]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
2008-08-26 Vladimir Makarov <vmakarov@redhat.com>
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
7d9ae20a 1/* Definitions of target machine for GCC for IA-32.
9526f064 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
038d1e19 3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
43b83681 5
7d9ae20a 6This file is part of GCC.
43b83681 7
7d9ae20a 8GCC is free software; you can redistribute it and/or modify
43b83681 9it under the terms of the GNU General Public License as published by
038d1e19 10the Free Software Foundation; either version 3, or (at your option)
43b83681 11any later version.
12
7d9ae20a 13GCC is distributed in the hope that it will be useful,
43b83681 14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
038d1e19 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
43b83681 21
0bbe9142 22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
e44348b5 37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
f25d51c3 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
e44348b5 49#define TARGET_SSE4A OPTION_ISA_SSE4A
448e99f5 50#define TARGET_SSE5 OPTION_ISA_SSE5
51#define TARGET_ROUND OPTION_ISA_ROUND
46f8e3b0 52#define TARGET_ABM OPTION_ISA_ABM
53#define TARGET_POPCNT OPTION_ISA_POPCNT
54#define TARGET_SAHF OPTION_ISA_SAHF
55#define TARGET_AES OPTION_ISA_AES
56#define TARGET_PCLMUL OPTION_ISA_PCLMUL
57#define TARGET_CMPXCHG16B OPTION_ISA_CX16
58
448e99f5 59
60/* SSE5 and SSE4.1 define the same round instructions */
61#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
62#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
e44348b5 63
2522d9ea 64#include "config/vxworks-dummy.h"
65
ab608690 66/* Algorithm to expand string function with. */
67enum stringop_alg
68{
69 no_stringop,
70 libcall,
71 rep_prefix_1_byte,
72 rep_prefix_4_byte,
73 rep_prefix_8_byte,
74 loop_1_byte,
75 loop,
76 unrolled_loop
77};
0bbe9142 78
ab608690 79#define NAX_STRINGOP_ALGS 4
0bbe9142 80
ab608690 81/* Specify what algorithm to use for stringops on known size.
82 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
83 known at compile time or estimated via feedback, the SIZE array
84 is walked in order until MAX is greater then the estimate (or -1
009b318f 85 means infinity). Corresponding ALG is used then.
ab608690 86 For example initializer:
009b318f 87 {{256, loop}, {-1, rep_prefix_4_byte}}
ab608690 88 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
0bbe9142 89 be used otherwise. */
ab608690 90struct stringop_algs
91{
92 const enum stringop_alg unknown_size;
93 const struct stringop_strategy {
94 const int max;
95 const enum stringop_alg alg;
96 } size [NAX_STRINGOP_ALGS];
97};
98
9af5c5d1 99/* Define the specific costs for a given cpu */
100
101struct processor_costs {
e99c3a1d 102 const int add; /* cost of an add instruction */
103 const int lea; /* cost of a lea instruction */
104 const int shift_var; /* variable shift costs */
105 const int shift_const; /* constant shift costs */
9e7454d0 106 const int mult_init[5]; /* cost of starting a multiply
805e22b2 107 in QImode, HImode, SImode, DImode, TImode*/
e99c3a1d 108 const int mult_bit; /* cost of multiply per each bit set */
9e7454d0 109 const int divide[5]; /* cost of a divide/mod
805e22b2 110 in QImode, HImode, SImode, DImode, TImode*/
78ac78d9 111 int movsx; /* The cost of movsx operation. */
112 int movzx; /* The cost of movzx operation. */
e99c3a1d 113 const int large_insn; /* insns larger than this cost more */
114 const int move_ratio; /* The threshold of number of scalar
b8e3cf86 115 memory-to-memory move insns. */
e99c3a1d 116 const int movzbl_load; /* cost of loading using movzbl */
117 const int int_load[3]; /* cost of loading integer registers
3ab61a4d 118 in QImode, HImode and SImode relative
119 to reg-reg move (2). */
e99c3a1d 120 const int int_store[3]; /* cost of storing integer register
3ab61a4d 121 in QImode, HImode and SImode */
e99c3a1d 122 const int fp_move; /* cost of reg,reg fld/fst */
123 const int fp_load[3]; /* cost of loading FP register
3ab61a4d 124 in SFmode, DFmode and XFmode */
e99c3a1d 125 const int fp_store[3]; /* cost of storing FP register
3ab61a4d 126 in SFmode, DFmode and XFmode */
e99c3a1d 127 const int mmx_move; /* cost of moving MMX register. */
128 const int mmx_load[2]; /* cost of loading MMX register
4f3e5c20 129 in SImode and DImode */
e99c3a1d 130 const int mmx_store[2]; /* cost of storing MMX register
4f3e5c20 131 in SImode and DImode */
e99c3a1d 132 const int sse_move; /* cost of moving SSE register. */
133 const int sse_load[3]; /* cost of loading SSE register
4f3e5c20 134 in SImode, DImode and TImode*/
e99c3a1d 135 const int sse_store[3]; /* cost of storing SSE register
4f3e5c20 136 in SImode, DImode and TImode*/
e99c3a1d 137 const int mmxsse_to_integer; /* cost of moving mmxsse register to
4f3e5c20 138 integer and vice versa. */
0c916a7b 139 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
140 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
afa6d980 141 const int prefetch_block; /* bytes moved to cache for prefetch. */
142 const int simultaneous_prefetches; /* number of parallel prefetch
143 operations. */
805e22b2 144 const int branch_cost; /* Default value for BRANCH_COST. */
b80ce4a8 145 const int fadd; /* cost of FADD and FSUB instructions. */
146 const int fmul; /* cost of FMUL instruction. */
147 const int fdiv; /* cost of FDIV instruction. */
148 const int fabs; /* cost of FABS instruction. */
149 const int fchs; /* cost of FCHS instruction. */
150 const int fsqrt; /* cost of FSQRT instruction. */
ab608690 151 /* Specify what algorithm
152 to use for stringops on unknown size. */
153 struct stringop_algs memcpy[2], memset[2];
6202d4db 154 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
155 load and store. */
156 const int scalar_load_cost; /* Cost of scalar load. */
157 const int scalar_store_cost; /* Cost of scalar store. */
158 const int vec_stmt_cost; /* Cost of any vector operation, excluding
159 load, store, vector-to-scalar and
160 scalar-to-vector operation. */
161 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
162 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
009b318f 163 const int vec_align_load_cost; /* Cost of aligned vector load. */
6202d4db 164 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
165 const int vec_store_cost; /* Cost of vector store. */
166 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
167 cost model. */
168 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
169 vectorizer cost model. */
9af5c5d1 170};
171
e99c3a1d 172extern const struct processor_costs *ix86_cost;
f08b701c 173extern const struct processor_costs ix86_size_cost;
174
175#define ix86_cur_cost() \
176 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
9af5c5d1 177
43b83681 178/* Macros used in the machine description to test the flags. */
179
01cc3b75 180/* configure can arrange to make this 2, to force a 486. */
ce71a9e6 181
f0c53df0 182#ifndef TARGET_CPU_DEFAULT
9db3d688 183#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
028f8cc7 184#endif
f0c53df0 185
e3f17334 186#ifndef TARGET_FPMATH_DEFAULT
187#define TARGET_FPMATH_DEFAULT \
188 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
189#endif
190
0c44645a 191#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bfa936ad 192
54113cf5 193/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
194 compile-time constant. */
195#ifdef IN_LIBGCC2
0c44645a 196#undef TARGET_64BIT
54113cf5 197#ifdef __x86_64__
198#define TARGET_64BIT 1
199#else
200#define TARGET_64BIT 0
201#endif
202#else
0c44645a 203#ifndef TARGET_BI_ARCH
204#undef TARGET_64BIT
76b5af68 205#if TARGET_64BIT_DEFAULT
6c52fa55 206#define TARGET_64BIT 1
207#else
208#define TARGET_64BIT 0
209#endif
210#endif
54113cf5 211#endif
bacf1c2a 212
4f18499c 213#define HAS_LONG_COND_BRANCH 1
214#define HAS_LONG_UNCOND_BRANCH 1
215
706b598d 216#define TARGET_386 (ix86_tune == PROCESSOR_I386)
217#define TARGET_486 (ix86_tune == PROCESSOR_I486)
218#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
219#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
5c34451e 220#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
706b598d 221#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
222#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
223#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
224#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
805e22b2 225#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
0fda5f41 226#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
11361ecb 227#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
9db3d688 228#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
229#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
230#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
3d775f8e 231#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
f3e2ae00 232
e9f301ea 233/* Feature tests against the various tunings. */
234enum ix86_tune_indices {
235 X86_TUNE_USE_LEAVE,
236 X86_TUNE_PUSH_MEMORY,
237 X86_TUNE_ZERO_EXTEND_WITH_AND,
238 X86_TUNE_USE_BIT_TEST,
239 X86_TUNE_UNROLL_STRLEN,
240 X86_TUNE_DEEP_BRANCH_PREDICTION,
241 X86_TUNE_BRANCH_PREDICTION_HINTS,
242 X86_TUNE_DOUBLE_WITH_ADD,
4d9301a8 243 X86_TUNE_USE_SAHF,
e9f301ea 244 X86_TUNE_MOVX,
245 X86_TUNE_PARTIAL_REG_STALL,
246 X86_TUNE_PARTIAL_FLAG_REG_STALL,
247 X86_TUNE_USE_HIMODE_FIOP,
248 X86_TUNE_USE_SIMODE_FIOP,
249 X86_TUNE_USE_MOV0,
250 X86_TUNE_USE_CLTD,
251 X86_TUNE_USE_XCHGB,
252 X86_TUNE_SPLIT_LONG_MOVES,
253 X86_TUNE_READ_MODIFY_WRITE,
254 X86_TUNE_READ_MODIFY,
255 X86_TUNE_PROMOTE_QIMODE,
256 X86_TUNE_FAST_PREFIX,
257 X86_TUNE_SINGLE_STRINGOP,
258 X86_TUNE_QIMODE_MATH,
259 X86_TUNE_HIMODE_MATH,
260 X86_TUNE_PROMOTE_QI_REGS,
261 X86_TUNE_PROMOTE_HI_REGS,
262 X86_TUNE_ADD_ESP_4,
263 X86_TUNE_ADD_ESP_8,
264 X86_TUNE_SUB_ESP_4,
265 X86_TUNE_SUB_ESP_8,
266 X86_TUNE_INTEGER_DFMODE_MOVES,
267 X86_TUNE_PARTIAL_REG_DEPENDENCY,
268 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
269 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
270 X86_TUNE_SSE_SPLIT_REGS,
271 X86_TUNE_SSE_TYPELESS_STORES,
272 X86_TUNE_SSE_LOAD0_BY_PXOR,
273 X86_TUNE_MEMORY_MISMATCH_STALL,
274 X86_TUNE_PROLOGUE_USING_MOVE,
275 X86_TUNE_EPILOGUE_USING_MOVE,
276 X86_TUNE_SHIFT1,
277 X86_TUNE_USE_FFREEP,
278 X86_TUNE_INTER_UNIT_MOVES,
ff1f087e 279 X86_TUNE_INTER_UNIT_CONVERSIONS,
e9f301ea 280 X86_TUNE_FOUR_JUMP_LIMIT,
281 X86_TUNE_SCHEDULE,
282 X86_TUNE_USE_BT,
283 X86_TUNE_USE_INCDEC,
284 X86_TUNE_PAD_RETURNS,
285 X86_TUNE_EXT_80387_CONSTANTS,
c6f562ed 286 X86_TUNE_SHORTEN_X87_SSE,
287 X86_TUNE_AVOID_VECTOR_DECODE,
58c9a086 288 X86_TUNE_PROMOTE_HIMODE_IMUL,
c6f562ed 289 X86_TUNE_SLOW_IMUL_IMM32_MEM,
290 X86_TUNE_SLOW_IMUL_IMM8,
291 X86_TUNE_MOVE_M1_VIA_OR,
292 X86_TUNE_NOT_UNPAIRABLE,
293 X86_TUNE_NOT_VECTORMODE,
650269ca 294 X86_TUNE_USE_VECTOR_CONVERTS,
7d709e5f 295 X86_TUNE_FUSE_CMP_AND_BRANCH,
e9f301ea 296
297 X86_TUNE_LAST
298};
299
46f8e3b0 300extern unsigned char ix86_tune_features[X86_TUNE_LAST];
e9f301ea 301
302#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
303#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
304#define TARGET_ZERO_EXTEND_WITH_AND \
305 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
306#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
307#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
308#define TARGET_DEEP_BRANCH_PREDICTION \
309 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
310#define TARGET_BRANCH_PREDICTION_HINTS \
