]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/function.c
* ipa-pure-const.c (state_from_flags, local_pure_const): Use
[thirdparty/gcc.git] / gcc / function.c
CommitLineData
bccafa26 1/* Expands front end tree to back end RTL for GCC.
9daf6266 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
bd564c29 3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2e851bb8 4 2010, 2011, 2012 Free Software Foundation, Inc.
897b77d6 5
f12b58b3 6This file is part of GCC.
897b77d6 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
f12b58b3 11version.
897b77d6 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
897b77d6 17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
897b77d6 21
897b77d6 22/* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
e8825bb0 34 not get a hard register. */
897b77d6 35
36#include "config.h"
405711de 37#include "system.h"
805e22b2 38#include "coretypes.h"
39#include "tm.h"
d7091a76 40#include "rtl-error.h"
897b77d6 41#include "tree.h"
42#include "flags.h"
dcabb90e 43#include "except.h"
897b77d6 44#include "function.h"
897b77d6 45#include "expr.h"
530178a9 46#include "optabs.h"
d8fc4d0b 47#include "libfuncs.h"
897b77d6 48#include "regs.h"
49#include "hard-reg-set.h"
50#include "insn-config.h"
51#include "recog.h"
52#include "output.h"
b2c5602e 53#include "basic-block.h"
1f3233d1 54#include "hashtab.h"
a7b0c170 55#include "ggc.h"
075136a2 56#include "tm_p.h"
96554925 57#include "langhooks.h"
45550790 58#include "target.h"
218e3e4e 59#include "common/common-target.h"
75a70cf9 60#include "gimple.h"
77fce4cd 61#include "tree-pass.h"
f1a0edff 62#include "predict.h"
3072d30e 63#include "df.h"
05f3df98 64#include "vecprim.h"
0a55d497 65#include "params.h"
66#include "bb-reorder.h"
f1a0edff 67
c8a152f6 68/* So we can assign to cfun in this file. */
69#undef cfun
70
256f9b65 71#ifndef STACK_ALIGNMENT_NEEDED
72#define STACK_ALIGNMENT_NEEDED 1
73#endif
74
1cd50c9a 75#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
90ed9d61 77/* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
a92771b8 80 must define both, or neither. */
90ed9d61 81#ifndef NAME__MAIN
82#define NAME__MAIN "__main"
90ed9d61 83#endif
84
897b77d6 85/* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90/* Similar, but round to the next highest integer that meets the
91 alignment. */
92#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
897b77d6 94/* Nonzero once virtual register instantiation has been done.
9c0a756f 95 assign_stack_local uses frame_pointer_rtx when this is nonzero.
96 calls.c:emit_library_call_value_1 uses it to set up
97 post-instantiation libcalls. */
98int virtuals_instantiated;
897b77d6 99
4781f9b9 100/* Assign unique numbers to labels generated for profiling, debugging, etc. */
573aba85 101static GTY(()) int funcdef_no;
b8a21949 102
ab5beff9 103/* These variables hold pointers to functions to create and destroy
104 target specific, per-function data structures. */
de1b648b 105struct machine_function * (*init_machine_status) (void);
adc2961c 106
304c5bf1 107/* The currently compiled function. */
08513b52 108struct function *cfun = 0;
304c5bf1 109
25e880b1 110/* These hashes record the prologue and epilogue insns. */
111static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
112 htab_t prologue_insn_hash;
113static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
114 htab_t epilogue_insn_hash;
897b77d6 115\f
1a4c44c5 116
117htab_t types_used_by_vars_hash = NULL;
aef48c9a 118VEC(tree,gc) *types_used_by_cur_var_decl;
1a4c44c5 119
209a68cc 120/* Forward declarations. */
121
de1b648b 122static struct temp_slot *find_temp_slot_from_address (rtx);
de1b648b 123static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
124static void pad_below (struct args_size *, enum machine_mode, tree);
573a97ad 125static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
de1b648b 126static int all_blocks (tree, tree *);
127static tree *get_block_vector (tree, int *);
128extern tree debug_find_var_in_block_tree (tree, tree);
4885b286 129/* We always define `record_insns' even if it's not used so that we
2dc40d2d 130 can always export `prologue_epilogue_contains'. */
25e880b1 131static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
132static bool contains (const_rtx, htab_t);
87d4aa85 133static void prepare_function_start (void);
de1b648b 134static void do_clobber_return_reg (rtx, void *);
135static void do_use_return_reg (rtx, void *);
76a2507e 136static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
8e4c05da 137\f
5737913a 138/* Stack of nested functions. */
139/* Keep track of the cfun stack. */
997d68fe 140
5737913a 141typedef struct function *function_p;
997d68fe 142
5737913a 143DEF_VEC_P(function_p);
144DEF_VEC_ALLOC_P(function_p,heap);
145static VEC(function_p,heap) *function_context_stack;
897b77d6 146
147/* Save the current context for compilation of a nested function.
d2764e2d 148 This is called from language-specific code. */
897b77d6 149
150void
d2764e2d 151push_function_context (void)
897b77d6 152{
08513b52 153 if (cfun == 0)
80f2ef47 154 allocate_struct_function (NULL, false);
304c5bf1 155
5737913a 156 VEC_safe_push (function_p, heap, function_context_stack, cfun);
87d4aa85 157 set_cfun (NULL);
897b77d6 158}
159
160/* Restore the last saved context, at the end of a nested function.
161 This function is called from language-specific code. */
162
163void
d2764e2d 164pop_function_context (void)
897b77d6 165{
5737913a 166 struct function *p = VEC_pop (function_p, function_context_stack);
87d4aa85 167 set_cfun (p);
897b77d6 168 current_function_decl = p->decl;
897b77d6 169
897b77d6 170 /* Reset variables that have known state during rtx generation. */
897b77d6 171 virtuals_instantiated = 0;
316bc009 172 generating_concat_p = 1;
897b77d6 173}
2a228d52 174
3c3bb268 175/* Clear out all parts of the state in F that can safely be discarded
176 after the function has been parsed, but not compiled, to let
177 garbage collection reclaim the memory. */
178
179void
de1b648b 180free_after_parsing (struct function *f)
3c3bb268 181{
b75409ba 182 f->language = 0;
3c3bb268 183}
184
26df1c5e 185/* Clear out all parts of the state in F that can safely be discarded
186 after the function has been compiled, to let garbage collection
a57bcb3b 187 reclaim the memory. */
c788feb1 188
26df1c5e 189void
de1b648b 190free_after_compilation (struct function *f)
26df1c5e 191{
25e880b1 192 prologue_insn_hash = NULL;
193 epilogue_insn_hash = NULL;
194
dd045aee 195 free (crtl->emit.regno_pointer_align);
a4a0e8fd 196
fd6ffb7c 197 memset (crtl, 0, sizeof (struct rtl_data));
1f3233d1 198 f->eh = NULL;
1f3233d1 199 f->machine = NULL;
7a22afab 200 f->cfg = NULL;
3c3bb268 201
a9f6414b 202 regno_reg_rtx = NULL;
8b3949ab 203 insn_locators_free ();
26df1c5e 204}
897b77d6 205\f
0a893c29 206/* Return size needed for stack frame based on slots so far allocated.
207 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
208 the caller may have to do that. */
26d04e5f 209
0a893c29 210HOST_WIDE_INT
de1b648b 211get_frame_size (void)
0a893c29 212{
b079a207 213 if (FRAME_GROWS_DOWNWARD)
214 return -frame_offset;
215 else
216 return frame_offset;
0a893c29 217}
218
26d04e5f 219/* Issue an error message and return TRUE if frame OFFSET overflows in
220 the signed target pointer arithmetics for function FUNC. Otherwise
221 return FALSE. */
222
223bool
224frame_offset_overflow (HOST_WIDE_INT offset, tree func)
48e1416a 225{
26d04e5f 226 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
227
228 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
229 /* Leave room for the fixed part of the frame. */
230 - 64 * UNITS_PER_WORD)
231 {
712d2297 232 error_at (DECL_SOURCE_LOCATION (func),
233 "total size of local objects too large");
26d04e5f 234 return TRUE;
235 }
236
237 return FALSE;
238}
239
ad33891d 240/* Return stack slot alignment in bits for TYPE and MODE. */
241
242static unsigned int
243get_stack_local_alignment (tree type, enum machine_mode mode)
244{
245 unsigned int alignment;
246
247 if (mode == BLKmode)
248 alignment = BIGGEST_ALIGNMENT;
249 else
250 alignment = GET_MODE_ALIGNMENT (mode);
251
252 /* Allow the frond-end to (possibly) increase the alignment of this
253 stack slot. */
254 if (! type)
255 type = lang_hooks.types.type_for_mode (mode, 0);
256
257 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
258}
259
43165fe4 260/* Determine whether it is possible to fit a stack slot of size SIZE and
261 alignment ALIGNMENT into an area in the stack frame that starts at
262 frame offset START and has a length of LENGTH. If so, store the frame
263 offset to be used for the stack slot in *POFFSET and return true;
264 return false otherwise. This function will extend the frame size when
265 given a start/length pair that lies at the end of the frame. */
266
267static bool
268try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
269 HOST_WIDE_INT size, unsigned int alignment,
270 HOST_WIDE_INT *poffset)
271{
272 HOST_WIDE_INT this_frame_offset;
273 int frame_off, frame_alignment, frame_phase;
274
275 /* Calculate how many bytes the start of local variables is off from
276 stack alignment. */
277 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
278 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
279 frame_phase = frame_off ? frame_alignment - frame_off : 0;
280
281 /* Round the frame offset to the specified alignment. */
282
283 /* We must be careful here, since FRAME_OFFSET might be negative and
284 division with a negative dividend isn't as well defined as we might
285 like. So we instead assume that ALIGNMENT is a power of two and
286 use logical operations which are unambiguous. */
287 if (FRAME_GROWS_DOWNWARD)
288 this_frame_offset
289 = (FLOOR_ROUND (start + length - size - frame_phase,
290 (unsigned HOST_WIDE_INT) alignment)
291 + frame_phase);
292 else
293 this_frame_offset
294 = (CEIL_ROUND (start - frame_phase,
295 (unsigned HOST_WIDE_INT) alignment)
296 + frame_phase);
297
298 /* See if it fits. If this space is at the edge of the frame,
299 consider extending the frame to make it fit. Our caller relies on
300 this when allocating a new slot. */
301 if (frame_offset == start && this_frame_offset < frame_offset)
302 frame_offset = this_frame_offset;
303 else if (this_frame_offset < start)
304 return false;
305 else if (start + length == frame_offset
306 && this_frame_offset + size > start + length)
307 frame_offset = this_frame_offset + size;
308 else if (this_frame_offset + size > start + length)
309 return false;
310
311 *poffset = this_frame_offset;
312 return true;
313}
314
315/* Create a new frame_space structure describing free space in the stack
316 frame beginning at START and ending at END, and chain it into the
317 function's frame_space_list. */
318
319static void
320add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
321{
ba72912a 322 struct frame_space *space = ggc_alloc_frame_space ();
43165fe4 323 space->next = crtl->frame_space_list;
324 crtl->frame_space_list = space;
325 space->start = start;
326 space->length = end - start;
327}
328
897b77d6 329/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
330 with machine mode MODE.
06ebc183 331
897b77d6 332 ALIGN controls the amount of alignment for the address of the slot:
333 0 means according to MODE,
334 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
c20b6803 335 -2 means use BITS_PER_UNIT,
897b77d6 336 positive specifies alignment boundary in bits.
337
943d8723 338 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
339 alignment and ASLK_RECORD_PAD bit set if we should remember
340 extra space we allocated for alignment purposes. When we are
341 called from assign_stack_temp_for_type, it is not set so we don't
342 track the same stack slot in two independent lists.
27a7a23a 343
b079a207 344 We do not round to stack_boundary here. */
897b77d6 345
b079a207 346rtx
27a7a23a 347assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
943d8723 348 int align, int kind)
897b77d6 349{
19cb6b50 350 rtx x, addr;
897b77d6 351 int bigend_correction = 0;
286887d9 352 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
ad33891d 353 unsigned int alignment, alignment_in_bits;
897b77d6 354
355 if (align == 0)
356 {
ad33891d 357 alignment = get_stack_local_alignment (NULL, mode);
9bd87fd2 358 alignment /= BITS_PER_UNIT;
897b77d6 359 }
360 else if (align == -1)
361 {
362 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
363 size = CEIL_ROUND (size, alignment);
364 }
c20b6803 365 else if (align == -2)
366 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
897b77d6 367 else
368 alignment = align / BITS_PER_UNIT;
369
27a7a23a 370 alignment_in_bits = alignment * BITS_PER_UNIT;
371
27a7a23a 372 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
373 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
374 {
375 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
376 alignment = alignment_in_bits / BITS_PER_UNIT;
377 }
a79cb8e9 378
27a7a23a 379 if (SUPPORTS_STACK_ALIGNMENT)
380 {
381 if (crtl->stack_alignment_estimated < alignment_in_bits)
382 {
383 if (!crtl->stack_realign_processed)
384 crtl->stack_alignment_estimated = alignment_in_bits;
385 else
386 {
387 /* If stack is realigned and stack alignment value
388 hasn't been finalized, it is OK not to increase
389 stack_alignment_estimated. The bigger alignment
390 requirement is recorded in stack_alignment_needed
391 below. */
392 gcc_assert (!crtl->stack_realign_finalized);
393 if (!crtl->stack_realign_needed)
394 {
395 /* It is OK to reduce the alignment as long as the
396 requested size is 0 or the estimated stack
397 alignment >= mode alignment. */
943d8723 398 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
27a7a23a 399 || size == 0
400 || (crtl->stack_alignment_estimated
401 >= GET_MODE_ALIGNMENT (mode)));
402 alignment_in_bits = crtl->stack_alignment_estimated;
403 alignment = alignment_in_bits / BITS_PER_UNIT;
404 }
405 }
406 }
407 }
ad33891d 408
409 if (crtl->stack_alignment_needed < alignment_in_bits)
410 crtl->stack_alignment_needed = alignment_in_bits;
bd9c33a8 411 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
412 crtl->max_used_stack_slot_alignment = alignment_in_bits;
a79cb8e9 413
43165fe4 414 if (mode != BLKmode || size != 0)
415 {
943d8723 416 if (kind & ASLK_RECORD_PAD)
43165fe4 417 {
943d8723 418 struct frame_space **psp;
419
420 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
421 {
422 struct frame_space *space = *psp;
423 if (!try_fit_stack_local (space->start, space->length, size,
424 alignment, &slot_offset))
425 continue;
426 *psp = space->next;
427 if (slot_offset > space->start)
428 add_frame_space (space->start, slot_offset);
429 if (slot_offset + size < space->start + space->length)
430 add_frame_space (slot_offset + size,
431 space->start + space->length);
432 goto found_space;
433 }
43165fe4 434 }
435 }
436 else if (!STACK_ALIGNMENT_NEEDED)
437 {
438 slot_offset = frame_offset;
439 goto found_space;
440 }
441
442 old_frame_offset = frame_offset;
443
444 if (FRAME_GROWS_DOWNWARD)
445 {
446 frame_offset -= size;
447 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
9f843b44 448
943d8723 449 if (kind & ASLK_RECORD_PAD)
450 {
451 if (slot_offset > frame_offset)
452 add_frame_space (frame_offset, slot_offset);
453 if (slot_offset + size < old_frame_offset)
454 add_frame_space (slot_offset + size, old_frame_offset);
455 }
43165fe4 456 }
457 else
256f9b65 458 {
43165fe4 459 frame_offset += size;
460 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
461
943d8723 462 if (kind & ASLK_RECORD_PAD)
463 {
464 if (slot_offset > old_frame_offset)
465 add_frame_space (old_frame_offset, slot_offset);
466 if (slot_offset + size < frame_offset)
467 add_frame_space (slot_offset + size, frame_offset);
468 }
256f9b65 469 }
897b77d6 470
43165fe4 471 found_space:
897b77d6 472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
1c088911 474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
897b77d6 475 bigend_correction = size - GET_MODE_SIZE (mode);
897b77d6 476
897b77d6 477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
b079a207 479 if (virtuals_instantiated)
29c05e22 480 addr = plus_constant (Pmode, frame_pointer_rtx,
eb21abb2 481 trunc_int_for_mode
43165fe4 482 (slot_offset + bigend_correction
eb21abb2 483 + STARTING_FRAME_OFFSET, Pmode));
897b77d6 484 else
29c05e22 485 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
eb21abb2 486 trunc_int_for_mode
43165fe4 487 (slot_offset + bigend_correction,
eb21abb2 488 Pmode));
897b77d6 489
941522d6 490 x = gen_rtx_MEM (mode, addr);
ad33891d 491 set_mem_align (x, alignment_in_bits);
43283c91 492 MEM_NOTRAP_P (x) = 1;
897b77d6 493
b079a207 494 stack_slot_list
495 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
26df1c5e 496
b079a207 497 if (frame_offset_overflow (frame_offset, current_function_decl))
498 frame_offset = 0;
55abba5b 499
897b77d6 500 return x;
501}
27a7a23a 502
503/* Wrap up assign_stack_local_1 with last parameter as false. */
504
505rtx
506assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
507{
943d8723 508 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
27a7a23a 509}
a6629703 510\f
fef299ce 511/* In order to evaluate some expressions, such as function calls returning
512 structures in memory, we need to temporarily allocate stack locations.
513 We record each allocated temporary in the following structure.
514
515 Associated with each temporary slot is a nesting level. When we pop up
516 one level, all temporaries associated with the previous level are freed.
517 Normally, all temporaries are freed after the execution of the statement
518 in which they were created. However, if we are inside a ({...}) grouping,
519 the result may be in a temporary and hence must be preserved. If the
520 result could be in a temporary, we preserve it if we can determine which
521 one it is in. If we cannot determine which temporary may contain the
522 result, all temporaries are preserved. A temporary is preserved by
0ab48139 523 pretending it was allocated at the previous nesting level. */
fef299ce 524
fb1e4f4a 525struct GTY(()) temp_slot {
fef299ce 526 /* Points to next temporary slot. */
527 struct temp_slot *next;
528 /* Points to previous temporary slot. */
529 struct temp_slot *prev;
530 /* The rtx to used to reference the slot. */
531 rtx slot;
fef299ce 532 /* The size, in units, of the slot. */
533 HOST_WIDE_INT size;
534 /* The type of the object in the slot, or zero if it doesn't correspond
535 to a type. We use this to determine whether a slot can be reused.
536 It can be reused if objects of the type of the new slot will always
537 conflict with objects of the type of the old slot. */
538 tree type;
0ac758f7 539 /* The alignment (in bits) of the slot. */
540 unsigned int align;
fef299ce 541 /* Nonzero if this temporary is currently in use. */
542 char in_use;
fef299ce 543 /* Nesting level at which this slot is being used. */
544 int level;
fef299ce 545 /* The offset of the slot from the frame_pointer, including extra space
546 for alignment. This info is for combine_temp_slots. */
547 HOST_WIDE_INT base_offset;
548 /* The size of the slot, including extra space for alignment. This
549 info is for combine_temp_slots. */
550 HOST_WIDE_INT full_size;
551};
552
553/* A table of addresses that represent a stack slot. The table is a mapping
554 from address RTXen to a temp slot. */
555static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
fc3c948c 556static size_t n_temp_slots_in_use;
fef299ce 557
558/* Entry for the above hash table. */
fb1e4f4a 559struct GTY(()) temp_slot_address_entry {
fef299ce 560 hashval_t hash;
561 rtx address;
562 struct temp_slot *temp_slot;
563};
564
a6629703 565/* Removes temporary slot TEMP from LIST. */
566
567static void
568cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
569{
570 if (temp->next)
571 temp->next->prev = temp->prev;
572 if (temp->prev)
573 temp->prev->next = temp->next;
574 else
575 *list = temp->next;
576
577 temp->prev = temp->next = NULL;
578}
579
580/* Inserts temporary slot TEMP to LIST. */
581
582static void
583insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
584{
585 temp->next = *list;
586 if (*list)
587 (*list)->prev = temp;
588 temp->prev = NULL;
589 *list = temp;
590}
591
592/* Returns the list of used temp slots at LEVEL. */
593
594static struct temp_slot **
595temp_slots_at_level (int level)
596{
84aacb40 597 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
e85c2c2d 598 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
a6629703 599
84aacb40 600 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
a6629703 601}
602
603/* Returns the maximal temporary slot level. */
604
605static int
606max_slot_level (void)
607{
608 if (!used_temp_slots)
609 return -1;
610
84aacb40 611 return VEC_length (temp_slot_p, used_temp_slots) - 1;
a6629703 612}
613
614/* Moves temporary slot TEMP to LEVEL. */
615
616static void
617move_slot_to_level (struct temp_slot *temp, int level)
618{
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, temp_slots_at_level (level));
621 temp->level = level;
622}
623
624/* Make temporary slot TEMP available. */
625
626static void
627make_slot_available (struct temp_slot *temp)
628{
629 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
630 insert_slot_to_list (temp, &avail_temp_slots);
631 temp->in_use = 0;
632 temp->level = -1;
fc3c948c 633 n_temp_slots_in_use--;
a6629703 634}
fef299ce 635
636/* Compute the hash value for an address -> temp slot mapping.
637 The value is cached on the mapping entry. */
638static hashval_t
639temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
640{
641 int do_not_record = 0;
642 return hash_rtx (t->address, GET_MODE (t->address),
643 &do_not_record, NULL, false);
644}
645
646/* Return the hash value for an address -> temp slot mapping. */
647static hashval_t
648temp_slot_address_hash (const void *p)
649{
650 const struct temp_slot_address_entry *t;
651 t = (const struct temp_slot_address_entry *) p;
652 return t->hash;
653}
654
655/* Compare two address -> temp slot mapping entries. */
656static int
657temp_slot_address_eq (const void *p1, const void *p2)
658{
659 const struct temp_slot_address_entry *t1, *t2;
660 t1 = (const struct temp_slot_address_entry *) p1;
661 t2 = (const struct temp_slot_address_entry *) p2;
662 return exp_equiv_p (t1->address, t2->address, 0, true);
663}
664
665/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
666static void
667insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
668{
669 void **slot;
ba72912a 670 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
fef299ce 671 t->address = address;
672 t->temp_slot = temp_slot;
673 t->hash = temp_slot_address_compute_hash (t);
674 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
675 *slot = t;
676}
677
678/* Remove an address -> temp slot mapping entry if the temp slot is
679 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
680static int
681remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
682{
683 const struct temp_slot_address_entry *t;
684 t = (const struct temp_slot_address_entry *) *slot;
685 if (! t->temp_slot->in_use)
fc3c948c 686 htab_clear_slot (temp_slot_address_table, slot);
fef299ce 687 return 1;
688}
689
690/* Remove all mappings of addresses to unused temp slots. */
691static void
692remove_unused_temp_slot_addresses (void)
693{
fc3c948c 694 /* Use quicker clearing if there aren't any active temp slots. */
695 if (n_temp_slots_in_use)
696 htab_traverse (temp_slot_address_table,
697 remove_unused_temp_slot_addresses_1,
698 NULL);
699 else
700 htab_empty (temp_slot_address_table);
fef299ce 701}
702
703/* Find the temp slot corresponding to the object at address X. */
704
705static struct temp_slot *
706find_temp_slot_from_address (rtx x)
707{
708 struct temp_slot *p;
709 struct temp_slot_address_entry tmp, *t;
710
711 /* First try the easy way:
712 See if X exists in the address -> temp slot mapping. */
713 tmp.address = x;
714 tmp.temp_slot = NULL;
715 tmp.hash = temp_slot_address_compute_hash (&tmp);
716 t = (struct temp_slot_address_entry *)
717 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
718 if (t)
719 return t->temp_slot;
720
721 /* If we have a sum involving a register, see if it points to a temp
722 slot. */
723 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
724 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
725 return p;
726 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
727 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
728 return p;
729
730 /* Last resort: Address is a virtual stack var address. */
731 if (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == virtual_stack_vars_rtx
971ba038 733 && CONST_INT_P (XEXP (x, 1)))
fef299ce 734 {
735 int i;
736 for (i = max_slot_level (); i >= 0; i--)
737 for (p = *temp_slots_at_level (i); p; p = p->next)
738 {
739 if (INTVAL (XEXP (x, 1)) >= p->base_offset
740 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
741 return p;
742 }
743 }
744
745 return NULL;
746}
897b77d6 747\f
748/* Allocate a temporary stack slot and record it for possible later
749 reuse.
750
751 MODE is the machine mode to be given to the returned rtx.
752
753 SIZE is the size in units of the space required. We do no rounding here
754 since assign_stack_local will do any required rounding.
755
59241190 756 TYPE is the type that will be used for the stack slot. */
897b77d6 757
2b96c5f6 758rtx
89f18f73 759assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
0ab48139 760 tree type)
897b77d6 761{
d3e10bed 762 unsigned int align;
a6629703 763 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
84be287d 764 rtx slot;
897b77d6 765
babc13fa 766 /* If SIZE is -1 it means that somebody tried to allocate a temporary
767 of a variable size. */
fdada98f 768 gcc_assert (size != -1);
babc13fa 769
ad33891d 770 align = get_stack_local_alignment (type, mode);
9bd87fd2 771
772 /* Try to find an available, already-allocated temporary of the proper
773 mode which meets the size and alignment requirements. Choose the
867eb367 774 smallest one with the closest alignment.
48e1416a 775
867eb367 776 If assign_stack_temp is called outside of the tree->rtl expansion,
777 we cannot reuse the stack slots (that may still refer to
778 VIRTUAL_STACK_VARS_REGNUM). */
779 if (!virtuals_instantiated)
a6629703 780 {
867eb367 781 for (p = avail_temp_slots; p; p = p->next)
a6629703 782 {
867eb367 783 if (p->align >= align && p->size >= size
784 && GET_MODE (p->slot) == mode
785 && objects_must_conflict_p (p->type, type)
786 && (best_p == 0 || best_p->size > p->size
787 || (best_p->size == p->size && best_p->align > p->align)))
a6629703 788 {
867eb367 789 if (p->align == align && p->size == size)
790 {
791 selected = p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793 best_p = 0;
794 break;
795 }
796 best_p = p;
a6629703 797 }
a6629703 798 }
799 }
897b77d6 800
801 /* Make our best, if any, the one to use. */
802 if (best_p)
49d3d726 803 {
a6629703 804 selected = best_p;
805 cut_slot_from_list (selected, &avail_temp_slots);
806
49d3d726 807 /* If there are enough aligned bytes left over, make them into a new
808 temp_slot so that the extra bytes don't get wasted. Do this only
809 for BLKmode slots, so that we can be sure of the alignment. */
f7c44134 810 if (GET_MODE (best_p->slot) == BLKmode)
49d3d726 811 {
9bd87fd2 812 int alignment = best_p->align / BITS_PER_UNIT;
997d68fe 813 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
49d3d726 814
815 if (best_p->size - rounded_size >= alignment)
816 {
ba72912a 817 p = ggc_alloc_temp_slot ();
0ab48139 818 p->in_use = 0;
49d3d726 819 p->size = best_p->size - rounded_size;
e8a637a3 820 p->base_offset = best_p->base_offset + rounded_size;
821 p->full_size = best_p->full_size - rounded_size;
43283c91 822 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
9bd87fd2 823 p->align = best_p->align;
387bc205 824 p->type = best_p->type;
a6629703 825 insert_slot_to_list (p, &avail_temp_slots);
49d3d726 826
941522d6 827 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
828 stack_slot_list);
49d3d726 829
830 best_p->size = rounded_size;
5ea3c815 831 best_p->full_size = rounded_size;
49d3d726 832 }
833 }
49d3d726 834 }
06ebc183 835
897b77d6 836 /* If we still didn't find one, make a new temporary. */
a6629703 837 if (selected == 0)
897b77d6 838 {
997d68fe 839 HOST_WIDE_INT frame_offset_old = frame_offset;
840
ba72912a 841 p = ggc_alloc_temp_slot ();
997d68fe 842
d61726bc 843 /* We are passing an explicit alignment request to assign_stack_local.
844 One side effect of that is assign_stack_local will not round SIZE
845 to ensure the frame offset remains suitably aligned.
846
847 So for requests which depended on the rounding of SIZE, we go ahead
848 and round it now. We also make sure ALIGNMENT is at least
849 BIGGEST_ALIGNMENT. */
fdada98f 850 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
943d8723 851 p->slot = assign_stack_local_1 (mode,
852 (mode == BLKmode
853 ? CEIL_ROUND (size,
854 (int) align
855 / BITS_PER_UNIT)
856 : size),
857 align, 0);
9bd87fd2 858
859 p->align = align;
997d68fe 860
ef4d68c5 861 /* The following slot size computation is necessary because we don't
862 know the actual size of the temporary slot until assign_stack_local
863 has performed all the frame alignment and size rounding for the
d53be447 864 requested temporary. Note that extra space added for alignment
865 can be either above or below this stack slot depending on which
866 way the frame grows. We include the extra space if and only if it
867 is above this slot. */
d28d5017 868 if (FRAME_GROWS_DOWNWARD)
869 p->size = frame_offset_old - frame_offset;
870 else
871 p->size = size;
997d68fe 872
d53be447 873 /* Now define the fields used by combine_temp_slots. */
d28d5017 874 if (FRAME_GROWS_DOWNWARD)
875 {
876 p->base_offset = frame_offset;
877 p->full_size = frame_offset_old - frame_offset;
878 }
879 else
880 {
881 p->base_offset = frame_offset_old;
882 p->full_size = frame_offset - frame_offset_old;
883 }
a6629703 884
885 selected = p;
897b77d6 886 }
887
a6629703 888 p = selected;
897b77d6 889 p->in_use = 1;
387bc205 890 p->type = type;
fcb807f8 891 p->level = temp_slot_level;
fc3c948c 892 n_temp_slots_in_use++;
21c867df 893
a6629703 894 pp = temp_slots_at_level (p->level);
895 insert_slot_to_list (p, pp);
fef299ce 896 insert_temp_slot_address (XEXP (p->slot, 0), p);
84be287d 897
898 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
899 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
900 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
f7c44134 901
387bc205 902 /* If we know the alias set for the memory that will be used, use
903 it. If there's no TYPE, then we don't know anything about the
904 alias set for the memory. */
84be287d 905 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
906 set_mem_align (slot, align);
387bc205 907
6312a35e 908 /* If a type is specified, set the relevant flags. */
f7c44134 909 if (type != 0)
402f6a9e 910 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
43283c91 911 MEM_NOTRAP_P (slot) = 1;
f7c44134 912
84be287d 913 return slot;
897b77d6 914}
9bd87fd2 915
916/* Allocate a temporary stack slot and record it for possible later
0ab48139 917 reuse. First two arguments are same as in preceding function. */
9bd87fd2 918
919rtx
0ab48139 920assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
9bd87fd2 921{
0ab48139 922 return assign_stack_temp_for_type (mode, size, NULL_TREE);
9bd87fd2 923}
ad6d0e80 924\f
567c22a9 925/* Assign a temporary.
926 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
927 and so that should be used in error messages. In either case, we
928 allocate of the given type.
9c457457 929 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
30dd806d 930 it is 0 if a register is OK.
