705}
706
f7c44134 707/* Return the alias set for T, which may be either a type or an
708 expression. Call language-specific routine for help, if needed. */
709
32c2fdea 710alias_set_type
aecda0d6 711get_alias_set (tree t)
f7c44134 712{
32c2fdea 713 alias_set_type set;
f7c44134 714
715 /* If we're not doing any alias analysis, just assume everything
716 aliases everything else. Also return 0 if this or its type is
717 an error. */
718 if (! flag_strict_aliasing || t == error_mark_node
719 || (! TYPE_P (t)
720 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
721 return 0;
722
723 /* We can be passed either an expression or a type. This and the
c3a9c149 724 language-specific routine may make mutually-recursive calls to each other
725 to figure out what to do. At each juncture, we see if this is a tree
726 that the language may need to handle specially. First handle things that
96216d37 727 aren't types. */
1607663f 728 if (! TYPE_P (t))
f7c44134 729 {
182cf5a9 730 /* Give the language a chance to do something with this tree
731 before we look at it. */
2a631e19 732 STRIP_NOPS (t);
dc24ddbd 733 set = lang_hooks.get_alias_set (t);
2a631e19 734 if (set != -1)
735 return set;
736
bd93e4f8 737 /* Get the alias pointer-type to use or the outermost object
738 that we could have a pointer to. */
739 tree ptype = reference_alias_ptr_type_1 (&t);
740 if (ptype != NULL)
741 return get_deref_alias_set (ptype);
1607663f 742
96216d37 743 /* If we've already determined the alias set for a decl, just return
744 it. This is necessary for C++ anonymous unions, whose component
745 variables don't look like union members (boo!). */
afce1f57 746 if (TREE_CODE (t) == VAR_DECL
e16ceb8e 747 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
afce1f57 748 return MEM_ALIAS_SET (DECL_RTL (t));
749
1607663f 750 /* Now all we care about is the type. */
751 t = TREE_TYPE (t);
f7c44134 752 }
753
f7c44134 754 /* Variant qualifiers don't affect the alias set, so get the main
dfe8e806 755 variant. */
f7c44134 756 t = TYPE_MAIN_VARIANT (t);
dfe8e806 757
758 /* Always use the canonical type as well. If this is a type that
759 requires structural comparisons to identify compatible types
760 use alias set zero. */
761 if (TYPE_STRUCTURAL_EQUALITY_P (t))
e58c17e7 762 {
763 /* Allow the language to specify another alias set for this
764 type. */
765 set = lang_hooks.get_alias_set (t);
766 if (set != -1)
767 return set;
768 return 0;
769 }
ec7b61e0 770
dfe8e806 771 t = TYPE_CANONICAL (t);
ec7b61e0 772
45014c84 773 /* The canonical type should not require structural equality checks. */
774 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
dfe8e806 775
776 /* If this is a type with a known alias set, return it. */
96216d37 777 if (TYPE_ALIAS_SET_KNOWN_P (t))
f7c44134 778 return TYPE_ALIAS_SET (t);
779
b35a8f48 780 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
781 if (!COMPLETE_TYPE_P (t))
782 {
783 /* For arrays with unknown size the conservative answer is the
784 alias set of the element type. */
785 if (TREE_CODE (t) == ARRAY_TYPE)
786 return get_alias_set (TREE_TYPE (t));
787
788 /* But return zero as a conservative answer for incomplete types. */
789 return 0;
790 }
791
f7c44134 792 /* See if the language has special handling for this type. */
dc24ddbd 793 set = lang_hooks.get_alias_set (t);
2a631e19 794 if (set != -1)
96216d37 795 return set;
851dfbff 796
f7c44134 797 /* There are no objects of FUNCTION_TYPE, so there's no point in
798 using up an alias set for them. (There are, of course, pointers
799 and references to functions, but that's different.) */
ec7b61e0 800 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
f7c44134 801 set = 0;
9fcc3e54 802
803 /* Unless the language specifies otherwise, let vector types alias
804 their components. This avoids some nasty type punning issues in
805 normal usage. And indeed lets vectors be treated more like an
806 array slice. */
807 else if (TREE_CODE (t) == VECTOR_TYPE)
808 set = get_alias_set (TREE_TYPE (t));
809
62d823d0 810 /* Unless the language specifies otherwise, treat array types the
811 same as their components. This avoids the asymmetry we get
812 through recording the components. Consider accessing a
813 character(kind=1) through a reference to a character(kind=1)[1:1].
814 Or consider if we want to assign integer(kind=4)[0:D.1387] and
815 integer(kind=4)[4] the same alias set or not.
816 Just be pragmatic here and make sure the array and its element
817 type get the same alias set assigned. */
ec7b61e0 818 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
62d823d0 819 set = get_alias_set (TREE_TYPE (t));
820
2af087f2 821 /* From the former common C and C++ langhook implementation:
822
823 Unfortunately, there is no canonical form of a pointer type.
824 In particular, if we have `typedef int I', then `int *', and
825 `I *' are different types. So, we have to pick a canonical
826 representative. We do this below.
827
828 Technically, this approach is actually more conservative that
829 it needs to be. In particular, `const int *' and `int *'
830 should be in different alias sets, according to the C and C++
831 standard, since their types are not the same, and so,
832 technically, an `int **' and `const int **' cannot point at
833 the same thing.
834
835 But, the standard is wrong. In particular, this code is
836 legal C++:
837
838 int *ip;
839 int **ipp = &ip;
840 const int* const* cipp = ipp;
841 And, it doesn't make sense for that to be legal unless you
842 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
843 the pointed-to types. This issue has been reported to the
844 C++ committee.
845
846 In addition to the above canonicalization issue, with LTO
847 we should also canonicalize `T (*)[]' to `T *' avoiding
848 alias issues with pointer-to element types and pointer-to
849 array types.
850
851 Likewise we need to deal with the situation of incomplete
852 pointed-to types and make `*(struct X **)&a' and
853 `*(struct X {} **)&a' alias. Otherwise we will have to
854 guarantee that all pointer-to incomplete type variants
855 will be replaced by pointer-to complete type variants if
856 they are available.
857
858 With LTO the convenient situation of using `void *' to
859 access and store any pointer type will also become
860 more apparent (and `void *' is just another pointer-to
861 incomplete type). Assigning alias-set zero to `void *'
862 and all pointer-to incomplete types is a not appealing
863 solution. Assigning an effective alias-set zero only
864 affecting pointers might be - by recording proper subset
865 relationships of all pointer alias-sets.
866
867 Pointer-to function types are another grey area which
868 needs caution. Globbing them all into one alias-set
869 or the above effective zero set would work.
870
871 For now just assign the same alias-set to all pointers.
872 That's simple and avoids all the above problems. */
873 else if (POINTER_TYPE_P (t)
874 && t != ptr_type_node)
45014c84 875 set = get_alias_set (ptr_type_node);
2af087f2 876
ec7b61e0 877 /* Otherwise make a new alias set for this type. */
f7c44134 878 else
45014c84 879 {
880 /* Each canonical type gets its own alias set, so canonical types
881 shouldn't form a tree. It doesn't really matter for types
882 we handle specially above, so only check it where it possibly
883 would result in a bogus alias set. */
884 gcc_checking_assert (TYPE_CANONICAL (t) == t);
885
886 set = new_alias_set ();
887 }
f7c44134 888
889 TYPE_ALIAS_SET (t) = set;
851dfbff 890
ec7b61e0 891 /* If this is an aggregate type or a complex type, we must record any
892 component aliasing information. */
680210f2 893 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
851dfbff 894 record_component_aliases (t);
895
f7c44134 896 return set;
897}
898
899/* Return a brand-new alias set. */
900
32c2fdea 901alias_set_type
aecda0d6 902new_alias_set (void)
f7c44134 903{
f7c44134 904 if (flag_strict_aliasing)
56bbdce4 905 {
8b435339 906 if (alias_sets == 0)
f1f41a6c 907 vec_safe_push (alias_sets, (alias_set_entry) 0);
908 vec_safe_push (alias_sets, (alias_set_entry) 0);
909 return alias_sets->length () - 1;
56bbdce4 910 }
f7c44134 911 else
912 return 0;
913}
a5b1863e 914
8e2ef041 915/* Indicate that things in SUBSET can alias things in SUPERSET, but that
916 not everything that aliases SUPERSET also aliases SUBSET. For example,
917 in C, a store to an `int' can alias a load of a structure containing an
918 `int', and vice versa. But it can't alias a load of a 'double' member
919 of the same structure. Here, the structure would be the SUPERSET and
920 `int' the SUBSET. This relationship is also described in the comment at
921 the beginning of this file.