311 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
312#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
313#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
314#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
315#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
316#define TARGET_PARTIAL_FLAG_REG_STALL \
317 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
318#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
319#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
320#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
321#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
322#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
323#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
324#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
325#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
326#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
327#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
328#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
329#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
330#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
331#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
332#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
333#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
334#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
335#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
336#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
337#define TARGET_INTEGER_DFMODE_MOVES \
338 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
339#define TARGET_PARTIAL_REG_DEPENDENCY \
340 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
341#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
342 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
343#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
344 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
345#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
346#define TARGET_SSE_TYPELESS_STORES \
347 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
348#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
349#define TARGET_MEMORY_MISMATCH_STALL \
350 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
351#define TARGET_PROLOGUE_USING_MOVE \
352 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
353#define TARGET_EPILOGUE_USING_MOVE \
354 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
355#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
356#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
357#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
ff1f087e 358#define TARGET_INTER_UNIT_CONVERSIONS\
359 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
e9f301ea 360#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
361#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
362#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
363#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
364#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
365#define TARGET_EXT_80387_CONSTANTS \
366 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
c6f562ed 367#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
368#define TARGET_AVOID_VECTOR_DECODE \
369 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
58c9a086 370#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
371 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
c6f562ed 372#define TARGET_SLOW_IMUL_IMM32_MEM \
373 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
374#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
375#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
376#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
377#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
7d709e5f 378#define TARGET_USE_VECTOR_CONVERTS \
379 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
380#define TARGET_FUSE_CMP_AND_BRANCH \
381 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
e9f301ea 382
383/* Feature tests against the various architecture variations. */
384enum ix86_arch_indices {
385 X86_ARCH_CMOVE, /* || TARGET_SSE */
386 X86_ARCH_CMPXCHG,
387 X86_ARCH_CMPXCHG8B,
388 X86_ARCH_XADD,
389 X86_ARCH_BSWAP,
390
391 X86_ARCH_LAST
392};
009b318f 393
46f8e3b0 394extern unsigned char ix86_arch_features[X86_ARCH_LAST];
e9f301ea 395
396#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
397#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
398#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
399#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
400#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
401
402#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
403
404extern int x86_prefetch_sse;
e44348b5 405
e9f301ea 406#define TARGET_PREFETCH_SSE x86_prefetch_sse
407
e9f301ea 408#define ASSEMBLER_DIALECT (ix86_asm_dialect)
409
410#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
411#define TARGET_MIX_SSE_I387 \
412 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
413
414#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
415#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
416#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
417#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
0f0a601a 418
e44348b5 419extern int ix86_isa_flags;
420
76b5af68 421#ifndef TARGET_64BIT_DEFAULT
422#define TARGET_64BIT_DEFAULT 0
bacf1c2a 423#endif
a3a49880 424#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
425#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
426#endif
bacf1c2a 427
5b5037b3 428/* Fence to use after loop using storent. */
429
430extern tree x86_mfence;
431#define FENCE_FOLLOWING_MOVNT x86_mfence
432
39d31f69 433/* Once GDB has been enhanced to deal with functions without frame
434 pointers, we can change this to allow for elimination of
435 the frame pointer in leaf functions. */
436#define TARGET_DEFAULT 0
76b5af68 437
e44348b5 438/* Extra bits to force. */
439#define TARGET_SUBTARGET_DEFAULT 0
440#define TARGET_SUBTARGET_ISA_DEFAULT 0
441
442/* Extra bits to force on w/ 32-bit mode. */
443#define TARGET_SUBTARGET32_DEFAULT 0
444#define TARGET_SUBTARGET32_ISA_DEFAULT 0
445
0bbe9142 446/* Extra bits to force on w/ 64-bit mode. */
447#define TARGET_SUBTARGET64_DEFAULT 0
e44348b5 448#define TARGET_SUBTARGET64_ISA_DEFAULT 0
0bbe9142 449
ffd05090 450/* This is not really a target flag, but is done this way so that
451 it's analogous to similar code for Mach-O on PowerPC. darwin.h
452 redefines this to 1. */
453#define TARGET_MACHO 0
454
0bbe9142 455/* Likewise, for the Windows 64-bit ABI. */
d3feb168 456#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
457
458/* Available call abi. */
5f57a8b1 459enum calling_abi
d3feb168 460{
461 SYSV_ABI = 0,
462 MS_ABI = 1
463};
464
465/* The default abi form used by target. */
466#define DEFAULT_ABI SYSV_ABI
0bbe9142 467
b2a566d1 468/* Subtargets may reset this to 1 in order to enable 96-bit long double
469 with the rounding mode forced to 53 bits. */
470#define TARGET_96_ROUND_53_LONG_DOUBLE 0
471
0bf9a70a 472/* Sometimes certain combinations of command options do not make
473 sense on a particular target machine. You can define a macro
474 `OVERRIDE_OPTIONS' to take account of this. This macro, if
475 defined, is executed once just after all the command options have
476 been parsed.
477
478 Don't use this macro to turn on various extra optimizations for
479 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
480
46f8e3b0 481#define OVERRIDE_OPTIONS override_options (true)
0bf9a70a 482
9af5c5d1 483/* Define this to change the optimizations performed by default. */
1b12cfd7 484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485 optimization_options ((LEVEL), (SIZE))
9af5c5d1 486
852c5acb 487/* -march=native handling only makes sense with compiler running on
488 an x86 or x86_64 chip. If changing this condition, also change
489 the condition in driver-i386.c. */
490#if defined(__i386__) || defined(__x86_64__)
4009b53f 491/* In driver-i386.c. */
492extern const char *host_detect_local_cpu (int argc, const char **argv);
493#define EXTRA_SPEC_FUNCTIONS \
494 { "local_cpu_detect", host_detect_local_cpu },
852c5acb 495#define HAVE_LOCAL_CPU_DETECT
4009b53f 496#endif
497
f067c6b7 498#if TARGET_64BIT_DEFAULT
499#define OPT_ARCH64 "!m32"
500#define OPT_ARCH32 "m32"
501#else
502#define OPT_ARCH64 "m64"
503#define OPT_ARCH32 "!m64"
504#endif
505
3e883b09 506/* Support for configure-time defaults of some command line options.
507 The order here is important so that -march doesn't squash the
508 tune or cpu values. */
c300d1d8 509#define OPTION_DEFAULT_SPECS \
173ac007 510 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
f067c6b7 511 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
512 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
c300d1d8 513 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
f067c6b7 514 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
515 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
516 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
517 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
518 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7dd97ab6 519
8fad0667 520/* Specs for the compiler proper */
521
d17e16d2 522#ifndef CC1_CPU_SPEC
4009b53f 523#define CC1_CPU_SPEC_1 "\
47a66cd7 524%{mcpu=*:-mtune=%* \
c2d4d40a 525%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
47a66cd7 526%<mcpu=* \
25b31391 527%{mintel-syntax:-masm=intel \
528%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
529%{mno-intel-syntax:-masm=att \
530%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
4009b53f 531
852c5acb 532#ifndef HAVE_LOCAL_CPU_DETECT
4009b53f 533#define CC1_CPU_SPEC CC1_CPU_SPEC_1
534#else
535#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
10e818c2 536"%{march=native:%<march=native %:local_cpu_detect(arch) \
537 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
4009b53f 538%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
539#endif
8fad0667 540#endif
43b83681 541\f
7dbd6483 542/* Target CPU builtins. */
46f8e3b0 543#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
544
545/* Target Pragmas. */
546#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
7dbd6483 547
2dd515a3 548enum target_cpu_default
549{
550 TARGET_CPU_DEFAULT_generic = 0,
551
552 TARGET_CPU_DEFAULT_i386,
553 TARGET_CPU_DEFAULT_i486,
554 TARGET_CPU_DEFAULT_pentium,
555 TARGET_CPU_DEFAULT_pentium_mmx,
556 TARGET_CPU_DEFAULT_pentiumpro,
557 TARGET_CPU_DEFAULT_pentium2,
558 TARGET_CPU_DEFAULT_pentium3,
559 TARGET_CPU_DEFAULT_pentium4,
560 TARGET_CPU_DEFAULT_pentium_m,
561 TARGET_CPU_DEFAULT_prescott,
562 TARGET_CPU_DEFAULT_nocona,
563 TARGET_CPU_DEFAULT_core2,
564
565 TARGET_CPU_DEFAULT_geode,
566 TARGET_CPU_DEFAULT_k6,
567 TARGET_CPU_DEFAULT_k6_2,
568 TARGET_CPU_DEFAULT_k6_3,
569 TARGET_CPU_DEFAULT_athlon,
570 TARGET_CPU_DEFAULT_athlon_sse,
571 TARGET_CPU_DEFAULT_k8,
572 TARGET_CPU_DEFAULT_amdfam10,
573
574 TARGET_CPU_DEFAULT_max
575};
6c52fa55 576
d17e16d2 577#ifndef CC1_SPEC
18870143 578#define CC1_SPEC "%(cc1_cpu) "
d17e16d2 579#endif
580
581/* This macro defines names of additional specifications to put in the
582 specs that can be used in various specifications like CC1_SPEC. Its
583 definition is an initializer with a subgrouping for each command option.
2bc9393a 584
585 Each subgrouping contains a string constant, that defines the
7d9ae20a 586 specification name, and a string constant that used by the GCC driver
2bc9393a 587 program.