931 DONT_PROMOTE is 1 if we should not promote values in register
932 to wider modes. */
9c457457 933
934rtx
0ab48139 935assign_temp (tree type_or_decl, int memory_required,
de1b648b 936 int dont_promote ATTRIBUTE_UNUSED)
9c457457 937{
567c22a9 938 tree type, decl;
939 enum machine_mode mode;
7752d341 940#ifdef PROMOTE_MODE
567c22a9 941 int unsignedp;
942#endif
943
944 if (DECL_P (type_or_decl))
945 decl = type_or_decl, type = TREE_TYPE (decl);
946 else
947 decl = NULL, type = type_or_decl;
948
949 mode = TYPE_MODE (type);
7752d341 950#ifdef PROMOTE_MODE
78a8ed03 951 unsignedp = TYPE_UNSIGNED (type);
aeb6d7ef 952#endif
ad6d0e80 953
9c457457 954 if (mode == BLKmode || memory_required)
955 {
997d68fe 956 HOST_WIDE_INT size = int_size_in_bytes (type);
9c457457 957 rtx tmp;
958
779a20c8 959 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
960 problems with allocating the stack space. */
961 if (size == 0)
962 size = 1;
963
9c457457 964 /* Unfortunately, we don't yet know how to allocate variable-sized
150edb07 965 temporaries. However, sometimes we can find a fixed upper limit on
966 the size, so try that instead. */
967 else if (size == -1)
968 size = max_int_size_in_bytes (type);
8c3216ae 969
567c22a9 970 /* The size of the temporary may be too large to fit into an integer. */
971 /* ??? Not sure this should happen except for user silliness, so limit
60d903f5 972 this to things that aren't compiler-generated temporaries. The
89f18f73 973 rest of the time we'll die in assign_stack_temp_for_type. */
567c22a9 974 if (decl && size == -1
975 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
976 {
3cf8b391 977 error ("size of variable %q+D is too large", decl);
567c22a9 978 size = 1;
979 }
980
0ab48139 981 tmp = assign_stack_temp_for_type (mode, size, type);
9c457457 982 return tmp;
983 }
ad6d0e80 984
7752d341 985#ifdef PROMOTE_MODE
30dd806d 986 if (! dont_promote)
3b2411a8 987 mode = promote_mode (type, mode, &unsignedp);
9c457457 988#endif
ad6d0e80 989
9c457457 990 return gen_reg_rtx (mode);
991}
ad6d0e80 992\f
49d3d726 993/* Combine temporary stack slots which are adjacent on the stack.
994
995 This allows for better use of already allocated stack space. This is only
996 done for BLKmode slots because we can be sure that we won't have alignment
997 problems in this case. */
998
3f0895d3 999static void
de1b648b 1000combine_temp_slots (void)
49d3d726 1001{
a6629703 1002 struct temp_slot *p, *q, *next, *next_q;
997d68fe 1003 int num_slots;
1004
59241190 1005 /* We can't combine slots, because the information about which slot
1006 is in which alias set will be lost. */
1007 if (flag_strict_aliasing)
1008 return;
1009
06ebc183 1010 /* If there are a lot of temp slots, don't do anything unless
cb0ccc1e 1011 high levels of optimization. */
997d68fe 1012 if (! flag_expensive_optimizations)
a6629703 1013 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
997d68fe 1014 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1015 return;
49d3d726 1016
a6629703 1017 for (p = avail_temp_slots; p; p = next)
ccf0a5eb 1018 {
1019 int delete_p = 0;
997d68fe 1020
a6629703 1021 next = p->next;
1022
1023 if (GET_MODE (p->slot) != BLKmode)
1024 continue;
1025
1026 for (q = p->next; q; q = next_q)
ccf0a5eb 1027 {
a6629703 1028 int delete_q = 0;
1029
1030 next_q = q->next;
1031
1032 if (GET_MODE (q->slot) != BLKmode)
1033 continue;
1034
1035 if (p->base_offset + p->full_size == q->base_offset)
1036 {
1037 /* Q comes after P; combine Q into P. */
1038 p->size += q->size;
1039 p->full_size += q->full_size;
1040 delete_q = 1;
1041 }
1042 else if (q->base_offset + q->full_size == p->base_offset)
1043 {
1044 /* P comes after Q; combine P into Q. */
1045 q->size += p->size;
1046 q->full_size += p->full_size;
1047 delete_p = 1;
1048 break;
1049 }
1050 if (delete_q)
1051 cut_slot_from_list (q, &avail_temp_slots);
ccf0a5eb 1052 }
a6629703 1053
1054 /* Either delete P or advance past it. */
1055 if (delete_p)
1056 cut_slot_from_list (p, &avail_temp_slots);
ccf0a5eb 1057 }
49d3d726 1058}
897b77d6 1059\f
f4e36c33 1060/* Indicate that NEW_RTX is an alternate way of referring to the temp
1061 slot that previously was known by OLD_RTX. */
64e90dae 1062
1063void
f4e36c33 1064update_temp_slot_address (rtx old_rtx, rtx new_rtx)
64e90dae 1065{
155b05dc 1066 struct temp_slot *p;
64e90dae 1067
f4e36c33 1068 if (rtx_equal_p (old_rtx, new_rtx))
64e90dae 1069 return;
155b05dc 1070
f4e36c33 1071 p = find_temp_slot_from_address (old_rtx);
155b05dc 1072
f4e36c33 1073 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1074 NEW_RTX is a register, see if one operand of the PLUS is a
1075 temporary location. If so, NEW_RTX points into it. Otherwise,
1076 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1077 in common between them. If so, try a recursive call on those
1078 values. */
155b05dc 1079 if (p == 0)
1080 {
f4e36c33 1081 if (GET_CODE (old_rtx) != PLUS)
8911b943 1082 return;
1083
f4e36c33 1084 if (REG_P (new_rtx))
8911b943 1085 {
f4e36c33 1086 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1087 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
8911b943 1088 return;
1089 }
f4e36c33 1090 else if (GET_CODE (new_rtx) != PLUS)
155b05dc 1091 return;
1092
f4e36c33 1093 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1097 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1098 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1099 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1100 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
155b05dc 1101
1102 return;
1103 }
1104
06ebc183 1105 /* Otherwise add an alias for the temp's address. */
fef299ce 1106 insert_temp_slot_address (new_rtx, p);
64e90dae 1107}
1108
30f413ae 1109/* If X could be a reference to a temporary slot, mark that slot as
1110 belonging to the to one level higher than the current level. If X
1111 matched one of our slots, just mark that one. Otherwise, we can't
0ab48139 1112 easily predict which it is, so upgrade all of them.
897b77d6 1113
1114 This is called when an ({...}) construct occurs and a statement
1115 returns a value in memory. */
1116
1117void
de1b648b 1118preserve_temp_slots (rtx x)
897b77d6 1119{
a6629703 1120 struct temp_slot *p = 0, *next;
897b77d6 1121
c7c7590a 1122 if (x == 0)
0ab48139 1123 return;
41969bd3 1124
e8825bb0 1125 /* If X is a register that is being used as a pointer, see if we have
0ab48139 1126 a temporary slot we know it points to. */
e8825bb0 1127 if (REG_P (x) && REG_POINTER (x))
1128 p = find_temp_slot_from_address (x);
41969bd3 1129
e8825bb0 1130 /* If X is not in memory or is at a constant address, it cannot be in
0ab48139 1131 a temporary slot. */
e8825bb0 1132 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
0ab48139 1133 return;
e8825bb0 1134
1135 /* First see if we can find a match. */
1136 if (p == 0)
1137 p = find_temp_slot_from_address (XEXP (x, 0));
1138
1139 if (p != 0)
1140 {
e8825bb0 1141 if (p->level == temp_slot_level)
0ab48139 1142 move_slot_to_level (p, temp_slot_level - 1);
e8825bb0 1143 return;
41969bd3 1144 }
0dbd1c74 1145
e8825bb0 1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
0dbd1c74 1148 {
e8825bb0 1149 next = p->next;
0ab48139 1150 move_slot_to_level (p, temp_slot_level - 1);
e8825bb0 1151 }
c925694c 1152}
1153
e8825bb0 1154/* Free all temporaries used so far. This is normally called at the
1155 end of generating code for a statement. */
c925694c 1156
e8825bb0 1157void
1158free_temp_slots (void)
c925694c 1159{
e8825bb0 1160 struct temp_slot *p, *next;
a4da9a83 1161 bool some_available = false;
c925694c 1162
e8825bb0 1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 {
1165 next = p->next;
0ab48139 1166 make_slot_available (p);
1167 some_available = true;
e8825bb0 1168 }
c925694c 1169
a4da9a83 1170 if (some_available)
1171 {
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
e8825bb0 1175}
c925694c 1176
e8825bb0 1177/* Push deeper into the nesting level for stack temporaries. */
c925694c 1178
e8825bb0 1179void
1180push_temp_slots (void)
c925694c 1181{
e8825bb0 1182 temp_slot_level++;
c925694c 1183}
1184
e8825bb0 1185/* Pop a temporary nesting level. All slots in use in the current level
1186 are freed. */
c925694c 1187
e8825bb0 1188void
1189pop_temp_slots (void)
c925694c 1190{
0ab48139 1191 free_temp_slots ();
e8825bb0 1192 temp_slot_level--;
bf5a43e2 1193}
1194
e8825bb0 1195/* Initialize temporary slots. */
0dbd1c74 1196
1197void
e8825bb0 1198init_temp_slots (void)
0dbd1c74 1199{
e8825bb0 1200 /* We have not allocated any temporaries yet. */
1201 avail_temp_slots = 0;
1202 used_temp_slots = 0;
1203 temp_slot_level = 0;
fc3c948c 1204 n_temp_slots_in_use = 0;
fef299ce 1205
1206 /* Set up the table to map addresses to temp slots. */
1207 if (! temp_slot_address_table)
1208 temp_slot_address_table = htab_create_ggc (32,
1209 temp_slot_address_hash,
1210 temp_slot_address_eq,
1211 NULL);
1212 else
1213 htab_empty (temp_slot_address_table);
e8825bb0 1214}
1215\f
ea1760a3 1216/* Functions and data structures to keep track of the values hard regs
1217 had at the start of the function. */
1218
1219/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1220 and has_hard_reg_initial_val.. */
1221typedef struct GTY(()) initial_value_pair {
1222 rtx hard_reg;
1223 rtx pseudo;
1224} initial_value_pair;
1225/* ??? This could be a VEC but there is currently no way to define an
1226 opaque VEC type. This could be worked around by defining struct
1227 initial_value_pair in function.h. */
1228typedef struct GTY(()) initial_value_struct {
1229 int num_entries;
1230 int max_entries;
1231 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1232} initial_value_struct;
1233
1234/* If a pseudo represents an initial hard reg (or expression), return
1235 it, else return NULL_RTX. */
1236
1237rtx
1238get_hard_reg_initial_reg (rtx reg)
1239{
1240 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1241 int i;
1242
1243 if (ivs == 0)
1244 return NULL_RTX;
1245
1246 for (i = 0; i < ivs->num_entries; i++)
1247 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1248 return ivs->entries[i].hard_reg;
1249
1250 return NULL_RTX;
1251}
1252
1253/* Make sure that there's a pseudo register of mode MODE that stores the
1254 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1255
1256rtx
1257get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1258{
1259 struct initial_value_struct *ivs;
1260 rtx rv;
1261
1262 rv = has_hard_reg_initial_val (mode, regno);
1263 if (rv)
1264 return rv;
1265
1266 ivs = crtl->hard_reg_initial_vals;
1267 if (ivs == 0)
1268 {
1269 ivs = ggc_alloc_initial_value_struct ();
1270 ivs->num_entries = 0;
1271 ivs->max_entries = 5;
1272 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1273 crtl->hard_reg_initial_vals = ivs;
1274 }
1275
1276 if (ivs->num_entries >= ivs->max_entries)
1277 {
1278 ivs->max_entries += 5;
1279 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1280 ivs->max_entries);
1281 }
1282
1283 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1284 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1285
1286 return ivs->entries[ivs->num_entries++].pseudo;
1287}
1288
1289/* See if get_hard_reg_initial_val has been used to create a pseudo
1290 for the initial value of hard register REGNO in mode MODE. Return
1291 the associated pseudo if so, otherwise return NULL. */
1292
1293rtx
1294has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1295{
1296 struct initial_value_struct *ivs;
1297 int i;
1298
1299 ivs = crtl->hard_reg_initial_vals;
1300 if (ivs != 0)
1301 for (i = 0; i < ivs->num_entries; i++)
1302 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1303 && REGNO (ivs->entries[i].hard_reg) == regno)
1304 return ivs->entries[i].pseudo;
1305
1306 return NULL_RTX;
1307}
1308
1309unsigned int
1310emit_initial_value_sets (void)
1311{
1312 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1313 int i;
1314 rtx seq;
1315
1316 if (ivs == 0)
1317 return 0;
1318
1319 start_sequence ();
1320 for (i = 0; i < ivs->num_entries; i++)
1321 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1322 seq = get_insns ();
1323 end_sequence ();
1324
1325 emit_insn_at_entry (seq);
1326 return 0;
1327}
1328
1329/* Return the hardreg-pseudoreg initial values pair entry I and
1330 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1331bool
1332initial_value_entry (int i, rtx *hreg, rtx *preg)
1333{
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 if (!ivs || i >= ivs->num_entries)
1336 return false;
1337
1338 *hreg = ivs->entries[i].hard_reg;
1339 *preg = ivs->entries[i].pseudo;
1340 return true;
1341}
1342\f
e8825bb0 1343/* These routines are responsible for converting virtual register references
1344 to the actual hard register references once RTL generation is complete.
06ebc183 1345
e8825bb0 1346 The following four variables are used for communication between the
1347 routines. They contain the offsets of the virtual registers from their
1348 respective hard registers. */
c925694c 1349
e8825bb0 1350static int in_arg_offset;
1351static int var_offset;
1352static int dynamic_offset;
1353static int out_arg_offset;
1354static int cfa_offset;
a8636638 1355
e8825bb0 1356/* In most machines, the stack pointer register is equivalent to the bottom
1357 of the stack. */
06ebc183 1358
e8825bb0 1359#ifndef STACK_POINTER_OFFSET
1360#define STACK_POINTER_OFFSET 0
1361#endif
bf5a43e2 1362
e8825bb0 1363/* If not defined, pick an appropriate default for the offset of dynamically
1364 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1365 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
c925694c 1366
e8825bb0 1367#ifndef STACK_DYNAMIC_OFFSET
a8636638 1368
e8825bb0 1369/* The bottom of the stack points to the actual arguments. If
1370 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1371 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1372 stack space for register parameters is not pushed by the caller, but
1373 rather part of the fixed stack areas and hence not included in
abe32cce 1374 `crtl->outgoing_args_size'. Nevertheless, we must allow
e8825bb0 1375 for it when allocating stack dynamic objects. */
a8636638 1376
63c68695 1377#if defined(REG_PARM_STACK_SPACE)
e8825bb0 1378#define STACK_DYNAMIC_OFFSET(FNDECL) \
1379((ACCUMULATE_OUTGOING_ARGS \
abe32cce 1380 ? (crtl->outgoing_args_size \
22c61100 1381 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1382 : REG_PARM_STACK_SPACE (FNDECL))) \
63c68695 1383 : 0) + (STACK_POINTER_OFFSET))
e8825bb0 1384#else
1385#define STACK_DYNAMIC_OFFSET(FNDECL) \
abe32cce 1386((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
e8825bb0 1387 + (STACK_POINTER_OFFSET))
1388#endif
1389#endif
f678883b 1390
e3d5af87 1391\f
f15c4004 1392/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1393 is a virtual register, return the equivalent hard register and set the
1394 offset indirectly through the pointer. Otherwise, return 0. */
897b77d6 1395
f15c4004 1396static rtx
1397instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
897b77d6 1398{
f4e36c33 1399 rtx new_rtx;
f15c4004 1400 HOST_WIDE_INT offset;
897b77d6 1401
f15c4004 1402 if (x == virtual_incoming_args_rtx)
27a7a23a 1403 {
f6754469 1404 if (stack_realign_drap)
27a7a23a 1405 {
f6754469 1406 /* Replace virtual_incoming_args_rtx with internal arg
1407 pointer if DRAP is used to realign stack. */
f4e36c33 1408 new_rtx = crtl->args.internal_arg_pointer;
27a7a23a 1409 offset = 0;
1410 }
1411 else
f4e36c33 1412 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
27a7a23a 1413 }
f15c4004 1414 else if (x == virtual_stack_vars_rtx)
f4e36c33 1415 new_rtx = frame_pointer_rtx, offset = var_offset;
f15c4004 1416 else if (x == virtual_stack_dynamic_rtx)
f4e36c33 1417 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
f15c4004 1418 else if (x == virtual_outgoing_args_rtx)
f4e36c33 1419 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
f15c4004 1420 else if (x == virtual_cfa_rtx)
da72c083 1421 {
1422#ifdef FRAME_POINTER_CFA_OFFSET
f4e36c33 1423 new_rtx = frame_pointer_rtx;
da72c083 1424#else
f4e36c33 1425 new_rtx = arg_pointer_rtx;
da72c083 1426#endif
1427 offset = cfa_offset;
1428 }
60778e62 1429 else if (x == virtual_preferred_stack_boundary_rtx)
1430 {
1431 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1432 offset = 0;
1433 }
f15c4004 1434 else
1435 return NULL_RTX;
897b77d6 1436
f15c4004 1437 *poffset = offset;
f4e36c33 1438 return new_rtx;
897b77d6 1439}
1440
f15c4004 1441/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1442 Instantiate any virtual registers present inside of *LOC. The expression
1443 is simplified, as much as possible, but is not to be considered "valid"
1444 in any sense implied by the target. If any change is made, set CHANGED
1445 to true. */
897b77d6 1446
f15c4004 1447static int
1448instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
897b77d6 1449{
f15c4004 1450 HOST_WIDE_INT offset;
1451 bool *changed = (bool *) data;
f4e36c33 1452 rtx x, new_rtx;
897b77d6 1453
f15c4004 1454 x = *loc;
1455 if (x == 0)
1456 return 0;
1457
1458 switch (GET_CODE (x))
897b77d6 1459 {
f15c4004 1460 case REG:
f4e36c33 1461 new_rtx = instantiate_new_reg (x, &offset);
1462 if (new_rtx)
f15c4004 1463 {
29c05e22 1464 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
f15c4004 1465 if (changed)
1466 *changed = true;
1467 }
1468 return -1;
1469
1470 case PLUS:
f4e36c33 1471 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1472 if (new_rtx)
f15c4004 1473 {
29c05e22 1474 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
f4e36c33 1475 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
f15c4004 1476 if (changed)
1477 *changed = true;
1478 return -1;
1479 }
997d68fe 1480
f15c4004 1481 /* FIXME -- from old code */
1482 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1483 we can commute the PLUS and SUBREG because pointers into the
1484 frame are well-behaved. */
1485 break;
5970b26a 1486
f15c4004 1487 default:
1488 break;
897b77d6 1489 }
1490
f15c4004 1491 return 0;
897b77d6 1492}
1493
f15c4004 1494/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1495 matches the predicate for insn CODE operand OPERAND. */
897b77d6 1496
f15c4004 1497static int
1498safe_insn_predicate (int code, int operand, rtx x)
897b77d6 1499{
39c56a89 1500 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
f15c4004 1501}
6d0423b8 1502
f15c4004 1503/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1504 registers present inside of insn. The result will be a valid insn. */
6d0423b8 1505
1506static void
f15c4004 1507instantiate_virtual_regs_in_insn (rtx insn)
6d0423b8 1508{
f15c4004 1509 HOST_WIDE_INT offset;
1510 int insn_code, i;
27ca6129 1511 bool any_change = false;
f4e36c33 1512 rtx set, new_rtx, x, seq;
00dfb616 1513
f15c4004 1514 /* There are some special cases to be handled first. */
1515 set = single_set (insn);
1516 if (set)
00dfb616 1517 {
f15c4004 1518 /* We're allowed to assign to a virtual register. This is interpreted
1519 to mean that the underlying register gets assigned the inverse
1520 transformation. This is used, for example, in the handling of
1521 non-local gotos. */
f4e36c33 1522 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1523 if (new_rtx)
f15c4004 1524 {
1525 start_sequence ();
00dfb616 1526
f15c4004 1527 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
f4e36c33 1528 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
f15c4004 1529 GEN_INT (-offset));
f4e36c33 1530 x = force_operand (x, new_rtx);
1531 if (x != new_rtx)
1532 emit_move_insn (new_rtx, x);
6d0423b8 1533
f15c4004 1534 seq = get_insns ();
1535 end_sequence ();
6d0423b8 1536
f15c4004 1537 emit_insn_before (seq, insn);
1538 delete_insn (insn);
1539 return;
1540 }
6d0423b8 1541
f15c4004 1542 /* Handle a straight copy from a virtual register by generating a
1543 new add insn. The difference between this and falling through
1544 to the generic case is avoiding a new pseudo and eliminating a
1545 move insn in the initial rtl stream. */
f4e36c33 1546 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1547 if (new_rtx && offset != 0
f15c4004 1548 && REG_P (SET_DEST (set))
1549 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1550 {
1551 start_sequence ();
6d0423b8 1552
f15c4004 1553 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
f4e36c33 1554 new_rtx, GEN_INT (offset), SET_DEST (set),
f15c4004 1555 1, OPTAB_LIB_WIDEN);
1556 if (x != SET_DEST (set))
1557 emit_move_insn (SET_DEST (set), x);
02e7a332 1558
f15c4004 1559 seq = get_insns ();
1560 end_sequence ();
e3f529ab 1561
f15c4004 1562 emit_insn_before (seq, insn);
1563 delete_insn (insn);
e3f529ab 1564 return;
f15c4004 1565 }
6d0423b8 1566
f15c4004 1567 extract_insn (insn);
27ca6129 1568 insn_code = INSN_CODE (insn);
6d0423b8 1569
f15c4004 1570 /* Handle a plus involving a virtual register by determining if the
1571 operands remain valid if they're modified in place. */
1572 if (GET_CODE (SET_SRC (set)) == PLUS
1573 && recog_data.n_operands >= 3
1574 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1575 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
971ba038 1576 && CONST_INT_P (recog_data.operand[2])
f4e36c33 1577 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
f15c4004 1578 {
1579 offset += INTVAL (recog_data.operand[2]);
6d0423b8 1580
f15c4004 1581 /* If the sum is zero, then replace with a plain move. */
27ca6129 1582 if (offset == 0
1583 && REG_P (SET_DEST (set))
1584 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
f15c4004 1585 {
1586 start_sequence ();
f4e36c33 1587 emit_move_insn (SET_DEST (set), new_rtx);
f15c4004 1588 seq = get_insns ();
1589 end_sequence ();
bc17f7a4 1590
f15c4004 1591 emit_insn_before (seq, insn);
1592 delete_insn (insn);
1593 return;
1594 }
bc17f7a4 1595
f15c4004 1596 x = gen_int_mode (offset, recog_data.operand_mode[2]);
f15c4004 1597
1598 /* Using validate_change and apply_change_group here leaves
1599 recog_data in an invalid state. Since we know exactly what
1600 we want to check, do those two by hand. */
f4e36c33 1601 if (safe_insn_predicate (insn_code, 1, new_rtx)
f15c4004 1602 && safe_insn_predicate (insn_code, 2, x))
1603 {
f4e36c33 1604 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
f15c4004 1605 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1606 any_change = true;
27ca6129 1607
1608 /* Fall through into the regular operand fixup loop in
1609 order to take care of operands other than 1 and 2. */
f15c4004 1610 }
1611 }
1612 }
bc17f7a4 1613 else
27ca6129 1614 {
1615 extract_insn (insn);
1616 insn_code = INSN_CODE (insn);
1617 }
dd79abfb 1618
f15c4004 1619 /* In the general case, we expect virtual registers to appear only in
1620 operands, and then only as either bare registers or inside memories. */
1621 for (i = 0; i < recog_data.n_operands; ++i)
1622 {
1623 x = recog_data.operand[i];
1624 switch (GET_CODE (x))
1625 {
1626 case MEM:
1627 {
1628 rtx addr = XEXP (x, 0);
1629 bool changed = false;
1630
1631 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1632 if (!changed)
1633 continue;
1634
1635 start_sequence ();
1636 x = replace_equiv_address (x, addr);
7e507322 1637 /* It may happen that the address with the virtual reg
1638 was valid (e.g. based on the virtual stack reg, which might
1639 be acceptable to the predicates with all offsets), whereas
1640 the address now isn't anymore, for instance when the address
1641 is still offsetted, but the base reg isn't virtual-stack-reg
1642 anymore. Below we would do a force_reg on the whole operand,
1643 but this insn might actually only accept memory. Hence,
1644 before doing that last resort, try to reload the address into
1645 a register, so this operand stays a MEM. */
1646 if (!safe_insn_predicate (insn_code, i, x))
1647 {
1648 addr = force_reg (GET_MODE (addr), addr);
1649 x = replace_equiv_address (x, addr);
1650 }
f15c4004 1651 seq = get_insns ();
1652 end_sequence ();
1653 if (seq)
1654 emit_insn_before (seq, insn);
1655 }
1656 break;
1657
1658 case REG:
f4e36c33 1659 new_rtx = instantiate_new_reg (x, &offset);
1660 if (new_rtx == NULL)
f15c4004 1661 continue;
1662 if (offset == 0)
f4e36c33 1663 x = new_rtx;
f15c4004 1664 else
1665 {
1666 start_sequence ();
897b77d6 1667
f15c4004 1668 /* Careful, special mode predicates may have stuff in
1669 insn_data[insn_code].operand[i].mode that isn't useful
1670 to us for computing a new value. */
1671 /* ??? Recognize address_operand and/or "p" constraints
1672 to see if (plus new offset) is a valid before we put
1673 this through expand_simple_binop. */
f4e36c33 1674 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
f15c4004 1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1680 }
1681 break;
897b77d6 1682
f15c4004 1683 case SUBREG:
f4e36c33 1684 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1685 if (new_rtx == NULL)
f15c4004 1686 continue;
1687 if (offset != 0)
1688 {
1689 start_sequence ();
f4e36c33 1690 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
f15c4004 1691 GEN_INT (offset), NULL_RTX,
1692 1, OPTAB_LIB_WIDEN);
1693 seq = get_insns ();
1694 end_sequence ();
1695 emit_insn_before (seq, insn);
1696 }
f4e36c33 1697 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1698 GET_MODE (new_rtx), SUBREG_BYTE (x));
024f0a8a 1699 gcc_assert (x);
f15c4004 1700 break;
897b77d6 1701
f15c4004 1702 default:
1703 continue;
1704 }
897b77d6 1705
f15c4004 1706 /* At this point, X contains the new value for the operand.
1707 Validate the new value vs the insn predicate. Note that
1708 asm insns will have insn_code -1 here. */
1709 if (!safe_insn_predicate (insn_code, i, x))
c5159852 1710 {
1711 start_sequence ();
83b6c9db 1712 if (REG_P (x))
1713 {
1714 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1715 x = copy_to_reg (x);
1716 }
1717 else
1718 x = force_reg (insn_data[insn_code].operand[i].mode, x);
c5159852 1719 seq = get_insns ();
1720 end_sequence ();
1721 if (seq)
1722 emit_insn_before (seq, insn);
1723 }
897b77d6 1724
f15c4004 1725 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1726 any_change = true;
1727 }
897b77d6 1728
f15c4004 1729 if (any_change)
1730 {
1731 /* Propagate operand changes into the duplicates. */
1732 for (i = 0; i < recog_data.n_dups; ++i)
1733 *recog_data.dup_loc[i]
cdf37bc1 1734 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
dd79abfb 1735
f15c4004 1736 /* Force re-recognition of the instruction for validation. */
1737 INSN_CODE (insn) = -1;
1738 }
897b77d6 1739
f15c4004 1740 if (asm_noperands (PATTERN (insn)) >= 0)
897b77d6 1741 {
f15c4004 1742 if (!check_asm_operands (PATTERN (insn)))
897b77d6 1743 {
f15c4004 1744 error_for_asm (insn, "impossible constraint in %<asm%>");
fb10e416 1745 delete_insn_and_edges (insn);
f15c4004 1746 }
1747 }
1748 else
1749 {
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1752 }
1753}
155b05dc 1754
f15c4004 1755/* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
155b05dc 1757
bc5e6ea1 1758void
1759instantiate_decl_rtl (rtx x)
f15c4004 1760{
1761 rtx addr;
897b77d6 1762
f15c4004 1763 if (x == 0)
1764 return;
897b77d6 1765
f15c4004 1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1768 {
bc5e6ea1 1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
f15c4004 1771 return;
1772 }
897b77d6 1773
f15c4004 1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
897b77d6 1778
f15c4004 1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
897b77d6 1785
f15c4004 1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1787}
897b77d6 1788
9338678e 1789/* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1791
1792static tree
1793instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794{
1795 tree t = *tp;
75a70cf9 1796 if (! EXPR_P (t))
9338678e 1797 {
1798 *walk_subtrees = 0;
95b985e5 1799 if (DECL_P (t))
1800 {
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1809 {
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 }
1813 }
9338678e 1814 }
1815 return NULL;
1816}
1817
f15c4004 1818/* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
897b77d6 1820
f15c4004 1821static void
1822instantiate_decls_1 (tree let)
1823{
1824 tree t;
897b77d6 1825
1767a056 1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
9338678e 1827 {
1828 if (DECL_RTL_SET_P (t))
bc5e6ea1 1829 instantiate_decl_rtl (DECL_RTL (t));
9338678e 1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 {
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1834 }
1835 }
897b77d6 1836
f15c4004 1837 /* Process all subblocks. */
93110716 1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
f15c4004 1839 instantiate_decls_1 (t);
1840}
897b77d6 1841
f15c4004 1842/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
897b77d6 1844
f15c4004 1845static void
1846instantiate_decls (tree fndecl)
1847{
2ab2ce89 1848 tree decl;
1849 unsigned ix;
897b77d6 1850
f15c4004 1851 /* Process all parameters of the function. */
1767a056 1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
f15c4004 1853 {
bc5e6ea1 1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
9338678e 1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 {
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
f15c4004 1861 }
a51c8974 1862
95b985e5 1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1865 {
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 {
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 }
1873 }
1874
f15c4004 1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
78fa9ba7 1877
2ab2ce89 1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 VEC_free (tree, gc, cfun->local_decls);
f15c4004 1882}
897b77d6 1883
f15c4004 1884/* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
897b77d6 1886
2a1990e9 1887static unsigned int
f15c4004 1888instantiate_virtual_regs (void)
1889{
ca8a2945 1890 rtx insn;
897b77d6 1891
f15c4004 1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1896 out_arg_offset = STACK_POINTER_OFFSET;
da72c083 1897#ifdef FRAME_POINTER_CFA_OFFSET
1898 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1899#else
f15c4004 1900 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
da72c083 1901#endif
0dbd1c74 1902
f15c4004 1903 /* Initialize recognition, indicating that volatile is OK. */
1904 init_recog ();
897b77d6 1905
f15c4004 1906 /* Scan through all the insns, instantiating every virtual register still
1907 present. */
ca8a2945 1908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1909 if (INSN_P (insn))
1910 {
1911 /* These patterns in the instruction stream can never be recognized.
