]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/genrecog.c
gcc.c: Fix comment formatting.
[thirdparty/gcc.git] / gcc / genrecog.c
CommitLineData
ec65fa66 1/* Generate code from machine description to recognize rtl as insns.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
5b7c7046 3 1999, 2000, 2001 Free Software Foundation, Inc.
ec65fa66 4
09051660
RH
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
ec65fa66
RK
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
09051660
RH
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
ec65fa66 43
09051660
RH
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl in a SEQUENCE.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
ec65fa66 52
20f92396 53#include "hconfig.h"
0b93b64e 54#include "system.h"
ec65fa66 55#include "rtl.h"
f8b6598e 56#include "errors.h"
c88c0d42 57#include "gensupport.h"
ec65fa66 58
3916d6d8 59
736b02fd
KG
60#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
62
8aeba909 63/* Holds an array of names indexed by insn_code_number. */
a995e389
RH
64static char **insn_name_ptr = 0;
65static int insn_name_ptr_size = 0;
4db83042 66
09051660
RH
67/* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
70
71struct decision_head
72{
73 struct decision *first;
74 struct decision *last;
75};
5b7c7046 76
09051660
RH
77/* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
80
81struct decision_test
82{
83 /* A linked list through the tests attached to a node. */
84 struct decision_test *next;
85
86 /* These types are roughly in the order in which we'd like to test them. */
070ef6f4
RK
87 enum decision_type
88 {
89 DT_mode, DT_code, DT_veclen,
90 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
5b7c7046 91 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
070ef6f4
RK
92 DT_accept_op, DT_accept_insn
93 } type;
09051660
RH
94
95 union
96 {
97 enum machine_mode mode; /* Machine mode of node. */
98 RTX_CODE code; /* Code to test. */
e0689256 99
09051660
RH
100 struct
101 {
102 const char *name; /* Predicate to call. */
103 int index; /* Index into `preds' or -1. */
104 enum machine_mode mode; /* Machine mode for node. */
105 } pred;
106
107 const char *c_test; /* Additional test to perform. */
108 int veclen; /* Length of vector. */
109 int dup; /* Number of operand to compare against. */
110 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
111 int opno; /* Operand number matched. */
112
113 struct {
114 int code_number; /* Insn number matched. */
bcdaba58 115 int lineno; /* Line number of the insn. */
09051660
RH
116 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
117 } insn;
118 } u;
119};
e0689256 120
09051660 121/* Data structure for decision tree for recognizing legitimate insns. */
ec65fa66
RK
122
123struct decision
124{
09051660
RH
125 struct decision_head success; /* Nodes to test on success. */
126 struct decision *next; /* Node to test on failure. */
127 struct decision *prev; /* Node whose failure tests us. */
128 struct decision *afterward; /* Node to test on success,
129 but failure of successor nodes. */
130
131 const char *position; /* String denoting position in pattern. */
132
133 struct decision_test *tests; /* The tests for this node. */
134
e0689256 135 int number; /* Node number, used for labels */
e0689256 136 int subroutine_number; /* Number of subroutine this node starts */
09051660 137 int need_label; /* Label needs to be output. */
ec65fa66
RK
138};
139
09051660 140#define SUBROUTINE_THRESHOLD 100
ec65fa66
RK
141
142static int next_subroutine_number;
143
ede7cd44
RH
144/* We can write three types of subroutines: One for insn recognition,
145 one to split insns, and one for peephole-type optimizations. This
146 defines which type is being written. */
ec65fa66 147
09051660
RH
148enum routine_type {
149 RECOG, SPLIT, PEEPHOLE2
150};
ede7cd44 151
09051660 152#define IS_SPLIT(X) ((X) != RECOG)
ec65fa66 153
e0689256 154/* Next available node number for tree nodes. */
ec65fa66 155
e0689256 156static int next_number;
ec65fa66 157
e0689256 158/* Next number to use as an insn_code. */
ec65fa66 159
e0689256 160static int next_insn_code;
ec65fa66 161