588
589 Do not define this macro if it does not need to do anything. */
590
591#ifndef SUBTARGET_EXTRA_SPECS
592#define SUBTARGET_EXTRA_SPECS
593#endif
594
595#define EXTRA_SPECS \
d17e16d2 596 { "cc1_cpu", CC1_CPU_SPEC }, \
2bc9393a 597 SUBTARGET_EXTRA_SPECS
598\f
c300d1d8 599
f3dde807 600/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
601 FPU, assume that the fpcw is set to extended precision; when using
602 only SSE, rounding is correct; when using both SSE and the FPU,
603 the rounding precision is indeterminate, since either may be chosen
604 apparently at random. */
605#define TARGET_FLT_EVAL_METHOD \
d5c660fd 606 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0898f59e 607
46de89e7 608/* target machine storage layout */
609
c7f5f345 610#define SHORT_TYPE_SIZE 16
611#define INT_TYPE_SIZE 32
612#define FLOAT_TYPE_SIZE 32
613#define LONG_TYPE_SIZE BITS_PER_WORD
c7f5f345 614#define DOUBLE_TYPE_SIZE 64
615#define LONG_LONG_TYPE_SIZE 64
46de89e7 616#define LONG_DOUBLE_TYPE_SIZE 80
617
618#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
c7f5f345 619
76b5af68 620#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
6c52fa55 621#define MAX_BITS_PER_WORD 64
6c52fa55 622#else
623#define MAX_BITS_PER_WORD 32
6c52fa55 624#endif
625
43b83681 626/* Define this if most significant byte of a word is the lowest numbered. */
627/* That is true on the 80386. */
628
629#define BITS_BIG_ENDIAN 0
630
631/* Define this if most significant byte of a word is the lowest numbered. */
632/* That is not true on the 80386. */
633#define BYTES_BIG_ENDIAN 0
634
635/* Define this if most significant word of a multiword number is the lowest
636 numbered. */
637/* Not true for 80386 */
638#define WORDS_BIG_ENDIAN 0
639
43b83681 640/* Width of a word, in units (bytes). */
c7f5f345 641#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
52cb7411 642#ifdef IN_LIBGCC2
643#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
644#else
645#define MIN_UNITS_PER_WORD 4
646#endif
43b83681 647
43b83681 648/* Allocation boundary (in *bits*) for storing arguments in argument list. */
c7f5f345 649#define PARM_BOUNDARY BITS_PER_WORD
43b83681 650
ce71a9e6 651/* Boundary (in *bits*) on which stack pointer should be aligned. */
d3feb168 652#define STACK_BOUNDARY (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 \
653 : BITS_PER_WORD)
43b83681 654
27a7a23a 655/* Stack boundary of the main function guaranteed by OS. */
656#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
657
0de6a16a 658/* Minimum stack boundary. */
659#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
27a7a23a 660
fcbfedc7 661/* Boundary (in *bits*) on which the stack pointer prefers to be
bc0eb8c6 662 aligned; the compiler cannot rely on having this alignment. */
ce71a9e6 663#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
88451936 664
0de6a16a 665/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
27a7a23a 666 both 32bit and 64bit, to support codes that need 128 bit stack
667 alignment for SSE instructions, but can't realign the stack. */
668#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
669
670/* 1 if -mstackrealign should be turned on by default. It will
671 generate an alternate prologue and epilogue that realigns the
672 runtime stack if nessary. This supports mixing codes that keep a
673 4-byte aligned stack, as specified by i386 psABI, with codes that
674 need a 16-byte aligned stack, as required by SSE instructions. If
675 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
676 128, stacks for all functions may be realigned. */
677#define STACK_REALIGN_DEFAULT 0
678
679/* Boundary (in *bits*) on which the incoming stack is aligned. */
680#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
3ca5a306 681
751bdb92 682/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
683 mandatory for the 64-bit ABI, and may or may not be true for other
684 operating systems. */
685#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
686
fc5cb4c0 687/* Minimum allocation boundary for the code of a function. */
688#define FUNCTION_BOUNDARY 8
689
690/* C++ stores the virtual bit in the lowest bit of function pointers. */
691#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
43b83681 692
bb441676 693/* Alignment of field after `int : 0' in a structure. */
43b83681 694
c7f5f345 695#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
43b83681 696
697/* Minimum size in bits of the largest boundary to which any
698 and all fundamental data types supported by the hardware
699 might need to be aligned. No data type wants to be aligned
4e17b634 700 rounder than this.
d4983fea 701
fcbfedc7 702 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
4e17b634 703 and Pentium Pro XFmode values at 128 bit boundaries. */
704
705#define BIGGEST_ALIGNMENT 128
706
27a7a23a 707/* Maximum stack alignment. */
708#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
709
2feb8eca 710/* Decide whether a variable of mode MODE should be 128 bit aligned. */
f01b0085 711#define ALIGN_MODE_128(MODE) \
c4e709d6 712 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
f01b0085 713
4e17b634 714/* The published ABIs say that doubles should be aligned on word
fcbfedc7 715 boundaries, so lower the alignment for structure fields unless
040f791a 716 -malign-double is set. */
bd0f3c40 717
6e5d72bd 718/* ??? Blah -- this macro is used directly by libobjc. Since it
719 supports no vector modes, cut out the complexity and fall back
720 on BIGGEST_FIELD_ALIGNMENT. */
721#ifdef IN_TARGET_LIBS
aa867d91 722#ifdef __x86_64__
723#define BIGGEST_FIELD_ALIGNMENT 128
724#else
6e5d72bd 725#define BIGGEST_FIELD_ALIGNMENT 32
aa867d91 726#endif
6e5d72bd 727#else
bd0f3c40 728#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
729 x86_field_alignment (FIELD, COMPUTED)
6e5d72bd 730#endif
43b83681 731
f7d6703c 732/* If defined, a C expression to compute the alignment given to a
f01b0085 733 constant that is being placed in memory. EXP is the constant
f7d6703c 734 and ALIGN is the alignment that the object would ordinarily have.
735 The value of this macro is used instead of that alignment to align
736 the object.
737
738 If this macro is not defined, then ALIGN is used.
739
740 The typical use of this macro is to increase alignment for string
741 constants to be word aligned so that `strcpy' calls that copy
742 constants can be done inline. */
743
1b12cfd7 744#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
9af5c5d1 745
ed45e834 746/* If defined, a C expression to compute the alignment for a static
747 variable. TYPE is the data type, and ALIGN is the alignment that
748 the object would ordinarily have. The value of this macro is used
749 instead of that alignment to align the object.
750
751 If this macro is not defined, then ALIGN is used.
752
753 One use of this macro is to increase alignment of medium-size
754 data to make it all fit in fewer cache lines. Another is to
755 cause character arrays to be word-aligned so that `strcpy' calls
756 that copy constants to character arrays can be done inline. */
757
1b12cfd7 758#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
9bd87fd2 759
760/* If defined, a C expression to compute the alignment for a local
761 variable. TYPE is the data type, and ALIGN is the alignment that
762 the object would ordinarily have. The value of this macro is used
763 instead of that alignment to align the object.
764
765 If this macro is not defined, then ALIGN is used.
766
767 One use of this macro is to increase alignment of medium-size
768 data to make it all fit in fewer cache lines. */
769
ad33891d 770#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
771 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
772
773/* If defined, a C expression to compute the alignment for stack slot.
774 TYPE is the data type, MODE is the widest mode available, and ALIGN
775 is the alignment that the slot would ordinarily have. The value of
776 this macro is used instead of that alignment to align the slot.
777
778 If this macro is not defined, then ALIGN is used when TYPE is NULL,
779 Otherwise, LOCAL_ALIGNMENT will be used.
780
781 One use of this macro is to set alignment of stack slot to the
782 maximum alignment of all possible modes which the slot may have. */
783
784#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
785 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
ed45e834 786
e4bf866d 787/* If defined, a C expression that gives the alignment boundary, in
788 bits, of an argument with the specified mode and type. If it is
789 not defined, `PARM_BOUNDARY' is used for all arguments. */
790
1b12cfd7 791#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
792 ix86_function_arg_boundary ((MODE), (TYPE))
e4bf866d 793
c46dc351 794/* Set this nonzero if move instructions will actually fail to work
43b83681 795 when given unaligned data. */
bdf74c8a 796#define STRICT_ALIGNMENT 0
43b83681 797
798/* If bit field type is int, don't let it cross an int,
799 and give entire struct the alignment of an int. */
ceb2fe0f 800/* Required on the 386 since it doesn't have bit-field insns. */
43b83681 801#define PCC_BITFIELD_TYPE_MATTERS 1
43b83681 802\f
803/* Standard register usage. */
804
805/* This processor has special stack-like registers. See reg-stack.c
bb441676 806 for details. */
43b83681 807
808#define STACK_REGS
c300d1d8 809
1b12cfd7 810#define IS_STACK_MODE(MODE) \
897f76b2 811 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
812 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
813 || (MODE) == XFmode)
43b83681 814
815/* Number of actual hardware registers.
816 The hardware registers are assigned numbers for the compiler
817 from 0 to just below FIRST_PSEUDO_REGISTER.
818 All registers that the compiler knows about must be given numbers,
819 even those that are not normally considered general registers.
820
821 In the 80386 we give the 8 general purpose registers the numbers 0-7.
822 We number the floating point registers 8-15.
823 Note that registers 0-7 can be accessed as a short or int,
824 while only 0-3 may be used with byte `mov' instructions.
825
826 Reg 16 does not correspond to any hardware register, but instead
827 appears in the RTL as an argument pointer prior to reload, and is
828 eliminated during reloading in favor of either the stack or frame
bb441676 829 pointer. */
43b83681 830
0a9ae7b1 831#define FIRST_PSEUDO_REGISTER 53
43b83681 832
55de61ac 833/* Number of hardware registers that go into the DWARF-2 unwind info.
834 If not defined, equals FIRST_PSEUDO_REGISTER. */
835
836#define DWARF_FRAME_REGISTERS 17
837
43b83681 838/* 1 for registers that have pervasive standard uses
839 and are not available for the register allocator.
c6d93f09 840 On the 80386, the stack pointer is such, as is the arg pointer.
d4983fea 841
78d46568 842 The value is zero if the register is not fixed on either 32 or
843 64 bit targets, one if the register if fixed on both 32 and 64
844 bit targets, two if it is only fixed on 32bit targets and three
845 if its only fixed on 64bit targets.
846 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
c6d93f09 847 */
f01b0085 848#define FIXED_REGISTERS \
849/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
78d46568 850{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
0a9ae7b1 851/*arg,flags,fpsr,fpcr,frame*/ \
852 1, 1, 1, 1, 1, \
f01b0085 853/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
854 0, 0, 0, 0, 0, 0, 0, 0, \
855/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
c6d93f09 856 0, 0, 0, 0, 0, 0, 0, 0, \
857/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
78d46568 858 2, 2, 2, 2, 2, 2, 2, 2, \
c6d93f09 859/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
c300d1d8 860 2, 2, 2, 2, 2, 2, 2, 2 }
d4983fea 861
43b83681 862
863/* 1 for registers not available across function calls.
864 These must include the FIXED_REGISTERS and also any
865 registers that can be used without being saved.
866 The latter must include the registers where values are returned
867 and the register where structure-value addresses are passed.
d4983fea 868 Aside from that, you can include as many other registers as you like.
869
abf198ab 870 The value is zero if the register is not call used on either 32 or
871 64 bit targets, one if the register if call used on both 32 and 64
872 bit targets, two if it is only call used on 32bit targets and three
873 if its only call used on 64bit targets.
78d46568 874 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
c6d93f09 875*/
f01b0085 876#define CALL_USED_REGISTERS \
877/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
78d46568 878{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0a9ae7b1 879/*arg,flags,fpsr,fpcr,frame*/ \
880 1, 1, 1, 1, 1, \
f01b0085 881/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
d1918706 882 1, 1, 1, 1, 1, 1, 1, 1, \
f01b0085 883/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
78d46568 884 1, 1, 1, 1, 1, 1, 1, 1, \
c6d93f09 885/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
78d46568 886 1, 1, 1, 1, 2, 2, 2, 2, \
c6d93f09 887/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
c300d1d8 888 1, 1, 1, 1, 1, 1, 1, 1 }
43b83681 889
60206704 890/* Order in which to allocate registers. Each register must be
891 listed once, even those in FIXED_REGISTERS. List frame pointer
892 late and fixed registers last. Note that, in general, we prefer
893 registers listed in CALL_USED_REGISTERS, keeping the others
894 available for storage of persistent values.
895
717db2f5 896 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
897 so this is just empty initializer for array. */
60206704 898
717db2f5 899#define REG_ALLOC_ORDER \
900{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
901 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
902 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
0a9ae7b1 903 48, 49, 50, 51, 52 }
60206704 904
717db2f5 905/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
906 to be rearranged based on a particular function. When using sse math,
d1918706 907 we want to allocate SSE before x87 registers and vice versa. */
60206704 908
717db2f5 909#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
60206704 910
0bf9a70a 911
d3feb168 912#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
913
43b83681 914/* Macro to conditionally modify fixed_regs/call_used_regs. */
f01b0085 915#define CONDITIONAL_REGISTER_USAGE \
1b12cfd7 916do { \
c6d93f09 917 int i; \
ae451f6e 918 unsigned int j; \
c6d93f09 919 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
920 { \
78d46568 921 if (fixed_regs[i] > 1) \
922 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
923 if (call_used_regs[i] > 1) \
924 call_used_regs[i] = (call_used_regs[i] \
925 == (TARGET_64BIT ? 3 : 2)); \
c6d93f09 926 } \
ae451f6e 927 j = PIC_OFFSET_TABLE_REGNUM; \
9f525417 928 if (j != INVALID_REGNUM) \
f01b0085 929 { \
9f525417 930 fixed_regs[j] = 1; \
931 call_used_regs[j] = 1; \
f01b0085 932 } \
933 if (! TARGET_MMX) \
934 { \
935 int i; \
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
937 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
6ee52ba2 938 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
f01b0085 939 } \
940 if (! TARGET_SSE) \
941 { \
942 int i; \
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
944 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
6ee52ba2 945 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
f01b0085 946 } \
947 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
948 { \
949 int i; \
950 HARD_REG_SET x; \
951 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
953 if (TEST_HARD_REG_BIT (x, i)) \
6ee52ba2 954 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
955 } \
956 if (! TARGET_64BIT) \
957 { \
958 int i; \
959 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
960 reg_names[i] = ""; \
961 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
962 reg_names[i] = ""; \
f01b0085 963 } \
d3feb168 964 if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) \
992aa3bc 965 { \
966 call_used_regs[4 /*RSI*/] = 0; \
967 call_used_regs[5 /*RDI*/] = 0; \
968 } \
1b12cfd7 969 } while (0)
43b83681 970
971/* Return number of consecutive hard regs needed starting at reg REGNO
972 to hold something of mode MODE.