1912 Fortunately, they shouldn't contain virtual registers either. */
1913 if (GET_CODE (PATTERN (insn)) == USE
1914 || GET_CODE (PATTERN (insn)) == CLOBBER
1915 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1916 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1917 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1918 continue;
1919 else if (DEBUG_INSN_P (insn))
1920 for_each_rtx (&INSN_VAR_LOCATION (insn),
1921 instantiate_virtual_regs_in_rtx, NULL);
1922 else
1923 instantiate_virtual_regs_in_insn (insn);
201f6961 1924
ca8a2945 1925 if (INSN_DELETED_P (insn))
1926 continue;
d304b9e1 1927
ca8a2945 1928 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
201f6961 1929
ca8a2945 1930 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1931 if (CALL_P (insn))
1932 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1933 instantiate_virtual_regs_in_rtx, NULL);
1934 }
897b77d6 1935
f15c4004 1936 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1937 instantiate_decls (current_function_decl);
1938
bc5e6ea1 1939 targetm.instantiate_decls ();
1940
f15c4004 1941 /* Indicate that, from now on, assign_stack_local should use
1942 frame_pointer_rtx. */
1943 virtuals_instantiated = 1;
990495a7 1944
2a1990e9 1945 return 0;
897b77d6 1946}
77fce4cd 1947
20099e35 1948struct rtl_opt_pass pass_instantiate_virtual_regs =
77fce4cd 1949{
20099e35 1950 {
1951 RTL_PASS,
228967a9 1952 "vregs", /* name */
77fce4cd 1953 NULL, /* gate */
1954 instantiate_virtual_regs, /* execute */
1955 NULL, /* sub */
1956 NULL, /* next */
1957 0, /* static_pass_number */
0b1615c1 1958 TV_NONE, /* tv_id */
ca8a2945 1959 0, /* properties_required */
77fce4cd 1960 0, /* properties_provided */
1961 0, /* properties_destroyed */
1962 0, /* todo_flags_start */
771e2890 1963 0 /* todo_flags_finish */
20099e35 1964 }
77fce4cd 1965};
1966
897b77d6 1967\f
8f48fc81 1968/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1969 This means a type for which function calls must pass an address to the
1970 function or get an address back from the function.
1971 EXP may be a type node or an expression (whose type is tested). */
897b77d6 1972
1973int
fb80456a 1974aggregate_value_p (const_tree exp, const_tree fntype)
897b77d6 1975{
4cd5bb61 1976 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
d5c7cfd2 1977 int i, regno, nregs;
1978 rtx reg;
9308e976 1979
45550790 1980 if (fntype)
1981 switch (TREE_CODE (fntype))
1982 {
1983 case CALL_EXPR:
4cd5bb61 1984 {
1985 tree fndecl = get_callee_fndecl (fntype);
1986 fntype = (fndecl
1987 ? TREE_TYPE (fndecl)
1988 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1989 }
45550790 1990 break;
1991 case FUNCTION_DECL:
4cd5bb61 1992 fntype = TREE_TYPE (fntype);
45550790 1993 break;
1994 case FUNCTION_TYPE:
1995 case METHOD_TYPE:
1996 break;
1997 case IDENTIFIER_NODE:
4cd5bb61 1998 fntype = NULL_TREE;
45550790 1999 break;
2000 default:
4cd5bb61 2001 /* We don't expect other tree types here. */
fdada98f 2002 gcc_unreachable ();
45550790 2003 }
2004
4cd5bb61 2005 if (VOID_TYPE_P (type))
2c8db4fe 2006 return 0;
6f18455e 2007
8df5a43d 2008 /* If a record should be passed the same as its first (and only) member
2009 don't pass it as an aggregate. */
2010 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2011 return aggregate_value_p (first_field (type), fntype);
2012
806e4c12 2013 /* If the front end has decided that this needs to be passed by
2014 reference, do so. */
2015 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2016 && DECL_BY_REFERENCE (exp))
2017 return 1;
6f18455e 2018
4cd5bb61 2019 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2020 if (fntype && TREE_ADDRESSABLE (fntype))
6f18455e 2021 return 1;
48e1416a 2022
ad87de1e 2023 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
79f1a380 2024 and thus can't be returned in registers. */
2025 if (TREE_ADDRESSABLE (type))
2026 return 1;
4cd5bb61 2027
727a13df 2028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
897b77d6 2029 return 1;
4cd5bb61 2030
2031 if (targetm.calls.return_in_memory (type, fntype))
2032 return 1;
2033
d5c7cfd2 2034 /* Make sure we have suitable call-clobbered regs to return
2035 the value in; if not, we must return it in memory. */
46b3ff29 2036 reg = hard_function_value (type, 0, fntype, 0);
84d69b33 2037
2038 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2039 it is OK. */
8ad4c111 2040 if (!REG_P (reg))
84d69b33 2041 return 0;
2042
d5c7cfd2 2043 regno = REGNO (reg);
67d6c12b 2044 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
d5c7cfd2 2045 for (i = 0; i < nregs; i++)
2046 if (! call_used_regs[regno + i])
2047 return 1;
4cd5bb61 2048
897b77d6 2049 return 0;
2050}
2051\f
e8825bb0 2052/* Return true if we should assign DECL a pseudo register; false if it
2053 should live on the local stack. */
2054
2055bool
b7bf20db 2056use_register_for_decl (const_tree decl)
e8825bb0 2057{
658e203c 2058 if (!targetm.calls.allocate_stack_slots_for_args())
2059 return true;
48e1416a 2060
e8825bb0 2061 /* Honor volatile. */
2062 if (TREE_SIDE_EFFECTS (decl))
2063 return false;
2064
2065 /* Honor addressability. */
2066 if (TREE_ADDRESSABLE (decl))
2067 return false;
2068
2069 /* Only register-like things go in registers. */
2070 if (DECL_MODE (decl) == BLKmode)
2071 return false;
2072
2073 /* If -ffloat-store specified, don't put explicit float variables
2074 into registers. */
2075 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2076 propagates values across these stores, and it probably shouldn't. */
2077 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2078 return false;
2079
553acd9c 2080 /* If we're not interested in tracking debugging information for
2081 this decl, then we can certainly put it in a register. */
2082 if (DECL_IGNORED_P (decl))
e8825bb0 2083 return true;
2084
f24ccada 2085 if (optimize)
2086 return true;
2087
2088 if (!DECL_REGISTER (decl))
2089 return false;
2090
2091 switch (TREE_CODE (TREE_TYPE (decl)))
2092 {
2093 case RECORD_TYPE:
2094 case UNION_TYPE:
2095 case QUAL_UNION_TYPE:
2096 /* When not optimizing, disregard register keyword for variables with
2097 types containing methods, otherwise the methods won't be callable
2098 from the debugger. */
2099 if (TYPE_METHODS (TREE_TYPE (decl)))
2100 return false;
2101 break;
2102 default:
2103 break;
2104 }
2105
2106 return true;
e8825bb0 2107}
2108
cc9b8628 2109/* Return true if TYPE should be passed by invisible reference. */
2110
2111bool
b981d932 2112pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2113 tree type, bool named_arg)
cc9b8628 2114{
2115 if (type)
2116 {
2117 /* If this type contains non-trivial constructors, then it is
2118 forbidden for the middle-end to create any new copies. */
2119 if (TREE_ADDRESSABLE (type))
2120 return true;
2121
39cd001a 2122 /* GCC post 3.4 passes *all* variable sized types by reference. */
2123 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
cc9b8628 2124 return true;
8df5a43d 2125
2126 /* If a record type should be passed the same as its first (and only)
2127 member, use the type and mode of that member. */
2128 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2129 {
2130 type = TREE_TYPE (first_field (type));
2131 mode = TYPE_MODE (type);
2132 }
cc9b8628 2133 }
2134
39cba157 2135 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2136 type, named_arg);
cc9b8628 2137}
2138
13f08ee7 2139/* Return true if TYPE, which is passed by reference, should be callee
2140 copied instead of caller copied. */
2141
2142bool
2143reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2144 tree type, bool named_arg)
2145{
2146 if (type && TREE_ADDRESSABLE (type))
2147 return false;
39cba157 2148 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2149 named_arg);
13f08ee7 2150}
2151
35a569c6 2152/* Structures to communicate between the subroutines of assign_parms.
2153 The first holds data persistent across all parameters, the second
2154 is cleared out for each parameter. */
897b77d6 2155
35a569c6 2156struct assign_parm_data_all
897b77d6 2157{
39cba157 2158 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2159 should become a job of the target or otherwise encapsulated. */
2160 CUMULATIVE_ARGS args_so_far_v;
2161 cumulative_args_t args_so_far;
897b77d6 2162 struct args_size stack_args_size;
35a569c6 2163 tree function_result_decl;
2164 tree orig_fnargs;
28bf151d 2165 rtx first_conversion_insn;
2166 rtx last_conversion_insn;
35a569c6 2167 HOST_WIDE_INT pretend_args_size;
2168 HOST_WIDE_INT extra_pretend_bytes;
2169 int reg_parm_stack_space;
2170};
897b77d6 2171
35a569c6 2172struct assign_parm_data_one
2173{
2174 tree nominal_type;
2175 tree passed_type;
2176 rtx entry_parm;
2177 rtx stack_parm;
2178 enum machine_mode nominal_mode;
2179 enum machine_mode passed_mode;
2180 enum machine_mode promoted_mode;
2181 struct locate_and_pad_arg_data locate;
2182 int partial;
2183 BOOL_BITFIELD named_arg : 1;
35a569c6 2184 BOOL_BITFIELD passed_pointer : 1;
2185 BOOL_BITFIELD on_stack : 1;
2186 BOOL_BITFIELD loaded_in_reg : 1;
2187};
eb749d77 2188
35a569c6 2189/* A subroutine of assign_parms. Initialize ALL. */
897b77d6 2190
35a569c6 2191static void
2192assign_parms_initialize_all (struct assign_parm_data_all *all)
2193{
132d5071 2194 tree fntype ATTRIBUTE_UNUSED;
897b77d6 2195
35a569c6 2196 memset (all, 0, sizeof (*all));
2197
2198 fntype = TREE_TYPE (current_function_decl);
2199
2200#ifdef INIT_CUMULATIVE_INCOMING_ARGS
39cba157 2201 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
35a569c6 2202#else
39cba157 2203 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
35a569c6 2204 current_function_decl, -1);
2205#endif
39cba157 2206 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
35a569c6 2207
2208#ifdef REG_PARM_STACK_SPACE
2209 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2210#endif
2211}
897b77d6 2212
35a569c6 2213/* If ARGS contains entries with complex types, split the entry into two
2214 entries of the component type. Return a new list of substitutions are
2215 needed, else the old list. */
2216
3e992c41 2217static void
2218split_complex_args (VEC(tree, heap) **args)
35a569c6 2219{
3e992c41 2220 unsigned i;
35a569c6 2221 tree p;
2222
48148244 2223 FOR_EACH_VEC_ELT (tree, *args, i, p)
35a569c6 2224 {
2225 tree type = TREE_TYPE (p);
2226 if (TREE_CODE (type) == COMPLEX_TYPE
2227 && targetm.calls.split_complex_arg (type))
2228 {
2229 tree decl;
2230 tree subtype = TREE_TYPE (type);
e6427ef0 2231 bool addressable = TREE_ADDRESSABLE (p);
35a569c6 2232
2233 /* Rewrite the PARM_DECL's type with its component. */
3e992c41 2234 p = copy_node (p);
35a569c6 2235 TREE_TYPE (p) = subtype;
2236 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2237 DECL_MODE (p) = VOIDmode;
2238 DECL_SIZE (p) = NULL;
2239 DECL_SIZE_UNIT (p) = NULL;
e6427ef0 2240 /* If this arg must go in memory, put it in a pseudo here.
2241 We can't allow it to go in memory as per normal parms,
2242 because the usual place might not have the imag part
2243 adjacent to the real part. */
2244 DECL_ARTIFICIAL (p) = addressable;
2245 DECL_IGNORED_P (p) = addressable;
2246 TREE_ADDRESSABLE (p) = 0;
35a569c6 2247 layout_decl (p, 0);
3e992c41 2248 VEC_replace (tree, *args, i, p);
35a569c6 2249
2250 /* Build a second synthetic decl. */
e60a6f7b 2251 decl = build_decl (EXPR_LOCATION (p),
2252 PARM_DECL, NULL_TREE, subtype);
35a569c6 2253 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
e6427ef0 2254 DECL_ARTIFICIAL (decl) = addressable;
2255 DECL_IGNORED_P (decl) = addressable;
35a569c6 2256 layout_decl (decl, 0);
3e992c41 2257 VEC_safe_insert (tree, heap, *args, ++i, decl);
35a569c6 2258 }
2259 }
35a569c6 2260}
2261
2262/* A subroutine of assign_parms. Adjust the parameter list to incorporate
2263 the hidden struct return argument, and (abi willing) complex args.
2264 Return the new parameter list. */
2265
3e992c41 2266static VEC(tree, heap) *
35a569c6 2267assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2268{
2269 tree fndecl = current_function_decl;
2270 tree fntype = TREE_TYPE (fndecl);
3e992c41 2271 VEC(tree, heap) *fnargs = NULL;
2272 tree arg;
2273
1767a056 2274 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
3e992c41 2275 VEC_safe_push (tree, heap, fnargs, arg);
2276
2277 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
897b77d6 2278
2279 /* If struct value address is treated as the first argument, make it so. */
45550790 2280 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
18d50ae6 2281 && ! cfun->returns_pcc_struct
45550790 2282 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
897b77d6 2283 {
3ff448ca 2284 tree type = build_pointer_type (TREE_TYPE (fntype));
35a569c6 2285 tree decl;
897b77d6 2286
e60a6f7b 2287 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
4d5b4e6a 2288 PARM_DECL, get_identifier (".result_ptr"), type);
35a569c6 2289 DECL_ARG_TYPE (decl) = type;
2290 DECL_ARTIFICIAL (decl) = 1;
4d5b4e6a 2291 DECL_NAMELESS (decl) = 1;
2292 TREE_CONSTANT (decl) = 1;
897b77d6 2293
1767a056 2294 DECL_CHAIN (decl) = all->orig_fnargs;
3e992c41 2295 all->orig_fnargs = decl;
2296 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2297
35a569c6 2298 all->function_result_decl = decl;
897b77d6 2299 }
06ebc183 2300
92d40bc4 2301 /* If the target wants to split complex arguments into scalars, do so. */
2302 if (targetm.calls.split_complex_arg)
3e992c41 2303 split_complex_args (&fnargs);
915e81b8 2304
35a569c6 2305 return fnargs;
2306}
241399f6 2307
35a569c6 2308/* A subroutine of assign_parms. Examine PARM and pull out type and mode
2309 data for the parameter. Incorporate ABI specifics such as pass-by-
2310 reference and type promotion. */
897b77d6 2311
35a569c6 2312static void
2313assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2314 struct assign_parm_data_one *data)
2315{
2316 tree nominal_type, passed_type;
2317 enum machine_mode nominal_mode, passed_mode, promoted_mode;
3b2411a8 2318 int unsignedp;
897b77d6 2319
35a569c6 2320 memset (data, 0, sizeof (*data));
2321
f0b5f617 2322 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
18d50ae6 2323 if (!cfun->stdarg)
f0b5f617 2324 data->named_arg = 1; /* No variadic parms. */
1767a056 2325 else if (DECL_CHAIN (parm))
f0b5f617 2326 data->named_arg = 1; /* Not the last non-variadic parm. */
39cba157 2327 else if (targetm.calls.strict_argument_naming (all->args_so_far))
f0b5f617 2328 data->named_arg = 1; /* Only variadic ones are unnamed. */
35a569c6 2329 else
f0b5f617 2330 data->named_arg = 0; /* Treat as variadic. */
35a569c6 2331
2332 nominal_type = TREE_TYPE (parm);
2333 passed_type = DECL_ARG_TYPE (parm);
2334
2335 /* Look out for errors propagating this far. Also, if the parameter's
2336 type is void then its value doesn't matter. */
2337 if (TREE_TYPE (parm) == error_mark_node
2338 /* This can happen after weird syntax errors
2339 or if an enum type is defined among the parms. */
2340 || TREE_CODE (parm) != PARM_DECL
2341 || passed_type == NULL
2342 || VOID_TYPE_P (nominal_type))
2343 {
2344 nominal_type = passed_type = void_type_node;
2345 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2346 goto egress;
2347 }
d06f5fba 2348
35a569c6 2349 /* Find mode of arg as it is passed, and mode of arg as it should be
2350 during execution of this function. */
2351 passed_mode = TYPE_MODE (passed_type);
2352 nominal_mode = TYPE_MODE (nominal_type);
2353
8df5a43d 2354 /* If the parm is to be passed as a transparent union or record, use the
2355 type of the first field for the tests below. We have already verified
2356 that the modes are the same. */
2357 if ((TREE_CODE (passed_type) == UNION_TYPE
2358 || TREE_CODE (passed_type) == RECORD_TYPE)
2359 && TYPE_TRANSPARENT_AGGR (passed_type))
2360 passed_type = TREE_TYPE (first_field (passed_type));
35a569c6 2361
cc9b8628 2362 /* See if this arg was passed by invisible reference. */
39cba157 2363 if (pass_by_reference (&all->args_so_far_v, passed_mode,
cc9b8628 2364 passed_type, data->named_arg))
35a569c6 2365 {
2366 passed_type = nominal_type = build_pointer_type (passed_type);
2367 data->passed_pointer = true;
2368 passed_mode = nominal_mode = Pmode;
2369 }
897b77d6 2370
35a569c6 2371 /* Find mode as it is passed by the ABI. */
3b2411a8 2372 unsignedp = TYPE_UNSIGNED (passed_type);
2373 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2374 TREE_TYPE (current_function_decl), 0);
897b77d6 2375
35a569c6 2376 egress:
2377 data->nominal_type = nominal_type;
2378 data->passed_type = passed_type;
2379 data->nominal_mode = nominal_mode;
2380 data->passed_mode = passed_mode;
2381 data->promoted_mode = promoted_mode;
2382}
24ec33e7 2383
35a569c6 2384/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
897b77d6 2385
35a569c6 2386static void
2387assign_parms_setup_varargs (struct assign_parm_data_all *all,
2388 struct assign_parm_data_one *data, bool no_rtl)
2389{
2390 int varargs_pretend_bytes = 0;
2391
39cba157 2392 targetm.calls.setup_incoming_varargs (all->args_so_far,
35a569c6 2393 data->promoted_mode,
2394 data->passed_type,
2395 &varargs_pretend_bytes, no_rtl);
2396
2397 /* If the back-end has requested extra stack space, record how much is
2398 needed. Do not change pretend_args_size otherwise since it may be
2399 nonzero from an earlier partial argument. */
2400 if (varargs_pretend_bytes > 0)
2401 all->pretend_args_size = varargs_pretend_bytes;
2402}
7e8dfb30 2403
35a569c6 2404/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2405 the incoming location of the current parameter. */
2406
2407static void
2408assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data)
2410{
2411 HOST_WIDE_INT pretend_bytes = 0;
2412 rtx entry_parm;
2413 bool in_regs;
2414
2415 if (data->promoted_mode == VOIDmode)
2416 {
2417 data->entry_parm = data->stack_parm = const0_rtx;
2418 return;
2419 }
7e8dfb30 2420
39cba157 2421 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
f387af4f 2422 data->promoted_mode,
2423 data->passed_type,
2424 data->named_arg);
897b77d6 2425
35a569c6 2426 if (entry_parm == 0)
2427 data->promoted_mode = data->passed_mode;
897b77d6 2428
35a569c6 2429 /* Determine parm's home in the stack, in case it arrives in the stack
2430 or we should pretend it did. Compute the stack position and rtx where
2431 the argument arrives and its size.
897b77d6 2432
35a569c6 2433 There is one complexity here: If this was a parameter that would
2434 have been passed in registers, but wasn't only because it is
2435 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2436 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2437 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2438 as it was the previous time. */
2439 in_regs = entry_parm != 0;
897b77d6 2440#ifdef STACK_PARMS_IN_REG_PARM_AREA
35a569c6 2441 in_regs = true;
241399f6 2442#endif
35a569c6 2443 if (!in_regs && !data->named_arg)
2444 {
39cba157 2445 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
241399f6 2446 {
35a569c6 2447 rtx tem;
39cba157 2448 tem = targetm.calls.function_incoming_arg (all->args_so_far,
f387af4f 2449 data->promoted_mode,
2450 data->passed_type, true);
35a569c6 2451 in_regs = tem != NULL;
241399f6 2452 }
35a569c6 2453 }
241399f6 2454
35a569c6 2455 /* If this parameter was passed both in registers and in the stack, use
2456 the copy on the stack. */
0336f0f0 2457 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2458 data->passed_type))
35a569c6 2459 entry_parm = 0;
241399f6 2460
35a569c6 2461 if (entry_parm)
2462 {
2463 int partial;
2464
39cba157 2465 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
f054eb3c 2466 data->promoted_mode,
2467 data->passed_type,
2468 data->named_arg);
35a569c6 2469 data->partial = partial;
2470
2471 /* The caller might already have allocated stack space for the
2472 register parameters. */
2473 if (partial != 0 && all->reg_parm_stack_space == 0)
1cd50c9a 2474 {
35a569c6 2475 /* Part of this argument is passed in registers and part
2476 is passed on the stack. Ask the prologue code to extend
2477 the stack part so that we can recreate the full value.
2478
2479 PRETEND_BYTES is the size of the registers we need to store.
2480 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2481 stack space that the prologue should allocate.
2482
2483 Internally, gcc assumes that the argument pointer is aligned
2484 to STACK_BOUNDARY bits. This is used both for alignment
2485 optimizations (see init_emit) and to locate arguments that are
2486 aligned to more than PARM_BOUNDARY bits. We must preserve this
2487 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2488 a stack boundary. */
2489
2490 /* We assume at most one partial arg, and it must be the first
2491 argument on the stack. */
fdada98f 2492 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
35a569c6 2493
f054eb3c 2494 pretend_bytes = partial;
35a569c6 2495 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2496
2497 /* We want to align relative to the actual stack pointer, so
2498 don't include this in the stack size until later. */
2499 all->extra_pretend_bytes = all->pretend_args_size;
1cd50c9a 2500 }
35a569c6 2501 }
241399f6 2502
35a569c6 2503 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2504 entry_parm ? data->partial : 0, current_function_decl,
2505 &all->stack_args_size, &data->locate);
897b77d6 2506
c6586120 2507 /* Update parm_stack_boundary if this parameter is passed in the
2508 stack. */
2509 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2510 crtl->parm_stack_boundary = data->locate.boundary;
2511
35a569c6 2512 /* Adjust offsets to include the pretend args. */
2513 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2514 data->locate.slot_offset.constant += pretend_bytes;
2515 data->locate.offset.constant += pretend_bytes;
27664a4b 2516
35a569c6 2517 data->entry_parm = entry_parm;
2518}
897b77d6 2519
35a569c6 2520/* A subroutine of assign_parms. If there is actually space on the stack
2521 for this parm, count it in stack_args_size and return true. */
897b77d6 2522
35a569c6 2523static bool
2524assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2525 struct assign_parm_data_one *data)
2526{
a133d57d 2527 /* Trivially true if we've no incoming register. */
35a569c6 2528 if (data->entry_parm == NULL)
2529 ;
2530 /* Also true if we're partially in registers and partially not,
2531 since we've arranged to drop the entire argument on the stack. */
2532 else if (data->partial != 0)
2533 ;
2534 /* Also true if the target says that it's passed in both registers
2535 and on the stack. */
2536 else if (GET_CODE (data->entry_parm) == PARALLEL
2537 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2538 ;
2539 /* Also true if the target says that there's stack allocated for
2540 all register parameters. */
2541 else if (all->reg_parm_stack_space > 0)
2542 ;
2543 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2544 else
2545 return false;
897b77d6 2546
35a569c6 2547 all->stack_args_size.constant += data->locate.size.constant;
2548 if (data->locate.size.var)
2549 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
06ebc183 2550
35a569c6 2551 return true;
2552}
bffcf014 2553
35a569c6 2554/* A subroutine of assign_parms. Given that this parameter is allocated
2555 stack space by the ABI, find it. */
897b77d6 2556
35a569c6 2557static void
2558assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2559{
2560 rtx offset_rtx, stack_parm;
2561 unsigned int align, boundary;
897b77d6 2562
35a569c6 2563 /* If we're passing this arg using a reg, make its stack home the
2564 aligned stack slot. */
2565 if (data->entry_parm)
2566 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2567 else
2568 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2569
abe32cce 2570 stack_parm = crtl->args.internal_arg_pointer;
35a569c6 2571 if (offset_rtx != const0_rtx)
2572 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2573 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2574
d92e3973 2575 if (!data->passed_pointer)
7aeb4db5 2576 {
d92e3973 2577 set_mem_attributes (stack_parm, parm, 1);
2578 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2579 while promoted mode's size is needed. */
2580 if (data->promoted_mode != BLKmode
2581 && data->promoted_mode != DECL_MODE (parm))
7aeb4db5 2582 {
5b2a69fa 2583 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
da443c27 2584 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
d92e3973 2585 {
2586 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2587 data->promoted_mode);
2588 if (offset)
da443c27 2589 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
d92e3973 2590 }
7aeb4db5 2591 }
2592 }
35a569c6 2593
c5dc0c32 2594 boundary = data->locate.boundary;
2595 align = BITS_PER_UNIT;
35a569c6 2596
2597 /* If we're padding upward, we know that the alignment of the slot
bd99ba64 2598 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
35a569c6 2599 intentionally forcing upward padding. Otherwise we have to come
2600 up with a guess at the alignment based on OFFSET_RTX. */
c5dc0c32 2601 if (data->locate.where_pad != downward || data->entry_parm)
35a569c6 2602 align = boundary;
971ba038 2603 else if (CONST_INT_P (offset_rtx))
35a569c6 2604 {
2605 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2606 align = align & -align;
2607 }
c5dc0c32 2608 set_mem_align (stack_parm, align);
35a569c6 2609
2610 if (data->entry_parm)
2611 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2612
2613 data->stack_parm = stack_parm;
2614}
2615
2616/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2617 always valid and contiguous. */
2618
2619static void
2620assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2621{
2622 rtx entry_parm = data->entry_parm;
2623 rtx stack_parm = data->stack_parm;
2624
2625 /* If this parm was passed part in regs and part in memory, pretend it
2626 arrived entirely in memory by pushing the register-part onto the stack.
2627 In the special case of a DImode or DFmode that is split, we could put
2628 it together in a pseudoreg directly, but for now that's not worth
2629 bothering with. */
2630 if (data->partial != 0)
2631 {
2632 /* Handle calls that pass values in multiple non-contiguous
2633 locations. The Irix 6 ABI has examples of this. */
2634 if (GET_CODE (entry_parm) == PARALLEL)
2635 emit_group_store (validize_mem (stack_parm), entry_parm,
48e1416a 2636 data->passed_type,
35a569c6 2637 int_size_in_bytes (data->passed_type));
897b77d6 2638 else
f054eb3c 2639 {
2640 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2641 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2642 data->partial / UNITS_PER_WORD);
2643 }
897b77d6 2644
35a569c6 2645 entry_parm = stack_parm;
2646 }
897b77d6 2647
35a569c6 2648 /* If we didn't decide this parm came in a register, by default it came
2649 on the stack. */
2650 else if (entry_parm == NULL)
2651 entry_parm = stack_parm;
2652
2653 /* When an argument is passed in multiple locations, we can't make use
2654 of this information, but we can save some copying if the whole argument
2655 is passed in a single register. */
2656 else if (GET_CODE (entry_parm) == PARALLEL
2657 && data->nominal_mode != BLKmode
2658 && data->passed_mode != BLKmode)
2659 {
2660 size_t i, len = XVECLEN (entry_parm, 0);
2661
2662 for (i = 0; i < len; i++)
2663 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2664 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2665 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2666 == data->passed_mode)
2667 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2668 {
2669 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2670 break;
2671 }
2672 }
4d6c855d 2673
35a569c6 2674 data->entry_parm = entry_parm;
2675}
897b77d6 2676
77c0eeb4 2677/* A subroutine of assign_parms. Reconstitute any values which were
2678 passed in multiple registers and would fit in a single register. */
2679
2680static void
2681assign_parm_remove_parallels (struct assign_parm_data_one *data)
2682{
2683 rtx entry_parm = data->entry_parm;
2684
2685 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2686 This can be done with register operations rather than on the
2687 stack, even if we will store the reconstituted parameter on the
2688 stack later. */
1cf0636a 2689 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
77c0eeb4 2690 {
2691 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
77b80ffd 2692 emit_group_store (parmreg, entry_parm, data->passed_type,
77c0eeb4 2693 GET_MODE_SIZE (GET_MODE (entry_parm)));
2694 entry_parm = parmreg;
2695 }
2696
2697 data->entry_parm = entry_parm;
2698}
2699
35a569c6 2700/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2701 always valid and properly aligned. */
897b77d6 2702
35a569c6 2703static void
2704assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2705{
2706 rtx stack_parm = data->stack_parm;
2707
2708 /* If we can't trust the parm stack slot to be aligned enough for its
2709 ultimate type, don't use that slot after entry. We'll make another
2710 stack slot, if we need one. */
c5dc0c32 2711 if (stack_parm
2712 && ((STRICT_ALIGNMENT
2713 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2714 || (data->nominal_type
2715 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2716 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
35a569c6 2717 stack_parm = NULL;
2718
2719 /* If parm was passed in memory, and we need to convert it on entry,
2720 don't store it back in that same slot. */
2721 else if (data->entry_parm == stack_parm
2722 && data->nominal_mode != BLKmode
2723 && data->nominal_mode != data->passed_mode)
2724 stack_parm = NULL;
2725
f1a0edff 2726 /* If stack protection is in effect for this function, don't leave any
2727 pointers in their passed stack slots. */
edb7afe8 2728 else if (crtl->stack_protect_guard
f1a0edff 2729 && (flag_stack_protect == 2
2730 || data->passed_pointer
2731 || POINTER_TYPE_P (data->nominal_type)))
2732 stack_parm = NULL;
2733
35a569c6 2734 data->stack_parm = stack_parm;
2735}
90b076ea 2736
35a569c6 2737/* A subroutine of assign_parms. Return true if the current parameter
2738 should be stored as a BLKmode in the current frame. */
2739
2740static bool
2741assign_parm_setup_block_p (struct assign_parm_data_one *data)
2742{
2743 if (data->nominal_mode == BLKmode)
2744 return true;
1cf0636a 2745 if (GET_MODE (data->entry_parm) == BLKmode)
2746 return true;
a2509aaa 2747
5f4cd670 2748#ifdef BLOCK_REG_PADDING
ed4b0b75 2749 /* Only assign_parm_setup_block knows how to deal with register arguments
2750 that are padded at the least significant end. */
2751 if (REG_P (data->entry_parm)
2752 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2753 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2754 == (BYTES_BIG_ENDIAN ? upward : downward)))
35a569c6 2755 return true;
5f4cd670 2756#endif
35a569c6 2757
2758 return false;
2759}
2760
48e1416a 2761/* A subroutine of assign_parms. Arrange for the parameter to be
35a569c6 2762 present and valid in DATA->STACK_RTL. */
2763
2764static void
e2ff5c1b 2765assign_parm_setup_block (struct assign_parm_data_all *all,
2766 tree parm, struct assign_parm_data_one *data)
35a569c6 2767{
2768 rtx entry_parm = data->entry_parm;
2769 rtx stack_parm = data->stack_parm;
c5dc0c32 2770 HOST_WIDE_INT size;
2771 HOST_WIDE_INT size_stored;
35a569c6 2772
e2ff5c1b 2773 if (GET_CODE (entry_parm) == PARALLEL)
2774 entry_parm = emit_group_move_into_temps (entry_parm);
2775
c5dc0c32 2776 size = int_size_in_bytes (data->passed_type);
2777 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2778 if (stack_parm == 0)
2779 {
3a1c59da 2780 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
c5dc0c32 2781 stack_parm = assign_stack_local (BLKmode, size_stored,
3a1c59da 2782 DECL_ALIGN (parm));
c5dc0c32 2783 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2784 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2785 set_mem_attributes (stack_parm, parm, 1);
2786 }
2787
35a569c6 2788 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2789 calls that pass values in multiple non-contiguous locations. */
2790 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2791 {
35a569c6 2792 rtx mem;
2793
2794 /* Note that we will be storing an integral number of words.