e0689256 162/* Similar, but counts all expressions in the MD file; used for
0f41302f 163 error messages. */
ec65fa66 164
e0689256 165static int next_index;
ec65fa66 166
e0689256
RK
167/* Record the highest depth we ever have so we know how many variables to
168 allocate in each subroutine we make. */
ec65fa66 169
e0689256 170static int max_depth;
bcdaba58
RH
171
172/* The line number of the start of the pattern currently being processed. */
173static int pattern_lineno;
174
175/* Count of errors. */
176static int error_count;
e0689256
RK
177\f
178/* This table contains a list of the rtl codes that can possibly match a
09051660 179 predicate defined in recog.c. The function `maybe_both_true' uses it to
e0689256
RK
180 deduce that there are no expressions that can be matches by certain pairs
181 of tree nodes. Also, if a predicate can match only one code, we can
182 hardwire that code into the node testing the predicate. */
ec65fa66 183
e0689256
RK
184static struct pred_table
185{
85fda1eb 186 const char *name;
e0689256 187 RTX_CODE codes[NUM_RTX_CODE];
09051660
RH
188} preds[] = {
189 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
190 LABEL_REF, SUBREG, REG, MEM}},
e0689256 191#ifdef PREDICATE_CODES
09051660 192 PREDICATE_CODES
e0689256 193#endif
09051660
RH
194 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
195 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
196 {"register_operand", {SUBREG, REG}},
556ffcc5 197 {"pmode_register_operand", {SUBREG, REG}},
09051660
RH
198 {"scratch_operand", {SCRATCH, REG}},
199 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
200 LABEL_REF}},
201 {"const_int_operand", {CONST_INT}},
202 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
203 {"nonimmediate_operand", {SUBREG, REG, MEM}},
204 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
205 LABEL_REF, SUBREG, REG}},
206 {"push_operand", {MEM}},
207 {"pop_operand", {MEM}},
208 {"memory_operand", {SUBREG, MEM}},
209 {"indirect_operand", {SUBREG, MEM}},
3a3677ff
RH
210 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
211 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
212 UNLT, LTGT}},
09051660
RH
213 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
214 LABEL_REF, SUBREG, REG, MEM}}
215};
e0689256 216
b6a1cbae 217#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
ec65fa66 218
8fe0ca0c
RH
219static const char * special_mode_pred_table[] = {
220#ifdef SPECIAL_MODE_PREDICATES
221 SPECIAL_MODE_PREDICATES
222#endif
556ffcc5 223 "pmode_register_operand"
8fe0ca0c
RH
224};
225
b6a1cbae 226#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
8fe0ca0c 227
09051660 228static struct decision *new_decision
a94ae8f5 229 PARAMS ((const char *, struct decision_head *));
09051660 230static struct decision_test *new_decision_test
a94ae8f5 231 PARAMS ((enum decision_type, struct decision_test ***));
8fe0ca0c 232static rtx find_operand
a94ae8f5 233 PARAMS ((rtx, int));
c0ea284b
RH
234static rtx find_matching_operand
235 PARAMS ((rtx, int));
8fe0ca0c 236static void validate_pattern
7297e9fc 237 PARAMS ((rtx, rtx, rtx, int));
09051660 238static struct decision *add_to_sequence
a94ae8f5 239 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
09051660 240
9e9f3ede
RH
241static int maybe_both_true_mode
242 PARAMS ((enum machine_mode, enum machine_mode));
09051660 243static int maybe_both_true_2
a94ae8f5 244 PARAMS ((struct decision_test *, struct decision_test *));
09051660 245static int maybe_both_true_1
a94ae8f5 246 PARAMS ((struct decision_test *, struct decision_test *));
09051660 247static int maybe_both_true
a94ae8f5 248 PARAMS ((struct decision *, struct decision *, int));
09051660
RH
249
250static int nodes_identical_1
a94ae8f5 251 PARAMS ((struct decision_test *, struct decision_test *));
09051660 252static int nodes_identical
a94ae8f5 253 PARAMS ((struct decision *, struct decision *));
09051660 254static void merge_accept_insn
a94ae8f5 255 PARAMS ((struct decision *, struct decision *));
09051660 256static void merge_trees
a94ae8f5 257 PARAMS ((struct decision_head *, struct decision_head *));
09051660
RH
258
259static void factor_tests
a94ae8f5 260 PARAMS ((struct decision_head *));