922
923 This function should be called only once per SUPERSET/SUBSET pair.
a5b1863e 924
925 It is illegal for SUPERSET to be zero; everything is implicitly a
926 subset of alias set zero. */
927
892fdb03 928void
32c2fdea 929record_alias_subset (alias_set_type superset, alias_set_type subset)
a5b1863e 930{
931 alias_set_entry superset_entry;
932 alias_set_entry subset_entry;
933
c3a9c149 934 /* It is possible in complex type situations for both sets to be the same,
935 in which case we can ignore this operation. */
936 if (superset == subset)
937 return;
938
64db345d 939 gcc_assert (superset);
a5b1863e 940
941 superset_entry = get_alias_set_entry (superset);
9342ee68 942 if (superset_entry == 0)
a5b1863e 943 {
944 /* Create an entry for the SUPERSET, so that we have a place to
945 attach the SUBSET. */
ba72912a 946 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
a5b1863e 947 superset_entry->alias_set = superset;
9342ee68 948 superset_entry->children
ba72912a 949 = splay_tree_new_ggc (splay_tree_compare_ints,
950 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
951 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
f2e5de80 952 superset_entry->has_zero_child = 0;
f1f41a6c 953 (*alias_sets)[superset] = superset_entry;
a5b1863e 954 }
955
851dfbff 956 if (subset == 0)
957 superset_entry->has_zero_child = 1;
958 else
959 {
960 subset_entry = get_alias_set_entry (subset);
961 /* If there is an entry for the subset, enter all of its children
962 (if they are not already present) as children of the SUPERSET. */
9342ee68 963 if (subset_entry)
851dfbff 964 {
965 if (subset_entry->has_zero_child)
966 superset_entry->has_zero_child = 1;
083a2b5e 967
851dfbff 968 splay_tree_foreach (subset_entry->children, insert_subset_children,
969 superset_entry->children);
970 }
a5b1863e 971
851dfbff 972 /* Enter the SUBSET itself as a child of the SUPERSET. */
9342ee68 973 splay_tree_insert (superset_entry->children,
851dfbff 974 (splay_tree_key) subset, 0);
975 }
a5b1863e 976}
977
9501a338 978/* Record that component types of TYPE, if any, are part of that type for
979 aliasing purposes. For record types, we only record component types
c67bf066 980 for fields that are not marked non-addressable. For array types, we
981 only record the component type if it is not marked non-aliased. */
9501a338 982
983void
aecda0d6 984record_component_aliases (tree type)
9501a338 985{
32c2fdea 986 alias_set_type superset = get_alias_set (type);
9501a338 987 tree field;
988
989 if (superset == 0)
990 return;
991
992 switch (TREE_CODE (type))
993 {
9501a338 994 case RECORD_TYPE:
995 case UNION_TYPE:
996 case QUAL_UNION_TYPE:
8b332087 997 /* Recursively record aliases for the base classes, if there are any. */
f6cc6a08 998 if (TYPE_BINFO (type))
9342ee68 999 {
1000 int i;
f6cc6a08 1001 tree binfo, base_binfo;
a0c938f0 1002
f6cc6a08 1003 for (binfo = TYPE_BINFO (type), i = 0;
1004 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1005 record_alias_subset (superset,
1006 get_alias_set (BINFO_TYPE (base_binfo)));
9342ee68 1007 }
1767a056 1008 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
c67bf066 1009 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
851dfbff 1010 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
9501a338 1011 break;
1012
680210f2 1013 case COMPLEX_TYPE:
1014 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1015 break;
1016
62d823d0 1017 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1018 element type. */
1019
9501a338 1020 default:
1021 break;
1022 }
1023}
1024
f7c44134 1025/* Allocate an alias set for use in storing and reading from the varargs
1026 spill area. */
1027
32c2fdea 1028static GTY(()) alias_set_type varargs_set = -1;
4ec9406e 1029
32c2fdea 1030alias_set_type
aecda0d6 1031get_varargs_alias_set (void)
f7c44134 1032{
fcdd3ab3 1033#if 1
1034 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1035 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1036 consistently use the varargs alias set for loads from the varargs
1037 area. So don't use it anywhere. */
1038 return 0;
1039#else
4ec9406e 1040 if (varargs_set == -1)
1041 varargs_set = new_alias_set ();
f7c44134 1042
4ec9406e 1043 return varargs_set;
fcdd3ab3 1044#endif
f7c44134 1045}
1046
1047/* Likewise, but used for the fixed portions of the frame, e.g., register
1048 save areas. */
1049
32c2fdea 1050static GTY(()) alias_set_type frame_set = -1;
4ec9406e 1051
32c2fdea 1052alias_set_type
aecda0d6 1053get_frame_alias_set (void)
f7c44134 1054{
4ec9406e 1055 if (frame_set == -1)
1056 frame_set = new_alias_set ();
f7c44134 1057
4ec9406e 1058 return frame_set;
f7c44134 1059}
1060
4e56ceb1 1061/* Create a new, unique base with id ID. */
1062
1063static rtx
1064unique_base_value (HOST_WIDE_INT id)
1065{
1066 return gen_rtx_ADDRESS (Pmode, id);
1067}
1068
1069/* Return true if accesses based on any other base value cannot alias
1070 those based on X. */
1071
1072static bool
1073unique_base_value_p (rtx x)
1074{
1075 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1076}
1077
1078/* Return true if X is known to be a base value. */
1079
1080static bool
1081known_base_value_p (rtx x)
1082{
1083 switch (GET_CODE (x))
1084 {
1085 case LABEL_REF:
1086 case SYMBOL_REF:
1087 return true;
1088
1089 case ADDRESS:
1090 /* Arguments may or may not be bases; we don't know for sure. */
1091 return GET_MODE (x) != VOIDmode;
1092
1093 default:
1094 return false;
1095 }
1096}
1097
e7c893ba 1098/* Inside SRC, the source of a SET, find a base address. */
1099
ea0cb7ae 1100static rtx
aecda0d6 1101find_base_value (rtx src)
ea0cb7ae 1102{
970c0c06 1103 unsigned int regno;
d01410d3 1104
2e984a7a 1105#if defined (FIND_BASE_TERM)
1106 /* Try machine-dependent ways to find the base term. */
1107 src = FIND_BASE_TERM (src);
1108#endif
1109
ea0cb7ae 1110 switch (GET_CODE (src))
1111 {
1112 case SYMBOL_REF:
1113 case LABEL_REF:
1114 return src;
1115
1116 case REG:
9db10305 1117 regno = REGNO (src);
083a2b5e 1118 /* At the start of a function, argument registers have known base
e7c893ba 1119 values which may be lost later. Returning an ADDRESS
1120 expression here allows optimization based on argument values
1121 even when the argument registers are used for other purposes. */
970c0c06 1122 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1123 return new_reg_base_value[regno];
1a538f67 1124
ebd13eec 1125 /* If a pseudo has a known base value, return it. Do not do this
9464d436 1126 for non-fixed hard regs since it can result in a circular
1127 dependency chain for registers which have values at function entry.
ebd13eec 1128
1129 The test above is not sufficient because the scheduler may move
1130 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9464d436 1131 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
f1f41a6c 1132 && regno < vec_safe_length (reg_base_value))
e5be0cc6 1133 {
1134 /* If we're inside init_alias_analysis, use new_reg_base_value
1135 to reduce the number of relaxation iterations. */
a303ed8c 1136 if (new_reg_base_value && new_reg_base_value[regno]
3072d30e 1137 && DF_REG_DEF_COUNT (regno) == 1)
e5be0cc6 1138 return new_reg_base_value[regno];
1139
f1f41a6c 1140 if ((*reg_base_value)[regno])
1141 return (*reg_base_value)[regno];
e5be0cc6 1142 }
1a538f67 1143
1c5cb56c 1144 return 0;
ea0cb7ae 1145
1146 case MEM:
1147 /* Check for an argument passed in memory. Only record in the
1148 copying-arguments block; it is too hard to track changes
1149 otherwise. */
1150 if (copying_arguments
1151 && (XEXP (src, 0) == arg_pointer_rtx
1152 || (GET_CODE (XEXP (src, 0)) == PLUS
1153 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
4e56ceb1 1154 return arg_base_value;
ea0cb7ae 1155 return 0;
1156
1157 case CONST:
1158 src = XEXP (src, 0);
1159 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1160 break;
083a2b5e 1161
2c0e001b 1162 /* ... fall through ... */
e7c893ba 1163
ea0cb7ae 1164 case PLUS:
1165 case MINUS:
e7c893ba 1166 {
06c5c535 1167 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1168
560de2f8 1169 /* If either operand is a REG that is a known pointer, then it
1170 is the base. */
1171 if (REG_P (src_0) && REG_POINTER (src_0))
1172 return find_base_value (src_0);
1173 if (REG_P (src_1) && REG_POINTER (src_1))
1174 return find_base_value (src_1);
1175
06c5c535 1176 /* If either operand is a REG, then see if we already have
1177 a known value for it. */
560de2f8 1178 if (REG_P (src_0))
06c5c535 1179 {
1180 temp = find_base_value (src_0);
083a2b5e 1181 if (temp != 0)
06c5c535 1182 src_0 = temp;
1183 }
1184
560de2f8 1185 if (REG_P (src_1))
06c5c535 1186 {
1187 temp = find_base_value (src_1);
083a2b5e 1188 if (temp!= 0)
06c5c535 1189 src_1 = temp;
1190 }
e7c893ba 1191
560de2f8 1192 /* If either base is named object or a special address
1193 (like an argument or stack reference), then use it for the
1194 base term. */
4e56ceb1 1195 if (src_0 != 0 && known_base_value_p (src_0))
560de2f8 1196 return src_0;
1197
4e56ceb1 1198 if (src_1 != 0 && known_base_value_p (src_1))
560de2f8 1199 return src_1;
1200
083a2b5e 1201 /* Guess which operand is the base address:
06c5c535 1202 If either operand is a symbol, then it is the base. If
1203 either operand is a CONST_INT, then the other is the base. */
971ba038 1204 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
e7c893ba 1205 return find_base_value (src_0);
971ba038 1206 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
06c5c535 1207 return find_base_value (src_1);
1208
ea0cb7ae 1209 return 0;
e7c893ba 1210 }
1211
1212 case LO_SUM:
1213 /* The standard form is (lo_sum reg sym) so look only at the
1214 second operand. */
1215 return find_base_value (XEXP (src, 1));
ea0cb7ae 1216
1217 case AND:
1218 /* If the second operand is constant set the base
2c0e001b 1219 address to the first operand. */
971ba038 1220 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
e7c893ba 1221 return find_base_value (XEXP (src, 0));
ea0cb7ae 1222 return 0;
1223
43d45282 1224 case TRUNCATE:
04ec15fa 1225 /* As we do not know which address space the pointer is referring to, we can
98155838 1226 handle this only if the target does not support different pointer or
1227 address modes depending on the address space. */
1228 if (!target_default_pointer_address_modes_p ())
1229 break;
43d45282 1230 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1231 break;
1232 /* Fall through. */
ea0cb7ae 1233 case HIGH:
2be64ef0 1234 case PRE_INC:
1235 case PRE_DEC:
1236 case POST_INC:
1237 case POST_DEC:
1238 case PRE_MODIFY:
1239 case POST_MODIFY:
e7c893ba 1240 return find_base_value (XEXP (src, 0));
99c14947 1241
d01410d3 1242 case ZERO_EXTEND:
1243 case SIGN_EXTEND: /* used for NT/Alpha pointers */
04ec15fa 1244 /* As we do not know which address space the pointer is referring to, we can
98155838 1245 handle this only if the target does not support different pointer or
1246 address modes depending on the address space. */
1247 if (!target_default_pointer_address_modes_p ())
1248 break;
1249
d01410d3 1250 {
1251 rtx temp = find_base_value (XEXP (src, 0));
1252
85d654dd 1253 if (temp != 0 && CONSTANT_P (temp))
d01410d3 1254 temp = convert_memory_address (Pmode, temp);
d01410d3 1255
1256 return temp;
1257 }
1258
99c14947 1259 default:
1260 break;
ea0cb7ae 1261 }
1262
1263 return 0;
1264}
1265
4e56ceb1 1266/* Called from init_alias_analysis indirectly through note_stores,
1267 or directly if DEST is a register with a REG_NOALIAS note attached.
1268 SET is null in the latter case. */
ea0cb7ae 1269
083a2b5e 1270/* While scanning insns to find base values, reg_seen[N] is nonzero if
ea0cb7ae 1271 register N has been set in this function. */
7bf60644 1272static sbitmap reg_seen;
ea0cb7ae 1273
e7c893ba 1274static void
81a410b1 1275record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
ea0cb7ae 1276{
19cb6b50 1277 unsigned regno;
ea0cb7ae 1278 rtx src;
3721f260 1279 int n;
ea0cb7ae 1280
8ad4c111 1281 if (!REG_P (dest))
ea0cb7ae 1282 return;
1283
9db10305 1284 regno = REGNO (dest);
ea0cb7ae 1285
f1f41a6c 1286 gcc_checking_assert (regno < reg_base_value->length ());
c2e94b25 1287
3721f260 1288 /* If this spans multiple hard registers, then we must indicate that every
1289 register has an unusable value. */
1290 if (regno < FIRST_PSEUDO_REGISTER)
67d6c12b 1291 n = hard_regno_nregs[regno][GET_MODE (dest)];
3721f260 1292 else
1293 n = 1;
1294 if (n != 1)
1295 {
1296 while (--n >= 0)
1297 {
08b7917c 1298 bitmap_set_bit (reg_seen, regno + n);
3721f260 1299 new_reg_base_value[regno + n] = 0;
1300 }
1301 return;
1302 }
1303
ea0cb7ae 1304 if (set)
1305 {
1306 /* A CLOBBER wipes out any old value but does not prevent a previously
1307 unset register from acquiring a base address (i.e. reg_seen is not
1308 set). */
1309 if (GET_CODE (set) == CLOBBER)
1310 {
06c5c535 1311 new_reg_base_value[regno] = 0;
ea0cb7ae 1312 return;
1313 }
1314 src = SET_SRC (set);
1315 }
1316 else
1317 {
4e56ceb1 1318 /* There's a REG_NOALIAS note against DEST. */
08b7917c 1319 if (bitmap_bit_p (reg_seen, regno))
ea0cb7ae 1320 {
06c5c535 1321 new_reg_base_value[regno] = 0;
ea0cb7ae 1322 return;
1323 }
08b7917c 1324 bitmap_set_bit (reg_seen, regno);
4e56ceb1 1325 new_reg_base_value[regno] = unique_base_value (unique_id++);
ea0cb7ae 1326 return;
1327 }
1328
ad6b1fe1 1329 /* If this is not the first set of REGNO, see whether the new value
1330 is related to the old one. There are two cases of interest:
1331
1332 (1) The register might be assigned an entirely new value
1333 that has the same base term as the original set.