2795 So we have to be careful to ensure that we allocate an
c5dc0c32 2796 integral number of words. We do this above when we call
35a569c6 2797 assign_stack_local if space was not allocated in the argument
2798 list. If it was, this will not work if PARM_BOUNDARY is not
2799 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2800 if it becomes a problem. Exception is when BLKmode arrives
2801 with arguments not conforming to word_mode. */
2802
c5dc0c32 2803 if (data->stack_parm == 0)
2804 ;
35a569c6 2805 else if (GET_CODE (entry_parm) == PARALLEL)
2806 ;
fdada98f 2807 else
2808 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
897b77d6 2809
35a569c6 2810 mem = validize_mem (stack_parm);
530178a9 2811
35a569c6 2812 /* Handle values in multiple non-contiguous locations. */
2813 if (GET_CODE (entry_parm) == PARALLEL)
e2ff5c1b 2814 {
28bf151d 2815 push_to_sequence2 (all->first_conversion_insn,
2816 all->last_conversion_insn);
e2ff5c1b 2817 emit_group_store (mem, entry_parm, data->passed_type, size);
28bf151d 2818 all->first_conversion_insn = get_insns ();
2819 all->last_conversion_insn = get_last_insn ();
e2ff5c1b 2820 end_sequence ();
2821 }
530178a9 2822
35a569c6 2823 else if (size == 0)
2824 ;
dd6fed02 2825
35a569c6 2826 /* If SIZE is that of a mode no bigger than a word, just use
2827 that mode's store operation. */
2828 else if (size <= UNITS_PER_WORD)
2829 {
2830 enum machine_mode mode
2831 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
530178a9 2832
35a569c6 2833 if (mode != BLKmode
5f4cd670 2834#ifdef BLOCK_REG_PADDING
35a569c6 2835 && (size == UNITS_PER_WORD
2836 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2837 != (BYTES_BIG_ENDIAN ? upward : downward)))
5f4cd670 2838#endif
35a569c6 2839 )
2840 {
2973927c 2841 rtx reg;
2842
2843 /* We are really truncating a word_mode value containing
2844 SIZE bytes into a value of mode MODE. If such an
2845 operation requires no actual instructions, we can refer
2846 to the value directly in mode MODE, otherwise we must
2847 start with the register in word_mode and explicitly
2848 convert it. */
2849 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2850 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2851 else
2852 {
2853 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2854 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2855 }
35a569c6 2856 emit_move_insn (change_address (mem, mode, 0), reg);
2857 }
530178a9 2858
35a569c6 2859 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2860 machine must be aligned to the left before storing
2861 to memory. Note that the previous test doesn't
2862 handle all cases (e.g. SIZE == 3). */
2863 else if (size != UNITS_PER_WORD
5f4cd670 2864#ifdef BLOCK_REG_PADDING
35a569c6 2865 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2866 == downward)
5f4cd670 2867#else
35a569c6 2868 && BYTES_BIG_ENDIAN
5f4cd670 2869#endif
35a569c6 2870 )
2871 {
2872 rtx tem, x;
2873 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
e1b9bbec 2874 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
35a569c6 2875
f5ff0b21 2876 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
35a569c6 2877 tem = change_address (mem, word_mode, 0);
2878 emit_move_insn (tem, x);
897b77d6 2879 }
35a569c6 2880 else
e2ff5c1b 2881 move_block_from_reg (REGNO (entry_parm), mem,
35a569c6 2882 size_stored / UNITS_PER_WORD);
897b77d6 2883 }
35a569c6 2884 else
e2ff5c1b 2885 move_block_from_reg (REGNO (entry_parm), mem,
35a569c6 2886 size_stored / UNITS_PER_WORD);
2887 }
c5dc0c32 2888 else if (data->stack_parm == 0)
2889 {
28bf151d 2890 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
c5dc0c32 2891 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2892 BLOCK_OP_NORMAL);
28bf151d 2893 all->first_conversion_insn = get_insns ();
2894 all->last_conversion_insn = get_last_insn ();
c5dc0c32 2895 end_sequence ();
2896 }
35a569c6 2897
c5dc0c32 2898 data->stack_parm = stack_parm;
35a569c6 2899 SET_DECL_RTL (parm, stack_parm);
2900}
2901
2902/* A subroutine of assign_parms. Allocate a pseudo to hold the current
2903 parameter. Get it there. Perform all ABI specified conversions. */
2904
2905static void
2906assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2907 struct assign_parm_data_one *data)
2908{
f3e93fd1 2909 rtx parmreg, validated_mem;
2910 rtx equiv_stack_parm;
35a569c6 2911 enum machine_mode promoted_nominal_mode;
2912 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2913 bool did_conversion = false;
f3e93fd1 2914 bool need_conversion, moved;
35a569c6 2915
2916 /* Store the parm in a pseudoregister during the function, but we may
c879dbcf 2917 need to do it in a wider mode. Using 2 here makes the result
2918 consistent with promote_decl_mode and thus expand_expr_real_1. */
35a569c6 2919 promoted_nominal_mode
3b2411a8 2920 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
c879dbcf 2921 TREE_TYPE (current_function_decl), 2);
35a569c6 2922
2923 parmreg = gen_reg_rtx (promoted_nominal_mode);
2924
2925 if (!DECL_ARTIFICIAL (parm))
2926 mark_user_reg (parmreg);
2927
2928 /* If this was an item that we received a pointer to,
2929 set DECL_RTL appropriately. */
2930 if (data->passed_pointer)
2931 {
2932 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2933 set_mem_attributes (x, parm, 1);
2934 SET_DECL_RTL (parm, x);
2935 }
2936 else
b04fab2a 2937 SET_DECL_RTL (parm, parmreg);
35a569c6 2938
77c0eeb4 2939 assign_parm_remove_parallels (data);
2940
c879dbcf 2941 /* Copy the value into the register, thus bridging between
2942 assign_parm_find_data_types and expand_expr_real_1. */
35a569c6 2943
f3e93fd1 2944 equiv_stack_parm = data->stack_parm;
2945 validated_mem = validize_mem (data->entry_parm);
2946
2947 need_conversion = (data->nominal_mode != data->passed_mode
2948 || promoted_nominal_mode != data->promoted_mode);
2949 moved = false;
2950
3939ef08 2951 if (need_conversion
2952 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2953 && data->nominal_mode == data->passed_mode
2954 && data->nominal_mode == GET_MODE (data->entry_parm))
f3e93fd1 2955 {
35a569c6 2956 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2957 mode, by the caller. We now have to convert it to
2958 NOMINAL_MODE, if different. However, PARMREG may be in
2959 a different mode than NOMINAL_MODE if it is being stored
2960 promoted.
2961
2962 If ENTRY_PARM is a hard register, it might be in a register
2963 not valid for operating in its mode (e.g., an odd-numbered
2964 register for a DFmode). In that case, moves are the only
2965 thing valid, so we can't do a convert from there. This
2966 occurs when the calling sequence allow such misaligned
2967 usages.
2968
2969 In addition, the conversion may involve a call, which could
2970 clobber parameters which haven't been copied to pseudo
f3e93fd1 2971 registers yet.
2972
2973 First, we try to emit an insn which performs the necessary
2974 conversion. We verify that this insn does not clobber any
2975 hard registers. */
2976
2977 enum insn_code icode;
2978 rtx op0, op1;
2979
2980 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2981 unsignedp);
2982
2983 op0 = parmreg;
2984 op1 = validated_mem;
2985 if (icode != CODE_FOR_nothing
39c56a89 2986 && insn_operand_matches (icode, 0, op0)
2987 && insn_operand_matches (icode, 1, op1))
f3e93fd1 2988 {
2989 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
30790040 2990 rtx insn, insns, t = op1;
f3e93fd1 2991 HARD_REG_SET hardregs;
2992
2993 start_sequence ();
30790040 2994 /* If op1 is a hard register that is likely spilled, first
2995 force it into a pseudo, otherwise combiner might extend
2996 its lifetime too much. */
2997 if (GET_CODE (t) == SUBREG)
2998 t = SUBREG_REG (t);
2999 if (REG_P (t)
3000 && HARD_REGISTER_P (t)
3001 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3002 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3003 {
3004 t = gen_reg_rtx (GET_MODE (op1));
3005 emit_move_insn (t, op1);
3006 }
3007 else
3008 t = op1;
3009 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
f3e93fd1 3010 data->passed_mode, unsignedp);
3011 emit_insn (insn);
3012 insns = get_insns ();
3013
3014 moved = true;
3015 CLEAR_HARD_REG_SET (hardregs);
3016 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3017 {
3018 if (INSN_P (insn))
3019 note_stores (PATTERN (insn), record_hard_reg_sets,
3020 &hardregs);
3021 if (!hard_reg_set_empty_p (hardregs))
3022 moved = false;
3023 }
3024
3025 end_sequence ();
3026
3027 if (moved)
3028 {
3029 emit_insn (insns);
3939ef08 3030 if (equiv_stack_parm != NULL_RTX)
3031 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3032 equiv_stack_parm);
f3e93fd1 3033 }
3034 }
3035 }
3036
3037 if (moved)
3038 /* Nothing to do. */
3039 ;
3040 else if (need_conversion)
3041 {
3042 /* We did not have an insn to convert directly, or the sequence
3043 generated appeared unsafe. We must first copy the parm to a
3044 pseudo reg, and save the conversion until after all
35a569c6 3045 parameters have been moved. */
3046
f3e93fd1 3047 int save_tree_used;
35a569c6 3048 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3049
f3e93fd1 3050 emit_move_insn (tempreg, validated_mem);
35a569c6 3051
28bf151d 3052 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
35a569c6 3053 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3054
3055 if (GET_CODE (tempreg) == SUBREG
3056 && GET_MODE (tempreg) == data->nominal_mode
3057 && REG_P (SUBREG_REG (tempreg))
3058 && data->nominal_mode == data->passed_mode
3059 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3060 && GET_MODE_SIZE (GET_MODE (tempreg))
3061 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
897b77d6 3062 {
35a569c6 3063 /* The argument is already sign/zero extended, so note it
3064 into the subreg. */
3065 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3066 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3067 }
19e03a68 3068
35a569c6 3069 /* TREE_USED gets set erroneously during expand_assignment. */
3070 save_tree_used = TREE_USED (parm);
5b5037b3 3071 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
35a569c6 3072 TREE_USED (parm) = save_tree_used;
28bf151d 3073 all->first_conversion_insn = get_insns ();
3074 all->last_conversion_insn = get_last_insn ();
35a569c6 3075 end_sequence ();
19e03a68 3076
35a569c6 3077 did_conversion = true;
3078 }
3079 else
f3e93fd1 3080 emit_move_insn (parmreg, validated_mem);
35a569c6 3081
3082 /* If we were passed a pointer but the actual value can safely live
3083 in a register, put it in one. */
3084 if (data->passed_pointer
3085 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3086 /* If by-reference argument was promoted, demote it. */
3087 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3088 || use_register_for_decl (parm)))
3089 {
3090 /* We can't use nominal_mode, because it will have been set to
3091 Pmode above. We must use the actual mode of the parm. */
3092 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3093 mark_user_reg (parmreg);
8815f4da 3094
35a569c6 3095 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3096 {
3097 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3098 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3099
28bf151d 3100 push_to_sequence2 (all->first_conversion_insn,
3101 all->last_conversion_insn);
35a569c6 3102 emit_move_insn (tempreg, DECL_RTL (parm));
3103 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3104 emit_move_insn (parmreg, tempreg);
28bf151d 3105 all->first_conversion_insn = get_insns ();
3106 all->last_conversion_insn = get_last_insn ();
35a569c6 3107 end_sequence ();
897b77d6 3108
35a569c6 3109 did_conversion = true;
3110 }
3111 else
3112 emit_move_insn (parmreg, DECL_RTL (parm));
897b77d6 3113
35a569c6 3114 SET_DECL_RTL (parm, parmreg);
60d903f5 3115
35a569c6 3116 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3117 now the parm. */
3118 data->stack_parm = NULL;
3119 }
701e46d0 3120
35a569c6 3121 /* Mark the register as eliminable if we did no conversion and it was
3122 copied from memory at a fixed offset, and the arg pointer was not
3123 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3124 offset formed an invalid address, such memory-equivalences as we
3125 make here would screw up life analysis for it. */
3126 if (data->nominal_mode == data->passed_mode
3127 && !did_conversion
3128 && data->stack_parm != 0
3129 && MEM_P (data->stack_parm)
3130 && data->locate.offset.var == 0
3131 && reg_mentioned_p (virtual_incoming_args_rtx,
3132 XEXP (data->stack_parm, 0)))
3133 {
3134 rtx linsn = get_last_insn ();
3135 rtx sinsn, set;
5f85a240 3136
35a569c6 3137 /* Mark complex types separately. */
3138 if (GET_CODE (parmreg) == CONCAT)
3139 {
3140 enum machine_mode submode
3141 = GET_MODE_INNER (GET_MODE (parmreg));
de17a47b 3142 int regnor = REGNO (XEXP (parmreg, 0));
3143 int regnoi = REGNO (XEXP (parmreg, 1));
3144 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3145 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3146 GET_MODE_SIZE (submode));
35a569c6 3147
3148 /* Scan backwards for the set of the real and
3149 imaginary parts. */
3150 for (sinsn = linsn; sinsn != 0;
3151 sinsn = prev_nonnote_insn (sinsn))
3152 {
3153 set = single_set (sinsn);
3154 if (set == 0)
3155 continue;
3156
3157 if (SET_DEST (set) == regno_reg_rtx [regnoi])
750a330e 3158 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
35a569c6 3159 else if (SET_DEST (set) == regno_reg_rtx [regnor])
750a330e 3160 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
5f85a240 3161 }
35a569c6 3162 }
41cf444a 3163 else
3164 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
35a569c6 3165 }
3166
3167 /* For pointer data type, suggest pointer register. */
3168 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3169 mark_reg_pointer (parmreg,
3170 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3171}
3172
3173/* A subroutine of assign_parms. Allocate stack space to hold the current
3174 parameter. Get it there. Perform all ABI specified conversions. */
3175
3176static void
3177assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3178 struct assign_parm_data_one *data)
3179{
3180 /* Value must be stored in the stack slot STACK_PARM during function
3181 execution. */
c5dc0c32 3182 bool to_conversion = false;
35a569c6 3183
77c0eeb4 3184 assign_parm_remove_parallels (data);
3185
35a569c6 3186 if (data->promoted_mode != data->nominal_mode)
3187 {
3188 /* Conversion is required. */
3189 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
897b77d6 3190
35a569c6 3191 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3192
28bf151d 3193 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
c5dc0c32 3194 to_conversion = true;
3195
35a569c6 3196 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3197 TYPE_UNSIGNED (TREE_TYPE (parm)));
3198
3199 if (data->stack_parm)
738ab6f5 3200 {
3201 int offset = subreg_lowpart_offset (data->nominal_mode,
3202 GET_MODE (data->stack_parm));
3203 /* ??? This may need a big-endian conversion on sparc64. */
3204 data->stack_parm
3205 = adjust_address (data->stack_parm, data->nominal_mode, 0);
da443c27 3206 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
738ab6f5 3207 set_mem_offset (data->stack_parm,
da443c27 3208 MEM_OFFSET (data->stack_parm) + offset);
738ab6f5 3209 }
35a569c6 3210 }
3211
3212 if (data->entry_parm != data->stack_parm)
3213 {
c5dc0c32 3214 rtx src, dest;
3215
35a569c6 3216 if (data->stack_parm == 0)
3217 {
c9b50df7 3218 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3219 GET_MODE (data->entry_parm),
3220 TYPE_ALIGN (data->passed_type));
35a569c6 3221 data->stack_parm
3222 = assign_stack_local (GET_MODE (data->entry_parm),
3223 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
c9b50df7 3224 align);
35a569c6 3225 set_mem_attributes (data->stack_parm, parm, 1);
897b77d6 3226 }
35a569c6 3227
c5dc0c32 3228 dest = validize_mem (data->stack_parm);
3229 src = validize_mem (data->entry_parm);
3230
3231 if (MEM_P (src))
897b77d6 3232 {
c5dc0c32 3233 /* Use a block move to handle potentially misaligned entry_parm. */
3234 if (!to_conversion)
28bf151d 3235 push_to_sequence2 (all->first_conversion_insn,
3236 all->last_conversion_insn);
c5dc0c32 3237 to_conversion = true;
3238
3239 emit_block_move (dest, src,
3240 GEN_INT (int_size_in_bytes (data->passed_type)),
3241 BLOCK_OP_NORMAL);
35a569c6 3242 }
3243 else
c5dc0c32 3244 emit_move_insn (dest, src);
3245 }
3246
3247 if (to_conversion)
3248 {
28bf151d 3249 all->first_conversion_insn = get_insns ();
3250 all->last_conversion_insn = get_last_insn ();
c5dc0c32 3251 end_sequence ();
35a569c6 3252 }
897b77d6 3253
35a569c6 3254 SET_DECL_RTL (parm, data->stack_parm);
3255}
b8f621ce 3256
35a569c6 3257/* A subroutine of assign_parms. If the ABI splits complex arguments, then
3258 undo the frobbing that we did in assign_parms_augmented_arg_list. */
006be676 3259
35a569c6 3260static void
3e992c41 3261assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3262 VEC(tree, heap) *fnargs)
35a569c6 3263{
3264 tree parm;
e6427ef0 3265 tree orig_fnargs = all->orig_fnargs;
3e992c41 3266 unsigned i = 0;
e513d163 3267
3e992c41 3268 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
35a569c6 3269 {
3270 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3271 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3272 {
3273 rtx tmp, real, imag;
3274 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
897b77d6 3275
3e992c41 3276 real = DECL_RTL (VEC_index (tree, fnargs, i));
3277 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
35a569c6 3278 if (inner != GET_MODE (real))
897b77d6 3279 {
35a569c6 3280 real = gen_lowpart_SUBREG (inner, real);
3281 imag = gen_lowpart_SUBREG (inner, imag);
3282 }
e6427ef0 3283
3284 if (TREE_ADDRESSABLE (parm))
3285 {
3286 rtx rmem, imem;
3287 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
c9b50df7 3288 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3289 DECL_MODE (parm),
3290 TYPE_ALIGN (TREE_TYPE (parm)));
e6427ef0 3291
3292 /* split_complex_arg put the real and imag parts in
3293 pseudos. Move them to memory. */
c9b50df7 3294 tmp = assign_stack_local (DECL_MODE (parm), size, align);
e6427ef0 3295 set_mem_attributes (tmp, parm, 1);
3296 rmem = adjust_address_nv (tmp, inner, 0);
3297 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
28bf151d 3298 push_to_sequence2 (all->first_conversion_insn,
3299 all->last_conversion_insn);
e6427ef0 3300 emit_move_insn (rmem, real);
3301 emit_move_insn (imem, imag);
28bf151d 3302 all->first_conversion_insn = get_insns ();
3303 all->last_conversion_insn = get_last_insn ();
e6427ef0 3304 end_sequence ();
3305 }
3306 else
3307 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
35a569c6 3308 SET_DECL_RTL (parm, tmp);
08531d36 3309
3e992c41 3310 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3311 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
35a569c6 3312 if (inner != GET_MODE (real))
3313 {
3314 real = gen_lowpart_SUBREG (inner, real);
3315 imag = gen_lowpart_SUBREG (inner, imag);
897b77d6 3316 }
35a569c6 3317 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
d91cf567 3318 set_decl_incoming_rtl (parm, tmp, false);
3e992c41 3319 i++;
897b77d6 3320 }
897b77d6 3321 }
35a569c6 3322}
3323
3324/* Assign RTL expressions to the function's parameters. This may involve
3325 copying them into registers and using those registers as the DECL_RTL. */
3326
3f0895d3 3327static void
35a569c6 3328assign_parms (tree fndecl)
3329{
3330 struct assign_parm_data_all all;
3e992c41 3331 tree parm;
3332 VEC(tree, heap) *fnargs;
3333 unsigned i;
897b77d6 3334
abe32cce 3335 crtl->args.internal_arg_pointer
567925e3 3336 = targetm.calls.internal_arg_pointer ();
35a569c6 3337
3338 assign_parms_initialize_all (&all);
3339 fnargs = assign_parms_augmented_arg_list (&all);
3340
48148244 3341 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
915e81b8 3342 {
35a569c6 3343 struct assign_parm_data_one data;
3344
3345 /* Extract the type of PARM; adjust it according to ABI. */
3346 assign_parm_find_data_types (&all, parm, &data);
3347
3348 /* Early out for errors and void parameters. */
3349 if (data.passed_mode == VOIDmode)
915e81b8 3350 {
35a569c6 3351 SET_DECL_RTL (parm, const0_rtx);
3352 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3353 continue;
3354 }
1b4f3c7d 3355
27a7a23a 3356 /* Estimate stack alignment from parameter alignment. */
3357 if (SUPPORTS_STACK_ALIGNMENT)
3358 {
bd99ba64 3359 unsigned int align
3360 = targetm.calls.function_arg_boundary (data.promoted_mode,
3361 data.passed_type);
8645d3e7 3362 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3363 align);
27a7a23a 3364 if (TYPE_ALIGN (data.nominal_type) > align)
8645d3e7 3365 align = MINIMUM_ALIGNMENT (data.nominal_type,
3366 TYPE_MODE (data.nominal_type),
3367 TYPE_ALIGN (data.nominal_type));
27a7a23a 3368 if (crtl->stack_alignment_estimated < align)
3369 {
3370 gcc_assert (!crtl->stack_realign_processed);
3371 crtl->stack_alignment_estimated = align;
3372 }
3373 }
48e1416a 3374
1767a056 3375 if (cfun->stdarg && !DECL_CHAIN (parm))
e2704f58 3376 assign_parms_setup_varargs (&all, &data, false);
1b4f3c7d 3377
35a569c6 3378 /* Find out where the parameter arrives in this function. */
3379 assign_parm_find_entry_rtl (&all, &data);
3380
3381 /* Find out where stack space for this parameter might be. */
3382 if (assign_parm_is_stack_parm (&all, &data))
3383 {
3384 assign_parm_find_stack_rtl (parm, &data);
3385 assign_parm_adjust_entry_rtl (&data);
915e81b8 3386 }
35a569c6 3387
3388 /* Record permanently how this parm was passed. */
56fe7223 3389 if (data.passed_pointer)
3390 {
3391 rtx incoming_rtl
3392 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3393 data.entry_parm);
3394 set_decl_incoming_rtl (parm, incoming_rtl, true);
3395 }
3396 else
3397 set_decl_incoming_rtl (parm, data.entry_parm, false);
35a569c6 3398
3399 /* Update info on where next arg arrives in registers. */
39cba157 3400 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
f387af4f 3401 data.passed_type, data.named_arg);
35a569c6 3402
3403 assign_parm_adjust_stack_rtl (&data);
3404
3405 if (assign_parm_setup_block_p (&data))
e2ff5c1b 3406 assign_parm_setup_block (&all, parm, &data);
35a569c6 3407 else if (data.passed_pointer || use_register_for_decl (parm))
3408 assign_parm_setup_reg (&all, parm, &data);
3409 else
3410 assign_parm_setup_stack (&all, parm, &data);
915e81b8 3411 }
3412
3e992c41 3413 if (targetm.calls.split_complex_arg)
e6427ef0 3414 assign_parms_unsplit_complex (&all, fnargs);
35a569c6 3415
3e992c41 3416 VEC_free (tree, heap, fnargs);
3417
b8f621ce 3418 /* Output all parameter conversion instructions (possibly including calls)
3419 now that all parameters have been copied out of hard registers. */
28bf151d 3420 emit_insn (all.first_conversion_insn);
b8f621ce 3421
27a7a23a 3422 /* Estimate reload stack alignment from scalar return mode. */
3423 if (SUPPORTS_STACK_ALIGNMENT)
3424 {
3425 if (DECL_RESULT (fndecl))
3426 {
3427 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3428 enum machine_mode mode = TYPE_MODE (type);
3429
3430 if (mode != BLKmode
3431 && mode != VOIDmode
3432 && !AGGREGATE_TYPE_P (type))
3433 {
3434 unsigned int align = GET_MODE_ALIGNMENT (mode);
3435 if (crtl->stack_alignment_estimated < align)
3436 {
3437 gcc_assert (!crtl->stack_realign_processed);
3438 crtl->stack_alignment_estimated = align;
3439 }
3440 }
48e1416a 3441 }
27a7a23a 3442 }
3443
ba133423 3444 /* If we are receiving a struct value address as the first argument, set up
3445 the RTL for the function result. As this might require code to convert
3446 the transmitted address to Pmode, we do this here to ensure that possible
3447 preliminary conversions of the address have been emitted already. */
35a569c6 3448 if (all.function_result_decl)
ba133423 3449 {
35a569c6 3450 tree result = DECL_RESULT (current_function_decl);
3451 rtx addr = DECL_RTL (all.function_result_decl);
ba133423 3452 rtx x;
de1b648b 3453
806e4c12 3454 if (DECL_BY_REFERENCE (result))
4d5b4e6a 3455 {
3456 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3457 x = addr;
3458 }
806e4c12 3459 else
3460 {
4d5b4e6a 3461 SET_DECL_VALUE_EXPR (result,
3462 build1 (INDIRECT_REF, TREE_TYPE (result),
3463 all.function_result_decl));
806e4c12 3464 addr = convert_memory_address (Pmode, addr);
3465 x = gen_rtx_MEM (DECL_MODE (result), addr);
3466 set_mem_attributes (x, result, 1);
3467 }
4d5b4e6a 3468
3469 DECL_HAS_VALUE_EXPR_P (result) = 1;
3470
ba133423 3471 SET_DECL_RTL (result, x);
3472 }
3473
b0cdd2bb 3474 /* We have aligned all the args, so add space for the pretend args. */
abe32cce 3475 crtl->args.pretend_args_size = all.pretend_args_size;
35a569c6 3476 all.stack_args_size.constant += all.extra_pretend_bytes;
abe32cce 3477 crtl->args.size = all.stack_args_size.constant;
897b77d6 3478
3479 /* Adjust function incoming argument size for alignment and
3480 minimum length. */
3481
3482#ifdef REG_PARM_STACK_SPACE
abe32cce 3483 crtl->args.size = MAX (crtl->args.size,
897b77d6 3484 REG_PARM_STACK_SPACE (fndecl));
2d7187c2 3485#endif
897b77d6 3486
abe32cce 3487 crtl->args.size = CEIL_ROUND (crtl->args.size,
26be63dd 3488 PARM_BOUNDARY / BITS_PER_UNIT);
8967ddf7 3489
897b77d6 3490#ifdef ARGS_GROW_DOWNWARD
abe32cce 3491 crtl->args.arg_offset_rtx
470f4908 3492 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
35a569c6 3493 : expand_expr (size_diffop (all.stack_args_size.var,
3494 size_int (-all.stack_args_size.constant)),
b9c74b4d 3495 NULL_RTX, VOIDmode, EXPAND_NORMAL));
897b77d6 3496#else
abe32cce 3497 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
897b77d6 3498#endif
3499
3500 /* See how many bytes, if any, of its args a function should try to pop
3501 on return. */
3502
f5bc28da 3503 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3504 TREE_TYPE (fndecl),
3505 crtl->args.size);
897b77d6 3506
ec195bc4 3507 /* For stdarg.h function, save info about
3508 regs and stack space used by the named args. */
897b77d6 3509
39cba157 3510 crtl->args.info = all.args_so_far_v;
897b77d6 3511
3512 /* Set the rtx used for the function return value. Put this in its
3513 own variable so any optimizers that need this information don't have
3514 to include tree.h. Do this here so it gets done when an inlined
3515 function gets output. */
3516
abe32cce 3517 crtl->return_rtx
0e8e37b2 3518 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3519 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
8839b7f1 3520
3521 /* If scalar return value was computed in a pseudo-reg, or was a named
3522 return value that got dumped to the stack, copy that to the hard
3523 return register. */
3524 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3525 {
3526 tree decl_result = DECL_RESULT (fndecl);
3527 rtx decl_rtl = DECL_RTL (decl_result);
3528
3529 if (REG_P (decl_rtl)
3530 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3531 : DECL_REGISTER (decl_result))
3532 {
3533 rtx real_decl_rtl;
3534
46b3ff29 3535 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3536 fndecl, true);
8839b7f1 3537 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
abe32cce 3538 /* The delay slot scheduler assumes that crtl->return_rtx
8839b7f1 3539 holds the hard register containing the return value, not a
3540 temporary pseudo. */
abe32cce 3541 crtl->return_rtx = real_decl_rtl;
8839b7f1 3542 }
3543 }
897b77d6 3544}
6b275368 3545
3546/* A subroutine of gimplify_parameters, invoked via walk_tree.
3547 For all seen types, gimplify their sizes. */
3548
3549static tree
3550gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3551{
3552 tree t = *tp;
3553
3554 *walk_subtrees = 0;
3555 if (TYPE_P (t))
3556 {
3557 if (POINTER_TYPE_P (t))
3558 *walk_subtrees = 1;
bc97b18f 3559 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3560 && !TYPE_SIZES_GIMPLIFIED (t))
6b275368 3561 {
75a70cf9 3562 gimplify_type_sizes (t, (gimple_seq *) data);
6b275368 3563 *walk_subtrees = 1;
3564 }
3565 }
3566
3567 return NULL;
3568}
3569
3570/* Gimplify the parameter list for current_function_decl. This involves
3571 evaluating SAVE_EXPRs of variable sized parameters and generating code
75a70cf9 3572 to implement callee-copies reference parameters. Returns a sequence of
3573 statements to add to the beginning of the function. */
6b275368 3574
75a70cf9 3575gimple_seq
6b275368 3576gimplify_parameters (void)
3577{
3578 struct assign_parm_data_all all;
3e992c41 3579 tree parm;
75a70cf9 3580 gimple_seq stmts = NULL;
3e992c41 3581 VEC(tree, heap) *fnargs;
3582 unsigned i;
6b275368 3583
3584 assign_parms_initialize_all (&all);
3585 fnargs = assign_parms_augmented_arg_list (&all);
3586
48148244 3587 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
6b275368 3588 {
3589 struct assign_parm_data_one data;
3590
3591 /* Extract the type of PARM; adjust it according to ABI. */
3592 assign_parm_find_data_types (&all, parm, &data);
3593
3594 /* Early out for errors and void parameters. */
3595 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3596 continue;
3597
3598 /* Update info on where next arg arrives in registers. */
39cba157 3599 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
f387af4f 3600 data.passed_type, data.named_arg);
6b275368 3601
3602 /* ??? Once upon a time variable_size stuffed parameter list
3603 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3604 turned out to be less than manageable in the gimple world.