09051660 261static void simplify_tests
a94ae8f5 262 PARAMS ((struct decision_head *));
09051660 263static int break_out_subroutines
a94ae8f5 264 PARAMS ((struct decision_head *, int));
09051660 265static void find_afterward
a94ae8f5 266 PARAMS ((struct decision_head *, struct decision *));
09051660
RH
267
268static void change_state
a94ae8f5 269 PARAMS ((const char *, const char *, struct decision *, const char *));
09051660 270static void print_code
a94ae8f5 271 PARAMS ((enum rtx_code));
09051660 272static void write_afterward
a94ae8f5 273 PARAMS ((struct decision *, struct decision *, const char *));
09051660 274static struct decision *write_switch
a94ae8f5 275 PARAMS ((struct decision *, int));
09051660 276static void write_cond
a94ae8f5 277 PARAMS ((struct decision_test *, int, enum routine_type));
09051660 278static void write_action
23280139
RH
279 PARAMS ((struct decision *, struct decision_test *, int, int,
280 struct decision *, enum routine_type));
09051660 281static int is_unconditional
a94ae8f5 282 PARAMS ((struct decision_test *, enum routine_type));
09051660 283static int write_node
a94ae8f5 284 PARAMS ((struct decision *, int, enum routine_type));
09051660 285static void write_tree_1
a94ae8f5 286 PARAMS ((struct decision_head *, int, enum routine_type));
09051660 287static void write_tree
a94ae8f5 288 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
09051660 289static void write_subroutine
a94ae8f5 290 PARAMS ((struct decision_head *, enum routine_type));
09051660 291static void write_subroutines
a94ae8f5 292 PARAMS ((struct decision_head *, enum routine_type));
09051660 293static void write_header
a94ae8f5 294 PARAMS ((void));
09051660
RH
295
296static struct decision_head make_insn_sequence
a94ae8f5 297 PARAMS ((rtx, enum routine_type));
09051660 298static void process_tree
a94ae8f5 299 PARAMS ((struct decision_head *, enum routine_type));
5b7c7046 300
09051660 301static void record_insn_name
a94ae8f5 302 PARAMS ((int, const char *));
09051660 303
36f0e0a6 304static void debug_decision_0
a94ae8f5 305 PARAMS ((struct decision *, int, int));
09051660 306static void debug_decision_1
a94ae8f5 307 PARAMS ((struct decision *, int));
09051660 308static void debug_decision_2
a94ae8f5 309 PARAMS ((struct decision_test *));
09051660 310extern void debug_decision
a94ae8f5 311 PARAMS ((struct decision *));
36f0e0a6 312extern void debug_decision_list
a94ae8f5 313 PARAMS ((struct decision *));
ede7cd44 314\f
09051660 315/* Create a new node in sequence after LAST. */
e0689256 316
09051660
RH
317static struct decision *
318new_decision (position, last)
319 const char *position;
320 struct decision_head *last;
ec65fa66 321{
09051660
RH
322 register struct decision *new
323 = (struct decision *) xmalloc (sizeof (struct decision));
ec65fa66 324
09051660
RH
325 memset (new, 0, sizeof (*new));
326 new->success = *last;
327 new->position = xstrdup (position);
328 new->number = next_number++;
ec65fa66 329
09051660
RH
330 last->first = last->last = new;
331 return new;
332}
e0689256 333
09051660 334/* Create a new test and link it in at PLACE. */
ec65fa66 335
09051660
RH
336static struct decision_test *
337new_decision_test (type, pplace)
338 enum decision_type type;
339 struct decision_test ***pplace;
340{
341 struct decision_test **place = *pplace;
342 struct decision_test *test;
ec65fa66 343
09051660
RH
344 test = (struct decision_test *) xmalloc (sizeof (*test));
345 test->next = *place;
346 test->type = type;
347 *place = test;
ede7cd44 348
09051660
RH
349 place = &test->next;
350 *pplace = place;
ec65fa66 351
09051660 352 return test;
e0689256 353}
09051660 354
8fe0ca0c
RH
355/* Search for and return operand N. */
356
357static rtx
358find_operand (pattern, n)
359 rtx pattern;
360 int n;
361{
362 const char *fmt;
363 RTX_CODE code;
364 int i, j, len;
365 rtx r;
366
367 code = GET_CODE (pattern);
368 if ((code == MATCH_SCRATCH
369 || code == MATCH_INSN
370 || code == MATCH_OPERAND
371 || code == MATCH_OPERATOR
372 || code == MATCH_PARALLEL)
373 && XINT (pattern, 0) == n)
374 return pattern;
375
376 fmt = GET_RTX_FORMAT (code);
377 len = GET_RTX_LENGTH (code);