1334
1335 (2) The set might be a simple self-modification that
1336 cannot change REGNO's base value.
1337
1338 If neither case holds, reject the original base value as invalid.
1339 Note that the following situation is not detected:
1340
a0c938f0 1341 extern int x, y; int *p = &x; p += (&y-&x);
ad6b1fe1 1342
ea0cb7ae 1343 ANSI C does not allow computing the difference of addresses
1344 of distinct top level objects. */
ad6b1fe1 1345 if (new_reg_base_value[regno] != 0
1346 && find_base_value (src) != new_reg_base_value[regno])
ea0cb7ae 1347 switch (GET_CODE (src))
1348 {
e7c893ba 1349 case LO_SUM:
ea0cb7ae 1350 case MINUS:
1351 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
06c5c535 1352 new_reg_base_value[regno] = 0;
ea0cb7ae 1353 break;
43d45282 1354 case PLUS:
1355 /* If the value we add in the PLUS is also a valid base value,
1356 this might be the actual base value, and the original value
1357 an index. */
1358 {
1359 rtx other = NULL_RTX;
1360
1361 if (XEXP (src, 0) == dest)
1362 other = XEXP (src, 1);
1363 else if (XEXP (src, 1) == dest)
1364 other = XEXP (src, 0);
1365
1366 if (! other || find_base_value (other))
1367 new_reg_base_value[regno] = 0;
1368 break;
1369 }
ea0cb7ae 1370 case AND:
971ba038 1371 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
06c5c535 1372 new_reg_base_value[regno] = 0;
ea0cb7ae 1373 break;
ea0cb7ae 1374 default:
06c5c535 1375 new_reg_base_value[regno] = 0;
ea0cb7ae 1376 break;
1377 }
1378 /* If this is the first set of a register, record the value. */
1379 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
08b7917c 1380 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
06c5c535 1381 new_reg_base_value[regno] = find_base_value (src);
ea0cb7ae 1382
08b7917c 1383 bitmap_set_bit (reg_seen, regno);
ea0cb7ae 1384}
1385
0cfef6c5 1386/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1387 using hard registers with non-null REG_BASE_VALUE for renaming. */
1388rtx
1389get_reg_base_value (unsigned int regno)
1390{
f1f41a6c 1391 return (*reg_base_value)[regno];
0cfef6c5 1392}
1393
12cb06ad 1394/* If a value is known for REGNO, return it. */
1395
a0c938f0 1396rtx
12cb06ad 1397get_reg_known_value (unsigned int regno)
1398{
1399 if (regno >= FIRST_PSEUDO_REGISTER)
1400 {
1401 regno -= FIRST_PSEUDO_REGISTER;
f1f41a6c 1402 if (regno < vec_safe_length (reg_known_value))
1403 return (*reg_known_value)[regno];
12cb06ad 1404 }
1405 return NULL;
9f5e1a5a 1406}
1407
12cb06ad 1408/* Set it. */
1409
1410static void
1411set_reg_known_value (unsigned int regno, rtx val)
1412{
1413 if (regno >= FIRST_PSEUDO_REGISTER)
1414 {
1415 regno -= FIRST_PSEUDO_REGISTER;
f1f41a6c 1416 if (regno < vec_safe_length (reg_known_value))
1417 (*reg_known_value)[regno] = val;
12cb06ad 1418 }
1419}
1420
1421/* Similarly for reg_known_equiv_p. */
1422
1423bool
1424get_reg_known_equiv_p (unsigned int regno)
1425{
1426 if (regno >= FIRST_PSEUDO_REGISTER)
1427 {
1428 regno -= FIRST_PSEUDO_REGISTER;
f1f41a6c 1429 if (regno < vec_safe_length (reg_known_value))
08b7917c 1430 return bitmap_bit_p (reg_known_equiv_p, regno);
12cb06ad 1431 }
1432 return false;
1433}
1434
1435static void
1436set_reg_known_equiv_p (unsigned int regno, bool val)
1437{
1438 if (regno >= FIRST_PSEUDO_REGISTER)
1439 {
1440 regno -= FIRST_PSEUDO_REGISTER;
f1f41a6c 1441 if (regno < vec_safe_length (reg_known_value))
d6443ebe 1442 {
1443 if (val)
08b7917c 1444 bitmap_set_bit (reg_known_equiv_p, regno);
d6443ebe 1445 else
08b7917c 1446 bitmap_clear_bit (reg_known_equiv_p, regno);
d6443ebe 1447 }
12cb06ad 1448 }
1449}
1450
1451
7cfb9bcf 1452/* Returns a canonical version of X, from the point of view alias
1453 analysis. (For example, if X is a MEM whose address is a register,
1454 and the register has a known value (say a SYMBOL_REF), then a MEM
1455 whose address is the SYMBOL_REF is returned.) */
1456
1457rtx
aecda0d6 1458canon_rtx (rtx x)
ea0cb7ae 1459{
1460 /* Recursively look for equivalences. */
8ad4c111 1461 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
12cb06ad 1462 {
1463 rtx t = get_reg_known_value (REGNO (x));
1464 if (t == x)
1465 return x;
1466 if (t)
1467 return canon_rtx (t);
1468 }
1469
1470 if (GET_CODE (x) == PLUS)
ea0cb7ae 1471 {
1472 rtx x0 = canon_rtx (XEXP (x, 0));
1473 rtx x1 = canon_rtx (XEXP (x, 1));
1474
1475 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1476 {
971ba038 1477 if (CONST_INT_P (x0))
29c05e22 1478 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
971ba038 1479 else if (CONST_INT_P (x1))
29c05e22 1480 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
941522d6 1481 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
ea0cb7ae 1482 }
1483 }
083a2b5e 1484
ea0cb7ae 1485 /* This gives us much better alias analysis when called from
1486 the loop optimizer. Note we want to leave the original
1487 MEM alone, but need to return the canonicalized MEM with
1488 all the flags with their original values. */
e16ceb8e 1489 else if (MEM_P (x))
e4e86ec5 1490 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
083a2b5e 1491
ea0cb7ae 1492 return x;
1493}
1494
1495/* Return 1 if X and Y are identical-looking rtx's.
6285298a 1496 Expect that X and Y has been already canonicalized.
ea0cb7ae 1497
1498 We use the data in reg_known_value above to see if two registers with
1499 different numbers are, in fact, equivalent. */
1500
1501static int
7ecb5bb2 1502rtx_equal_for_memref_p (const_rtx x, const_rtx y)
ea0cb7ae 1503{
19cb6b50 1504 int i;
1505 int j;
1506 enum rtx_code code;
1507 const char *fmt;
ea0cb7ae 1508
1509 if (x == 0 && y == 0)
1510 return 1;
1511 if (x == 0 || y == 0)
1512 return 0;
083a2b5e 1513
ea0cb7ae 1514 if (x == y)
1515 return 1;
1516
1517 code = GET_CODE (x);
1518 /* Rtx's of different codes cannot be equal. */
1519 if (code != GET_CODE (y))
1520 return 0;
1521
1522 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1523 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1524
1525 if (GET_MODE (x) != GET_MODE (y))
1526 return 0;
1527
7cfb9bcf 1528 /* Some RTL can be compared without a recursive examination. */
1529 switch (code)
1530 {
1531 case REG:
1532 return REGNO (x) == REGNO (y);
1533
1534 case LABEL_REF:
1535 return XEXP (x, 0) == XEXP (y, 0);
9342ee68 1536
7cfb9bcf 1537 case SYMBOL_REF:
1538 return XSTR (x, 0) == XSTR (y, 0);
1539
861a6de4 1540 case ENTRY_VALUE:
1541 /* This is magic, don't go through canonicalization et al. */
1542 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1543
a2e238f7 1544 case VALUE:
0349edce 1545 CASE_CONST_UNIQUE:
7cfb9bcf 1546 /* There's no need to compare the contents of CONST_DOUBLEs or
1547 CONST_INTs because pointer equality is a good enough
1548 comparison for these nodes. */
1549 return 0;
1550
7cfb9bcf 1551 default:
1552 break;
1553 }
ea0cb7ae 1554
6285298a 1555 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1556 if (code == PLUS)
ea0cb7ae 1557 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1558 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1559 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1560 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
6285298a 1561 /* For commutative operations, the RTX match if the operand match in any
1562 order. Also handle the simple binary and unary cases without a loop. */
6720e96c 1563 if (COMMUTATIVE_P (x))
6285298a 1564 {
1565 rtx xop0 = canon_rtx (XEXP (x, 0));
1566 rtx yop0 = canon_rtx (XEXP (y, 0));
1567 rtx yop1 = canon_rtx (XEXP (y, 1));
1568
1569 return ((rtx_equal_for_memref_p (xop0, yop0)
1570 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1571 || (rtx_equal_for_memref_p (xop0, yop1)
1572 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1573 }
6720e96c 1574 else if (NON_COMMUTATIVE_P (x))
6285298a 1575 {
1576 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
aecda0d6 1577 canon_rtx (XEXP (y, 0)))
6285298a 1578 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1579 canon_rtx (XEXP (y, 1))));
1580 }
6720e96c 1581 else if (UNARY_P (x))
6285298a 1582 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
aecda0d6 1583 canon_rtx (XEXP (y, 0)));
ea0cb7ae 1584
1585 /* Compare the elements. If any pair of corresponding elements
1a6c3add 1586 fail to match, return 0 for the whole things.