973 This is ordinarily the length in words of a value of mode MODE
974 but can be less for certain modes in special long registers.
975
d4983fea 976 Actually there are no two word move instructions for consecutive
43b83681 977 registers. And only registers 0-3 may have mov byte instructions
978 applied to them.
979 */
980
c300d1d8 981#define HARD_REGNO_NREGS(REGNO, MODE) \
699a9fea 982 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
983 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
e07e720e 984 : ((MODE) == XFmode \
699a9fea 985 ? (TARGET_64BIT ? 2 : 3) \
e07e720e 986 : (MODE) == XCmode \
699a9fea 987 ? (TARGET_64BIT ? 4 : 6) \
0cd8258d 988 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
43b83681 989
695595bc 990#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
991 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
992 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
993 ? 0 \
994 : ((MODE) == XFmode || (MODE) == XCmode)) \
995 : 0)
996
997#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
998
c300d1d8 999#define VALID_SSE2_REG_MODE(MODE) \
1000 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1001 || (MODE) == V2DImode || (MODE) == DFmode)
b0556a84 1002
1b12cfd7 1003#define VALID_SSE_REG_MODE(MODE) \
c300d1d8 1004 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1005 || (MODE) == SFmode || (MODE) == TFmode)
f01b0085 1006
d5e0afe2 1007#define VALID_MMX_REG_MODE_3DNOW(MODE) \
c300d1d8 1008 ((MODE) == V2SFmode || (MODE) == SFmode)
d5e0afe2 1009
1b12cfd7 1010#define VALID_MMX_REG_MODE(MODE) \
7916ca8a 1011 ((MODE == V1DImode) || (MODE) == DImode \
1012 || (MODE) == V2SImode || (MODE) == SImode \
1013 || (MODE) == V4HImode || (MODE) == V8QImode)
f01b0085 1014
0017aae3 1015/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1016 place emms and femms instructions. */
cbc9c660 1017#define UNITS_PER_SIMD_WORD(MODE) (TARGET_SSE ? 16 : UNITS_PER_WORD)
697bc112 1018
c300d1d8 1019#define VALID_DFP_MODE_P(MODE) \
1020 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
26042839 1021
1b12cfd7 1022#define VALID_FP_MODE_P(MODE) \
c300d1d8 1023 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1024 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
0698f0cc 1025
1b12cfd7 1026#define VALID_INT_MODE_P(MODE) \
c300d1d8 1027 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1028 || (MODE) == DImode \
1029 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1030 || (MODE) == CDImode \
1031 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1032 || (MODE) == TFmode || (MODE) == TCmode)))
0698f0cc 1033
2feb8eca 1034/* Return true for modes passed in SSE registers. */
c300d1d8 1035#define SSE_REG_MODE_P(MODE) \
1036 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
2feb8eca 1037 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1038 || (MODE) == V4SFmode || (MODE) == V4SImode)
1039
ce71a9e6 1040/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
5dd8ee04 1041
0698f0cc 1042#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1b12cfd7 1043 ix86_hard_regno_mode_ok ((REGNO), (MODE))
43b83681 1044
1045/* Value is 1 if it is a good idea to tie two pseudo registers
1046 when one has mode MODE1 and one has mode MODE2.
1047 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1048 for any hard reg, then this must be 0 for correct output. */
1049
deac3726 1050#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
2ede69f5 1051
804e497b 1052/* It is possible to write patterns to move flags; but until someone
1053 does it, */
1054#define AVOID_CCMODE_COPIES
43b83681 1055
ce71a9e6 1056/* Specify the modes required to caller save a given hard regno.
301652e2 1057 We do this on i386 to prevent flags from being saved at all.
ce71a9e6 1058
301652e2 1059 Kill any attempts to combine saving of modes. */
1060
1b12cfd7 1061#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1062 (CC_REGNO_P (REGNO) ? VOIDmode \
1063 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
c300d1d8 1064 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1b12cfd7 1065 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1066 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
2ede69f5 1067 : (MODE))
c300d1d8 1068
43b83681 1069/* Specify the registers used for certain standard purposes.
1070 The values of these macros are register numbers. */
1071
1072/* on the 386 the pc register is %eip, and is not usable as a general
1073 register. The ordinary mov instructions won't work */
1074/* #define PC_REGNUM */
1075
1076/* Register to use for pushing function arguments. */
1077#define STACK_POINTER_REGNUM 7
1078
1079/* Base register for access to local variables of the function. */
8c5dc77f 1080#define HARD_FRAME_POINTER_REGNUM 6
1081
1082/* Base register for access to local variables of the function. */
0a9ae7b1 1083#define FRAME_POINTER_REGNUM 20
43b83681 1084
1085/* First floating point reg */
1086#define FIRST_FLOAT_REG 8
1087
1088/* First & last stack-like regs */
1089#define FIRST_STACK_REG FIRST_FLOAT_REG
1090#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1091
f01b0085 1092#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1093#define LAST_SSE_REG (FIRST_SSE_REG + 7)
d4983fea 1094
f01b0085 1095#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1096#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1097
c6d93f09 1098#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1099#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1100
1101#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1102#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1103
43b83681 1104/* Value should be nonzero if functions must have frame pointers.
1105 Zero means the frame pointer need not be set up (and parms
1106 may be accessed via the stack pointer) in functions that seem suitable.
1107 This is computed in `reload', in reload1.c. */
15b10465 1108#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1109
06b27565 1110/* Override this in other tm.h files to cope with various OS lossage
15b10465 1111 requiring a frame pointer. */
1112#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1113#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1114#endif
1115
1116/* Make sure we can access arbitrary call frames. */
1117#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
43b83681 1118
1119/* Base register for access to arguments of the function. */
1120#define ARG_POINTER_REGNUM 16
1121
2ede69f5 1122/* Register in which static-chain is passed to a function.
1123 We do use ECX as static chain register for 32 bit ABI. On the
1124 64bit ABI, ECX is an argument register, so we use R10 instead. */
ffc0b1ed 1125#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
43b83681 1126
1127/* Register to hold the addressing base for position independent
df9f5cf8 1128 code access to data items. We don't use PIC pointer for 64bit
1129 mode. Define the regnum to dummy value to prevent gcc from
d4983fea 1130 pessimizing code dealing with EBX.
e3abf694 1131
1132 To avoid clobbering a call-saved register unnecessarily, we renumber
1133 the pic register when possible. The change is visible after the
1134 prologue has been emitted. */
1135
27a7a23a 1136#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
e3abf694 1137
1138#define PIC_OFFSET_TABLE_REGNUM \
43e4a084 1139 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1140 || !flag_pic ? INVALID_REGNUM \
e3abf694 1141 : reload_completed ? REGNO (pic_offset_table_rtx) \
1142 : REAL_PIC_OFFSET_TABLE_REGNUM)
43b83681 1143
c4797f24 1144#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1145
f52eff0c 1146/* This is overridden by <cygwin.h>. */
32512c79 1147#define MS_AGGREGATE_RETURN 0
1148
634f7a13 1149/* This is overridden by <netware.h>. */
1150#define KEEP_AGGREGATE_RETURN_POINTER 0
43b83681 1151\f
1152/* Define the classes of registers for register constraints in the
1153 machine description. Also define ranges of constants.
1154
1155 One of the classes must always be named ALL_REGS and include all hard regs.
1156 If there is more than one class, another class must be named NO_REGS
1157 and contain no registers.
1158
1159 The name GENERAL_REGS must be the name of a class (or an alias for
1160 another name such as ALL_REGS). This is the class of registers
1161 that is allowed by "g" or "r" in a register constraint.
1162 Also, registers outside this class are allocated only when
1163 instructions express preferences for them.
1164
1165 The classes must be numbered in nondecreasing order; that is,
1166 a larger-numbered class must never be contained completely
1167 in a smaller-numbered class.
1168
1169 For any two classes, it is very desirable that there be another
5d70629f 1170 class that represents their union.
1171
1172 It might seem that class BREG is unnecessary, since no useful 386
1173 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
ce71a9e6 1174 and the "b" register constraint is useful in asms for syscalls.
1175
d1918706 1176 The flags, fpsr and fpcr registers are in no class. */
43b83681 1177
1178enum reg_class
1179{
1180 NO_REGS,
ce71a9e6 1181 AREG, DREG, CREG, BREG, SIREG, DIREG,
7f6a3ac8 1182 AD_REGS, /* %eax/%edx for DImode */
43b83681 1183 Q_REGS, /* %eax %ebx %ecx %edx */
8c5dc77f 1184 NON_Q_REGS, /* %esi %edi %ebp %esp */
43b83681 1185 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
c6d93f09 1186 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1187 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
43b83681 1188 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1189 FLOAT_REGS,
f0dd3deb 1190 SSE_FIRST_REG,
f01b0085 1191 SSE_REGS,
1192 MMX_REGS,
394c6a4a 1193 FP_TOP_SSE_REGS,
1194 FP_SECOND_SSE_REGS,
1195 FLOAT_SSE_REGS,
1196 FLOAT_INT_REGS,
1197 INT_SSE_REGS,
1198 FLOAT_INT_SSE_REGS,
43b83681 1199 ALL_REGS, LIM_REG_CLASSES
1200};
1201
1b12cfd7 1202#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1203
1204#define INTEGER_CLASS_P(CLASS) \
1205 reg_class_subset_p ((CLASS), GENERAL_REGS)
1206#define FLOAT_CLASS_P(CLASS) \
1207 reg_class_subset_p ((CLASS), FLOAT_REGS)
1208#define SSE_CLASS_P(CLASS) \
f0dd3deb 1209 reg_class_subset_p ((CLASS), SSE_REGS)
1b12cfd7 1210#define MMX_CLASS_P(CLASS) \
279495ad 1211 ((CLASS) == MMX_REGS)
1b12cfd7 1212#define MAYBE_INTEGER_CLASS_P(CLASS) \
1213 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1214#define MAYBE_FLOAT_CLASS_P(CLASS) \
1215 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1216#define MAYBE_SSE_CLASS_P(CLASS) \
1217 reg_classes_intersect_p (SSE_REGS, (CLASS))
1218#define MAYBE_MMX_CLASS_P(CLASS) \
1219 reg_classes_intersect_p (MMX_REGS, (CLASS))
1220
1221#define Q_CLASS_P(CLASS) \
1222 reg_class_subset_p ((CLASS), Q_REGS)
8dc6dd95 1223
d697f1db 1224/* Give names of register classes as strings for dump file. */
43b83681 1225
1226#define REG_CLASS_NAMES \
1227{ "NO_REGS", \
5d70629f 1228 "AREG", "DREG", "CREG", "BREG", \
43b83681 1229 "SIREG", "DIREG", \
ce71a9e6 1230 "AD_REGS", \
1231 "Q_REGS", "NON_Q_REGS", \
43b83681 1232 "INDEX_REGS", \
c6d93f09 1233 "LEGACY_REGS", \
43b83681 1234 "GENERAL_REGS", \
1235 "FP_TOP_REG", "FP_SECOND_REG", \
1236 "FLOAT_REGS", \
d3ec8b3b 1237 "SSE_FIRST_REG", \
f01b0085 1238 "SSE_REGS", \
1239 "MMX_REGS", \
394c6a4a 1240 "FP_TOP_SSE_REGS", \
1241 "FP_SECOND_SSE_REGS", \
1242 "FLOAT_SSE_REGS", \
a648dfa9 1243 "FLOAT_INT_REGS", \
394c6a4a 1244 "INT_SSE_REGS", \
1245 "FLOAT_INT_SSE_REGS", \
43b83681 1246 "ALL_REGS" }
1247
1248/* Define which registers fit in which classes.