378 for (i = 0; i < len; i++)
379 {
380 switch (fmt[i])
381 {
382 case 'e': case 'u':
383 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
384 return r;
385 break;
386
c0ea284b
RH
387 case 'V':
388 if (! XVEC (pattern, i))
389 break;
390 /* FALLTHRU */
391
8fe0ca0c
RH
392 case 'E':
393 for (j = 0; j < XVECLEN (pattern, i); j++)
394 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
395 return r;
396 break;
397
398 case 'i': case 'w': case '0': case 's':
399 break;
400
401 default:
402 abort ();
403 }
404 }
405
406 return NULL;
407}
408
c0ea284b
RH
409/* Search for and return operand M, such that it has a matching
410 constraint for operand N. */
411
412static rtx
413find_matching_operand (pattern, n)
414 rtx pattern;
415 int n;
416{
417 const char *fmt;
418 RTX_CODE code;
419 int i, j, len;
420 rtx r;
421
422 code = GET_CODE (pattern);
423 if (code == MATCH_OPERAND
424 && (XSTR (pattern, 2)[0] == '0' + n
425 || (XSTR (pattern, 2)[0] == '%'
426 && XSTR (pattern, 2)[1] == '0' + n)))
427 return pattern;
428
429 fmt = GET_RTX_FORMAT (code);
430 len = GET_RTX_LENGTH (code);
431 for (i = 0; i < len; i++)
432 {
433 switch (fmt[i])
434 {
435 case 'e': case 'u':
436 if ((r = find_matching_operand (XEXP (pattern, i), n)))
437 return r;
438 break;
439
440 case 'V':
441 if (! XVEC (pattern, i))
442 break;
443 /* FALLTHRU */
444
445 case 'E':
446 for (j = 0; j < XVECLEN (pattern, i); j++)
447 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
448 return r;
449 break;
450
451 case 'i': case 'w': case '0': case 's':
452 break;
453
454 default:
455 abort ();
456 }
457 }
458
459 return NULL;
460}
461
462
aece2740 463/* Check for various errors in patterns. SET is nonnull for a destination,
7297e9fc
RH
464 and is the complete set pattern. SET_CODE is '=' for normal sets, and
465 '+' within a context that requires in-out constraints. */
bcdaba58
RH
466
467static void
7297e9fc 468validate_pattern (pattern, insn, set, set_code)
bcdaba58 469 rtx pattern;
8fe0ca0c 470 rtx insn;
aece2740 471 rtx set;
7297e9fc 472 int set_code;
bcdaba58
RH
473{
474 const char *fmt;
475 RTX_CODE code;
8fe0ca0c
RH
476 size_t i, len;
477 int j;
bcdaba58
RH
478
479 code = GET_CODE (pattern);
480 switch (code)
481 {
482 case MATCH_SCRATCH:
bcdaba58
RH
483 return;
484
8fe0ca0c 485 case MATCH_INSN:
bcdaba58 486 case MATCH_OPERAND:
8fe0ca0c 487 case MATCH_OPERATOR:
bcdaba58
RH
488 {
489 const char *pred_name = XSTR (pattern, 1);
8fe0ca0c
RH
490 int allows_non_lvalue = 1, allows_non_const = 1;
491 int special_mode_pred = 0;
492 const char *c_test;
493
494 if (GET_CODE (insn) == DEFINE_INSN)
495 c_test = XSTR (insn, 2);
496 else
497 c_test = XSTR (insn, 1);
bcdaba58
RH
498
499 if (pred_name[0] != 0)
500 {
8fe0ca0c 501 for (i = 0; i < NUM_KNOWN_PREDS; i++)
bcdaba58
RH
502 if (! strcmp (preds[i].name, pred_name))
503 break;
504
8fe0ca0c 505 if (i < NUM_KNOWN_PREDS)
bcdaba58 506 {
8fe0ca0c 507 int j;
bcdaba58 508
8fe0ca0c 509 allows_non_lvalue = allows_non_const = 0;
bcdaba58 510 for (j = 0; preds[i].codes[j] != 0; j++)
bcdaba58 511 {
8fe0ca0c
RH
512 RTX_CODE c = preds[i].codes[j];
513 if (c != LABEL_REF
514 && c != SYMBOL_REF
515 && c != CONST_INT
516 && c != CONST_DOUBLE
517 && c != CONST
518 && c != HIGH
519 && c != CONSTANT_P_RTX)
520 allows_non_const = 1;
521
522 if (c != REG
523 && c != SUBREG
524 && c != MEM
525 && c != CONCAT
526 && c != PARALLEL
527 && c != STRICT_LOW_PART)
528 allows_non_lvalue = 1;
bcdaba58
RH
529 }
530 }
531 else
532 {
533#ifdef PREDICATE_CODES
534 /* If the port has a list of the predicates it uses but
535 omits one, warn. */
8fe0ca0c
RH
536 message_with_line (pattern_lineno,
537 "warning: `%s' not in PREDICATE_CODES",
538 pred_name);
bcdaba58
RH
539#endif
540 }
8fe0ca0c
RH
541
542 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
543 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
544 {
545 special_mode_pred = 1;
546 break;
547 }
548 }
549
0dab343a 550 if (code == MATCH_OPERAND)
aece2740 551 {
0dab343a
RH
552 const char constraints0 = XSTR (pattern, 2)[0];
553
554 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
555 don't use the MATCH_OPERAND constraint, only the predicate.