1587
1588 Limit cases to types which actually appear in addresses. */
ea0cb7ae 1589
1590 fmt = GET_RTX_FORMAT (code);
1591 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1592 {
1593 switch (fmt[i])
1594 {
ea0cb7ae 1595 case 'i':
1596 if (XINT (x, i) != XINT (y, i))
1597 return 0;
1598 break;
1599
ea0cb7ae 1600 case 'E':
1601 /* Two vectors must have the same length. */
1602 if (XVECLEN (x, i) != XVECLEN (y, i))
1603 return 0;
1604
1605 /* And the corresponding elements must match. */
1606 for (j = 0; j < XVECLEN (x, i); j++)
6285298a 1607 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1608 canon_rtx (XVECEXP (y, i, j))) == 0)
ea0cb7ae 1609 return 0;
1610 break;
1611
1612 case 'e':
6285298a 1613 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1614 canon_rtx (XEXP (y, i))) == 0)
ea0cb7ae 1615 return 0;
1616 break;
1617
83ec925c 1618 /* This can happen for asm operands. */
1619 case 's':
1620 if (strcmp (XSTR (x, i), XSTR (y, i)))
1621 return 0;
1622 break;
1623
23c04f6b 1624 /* This can happen for an asm which clobbers memory. */
1625 case '0':
1626 break;
1627
ea0cb7ae 1628 /* It is believed that rtx's at this level will never
1629 contain anything but integers and other rtx's,
1630 except for within LABEL_REFs and SYMBOL_REFs. */
1631 default:
64db345d 1632 gcc_unreachable ();
ea0cb7ae 1633 }
1634 }
1635 return 1;
1636}
1637
86e87ef6 1638static rtx
aecda0d6 1639find_base_term (rtx x)
ea0cb7ae 1640{
1617c276 1641 cselib_val *val;
8081d3a6 1642 struct elt_loc_list *l, *f;
1643 rtx ret;
1617c276 1644
15750b1e 1645#if defined (FIND_BASE_TERM)
1646 /* Try machine-dependent ways to find the base term. */
1647 x = FIND_BASE_TERM (x);
1648#endif
1649
ea0cb7ae 1650 switch (GET_CODE (x))
1651 {
1652 case REG:
1653 return REG_BASE_VALUE (x);
1654
2be64ef0 1655 case TRUNCATE:
04ec15fa 1656 /* As we do not know which address space the pointer is referring to, we can
98155838 1657 handle this only if the target does not support different pointer or
1658 address modes depending on the address space. */
1659 if (!target_default_pointer_address_modes_p ())
1660 return 0;
2be64ef0 1661 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
9342ee68 1662 return 0;
2be64ef0 1663 /* Fall through. */
ea0cb7ae 1664 case HIGH:
22dfec7d 1665 case PRE_INC:
1666 case PRE_DEC:
1667 case POST_INC:
1668 case POST_DEC:
2be64ef0 1669 case PRE_MODIFY:
1670 case POST_MODIFY:
22dfec7d 1671 return find_base_term (XEXP (x, 0));
1672
5104ef69 1673 case ZERO_EXTEND:
1674 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
04ec15fa 1675 /* As we do not know which address space the pointer is referring to, we can
98155838 1676 handle this only if the target does not support different pointer or
1677 address modes depending on the address space. */
1678 if (!target_default_pointer_address_modes_p ())
1679 return 0;
1680
5104ef69 1681 {
1682 rtx temp = find_base_term (XEXP (x, 0));
1683
85d654dd 1684 if (temp != 0 && CONSTANT_P (temp))
5104ef69 1685 temp = convert_memory_address (Pmode, temp);
5104ef69 1686
1687 return temp;
1688 }
1689
1617c276 1690 case VALUE:
1691 val = CSELIB_VAL_PTR (x);
8081d3a6 1692 ret = NULL_RTX;
1693
a2e238f7 1694 if (!val)
8081d3a6 1695 return ret;
1696
bb75e83f 1697 if (cselib_sp_based_value_p (val))
1698 return static_reg_base_value[STACK_POINTER_REGNUM];
1699
8081d3a6 1700 f = val->locs;
1701 /* Temporarily reset val->locs to avoid infinite recursion. */
1702 val->locs = NULL;
1703
1704 for (l = f; l; l = l->next)
1705 if (GET_CODE (l->loc) == VALUE
1706 && CSELIB_VAL_PTR (l->loc)->locs
1707 && !CSELIB_VAL_PTR (l->loc)->locs->next
1708 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1709 continue;
1710 else if ((ret = find_base_term (l->loc)) != 0)
1711 break;
1712
1713 val->locs = f;
1714 return ret;
1617c276 1715
a7cf5bbf 1716 case LO_SUM:
1717 /* The standard form is (lo_sum reg sym) so look only at the
1718 second operand. */
1719 return find_base_term (XEXP (x, 1));
1720
ea0cb7ae 1721 case CONST:
1722 x = XEXP (x, 0);
1723 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1724 return 0;
b4b174c3 1725 /* Fall through. */
ea0cb7ae 1726 case PLUS:
1727 case MINUS:
1728 {
1b5bbc4c 1729 rtx tmp1 = XEXP (x, 0);
1730 rtx tmp2 = XEXP (x, 1);
1731
35a3065a 1732 /* This is a little bit tricky since we have to determine which of
1b5bbc4c 1733 the two operands represents the real base address. Otherwise this
1734 routine may return the index register instead of the base register.
1735
1736 That may cause us to believe no aliasing was possible, when in
1737 fact aliasing is possible.
1738
1739 We use a few simple tests to guess the base register. Additional
1740 tests can certainly be added. For example, if one of the operands
1741 is a shift or multiply, then it must be the index register and the
1742 other operand is the base register. */
9342ee68 1743
15750b1e 1744 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1745 return find_base_term (tmp2);
1746
5abc99e4 1747 /* If either operand is known to be a pointer, then prefer it
1b5bbc4c 1748 to determine the base term. */
e61a0a7f 1749 if (REG_P (tmp1) && REG_POINTER (tmp1))
5abc99e4 1750 ;
1751 else if (REG_P (tmp2) && REG_POINTER (tmp2))
02b0d167 1752 {
5abc99e4 1753 rtx tem = tmp1;
1754 tmp1 = tmp2;
1755 tmp2 = tem;
02b0d167 1756 }
1b5bbc4c 1757
5abc99e4 1758 /* Go ahead and find the base term for both operands. If either base
1759 term is from a pointer or is a named object or a special address
1b5bbc4c 1760 (like an argument or stack reference), then use it for the
1761 base term. */
ce0deccc 1762 rtx base = find_base_term (tmp1);
1763 if (base != NULL_RTX
5abc99e4 1764 && ((REG_P (tmp1) && REG_POINTER (tmp1))
ce0deccc 1765 || known_base_value_p (base)))
1766 return base;
1767 base = find_base_term (tmp2);
1768 if (base != NULL_RTX
5abc99e4 1769 && ((REG_P (tmp2) && REG_POINTER (tmp2))
ce0deccc 1770 || known_base_value_p (base)))
1771 return base;
1b5bbc4c 1772
1773 /* We could not determine which of the two operands was the
1774 base register and which was the index. So we can determine
1775 nothing from the base alias check. */
1776 return 0;
ea0cb7ae 1777 }
1778
1779 case AND:
971ba038 1780 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2be64ef0 1781 return find_base_term (XEXP (x, 0));
ea0cb7ae 1782 return 0;
1783
1784 case SYMBOL_REF:
1785 case LABEL_REF:
1786 return x;
1787
1788 default:
1789 return 0;
1790 }
1791}
1792
86e87ef6 1793/* Return true if accesses to address X may alias accesses based
1794 on the stack pointer. */
1795
1796bool
1797may_be_sp_based_p (rtx x)
1798{
1799 rtx base = find_base_term (x);
1800 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1801}
1802
ea0cb7ae 1803/* Return 0 if the addresses X and Y are known to point to different
1804 objects, 1 if they might be pointers to the same object. */
1805
1806static int
5abc99e4 1807base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1808 enum machine_mode x_mode, enum machine_mode y_mode)
ea0cb7ae 1809{
3ad3a0ed 1810 /* If the address itself has no known base see if a known equivalent
1811 value has one. If either address still has no known base, nothing
1812 is known about aliasing. */
1813 if (x_base == 0)
1814 {
1815 rtx x_c;
083a2b5e 1816
3ad3a0ed 1817 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1818 return 1;
083a2b5e 1819
3ad3a0ed 1820 x_base = find_base_term (x_c);
1821 if (x_base == 0)
1822 return 1;
1823 }
ea0cb7ae 1824
3ad3a0ed 1825 if (y_base == 0)
1826 {
1827 rtx y_c;
1828 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1829 return 1;
083a2b5e 1830
3ad3a0ed 1831 y_base = find_base_term (y_c);
1832 if (y_base == 0)
1833 return 1;
1834 }
1835
1836 /* If the base addresses are equal nothing is known about aliasing. */
1837 if (rtx_equal_p (x_base, y_base))
ea0cb7ae 1838 return 1;
1839
f92492f7 1840 /* The base addresses are different expressions. If they are not accessed
1841 via AND, there is no conflict. We can bring knowledge of object
1842 alignment into play here. For example, on alpha, "char a, b;" can
1843 alias one another, though "char a; long b;" cannot. AND addesses may
1844 implicitly alias surrounding objects; i.e. unaligned access in DImode
1845 via AND address can alias all surrounding object types except those
1846 with aligment 8 or higher. */
1847 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1848 return 1;
1849 if (GET_CODE (x) == AND
971ba038 1850 && (!CONST_INT_P (XEXP (x, 1))
f92492f7 1851 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1852 return 1;
1853 if (GET_CODE (y) == AND
971ba038 1854 && (!CONST_INT_P (XEXP (y, 1))
f92492f7 1855 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1856 return 1;
1857
1858 /* Differing symbols not accessed via AND never alias. */
ea0cb7ae 1859 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
f92492f7 1860 return 0;
ea0cb7ae 1861
4e56ceb1 1862 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
ea0cb7ae 1863 return 0;
1864
e190b18a 1865 return 1;
ea0cb7ae 1866}
1867
fa5e407e 1868/* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1869 whose UID is greater than the int uid that D points to. */
1870
1871static int
1872refs_newer_value_cb (rtx *x, void *d)
1873{
1874 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1875 return 1;
1876
1877 return 0;
1878}
1879
1880/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1881 that of V. */
1882
1883static bool
1884refs_newer_value_p (rtx expr, rtx v)
1885{
1886 int minuid = CSELIB_VAL_PTR (v)->uid;
1887
1888 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1889}
1890
1617c276 1891/* Convert the address X into something we can use. This is done by returning
1892 it unchanged unless it is a value; in the latter case we call cselib to get
1893 a more useful rtx. */
f7c44134 1894
8e802be9 1895rtx
aecda0d6 1896get_addr (rtx x)
1617c276 1897{
1898 cselib_val *v;
1899 struct elt_loc_list *l;
1900
1901 if (GET_CODE (x) != VALUE)
1902 return x;
1903 v = CSELIB_VAL_PTR (x);
a2e238f7 1904 if (v)
1905 {
85b6e75b 1906 bool have_equivs = cselib_have_permanent_equivalences ();
1907 if (have_equivs)
1908 v = canonical_cselib_val (v);
a2e238f7 1909 for (l = v->locs; l; l = l->next)
1910 if (CONSTANT_P (l->loc))
1911 return l->loc;
1912 for (l = v->locs; l; l = l->next)
85b6e75b 1913 if (!REG_P (l->loc) && !MEM_P (l->loc)
1914 /* Avoid infinite recursion when potentially dealing with
1915 var-tracking artificial equivalences, by skipping the
1916 equivalences themselves, and not choosing expressions
1917 that refer to newer VALUEs. */
1918 && (!have_equivs
1919 || (GET_CODE (l->loc) != VALUE
1920 && !refs_newer_value_p (l->loc, x))))
fa5e407e 1921 return l->loc;
85b6e75b 1922 if (have_equivs)
1923 {
1924 for (l = v->locs; l; l = l->next)
1925 if (REG_P (l->loc)
1926 || (GET_CODE (l->loc) != VALUE
1927 && !refs_newer_value_p (l->loc, x)))
1928 return l->loc;
1929 /* Return the canonical value. */
1930 return v->val_rtx;
1931 }
1932 if (v->locs)
1933 return v->locs->loc;
a2e238f7 1934 }
1617c276 1935 return x;
1936}
1937
b9f92976 1938/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1939 where SIZE is the size in bytes of the memory reference. If ADDR
1940 is not modified by the memory reference then ADDR is returned. */
1941
0aa9ffd4 1942static rtx
aecda0d6 1943addr_side_effect_eval (rtx addr, int size, int n_refs)
b9f92976 1944{
1945 int offset = 0;
9342ee68 1946
b9f92976 1947 switch (GET_CODE (addr))
1948 {
1949 case PRE_INC:
1950 offset = (n_refs + 1) * size;
1951 break;
1952 case PRE_DEC:
1953 offset = -(n_refs + 1) * size;
1954 break;
1955 case POST_INC:
1956 offset = n_refs * size;
1957 break;
1958 case POST_DEC:
1959 offset = -n_refs * size;
1960 break;
1961
1962 default:
1963 return addr;
1964 }
9342ee68 1965
b9f92976 1966 if (offset)
6285298a 1967 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c338f2e3 1968 gen_int_mode (offset, GET_MODE (addr)));
b9f92976 1969 else
1970 addr = XEXP (addr, 0);
6285298a 1971 addr = canon_rtx (addr);
b9f92976 1972
1973 return addr;
1974}
1975
340ad617 1976/* Return TRUE if an object X sized at XSIZE bytes and another object
1977 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1978 any of the sizes is zero, assume an overlap, otherwise use the
1979 absolute value of the sizes as the actual sizes. */
1980
1981static inline bool
1982offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1983{
1984 return (xsize == 0 || ysize == 0
1985 || (c >= 0
1986 ? (abs (xsize) > c)
1987 : (abs (ysize) > -c)));
1988}
1989
40f9e245 1990/* Return one if X and Y (memory addresses) reference the
1991 same location in memory or if the references overlap.