1249 This is an initializer for a vector of HARD_REG_SET
1250 of length N_REG_CLASSES. */
1251
f01b0085 1252#define REG_CLASS_CONTENTS \
c6d93f09 1253{ { 0x00, 0x0 }, \
1254 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1255 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1256 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1257 { 0x03, 0x0 }, /* AD_REGS */ \
1258 { 0x0f, 0x0 }, /* Q_REGS */ \
0a9ae7b1 1259 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1260 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1261 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1262 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
c6d93f09 1263 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1264 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
d3ec8b3b 1265 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
0a9ae7b1 1266{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1267{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1268{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1269{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1270{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1271 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1272{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1273{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1274{ 0xffffffff,0x1fffff } \
ce71a9e6 1275}
43b83681 1276
47dd2e78 1277/* The following macro defines cover classes for Integrated Register
1278 Allocator. Cover classes is a set of non-intersected register
1279 classes covering all hard registers used for register allocation
1280 purpose. Any move between two registers of a cover class should be
1281 cheaper than load or store of the registers. The macro value is
1282 array of register classes with LIM_REG_CLASSES used as the end
1283 marker. */
1284
1285#define IRA_COVER_CLASSES \
1286{ \
1287 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1288}
1289
43b83681 1290/* The same information, inverted:
1291 Return the class number of the smallest class containing
1292 reg number REGNO. This could be a conditional expression
1293 or could index an array. */
1294
43b83681 1295#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1296
1297/* When defined, the compiler allows registers explicitly used in the
1298 rtl to be used as spill registers but prevents the compiler from
bb441676 1299 extending the lifetime of these registers. */
43b83681 1300
f1db295a 1301#define SMALL_REGISTER_CLASSES 1
43b83681 1302
3cc68209 1303#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
c6d93f09 1304
1b12cfd7 1305#define GENERAL_REGNO_P(N) \
3cc68209 1306 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
c6d93f09 1307
1308#define GENERAL_REG_P(X) \
cbf58688 1309 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
c6d93f09 1310
1311#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1312
3cc68209 1313#define REX_INT_REGNO_P(N) \
1314 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
c6d93f09 1315#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1316
43b83681 1317#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
3cc68209 1318#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
394c6a4a 1319#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1b12cfd7 1320#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
f01b0085 1321
ed01e173 1322#define X87_FLOAT_MODE_P(MODE) \
d26e00d8 1323 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
ed01e173 1324
3cc68209 1325#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1326#define SSE_REGNO_P(N) \
1327 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1328 || REX_SSE_REGNO_P (N))
c6d93f09 1329
805e22b2 1330#define REX_SSE_REGNO_P(N) \
3cc68209 1331 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
805e22b2 1332
1b12cfd7 1333#define SSE_REGNO(N) \
1334 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
394c6a4a 1335
1b12cfd7 1336#define SSE_FLOAT_MODE_P(MODE) \
780f86b7 1337 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
f01b0085 1338
2a466fea 1339#define SSE_VEC_FLOAT_MODE_P(MODE) \
1340 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1341
1b12cfd7 1342#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
3cc68209 1343#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
d4983fea 1344
3cc68209 1345#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
3cc68209 1346#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
43b83681 1347
1b12cfd7 1348#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
43b83681 1349
ce71a9e6 1350#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1351#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1352
43b83681 1353/* The class value for index registers, and the one for base regs. */
1354
1355#define INDEX_REG_CLASS INDEX_REGS
1356#define BASE_REG_CLASS GENERAL_REGS
1357
43b83681 1358/* Place additional restrictions on the register class to use when it
76170098 1359 is necessary to be able to hold a value of mode MODE in a reload
bb441676 1360 register for which class CLASS would ordinarily be used. */
43b83681 1361
2ede69f5 1362#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1363 ((MODE) == QImode && !TARGET_64BIT \
c0a5a33a 1364 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1365 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
43b83681 1366 ? Q_REGS : (CLASS))
1367
1368/* Given an rtx X being reloaded into a reg required to be
1369 in class CLASS, return the class of reg to actually use.
1370 In general this is just CLASS; but on some machines
1371 in some cases it is preferable to use a more restrictive class.
1372 On the 80386 series, we prevent floating constants from being
1373 reloaded into floating registers (since no move-insn can do that)
1374 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1375
3eba6fa0 1376/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
43b83681 1377 QImode must go into class Q_REGS.
3eba6fa0 1378 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
bb441676 1379 movdf to do mem-to-mem moves through integer regs. */
43b83681 1380
1b12cfd7 1381#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1382 ix86_preferred_reload_class ((X), (CLASS))
9a0e8e92 1383
897f76b2 1384/* Discourage putting floating-point values in SSE registers unless
1385 SSE math is being used, and likewise for the 387 registers. */
1386
1387#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1388 ix86_preferred_output_reload_class ((X), (CLASS))
1389
9a0e8e92 1390/* If we are copying between general and FP registers, we need a memory
ea073cb0 1391 location. The same is true for SSE and MMX registers. */
1b12cfd7 1392#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1393 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
ce71a9e6 1394
296a3469 1395/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1396 There is no need to emit full 64 bit move on 64 bit targets
1397 for integral modes that can be moved using 32 bit move. */
1398#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1399 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1400 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1401 : MODE)
1402
43b83681 1403/* Return the maximum number of consecutive registers
1404 needed to represent mode MODE in a register of class CLASS. */
1405/* On the 80386, this is the size of MODE in words,
e07e720e 1406 except in the FP regs, where a single reg is always enough. */
f01b0085 1407#define CLASS_MAX_NREGS(CLASS, MODE) \
699a9fea 1408 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1409 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
e07e720e 1410 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1411 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0bf9a70a 1412
1413/* A C expression whose value is nonzero if pseudos that have been
1414 assigned to registers of class CLASS would likely be spilled
1415 because registers of CLASS are needed for spill registers.
1416
1417 The default value of this macro returns 1 if CLASS has exactly one
1418 register and zero otherwise. On most machines, this default
1419 should be used. Only define this macro to some other expression
1420 if pseudo allocated by `local-alloc.c' end up in memory because
01cc3b75 1421 their hard registers were needed for spill registers. If this
0bf9a70a 1422 macro returns nonzero for those classes, those pseudos will only
1423 be allocated by `global.c', which knows how to reallocate the
1424 pseudo to another register. If there would not be another
1425 register available for reallocation, you should not change the
1426 definition of this macro since the only effect of such a
1427 definition would be to slow down register allocation. */
1428
1429#define CLASS_LIKELY_SPILLED_P(CLASS) \
1430 (((CLASS) == AREG) \
1431 || ((CLASS) == DREG) \
1432 || ((CLASS) == CREG) \
1433 || ((CLASS) == BREG) \
1434 || ((CLASS) == AD_REGS) \
1435 || ((CLASS) == SIREG) \
eeb0109f 1436 || ((CLASS) == DIREG) \
1437 || ((CLASS) == FP_TOP_REG) \
1438 || ((CLASS) == FP_SECOND_REG))
0bf9a70a 1439
5d258b81 1440/* Return a class of registers that cannot change FROM mode to TO mode. */
1441
1442#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1443 ix86_cannot_change_mode_class (FROM, TO, CLASS)
43b83681 1444\f
1445/* Stack layout; function entry, exit and calling. */
1446
1447/* Define this if pushing a word on the stack
1448 makes the stack pointer a smaller address. */
1449#define STACK_GROWS_DOWNWARD
1450
3ce7ff97 1451/* Define this to nonzero if the nominal address of the stack frame
43b83681 1452 is at the high-address end of the local variables;
1453 that is, each additional local variable allocated
1454 goes at a more negative offset in the frame. */
d28d5017 1455#define FRAME_GROWS_DOWNWARD 1
43b83681 1456
1457/* Offset within stack frame to start allocating local variables at.
1458 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1459 first local allocated. Otherwise, it is the offset to the BEGINNING
1460 of the first local allocated. */
1461#define STARTING_FRAME_OFFSET 0
1462
1463/* If we generate an insn to push BYTES bytes,
1464 this says how many the stack pointer really advances by.
3cb7a129 1465 On 386, we have pushw instruction that decrements by exactly 2 no
1466 matter what the position was, there is no pushb.
1467 But as CIE data alignment factor on this arch is -4, we need to make
1468 sure all stack pointer adjustments are in multiple of 4.
d4983fea 1469
2ede69f5 1470 For 64bit ABI we round up to 8 bytes.
1471 */
43b83681 1472
2ede69f5 1473#define PUSH_ROUNDING(BYTES) \
1474 (TARGET_64BIT \
1475 ? (((BYTES) + 7) & (-8)) \
3cb7a129 1476 : (((BYTES) + 3) & (-4)))
43b83681 1477
4448f543 1478/* If defined, the maximum amount of space required for outgoing arguments will
1479 be computed and placed into the variable
abe32cce 1480 `crtl->outgoing_args_size'. No space will be pushed onto the
4448f543 1481 stack for each call; instead, the function prologue should increase the stack
1482 frame size by this amount. */
1483
1484#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1485
1486/* If defined, a C expression whose value is nonzero when we want to use PUSH
1487 instructions to pass outgoing arguments. */
1488
1489#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1490
2a8e54a4 1491/* We want the stack and args grow in opposite directions, even if
1492 PUSH_ARGS is 0. */
1493#define PUSH_ARGS_REVERSED 1
1494
43b83681 1495/* Offset of first parameter from the argument pointer register value. */
1496#define FIRST_PARM_OFFSET(FNDECL) 0
1497
f01b0085 1498/* Define this macro if functions should assume that stack space has been
1499 allocated for arguments even when their values are passed in registers.
1500
1501 The value of this macro is the size, in bytes, of the area reserved for
1502 arguments passed in registers for the function represented by FNDECL.
1503
1504 This space can be allocated by the caller, or be a part of the
1505 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1506 which. */
d3feb168 1507#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1508
1509#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) (ix86_function_type_abi (FNTYPE) == MS_ABI ? 1 : 0)
1510
43b83681 1511/* Value is the number of bytes of arguments automatically
1512 popped when returning from a subroutine call.
97a18f26 1513 FUNDECL is the declaration node of the function (as a tree),
43b83681 1514 FUNTYPE is the data type of the function (as a tree),
1515 or for a library call it is an identifier node for the subroutine name.
1516 SIZE is the number of bytes of arguments passed on the stack.
1517
1518 On the 80386, the RTD insn may be used to pop them if the number
1519 of args is fixed, but if the number is variable then the caller
1520 must pop them all. RTD can't be used for library calls now
1521 because the library is compiled with the Unix compiler.
1522 Use of RTD is a selectable option, since it is incompatible with
1523 standard Unix calling sequences. If the option is not selected,
bfa936ad 1524 the caller must always pop the args.