556 This is confusing to folks doing new ports, so help them
557 not make the mistake. */
558 if (GET_CODE (insn) == DEFINE_EXPAND
559 || GET_CODE (insn) == DEFINE_SPLIT
560 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
7297e9fc 561 {
0dab343a
RH
562 if (constraints0)
563 message_with_line (pattern_lineno,
564 "warning: constraints not supported in %s",
565 rtx_name[GET_CODE (insn)]);
566 }
567
568 /* A MATCH_OPERAND that is a SET should have an output reload. */
569 else if (set && constraints0)
570 {
571 if (set_code == '+')
572 {
573 if (constraints0 == '+')
574 ;
575 /* If we've only got an output reload for this operand,
576 we'd better have a matching input operand. */
577 else if (constraints0 == '='
578 && find_matching_operand (insn, XINT (pattern, 0)))
579 ;
580 else
581 {
582 message_with_line (pattern_lineno,
583 "operand %d missing in-out reload",
584 XINT (pattern, 0));
585 error_count++;
586 }
587 }
588 else if (constraints0 != '=' && constraints0 != '+')
c0ea284b
RH
589 {
590 message_with_line (pattern_lineno,
0dab343a 591 "operand %d missing output reload",
c0ea284b
RH
592 XINT (pattern, 0));
593 error_count++;
594 }
7297e9fc 595 }
aece2740
RH
596 }
597
8fe0ca0c
RH
598 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
599 while not likely to occur at runtime, results in less efficient
600 code from insn-recog.c. */
aece2740 601 if (set
8fe0ca0c
RH
602 && pred_name[0] != '\0'
603 && allows_non_lvalue)
604 {
605 message_with_line (pattern_lineno,
aece2740 606 "warning: destination operand %d allows non-lvalue",
476a33f4 607 XINT (pattern, 0));
8fe0ca0c
RH
608 }
609
610 /* A modeless MATCH_OPERAND can be handy when we can
611 check for multiple modes in the c_test. In most other cases,
612 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
5b7c7046 613 and PEEP2 can FAIL within the output pattern. Exclude
556ffcc5 614 address_operand, since its mode is related to the mode of
aece2740
RH
615 the memory not the operand. Exclude the SET_DEST of a call
616 instruction, as that is a common idiom. */
8fe0ca0c
RH
617
618 if (GET_MODE (pattern) == VOIDmode
619 && code == MATCH_OPERAND
556ffcc5 620 && GET_CODE (insn) == DEFINE_INSN
8fe0ca0c
RH
621 && allows_non_const
622 && ! special_mode_pred
556ffcc5
RH
623 && pred_name[0] != '\0'
624 && strcmp (pred_name, "address_operand") != 0
aece2740
RH
625 && strstr (c_test, "operands") == NULL
626 && ! (set
627 && GET_CODE (set) == SET
628 && GET_CODE (SET_SRC (set)) == CALL))
8fe0ca0c
RH
629 {
630 message_with_line (pattern_lineno,
631 "warning: operand %d missing mode?",
632 XINT (pattern, 0));
bcdaba58 633 }
bcdaba58
RH
634 return;
635 }
636
637 case SET:
8fe0ca0c
RH
638 {
639 enum machine_mode dmode, smode;
640 rtx dest, src;
641
642 dest = SET_DEST (pattern);
643 src = SET_SRC (pattern);
644
0dab343a
RH
645 /* STRICT_LOW_PART is a wrapper. Its argument is the real
646 destination, and it's mode should match the source. */
647 if (GET_CODE (dest) == STRICT_LOW_PART)
648 dest = XEXP (dest, 0);
649
8fe0ca0c
RH
650 /* Find the referant for a DUP. */
651
652 if (GET_CODE (dest) == MATCH_DUP
653 || GET_CODE (dest) == MATCH_OP_DUP
654 || GET_CODE (dest) == MATCH_PAR_DUP)