1992 Return zero if they do not overlap, else return
1993 minus one in which case they still might reference the same location.
1994
1995 C is an offset accumulator. When
ea0cb7ae 1996 C is nonzero, we are testing aliases between X and Y + C.
1997 XSIZE is the size in bytes of the X reference,
1998 similarly YSIZE is the size in bytes for Y.
6285298a 1999 Expect that canon_rtx has been already called for X and Y.
ea0cb7ae 2000
2001 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2002 referenced (the reference was BLKmode), so make the most pessimistic
2003 assumptions.
2004
1e38bf49 2005 If XSIZE or YSIZE is negative, we may access memory outside the object
2006 being referenced as a side effect. This can happen when using AND to
2007 align memory references, as is done on the Alpha.
2008
ea0cb7ae 2009 Nice to notice that varying addresses cannot conflict with fp if no
40f9e245 2010 local variables had their addresses taken, but that's too hard now.
2011
2012 ??? Contrary to the tree alias oracle this does not return
2013 one for X + non-constant and Y + non-constant when X and Y are equal.
2014 If that is fixed the TBAA hack for union type-punning can be removed. */
ea0cb7ae 2015
ea0cb7ae 2016static int
aecda0d6 2017memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
ea0cb7ae 2018{
1617c276 2019 if (GET_CODE (x) == VALUE)
6f9688ce 2020 {
2021 if (REG_P (y))
2022 {
4e15f806 2023 struct elt_loc_list *l = NULL;
2024 if (CSELIB_VAL_PTR (x))
fa5e407e 2025 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2026 l; l = l->next)
4e15f806 2027 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2028 break;
6f9688ce 2029 if (l)
2030 x = y;
2031 else
2032 x = get_addr (x);
2033 }
2034 /* Don't call get_addr if y is the same VALUE. */
2035 else if (x != y)
2036 x = get_addr (x);
2037 }
1617c276 2038 if (GET_CODE (y) == VALUE)
6f9688ce 2039 {
2040 if (REG_P (x))
2041 {
4e15f806 2042 struct elt_loc_list *l = NULL;
2043 if (CSELIB_VAL_PTR (y))
fa5e407e 2044 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2045 l; l = l->next)
4e15f806 2046 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2047 break;
6f9688ce 2048 if (l)
2049 y = x;
2050 else
2051 y = get_addr (y);
2052 }
2053 /* Don't call get_addr if x is the same VALUE. */
2054 else if (y != x)
2055 y = get_addr (y);
2056 }
ea0cb7ae 2057 if (GET_CODE (x) == HIGH)
2058 x = XEXP (x, 0);
2059 else if (GET_CODE (x) == LO_SUM)
2060 x = XEXP (x, 1);
2061 else
340ad617 2062 x = addr_side_effect_eval (x, abs (xsize), 0);
ea0cb7ae 2063 if (GET_CODE (y) == HIGH)
2064 y = XEXP (y, 0);
2065 else if (GET_CODE (y) == LO_SUM)
2066 y = XEXP (y, 1);
2067 else
340ad617 2068 y = addr_side_effect_eval (y, abs (ysize), 0);
ea0cb7ae 2069
2070 if (rtx_equal_for_memref_p (x, y))
2071 {
340ad617 2072 return offset_overlap_p (c, xsize, ysize);
ea0cb7ae 2073 }
2074
35d3eedd 2075 /* This code used to check for conflicts involving stack references and
2076 globals but the base address alias code now handles these cases. */
ea0cb7ae 2077
2078 if (GET_CODE (x) == PLUS)
2079 {
2080 /* The fact that X is canonicalized means that this
2081 PLUS rtx is canonicalized. */
2082 rtx x0 = XEXP (x, 0);
2083 rtx x1 = XEXP (x, 1);
2084
2085 if (GET_CODE (y) == PLUS)
2086 {
2087 /* The fact that Y is canonicalized means that this
2088 PLUS rtx is canonicalized. */
2089 rtx y0 = XEXP (y, 0);
2090 rtx y1 = XEXP (y, 1);
2091
2092 if (rtx_equal_for_memref_p (x1, y1))
2093 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2094 if (rtx_equal_for_memref_p (x0, y0))
2095 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
971ba038 2096 if (CONST_INT_P (x1))
5f59c49b 2097 {
971ba038 2098 if (CONST_INT_P (y1))
5f59c49b 2099 return memrefs_conflict_p (xsize, x0, ysize, y0,
2100 c - INTVAL (x1) + INTVAL (y1));
2101 else
2102 return memrefs_conflict_p (xsize, x0, ysize, y,
2103 c - INTVAL (x1));
2104 }
971ba038 2105 else if (CONST_INT_P (y1))
ea0cb7ae 2106 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2107
40f9e245 2108 return -1;
ea0cb7ae 2109 }
971ba038 2110 else if (CONST_INT_P (x1))
ea0cb7ae 2111 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2112 }
2113 else if (GET_CODE (y) == PLUS)
2114 {
2115 /* The fact that Y is canonicalized means that this
2116 PLUS rtx is canonicalized. */
2117 rtx y0 = XEXP (y, 0);
2118 rtx y1 = XEXP (y, 1);
2119
971ba038 2120 if (CONST_INT_P (y1))
ea0cb7ae 2121 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2122 else
40f9e245 2123 return -1;
ea0cb7ae 2124 }
2125
2126 if (GET_CODE (x) == GET_CODE (y))
2127 switch (GET_CODE (x))
2128 {
2129 case MULT:
2130 {
2131 /* Handle cases where we expect the second operands to be the
2132 same, and check only whether the first operand would conflict
2133 or not. */
2134 rtx x0, y0;
2135 rtx x1 = canon_rtx (XEXP (x, 1));
2136 rtx y1 = canon_rtx (XEXP (y, 1));
2137 if (! rtx_equal_for_memref_p (x1, y1))
40f9e245 2138 return -1;
ea0cb7ae 2139 x0 = canon_rtx (XEXP (x, 0));
2140 y0 = canon_rtx (XEXP (y, 0));
2141 if (rtx_equal_for_memref_p (x0, y0))
340ad617 2142 return offset_overlap_p (c, xsize, ysize);
ea0cb7ae 2143
2144 /* Can't properly adjust our sizes. */
971ba038 2145 if (!CONST_INT_P (x1))
40f9e245 2146 return -1;
ea0cb7ae 2147 xsize /= INTVAL (x1);
2148 ysize /= INTVAL (x1);
2149 c /= INTVAL (x1);
2150 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2151 }
99c14947 2152
2153 default:
2154 break;
ea0cb7ae 2155 }
2156
f78d5f53 2157 /* Deal with alignment ANDs by adjusting offset and size so as to
2158 cover the maximum range, without taking any previously known
bb2bc4f3 2159 alignment into account. Make a size negative after such an
2160 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2161 assume a potential overlap, because they may end up in contiguous
2162 memory locations and the stricter-alignment access may span over
2163 part of both. */
971ba038 2164 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
9fb1c31b 2165 {
f78d5f53 2166 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2167 unsigned HOST_WIDE_INT uc = sc;
bb2bc4f3 2168 if (sc < 0 && -uc == (uc & -uc))
f78d5f53 2169 {
bb2bc4f3 2170 if (xsize > 0)
2171 xsize = -xsize;
340ad617 2172 if (xsize)
2173 xsize += sc + 1;
686d491a 2174 c -= sc + 1;
f78d5f53 2175 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2176 ysize, y, c);
2177 }
9fb1c31b 2178 }
971ba038 2179 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1e38bf49 2180 {
f78d5f53 2181 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2182 unsigned HOST_WIDE_INT uc = sc;
bb2bc4f3 2183 if (sc < 0 && -uc == (uc & -uc))
f78d5f53 2184 {
bb2bc4f3 2185 if (ysize > 0)
2186 ysize = -ysize;
340ad617 2187 if (ysize)
2188 ysize += sc + 1;
686d491a 2189 c += sc + 1;
f78d5f53 2190 return memrefs_conflict_p (xsize, x,
2191 ysize, canon_rtx (XEXP (y, 0)), c);
2192 }
1e38bf49 2193 }
ea0cb7ae 2194
2195 if (CONSTANT_P (x))
2196 {
971ba038 2197 if (CONST_INT_P (x) && CONST_INT_P (y))
ea0cb7ae 2198 {
2199 c += (INTVAL (y) - INTVAL (x));
340ad617 2200 return offset_overlap_p (c, xsize, ysize);
ea0cb7ae 2201 }
2202
2203 if (GET_CODE (x) == CONST)
2204 {
2205 if (GET_CODE (y) == CONST)
2206 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2207 ysize, canon_rtx (XEXP (y, 0)), c);
2208 else
2209 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2210 ysize, y, c);
2211 }
2212 if (GET_CODE (y) == CONST)
2213 return memrefs_conflict_p (xsize, x, ysize,
2214 canon_rtx (XEXP (y, 0)), c);
2215
340ad617 2216 /* Assume a potential overlap for symbolic addresses that went
2217 through alignment adjustments (i.e., that have negative
2218 sizes), because we can't know how far they are from each
2219 other. */
ea0cb7ae 2220 if (CONSTANT_P (y))
340ad617 2221 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
ea0cb7ae 2222
40f9e245 2223 return -1;
ea0cb7ae 2224 }
40f9e245 2225
2226 return -1;
ea0cb7ae 2227}
2228
2229/* Functions to compute memory dependencies.
2230
2231 Since we process the insns in execution order, we can build tables
2232 to keep track of what registers are fixed (and not aliased), what registers
2233 are varying in known ways, and what registers are varying in unknown
2234 ways.