1525
1526 The attribute stdcall is equivalent to RTD on a per module basis. */
43b83681 1527
1b12cfd7 1528#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1529 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
43b83681 1530
e4bf866d 1531#define FUNCTION_VALUE_REGNO_P(N) \
1532 ix86_function_value_regno_p (N)
43b83681 1533
1534/* Define how to find the value returned by a library function
1535 assuming the value has mode MODE. */
1536
1537#define LIBCALL_VALUE(MODE) \
e4bf866d 1538 ix86_libcall_value (MODE)
43b83681 1539
f202941c 1540/* Define the size of the result block used for communication between
1541 untyped_call and untyped_return. The block contains a DImode value
1542 followed by the block used by fnsave and frstor. */
1543
1544#define APPLY_RESULT_SIZE (8+108)
1545
bfa936ad 1546/* 1 if N is a possible register number for function argument passing. */
e4bf866d 1547#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
43b83681 1548
1549/* Define a data type for recording info about an argument list
1550 during the scan of that argument list. This data type should
1551 hold all necessary information about the function itself
1552 and about the args processed so far, enough to enable macros
bfa936ad 1553 such as FUNCTION_ARG to determine where the next arg should go. */
43b83681 1554
ce71a9e6 1555typedef struct ix86_args {
bae5345b 1556 int words; /* # words passed so far */
bfa936ad 1557 int nregs; /* # registers available for passing */
1558 int regno; /* next available register number */
abf198ab 1559 int fastcall; /* fastcall calling convention is used */
bae5345b 1560 int sse_words; /* # sse words passed so far */
f01b0085 1561 int sse_nregs; /* # sse registers available for passing */
e92554cb 1562 int warn_sse; /* True when we want to warn about SSE ABI. */
bae5345b 1563 int warn_mmx; /* True when we want to warn about MMX ABI. */
1564 int sse_regno; /* next available sse register number */
1565 int mmx_words; /* # mmx words passed so far */
6ef4a624 1566 int mmx_nregs; /* # mmx registers available for passing */
1567 int mmx_regno; /* next available mmx register number */
bb441676 1568 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
3524624e 1569 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1570 be passed in SSE registers. Otherwise 0. */
d3feb168 1571 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1572 MS_ABI for ms abi. */
bfa936ad 1573} CUMULATIVE_ARGS;
43b83681 1574
1575/* Initialize a variable CUM of type CUMULATIVE_ARGS
1576 for a call to a function whose data type is FNTYPE.
bfa936ad 1577 For a library call, FNTYPE is 0. */
43b83681 1578
30c70355 1579#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
80a85d8a 1580 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
43b83681 1581
1582/* Update the data in CUM to advance over an argument
1583 of mode MODE and data type TYPE.
1584 (TYPE is null for libcalls where that information may not be available.) */
1585
1b12cfd7 1586#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1587 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
43b83681 1588
1589/* Define where to put the arguments to a function.
1590 Value is zero to push the argument on the stack,
1591 or a hard register in which to store the argument.
1592
1593 MODE is the argument's machine mode.
1594 TYPE is the data type of the argument (as a tree).
1595 This is null for libcalls where that information may
1596 not be available.
1597 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1598 the preceding args and about the function being called.
1599 NAMED is nonzero if this argument is a named parameter
1600 (otherwise it is an extra parameter matching an ellipsis). */
1601
43b83681 1602#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1b12cfd7 1603 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
43b83681 1604
f6940372 1605#define TARGET_ASM_FILE_END ix86_file_end
1606#define NEED_INDICATE_EXEC_STACK 0
42c2e1fa 1607
43b83681 1608/* Output assembler code to FILE to increment profiler label # LABELNO
1609 for profiling a function entry. */
1610
af23924f 1611#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1612
1613#define MCOUNT_NAME "_mcount"
1614
1615#define PROFILE_COUNT_REGISTER "edx"
43b83681 1616
1617/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1618 the stack pointer does not matter. The value is tested only in
1619 functions that have frame pointers.
1620 No definition is equivalent to always zero. */
d4983fea 1621/* Note on the 386 it might be more efficient not to define this since
43b83681 1622 we have to restore it ourselves from the frame pointer, in order to
1623 use pop */
1624
1625#define EXIT_IGNORE_STACK 1
1626
43b83681 1627/* Output assembler code for a block containing the constant parts
1628 of a trampoline, leaving space for the variable parts. */
1629
f3e2ae00 1630/* On the 386, the trampoline contains two instructions:
43b83681 1631 mov #STATIC,ecx
f3e2ae00 1632 jmp FUNCTION
1633 The trampoline is generated entirely at runtime. The operand of JMP
1634 is the address of FUNCTION relative to the instruction following the
1635 JMP (which is 5 bytes long). */
43b83681 1636
1637/* Length in units of the trampoline for entering a nested function. */
1638
e246b648 1639#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
43b83681 1640
1641/* Emit RTL insns to initialize the variable parts of a trampoline.
1642 FNADDR is an RTX for the address of the function's pure code.
1643 CXT is an RTX for the static chain value for the function. */
1644
1b12cfd7 1645#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1646 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
43b83681 1647\f
1648/* Definitions for register eliminations.
1649
1650 This is an array of structures. Each structure initializes one pair
1651 of eliminable registers. The "from" register number is given first,
1652 followed by "to". Eliminations of the same "from" register are listed
1653 in order of preference.
1654
0be394dd 1655 There are two registers that can always be eliminated on the i386.
1656 The frame pointer and the arg pointer can be replaced by either the
1657 hard frame pointer or to the stack pointer, depending upon the
1658 circumstances. The hard frame pointer is not used before reload and
1659 so it is not eligible for elimination. */
43b83681 1660
8c5dc77f 1661#define ELIMINABLE_REGS \
1662{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1663 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1664 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1665 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
43b83681 1666
83070725 1667/* Given FROM and TO register numbers, say whether this elimination is
27a7a23a 1668 allowed. */
43b83681 1669
27a7a23a 1670#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
43b83681 1671
1672/* Define the offset between two registers, one to be eliminated, and the other
1673 its replacement, at the start of a routine. */
1674
1b12cfd7 1675#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1676 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
43b83681 1677\f
1678/* Addressing modes, and classification of registers for them. */
1679
43b83681 1680/* Macros to check register numbers against specific register classes. */
1681
1682/* These assume that REGNO is a hard or pseudo reg number.
1683 They give nonzero only if REGNO is a hard reg of the suitable class
1684 or a pseudo reg currently allocated to a suitable hard reg.
1685 Since they use reg_renumber, they are safe only once reg_renumber
1686 has been allocated, which happens in local-alloc.c. */
1687
c6d93f09 1688#define REGNO_OK_FOR_INDEX_P(REGNO) \
1689 ((REGNO) < STACK_POINTER_REGNUM \
3cc68209 1690 || REX_INT_REGNO_P (REGNO) \
1691 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1692 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
43b83681 1693
c6d93f09 1694#define REGNO_OK_FOR_BASE_P(REGNO) \
3cc68209 1695 (GENERAL_REGNO_P (REGNO) \
c6d93f09 1696 || (REGNO) == ARG_POINTER_REGNUM \
1697 || (REGNO) == FRAME_POINTER_REGNUM \
3cc68209 1698 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
43b83681 1699
43b83681 1700/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1701 and check its validity for a certain class.
1702 We have two alternate definitions for each of them.
1703 The usual definition accepts all pseudo regs; the other rejects
1704 them unless they have been allocated suitable hard regs.
1705 The symbol REG_OK_STRICT causes the latter definition to be used.
1706
1707 Most source files want to accept pseudo regs in the hope that
1708 they will get allocated to the class that the insn wants them to be in.
1709 Source files for reload pass need to be strict.
1710 After reload, it makes no difference, since pseudo regs have
1711 been eliminated by then. */
1712
43b83681 1713
1d60d981 1714/* Non strict versions, pseudos are ok. */
60206704 1715#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1716 (REGNO (X) < STACK_POINTER_REGNUM \
3cc68209 1717 || REX_INT_REGNO_P (REGNO (X)) \
43b83681 1718 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1719
60206704 1720#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
3cc68209 1721 (GENERAL_REGNO_P (REGNO (X)) \
60206704 1722 || REGNO (X) == ARG_POINTER_REGNUM \
c6d93f09 1723 || REGNO (X) == FRAME_POINTER_REGNUM \
60206704 1724 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
43b83681 1725
60206704 1726/* Strict versions, hard registers only */
1727#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1728#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
43b83681 1729
60206704 1730#ifndef REG_OK_STRICT
1b12cfd7 1731#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1732#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
60206704 1733
1734#else
1b12cfd7 1735#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1736#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
43b83681 1737#endif
1738
1739/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1740 that is a valid memory address for an instruction.
1741 The MODE argument is the machine mode for the MEM expression
1742 that wants to use this address.
1743
1744 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1745 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1746
1747 See legitimize_pic_address in i386.c for details as to what
1748 constitutes a legitimate address when -fpic is used. */
1749
1750#define MAX_REGS_PER_ADDRESS 2
1751
2d6788fe 1752#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
43b83681 1753
1754/* Nonzero if the constant value X is a legitimate general operand.
1755 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1756
2d6788fe 1757#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
43b83681 1758
60206704 1759#ifdef REG_OK_STRICT
1760#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1b12cfd7 1761do { \
1762 if (legitimate_address_p ((MODE), (X), 1)) \
60206704 1763 goto ADDR; \
1b12cfd7 1764} while (0)
43b83681 1765
60206704 1766#else
1767#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1b12cfd7 1768do { \
1769 if (legitimate_address_p ((MODE), (X), 0)) \
43b83681 1770 goto ADDR; \
1b12cfd7 1771} while (0)
43b83681 1772
60206704 1773#endif
1774
15750b1e 1775/* If defined, a C expression to determine the base term of address X.
1776 This macro is used in only one place: `find_base_term' in alias.c.
1777
1778 It is always safe for this macro to not be defined. It exists so
1779 that alias analysis can understand machine-dependent addresses.
1780
1781 The typical use of this macro is to handle addresses containing
1782 a label_ref or symbol_ref within an UNSPEC. */
1783
1b12cfd7 1784#define FIND_BASE_TERM(X) ix86_find_base_term (X)
15750b1e 1785
43b83681 1786/* Try machine-dependent ways of modifying an illegitimate address
1787 to be legitimate. If we find one, return the new, valid address.
1788 This macro is used in only one place: `memory_address' in explow.c.
1789
1790 OLDX is the address as it was before break_out_memory_refs was called.
1791 In some cases it is useful to look at this to decide what needs to be done.
1792
1793 MODE and WIN are passed so that this macro can use
1794 GO_IF_LEGITIMATE_ADDRESS.
1795
1796 It is always safe for this macro to do nothing. It exists to recognize
1797 opportunities to optimize the output.
1798
1799 For the 80386, we handle X+REG by loading X into a register R and
1800 using R+REG. R will go in a general reg and indexing will be used.
1801 However, if REG is a broken-out memory address or multiplication,
1802 nothing needs to be done because REG can certainly go in a general reg.
1803
1804 When -fpic is used, special handling is needed for symbolic references.
1805 See comments by legitimize_pic_address in i386.c for details. */
1806
60206704 1807#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1b12cfd7 1808do { \
1809 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1810 if (memory_address_p ((MODE), (X))) \
60206704 1811 goto WIN; \
1b12cfd7 1812} while (0)
43b83681 1813
1814/* Nonzero if the constant value X is a legitimate general operand
d4983fea 1815 when generating PIC code. It is given that flag_pic is on and
43b83681 1816 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1817
2d6788fe 1818#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
43b83681 1819
1820#define SYMBOLIC_CONST(X) \
1b12cfd7 1821 (GET_CODE (X) == SYMBOL_REF \
1822 || GET_CODE (X) == LABEL_REF \
1823 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
43b83681 1824
1825/* Go to LABEL if ADDR (a legitimate address expression)
1826 has an effect that depends on the machine mode it is used for.
1827 On the 80386, only postdecrement and postincrement address depend thus
cad2a6b5 1828 (the amount of decrement or increment being the length of the operand).