3605 Now we have to hunt them down ourselves. */
3606 walk_tree_without_duplicates (&data.passed_type,
3607 gimplify_parm_type, &stmts);
3608
4852b829 3609 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
6b275368 3610 {
3611 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3612 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3613 }
3614
3615 if (data.passed_pointer)
3616 {
3617 tree type = TREE_TYPE (data.passed_type);
39cba157 3618 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
6b275368 3619 type, data.named_arg))
3620 {
3621 tree local, t;
3622
4852b829 3623 /* For constant-sized objects, this is trivial; for
6b275368 3624 variable-sized objects, we have to play games. */
4852b829 3625 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3626 && !(flag_stack_check == GENERIC_STACK_CHECK
3627 && compare_tree_int (DECL_SIZE_UNIT (parm),
3628 STACK_CHECK_MAX_VAR_SIZE) > 0))
6b275368 3629 {
63e6b59a 3630 local = create_tmp_var (type, get_name (parm));
6b275368 3631 DECL_IGNORED_P (local) = 0;
ab349ddd 3632 /* If PARM was addressable, move that flag over
3633 to the local copy, as its address will be taken,
5a715a82 3634 not the PARMs. Keep the parms address taken
3635 as we'll query that flag during gimplification. */
ab349ddd 3636 if (TREE_ADDRESSABLE (parm))
5a715a82 3637 TREE_ADDRESSABLE (local) = 1;
63e6b59a 3638 else if (TREE_CODE (type) == COMPLEX_TYPE
3639 || TREE_CODE (type) == VECTOR_TYPE)
3640 DECL_GIMPLE_REG_P (local) = 1;
6b275368 3641 }
3642 else
3643 {
c2f47e15 3644 tree ptr_type, addr;
6b275368 3645
3646 ptr_type = build_pointer_type (type);
599548a7 3647 addr = create_tmp_reg (ptr_type, get_name (parm));
6b275368 3648 DECL_IGNORED_P (addr) = 0;
3649 local = build_fold_indirect_ref (addr);
3650
b9a16870 3651 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4f986f8b 3652 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
581bf1c2 3653 size_int (DECL_ALIGN (parm)));
3654
990495a7 3655 /* The call has been built for a variable-sized object. */
a882d754 3656 CALL_ALLOCA_FOR_VAR_P (t) = 1;
6b275368 3657 t = fold_convert (ptr_type, t);
75a70cf9 3658 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
6b275368 3659 gimplify_and_add (t, &stmts);
3660 }
3661
75a70cf9 3662 gimplify_assign (local, parm, &stmts);
6b275368 3663
75fa4f82 3664 SET_DECL_VALUE_EXPR (parm, local);
3665 DECL_HAS_VALUE_EXPR_P (parm) = 1;
6b275368 3666 }
3667 }
3668 }
3669
3e992c41 3670 VEC_free (tree, heap, fnargs);
3671
6b275368 3672 return stmts;
3673}
96b1130a 3674\f
897b77d6 3675/* Compute the size and offset from the start of the stacked arguments for a
3676 parm passed in mode PASSED_MODE and with type TYPE.
3677
3678 INITIAL_OFFSET_PTR points to the current offset into the stacked
3679 arguments.
3680
241399f6 3681 The starting offset and size for this parm are returned in
3682 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3683 nonzero, the offset is that of stack slot, which is returned in
3684 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3685 padding required from the initial offset ptr to the stack slot.
897b77d6 3686
6ef828f9 3687 IN_REGS is nonzero if the argument will be passed in registers. It will
897b77d6 3688 never be set if REG_PARM_STACK_SPACE is not defined.
3689
3690 FNDECL is the function in which the argument was defined.
3691
3692 There are two types of rounding that are done. The first, controlled by
bd99ba64 3693 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3694 argument list to be aligned to the specific boundary (in bits). This
3695 rounding affects the initial and starting offsets, but not the argument
3696 size.
897b77d6 3697
3698 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3699 optionally rounds the size of the parm to PARM_BOUNDARY. The
3700 initial offset is not affected by this rounding, while the size always
3701 is and the starting offset may be. */
3702
241399f6 3703/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3704 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
897b77d6 3705 callers pass in the total size of args so far as
241399f6 3706 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
897b77d6 3707
897b77d6 3708void
de1b648b 3709locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3710 int partial, tree fndecl ATTRIBUTE_UNUSED,
3711 struct args_size *initial_offset_ptr,
3712 struct locate_and_pad_arg_data *locate)
897b77d6 3713{
241399f6 3714 tree sizetree;
3715 enum direction where_pad;
17bfc2bc 3716 unsigned int boundary, round_boundary;
241399f6 3717 int reg_parm_stack_space = 0;
3718 int part_size_in_regs;
897b77d6 3719
3720#ifdef REG_PARM_STACK_SPACE
241399f6 3721 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
241399f6 3722
897b77d6 3723 /* If we have found a stack parm before we reach the end of the
3724 area reserved for registers, skip that area. */
3725 if (! in_regs)
3726 {
897b77d6 3727 if (reg_parm_stack_space > 0)
3728 {
3729 if (initial_offset_ptr->var)
3730 {
3731 initial_offset_ptr->var
3732 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
902de8ed 3733 ssize_int (reg_parm_stack_space));
897b77d6 3734 initial_offset_ptr->constant = 0;
3735 }
3736 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3737 initial_offset_ptr->constant = reg_parm_stack_space;
3738 }
3739 }
3740#endif /* REG_PARM_STACK_SPACE */
3741
f054eb3c 3742 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
241399f6 3743
3744 sizetree
3745 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3746 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
bd99ba64 3747 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
17bfc2bc 3748 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3749 type);
5f4cd670 3750 locate->where_pad = where_pad;
27a7a23a 3751
3752 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3753 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3754 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3755
c5dc0c32 3756 locate->boundary = boundary;
897b77d6 3757
27a7a23a 3758 if (SUPPORTS_STACK_ALIGNMENT)
3759 {
3760 /* stack_alignment_estimated can't change after stack has been
3761 realigned. */
3762 if (crtl->stack_alignment_estimated < boundary)
3763 {
3764 if (!crtl->stack_realign_processed)
3765 crtl->stack_alignment_estimated = boundary;
3766 else
3767 {
3768 /* If stack is realigned and stack alignment value
3769 hasn't been finalized, it is OK not to increase
3770 stack_alignment_estimated. The bigger alignment
3771 requirement is recorded in stack_alignment_needed
3772 below. */
3773 gcc_assert (!crtl->stack_realign_finalized
3774 && crtl->stack_realign_needed);
3775 }
3776 }
3777 }
3778
90ab54b2 3779 /* Remember if the outgoing parameter requires extra alignment on the
3780 calling function side. */
edb7afe8 3781 if (crtl->stack_alignment_needed < boundary)
3782 crtl->stack_alignment_needed = boundary;
27a7a23a 3783 if (crtl->preferred_stack_boundary < boundary)
3784 crtl->preferred_stack_boundary = boundary;
90ab54b2 3785
897b77d6 3786#ifdef ARGS_GROW_DOWNWARD
241399f6 3787 locate->slot_offset.constant = -initial_offset_ptr->constant;
897b77d6 3788 if (initial_offset_ptr->var)
241399f6 3789 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3790 initial_offset_ptr->var);
ac965869 3791
241399f6 3792 {
3793 tree s2 = sizetree;
3794 if (where_pad != none
3795 && (!host_integerp (sizetree, 1)
17bfc2bc 3796 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3797 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
241399f6 3798 SUB_PARM_SIZE (locate->slot_offset, s2);
3799 }
3800
3801 locate->slot_offset.constant += part_size_in_regs;
ac965869 3802
3803 if (!in_regs
3804#ifdef REG_PARM_STACK_SPACE
3805 || REG_PARM_STACK_SPACE (fndecl) > 0
3806#endif
3807 )
241399f6 3808 pad_to_arg_alignment (&locate->slot_offset, boundary,
3809 &locate->alignment_pad);
ac965869 3810
241399f6 3811 locate->size.constant = (-initial_offset_ptr->constant
3812 - locate->slot_offset.constant);
897b77d6 3813 if (initial_offset_ptr->var)
241399f6 3814 locate->size.var = size_binop (MINUS_EXPR,
3815 size_binop (MINUS_EXPR,
3816 ssize_int (0),
3817 initial_offset_ptr->var),
3818 locate->slot_offset.var);
3819
3820 /* Pad_below needs the pre-rounded size to know how much to pad
3821 below. */
3822 locate->offset = locate->slot_offset;
3823 if (where_pad == downward)
3824 pad_below (&locate->offset, passed_mode, sizetree);
ac965869 3825
897b77d6 3826#else /* !ARGS_GROW_DOWNWARD */
166b1e83 3827 if (!in_regs
3828#ifdef REG_PARM_STACK_SPACE
3829 || REG_PARM_STACK_SPACE (fndecl) > 0
3830#endif
3831 )
241399f6 3832 pad_to_arg_alignment (initial_offset_ptr, boundary,
3833 &locate->alignment_pad);
3834 locate->slot_offset = *initial_offset_ptr;
897b77d6 3835
3836#ifdef PUSH_ROUNDING
3837 if (passed_mode != BLKmode)
3838 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3839#endif
3840
82f48b55 3841 /* Pad_below needs the pre-rounded size to know how much to pad below
3842 so this must be done before rounding up. */
241399f6 3843 locate->offset = locate->slot_offset;
3844 if (where_pad == downward)
3845 pad_below (&locate->offset, passed_mode, sizetree);
82f48b55 3846
897b77d6 3847 if (where_pad != none
46107564 3848 && (!host_integerp (sizetree, 1)
17bfc2bc 3849 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3850 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
897b77d6 3851
241399f6 3852 ADD_PARM_SIZE (locate->size, sizetree);
3853
3854 locate->size.constant -= part_size_in_regs;
897b77d6 3855#endif /* ARGS_GROW_DOWNWARD */
b704e80f 3856
3857#ifdef FUNCTION_ARG_OFFSET
3858 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3859#endif
897b77d6 3860}
3861
ba585215 3862/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3863 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3864
897b77d6 3865static void
de1b648b 3866pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3867 struct args_size *alignment_pad)
897b77d6 3868{
ef2c4a29 3869 tree save_var = NULL_TREE;
3870 HOST_WIDE_INT save_constant = 0;
5cf5baa2 3871 int boundary_in_bytes = boundary / BITS_PER_UNIT;
891a1732 3872 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3873
3874#ifdef SPARC_STACK_BOUNDARY_HACK
1aecae7f 3875 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3876 the real alignment of %sp. However, when it does this, the
3877 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
891a1732 3878 if (SPARC_STACK_BOUNDARY_HACK)
3879 sp_offset = 0;
3880#endif
9d855d2f 3881
b3f75873 3882 if (boundary > PARM_BOUNDARY)
9d855d2f 3883 {
3884 save_var = offset_ptr->var;
3885 save_constant = offset_ptr->constant;
3886 }
3887
3888 alignment_pad->var = NULL_TREE;
3889 alignment_pad->constant = 0;
9d855d2f 3890
897b77d6 3891 if (boundary > BITS_PER_UNIT)
3892 {
3893 if (offset_ptr->var)
3894 {
891a1732 3895 tree sp_offset_tree = ssize_int (sp_offset);
3896 tree offset = size_binop (PLUS_EXPR,
3897 ARGS_SIZE_TREE (*offset_ptr),
3898 sp_offset_tree);
897b77d6 3899#ifdef ARGS_GROW_DOWNWARD
891a1732 3900 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
897b77d6 3901#else
891a1732 3902 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
897b77d6 3903#endif
891a1732 3904
3905 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
241399f6 3906 /* ARGS_SIZE_TREE includes constant term. */
3907 offset_ptr->constant = 0;
b3f75873 3908 if (boundary > PARM_BOUNDARY)
d3371fcd 3909 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
902de8ed 3910 save_var);
897b77d6 3911 }
3912 else
06ebc183 3913 {
891a1732 3914 offset_ptr->constant = -sp_offset +
897b77d6 3915#ifdef ARGS_GROW_DOWNWARD
891a1732 3916 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
897b77d6 3917#else
891a1732 3918 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
897b77d6 3919#endif
b3f75873 3920 if (boundary > PARM_BOUNDARY)
06ebc183 3921 alignment_pad->constant = offset_ptr->constant - save_constant;
3922 }
897b77d6 3923 }
3924}
3925
3926static void
de1b648b 3927pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
897b77d6 3928{
3929 if (passed_mode != BLKmode)
3930 {
3931 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3932 offset_ptr->constant
3933 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3934 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3935 - GET_MODE_SIZE (passed_mode));
3936 }
3937 else
3938 {
3939 if (TREE_CODE (sizetree) != INTEGER_CST
3940 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3941 {
3942 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3943 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3944 /* Add it in. */
3945 ADD_PARM_SIZE (*offset_ptr, s2);
3946 SUB_PARM_SIZE (*offset_ptr, sizetree);
3947 }
3948 }
3949}
897b77d6 3950\f
897b77d6 3951
3072d30e 3952/* True if register REGNO was alive at a place where `setjmp' was
3953 called and was set more than once or is an argument. Such regs may
3954 be clobbered by `longjmp'. */
3955
3956static bool
3957regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3958{
3959 /* There appear to be cases where some local vars never reach the
3960 backend but have bogus regnos. */
3961 if (regno >= max_reg_num ())
3962 return false;
3963
3964 return ((REG_N_SETS (regno) > 1
3965 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3966 && REGNO_REG_SET_P (setjmp_crosses, regno));
3967}
3968
3969/* Walk the tree of blocks describing the binding levels within a
3970 function and warn about variables the might be killed by setjmp or
3971 vfork. This is done after calling flow_analysis before register
3972 allocation since that will clobber the pseudo-regs to hard
3973 regs. */
3974
3975static void
3976setjmp_vars_warning (bitmap setjmp_crosses, tree block)
897b77d6 3977{
19cb6b50 3978 tree decl, sub;
4ee9c684 3979
1767a056 3980 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
897b77d6 3981 {
4ee9c684 3982 if (TREE_CODE (decl) == VAR_DECL
49bf95f0 3983 && DECL_RTL_SET_P (decl)
8ad4c111 3984 && REG_P (DECL_RTL (decl))
3072d30e 3985 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
48e1416a 3986 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
0d438110 3987 " %<longjmp%> or %<vfork%>", decl);
897b77d6 3988 }
4ee9c684 3989
93110716 3990 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3072d30e 3991 setjmp_vars_warning (setjmp_crosses, sub);
897b77d6 3992}
3993
4ee9c684 3994/* Do the appropriate part of setjmp_vars_warning
897b77d6 3995 but for arguments instead of local variables. */
3996
3072d30e 3997static void
3998setjmp_args_warning (bitmap setjmp_crosses)
897b77d6 3999{
19cb6b50 4000 tree decl;
897b77d6 4001 for (decl = DECL_ARGUMENTS (current_function_decl);
1767a056 4002 decl; decl = DECL_CHAIN (decl))
897b77d6 4003 if (DECL_RTL (decl) != 0
8ad4c111 4004 && REG_P (DECL_RTL (decl))
3072d30e 4005 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
48e1416a 4006 warning (OPT_Wclobbered,
0d438110 4007 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3cf8b391 4008 decl);
897b77d6 4009}
4010
3072d30e 4011/* Generate warning messages for variables live across setjmp. */
4012
48e1416a 4013void
3072d30e 4014generate_setjmp_warnings (void)
4015{
4016 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4017
4018 if (n_basic_blocks == NUM_FIXED_BLOCKS
4019 || bitmap_empty_p (setjmp_crosses))
4020 return;
4021
4022 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4023 setjmp_args_warning (setjmp_crosses);
4024}
4025
897b77d6 4026\f
d6263c49 4027/* Reverse the order of elements in the fragment chain T of blocks,
665611e7 4028 and return the new head of the chain (old last element).
4029 In addition to that clear BLOCK_SAME_RANGE flags when needed
4030 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4031 its super fragment origin. */
d6263c49 4032
4033static tree
4034block_fragments_nreverse (tree t)
4035{
665611e7 4036 tree prev = 0, block, next, prev_super = 0;
4037 tree super = BLOCK_SUPERCONTEXT (t);
4038 if (BLOCK_FRAGMENT_ORIGIN (super))
4039 super = BLOCK_FRAGMENT_ORIGIN (super);
d6263c49 4040 for (block = t; block; block = next)
4041 {
4042 next = BLOCK_FRAGMENT_CHAIN (block);
4043 BLOCK_FRAGMENT_CHAIN (block) = prev;
665611e7 4044 if ((prev && !BLOCK_SAME_RANGE (prev))
4045 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4046 != prev_super))
4047 BLOCK_SAME_RANGE (block) = 0;
4048 prev_super = BLOCK_SUPERCONTEXT (block);
4049 BLOCK_SUPERCONTEXT (block) = super;
d6263c49 4050 prev = block;
4051 }
665611e7 4052 t = BLOCK_FRAGMENT_ORIGIN (t);
4053 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4054 != prev_super)
4055 BLOCK_SAME_RANGE (t) = 0;
4056 BLOCK_SUPERCONTEXT (t) = super;
d6263c49 4057 return prev;
4058}
4059
4060/* Reverse the order of elements in the chain T of blocks,
4061 and return the new head of the chain (old last element).
4062 Also do the same on subblocks and reverse the order of elements
4063 in BLOCK_FRAGMENT_CHAIN as well. */
4064
4065static tree
4066blocks_nreverse_all (tree t)
4067{
4068 tree prev = 0, block, next;
4069 for (block = t; block; block = next)
4070 {
4071 next = BLOCK_CHAIN (block);
4072 BLOCK_CHAIN (block) = prev;
d6263c49 4073 if (BLOCK_FRAGMENT_CHAIN (block)
4074 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
665611e7 4075 {
4076 BLOCK_FRAGMENT_CHAIN (block)
4077 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4078 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4079 BLOCK_SAME_RANGE (block) = 0;
4080 }
4081 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
d6263c49 4082 prev = block;
4083 }
4084 return prev;
4085}
4086
4087
a36145ca 4088/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4089 and create duplicate blocks. */
4090/* ??? Need an option to either create block fragments or to create
4091 abstract origin duplicates of a source block. It really depends
4092 on what optimization has been performed. */
11b373ff 4093
f1ab82be 4094void
de1b648b 4095reorder_blocks (void)
11b373ff 4096{
f1ab82be 4097 tree block = DECL_INITIAL (current_function_decl);
573a97ad 4098 VEC(tree,heap) *block_stack;
11b373ff 4099
0c45344e 4100 if (block == NULL_TREE)
f1ab82be 4101 return;
9d819987 4102
573a97ad 4103 block_stack = VEC_alloc (tree, heap, 10);
5846cb0f 4104
a36145ca 4105 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4ee9c684 4106 clear_block_marks (block);
a36145ca 4107
f1ab82be 4108 /* Prune the old trees away, so that they don't get in the way. */
4109 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4110 BLOCK_CHAIN (block) = NULL_TREE;
9d819987 4111
a36145ca 4112 /* Recreate the block tree from the note nesting. */
f1ab82be 4113 reorder_blocks_1 (get_insns (), block, &block_stack);
d6263c49 4114 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
5846cb0f 4115
573a97ad 4116 VEC_free (tree, heap, block_stack);
11b373ff 4117}
4118
a36145ca 4119/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
60ecc450 4120
4ee9c684 4121void
4122clear_block_marks (tree block)
5e960ca9 4123{
a36145ca 4124 while (block)
5e960ca9 4125 {
a36145ca 4126 TREE_ASM_WRITTEN (block) = 0;
4ee9c684 4127 clear_block_marks (BLOCK_SUBBLOCKS (block));
a36145ca 4128 block = BLOCK_CHAIN (block);
5e960ca9 4129 }
4130}
4131
60ecc450 4132static void
573a97ad 4133reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
60ecc450 4134{
4135 rtx insn;
665611e7 4136 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
60ecc450 4137
4138 for (insn = insns; insn; insn = NEXT_INSN (insn))
4139 {
6d7dc5b9 4140 if (NOTE_P (insn))
60ecc450 4141 {
ad4583d9 4142 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
60ecc450 4143 {
4144 tree block = NOTE_BLOCK (insn);
70392493 4145 tree origin;
4146
d6263c49 4147 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4148 origin = block;
a36145ca 4149
665611e7 4150 if (prev_end)
4151 BLOCK_SAME_RANGE (prev_end) = 0;
4152 prev_end = NULL_TREE;
4153
a36145ca 4154 /* If we have seen this block before, that means it now
4155 spans multiple address regions. Create a new fragment. */
60ecc450 4156 if (TREE_ASM_WRITTEN (block))
4157 {
a36145ca 4158 tree new_block = copy_node (block);
a36145ca 4159
665611e7 4160 BLOCK_SAME_RANGE (new_block) = 0;
a36145ca 4161 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4162 BLOCK_FRAGMENT_CHAIN (new_block)
4163 = BLOCK_FRAGMENT_CHAIN (origin);
4164 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4165
4166 NOTE_BLOCK (insn) = new_block;
4167 block = new_block;
60ecc450 4168 }
a36145ca 4169
665611e7 4170 if (prev_beg == current_block && prev_beg)
4171 BLOCK_SAME_RANGE (block) = 1;
4172
4173 prev_beg = origin;
4174
60ecc450 4175 BLOCK_SUBBLOCKS (block) = 0;
4176 TREE_ASM_WRITTEN (block) = 1;
31ddae9f 4177 /* When there's only one block for the entire function,
4178 current_block == block and we mustn't do this, it
4179 will cause infinite recursion. */
4180 if (block != current_block)
4181 {
665611e7 4182 tree super;
70392493 4183 if (block != origin)
665611e7 4184 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4185 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4186 (origin))
4187 == current_block);
4188 if (VEC_empty (tree, *p_block_stack))
4189 super = current_block;
4190 else
4191 {
4192 super = VEC_last (tree, *p_block_stack);
4193 gcc_assert (super == current_block
4194 || BLOCK_FRAGMENT_ORIGIN (super)
4195 == current_block);
4196 }
4197 BLOCK_SUPERCONTEXT (block) = super;
31ddae9f 4198 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4199 BLOCK_SUBBLOCKS (current_block) = block;
70392493 4200 current_block = origin;
31ddae9f 4201 }
573a97ad 4202 VEC_safe_push (tree, heap, *p_block_stack, block);
60ecc450 4203 }
ad4583d9 4204 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
60ecc450 4205 {
573a97ad 4206 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
60ecc450 4207 current_block = BLOCK_SUPERCONTEXT (current_block);
665611e7 4208 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4209 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4210 prev_beg = NULL_TREE;
4211 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4212 ? NOTE_BLOCK (insn) : NULL_TREE;
60ecc450 4213 }
4214 }
665611e7 4215 else
4216 {
4217 prev_beg = NULL_TREE;
4218 if (prev_end)
4219 BLOCK_SAME_RANGE (prev_end) = 0;
4220 prev_end = NULL_TREE;
4221 }
60ecc450 4222 }
4223}
4224
11b373ff 4225/* Reverse the order of elements in the chain T of blocks,
4226 and return the new head of the chain (old last element). */
4227
4ee9c684 4228tree
de1b648b 4229blocks_nreverse (tree t)
11b373ff 4230{
d6263c49 4231 tree prev = 0, block, next;
4232 for (block = t; block; block = next)
11b373ff 4233 {
d6263c49 4234 next = BLOCK_CHAIN (block);
4235 BLOCK_CHAIN (block) = prev;
4236 prev = block;
11b373ff 4237 }
4238 return prev;
4239}
4240
2149d019 4241/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4242 by modifying the last node in chain 1 to point to chain 2. */
4243
4244tree
4245block_chainon (tree op1, tree op2)
4246{
4247 tree t1;
4248
4249 if (!op1)
4250 return op2;
4251 if (!op2)
4252 return op1;
4253
4254 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4255 continue;
4256 BLOCK_CHAIN (t1) = op2;
4257
4258#ifdef ENABLE_TREE_CHECKING
4259 {
4260 tree t2;
4261 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4262 gcc_assert (t2 != t1);
4263 }
4264#endif
4265
4266 return op1;
4267}
4268
5846cb0f 4269/* Count the subblocks of the list starting with BLOCK. If VECTOR is
4270 non-NULL, list them all into VECTOR, in a depth-first preorder
4271 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
396bfb69 4272 blocks. */
11b373ff 4273
4274static int
de1b648b 4275all_blocks (tree block, tree *vector)
11b373ff 4276{
396bfb69 4277 int n_blocks = 0;
4278
874a9b8d 4279 while (block)
4280 {
4281 TREE_ASM_WRITTEN (block) = 0;
396bfb69 4282
874a9b8d 4283 /* Record this block. */
4284 if (vector)
4285 vector[n_blocks] = block;
396bfb69 4286
874a9b8d 4287 ++n_blocks;
06ebc183 4288
874a9b8d 4289 /* Record the subblocks, and their subblocks... */
4290 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4291 vector ? vector + n_blocks : 0);
4292 block = BLOCK_CHAIN (block);
4293 }
11b373ff 4294
4295 return n_blocks;
4296}
5846cb0f 4297
4298/* Return a vector containing all the blocks rooted at BLOCK. The
4299 number of elements in the vector is stored in N_BLOCKS_P. The
4300 vector is dynamically allocated; it is the caller's responsibility
4301 to call `free' on the pointer returned. */
06ebc183 4302
5846cb0f 4303static tree *
de1b648b 4304get_block_vector (tree block, int *n_blocks_p)
5846cb0f 4305{
4306 tree *block_vector;
4307
4308 *n_blocks_p = all_blocks (block, NULL);
4c36ffe6 4309 block_vector = XNEWVEC (tree, *n_blocks_p);
5846cb0f 4310 all_blocks (block, block_vector);
4311
4312 return block_vector;
4313}
4314
177c2ebc 4315static GTY(()) int next_block_index = 2;
5846cb0f 4316
4317/* Set BLOCK_NUMBER for all the blocks in FN. */
4318
4319void
de1b648b 4320number_blocks (tree fn)
5846cb0f 4321{
4322 int i;
4323 int n_blocks;
4324 tree *block_vector;
4325
4326 /* For SDB and XCOFF debugging output, we start numbering the blocks
4327 from 1 within each function, rather than keeping a running
4328 count. */
4329#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
0eb76379 4330 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4331 next_block_index = 1;
5846cb0f 4332#endif
4333
4334 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4335
4336 /* The top-level BLOCK isn't numbered at all. */
4337 for (i = 1; i < n_blocks; ++i)
4338 /* We number the blocks from two. */
4339 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4340
4341 free (block_vector);
4342
4343 return;
4344}
baa8dec7 4345
4346/* If VAR is present in a subblock of BLOCK, return the subblock. */
4347
4b987fac 4348DEBUG_FUNCTION tree
de1b648b 4349debug_find_var_in_block_tree (tree var, tree block)
baa8dec7 4350{
4351 tree t;
4352
4353 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4354 if (t == var)
4355 return block;
4356
4357 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4358 {
4359 tree ret = debug_find_var_in_block_tree (var, t);
4360 if (ret)
4361 return ret;
4362 }
4363
4364 return NULL_TREE;
4365}
11b373ff 4366\f
87d4aa85 4367/* Keep track of whether we're in a dummy function context. If we are,
4368 we don't want to invoke the set_current_function hook, because we'll
4369 get into trouble if the hook calls target_reinit () recursively or
4370 when the initial initialization is not yet complete. */
4371
4372static bool in_dummy_function;
4373
46f8e3b0 4374/* Invoke the target hook when setting cfun. Update the optimization options
4375 if the function uses different options than the default. */
87d4aa85 4376
4377static void
4378invoke_set_current_function_hook (tree fndecl)
4379{
4380 if (!in_dummy_function)
46f8e3b0 4381 {
4382 tree opts = ((fndecl)
4383 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4384 : optimization_default_node);
4385
4386 if (!opts)
4387 opts = optimization_default_node;
4388
4389 /* Change optimization options if needed. */
4390 if (optimization_current_node != opts)
4391 {
4392 optimization_current_node = opts;
2c5d2e39 4393 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
46f8e3b0 4394 }
4395
4396 targetm.set_current_function (fndecl);
4397 }
87d4aa85 4398}
4399
4400/* cfun should never be set directly; use this function. */
4401
4402void
4403set_cfun (struct function *new_cfun)
4404{
4405 if (cfun != new_cfun)
4406 {
4407 cfun = new_cfun;
4408 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4409 }
4410}
4411
87d4aa85 4412/* Initialized with NOGC, making this poisonous to the garbage collector. */
4413
4414static VEC(function_p,heap) *cfun_stack;
4415
4416/* Push the current cfun onto the stack, and set cfun to new_cfun. */
4417
4418void
4419push_cfun (struct function *new_cfun)
4420{
4421 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4422 set_cfun (new_cfun);
4423}
4424
4425/* Pop cfun from the stack. */
4426
4427void
4428pop_cfun (void)
4429{
3c9dcda1 4430 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3c9dcda1 4431 set_cfun (new_cfun);
87d4aa85 4432}
a3adcd4a 4433
4434/* Return value of funcdef and increase it. */
4435int
48e1416a 4436get_next_funcdef_no (void)
a3adcd4a 4437{
4438 return funcdef_no++;
4439}
4440
1ad3e14c 4441/* Return value of funcdef. */
4442int
4443get_last_funcdef_no (void)
4444{
4445 return funcdef_no;
4446}
4447
ecc82929 4448/* Allocate a function structure for FNDECL and set its contents
87d4aa85 4449 to the defaults. Set cfun to the newly-allocated object.
4450 Some of the helper functions invoked during initialization assume
4451 that cfun has already been set. Therefore, assign the new object
4452 directly into cfun and invoke the back end hook explicitly at the
4453 very end, rather than initializing a temporary and calling set_cfun
4454 on it.