655 dest = find_operand (insn, XINT (dest, 0));
656
657 if (GET_CODE (src) == MATCH_DUP
658 || GET_CODE (src) == MATCH_OP_DUP
659 || GET_CODE (src) == MATCH_PAR_DUP)
660 src = find_operand (insn, XINT (src, 0));
661
8fe0ca0c
RH
662 dmode = GET_MODE (dest);
663 smode = GET_MODE (src);
bcdaba58 664
8fe0ca0c
RH
665 /* The mode of an ADDRESS_OPERAND is the mode of the memory
666 reference, not the mode of the address. */
667 if (GET_CODE (src) == MATCH_OPERAND
668 && ! strcmp (XSTR (src, 1), "address_operand"))
669 ;
670
671 /* The operands of a SET must have the same mode unless one
672 is VOIDmode. */
673 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
674 {
675 message_with_line (pattern_lineno,
676 "mode mismatch in set: %smode vs %smode",
677 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
678 error_count++;
679 }
680
5b7c7046 681 /* If only one of the operands is VOIDmode, and PC or CC0 is
8fe0ca0c
RH
682 not involved, it's probably a mistake. */
683 else if (dmode != smode
684 && GET_CODE (dest) != PC
685 && GET_CODE (dest) != CC0
aece2740
RH
686 && GET_CODE (src) != PC
687 && GET_CODE (src) != CC0
8fe0ca0c
RH
688 && GET_CODE (src) != CONST_INT)
689 {
690 const char *which;
691 which = (dmode == VOIDmode ? "destination" : "source");
692 message_with_line (pattern_lineno,
693 "warning: %s missing a mode?", which);
694 }
695
696 if (dest != SET_DEST (pattern))
7297e9fc
RH
697 validate_pattern (dest, insn, pattern, '=');
698 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
699 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
8fe0ca0c
RH
700 return;
701 }
702
703 case CLOBBER:
7297e9fc
RH
704 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
705 return;
706
707 case ZERO_EXTRACT:
708 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
709 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
710 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
711 return;
712
713 case STRICT_LOW_PART:
714 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
bcdaba58 715 return;
8fe0ca0c 716
bcdaba58
RH
717 case LABEL_REF:
718 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
719 {
720 message_with_line (pattern_lineno,
721 "operand to label_ref %smode not VOIDmode",
722 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
723 error_count++;
724 }
725 break;
726
727 default:
728 break;
729 }
730
731 fmt = GET_RTX_FORMAT (code);
732 len = GET_RTX_LENGTH (code);
733 for (i = 0; i < len; i++)
734 {
735 switch (fmt[i])
736 {
737 case 'e': case 'u':
7297e9fc 738 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
bcdaba58
RH
739 break;
740
741 case 'E':
742 for (j = 0; j < XVECLEN (pattern, i); j++)
7297e9fc 743 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
bcdaba58
RH
744 break;
745
746 case 'i': case 'w': case '0': case 's':
747 break;
748
749 default:
750 abort ();
751 }
752 }
bcdaba58
RH
753}
754
e0689256
RK
755/* Create a chain of nodes to verify that an rtl expression matches
756 PATTERN.
ec65fa66 757
e0689256
RK
758 LAST is a pointer to the listhead in the previous node in the chain (or
759 in the calling function, for the first node).
ec65fa66 760
e0689256 761 POSITION is the string representing the current position in the insn.