2235
2236 If both memory references are volatile, then there must always be a
2237 dependence between the two references, since their order can not be
2238 changed. A volatile and non-volatile reference can be interchanged
9342ee68 2239 though.
ea0cb7ae 2240
376a287d 2241 We also must allow AND addresses, because they may generate accesses
2242 outside the object being referenced. This is used to generate aligned
2243 addresses from unaligned addresses, for instance, the alpha
71d9e995 2244 storeqi_unaligned pattern. */
ea0cb7ae 2245
2246/* Read dependence: X is read after read in MEM takes place. There can
eae726e9 2247 only be a dependence here if both reads are volatile, or if either is
2248 an explicit barrier. */
ea0cb7ae 2249
2250int
52d07779 2251read_dependence (const_rtx mem, const_rtx x)
ea0cb7ae 2252{
eae726e9 2253 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2254 return true;
2255 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2256 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2257 return true;
2258 return false;
ea0cb7ae 2259}
2260
b10dbbca 2261/* Return true if we can determine that the fields referenced cannot
2262 overlap for any pair of objects. */
2263
2264static bool
658f1736 2265nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
b10dbbca 2266{
658f1736 2267 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
52d07779 2268 const_tree fieldx, fieldy, typex, typey, orig_y;
b10dbbca 2269
658f1736 2270 if (!flag_strict_aliasing
2271 || !x || !y
2272 || TREE_CODE (x) != COMPONENT_REF
2273 || TREE_CODE (y) != COMPONENT_REF)
b95fdaae 2274 return false;
2275
b10dbbca 2276 do
2277 {
2278 /* The comparison has to be done at a common type, since we don't
cb0ccc1e 2279 know how the inheritance hierarchy works. */
b10dbbca 2280 orig_y = y;
2281 do
2282 {
2283 fieldx = TREE_OPERAND (x, 1);
a769a0a7 2284 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
b10dbbca 2285
2286 y = orig_y;
2287 do
2288 {
2289 fieldy = TREE_OPERAND (y, 1);
a769a0a7 2290 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
b10dbbca 2291
2292 if (typex == typey)
2293 goto found;
2294
2295 y = TREE_OPERAND (y, 0);
2296 }
2297 while (y && TREE_CODE (y) == COMPONENT_REF);
2298
2299 x = TREE_OPERAND (x, 0);
2300 }
2301 while (x && TREE_CODE (x) == COMPONENT_REF);
b10dbbca 2302 /* Never found a common type. */
a769a0a7 2303 return false;
b10dbbca 2304
2305 found:
4733f549 2306 /* If we're left with accessing different fields of a structure, then no
96cd09d2 2307 possible overlap, unless they are both bitfields. */
4733f549 2308 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
96cd09d2 2309 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
b10dbbca 2310
2311 /* The comparison on the current field failed. If we're accessing
2312 a very nested structure, look at the next outer level. */
2313 x = TREE_OPERAND (x, 0);
2314 y = TREE_OPERAND (y, 0);
2315 }
2316 while (x && y
2317 && TREE_CODE (x) == COMPONENT_REF
2318 && TREE_CODE (y) == COMPONENT_REF);
9342ee68 2319
b10dbbca 2320 return false;
2321}
2322
2323/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2324
2325static tree
aecda0d6 2326decl_for_component_ref (tree x)
b10dbbca 2327{
2328 do
2329 {
2330 x = TREE_OPERAND (x, 0);
2331 }
2332 while (x && TREE_CODE (x) == COMPONENT_REF);
2333
2334 return x && DECL_P (x) ? x : NULL_TREE;
2335}
2336
da443c27 2337/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2338 for the offset of the field reference. *KNOWN_P says whether the
2339 offset is known. */
b10dbbca 2340
da443c27 2341static void
2342adjust_offset_for_component_ref (tree x, bool *known_p,
2343 HOST_WIDE_INT *offset)
b10dbbca 2344{
da443c27 2345 if (!*known_p)
2346 return;
9342ee68 2347 do
b10dbbca 2348 {
da443c27 2349 tree xoffset = component_ref_field_offset (x);
b10dbbca 2350 tree field = TREE_OPERAND (x, 1);
2351
cd4547bf 2352 if (! tree_fits_uhwi_p (xoffset))
da443c27 2353 {
2354 *known_p = false;
2355 return;
2356 }
6a0712d4 2357 *offset += (tree_to_uhwi (xoffset)
2358 + (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
b10dbbca 2359 / BITS_PER_UNIT));
2360
2361 x = TREE_OPERAND (x, 0);
2362 }
2363 while (x && TREE_CODE (x) == COMPONENT_REF);
b10dbbca 2364}
2365
d716ce75 2366/* Return nonzero if we can determine the exprs corresponding to memrefs
a84256aa 2367 X and Y and they do not overlap.
2368 If LOOP_VARIANT is set, skip offset-based disambiguation */
ddb3d16f 2369
5fe61d21 2370int
a84256aa 2371nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
ddb3d16f 2372{
b10dbbca 2373 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
ddb3d16f 2374 rtx rtlx, rtly;
2375 rtx basex, basey;
da443c27 2376 bool moffsetx_known_p, moffsety_known_p;
2377 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
ddb3d16f 2378 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2379
b10dbbca 2380 /* Unless both have exprs, we can't tell anything. */
2381 if (exprx == 0 || expry == 0)
2382 return 0;
c6b80e5d 2383
2384 /* For spill-slot accesses make sure we have valid offsets. */
2385 if ((exprx == get_spill_slot_decl (false)
da443c27 2386 && ! MEM_OFFSET_KNOWN_P (x))
c6b80e5d 2387 || (expry == get_spill_slot_decl (false)
da443c27 2388 && ! MEM_OFFSET_KNOWN_P (y)))
c6b80e5d 2389 return 0;
a0c938f0 2390
b10dbbca 2391 /* If the field reference test failed, look at the DECLs involved. */
da443c27 2392 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2393 if (moffsetx_known_p)
2394 moffsetx = MEM_OFFSET (x);
b10dbbca 2395 if (TREE_CODE (exprx) == COMPONENT_REF)
2396 {
b50c6e49 2397 tree t = decl_for_component_ref (exprx);
2398 if (! t)
2399 return 0;
da443c27 2400 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
b50c6e49 2401 exprx = t;
b10dbbca 2402 }
2d8fe5d0 2403
da443c27 2404 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2405 if (moffsety_known_p)
2406 moffsety = MEM_OFFSET (y);
b10dbbca 2407 if (TREE_CODE (expry) == COMPONENT_REF)
2408 {
b50c6e49 2409 tree t = decl_for_component_ref (expry);
2410 if (! t)
2411 return 0;
da443c27 2412 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
b50c6e49 2413 expry = t;
b10dbbca 2414 }
2415
2416 if (! DECL_P (exprx) || ! DECL_P (expry))
ddb3d16f 2417 return 0;
2418
119147d1 2419 /* With invalid code we can end up storing into the constant pool.
2420 Bail out to avoid ICEing when creating RTL for this.
2421 See gfortran.dg/lto/20091028-2_0.f90. */
2422 if (TREE_CODE (exprx) == CONST_DECL
2423 || TREE_CODE (expry) == CONST_DECL)
2424 return 1;
2425
b10dbbca 2426 rtlx = DECL_RTL (exprx);
2427 rtly = DECL_RTL (expry);
ddb3d16f 2428
10e949c1 2429 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2430 can't overlap unless they are the same because we never reuse that part
2431 of the stack frame used for locals for spilled pseudos. */
e16ceb8e 2432 if ((!MEM_P (rtlx) || !MEM_P (rtly))
10e949c1 2433 && ! rtx_equal_p (rtlx, rtly))
ddb3d16f 2434 return 1;
2435
04ec15fa 2436 /* If we have MEMs referring to different address spaces (which can
bd1a81f7 2437 potentially overlap), we cannot easily tell from the addresses
2438 whether the references overlap. */
2439 if (MEM_P (rtlx) && MEM_P (rtly)
2440 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2441 return 0;
2442
ddb3d16f 2443 /* Get the base and offsets of both decls. If either is a register, we
2444 know both are and are the same, so use that as the base. The only
2445 we can avoid overlap is if we can deduce that they are nonoverlapping
2446 pieces of that decl, which is very rare. */
e16ceb8e 2447 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
971ba038 2448 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
ddb3d16f 2449 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2450
e16ceb8e 2451 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
971ba038 2452 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
ddb3d16f 2453 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2454
c9c48480 2455 /* If the bases are different, we know they do not overlap if both
9342ee68 2456 are constants or if one is a constant and the other a pointer into the
c9c48480 2457 stack frame. Otherwise a different base means we can't tell if they
2458 overlap or not. */
2459 if (! rtx_equal_p (basex, basey))
9342ee68 2460 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2461 || (CONSTANT_P (basex) && REG_P (basey)
2462 && REGNO_PTR_FRAME_P (REGNO (basey)))
2463 || (CONSTANT_P (basey) && REG_P (basex)
2464 && REGNO_PTR_FRAME_P (REGNO (basex))));
ddb3d16f 2465
a84256aa 2466 /* Offset based disambiguation not appropriate for loop invariant */
2467 if (loop_invariant)
2468 return 0;
2469
e16ceb8e 2470 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
5b2a69fa 2471 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
ddb3d16f 2472 : -1);
e16ceb8e 2473 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
5b2a69fa 2474 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2475 : -1);
ddb3d16f 2476
dc2dfdb6 2477 /* If we have an offset for either memref, it can update the values computed
2478 above. */
da443c27 2479 if (moffsetx_known_p)
2480 offsetx += moffsetx, sizex -= moffsetx;
2481 if (moffsety_known_p)
2482 offsety += moffsety, sizey -= moffsety;
ddb3d16f 2483
dc2dfdb6 2484 /* If a memref has both a size and an offset, we can use the smaller size.
203c9fee 2485 We can't do this if the offset isn't known because we must view this
dc2dfdb6 2486 memref as being anywhere inside the DECL's MEM. */
da443c27 2487 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
5b2a69fa 2488 sizex = MEM_SIZE (x);
da443c27 2489 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
5b2a69fa 2490 sizey = MEM_SIZE (y);
ddb3d16f 2491
2492 /* Put the values of the memref with the lower offset in X's values. */
2493 if (offsetx > offsety)
2494 {
2495 tem = offsetx, offsetx = offsety, offsety = tem;
2496 tem = sizex, sizex = sizey, sizey = tem;
2497 }
2498
2499 /* If we don't know the size of the lower-offset value, we can't tell
2500 if they conflict. Otherwise, we do the test. */
906923ba 2501 return sizex >= 0 && offsety >= offsetx + sizex;
ddb3d16f 2502}
2503
02f77cc4 2504/* Helper for true_dependence and canon_true_dependence.