80f2ef47 4455
4456 ABSTRACT_P is true if this is a function that will never be seen by
4457 the middle-end. Such functions are front-end concepts (like C++
4458 function templates) that do not correspond directly to functions
4459 placed in object files. */
942cc45f 4460
ecc82929 4461void
80f2ef47 4462allocate_struct_function (tree fndecl, bool abstract_p)
897b77d6 4463{
ecc82929 4464 tree result;
4ee9c684 4465 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
897b77d6 4466
ba72912a 4467 cfun = ggc_alloc_cleared_function ();
304c5bf1 4468
ecc82929 4469 init_eh_for_function ();
897b77d6 4470
ecc82929 4471 if (init_machine_status)
4472 cfun->machine = (*init_machine_status) ();
26df1c5e 4473
d3feb168 4474#ifdef OVERRIDE_ABI_FORMAT
4475 OVERRIDE_ABI_FORMAT (fndecl);
4476#endif
4477
342ad2d6 4478 invoke_set_current_function_hook (fndecl);
4479
22c61100 4480 if (fndecl != NULL_TREE)
ecc82929 4481 {
87d4aa85 4482 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4483 cfun->decl = fndecl;
285aabd1 4484 current_function_funcdef_no = get_next_funcdef_no ();
87d4aa85 4485
4486 result = DECL_RESULT (fndecl);
80f2ef47 4487 if (!abstract_p && aggregate_value_p (result, fndecl))
87d4aa85 4488 {
ecc82929 4489#ifdef PCC_STATIC_STRUCT_RETURN
18d50ae6 4490 cfun->returns_pcc_struct = 1;
ecc82929 4491#endif
18d50ae6 4492 cfun->returns_struct = 1;
87d4aa85 4493 }
4494
257d99c3 4495 cfun->stdarg = stdarg_p (fntype);
48e1416a 4496
87d4aa85 4497 /* Assume all registers in stdarg functions need to be saved. */
4498 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4499 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
cbeb677e 4500
4501 /* ??? This could be set on a per-function basis by the front-end
4502 but is this worth the hassle? */
4503 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
ecc82929 4504 }
87d4aa85 4505}
4506
4507/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4508 instead of just setting it. */
a6c787e5 4509
87d4aa85 4510void
4511push_struct_function (tree fndecl)
4512{
4513 VEC_safe_push (function_p, heap, cfun_stack, cfun);
80f2ef47 4514 allocate_struct_function (fndecl, false);
ecc82929 4515}
897b77d6 4516
cbeb677e 4517/* Reset crtl and other non-struct-function variables to defaults as
f024691d 4518 appropriate for emitting rtl at the start of a function. */
897b77d6 4519
ecc82929 4520static void
87d4aa85 4521prepare_function_start (void)
ecc82929 4522{
fd6ffb7c 4523 gcc_assert (!crtl->emit.x_last_insn);
fef299ce 4524 init_temp_slots ();
957211e4 4525 init_emit ();
b079a207 4526 init_varasm_status ();
957211e4 4527 init_expr ();
7dfb44a0 4528 default_rtl_profile ();
897b77d6 4529
8c0dd614 4530 if (flag_stack_usage_info)
990495a7 4531 {
4532 cfun->su = ggc_alloc_cleared_stack_usage ();
4533 cfun->su->static_stack_size = -1;
4534 }
4535
ecc82929 4536 cse_not_expected = ! optimize;
897b77d6 4537
ecc82929 4538 /* Caller save not needed yet. */
4539 caller_save_needed = 0;
897b77d6 4540
ecc82929 4541 /* We haven't done register allocation yet. */
4542 reg_renumber = 0;
897b77d6 4543
304c5bf1 4544 /* Indicate that we have not instantiated virtual registers yet. */
4545 virtuals_instantiated = 0;
4546
316bc009 4547 /* Indicate that we want CONCATs now. */
4548 generating_concat_p = 1;
4549
304c5bf1 4550 /* Indicate we have no need of a frame pointer yet. */
4551 frame_pointer_needed = 0;
304c5bf1 4552}
4553
4554/* Initialize the rtl expansion mechanism so that we can do simple things
4555 like generate sequences. This is used to provide a context during global
87d4aa85 4556 initialization of some passes. You must call expand_dummy_function_end
4557 to exit this context. */
4558
304c5bf1 4559void
de1b648b 4560init_dummy_function_start (void)
304c5bf1 4561{
87d4aa85 4562 gcc_assert (!in_dummy_function);
4563 in_dummy_function = true;
4564 push_struct_function (NULL_TREE);
4565 prepare_function_start ();
304c5bf1 4566}
4567
4568/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4569 and initialize static variables for generating RTL for the statements
4570 of the function. */
4571
4572void
de1b648b 4573init_function_start (tree subr)
304c5bf1 4574{
87d4aa85 4575 if (subr && DECL_STRUCT_FUNCTION (subr))
4576 set_cfun (DECL_STRUCT_FUNCTION (subr));
4577 else
80f2ef47 4578 allocate_struct_function (subr, false);
87d4aa85 4579 prepare_function_start ();
756dcd13 4580 decide_function_section (subr);
304c5bf1 4581
897b77d6 4582 /* Warn if this value is an aggregate type,
4583 regardless of which calling convention we are using for it. */
efb9d9ee 4584 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4585 warning (OPT_Waggregate_return, "function returns an aggregate");
0a893c29 4586}
a590d94d 4587
77fce4cd 4588
897b77d6 4589void
de1b648b 4590expand_main_function (void)
897b77d6 4591{
72f9fc81 4592#if (defined(INVOKE__main) \
4593 || (!defined(HAS_INIT_SECTION) \
4594 && !defined(INIT_SECTION_ASM_OP) \
4595 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
62f615b1 4596 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3ca5a306 4597#endif
897b77d6 4598}
4599\f
f1a0edff 4600/* Expand code to initialize the stack_protect_guard. This is invoked at
4601 the beginning of a function to be protected. */
4602
4603#ifndef HAVE_stack_protect_set
4604# define HAVE_stack_protect_set 0
4605# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4606#endif
4607
4608void
4609stack_protect_prologue (void)
4610{
4611 tree guard_decl = targetm.stack_protect_guard ();
4612 rtx x, y;
4613
d2a99f05 4614 x = expand_normal (crtl->stack_protect_guard);
4615 y = expand_normal (guard_decl);
f1a0edff 4616
4617 /* Allow the target to copy from Y to X without leaking Y into a
4618 register. */
4619 if (HAVE_stack_protect_set)
4620 {
4621 rtx insn = gen_stack_protect_set (x, y);
4622 if (insn)
4623 {
4624 emit_insn (insn);
4625 return;
4626 }
4627 }
4628
4629 /* Otherwise do a straight move. */
4630 emit_move_insn (x, y);
4631}
4632
4633/* Expand code to verify the stack_protect_guard. This is invoked at
4634 the end of a function to be protected. */
4635
4636#ifndef HAVE_stack_protect_test
bbd33557 4637# define HAVE_stack_protect_test 0
4638# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
f1a0edff 4639#endif
4640
71d89928 4641void
f1a0edff 4642stack_protect_epilogue (void)
4643{
4644 tree guard_decl = targetm.stack_protect_guard ();
4645 rtx label = gen_label_rtx ();
4646 rtx x, y, tmp;
4647
d2a99f05 4648 x = expand_normal (crtl->stack_protect_guard);
4649 y = expand_normal (guard_decl);
f1a0edff 4650
4651 /* Allow the target to compare Y with X without leaking either into
4652 a register. */
4653 switch (HAVE_stack_protect_test != 0)
4654 {
4655 case 1:
419bcc46 4656 tmp = gen_stack_protect_test (x, y, label);
f1a0edff 4657 if (tmp)
4658 {
4659 emit_insn (tmp);
f1a0edff 4660 break;
4661 }
4662 /* FALLTHRU */
4663
4664 default:
4665 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4666 break;
4667 }
4668
4669 /* The noreturn predictor has been moved to the tree level. The rtl-level
4670 predictors estimate this branch about 20%, which isn't enough to get
4671 things moved out of line. Since this is the only extant case of adding
4672 a noreturn function at the rtl level, it doesn't seem worth doing ought
4673 except adding the prediction by hand. */
4674 tmp = get_last_insn ();
4675 if (JUMP_P (tmp))
4676 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4677
5a13cc45 4678 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4679 free_temp_slots ();
f1a0edff 4680 emit_label (label);
4681}
4682\f
897b77d6 4683/* Start the RTL for a new function, and set variables used for
4684 emitting RTL.
4685 SUBR is the FUNCTION_DECL node.
4686 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4687 the function's parameters, which must be run at any return statement. */
4688
4689void
82aa4bd5 4690expand_function_start (tree subr)
897b77d6 4691{
897b77d6 4692 /* Make sure volatile mem refs aren't considered
4693 valid operands of arithmetic insns. */
4694 init_recog_no_volatile ();
4695
18d50ae6 4696 crtl->profile
7811c823 4697 = (profile_flag
4698 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4699
18d50ae6 4700 crtl->limit_stack
8f8ac140 4701 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4702
df4b504c 4703 /* Make the label for return statements to jump to. Do not special
4704 case machines with special return instructions -- they will be
4705 handled later during jump, ifcvt, or epilogue creation. */
897b77d6 4706 return_label = gen_label_rtx ();
897b77d6 4707
4708 /* Initialize rtx used to return the value. */
4709 /* Do this before assign_parms so that we copy the struct value address
4710 before any library calls that assign parms might generate. */
4711
4712 /* Decide whether to return the value in memory or in a register. */
45550790 4713 if (aggregate_value_p (DECL_RESULT (subr), subr))
897b77d6 4714 {
4715 /* Returning something that won't go in a register. */
19cb6b50 4716 rtx value_address = 0;
897b77d6 4717
4718#ifdef PCC_STATIC_STRUCT_RETURN
18d50ae6 4719 if (cfun->returns_pcc_struct)
897b77d6 4720 {
4721 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4722 value_address = assemble_static_space (size);
4723 }
4724 else
4725#endif
4726 {
d8c09ceb 4727 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
897b77d6 4728 /* Expect to be passed the address of a place to store the value.
4729 If it is passed as an argument, assign_parms will take care of
4730 it. */
45550790 4731 if (sv)
897b77d6 4732 {
4733 value_address = gen_reg_rtx (Pmode);
45550790 4734 emit_move_insn (value_address, sv);
897b77d6 4735 }
4736 }
4737 if (value_address)
ce88c7f0 4738 {
648c102e 4739 rtx x = value_address;
4740 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4741 {
4742 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4743 set_mem_attributes (x, DECL_RESULT (subr), 1);
4744 }
d05cd611 4745 SET_DECL_RTL (DECL_RESULT (subr), x);
ce88c7f0 4746 }
897b77d6 4747 }
4748 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4749 /* If return mode is void, this decl rtl should not be used. */
0e8e37b2 4750 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
7ab29b28 4751 else
7e8dfb30 4752 {
7ab29b28 4753 /* Compute the return values into a pseudo reg, which we will copy
4754 into the true return register after the cleanups are done. */
05d18e8b 4755 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4756 if (TYPE_MODE (return_type) != BLKmode
4757 && targetm.calls.return_in_msb (return_type))
4758 /* expand_function_end will insert the appropriate padding in
4759 this case. Use the return value's natural (unpadded) mode
4760 within the function proper. */
4761 SET_DECL_RTL (DECL_RESULT (subr),
4762 gen_reg_rtx (TYPE_MODE (return_type)));
92f708ec 4763 else
fdada98f 4764 {
05d18e8b 4765 /* In order to figure out what mode to use for the pseudo, we
4766 figure out what the mode of the eventual return register will
4767 actually be, and use that. */
46b3ff29 4768 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
05d18e8b 4769
4770 /* Structures that are returned in registers are not
4771 aggregate_value_p, so we may see a PARALLEL or a REG. */
4772 if (REG_P (hard_reg))
4773 SET_DECL_RTL (DECL_RESULT (subr),
4774 gen_reg_rtx (GET_MODE (hard_reg)));
4775 else
4776 {
4777 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4778 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4779 }
fdada98f 4780 }
7e8dfb30 4781
b566e2e5 4782 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4783 result to the real return register(s). */
4784 DECL_REGISTER (DECL_RESULT (subr)) = 1;
7e8dfb30 4785 }
897b77d6 4786
4787 /* Initialize rtx for parameters and local variables.
4788 In some cases this requires emitting insns. */
bffcf014 4789 assign_parms (subr);
897b77d6 4790
4ee9c684 4791 /* If function gets a static chain arg, store it. */
4792 if (cfun->static_chain_decl)
4793 {
3efaa21f 4794 tree parm = cfun->static_chain_decl;
82c7907c 4795 rtx local, chain, insn;
3efaa21f 4796
82c7907c 4797 local = gen_reg_rtx (Pmode);
4798 chain = targetm.calls.static_chain (current_function_decl, true);
4799
4800 set_decl_incoming_rtl (parm, chain, false);
3efaa21f 4801 SET_DECL_RTL (parm, local);
3efaa21f 4802 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4ee9c684 4803
82c7907c 4804 insn = emit_move_insn (local, chain);
4805
4806 /* Mark the register as eliminable, similar to parameters. */
4807 if (MEM_P (chain)
4808 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
41cf444a 4809 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4ee9c684 4810 }
4811
4812 /* If the function receives a non-local goto, then store the
4813 bits we need to restore the frame pointer. */
4814 if (cfun->nonlocal_goto_save_area)
4815 {
4816 tree t_save;
4817 rtx r_save;
4818
1a105fae 4819 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
7843e4bc 4820 gcc_assert (DECL_RTL_SET_P (var));
4ee9c684 4821
21dc8b2b 4822 t_save = build4 (ARRAY_REF,
4823 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
b55f9493 4824 cfun->nonlocal_goto_save_area,
4825 integer_zero_node, NULL_TREE, NULL_TREE);
4ee9c684 4826 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
21dc8b2b 4827 gcc_assert (GET_MODE (r_save) == Pmode);
50c48f9b 4828
6a5dfe57 4829 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4ee9c684 4830 update_nonlocal_goto_save_area ();
4831 }
50c48f9b 4832
897b77d6 4833 /* The following was moved from init_function_start.
4834 The move is supposed to make sdb output more accurate. */
4835 /* Indicate the beginning of the function body,
4836 as opposed to parm setup. */
31b97e8f 4837 emit_note (NOTE_INSN_FUNCTION_BEG);
897b77d6 4838
1edb3690 4839 gcc_assert (NOTE_P (get_last_insn ()));
4840
897b77d6 4841 parm_birth_insn = get_last_insn ();
4842
18d50ae6 4843 if (crtl->profile)
b8a21949 4844 {
b8a21949 4845#ifdef PROFILE_HOOK
4781f9b9 4846 PROFILE_HOOK (current_function_funcdef_no);
104d9861 4847#endif
b8a21949 4848 }
104d9861 4849
f8c438a1 4850 /* If we are doing generic stack checking, the probe should go here. */
4851 if (flag_stack_check == GENERIC_STACK_CHECK)
1edb3690 4852 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
897b77d6 4853}
4854\f
0a893c29 4855/* Undo the effects of init_dummy_function_start. */
4856void
de1b648b 4857expand_dummy_function_end (void)
0a893c29 4858{
87d4aa85 4859 gcc_assert (in_dummy_function);
4860
0a893c29 4861 /* End any sequences that failed to be closed due to syntax errors. */
4862 while (in_sequence_p ())
4863 end_sequence ();
4864
4865 /* Outside function body, can't compute type's actual size
4866 until next function's body starts. */
3c3bb268 4867
08513b52 4868 free_after_parsing (cfun);
4869 free_after_compilation (cfun);
87d4aa85 4870 pop_cfun ();
4871 in_dummy_function = false;
0a893c29 4872}
4873
2766437e 4874/* Call DOIT for each hard register used as a return value from
4875 the current function. */
631ef7ce 4876
4877void
de1b648b 4878diddle_return_value (void (*doit) (rtx, void *), void *arg)
631ef7ce 4879{
abe32cce 4880 rtx outgoing = crtl->return_rtx;
2766437e 4881
4882 if (! outgoing)
4883 return;
631ef7ce 4884
8ad4c111 4885 if (REG_P (outgoing))
2766437e 4886 (*doit) (outgoing, arg);
4887 else if (GET_CODE (outgoing) == PARALLEL)
4888 {
4889 int i;
631ef7ce 4890
2766437e 4891 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4892 {
4893 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4894
8ad4c111 4895 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2766437e 4896 (*doit) (x, arg);
631ef7ce 4897 }
4898 }
4899}
4900
2766437e 4901static void
de1b648b 4902do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
2766437e 4903{
18b42941 4904 emit_clobber (reg);
2766437e 4905}
4906
4907void
de1b648b 4908clobber_return_register (void)
2766437e 4909{
4910 diddle_return_value (do_clobber_return_reg, NULL);
1b2c7cbd 4911
4912 /* In case we do use pseudo to return value, clobber it too. */
4913 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4914 {
4915 tree decl_result = DECL_RESULT (current_function_decl);
4916 rtx decl_rtl = DECL_RTL (decl_result);
4917 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4918 {
4919 do_clobber_return_reg (decl_rtl, NULL);
4920 }
4921 }
2766437e 4922}
4923
4924static void
de1b648b 4925do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
2766437e 4926{
18b42941 4927 emit_use (reg);
2766437e 4928}
4929
ab4605bf 4930static void
de1b648b 4931use_return_register (void)
2766437e 4932{
4933 diddle_return_value (do_use_return_reg, NULL);
4934}
4935
b69eb0ff 4936/* Possibly warn about unused parameters. */
4937void
4938do_warn_unused_parameter (tree fn)
4939{
4940 tree decl;
4941
4942 for (decl = DECL_ARGUMENTS (fn);
1767a056 4943 decl; decl = DECL_CHAIN (decl))
b69eb0ff 4944 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
76776e6d 4945 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4946 && !TREE_NO_WARNING (decl))
e8d0745d 4947 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
b69eb0ff 4948}
4949
1f3233d1 4950static GTY(()) rtx initial_trampoline;
4951
6473f3f4 4952/* Generate RTL for the end of the current function. */
897b77d6 4953
4954void
de1b648b 4955expand_function_end (void)
897b77d6 4956{
9b56368f 4957 rtx clobber_after;
897b77d6 4958
2032b31d 4959 /* If arg_pointer_save_area was referenced only from a nested
4960 function, we will not have initialized it yet. Do that now. */
18d50ae6 4961 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
b079a207 4962 get_arg_pointer_save_area ();
2032b31d 4963
4852b829 4964 /* If we are doing generic stack checking and this function makes calls,
b22178d2 4965 do a stack probe at the start of the function to ensure we have enough
4966 space for another stack frame. */
4852b829 4967 if (flag_stack_check == GENERIC_STACK_CHECK)
b22178d2 4968 {
4969 rtx insn, seq;
4970
4971 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6d7dc5b9 4972 if (CALL_P (insn))
b22178d2 4973 {
d1b92264 4974 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
b22178d2 4975 start_sequence ();
d1b92264 4976 if (STACK_CHECK_MOVING_SP)
4977 anti_adjust_stack_and_probe (max_frame_size, true);
4978 else
4979 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
b22178d2 4980 seq = get_insns ();
4981 end_sequence ();
dfd9ed5b 4982 set_insn_locators (seq, prologue_locator);
1edb3690 4983 emit_insn_before (seq, stack_check_probe_note);
b22178d2 4984 break;
4985 }
4986 }
4987
897b77d6 4988 /* End any sequences that failed to be closed due to syntax errors. */
4989 while (in_sequence_p ())
1bb04728 4990 end_sequence ();
897b77d6 4991
897b77d6 4992 clear_pending_stack_adjust ();
4993 do_pending_stack_adjust ();
4994
897b77d6 4995 /* Output a linenumber for the end of the function.
4996 SDB depends on this. */
375c1c8a 4997 set_curr_insn_source_location (input_location);
897b77d6 4998
b41180f5 4999 /* Before the return label (if any), clobber the return
3fb1e43b 5000 registers so that they are not propagated live to the rest of
b41180f5 5001 the function. This can only happen with functions that drop
5002 through; if there had been a return statement, there would
9b56368f 5003 have either been a return rtx, or a jump to the return label.
5004
5005 We delay actual code generation after the current_function_value_rtx
5006 is computed. */
5007 clobber_after = get_last_insn ();
b41180f5 5008
7861133f 5009 /* Output the label for the actual return from the function. */
5010 emit_label (return_label);
897b77d6 5011
218e3e4e 5012 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
a7e05170 5013 {
5014 /* Let except.c know where it should emit the call to unregister
5015 the function context for sjlj exceptions. */
5016 if (flag_exceptions)
5017 sjlj_emit_function_exit_after (get_last_insn ());
5018 }
3072d30e 5019 else
5020 {
5021 /* We want to ensure that instructions that may trap are not
5022 moved into the epilogue by scheduling, because we don't
5023 always emit unwind information for the epilogue. */
cbeb677e 5024 if (cfun->can_throw_non_call_exceptions)
3072d30e 5025 emit_insn (gen_blockage ());
5026 }
855f1e85 5027
80e467e2 5028 /* If this is an implementation of throw, do what's necessary to
5029 communicate between __builtin_eh_return and the epilogue. */
5030 expand_eh_return ();
5031
ae39498f 5032 /* If scalar return value was computed in a pseudo-reg, or was a named
5033 return value that got dumped to the stack, copy that to the hard
5034 return register. */
0e8e37b2 5035 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
897b77d6 5036 {
ae39498f 5037 tree decl_result = DECL_RESULT (current_function_decl);
5038 rtx decl_rtl = DECL_RTL (decl_result);
5039
5040 if (REG_P (decl_rtl)
5041 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5042 : DECL_REGISTER (decl_result))
5043 {
abe32cce 5044 rtx real_decl_rtl = crtl->return_rtx;
897b77d6 5045
8839b7f1 5046 /* This should be set in assign_parms. */
fdada98f 5047 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
ae39498f 5048
5049 /* If this is a BLKmode structure being returned in registers,
5050 then use the mode computed in expand_return. Note that if
60d903f5 5051 decl_rtl is memory, then its mode may have been changed,
abe32cce 5052 but that crtl->return_rtx has not. */
ae39498f 5053 if (GET_MODE (real_decl_rtl) == BLKmode)
8839b7f1 5054 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
ae39498f 5055
05d18e8b 5056 /* If a non-BLKmode return value should be padded at the least
5057 significant end of the register, shift it left by the appropriate
5058 amount. BLKmode results are handled using the group load/store
5059 machinery. */
5060 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5061 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5062 {
5063 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5064 REGNO (real_decl_rtl)),
5065 decl_rtl);
5066 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5067 }
ae39498f 5068 /* If a named return value dumped decl_return to memory, then
60d903f5 5069 we may need to re-do the PROMOTE_MODE signed/unsigned
ae39498f 5070 extension. */
05d18e8b 5071 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
ae39498f 5072 {
78a8ed03 5073 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
3b2411a8 5074 promote_function_mode (TREE_TYPE (decl_result),
5075 GET_MODE (decl_rtl), &unsignedp,
5076 TREE_TYPE (current_function_decl), 1);
ae39498f 5077
5078 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5079 }
3395ec76 5080 else if (GET_CODE (real_decl_rtl) == PARALLEL)
b566e2e5 5081 {
5082 /* If expand_function_start has created a PARALLEL for decl_rtl,
5083 move the result to the real return registers. Otherwise, do
5084 a group load from decl_rtl for a named return. */
5085 if (GET_CODE (decl_rtl) == PARALLEL)
5086 emit_group_move (real_decl_rtl, decl_rtl);
5087 else
5088 emit_group_load (real_decl_rtl, decl_rtl,
5f4cd670 5089 TREE_TYPE (decl_result),
b566e2e5 5090 int_size_in_bytes (TREE_TYPE (decl_result)));
5091 }
80e467e2 5092 /* In the case of complex integer modes smaller than a word, we'll
5093 need to generate some non-trivial bitfield insertions. Do that
5094 on a pseudo and not the hard register. */
5095 else if (GET_CODE (decl_rtl) == CONCAT
5096 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5097 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5098 {
5099 int old_generating_concat_p;
5100 rtx tmp;
5101
5102 old_generating_concat_p = generating_concat_p;
5103 generating_concat_p = 0;
5104 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5105 generating_concat_p = old_generating_concat_p;
5106
5107 emit_move_insn (tmp, decl_rtl);
5108 emit_move_insn (real_decl_rtl, tmp);
5109 }
ae39498f 5110 else
5111 emit_move_insn (real_decl_rtl, decl_rtl);
ae39498f 5112 }
897b77d6 5113 }
5114
5115 /* If returning a structure, arrange to return the address of the value
5116 in a place where debuggers expect to find it.
5117
5118 If returning a structure PCC style,
5119 the caller also depends on this value.
18d50ae6 5120 And cfun->returns_pcc_struct is not necessarily set. */
5121 if (cfun->returns_struct
5122 || cfun->returns_pcc_struct)
897b77d6 5123 {
806e4c12 5124 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
897b77d6 5125 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
806e4c12 5126 rtx outgoing;
5127
5128 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5129 type = TREE_TYPE (type);
5130 else
5131 value_address = XEXP (value_address, 0);
5132
46b3ff29 5133 outgoing = targetm.calls.function_value (build_pointer_type (type),
5134 current_function_decl, true);
897b77d6 5135
5136 /* Mark this as a function return value so integrate will delete the
5137 assignment and USE below when inlining this function. */
5138 REG_FUNCTION_VALUE_P (outgoing) = 1;
5139
c54c9422 5140 /* The address may be ptr_mode and OUTGOING may be Pmode. */
85d654dd 5141 value_address = convert_memory_address (GET_MODE (outgoing),
5142 value_address);
c54c9422 5143
897b77d6 5144 emit_move_insn (outgoing, value_address);
c54c9422 5145
5146 /* Show return register used to hold result (in this case the address
5147 of the result. */
abe32cce 5148 crtl->return_rtx = outgoing;
897b77d6 5149 }
5150
9b56368f 5151 /* Emit the actual code to clobber return register. */
5152 {
01628e06 5153 rtx seq;
60d903f5 5154
9b56368f 5155 start_sequence ();
5156 clobber_return_register ();
31d3e01c 5157 seq = get_insns ();
9b56368f 5158 end_sequence ();
5159
01628e06 5160 emit_insn_after (seq, clobber_after);
9b56368f 5161 }
5162
01628e06 5163 /* Output the label for the naked return from the function. */
b2ee26d5 5164 if (naked_return_label)
5165 emit_label (naked_return_label);
62380d2d 5166
1b7fd1d9 5167 /* @@@ This is a kludge. We want to ensure that instructions that
5168 may trap are not moved into the epilogue by scheduling, because
d86df71c 5169 we don't always emit unwind information for the epilogue. */
cc7d6aed 5170 if (cfun->can_throw_non_call_exceptions
218e3e4e 5171 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
d86df71c 5172 emit_insn (gen_blockage ());
1b7fd1d9 5173
f1a0edff 5174 /* If stack protection is enabled for this function, check the guard. */
edb7afe8 5175 if (crtl->stack_protect_guard)
f1a0edff 5176 stack_protect_epilogue ();
5177
6a7492e8 5178 /* If we had calls to alloca, and this machine needs
5179 an accurate stack pointer to exit the function,
5180 insert some code to save and restore the stack pointer. */
5181 if (! EXIT_IGNORE_STACK
18d50ae6 5182 && cfun->calls_alloca)
6a7492e8 5183 {
e9c97615 5184 rtx tem = 0, seq;
6a7492e8 5185
e9c97615 5186 start_sequence ();
5187 emit_stack_save (SAVE_FUNCTION, &tem);
5188 seq = get_insns ();
5189 end_sequence ();
5190 emit_insn_before (seq, parm_birth_insn);
5191
5192 emit_stack_restore (SAVE_FUNCTION, tem);
6a7492e8 5193 }
5194
2766437e 5195 /* ??? This should no longer be necessary since stupid is no longer with
5196 us, but there are some parts of the compiler (eg reload_combine, and
5197 sh mach_dep_reorg) that still try and compute their own lifetime info
5198 instead of using the general framework. */
5199 use_return_register ();
897b77d6 5200}
05927e40 5201
5202rtx
b079a207 5203get_arg_pointer_save_area (void)
05927e40 5204{
b079a207 5205 rtx ret = arg_pointer_save_area;
05927e40 5206
5207 if (! ret)
5208 {
b079a207 5209 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5210 arg_pointer_save_area = ret;
2032b31d 5211 }
5212
18d50ae6 5213 if (! crtl->arg_pointer_save_area_init)
2032b31d 5214 {
5215 rtx seq;
05927e40 5216
60d903f5 5217 /* Save the arg pointer at the beginning of the function. The
2032b31d 5218 generated stack slot may not be a valid memory address, so we
05927e40 5219 have to check it and fix it if necessary. */
5220 start_sequence ();
27a7a23a 5221 emit_move_insn (validize_mem (ret),
5222 crtl->args.internal_arg_pointer);
31d3e01c 5223 seq = get_insns ();
05927e40 5224 end_sequence ();
5225
2032b31d 5226 push_topmost_sequence ();
c838448c 5227 emit_insn_after (seq, entry_of_function ());
2032b31d 5228 pop_topmost_sequence ();
050f9ef1 5229
5230 crtl->arg_pointer_save_area_init = true;
05927e40 5231 }
5232
5233 return ret;
5234}
b2c5602e 5235\f
25e880b1 5236/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5237 for the first time. */
b2c5602e 5238
60ecc450 5239static void
25e880b1 5240record_insns (rtx insns, rtx end, htab_t *hashp)
b2c5602e 5241{
31d3e01c 5242 rtx tmp;
25e880b1 5243 htab_t hash = *hashp;
60ecc450 5244
25e880b1 5245 if (hash == NULL)
5246 *hashp = hash
5247 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5248
5249 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5250 {
5251 void **slot = htab_find_slot (hash, tmp, INSERT);
5252 gcc_assert (*slot == NULL);
5253 *slot = tmp;
5254 }
5255}
5256
1eefcaee 5257/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5258 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5259 insn, then record COPY as well. */
25e880b1 5260
5261void
1eefcaee 5262maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
25e880b1 5263{
1eefcaee 5264 htab_t hash;
25e880b1 5265 void **slot;
5266
1eefcaee 5267 hash = epilogue_insn_hash;
5268 if (!hash || !htab_find (hash, insn))
5269 {
5270 hash = prologue_insn_hash;
5271 if (!hash || !htab_find (hash, insn))
5272 return;
5273 }
25e880b1 5274
1eefcaee 5275 slot = htab_find_slot (hash, copy, INSERT);
25e880b1 5276 gcc_assert (*slot == NULL);
5277 *slot = copy;
b2c5602e 5278}
5279
e69efecb 5280/* Set the locator of the insn chain starting at INSN to LOC. */
13751393 5281static void
de1b648b 5282set_insn_locators (rtx insn, int loc)
13751393 5283{
5284 while (insn != NULL_RTX)
5285 {
5286 if (INSN_P (insn))
5287 INSN_LOCATOR (insn) = loc;
5288 insn = NEXT_INSN (insn);
5289 }
5290}
5291
25e880b1 5292/* Determine if any INSNs in HASH are, or are part of, INSN. Because
5293 we can be running after reorg, SEQUENCE rtl is possible. */
b2c5602e 5294
25e880b1 5295static bool
5296contains (const_rtx insn, htab_t hash)
b2c5602e 5297{
25e880b1 5298 if (hash == NULL)
5299 return false;
b2c5602e 5300
25e880b1 5301 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
b2c5602e 5302 {
25e880b1 5303 int i;
b2c5602e 5304 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
25e880b1 5305 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5306 return true;
5307 return false;
b2c5602e 5308 }
25e880b1 5309
5310 return htab_find (hash, insn) != NULL;
b2c5602e 5311}
a590d94d 5312
5313int
52d07779 5314prologue_epilogue_contains (const_rtx insn)
a590d94d 5315{
25e880b1 5316 if (contains (insn, prologue_insn_hash))
a590d94d 5317 return 1;
25e880b1 5318 if (contains (insn, epilogue_insn_hash))
a590d94d 5319 return 1;
5320 return 0;
5321}
b2c5602e 5322
1f021f97 5323#ifdef HAVE_simple_return
5324
1f021f97 5325/* Return true if INSN requires the stack frame to be set up.
5326 PROLOGUE_USED contains the hard registers used in the function
f8e6666e 5327 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5328 prologue to set up for the function. */
ca8f816f 5329bool
f8e6666e 5330requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5331 HARD_REG_SET set_up_by_prologue)
1f021f97 5332{
f8e6666e 5333 df_ref *df_rec;
1f021f97 5334 HARD_REG_SET hardregs;
5335 unsigned regno;
5336
1f021f97 5337 if (CALL_P (insn))
5338 return !SIBLING_CALL_P (insn);
1f021f97 5339
ec3aa8fe 5340 /* We need a frame to get the unique CFA expected by the unwinder. */
5341 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5342 return true;
5343
1f021f97 5344 CLEAR_HARD_REG_SET (hardregs);
f8e6666e 5345 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
1f021f97 5346 {
f8e6666e 5347 rtx dreg = DF_REF_REG (*df_rec);
1f021f97 5348
5349 if (!REG_P (dreg))
5350 continue;
5351
5352 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5353 REGNO (dreg));
5354 }
5355 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5356 return true;
5357 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5358 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5359 if (TEST_HARD_REG_BIT (hardregs, regno)
5360 && df_regs_ever_live_p (regno))
5361 return true;
f8e6666e 5362
5363 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5364 {
5365 rtx reg = DF_REF_REG (*df_rec);
5366
5367 if (!REG_P (reg))
5368 continue;
5369
5370 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5371 REGNO (reg));
5372 }
5373 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5374 return true;
5375
1f021f97 5376 return false;
5377}
cde48de6 5378
018f0595 5379/* See whether BB has a single successor that uses [REGNO, END_REGNO),
5380 and if BB is its only predecessor. Return that block if so,
5381 otherwise return null. */
cde48de6 5382
018f0595 5383static basic_block
5384next_block_for_reg (basic_block bb, int regno, int end_regno)
cde48de6 5385{
018f0595 5386 edge e, live_edge;
5387 edge_iterator ei;
5388 bitmap live;
5389 int i;
5390
5391 live_edge = NULL;
5392 FOR_EACH_EDGE (e, ei, bb->succs)
cde48de6 5393 {
018f0595 5394 live = df_get_live_in (e->dest);
5395 for (i = regno; i < end_regno; i++)
5396 if (REGNO_REG_SET_P (live, i))
5397 {
5398 if (live_edge && live_edge != e)
5399 return NULL;
5400 live_edge = e;
5401 }
5402 }
cde48de6 5403
018f0595 5404 /* We can sometimes encounter dead code. Don't try to move it
5405 into the exit block. */
5406 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5407 return NULL;
cde48de6 5408
018f0595 5409 /* Reject targets of abnormal edges. This is needed for correctness
5410 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5411 exception edges even though it is generally treated as call-saved
5412 for the majority of the compilation. Moving across abnormal edges
5413 isn't going to be interesting for shrink-wrap usage anyway. */
5414 if (live_edge->flags & EDGE_ABNORMAL)
5415 return NULL;
5416
5417 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5418 return NULL;
cde48de6 5419
018f0595 5420 return live_edge->dest;
5421}
5422
5423/* Try to move INSN from BB to a successor. Return true on success.