ec65fa66 762
ede7cd44
RH
763 INSN_TYPE is the type of insn for which we are emitting code.
764
e0689256 765 A pointer to the final node in the chain is returned. */
ec65fa66
RK
766
767static struct decision *
ede7cd44 768add_to_sequence (pattern, last, position, insn_type, top)
ec65fa66 769 rtx pattern;
e0689256 770 struct decision_head *last;
85fda1eb 771 const char *position;
ede7cd44
RH
772 enum routine_type insn_type;
773 int top;
ec65fa66 774{
09051660
RH
775 RTX_CODE code;
776 struct decision *this, *sub;
777 struct decision_test *test;
778 struct decision_test **place;
779 char *subpos;
85066503 780 register size_t i;
09051660 781 register const char *fmt;
e0689256 782 int depth = strlen (position);
ec65fa66 783 int len;
09051660 784 enum machine_mode mode;
ec65fa66 785
e0689256
RK
786 if (depth > max_depth)
787 max_depth = depth;
788
b548dffb 789 subpos = (char *) xmalloc (depth + 2);
09051660
RH
790 strcpy (subpos, position);
791 subpos[depth + 1] = 0;
ec65fa66 792
09051660
RH
793 sub = this = new_decision (position, last);
794 place = &this->tests;
ec65fa66
RK
795
796 restart:
09051660
RH
797 mode = GET_MODE (pattern);
798 code = GET_CODE (pattern);
ec65fa66
RK
799
800 switch (code)
801 {
ede7cd44 802 case PARALLEL:
dc297297 803 /* Toplevel peephole pattern. */
ede7cd44
RH
804 if (insn_type == PEEPHOLE2 && top)
805 {
09051660
RH
806 /* We don't need the node we just created -- unlink it. */
807 last->first = last->last = NULL;
ede7cd44
RH
808
809 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
810 {
811 /* Which insn we're looking at is represented by A-Z. We don't
dc297297 812 ever use 'A', however; it is always implied. */
09051660
RH
813
814 subpos[depth] = (i > 0 ? 'A' + i : 0);
815 sub = add_to_sequence (XVECEXP (pattern, 0, i),
816 last, subpos, insn_type, 0);
817 last = &sub->success;
ede7cd44 818 }
b548dffb 819 goto ret;
ede7cd44 820 }
09051660
RH
821
822 /* Else nothing special. */
ede7cd44 823 break;
09051660 824
521b9224
RH
825 case MATCH_PARALLEL:
826 /* The explicit patterns within a match_parallel enforce a minimum
827 length on the vector. The match_parallel predicate may allow
828 for more elements. We do need to check for this minimum here
829 or the code generated to match the internals may reference data
830 beyond the end of the vector. */
831 test = new_decision_test (DT_veclen_ge, &place);
832 test->u.veclen = XVECLEN (pattern, 2);
833 /* FALLTHRU */
834
ec65fa66 835 case MATCH_OPERAND:
ec65fa66 836 case MATCH_SCRATCH:
ec65fa66 837 case MATCH_OPERATOR:
5126c35a 838 case MATCH_INSN:
09051660
RH
839 {
840 const char *pred_name;
841 RTX_CODE was_code = code;
ec1c89e6 842 int allows_const_int = 1;
09051660
RH
843
844 if (code == MATCH_SCRATCH)
845 {
846 pred_name = "scratch_operand";
847 code = UNKNOWN;
848 }
849 else
850 {
851 pred_name = XSTR (pattern, 1);
852 if (code == MATCH_PARALLEL)
853 code = PARALLEL;
854 else
855 code = UNKNOWN;
856 }
857
29360e56 858 if (pred_name[0] != 0)
09051660
RH
859 {
860 test = new_decision_test (DT_pred, &place);
861 test->u.pred.name = pred_name;
862 test->u.pred.mode = mode;
863
b4fbaca7
RH
864 /* See if we know about this predicate and save its number.
865 If we do, and it only accepts one code, note that fact.
866
867 If we know that the predicate does not allow CONST_INT,
868 we know that the only way the predicate can match is if
869 the modes match (here we use the kludge of relying on the
870 fact that "address_operand" accepts CONST_INT; otherwise,
871 it would have to be a special case), so we can test the
872 mode (but we need not). This fact should considerably
873 simplify the generated code. */
09051660
RH
874
875 for (i = 0; i < NUM_KNOWN_PREDS; i++)
876 if (! strcmp (preds[i].name, pred_name))
877 break;
e0689256 878
09051660 879 if (i < NUM_KNOWN_PREDS)
9edd4689 880 {
c3693cb1 881 int j;
e0689256 882
09051660 883 test->u.pred.index = i;
e0689256 884
09051660
RH
885 if (preds[i].codes[1] == 0 && code == UNKNOWN)
886 code = preds[i].codes[0];
e0689256 887
09051660
RH
888 allows_const_int = 0;
889 for (j = 0; preds[i].codes[j] != 0; j++)