2505 Checks for true dependence: X is read after store in MEM takes place.
ea0cb7ae 2506
02f77cc4 2507 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2508 NULL_RTX, and the canonical addresses of MEM and X are both computed
2509 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2510
2511 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2512
2513 Returns 1 if there is a true dependence, 0 otherwise. */
2514
2515static int
2516true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
376a287d 2517 const_rtx x, rtx x_addr, bool mem_canonicalized)
ea0cb7ae 2518{
9ee7cac5 2519 rtx base;
40f9e245 2520 int ret;
ea0cb7ae 2521
02f77cc4 2522 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2523 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2524
ea0cb7ae 2525 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2526 return 1;
2527
a57f4c4d 2528 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
67837170 2529 This is used in epilogue deallocation functions, and in cselib. */
a57f4c4d 2530 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2531 return 1;
2532 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2533 return 1;
c94cfd1c 2534 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2535 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2536 return 1;
a57f4c4d 2537
b04fab2a 2538 /* Read-only memory is by definition never modified, and therefore can't
2539 conflict with anything. We don't expect to find read-only set on MEM,
a53ff4c1 2540 but stupid user tricks can produce them, so don't die. */
b04fab2a 2541 if (MEM_READONLY_P (x))
ea0cb7ae 2542 return 0;
2543
04ec15fa 2544 /* If we have MEMs referring to different address spaces (which can
bd1a81f7 2545 potentially overlap), we cannot easily tell from the addresses
2546 whether the references overlap. */
2547 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2548 return 1;
2549
02f77cc4 2550 if (! mem_addr)
2551 {
2552 mem_addr = XEXP (mem, 0);
2553 if (mem_mode == VOIDmode)
2554 mem_mode = GET_MODE (mem);
2555 }
2556
2557 if (! x_addr)
288debed 2558 {
62696140 2559 x_addr = XEXP (x, 0);
2560 if (!((GET_CODE (x_addr) == VALUE
2561 && GET_CODE (mem_addr) != VALUE
2562 && reg_mentioned_p (x_addr, mem_addr))
2563 || (GET_CODE (x_addr) != VALUE
2564 && GET_CODE (mem_addr) == VALUE
2565 && reg_mentioned_p (mem_addr, x_addr))))
2566 {
2567 x_addr = get_addr (x_addr);
2568 if (! mem_canonicalized)
2569 mem_addr = get_addr (mem_addr);
2570 }
288debed 2571 }
1617c276 2572
002fe3cb 2573 base = find_base_term (x_addr);
2574 if (base && (GET_CODE (base) == LABEL_REF
2575 || (GET_CODE (base) == SYMBOL_REF
2576 && CONSTANT_POOL_ADDRESS_P (base))))
2577 return 0;
2578
5abc99e4 2579 rtx mem_base = find_base_term (mem_addr);
2580 if (! base_alias_check (x_addr, base, mem_addr, mem_base,
2581 GET_MODE (x), mem_mode))
3ad3a0ed 2582 return 0;
2583
1617c276 2584 x_addr = canon_rtx (x_addr);
02f77cc4 2585 if (!mem_canonicalized)
2586 mem_addr = canon_rtx (mem_addr);
35d3eedd 2587
40f9e245 2588 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2589 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2590 return ret;
2591
557f718e 2592 if (mems_in_disjoint_alias_sets_p (x, mem))
40f9e245 2593 return 0;
2594
a84256aa 2595 if (nonoverlapping_memrefs_p (mem, x, false))
4958fe6e 2596 return 0;
658f1736 2597
2598 if (nonoverlapping_component_refs_p (mem, x))
2599 return 0;
4958fe6e 2600
3a443843 2601 return rtx_refs_may_alias_p (x, mem, true);
8e802be9 2602}
2603
02f77cc4 2604/* True dependence: X is read after store in MEM takes place. */
2605
2606int
376a287d 2607true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
02f77cc4 2608{
2609 return true_dependence_1 (mem, mem_mode, NULL_RTX,
376a287d 2610 x, NULL_RTX, /*mem_canonicalized=*/false);
02f77cc4 2611}
2612
8e802be9 2613/* Canonical true dependence: X is read after store in MEM takes place.
9342ee68 2614 Variant of true_dependence which assumes MEM has already been
2615 canonicalized (hence we no longer do that here).
02f77cc4 2616 The mem_addr argument has been added, since true_dependence_1 computed
2617 this value prior to canonicalizing. */
8e802be9 2618
2619int
52d07779 2620canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
376a287d 2621 const_rtx x, rtx x_addr)
8e802be9 2622{
02f77cc4 2623 return true_dependence_1 (mem, mem_mode, mem_addr,
376a287d 2624 x, x_addr, /*mem_canonicalized=*/true);
ea0cb7ae 2625}
2626
d10cfa8d 2627/* Returns nonzero if a write to X might alias a previous read from
ddba76b8 2628 (or, if WRITEP is true, a write to) MEM.
cb456db5 2629 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2630 and X_MODE the mode for that access.
2631 If MEM_CANONICALIZED is true, MEM is canonicalized. */
ea0cb7ae 2632
fe69e4fe 2633static int
cb456db5 2634write_dependence_p (const_rtx mem,
2635 const_rtx x, enum machine_mode x_mode, rtx x_addr,
2636 bool mem_canonicalized, bool x_canonicalized, bool writep)
ea0cb7ae 2637{
cb456db5 2638 rtx mem_addr;
9ee7cac5 2639 rtx base;
40f9e245 2640 int ret;
35d3eedd 2641
cb456db5 2642 gcc_checking_assert (x_canonicalized
2643 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2644 : (x_addr == NULL_RTX && x_mode == VOIDmode));
ddba76b8 2645
ea0cb7ae 2646 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2647 return 1;
2648
a57f4c4d 2649 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2650 This is used in epilogue deallocation functions. */
2651 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2652 return 1;
2653 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2654 return 1;
c94cfd1c 2655 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2656 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2657 return 1;
a57f4c4d 2658
b04fab2a 2659 /* A read from read-only memory can't conflict with read-write memory. */
2660 if (!writep && MEM_READONLY_P (mem))
2661 return 0;
002fe3cb 2662
04ec15fa 2663 /* If we have MEMs referring to different address spaces (which can
bd1a81f7 2664 potentially overlap), we cannot easily tell from the addresses
2665 whether the references overlap. */
2666 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2667 return 1;
2668
288debed 2669 mem_addr = XEXP (mem, 0);
cb456db5 2670 if (!x_addr)
288debed 2671 {
cb456db5 2672 x_addr = XEXP (x, 0);
2673 if (!((GET_CODE (x_addr) == VALUE
2674 && GET_CODE (mem_addr) != VALUE
2675 && reg_mentioned_p (x_addr, mem_addr))
2676 || (GET_CODE (x_addr) != VALUE
2677 && GET_CODE (mem_addr) == VALUE
2678 && reg_mentioned_p (mem_addr, x_addr))))
2679 {
2680 x_addr = get_addr (x_addr);
2681 if (!mem_canonicalized)
2682 mem_addr = get_addr (mem_addr);
2683 }
288debed 2684 }
002fe3cb 2685
5abc99e4 2686 base = find_base_term (mem_addr);
2687 if (! writep
2688 && base
2689 && (GET_CODE (base) == LABEL_REF
2690 || (GET_CODE (base) == SYMBOL_REF
2691 && CONSTANT_POOL_ADDRESS_P (base))))
2692 return 0;
9ee7cac5 2693
5abc99e4 2694 rtx x_base = find_base_term (x_addr);
2695 if (! base_alias_check (x_addr, x_base, mem_addr, base, GET_MODE (x),
1617c276 2696 GET_MODE (mem)))
b5ba9f3a 2697 return 0;
2698
cb456db5 2699 if (!x_canonicalized)
ddba76b8 2700 {
cb456db5 2701 x_addr = canon_rtx (x_addr);
2702 x_mode = GET_MODE (x);
ddba76b8 2703 }
cb456db5 2704 if (!mem_canonicalized)
2705 mem_addr = canon_rtx (mem_addr);
35d3eedd 2706
cb456db5 2707 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2708 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
40f9e245 2709 return ret;
2710
a84256aa 2711 if (nonoverlapping_memrefs_p (x, mem, false))
6a0934dd 2712 return 0;
2713
3a443843 2714 return rtx_refs_may_alias_p (x, mem, false);
6a0934dd 2715}
2716
2717/* Anti dependence: X is written after read in MEM takes place. */
2718
2719int
52d07779 2720anti_dependence (const_rtx mem, const_rtx x)
6a0934dd 2721{
cb456db5 2722 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2723 /*mem_canonicalized=*/false,
2724 /*x_canonicalized*/false, /*writep=*/false);
ddba76b8 2725}
2726
cb456db5 2727/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2728 Also, consider X in X_MODE (which might be from an enclosing
2729 STRICT_LOW_PART / ZERO_EXTRACT).
2730 If MEM_CANONICALIZED is true, MEM is canonicalized. */
ddba76b8 2731
2732int
cb456db5 2733canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2734 const_rtx x, enum machine_mode x_mode, rtx x_addr)
ddba76b8 2735{
cb456db5 2736 return write_dependence_p (mem, x, x_mode, x_addr,
2737 mem_canonicalized, /*x_canonicalized=*/true,
2738 /*writep=*/false);
ea0cb7ae 2739}
2740
2741/* Output dependence: X is written after store in MEM takes place. */
2742
2743int
52d07779 2744output_dependence (const_rtx mem, const_rtx x)
ea0cb7ae 2745{
cb456db5 2746 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2747 /*mem_canonicalized=*/false,
2748 /*x_canonicalized*/false, /*writep=*/true);
ea0cb7ae 2749}
c352cbc7 2750\f
35d3eedd 2751
a84256aa 2752
2753/* Check whether X may be aliased with MEM. Don't do offset-based
2754 memory disambiguation & TBAA. */
2755int
2756may_alias_p (const_rtx mem, const_rtx x)
2757{
2758 rtx x_addr, mem_addr;
a84256aa 2759
2760 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2761 return 1;
2762
557f718e 2763 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2764 This is used in epilogue deallocation functions. */
2765 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2766 return 1;
2767 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
a84256aa 2768 return 1;
a84256aa 2769 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2770 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2771 return 1;
2772
2773 /* Read-only memory is by definition never modified, and therefore can't
2774 conflict with anything. We don't expect to find read-only set on MEM,
2775 but stupid user tricks can produce them, so don't die. */
2776 if (MEM_READONLY_P (x))
2777 return 0;
2778
04ec15fa 2779 /* If we have MEMs referring to different address spaces (which can
a84256aa 2780 potentially overlap), we cannot easily tell from the addresses
2781 whether the references overlap. */
2782 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2783 return 1;
2784
2785 x_addr = XEXP (x, 0);
2786 mem_addr = XEXP (mem, 0);
2787 if (!((GET_CODE (x_addr) == VALUE
2788 && GET_CODE (mem_addr) != VALUE
2789 && reg_mentioned_p (x_addr, mem_addr))
2790 || (GET_CODE (x_addr) != VALUE
2791 && GET_CODE (mem_addr) == VALUE
2792 && reg_mentioned_p (mem_addr, x_addr))))
2793 {
2794 x_addr = get_addr (x_addr);
2795 mem_addr = get_addr (mem_addr);
2796 }
2797
5abc99e4 2798 rtx x_base = find_base_term (x_addr);
2799 rtx mem_base = find_base_term (mem_addr);
2800 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2801 GET_MODE (x), GET_MODE (mem_addr)))
a84256aa 2802 return 0;
2803
2804 x_addr = canon_rtx (x_addr);
2805 mem_addr = canon_rtx (mem_addr);
2806
2807 if (nonoverlapping_memrefs_p (mem, x, true))
2808 return 0;
2809
a84256aa 2810 /* TBAA not valid for loop_invarint */