5424 USES and DEFS are the set of registers that are used and defined
5425 after INSN in BB. */
cde48de6 5426
018f0595 5427static bool
5428move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5429 const HARD_REG_SET uses,
5430 const HARD_REG_SET defs)
5431{
5432 rtx set, src, dest;
5433 bitmap live_out, live_in, bb_uses, bb_defs;
5434 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5435 basic_block next_block;
5436
5437 /* Look for a simple register copy. */
5438 set = single_set (insn);
5439 if (!set)
5440 return false;
5441 src = SET_SRC (set);
5442 dest = SET_DEST (set);
5443 if (!REG_P (dest) || !REG_P (src))
5444 return false;
5445
5446 /* Make sure that the source register isn't defined later in BB. */
5447 sregno = REGNO (src);
5448 end_sregno = END_REGNO (src);
5449 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5450 return false;
5451
5452 /* Make sure that the destination register isn't referenced later in BB. */
5453 dregno = REGNO (dest);
5454 end_dregno = END_REGNO (dest);
5455 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5456 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5457 return false;
5458
5459 /* See whether there is a successor block to which we could move INSN. */
5460 next_block = next_block_for_reg (bb, dregno, end_dregno);
5461 if (!next_block)
5462 return false;
5463
5464 /* At this point we are committed to moving INSN, but let's try to
5465 move it as far as we can. */
5466 do
5467 {
5468 live_out = df_get_live_out (bb);
5469 live_in = df_get_live_in (next_block);
5470 bb = next_block;
5471
5472 /* Check whether BB uses DEST or clobbers DEST. We need to add
5473 INSN to BB if so. Either way, DEST is no longer live on entry,
5474 except for any part that overlaps SRC (next loop). */
5475 bb_uses = &DF_LR_BB_INFO (bb)->use;
5476 bb_defs = &DF_LR_BB_INFO (bb)->def;
5477 for (i = dregno; i < end_dregno; i++)
cde48de6 5478 {
018f0595 5479 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5480 next_block = NULL;
5481 CLEAR_REGNO_REG_SET (live_out, i);
5482 CLEAR_REGNO_REG_SET (live_in, i);
cde48de6 5483 }
5484
018f0595 5485 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5486 Either way, SRC is now live on entry. */
5487 for (i = sregno; i < end_sregno; i++)
cde48de6 5488 {
018f0595 5489 if (REGNO_REG_SET_P (bb_defs, i))
5490 next_block = NULL;
5491 SET_REGNO_REG_SET (live_out, i);
5492 SET_REGNO_REG_SET (live_in, i);
cde48de6 5493 }
018f0595 5494
5495 /* If we don't need to add the move to BB, look for a single
5496 successor block. */
5497 if (next_block)
5498 next_block = next_block_for_reg (next_block, dregno, end_dregno);
cde48de6 5499 }
018f0595 5500 while (next_block);
5501
5502 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5503 (next loop). */
5504 for (i = dregno; i < end_dregno; i++)
5505 {
5506 CLEAR_REGNO_REG_SET (bb_uses, i);
5507 SET_REGNO_REG_SET (bb_defs, i);
5508 }
5509
5510 /* BB now uses SRC. */
5511 for (i = sregno; i < end_sregno; i++)
5512 SET_REGNO_REG_SET (bb_uses, i);
5513
5514 emit_insn_after (PATTERN (insn), bb_note (bb));
5515 delete_insn (insn);
5516 return true;
5517}
5518
5519/* Look for register copies in the first block of the function, and move
5520 them down into successor blocks if the register is used only on one
5521 path. This exposes more opportunities for shrink-wrapping. These
5522 kinds of sets often occur when incoming argument registers are moved
5523 to call-saved registers because their values are live across one or
5524 more calls during the function. */
5525
5526static void
5527prepare_shrink_wrap (basic_block entry_block)
5528{
5529 rtx insn, curr, x;
5530 HARD_REG_SET uses, defs;
5531 df_ref *ref;
5532
5533 CLEAR_HARD_REG_SET (uses);
5534 CLEAR_HARD_REG_SET (defs);
5535 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5536 if (NONDEBUG_INSN_P (insn)
5537 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5538 {
5539 /* Add all defined registers to DEFs. */
5540 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5541 {
5542 x = DF_REF_REG (*ref);
5543 if (REG_P (x) && HARD_REGISTER_P (x))
5544 SET_HARD_REG_BIT (defs, REGNO (x));
5545 }
5546
5547 /* Add all used registers to USESs. */
5548 for (ref = DF_INSN_USES (insn); *ref; ref++)
5549 {
5550 x = DF_REF_REG (*ref);
5551 if (REG_P (x) && HARD_REGISTER_P (x))
5552 SET_HARD_REG_BIT (uses, REGNO (x));
5553 }
5554 }
cde48de6 5555}
5556
1f021f97 5557#endif
5558
bcf58f16 5559#ifdef HAVE_return
f2c8a251 5560/* Insert use of return register before the end of BB. */
5561
5562static void
5563emit_use_return_register_into_block (basic_block bb)
5564{
5565 rtx seq;
5566 start_sequence ();
5567 use_return_register ();
5568 seq = get_insns ();
5569 end_sequence ();
5570 emit_insn_before (seq, BB_END (bb));
5571}
5572
1f021f97 5573
5574/* Create a return pattern, either simple_return or return, depending on
5575 simple_p. */
5576
5577static rtx
5578gen_return_pattern (bool simple_p)
5579{
5580#ifdef HAVE_simple_return
5581 return simple_p ? gen_simple_return () : gen_return ();
5582#else
5583 gcc_assert (!simple_p);
5584 return gen_return ();
5585#endif
5586}
5587
5588/* Insert an appropriate return pattern at the end of block BB. This
5589 also means updating block_for_insn appropriately. SIMPLE_P is
5590 the same as in gen_return_pattern and passed to it. */
2215ca0d 5591
5592static void
1f021f97 5593emit_return_into_block (bool simple_p, basic_block bb)
2215ca0d 5594{
1f021f97 5595 rtx jump, pat;
5596 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5597 pat = PATTERN (jump);
9cb2517e 5598 if (GET_CODE (pat) == PARALLEL)
5599 pat = XVECEXP (pat, 0, 0);
5600 gcc_assert (ANY_RETURN_P (pat));
5601 JUMP_LABEL (jump) = pat;
2215ca0d 5602}
1f021f97 5603#endif
2215ca0d 5604
31a53363 5605/* Set JUMP_LABEL for a return insn. */
5606
5607void
5608set_return_jump_label (rtx returnjump)
5609{
5610 rtx pat = PATTERN (returnjump);
5611 if (GET_CODE (pat) == PARALLEL)
5612 pat = XVECEXP (pat, 0, 0);
5613 if (ANY_RETURN_P (pat))
5614 JUMP_LABEL (returnjump) = pat;
5615 else
5616 JUMP_LABEL (returnjump) = ret_rtx;
5617}
5618
0a55d497 5619#ifdef HAVE_simple_return
5620/* Create a copy of BB instructions and insert at BEFORE. Redirect
5621 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5622static void
5623dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5624 bitmap_head *need_prologue)
5625{
5626 edge_iterator ei;
5627 edge e;
5628 rtx insn = BB_END (bb);
5629
5630 /* We know BB has a single successor, so there is no need to copy a
5631 simple jump at the end of BB. */
5632 if (simplejump_p (insn))
5633 insn = PREV_INSN (insn);
5634
5635 start_sequence ();
5636 duplicate_insn_chain (BB_HEAD (bb), insn);
5637 if (dump_file)
5638 {
5639 unsigned count = 0;
5640 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5641 if (active_insn_p (insn))
5642 ++count;
5643 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5644 bb->index, copy_bb->index, count);
5645 }
5646 insn = get_insns ();
5647 end_sequence ();
5648 emit_insn_before (insn, before);
5649
5650 /* Redirect all the paths that need no prologue into copy_bb. */
5651 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5652 if (!bitmap_bit_p (need_prologue, e->src->index))
5653 {
5654 redirect_edge_and_branch_force (e, copy_bb);
5655 continue;
5656 }
5657 else
5658 ei_next (&ei);
5659}
5660#endif
5661
5662#if defined (HAVE_return) || defined (HAVE_simple_return)
5663/* Return true if there are any active insns between HEAD and TAIL. */
cde48de6 5664static bool
0a55d497 5665active_insn_between (rtx head, rtx tail)
cde48de6 5666{
0a55d497 5667 while (tail)
5668 {
5669 if (active_insn_p (tail))
5670 return true;
5671 if (tail == head)
5672 return false;
5673 tail = PREV_INSN (tail);
5674 }
5675 return false;
5676}
5677
5678/* LAST_BB is a block that exits, and empty of active instructions.
5679 Examine its predecessors for jumps that can be converted to
5680 (conditional) returns. */
5681static VEC (edge, heap) *
5682convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5683 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5684{
5685 int i;
5686 basic_block bb;
cde48de6 5687 rtx label;
0a55d497 5688 edge_iterator ei;
5689 edge e;
5690 VEC(basic_block,heap) *src_bbs;
cde48de6 5691
0a55d497 5692 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5693 FOR_EACH_EDGE (e, ei, last_bb->preds)
5694 if (e->src != ENTRY_BLOCK_PTR)
5695 VEC_quick_push (basic_block, src_bbs, e->src);
5696
5697 label = BB_HEAD (last_bb);
5698
5699 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
cde48de6 5700 {
0a55d497 5701 rtx jump = BB_END (bb);
5702
5703 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5704 continue;
5705
5706 e = find_edge (bb, last_bb);
5707
5708 /* If we have an unconditional jump, we can replace that
5709 with a simple return instruction. */
5710 if (simplejump_p (jump))
5711 {
5712 /* The use of the return register might be present in the exit
5713 fallthru block. Either:
5714 - removing the use is safe, and we should remove the use in
5715 the exit fallthru block, or
5716 - removing the use is not safe, and we should add it here.
5717 For now, we conservatively choose the latter. Either of the
5718 2 helps in crossjumping. */
5719 emit_use_return_register_into_block (bb);
5720
5721 emit_return_into_block (simple_p, bb);
5722 delete_insn (jump);
5723 }
5724
5725 /* If we have a conditional jump branching to the last
5726 block, we can try to replace that with a conditional
5727 return instruction. */
5728 else if (condjump_p (jump))
5729 {
5730 rtx dest;
5731
5732 if (simple_p)
5733 dest = simple_return_rtx;
5734 else
5735 dest = ret_rtx;
5736 if (!redirect_jump (jump, dest, 0))
5737 {
5738#ifdef HAVE_simple_return
5739 if (simple_p)
5740 {
5741 if (dump_file)
5742 fprintf (dump_file,
5743 "Failed to redirect bb %d branch.\n", bb->index);
5744 VEC_safe_push (edge, heap, unconverted, e);
5745 }
5746#endif
5747 continue;
5748 }
5749
5750 /* See comment in simplejump_p case above. */
5751 emit_use_return_register_into_block (bb);
5752
5753 /* If this block has only one successor, it both jumps
5754 and falls through to the fallthru block, so we can't
5755 delete the edge. */
5756 if (single_succ_p (bb))
5757 continue;
5758 }
5759 else
5760 {
5761#ifdef HAVE_simple_return
5762 if (simple_p)
5763 {
5764 if (dump_file)
5765 fprintf (dump_file,
5766 "Failed to redirect bb %d branch.\n", bb->index);
5767 VEC_safe_push (edge, heap, unconverted, e);
5768 }
5769#endif
5770 continue;
5771 }
5772
5773 /* Fix up the CFG for the successful change we just made. */
5774 redirect_edge_succ (e, EXIT_BLOCK_PTR);
ebb58a45 5775 e->flags &= ~EDGE_CROSSING;
cde48de6 5776 }
0a55d497 5777 VEC_free (basic_block, heap, src_bbs);
5778 return unconverted;
cde48de6 5779}
5780
0a55d497 5781/* Emit a return insn for the exit fallthru block. */
5782static basic_block
5783emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5784{
5785 basic_block last_bb = exit_fallthru_edge->src;
5786
5787 if (JUMP_P (BB_END (last_bb)))
5788 {
5789 last_bb = split_edge (exit_fallthru_edge);
5790 exit_fallthru_edge = single_succ_edge (last_bb);
5791 }
5792 emit_barrier_after (BB_END (last_bb));
5793 emit_return_into_block (simple_p, last_bb);
5794 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5795 return last_bb;
5796}
5797#endif
5798
5799
c3418f42 5800/* Generate the prologue and epilogue RTL if the machine supports it. Thread
b2c5602e 5801 this into place with notes indicating where the prologue ends and where
1f021f97 5802 the epilogue begins. Update the basic block information when possible.
5803
5804 Notes on epilogue placement:
5805 There are several kinds of edges to the exit block:
5806 * a single fallthru edge from LAST_BB
5807 * possibly, edges from blocks containing sibcalls
5808 * possibly, fake edges from infinite loops
5809
5810 The epilogue is always emitted on the fallthru edge from the last basic
5811 block in the function, LAST_BB, into the exit block.
5812
5813 If LAST_BB is empty except for a label, it is the target of every
5814 other basic block in the function that ends in a return. If a
5815 target has a return or simple_return pattern (possibly with
5816 conditional variants), these basic blocks can be changed so that a
5817 return insn is emitted into them, and their target is adjusted to
5818 the real exit block.
5819
5820 Notes on shrink wrapping: We implement a fairly conservative
5821 version of shrink-wrapping rather than the textbook one. We only
5822 generate a single prologue and a single epilogue. This is
5823 sufficient to catch a number of interesting cases involving early
5824 exits.
5825
5826 First, we identify the blocks that require the prologue to occur before
5827 them. These are the ones that modify a call-saved register, or reference
5828 any of the stack or frame pointer registers. To simplify things, we then
5829 mark everything reachable from these blocks as also requiring a prologue.
5830 This takes care of loops automatically, and avoids the need to examine
5831 whether MEMs reference the frame, since it is sufficient to check for
5832 occurrences of the stack or frame pointer.
5833
5834 We then compute the set of blocks for which the need for a prologue
5835 is anticipatable (borrowing terminology from the shrink-wrapping
5836 description in Muchnick's book). These are the blocks which either
5837 require a prologue themselves, or those that have only successors
5838 where the prologue is anticipatable. The prologue needs to be
5839 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5840 is not. For the moment, we ensure that only one such edge exists.
5841
5842 The epilogue is placed as described above, but we make a
5843 distinction between inserting return and simple_return patterns
5844 when modifying other blocks that end in a return. Blocks that end
5845 in a sibcall omit the sibcall_epilogue if the block is not in
5846 ANTIC. */
b2c5602e 5847
3072d30e 5848static void
5849thread_prologue_and_epilogue_insns (void)
b2c5602e 5850{
48b14f50 5851 bool inserted;
1f021f97 5852#ifdef HAVE_simple_return
0a55d497 5853 VEC (edge, heap) *unconverted_simple_returns = NULL;
1f021f97 5854 bool nonempty_prologue;
0a55d497 5855 bitmap_head bb_flags;
5856 unsigned max_grow_size;
1f021f97 5857#endif
0a55d497 5858 rtx returnjump;
f2b0107d 5859 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
1f021f97 5860 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5861 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
cd665a06 5862 edge_iterator ei;
1f021f97 5863
5864 df_analyze ();
71caadc0 5865
c107ab96 5866 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
48b14f50 5867
5868 inserted = false;
5869 seq = NULL_RTX;
5870 epilogue_end = NULL_RTX;
1f021f97 5871 returnjump = NULL_RTX;
48b14f50 5872
5873 /* Can't deal with multiple successors of the entry block at the
5874 moment. Function should always have at least one entry
5875 point. */
5876 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5877 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
1f021f97 5878 orig_entry_edge = entry_edge;
5879
1f021f97 5880 split_prologue_seq = NULL_RTX;
48b14f50 5881 if (flag_split_stack
5882 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5883 == NULL))
5884 {
5885#ifndef HAVE_split_stack_prologue
5886 gcc_unreachable ();
5887#else
5888 gcc_assert (HAVE_split_stack_prologue);
5889
5890 start_sequence ();
5891 emit_insn (gen_split_stack_prologue ());
1f021f97 5892 split_prologue_seq = get_insns ();
48b14f50 5893 end_sequence ();
5894
1f021f97 5895 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5896 set_insn_locators (split_prologue_seq, prologue_locator);
48b14f50 5897#endif
5898 }
5899
1f021f97 5900 prologue_seq = NULL_RTX;
b2c5602e 5901#ifdef HAVE_prologue
5902 if (HAVE_prologue)
5903 {
71caadc0 5904 start_sequence ();
06ebc183 5905 seq = gen_prologue ();
71caadc0 5906 emit_insn (seq);
b2c5602e 5907
48e1416a 5908 /* Insert an explicit USE for the frame pointer
3072d30e 5909 if the profiling is on and the frame pointer is required. */
18d50ae6 5910 if (crtl->profile && frame_pointer_needed)
18b42941 5911 emit_use (hard_frame_pointer_rtx);
3072d30e 5912
b2c5602e 5913 /* Retain a map of the prologue insns. */
25e880b1 5914 record_insns (seq, NULL, &prologue_insn_hash);
d86df71c 5915 emit_note (NOTE_INSN_PROLOGUE_END);
48e1416a 5916
d86df71c 5917 /* Ensure that instructions are not moved into the prologue when
5918 profiling is on. The call to the profiling routine can be
5919 emitted within the live range of a call-clobbered register. */
8637d6a2 5920 if (!targetm.profile_before_prologue () && crtl->profile)
d86df71c 5921 emit_insn (gen_blockage ());
3b934b09 5922
1f021f97 5923 prologue_seq = get_insns ();
71caadc0 5924 end_sequence ();
1f021f97 5925 set_insn_locators (prologue_seq, prologue_locator);
5926 }
5927#endif
71caadc0 5928
0a55d497 5929#ifdef HAVE_simple_return
1f021f97 5930 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5931
1f021f97 5932 /* Try to perform a kind of shrink-wrapping, making sure the
5933 prologue/epilogue is emitted only around those parts of the
5934 function that require it. */
5935
5936 nonempty_prologue = false;
5937 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5938 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5939 {
5940 nonempty_prologue = true;
5941 break;
5942 }
5943
5944 if (flag_shrink_wrap && HAVE_simple_return
5effe287 5945 && (targetm.profile_before_prologue () || !crtl->profile)
1f021f97 5946 && nonempty_prologue && !crtl->calls_eh_return)
5947 {
5948 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
2e851bb8 5949 struct hard_reg_set_container set_up_by_prologue;
1f021f97 5950 rtx p_insn;
1f021f97 5951 VEC(basic_block, heap) *vec;
5952 basic_block bb;
5953 bitmap_head bb_antic_flags;
5954 bitmap_head bb_on_list;
0a55d497 5955 bitmap_head bb_tail;
1f021f97 5956
5957 if (dump_file)
5958 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5959
5960 /* Compute the registers set and used in the prologue. */
5961 CLEAR_HARD_REG_SET (prologue_clobbered);
5962 CLEAR_HARD_REG_SET (prologue_used);
5963 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5964 {
5965 HARD_REG_SET this_used;
5966 if (!NONDEBUG_INSN_P (p_insn))
5967 continue;
5968
5969 CLEAR_HARD_REG_SET (this_used);
5970 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5971 &this_used);
5972 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5973 IOR_HARD_REG_SET (prologue_used, this_used);
5974 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5975 &prologue_clobbered);
5976 }
1f021f97 5977
cde48de6 5978 prepare_shrink_wrap (entry_edge->dest);
5979
1f021f97 5980 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5981 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
0a55d497 5982 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
1f021f97 5983
0a55d497 5984 /* Find the set of basic blocks that require a stack frame,
5985 and blocks that are too big to be duplicated. */
1f021f97 5986
5987 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
5988
2e851bb8 5989 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
5990 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5991 STACK_POINTER_REGNUM);
5992 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
f8e6666e 5993 if (frame_pointer_needed)
2e851bb8 5994 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
f8e6666e 5995 HARD_FRAME_POINTER_REGNUM);
5996 if (pic_offset_table_rtx)
2e851bb8 5997 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
f8e6666e 5998 PIC_OFFSET_TABLE_REGNUM);
0c3a5ef6 5999 if (stack_realign_drap && crtl->drap_reg)
2e851bb8 6000 add_to_hard_reg_set (&set_up_by_prologue.set,
6001 GET_MODE (crtl->drap_reg),
0c3a5ef6 6002 REGNO (crtl->drap_reg));
2e851bb8 6003 if (targetm.set_up_by_prologue)
6004 targetm.set_up_by_prologue (&set_up_by_prologue);
f8e6666e 6005
0a55d497 6006 /* We don't use a different max size depending on
6007 optimize_bb_for_speed_p because increasing shrink-wrapping
6008 opportunities by duplicating tail blocks can actually result
6009 in an overall decrease in code size. */
6010 max_grow_size = get_uncond_jump_length ();
6011 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6012
1f021f97 6013 FOR_EACH_BB (bb)
6014 {
6015 rtx insn;
0a55d497 6016 unsigned size = 0;
6017
6018 FOR_BB_INSNS (bb, insn)
6019 if (NONDEBUG_INSN_P (insn))
6020 {
6021 if (requires_stack_frame_p (insn, prologue_used,
2e851bb8 6022 set_up_by_prologue.set))
0a55d497 6023 {
6024 if (bb == entry_edge->dest)
6025 goto fail_shrinkwrap;
6026 bitmap_set_bit (&bb_flags, bb->index);
6027 VEC_quick_push (basic_block, vec, bb);
6028 break;
6029 }
6030 else if (size <= max_grow_size)
6031 {
6032 size += get_attr_min_length (insn);
6033 if (size > max_grow_size)
6034 bitmap_set_bit (&bb_on_list, bb->index);
6035 }
6036 }
1f021f97 6037 }
6038
0a55d497 6039 /* Blocks that really need a prologue, or are too big for tails. */
6040 bitmap_ior_into (&bb_on_list, &bb_flags);
6041
1f021f97 6042 /* For every basic block that needs a prologue, mark all blocks
6043 reachable from it, so as to ensure they are also seen as
6044 requiring a prologue. */
6045 while (!VEC_empty (basic_block, vec))
6046 {
6047 basic_block tmp_bb = VEC_pop (basic_block, vec);
0a55d497 6048
1f021f97 6049 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6050 if (e->dest != EXIT_BLOCK_PTR
6051 && bitmap_set_bit (&bb_flags, e->dest->index))
6052 VEC_quick_push (basic_block, vec, e->dest);
6053 }
0a55d497 6054
6055 /* Find the set of basic blocks that need no prologue, have a
6056 single successor, can be duplicated, meet a max size
6057 requirement, and go to the exit via like blocks. */
6058 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6059 while (!VEC_empty (basic_block, vec))
1f021f97 6060 {
0a55d497 6061 basic_block tmp_bb = VEC_pop (basic_block, vec);
6062
6063 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6064 if (single_succ_p (e->src)
6065 && !bitmap_bit_p (&bb_on_list, e->src->index)
dc15d51e 6066 && can_duplicate_block_p (e->src))
6067 {
6068 edge pe;
6069 edge_iterator pei;
6070
6071 /* If there is predecessor of e->src which doesn't
6072 need prologue and the edge is complex,
6073 we might not be able to redirect the branch
6074 to a copy of e->src. */
6075 FOR_EACH_EDGE (pe, pei, e->src->preds)
6076 if ((pe->flags & EDGE_COMPLEX) != 0
6077 && !bitmap_bit_p (&bb_flags, pe->src->index))
6078 break;
6079 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6080 VEC_quick_push (basic_block, vec, e->src);
6081 }
1f021f97 6082 }
6083
6084 /* Now walk backwards from every block that is marked as needing
0a55d497 6085 a prologue to compute the bb_antic_flags bitmap. Exclude
6086 tail blocks; They can be duplicated to be used on paths not
6087 needing a prologue. */
6088 bitmap_clear (&bb_on_list);
6089 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
1f021f97 6090 FOR_EACH_BB (bb)
6091 {
0a55d497 6092 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
1f021f97 6093 continue;
6094 FOR_EACH_EDGE (e, ei, bb->preds)
6095 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6096 && bitmap_set_bit (&bb_on_list, e->src->index))
6097 VEC_quick_push (basic_block, vec, e->src);
6098 }
6099 while (!VEC_empty (basic_block, vec))
6100 {
6101 basic_block tmp_bb = VEC_pop (basic_block, vec);
1f021f97 6102 bool all_set = true;
6103
6104 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6105 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6106 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6107 {
6108 all_set = false;
6109 break;
6110 }
6111
6112 if (all_set)
6113 {
6114 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6115 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6116 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6117 && bitmap_set_bit (&bb_on_list, e->src->index))
6118 VEC_quick_push (basic_block, vec, e->src);
6119 }
6120 }
6121 /* Find exactly one edge that leads to a block in ANTIC from
6122 a block that isn't. */
6123 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6124 FOR_EACH_BB (bb)
6125 {
6126 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6127 continue;
6128 FOR_EACH_EDGE (e, ei, bb->preds)
6129 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6130 {
6131 if (entry_edge != orig_entry_edge)
6132 {
6133 entry_edge = orig_entry_edge;
6134 if (dump_file)
6135 fprintf (dump_file, "More than one candidate edge.\n");
6136 goto fail_shrinkwrap;
6137 }
6138 if (dump_file)
6139 fprintf (dump_file, "Found candidate edge for "
6140 "shrink-wrapping, %d->%d.\n", e->src->index,
6141 e->dest->index);
6142 entry_edge = e;
6143 }
6144 }
6145
0a55d497 6146 if (entry_edge != orig_entry_edge)
1f021f97 6147 {
0a55d497 6148 /* Test whether the prologue is known to clobber any register
6149 (other than FP or SP) which are live on the edge. */
6150 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6151 if (frame_pointer_needed)
6152 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6153 CLEAR_HARD_REG_SET (live_on_edge);
6154 reg_set_to_hard_reg_set (&live_on_edge,
6155 df_get_live_in (entry_edge->dest));
6156 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6157 {
6158 entry_edge = orig_entry_edge;
6159 if (dump_file)
6160 fprintf (dump_file,
6161 "Shrink-wrapping aborted due to clobber.\n");
6162 }
1f021f97 6163 }
0a55d497 6164 if (entry_edge != orig_entry_edge)
1f021f97 6165 {
6166 crtl->shrink_wrapped = true;
7022dadd 6167 if (dump_file)
6168 fprintf (dump_file, "Performing shrink-wrapping.\n");
0a55d497 6169
6170 /* Find tail blocks reachable from both blocks needing a
6171 prologue and blocks not needing a prologue. */
6172 if (!bitmap_empty_p (&bb_tail))
6173 FOR_EACH_BB (bb)
6174 {
6175 bool some_pro, some_no_pro;
6176 if (!bitmap_bit_p (&bb_tail, bb->index))
6177 continue;
6178 some_pro = some_no_pro = false;
6179 FOR_EACH_EDGE (e, ei, bb->preds)
6180 {
6181 if (bitmap_bit_p (&bb_flags, e->src->index))
6182 some_pro = true;
6183 else
6184 some_no_pro = true;
6185 }
6186 if (some_pro && some_no_pro)
6187 VEC_quick_push (basic_block, vec, bb);
6188 else
6189 bitmap_clear_bit (&bb_tail, bb->index);
6190 }
6191 /* Find the head of each tail. */
6192 while (!VEC_empty (basic_block, vec))
6193 {
6194 basic_block tbb = VEC_pop (basic_block, vec);
6195
6196 if (!bitmap_bit_p (&bb_tail, tbb->index))
6197 continue;
6198
6199 while (single_succ_p (tbb))
6200 {
6201 tbb = single_succ (tbb);
6202 bitmap_clear_bit (&bb_tail, tbb->index);
6203 }
6204 }
6205 /* Now duplicate the tails. */
6206 if (!bitmap_empty_p (&bb_tail))
6207 FOR_EACH_BB_REVERSE (bb)
6208 {
6209 basic_block copy_bb, tbb;
6210 rtx insert_point;
6211 int eflags;
6212
6213 if (!bitmap_clear_bit (&bb_tail, bb->index))
6214 continue;
6215
6216 /* Create a copy of BB, instructions and all, for
6217 use on paths that don't need a prologue.