1829 These are now caught in recog.c. */
1830#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
43b83681 1831\f
bfa936ad 1832/* Max number of args passed in registers. If this is more than 3, we will
1833 have problems with ebx (register #4), since it is a caller save register and
1834 is also used as the pic register in ELF. So for now, don't allow more than
1835 3 registers to be passed in registers. */
1836
d3feb168 1837/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1838#define X86_64_REGPARM_MAX 6
1839#define X64_REGPARM_MAX 4
1840#define X86_32_REGPARM_MAX 3
1841
1842#define X86_64_SSE_REGPARM_MAX 8
1843#define X64_SSE_REGPARM_MAX 4
1844#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1845
1846#define REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1847 : X86_64_REGPARM_MAX) \
1848 : X86_32_REGPARM_MAX)
2ede69f5 1849
d3feb168 1850#define SSE_REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1851 : X86_64_SSE_REGPARM_MAX) \
1852 : X86_32_SSE_REGPARM_MAX)
6ef4a624 1853
1854#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
bfa936ad 1855
43b83681 1856\f
1857/* Specify the machine mode that this machine uses
1858 for the index in the tablejump instruction. */
5fe80ef0 1859#define CASE_VECTOR_MODE \
1860 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
43b83681 1861
43b83681 1862/* Define this as 1 if `char' should by default be signed; else as 0. */
1863#define DEFAULT_SIGNED_CHAR 1
1864
1865/* Max number of bytes we can move from memory to memory
1866 in one reasonably fast instruction. */
c7f5f345 1867#define MOVE_MAX 16
1868
1869/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1870 move efficiently, as opposed to MOVE_MAX which is the maximum
bb441676 1871 number of bytes we can move with a single instruction. */
c7f5f345 1872#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
43b83681 1873
cbdc0179 1874/* If a memory-to-memory move would take MOVE_RATIO or more simple
008c057d 1875 move-instruction pairs, we will do a movmem or libcall instead.
cbdc0179 1876 Increasing the value will always make code faster, but eventually
1877 incurs high cost in increased code size.
43b83681 1878
a746fd01 1879 If you don't define this, a reasonable default is used. */
43b83681 1880
a746fd01 1881#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
43b83681 1882
025d4f81 1883/* If a clear memory operation would take CLEAR_RATIO or more simple
1884 move-instruction sequences, we will do a clrmem or libcall instead. */
1885
46de89e7 1886#define CLEAR_RATIO (optimize_size ? 2 : MIN (6, ix86_cost->move_ratio))
025d4f81 1887
43b83681 1888/* Define if shifts truncate the shift count
1889 which implies one can omit a sign-extension or zero-extension
1890 of a shift count. */
bb441676 1891/* On i386, shifts do truncate the count. But bit opcodes don't. */
43b83681 1892
1893/* #define SHIFT_COUNT_TRUNCATED */
1894
1895/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1896 is done just by pretending it is already truncated. */
1897#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1898
c41f04da 1899/* A macro to update M and UNSIGNEDP when an object whose type is
1900 TYPE and which has the specified mode and signedness is to be
1901 stored in a register. This macro is only called when TYPE is a
1902 scalar type.
1903
8ef587dc 1904 On i386 it is sometimes useful to promote HImode and QImode
c41f04da 1905 quantities to SImode. The choice depends on target type. */
1906
1907#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1b12cfd7 1908do { \
c41f04da 1909 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1910 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1b12cfd7 1911 (MODE) = SImode; \
1912} while (0)
c41f04da 1913
43b83681 1914/* Specify the machine mode that pointers have.
1915 After generation of rtl, the compiler makes no further distinction
1916 between pointers and any other objects of this machine mode. */
c7f5f345 1917#define Pmode (TARGET_64BIT ? DImode : SImode)
43b83681 1918
1919/* A function address in a call instruction
1920 is a byte address (for indexing purposes)
1921 so give the MEM rtx a byte's mode. */
1922#define FUNCTION_MODE QImode
9af5c5d1 1923\f
3ab61a4d 1924/* A C expression for the cost of moving data from a register in class FROM to
1925 one in class TO. The classes are expressed using the enumeration values
1926 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1927 interpreted relative to that.
9af5c5d1 1928
3ab61a4d 1929 It is not required that the cost always equal 2 when FROM is the same as TO;
1930 on some machines it is expensive to move between registers if they are not
ea073cb0 1931 general registers. */
9af5c5d1 1932
ea073cb0 1933#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1b12cfd7 1934 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
9af5c5d1 1935
1936/* A C expression for the cost of moving data of mode M between a
1937 register and memory. A value of 2 is the default; this cost is
1938 relative to those in `REGISTER_MOVE_COST'.
1939
1940 If moving between registers and memory is more expensive than
1941 between two registers, you should define this macro to express the
4f3e5c20 1942 relative cost. */
9af5c5d1 1943
1b12cfd7 1944#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1945 ix86_memory_move_cost ((MODE), (CLASS), (IN))
9af5c5d1 1946
1947/* A C expression for the cost of a branch instruction. A value of 1
1948 is the default; other values are interpreted relative to that. */
1949
ce71a9e6 1950#define BRANCH_COST ix86_branch_cost
9af5c5d1 1951
1952/* Define this macro as a C expression which is nonzero if accessing
1953 less than a word of memory (i.e. a `char' or a `short') is no
1954 faster than accessing a word of memory, i.e., if such access
1955 require more than one instruction or if there is no difference in
1956 cost between byte and (aligned) word loads.
1957
1958 When this macro is not defined, the compiler will access a field by
1959 finding the smallest containing object; when it is defined, a
1960 fullword load will be used if alignment permits. Unless bytes
1961 accesses are faster than word accesses, using word accesses is
1962 preferable since it may eliminate subsequent memory access if
1963 subsequent accesses occur to other fields in the same word of the
1964 structure, but to different bytes. */
1965
1966#define SLOW_BYTE_ACCESS 0
1967
1968/* Nonzero if access to memory by shorts is slow and undesirable. */
1969#define SLOW_SHORT_ACCESS 0
1970
9af5c5d1 1971/* Define this macro to be the value 1 if unaligned accesses have a
1972 cost many times greater than aligned accesses, for example if they
1973 are emulated in a trap handler.
1974
c46dc351 1975 When this macro is nonzero, the compiler will act as if
1976 `STRICT_ALIGNMENT' were nonzero when generating code for block
9af5c5d1 1977 moves. This can cause significantly more instructions to be
c46dc351 1978 produced. Therefore, do not set this macro nonzero if unaligned
9af5c5d1 1979 accesses only add a cycle or two to the time for a memory access.
1980
1981 If the value of this macro is always zero, it need not be defined. */
1982
9439ebf7 1983/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
9af5c5d1 1984
9af5c5d1 1985/* Define this macro if it is as good or better to call a constant
1986 function address than to call an address kept in a register.
1987
1988 Desirable on the 386 because a CALL with a constant address is
1989 faster than one with a register address. */
1990
1991#define NO_FUNCTION_CSE
43b83681 1992\f
b15e0bba 1993/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1994 return the mode to be used for the comparison.
1995
1996 For floating-point equality comparisons, CCFPEQmode should be used.
ce71a9e6 1997 VOIDmode should be used in all other cases.
b15e0bba 1998
979a64df 1999 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
ce71a9e6 2000 possible, to allow for more combinations. */
43b83681 2001
1b12cfd7 2002#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
59112222 2003
c46dc351 2004/* Return nonzero if MODE implies a floating point inequality can be
59112222 2005 reversed. */
2006
2007#define REVERSIBLE_CC_MODE(MODE) 1
2008
2009/* A C expression whose value is reversed condition code of the CODE for
2010 comparison done in CC_MODE mode. */
41252d26 2011#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
59112222 2012
43b83681 2013\f
2014/* Control the assembler format that we output, to the extent
2015 this does not vary between assemblers. */
2016
2017/* How to refer to registers in assembler output.
bb441676 2018 This sequence is indexed by compiler's hard-register-number (see above). */
43b83681 2019
5b865faf 2020/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
43b83681 2021 For non floating point regs, the following are the HImode names.
2022
2023 For float regs, the stack top is sometimes referred to as "%st(0)"
474bb692 2024 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
43b83681 2025
f01b0085 2026#define HI_REGISTER_NAMES \
2027{"ax","dx","cx","bx","si","di","bp","sp", \
d535f7e3 2028 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
0a9ae7b1 2029 "argp", "flags", "fpsr", "fpcr", "frame", \
f01b0085 2030 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
d1918706 2031 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
c6d93f09 2032 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2033 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
f01b0085 2034
43b83681 2035#define REGISTER_NAMES HI_REGISTER_NAMES
2036
2037/* Table of additional register names to use in user input. */
2038
2039#define ADDITIONAL_REGISTER_NAMES \
ebf7b427 2040{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2041 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
c6d93f09 2042 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2043 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
ebf7b427 2044 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
126a70bb 2045 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
43b83681 2046
2047/* Note we are omitting these since currently I don't know how
2048to get gcc to use these, since they want the same but different
2049number as al, and ax.
2050*/
2051
43b83681 2052#define QI_REGISTER_NAMES \
c6d93f09 2053{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
43b83681 2054
2055/* These parallel the array above, and can be used to access bits 8:15
bb441676 2056 of regs 0 through 3. */
43b83681 2057
2058#define QI_HIGH_REGISTER_NAMES \
2059{"ah", "dh", "ch", "bh", }
2060
2061/* How to renumber registers for dbx and gdb. */
2062
1b12cfd7 2063#define DBX_REGISTER_NUMBER(N) \
2064 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
eb26ca2c 2065
92df0d3c 2066extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2067extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2068extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
43b83681 2069
df78b73b 2070/* Before the prologue, RA is at 0(%esp). */
2071#define INCOMING_RETURN_ADDR_RTX \
5c6cf936 2072 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
d4983fea 2073
0870676d 2074/* After the prologue, RA is at -4(AP) in the current frame. */
287edcbf 2075#define RETURN_ADDR_RTX(COUNT, FRAME) \
2076 ((COUNT) == 0 \
2077 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2078 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
0870676d 2079
bb441676 2080/* PC is dbx register 8; let's use that column for RA. */
62c74046 2081#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
df78b73b 2082
19bce576 2083/* Before the prologue, the top of the frame is at 4(%esp). */
62c74046 2084#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
19bce576 2085
287edcbf 2086/* Describe how we implement __builtin_eh_return. */
2087#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2088#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2089
9532742b 2090
038bfd6b 2091/* Select a format to encode pointers in exception handling data. CODE
2092 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2093 true if the symbol may be affected by dynamic relocations.
2094
2095 ??? All x86 object file formats are capable of representing this.
2096 After all, the relocation needed is the same as for the call insn.
2097 Whether or not a particular assembler allows us to enter such, I
2098 guess we'll have to see. */
1b12cfd7 2099#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
5e6d8953 2100 asm_preferred_eh_data_format ((CODE), (GLOBAL))
038bfd6b 2101
43b83681 2102/* This is how to output an insn to push a register on the stack.
2103 It need not be very fast code. */
2104
1b12cfd7 2105#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
44c0bfa7 2106do { \
2107 if (TARGET_64BIT) \
2108 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2109 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2110 else \
2111 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2112} while (0)
43b83681 2113
2114/* This is how to output an insn to pop a register from the stack.
2115 It need not be very fast code. */
2116
1b12cfd7 2117#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
44c0bfa7 2118do { \
2119 if (TARGET_64BIT) \
2120 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2121 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2122 else \
2123 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2124} while (0)
43b83681 2125
bb006a84 2126/* This is how to output an element of a case-vector that is absolute. */
43b83681 2127
2128#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1b12cfd7 2129 ix86_output_addr_vec_elt ((FILE), (VALUE))
43b83681 2130
bb006a84 2131/* This is how to output an element of a case-vector that is relative. */
43b83681 2132
9eaab178 2133#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1b12cfd7 2134 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
bb006a84 2135
3ebc7dec 2136/* Under some conditions we need jump tables in the text section,
2137 because the assembler cannot handle label differences between
2138 sections. This is the case for x86_64 on Mach-O for example. */
bb006a84 2139
2140#define JUMP_TABLES_IN_TEXT_SECTION \
3ebc7dec 2141 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2142 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
43b83681 2143
e1ff7102 2144/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2145 and switch back. For x86 we do this only to save a few bytes that
2146 would otherwise be unused in the text section. */
2147#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2148 asm (SECTION_OP "\n\t" \
2149 "call " USER_LABEL_PREFIX #FUNC "\n" \
2150 TEXT_SECTION_ASM_OP);
a40a0ed3 2151\f
43b83681 2152/* Print operand X (an rtx) in assembler syntax to file FILE.