2811 return rtx_refs_may_alias_p (x, mem, false);
2812}
2813
35d3eedd 2814void
6d8b68a3 2815init_alias_target (void)
35d3eedd 2816{
19cb6b50 2817 int i;
35d3eedd 2818
4e56ceb1 2819 if (!arg_base_value)
2820 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2821
6d8b68a3 2822 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2823
35d3eedd 2824 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2825 /* Check whether this register can hold an incoming pointer
2826 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2c0e001b 2827 numbers, so translate if necessary due to register windows. */
35d3eedd 2828 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2829 && HARD_REGNO_MODE_OK (i, Pmode))
4e56ceb1 2830 static_reg_base_value[i] = arg_base_value;
2831
df3e5a67 2832 static_reg_base_value[STACK_POINTER_REGNUM]
2833 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2834 static_reg_base_value[ARG_POINTER_REGNUM]
2835 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2836 static_reg_base_value[FRAME_POINTER_REGNUM]
2837 = unique_base_value (UNIQUE_BASE_VALUE_FP);
5ae82d58 2838#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
df3e5a67 2839 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2840 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
0c7f5242 2841#endif
2842}
2843
c7bf7428 2844/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2845 to be memory reference. */
2846static bool memory_modified;
2847static void
a80f1c6c 2848memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
c7bf7428 2849{
e16ceb8e 2850 if (MEM_P (x))
c7bf7428 2851 {
5493cb9a 2852 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
c7bf7428 2853 memory_modified = true;
2854 }
2855}
2856
2857
2858/* Return true when INSN possibly modify memory contents of MEM
0c6d8c36 2859 (i.e. address can be modified). */
c7bf7428 2860bool
5493cb9a 2861memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
c7bf7428 2862{
2863 if (!INSN_P (insn))
2864 return false;
2865 memory_modified = false;
a80f1c6c 2866 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
c7bf7428 2867 return memory_modified;
2868}
2869
43b6ba45 2870/* Return TRUE if the destination of a set is rtx identical to
2871 ITEM. */
2872static inline bool
2873set_dest_equal_p (const_rtx set, const_rtx item)
2874{
2875 rtx dest = SET_DEST (set);
2876 return rtx_equal_p (dest, item);
2877}
2878
2879/* Like memory_modified_in_insn_p, but return TRUE if INSN will
2880 *DEFINITELY* modify the memory contents of MEM. */
2881bool
2882memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2883{
2884 if (!INSN_P (insn))
2885 return false;
2886 insn = PATTERN (insn);
2887 if (GET_CODE (insn) == SET)
2888 return set_dest_equal_p (insn, mem);
2889 else if (GET_CODE (insn) == PARALLEL)
2890 {
2891 int i;
2892 for (i = 0; i < XVECLEN (insn, 0); i++)
2893 {
2894 rtx sub = XVECEXP (insn, 0, i);
2895 if (GET_CODE (sub) == SET
2896 && set_dest_equal_p (sub, mem))
2897 return true;
2898 }
2899 }
2900 return false;
2901}
2902
73f5c1e3 2903/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2904 array. */
2905
ea0cb7ae 2906void
aecda0d6 2907init_alias_analysis (void)
ea0cb7ae 2908{
e5b19a8c 2909 unsigned int maxreg = max_reg_num ();
37b864db 2910 int changed, pass;
19cb6b50 2911 int i;
2912 unsigned int ui;
d6443ebe 2913 rtx insn, val;
2808fda8 2914 int rpo_cnt;
2915 int *rpo;
ea0cb7ae 2916
376c21d1 2917 timevar_push (TV_ALIAS_ANALYSIS);
2918
5d3b0682 2919 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
d6443ebe 2920 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
7a2f311c 2921 bitmap_clear (reg_known_equiv_p);
ea0cb7ae 2922
980f3285 2923 /* If we have memory allocated from the previous run, use it. */
e5b19a8c 2924 if (old_reg_base_value)
980f3285 2925 reg_base_value = old_reg_base_value;
2926
2927 if (reg_base_value)
f1f41a6c 2928 reg_base_value->truncate (0);
980f3285 2929
f1f41a6c 2930 vec_safe_grow_cleared (reg_base_value, maxreg);
c2e94b25 2931
4c36ffe6 2932 new_reg_base_value = XNEWVEC (rtx, maxreg);
7bf60644 2933 reg_seen = sbitmap_alloc (maxreg);
06c5c535 2934
2935 /* The basic idea is that each pass through this loop will use the
2936 "constant" information from the previous pass to propagate alias
2937 information through another level of assignments.
2938
2808fda8 2939 The propagation is done on the CFG in reverse post-order, to propagate
2940 things forward as far as possible in each iteration.
2941
06c5c535 2942 This could get expensive if the assignment chains are long. Maybe
2943 we should throttle the number of iterations, possibly based on
35d3eedd 2944 the optimization level or flag_expensive_optimizations.
06c5c535 2945
2946 We could propagate more information in the first pass by making use
3072d30e 2947 of DF_REG_DEF_COUNT to determine immediately that the alias information
37b864db 2948 for a pseudo is "constant".
2949
2950 A program with an uninitialized variable can cause an infinite loop
2951 here. Instead of doing a full dataflow analysis to detect such problems
2952 we just cap the number of iterations for the loop.
2953
2954 The state of the arrays for the set chain in question does not matter
2955 since the program has undefined behavior. */
35d3eedd 2956
a28770e1 2957 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2808fda8 2958 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2959
37b864db 2960 pass = 0;
35d3eedd 2961 do
06c5c535 2962 {
2963 /* Assume nothing will change this iteration of the loop. */
2964 changed = 0;
2965
06c5c535 2966 /* We want to assign the same IDs each iteration of this loop, so
4e56ceb1 2967 start counting from one each iteration of the loop. */
2968 unique_id = 1;
06c5c535 2969
35a3065a 2970 /* We're at the start of the function each iteration through the
06c5c535 2971 loop, so we're copying arguments. */
e5be0cc6 2972 copying_arguments = true;
ea0cb7ae 2973
35d3eedd 2974 /* Wipe the potential alias information clean for this pass. */
e5b19a8c 2975 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
f0ad0992 2976
35d3eedd 2977 /* Wipe the reg_seen array clean. */
53c5d9d4 2978 bitmap_clear (reg_seen);
ea0cb7ae 2979
a15c38cd 2980 /* Initialize the alias information for this pass. */
2981 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2982 if (static_reg_base_value[i])
2983 {
2984 new_reg_base_value[i] = static_reg_base_value[i];
2985 bitmap_set_bit (reg_seen, i);
2986 }
35d3eedd 2987
06c5c535 2988 /* Walk the insns adding values to the new_reg_base_value array. */
2808fda8 2989 for (i = 0; i < rpo_cnt; i++)
ea0cb7ae 2990 {
2808fda8 2991 basic_block bb = BASIC_BLOCK (rpo[i]);
2992 FOR_BB_INSNS (bb, insn)
06c5c535 2993 {
2808fda8 2994 if (NONDEBUG_INSN_P (insn))
2995 {
2996 rtx note, set;
d6cb6164 2997
2998#if defined (HAVE_prologue) || defined (HAVE_epilogue)
2808fda8 2999 /* The prologue/epilogue insns are not threaded onto the
3000 insn chain until after reload has completed. Thus,
3001 there is no sense wasting time checking if INSN is in
3002 the prologue/epilogue until after reload has completed. */
3003 if (reload_completed
3004 && prologue_epilogue_contains (insn))
3005 continue;
d6cb6164 3006#endif
3007
2808fda8 3008 /* If this insn has a noalias note, process it, Otherwise,
3009 scan for sets. A simple set will have no side effects
3010 which could change the base value of any other register. */
35d3eedd 3011
2808fda8 3012 if (GET_CODE (PATTERN (insn)) == SET
3013 && REG_NOTES (insn) != 0
3014 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3015 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3016 else
3017 note_stores (PATTERN (insn), record_set, NULL);
35d3eedd 3018
2808fda8 3019 set = single_set (insn);
35d3eedd 3020
2808fda8 3021 if (set != 0
3022 && REG_P (SET_DEST (set))
3023 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
970c0c06 3024 {
2808fda8 3025 unsigned int regno = REGNO (SET_DEST (set));
3026 rtx src = SET_SRC (set);
3027 rtx t;
3028
3029 note = find_reg_equal_equiv_note (insn);
3030 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3031 && DF_REG_DEF_COUNT (regno) != 1)
3032 note = NULL_RTX;
3033
3034 if (note != NULL_RTX
3035 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3036 && ! rtx_varies_p (XEXP (note, 0), 1)
3037 && ! reg_overlap_mentioned_p (SET_DEST (set),
3038 XEXP (note, 0)))
3039 {
3040 set_reg_known_value (regno, XEXP (note, 0));
3041 set_reg_known_equiv_p (regno,
3042 REG_NOTE_KIND (note) == REG_EQUIV);
3043 }
3044 else if (DF_REG_DEF_COUNT (regno) == 1
3045 && GET_CODE (src) == PLUS
3046 && REG_P (XEXP (src, 0))
3047 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3048 && CONST_INT_P (XEXP (src, 1)))
3049 {
3050 t = plus_constant (GET_MODE (src), t,
3051 INTVAL (XEXP (src, 1)));
3052 set_reg_known_value (regno, t);
3053 set_reg_known_equiv_p (regno, false);
3054 }
3055 else if (DF_REG_DEF_COUNT (regno) == 1
3056 && ! rtx_varies_p (src, 1))
3057 {
3058 set_reg_known_value (regno, src);
3059 set_reg_known_equiv_p (regno, false);
3060 }
970c0c06 3061 }
35d3eedd 3062 }
2808fda8 3063 else if (NOTE_P (insn)
3064 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3065 copying_arguments = false;
06c5c535 3066 }
35d3eedd 3067 }
06c5c535 3068
35d3eedd 3069 /* Now propagate values from new_reg_base_value to reg_base_value. */
d4473c84 3070 gcc_assert (maxreg == (unsigned int) max_reg_num ());
a0c938f0 3071
e5b19a8c 3072 for (ui = 0; ui < maxreg; ui++)
35d3eedd 3073 {
274c11d8 3074 if (new_reg_base_value[ui]
f1f41a6c 3075 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3076 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
06c5c535 3077 {
f1f41a6c 3078 (*reg_base_value)[ui] = new_reg_base_value[ui];
35d3eedd 3079 changed = 1;
06c5c535 3080 }
ea0cb7ae 3081 }
ea0cb7ae 3082 }
35d3eedd 3083 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2808fda8 3084 XDELETEVEC (rpo);
ea0cb7ae 3085
3086 /* Fill in the remaining entries. */
f1f41a6c 3087 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
d6443ebe 3088 {
3089 int regno = i + FIRST_PSEUDO_REGISTER;
3090 if (! val)
3091 set_reg_known_value (regno, regno_reg_rtx[regno]);
3092 }
ea0cb7ae 3093
7098ef4a 3094 /* Clean up. */
3095 free (new_reg_base_value);
06c5c535 3096 new_reg_base_value = 0;
7bf60644 3097 sbitmap_free (reg_seen);
ea0cb7ae 3098 reg_seen = 0;
376c21d1 3099 timevar_pop (TV_ALIAS_ANALYSIS);
ea0cb7ae 3100}
3101
1837e966 3102/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3103 Special API for var-tracking pass purposes. */
3104
3105void
3106vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3107{
f1f41a6c 3108 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
1837e966 3109}
3110
ea0cb7ae 3111void
aecda0d6 3112end_alias_analysis (void)
ea0cb7ae 3113{
e5b19a8c 3114 old_reg_base_value = reg_base_value;
f1f41a6c 3115 vec_free (reg_known_value);
d6443ebe 3116 sbitmap_free (reg_known_equiv_p);
ea0cb7ae 3117}
1f3233d1 3118
3119#include "gt-alias.h"