6218 Ideal placement of the copy is on a fall-thru edge
6219 or after a block that would jump to the copy. */
6220 FOR_EACH_EDGE (e, ei, bb->preds)
6221 if (!bitmap_bit_p (&bb_flags, e->src->index)
6222 && single_succ_p (e->src))
6223 break;
6224 if (e)
6225 {
6226 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6227 NULL_RTX, e->src);
6228 BB_COPY_PARTITION (copy_bb, e->src);
6229 }
6230 else
6231 {
6232 /* Otherwise put the copy at the end of the function. */
6233 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6234 EXIT_BLOCK_PTR->prev_bb);
6235 BB_COPY_PARTITION (copy_bb, bb);
6236 }
6237
6238 insert_point = emit_note_after (NOTE_INSN_DELETED,
6239 BB_END (copy_bb));
6240 emit_barrier_after (BB_END (copy_bb));
6241
6242 tbb = bb;
6243 while (1)
6244 {
6245 dup_block_and_redirect (tbb, copy_bb, insert_point,
6246 &bb_flags);
6247 tbb = single_succ (tbb);
6248 if (tbb == EXIT_BLOCK_PTR)
6249 break;
6250 e = split_block (copy_bb, PREV_INSN (insert_point));
6251 copy_bb = e->dest;
6252 }
6253
6254 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6255 We have yet to add a simple_return to the tails,
6256 as we'd like to first convert_jumps_to_returns in
6257 case the block is no longer used after that. */
6258 eflags = EDGE_FAKE;
6259 if (CALL_P (PREV_INSN (insert_point))
6260 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6261 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6262 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6263
6264 /* verify_flow_info doesn't like a note after a
6265 sibling call. */
6266 delete_insn (insert_point);
6267 if (bitmap_empty_p (&bb_tail))
6268 break;
6269 }
1f021f97 6270 }
6271
6272 fail_shrinkwrap:
0a55d497 6273 bitmap_clear (&bb_tail);
1f021f97 6274 bitmap_clear (&bb_antic_flags);
6275 bitmap_clear (&bb_on_list);
6276 VEC_free (basic_block, heap, vec);
b2c5602e 6277 }
b2c5602e 6278#endif
b2c5602e 6279
1f021f97 6280 if (split_prologue_seq != NULL_RTX)
6281 {
4db91b33 6282 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
1f021f97 6283 inserted = true;
6284 }
6285 if (prologue_seq != NULL_RTX)
6286 {
6287 insert_insn_on_edge (prologue_seq, entry_edge);
6288 inserted = true;
6289 }
6290
777e249a 6291 /* If the exit block has no non-fake predecessors, we don't need
6292 an epilogue. */
cd665a06 6293 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
777e249a 6294 if ((e->flags & EDGE_FAKE) == 0)
6295 break;
6296 if (e == NULL)
6297 goto epilogue_done;
6298
c107ab96 6299 rtl_profile_for_bb (EXIT_BLOCK_PTR);
1f021f97 6300
0a55d497 6301 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6302
1f021f97 6303 /* If we're allowed to generate a simple return instruction, then by
6304 definition we don't need a full epilogue. If the last basic
6305 block before the exit block does not contain active instructions,
6306 examine its predecessors and try to emit (conditional) return
6307 instructions. */
0a55d497 6308#ifdef HAVE_simple_return
6309 if (entry_edge != orig_entry_edge)
2215ca0d 6310 {
0a55d497 6311 if (optimize)
2215ca0d 6312 {
0a55d497 6313 unsigned i, last;
2215ca0d 6314
0a55d497 6315 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6316 (but won't remove). Stop at end of current preds. */
6317 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6318 for (i = 0; i < last; i++)
1f021f97 6319 {
0a55d497 6320 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6321 if (LABEL_P (BB_HEAD (e->src))
6322 && !bitmap_bit_p (&bb_flags, e->src->index)
6323 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6324 unconverted_simple_returns
6325 = convert_jumps_to_returns (e->src, true,
6326 unconverted_simple_returns);
1f021f97 6327 }
0a55d497 6328 }
1f021f97 6329
0a55d497 6330 if (exit_fallthru_edge != NULL
6331 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6332 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6333 {
6334 basic_block last_bb;
f2c8a251 6335
0a55d497 6336 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6337 returnjump = BB_END (last_bb);
6338 exit_fallthru_edge = NULL;
6339 }
6340 }
1f021f97 6341#endif
0a55d497 6342#ifdef HAVE_return
6343 if (HAVE_return)
6344 {
6345 if (exit_fallthru_edge == NULL)
6346 goto epilogue_done;
2215ca0d 6347
0a55d497 6348 if (optimize)
6349 {
6350 basic_block last_bb = exit_fallthru_edge->src;
1f021f97 6351
0a55d497 6352 if (LABEL_P (BB_HEAD (last_bb))
6353 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6354 convert_jumps_to_returns (last_bb, false, NULL);
6355
3c4ca362 6356 if (EDGE_COUNT (last_bb->preds) != 0
6357 && single_succ_p (last_bb))
1f021f97 6358 {
0a55d497 6359 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6360 epilogue_end = returnjump = BB_END (last_bb);
1f021f97 6361#ifdef HAVE_simple_return
0a55d497 6362 /* Emitting the return may add a basic block.
6363 Fix bb_flags for the added block. */
6364 if (last_bb != exit_fallthru_edge->src)
6365 bitmap_set_bit (&bb_flags, last_bb->index);
1f021f97 6366#endif
0a55d497 6367 goto epilogue_done;
2215ca0d 6368 }
ffb61627 6369 }
2215ca0d 6370 }
6371#endif
25e880b1 6372
6373 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6374 this marker for the splits of EH_RETURN patterns, and nothing else
6375 uses the flag in the meantime. */
6376 epilogue_completed = 1;
6377
6378#ifdef HAVE_eh_return
6379 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6380 some targets, these get split to a special version of the epilogue
6381 code. In order to be able to properly annotate these with unwind
6382 info, try to split them now. If we get a valid split, drop an
6383 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6384 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6385 {
6386 rtx prev, last, trial;
6387
6388 if (e->flags & EDGE_FALLTHRU)
6389 continue;
6390 last = BB_END (e->src);
6391 if (!eh_returnjump_p (last))
6392 continue;
6393
6394 prev = PREV_INSN (last);
6395 trial = try_split (PATTERN (last), last, 1);
6396 if (trial == last)
6397 continue;
6398
6399 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6400 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6401 }
6402#endif
6403
1f021f97 6404 /* If nothing falls through into the exit block, we don't need an
6405 epilogue. */
9bb8a4af 6406
1f021f97 6407 if (exit_fallthru_edge == NULL)
9bb8a4af 6408 goto epilogue_done;
6409
b2c5602e 6410#ifdef HAVE_epilogue
6411 if (HAVE_epilogue)
6412 {
777e249a 6413 start_sequence ();
31b97e8f 6414 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
777e249a 6415 seq = gen_epilogue ();
11efe736 6416 if (seq)
6417 emit_jump_insn (seq);
b2c5602e 6418
777e249a 6419 /* Retain a map of the epilogue insns. */
25e880b1 6420 record_insns (seq, NULL, &epilogue_insn_hash);
13751393 6421 set_insn_locators (seq, epilogue_locator);
b2c5602e 6422
31d3e01c 6423 seq = get_insns ();
1f021f97 6424 returnjump = get_last_insn ();
06ebc183 6425 end_sequence ();
71caadc0 6426
1f021f97 6427 insert_insn_on_edge (seq, exit_fallthru_edge);
48b14f50 6428 inserted = true;
4115ac36 6429
6430 if (JUMP_P (returnjump))
31a53363 6431 set_return_jump_label (returnjump);
b2c5602e 6432 }
9bb8a4af 6433 else
b2c5602e 6434#endif
9bb8a4af 6435 {
6436 basic_block cur_bb;
6437
1f021f97 6438 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
9bb8a4af 6439 goto epilogue_done;
6440 /* We have a fall-through edge to the exit block, the source is not
6441 at the end of the function, and there will be an assembler epilogue
6442 at the end of the function.
6443 We can't use force_nonfallthru here, because that would try to
1f021f97 6444 use return. Inserting a jump 'by hand' is extremely messy, so
9bb8a4af 6445 we take advantage of cfg_layout_finalize using
1f021f97 6446 fixup_fallthru_exit_predecessor. */
d2ed6106 6447 cfg_layout_initialize (0);
9bb8a4af 6448 FOR_EACH_BB (cur_bb)
4d2e5d52 6449 if (cur_bb->index >= NUM_FIXED_BLOCKS
6450 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
bc5f266a 6451 cur_bb->aux = cur_bb->next_bb;
9bb8a4af 6452 cfg_layout_finalize ();
6453 }
202bbc06 6454
777e249a 6455epilogue_done:
1f021f97 6456
c107ab96 6457 default_rtl_profile ();
71caadc0 6458
58d5b39c 6459 if (inserted)
e08b2eb8 6460 {
202bbc06 6461 sbitmap blocks;
6462
e08b2eb8 6463 commit_edge_insertions ();
6464
202bbc06 6465 /* Look for basic blocks within the prologue insns. */
6466 blocks = sbitmap_alloc (last_basic_block);
6467 sbitmap_zero (blocks);
6468 SET_BIT (blocks, entry_edge->dest->index);
f8e6666e 6469 SET_BIT (blocks, orig_entry_edge->dest->index);
202bbc06 6470 find_many_sub_basic_blocks (blocks);
6471 sbitmap_free (blocks);
6472
e08b2eb8 6473 /* The epilogue insns we inserted may cause the exit edge to no longer
6474 be fallthru. */
6475 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6476 {
6477 if (((e->flags & EDGE_FALLTHRU) != 0)
6478 && returnjump_p (BB_END (e->src)))
6479 e->flags &= ~EDGE_FALLTHRU;
6480 }
6481 }
60ecc450 6482
1f021f97 6483#ifdef HAVE_simple_return
6484 /* If there were branches to an empty LAST_BB which we tried to
6485 convert to conditional simple_returns, but couldn't for some
6486 reason, create a block to hold a simple_return insn and redirect
6487 those remaining edges. */
0a55d497 6488 if (!VEC_empty (edge, unconverted_simple_returns))
1f021f97 6489 {
0a55d497 6490 basic_block simple_return_block_hot = NULL;
6491 basic_block simple_return_block_cold = NULL;
6492 edge pending_edge_hot = NULL;
6493 edge pending_edge_cold = NULL;
1f021f97 6494 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
7f61fb27 6495 int i;
1f021f97 6496
6497 gcc_assert (entry_edge != orig_entry_edge);
6498
6499 /* See if we can reuse the last insn that was emitted for the
6500 epilogue. */
6501 if (returnjump != NULL_RTX
6502 && JUMP_LABEL (returnjump) == simple_return_rtx)
6503 {
0a55d497 6504 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
1f021f97 6505 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6506 simple_return_block_hot = e->dest;
6507 else
6508 simple_return_block_cold = e->dest;
6509 }
6510
0a55d497 6511 /* Also check returns we might need to add to tail blocks. */
6512 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6513 if (EDGE_COUNT (e->src->preds) != 0
6514 && (e->flags & EDGE_FAKE) != 0
6515 && !bitmap_bit_p (&bb_flags, e->src->index))
6516 {
6517 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6518 pending_edge_hot = e;
6519 else
6520 pending_edge_cold = e;
6521 }
6522
6523 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
1f021f97 6524 {
1f021f97 6525 basic_block *pdest_bb;
0a55d497 6526 edge pending;
1f021f97 6527
0a55d497 6528 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6529 {
6530 pdest_bb = &simple_return_block_hot;
6531 pending = pending_edge_hot;
6532 }
1f021f97 6533 else
0a55d497 6534 {
6535 pdest_bb = &simple_return_block_cold;
6536 pending = pending_edge_cold;
6537 }
6538
6539 if (*pdest_bb == NULL && pending != NULL)
6540 {
6541 emit_return_into_block (true, pending->src);
6542 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6543 *pdest_bb = pending->src;
6544 }
6545 else if (*pdest_bb == NULL)
1f021f97 6546 {
6547 basic_block bb;
6548 rtx start;
6549
6550 bb = create_basic_block (NULL, NULL, exit_pred);
6551 BB_COPY_PARTITION (bb, e->src);
6552 start = emit_jump_insn_after (gen_simple_return (),
6553 BB_END (bb));
6554 JUMP_LABEL (start) = simple_return_rtx;
6555 emit_barrier_after (start);
6556
6557 *pdest_bb = bb;
6558 make_edge (bb, EXIT_BLOCK_PTR, 0);
6559 }
6560 redirect_edge_and_branch_force (e, *pdest_bb);
1f021f97 6561 }
0a55d497 6562 VEC_free (edge, heap, unconverted_simple_returns);
6563 }
6564
6565 if (entry_edge != orig_entry_edge)
6566 {
6567 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6568 if (EDGE_COUNT (e->src->preds) != 0
6569 && (e->flags & EDGE_FAKE) != 0
6570 && !bitmap_bit_p (&bb_flags, e->src->index))
6571 {
6572 emit_return_into_block (true, e->src);
6573 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6574 }
1f021f97 6575 }
6576#endif
6577
60ecc450 6578#ifdef HAVE_sibcall_epilogue
6579 /* Emit sibling epilogues before any sibling call sites. */
cd665a06 6580 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
60ecc450 6581 {
6582 basic_block bb = e->src;
5496dbfc 6583 rtx insn = BB_END (bb);
1f021f97 6584 rtx ep_seq;
60ecc450 6585
6d7dc5b9 6586 if (!CALL_P (insn)
1f021f97 6587 || ! SIBLING_CALL_P (insn)
0a55d497 6588#ifdef HAVE_simple_return
1f021f97 6589 || (entry_edge != orig_entry_edge
0a55d497 6590 && !bitmap_bit_p (&bb_flags, bb->index))
6591#endif
6592 )
cd665a06 6593 {
6594 ei_next (&ei);
6595 continue;
6596 }
60ecc450 6597
1f021f97 6598 ep_seq = gen_sibcall_epilogue ();
6599 if (ep_seq)
6600 {
6601 start_sequence ();
6602 emit_note (NOTE_INSN_EPILOGUE_BEG);
6603 emit_insn (ep_seq);
6604 seq = get_insns ();
6605 end_sequence ();
60ecc450 6606
1f021f97 6607 /* Retain a map of the epilogue insns. Used in life analysis to
6608 avoid getting rid of sibcall epilogue insns. Do this before we
6609 actually emit the sequence. */
6610 record_insns (seq, NULL, &epilogue_insn_hash);
6611 set_insn_locators (seq, epilogue_locator);
31d3e01c 6612
1f021f97 6613 emit_insn_before (seq, insn);
6614 }
cd665a06 6615 ei_next (&ei);
60ecc450 6616 }
6617#endif
58d5b39c 6618
142e7d22 6619#ifdef HAVE_epilogue
6620 if (epilogue_end)
6621 {
6622 rtx insn, next;
6623
6624 /* Similarly, move any line notes that appear after the epilogue.
424da949 6625 There is no need, however, to be quite so anal about the existence
737251e7 6626 of such a note. Also possibly move
dc8def52 6627 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6628 info generation. */
06ebc183 6629 for (insn = epilogue_end; insn; insn = next)
142e7d22 6630 {
6631 next = NEXT_INSN (insn);
48e1416a 6632 if (NOTE_P (insn)
ad4583d9 6633 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
142e7d22 6634 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6635 }
6636 }
6637#endif
3072d30e 6638
0a55d497 6639#ifdef HAVE_simple_return
1f021f97 6640 bitmap_clear (&bb_flags);
0a55d497 6641#endif
1f021f97 6642
3072d30e 6643 /* Threading the prologue and epilogue changes the artificial refs
6644 in the entry and exit blocks. */
6645 epilogue_completed = 1;
6646 df_update_entry_exit_and_calls ();
b2c5602e 6647}
6648
25e880b1 6649/* Reposition the prologue-end and epilogue-begin notes after
6650 instruction scheduling. */
b2c5602e 6651
6652void
3072d30e 6653reposition_prologue_and_epilogue_notes (void)
b2c5602e 6654{
25e880b1 6655#if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6656 || defined (HAVE_sibcall_epilogue)
25e880b1 6657 /* Since the hash table is created on demand, the fact that it is
6658 non-null is a signal that it is non-empty. */
6659 if (prologue_insn_hash != NULL)
b2c5602e 6660 {
25e880b1 6661 size_t len = htab_elements (prologue_insn_hash);
c009a3ec 6662 rtx insn, last = NULL, note = NULL;
b2c5602e 6663
25e880b1 6664 /* Scan from the beginning until we reach the last prologue insn. */
6665 /* ??? While we do have the CFG intact, there are two problems:
6666 (1) The prologue can contain loops (typically probing the stack),
6667 which means that the end of the prologue isn't in the first bb.
6668 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
3072d30e 6669 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
b2c5602e 6670 {
6d7dc5b9 6671 if (NOTE_P (insn))
12d1c03c 6672 {
ad4583d9 6673 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
60ecc450 6674 note = insn;
6675 }
25e880b1 6676 else if (contains (insn, prologue_insn_hash))
60ecc450 6677 {
5c0913b4 6678 last = insn;
6679 if (--len == 0)
6680 break;
6681 }
6682 }
60d903f5 6683
5c0913b4 6684 if (last)
6685 {
25e880b1 6686 if (note == NULL)
5c0913b4 6687 {
25e880b1 6688 /* Scan forward looking for the PROLOGUE_END note. It should
6689 be right at the beginning of the block, possibly with other
6690 insn notes that got moved there. */
6691 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6692 {
6693 if (NOTE_P (note)
6694 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6695 break;
6696 }
5c0913b4 6697 }
2a588794 6698
5c0913b4 6699 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6d7dc5b9 6700 if (LABEL_P (last))
5c0913b4 6701 last = NEXT_INSN (last);
6702 reorder_insns (note, note, last);
b2c5602e 6703 }
60ecc450 6704 }
6705
25e880b1 6706 if (epilogue_insn_hash != NULL)
60ecc450 6707 {
25e880b1 6708 edge_iterator ei;
6709 edge e;
b2c5602e 6710
25e880b1 6711 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
b2c5602e 6712 {
c009a3ec 6713 rtx insn, first = NULL, note = NULL;
6714 basic_block bb = e->src;
2a588794 6715
c009a3ec 6716 /* Scan from the beginning until we reach the first epilogue insn. */
25e880b1 6717 FOR_BB_INSNS (bb, insn)
5c0913b4 6718 {
25e880b1 6719 if (NOTE_P (insn))
6720 {
6721 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6722 {
6723 note = insn;
c009a3ec 6724 if (first != NULL)
25e880b1 6725 break;
6726 }
6727 }
c009a3ec 6728 else if (first == NULL && contains (insn, epilogue_insn_hash))
25e880b1 6729 {
c009a3ec 6730 first = insn;
25e880b1 6731 if (note != NULL)
6732 break;
6733 }
12d1c03c 6734 }
c009a3ec 6735
6736 if (note)
6737 {
6738 /* If the function has a single basic block, and no real
48e1416a 6739 epilogue insns (e.g. sibcall with no cleanup), the
c009a3ec 6740 epilogue note can get scheduled before the prologue
6741 note. If we have frame related prologue insns, having
6742 them scanned during the epilogue will result in a crash.
6743 In this case re-order the epilogue note to just before
6744 the last insn in the block. */
6745 if (first == NULL)
6746 first = BB_END (bb);
6747
6748 if (PREV_INSN (first) != note)
6749 reorder_insns (note, note, PREV_INSN (first));
6750 }
b2c5602e 6751 }
6752 }
6753#endif /* HAVE_prologue or HAVE_epilogue */
6754}
a7b0c170 6755
9631926a 6756/* Returns the name of function declared by FNDECL. */
6757const char *
6758fndecl_name (tree fndecl)
6759{
6760 if (fndecl == NULL)
6761 return "(nofn)";
6762 return lang_hooks.decl_printable_name (fndecl, 2);
6763}
6764
4a020a8c 6765/* Returns the name of function FN. */
6766const char *
6767function_name (struct function *fn)
6768{
9631926a 6769 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6770 return fndecl_name (fndecl);
4a020a8c 6771}
6772
35901471 6773/* Returns the name of the current function. */
6774const char *
6775current_function_name (void)
6776{
4a020a8c 6777 return function_name (cfun);
35901471 6778}
77fce4cd 6779\f
6780
2a1990e9 6781static unsigned int
77fce4cd 6782rest_of_handle_check_leaf_regs (void)
6783{
6784#ifdef LEAF_REGISTERS
d5bf7b64 6785 crtl->uses_only_leaf_regs
77fce4cd 6786 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6787#endif
2a1990e9 6788 return 0;
77fce4cd 6789}
6790
35df6eb4 6791/* Insert a TYPE into the used types hash table of CFUN. */
1a4c44c5 6792
35df6eb4 6793static void
6794used_types_insert_helper (tree type, struct function *func)
f6e59711 6795{
35df6eb4 6796 if (type != NULL && func != NULL)
f6e59711 6797 {
6798 void **slot;
6799
6800 if (func->used_types_hash == NULL)
6801 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
35df6eb4 6802 htab_eq_pointer, NULL);
6803 slot = htab_find_slot (func->used_types_hash, type, INSERT);
f6e59711 6804 if (*slot == NULL)
35df6eb4 6805 *slot = type;
f6e59711 6806 }
6807}
6808
35df6eb4 6809/* Given a type, insert it into the used hash table in cfun. */
6810void
6811used_types_insert (tree t)
6812{
6813 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
bd564c29 6814 if (TYPE_NAME (t))
6815 break;
6816 else
6817 t = TREE_TYPE (t);
26ee9e7a 6818 if (TREE_CODE (t) == ERROR_MARK)
6819 return;
bd564c29 6820 if (TYPE_NAME (t) == NULL_TREE
6821 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6822 t = TYPE_MAIN_VARIANT (t);
35df6eb4 6823 if (debug_info_level > DINFO_LEVEL_NONE)
1a4c44c5 6824 {
6825 if (cfun)
6826 used_types_insert_helper (t, cfun);
6827 else
6828 /* So this might be a type referenced by a global variable.
6829 Record that type so that we can later decide to emit its debug
6830 information. */
aef48c9a 6831 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
1a4c44c5 6832 }
6833}
6834
6835/* Helper to Hash a struct types_used_by_vars_entry. */
6836
6837static hashval_t
6838hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6839{
6840 gcc_assert (entry && entry->var_decl && entry->type);
6841
6842 return iterative_hash_object (entry->type,
6843 iterative_hash_object (entry->var_decl, 0));
6844}
6845
6846/* Hash function of the types_used_by_vars_entry hash table. */
6847
6848hashval_t
6849types_used_by_vars_do_hash (const void *x)
6850{
6851 const struct types_used_by_vars_entry *entry =
6852 (const struct types_used_by_vars_entry *) x;
6853
6854 return hash_types_used_by_vars_entry (entry);
6855}
6856
6857/*Equality function of the types_used_by_vars_entry hash table. */
6858
6859int
6860types_used_by_vars_eq (const void *x1, const void *x2)
6861{
6862 const struct types_used_by_vars_entry *e1 =
6863 (const struct types_used_by_vars_entry *) x1;
6864 const struct types_used_by_vars_entry *e2 =
6865 (const struct types_used_by_vars_entry *)x2;
6866
6867 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6868}
6869
6870/* Inserts an entry into the types_used_by_vars_hash hash table. */
6871
6872void
6873types_used_by_var_decl_insert (tree type, tree var_decl)
6874{
6875 if (type != NULL && var_decl != NULL)
6876 {
6877 void **slot;
6878 struct types_used_by_vars_entry e;
6879 e.var_decl = var_decl;
6880 e.type = type;
6881 if (types_used_by_vars_hash == NULL)
6882 types_used_by_vars_hash =
6883 htab_create_ggc (37, types_used_by_vars_do_hash,
6884 types_used_by_vars_eq, NULL);
6885 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6886 hash_types_used_by_vars_entry (&e), INSERT);
6887 if (*slot == NULL)
6888 {
6889 struct types_used_by_vars_entry *entry;
ba72912a 6890 entry = ggc_alloc_types_used_by_vars_entry ();
1a4c44c5 6891 entry->type = type;
6892 entry->var_decl = var_decl;
6893 *slot = entry;
6894 }
6895 }
35df6eb4 6896}
6897
20099e35 6898struct rtl_opt_pass pass_leaf_regs =
77fce4cd 6899{
20099e35 6900 {
6901 RTL_PASS,
0c297edc 6902 "*leaf_regs", /* name */
77fce4cd 6903 NULL, /* gate */
6904 rest_of_handle_check_leaf_regs, /* execute */
6905 NULL, /* sub */
6906 NULL, /* next */
6907 0, /* static_pass_number */
0b1615c1 6908 TV_NONE, /* tv_id */
77fce4cd 6909 0, /* properties_required */
6910 0, /* properties_provided */
6911 0, /* properties_destroyed */
6912 0, /* todo_flags_start */
20099e35 6913 0 /* todo_flags_finish */
6914 }
77fce4cd 6915};
6916
3072d30e 6917static unsigned int
6918rest_of_handle_thread_prologue_and_epilogue (void)
6919{
6920 if (optimize)
6921 cleanup_cfg (CLEANUP_EXPENSIVE);
990495a7 6922
3072d30e 6923 /* On some machines, the prologue and epilogue code, or parts thereof,
6924 can be represented as RTL. Doing so lets us schedule insns between
6925 it and the rest of the code and also allows delayed branch
6926 scheduling to operate in the epilogue. */
3072d30e 6927 thread_prologue_and_epilogue_insns ();
990495a7 6928
6929 /* The stack usage info is finalized during prologue expansion. */
8c0dd614 6930 if (flag_stack_usage_info)
990495a7 6931 output_stack_usage ();
6932
3072d30e 6933 return 0;
6934}
6935
20099e35 6936struct rtl_opt_pass pass_thread_prologue_and_epilogue =
3072d30e 6937{
20099e35 6938 {
6939 RTL_PASS,
3072d30e 6940 "pro_and_epilogue", /* name */
6941 NULL, /* gate */
6942 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6943 NULL, /* sub */
6944 NULL, /* next */
6945 0, /* static_pass_number */
6946 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6947 0, /* properties_required */
6948 0, /* properties_provided */
6949 0, /* properties_destroyed */
6950 TODO_verify_flow, /* todo_flags_start */
314966f4 6951 TODO_df_verify |
0806b508 6952 TODO_df_finish | TODO_verify_rtl_sharing |
20099e35 6953 TODO_ggc_collect /* todo_flags_finish */
6954 }
3072d30e 6955};
9dc6d5bb 6956\f
6957
6958/* This mini-pass fixes fall-out from SSA in asm statements that have
48e1416a 6959 in-out constraints. Say you start with
9dc6d5bb 6960
6961 orig = inout;
6962 asm ("": "+mr" (inout));
6963 use (orig);
6964
6965 which is transformed very early to use explicit output and match operands:
6966
6967 orig = inout;
6968 asm ("": "=mr" (inout) : "0" (inout));
6969 use (orig);
6970
6971 Or, after SSA and copyprop,
6972
6973 asm ("": "=mr" (inout_2) : "0" (inout_1));
6974 use (inout_1);
6975
6976 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6977 they represent two separate values, so they will get different pseudo
6978 registers during expansion. Then, since the two operands need to match
6979 per the constraints, but use different pseudo registers, reload can
6980 only register a reload for these operands. But reloads can only be
6981 satisfied by hardregs, not by memory, so we need a register for this
6982 reload, just because we are presented with non-matching operands.
6983 So, even though we allow memory for this operand, no memory can be
6984 used for it, just because the two operands don't match. This can
6985 cause reload failures on register-starved targets.
6986
6987 So it's a symptom of reload not being able to use memory for reloads
6988 or, alternatively it's also a symptom of both operands not coming into
6989 reload as matching (in which case the pseudo could go to memory just
6990 fine, as the alternative allows it, and no reload would be necessary).
6991 We fix the latter problem here, by transforming
6992
6993 asm ("": "=mr" (inout_2) : "0" (inout_1));
6994
6995 back to
6996
6997 inout_2 = inout_1;
6998 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6999
7000static void
7001match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7002{
7003 int i;
7004 bool changed = false;
7005 rtx op = SET_SRC (p_sets[0]);
7006 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7007 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
2457c754 7008 bool *output_matched = XALLOCAVEC (bool, noutputs);
9dc6d5bb 7009
3f982e5a 7010 memset (output_matched, 0, noutputs * sizeof (bool));
9dc6d5bb 7011 for (i = 0; i < ninputs; i++)
7012 {
7013 rtx input, output, insns;
7014 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7015 char *end;
d069e0d3 7016 int match, j;
9dc6d5bb 7017
fbcb9be4 7018 if (*constraint == '%')
7019 constraint++;
7020
9dc6d5bb 7021 match = strtoul (constraint, &end, 10);
7022 if (end == constraint)
7023 continue;
7024
7025 gcc_assert (match < noutputs);
7026 output = SET_DEST (p_sets[match]);
7027 input = RTVEC_ELT (inputs, i);
d069e0d3 7028 /* Only do the transformation for pseudos. */
7029 if (! REG_P (output)
7030 || rtx_equal_p (output, input)
9dc6d5bb 7031 || (GET_MODE (input) != VOIDmode
7032 && GET_MODE (input) != GET_MODE (output)))
7033 continue;
7034
d069e0d3 7035 /* We can't do anything if the output is also used as input,
7036 as we're going to overwrite it. */
7037 for (j = 0; j < ninputs; j++)
7038 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7039 break;
7040 if (j != ninputs)
7041 continue;
7042
3f982e5a 7043 /* Avoid changing the same input several times. For
7044 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7045 only change in once (to out1), rather than changing it
7046 first to out1 and afterwards to out2. */
7047 if (i > 0)
7048 {
7049 for (j = 0; j < noutputs; j++)
7050 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7051 break;
7052 if (j != noutputs)
7053 continue;
7054 }
7055 output_matched[match] = true;
7056
9dc6d5bb 7057 start_sequence ();
d069e0d3 7058 emit_move_insn (output, input);
9dc6d5bb 7059 insns = get_insns ();
7060 end_sequence ();
9dc6d5bb 7061 emit_insn_before (insns, insn);
d069e0d3 7062
7063 /* Now replace all mentions of the input with output. We can't
f0b5f617 7064 just replace the occurrence in inputs[i], as the register might
d069e0d3 7065 also be used in some other input (or even in an address of an
7066 output), which would mean possibly increasing the number of
7067 inputs by one (namely 'output' in addition), which might pose
7068 a too complicated problem for reload to solve. E.g. this situation:
7069
7070 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7071
c7684b8e 7072 Here 'input' is used in two occurrences as input (once for the
d069e0d3 7073 input operand, once for the address in the second output operand).
f0b5f617 7074 If we would replace only the occurrence of the input operand (to
d069e0d3 7075 make the matching) we would be left with this:
7076
7077 output = input
7078 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7079
7080 Now we suddenly have two different input values (containing the same
7081 value, but different pseudos) where we formerly had only one.
7082 With more complicated asms this might lead to reload failures
7083 which wouldn't have happen without this pass. So, iterate over
c7684b8e 7084 all operands and replace all occurrences of the register used. */
d069e0d3 7085 for (j = 0; j < noutputs; j++)
f211ad17 7086 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
d069e0d3 7087 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7088 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7089 input, output);
7090 for (j = 0; j < ninputs; j++)
7091 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7092 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7093 input, output);
7094
9dc6d5bb 7095 changed = true;
7096 }
7097
7098 if (changed)
7099 df_insn_rescan (insn);
7100}
7101
7102static unsigned
7103rest_of_match_asm_constraints (void)
7104{
7105 basic_block bb;
7106 rtx insn, pat, *p_sets;
7107 int noutputs;
7108
18d50ae6 7109 if (!crtl->has_asm_statement)
9dc6d5bb 7110 return 0;
7111
7112 df_set_flags (DF_DEFER_INSN_RESCAN);
7113 FOR_EACH_BB (bb)
7114 {
7115 FOR_BB_INSNS (bb, insn)
7116 {
7117 if (!INSN_P (insn))
7118 continue;
7119
7120 pat = PATTERN (insn);
7121 if (GET_CODE (pat) == PARALLEL)
7122 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7123 else if (GET_CODE (pat) == SET)
7124 p_sets = &PATTERN (insn), noutputs = 1;
7125 else
7126 continue;
7127
7128 if (GET_CODE (*p_sets) == SET
7129 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7130 match_asm_constraints_1 (insn, p_sets, noutputs);
7131 }
7132 }
7133
7134 return TODO_df_finish;
7135}
7136
20099e35 7137struct rtl_opt_pass pass_match_asm_constraints =
9dc6d5bb 7138{
20099e35 7139 {
7140 RTL_PASS,
9dc6d5bb 7141 "asmcons", /* name */
7142 NULL, /* gate */
7143 rest_of_match_asm_constraints, /* execute */
7144 NULL, /* sub */
7145 NULL, /* next */
7146 0, /* static_pass_number */
0b1615c1 7147 TV_NONE, /* tv_id */
9dc6d5bb 7148 0, /* properties_required */
7149 0, /* properties_provided */
7150 0, /* properties_destroyed */
7151 0, /* todo_flags_start */
771e2890 7152 0 /* todo_flags_finish */
20099e35 7153 }
9dc6d5bb 7154};
3072d30e 7155
35901471 7156
1f3233d1 7157#include "gt-function.h"