2153 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
e0f05f0c 2154 Effect of various CODE letters is described in i386.c near
2155 print_operand function. */
43b83681 2156
1b12cfd7 2157#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
724fa541 2158 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
43b83681 2159
2160#define PRINT_OPERAND(FILE, X, CODE) \
1b12cfd7 2161 print_operand ((FILE), (X), (CODE))
43b83681 2162
2163#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1b12cfd7 2164 print_operand_address ((FILE), (ADDR))
43b83681 2165
2d6788fe 2166#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2167do { \
2168 if (! output_addr_const_extra (FILE, (X))) \
2169 goto FAIL; \
2170} while (0);
9af5c5d1 2171\f
d25a2a8c 2172/* Which processor to schedule for. The cpu attribute defines a list that
2173 mirrors this list, so changes to i386.md must be made at the same time. */
2174
2175enum processor_type
2176{
8ba8ec53 2177 PROCESSOR_I386 = 0, /* 80386 */
d25a2a8c 2178 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2179 PROCESSOR_PENTIUM,
2180 PROCESSOR_PENTIUMPRO,
5c34451e 2181 PROCESSOR_GEODE,
d25a2a8c 2182 PROCESSOR_K6,
2183 PROCESSOR_ATHLON,
2184 PROCESSOR_PENTIUM4,
805e22b2 2185 PROCESSOR_K8,
0fda5f41 2186 PROCESSOR_NOCONA,
11361ecb 2187 PROCESSOR_CORE2,
9db3d688 2188 PROCESSOR_GENERIC32,
2189 PROCESSOR_GENERIC64,
3d775f8e 2190 PROCESSOR_AMDFAM10,
d25a2a8c 2191 PROCESSOR_max
2192};
2193
706b598d 2194extern enum processor_type ix86_tune;
d25a2a8c 2195extern enum processor_type ix86_arch;
d25a2a8c 2196
2197enum fpmath_unit
2198{
2199 FPMATH_387 = 1,
2200 FPMATH_SSE = 2
2201};
2202
2203extern enum fpmath_unit ix86_fpmath;
d25a2a8c 2204
2d6788fe 2205enum tls_dialect
2206{
2207 TLS_DIALECT_GNU,
4a55687c 2208 TLS_DIALECT_GNU2,
2d6788fe 2209 TLS_DIALECT_SUN
2210};
2211
2212extern enum tls_dialect ix86_tls_dialect;
2d6788fe 2213
cbf58688 2214enum cmodel {
d25a2a8c 2215 CM_32, /* The traditional 32-bit ABI. */
2216 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2217 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2218 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2219 CM_LARGE, /* No assumptions. */
43e4a084 2220 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
5fe80ef0 2221 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2222 CM_LARGE_PIC /* No assumptions. */
cbf58688 2223};
2224
d25a2a8c 2225extern enum cmodel ix86_cmodel;
d25a2a8c 2226
8eafd985 2227/* Size of the RED_ZONE area. */
2228#define RED_ZONE_SIZE 128
2229/* Reserved area of the red zone for temporaries. */
2230#define RED_ZONE_RESERVE 8
25b31391 2231
2232enum asm_dialect {
2233 ASM_ATT,
2234 ASM_INTEL
2235};
d25a2a8c 2236
60b0f8fb 2237extern enum asm_dialect ix86_asm_dialect;
38413c80 2238extern unsigned int ix86_preferred_stack_boundary;
27a7a23a 2239extern unsigned int ix86_incoming_stack_boundary;
43e4a084 2240extern int ix86_branch_cost, ix86_section_threshold;
d25a2a8c 2241
2242/* Smallest class containing REGNO. */
2243extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2244
1b12cfd7 2245extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2246extern rtx ix86_compare_op1; /* operand 1 for comparisons */
0f0a601a 2247extern rtx ix86_compare_emitted;
be0c5fcb 2248\f
2249/* To properly truncate FP values into integers, we need to set i387 control
2250 word. We can't emit proper mode switching code before reload, as spills
2251 generated by reload may truncate values incorrectly, but we still can avoid
2252 redundant computation of new control word by the mode switching pass.
2253 The fldcw instructions are still emitted redundantly, but this is probably
2254 not going to be noticeable problem, as most CPUs do have fast path for
d4983fea 2255 the sequence.
be0c5fcb 2256
2257 The machinery is to emit simple truncation instructions and split them
2258 before reload to instructions having USEs of two memory locations that
2259 are filled by this code to old and new control word.
d4983fea 2260
be0c5fcb 2261 Post-reload pass may be later used to eliminate the redundant fildcw if
2262 needed. */
2263
19cd29a7 2264enum ix86_entity
2265{
2266 I387_TRUNC = 0,
2267 I387_FLOOR,
2268 I387_CEIL,
2269 I387_MASK_PM,
2270 MAX_386_ENTITIES
2271};
2272
3e883b09 2273enum ix86_stack_slot
19cd29a7 2274{
69ddc71a 2275 SLOT_VIRTUAL = 0,
2276 SLOT_TEMP,
19cd29a7 2277 SLOT_CW_STORED,
2278 SLOT_CW_TRUNC,
2279 SLOT_CW_FLOOR,
2280 SLOT_CW_CEIL,
2281 SLOT_CW_MASK_PM,
2282 MAX_386_STACK_LOCALS
2283};
be0c5fcb 2284
2285/* Define this macro if the port needs extra instructions inserted
2286 for mode switching in an optimizing compilation. */
2287
19cd29a7 2288#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2289 ix86_optimize_mode_switching[(ENTITY)]
be0c5fcb 2290
2291/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2292 initializer for an array of integers. Each initializer element N
2293 refers to an entity that needs mode switching, and specifies the
2294 number of different modes that might need to be set for this
2295 entity. The position of the initializer in the initializer -
2296 starting counting at zero - determines the integer that is used to
2297 refer to the mode-switched entity in question. */
2298
19cd29a7 2299#define NUM_MODES_FOR_MODE_SWITCHING \
2300 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
be0c5fcb 2301
2302/* ENTITY is an integer specifying a mode-switched entity. If
2303 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2304 return an integer value not larger than the corresponding element
2305 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
19cd29a7 2306 must be switched into prior to the execution of INSN. */
2307
2308#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
be0c5fcb 2309
2310/* This macro specifies the order in which modes for ENTITY are
2311 processed. 0 is the highest priority. */
2312
1b12cfd7 2313#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
be0c5fcb 2314
2315/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2316 is the set of hard registers live at the point where the insn(s)
2317 are to be inserted. */
2318
2319#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
4cf2e75a 2320 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
19cd29a7 2321 ? emit_i387_cw_initialization (MODE), 0 \
be0c5fcb 2322 : 0)
19cd29a7 2323
483f30d9 2324\f
2325/* Avoid renaming of stack registers, as doing so in combination with
2326 scheduling just increases amount of live registers at time and in
2327 the turn amount of fxch instructions needed.
2328
d697f1db 2329 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
483f30d9 2330
1b12cfd7 2331#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3cc68209 2332 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
be0c5fcb 2333
60206704 2334\f
54f917d1 2335#define FASTCALL_PREFIX '@'
6ce54148 2336\f
2337struct machine_function GTY(())
2338{
2339 struct stack_local_entry *stack_locals;
2340 const char *some_ld_name;
2341 int save_varrargs_registers;
2342 int accesses_prev_frame;
19cd29a7 2343 int optimize_mode_switching[MAX_386_ENTITIES];
144c3e90 2344 int needs_cld;
2345 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2346 expander to determine the style used. */
4eda18af 2347 int use_fast_prologue_epilogue;
fda56ed1 2348 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2349 for. */
2350 int use_fast_prologue_epilogue_nregs;
4a55687c 2351 /* If true, the current function needs the default PIC register, not
2352 an alternate register (on x86) and must not use the red zone (on
2353 x86_64), even if it's a leaf function. We don't want the
2354 function to be regarded as non-leaf because TLS calls need not
2355 affect register allocation. This flag is set when a TLS call
2356 instruction is expanded within a function, and never reset, even
2357 if all such instructions are optimized away. Use the
2358 ix86_current_function_calls_tls_descriptor macro for a better
2359 approximation. */
2360 int tls_descriptor_call_expanded_p;
d3feb168 2361 /* This value is used for amd64 targets and specifies the current abi
2362 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2363 int call_abi;
6ce54148 2364};
2365
2366#define ix86_stack_locals (cfun->machine->stack_locals)
2367#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2368#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
144c3e90 2369#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
4a55687c 2370#define ix86_tls_descriptor_calls_expanded_in_cfun \
2371 (cfun->machine->tls_descriptor_call_expanded_p)
2372/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2373 calls are optimized away, we try to detect cases in which it was
2374 optimized away. Since such instructions (use (reg REG_SP)), we can
2375 verify whether there's any such instruction live by testing that
2376 REG_SP is live. */
2377#define ix86_current_function_calls_tls_descriptor \
3072d30e 2378 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
78177281 2379
92c473b8 2380/* Control behavior of x86_file_start. */
2381#define X86_FILE_START_VERSION_DIRECTIVE false
2382#define X86_FILE_START_FLTUSED false
2383
43e4a084 2384/* Flag to mark data that is in the large address area. */
2385#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2386#define SYMBOL_REF_FAR_ADDR_P(X) \
2387 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
dd1a226e 2388
2389/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2390 have defined always, to avoid ifdefing. */
2391#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2392#define SYMBOL_REF_DLLIMPORT_P(X) \
2393 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2394
2395#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2396#define SYMBOL_REF_DLLEXPORT_P(X) \
2397 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2398
6202d4db 2399/* Model costs for vectorizer. */
2400
2401/* Cost of conditional branch. */
2402#undef TARG_COND_BRANCH_COST
2403#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2404
5f57a8b1 2405/* Enum through the target specific extra va_list types. Please, do not
2406 iterate the base va_list type name. */
2407#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2408 (!TARGET_64BIT ? 0 : ix86_enum_va_list (IDX, PNAME, PTYPE))
2409
6202d4db 2410/* Cost of any scalar operation, excluding load and store. */
2411#undef TARG_SCALAR_STMT_COST
2412#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2413
2414/* Cost of scalar load. */
2415#undef TARG_SCALAR_LOAD_COST
2416#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2417
2418/* Cost of scalar store. */
2419#undef TARG_SCALAR_STORE_COST
2420#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2421
2422/* Cost of any vector operation, excluding load, store or vector to scalar
009b318f 2423 operation. */
6202d4db 2424#undef TARG_VEC_STMT_COST
2425#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2426
2427/* Cost of vector to scalar operation. */
2428#undef TARG_VEC_TO_SCALAR_COST
2429#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2430
2431/* Cost of scalar to vector operation. */
2432#undef TARG_SCALAR_TO_VEC_COST
2433#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2434
2435/* Cost of aligned vector load. */
2436#undef TARG_VEC_LOAD_COST
2437#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2438
2439/* Cost of misaligned vector load. */
2440#undef TARG_VEC_UNALIGNED_LOAD_COST
2441#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2442
2443/* Cost of vector store. */
2444#undef TARG_VEC_STORE_COST
2445#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2446
2447/* Cost of conditional taken branch for vectorizer cost model. */
2448#undef TARG_COND_TAKEN_BRANCH_COST
2449#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2450
2451/* Cost of conditional not taken branch for vectorizer cost model. */
2452#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2453#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2454
43b83681 2455/*
2456Local variables:
2457version-control: t
2458End:
2459*/