9edd4689 890 if (preds[i].codes[j] == CONST_INT)
09051660
RH
891 {
892 allows_const_int = 1;
893 break;
894 }
9edd4689 895 }
09051660 896 else
bcdaba58 897 test->u.pred.index = -1;
09051660 898 }
ec1c89e6
RH
899
900 /* Can't enforce a mode if we allow const_int. */
901 if (allows_const_int)
902 mode = VOIDmode;
e0689256 903
09051660
RH
904 /* Accept the operand, ie. record it in `operands'. */
905 test = new_decision_test (DT_accept_op, &place);
906 test->u.opno = XINT (pattern, 0);
e0689256 907
09051660
RH
908 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
909 {
910 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
911 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
912 {
913 subpos[depth] = i + base;
914 sub = add_to_sequence (XVECEXP (pattern, 2, i),
915 &sub->success, subpos, insn_type, 0);
916 }
917 }
918 goto fini;
919 }
ec65fa66
RK
920
921 case MATCH_OP_DUP:
09051660
RH
922 code = UNKNOWN;
923
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926
927 test = new_decision_test (DT_accept_op, &place);
928 test->u.opno = XINT (pattern, 0);
929
e51712db 930 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
ec65fa66 931 {
09051660
RH
932 subpos[depth] = i + '0';
933 sub = add_to_sequence (XVECEXP (pattern, 1, i),
934 &sub->success, subpos, insn_type, 0);
ec65fa66 935 }
09051660 936 goto fini;
ec65fa66
RK
937
938 case MATCH_DUP:
f582c9d5 939 case MATCH_PAR_DUP:
09051660
RH
940 code = UNKNOWN;
941
942 test = new_decision_test (DT_dup, &place);
943 test->u.dup = XINT (pattern, 0);
944 goto fini;
ec65fa66
RK
945
946 case ADDRESS:
947 pattern = XEXP (pattern, 0);
948 goto restart;
949
76d31c63
JL
950 default:
951 break;
ec65fa66
RK
952 }
953
954 fmt = GET_RTX_FORMAT (code);
955 len = GET_RTX_LENGTH (code);
09051660
RH
956
957 /* Do tests against the current node first. */
e51712db 958 for (i = 0; i < (size_t) len; i++)
ec65fa66 959 {
09051660 960 if (fmt[i] == 'i')
ec65fa66 961 {
09051660
RH
962 if (i == 0)
963 {
964 test = new_decision_test (DT_elt_zero_int, &place);
965 test->u.intval = XINT (pattern, i);
966 }
967 else if (i == 1)
968 {
969 test = new_decision_test (DT_elt_one_int, &place);
970 test->u.intval = XINT (pattern, i);
971 }
972 else
973 abort ();
ec65fa66 974 }
09051660 975 else if (fmt[i] == 'w')
3d678dca 976 {
070ef6f4
RK
977 /* If this value actually fits in an int, we can use a switch
978 statement here, so indicate that. */
979 enum decision_type type
980 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
981 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
982
09051660
RH
983 if (i != 0)
984 abort ();
985
070ef6f4 986 test = new_decision_test (type, &place);
09051660 987 test->u.intval = XWINT (pattern, i);
3d678dca 988 }
ec65fa66
RK
989 else if (fmt[i] == 'E')
990 {
ec65fa66
RK
991 if (i != 0)
992 abort ();
09051660
RH
993
994 test = new_decision_test (DT_veclen, &place);
995 test->u.veclen = XVECLEN (pattern, i);
996 }
997 }
998
999 /* Now test our sub-patterns. */
1000 for (i = 0; i < (size_t) len; i++)
1001 {
1002 switch (fmt[i])
1003 {
1004 case 'e': case 'u':
1005 subpos[depth] = '0' + i;
1006 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1007 subpos, insn_type, 0);
1008 break;
1009
1010 case 'E':
1011 {
1012 register int j;
1013 for (j = 0; j < XVECLEN (pattern, i); j++)
1014 {
1015 subpos[depth] = 'a' + j;
1016 sub = add_to_sequence (XVECEXP (pattern, i, j),
1017 &sub->success, subpos, insn_type, 0);
1018 }
1019 break;
1020 }
1021
1022 case 'i': case 'w':
1023 /* Handled above. */
1024 break;
1025 case '0':
1026 break;
1027
1028 default:
1029 abort ();
1030 }
1031 }
1032
1033 fini:
1034 /* Insert nodes testing mode and code, if they're still relevant,
1035 before any of the nodes we may have added above. */
1036 if (code != UNKNOWN)
1037 {
1038 place = &this->tests;
1039 test = new_decision_test (DT_code, &place);
1040 test->u.code = code;
1041 }
1042
1043 if (mode != VOIDmode)
1044 {
1045 place = &this->tests;
1046 test = new_decision_test (DT_mode, &place);
1047 test->u.mode = mode;
1048 }
1049
1050 /* If we didn't insert any tests or accept nodes, hork. */
1051 if (this->tests == NULL)
1052 abort ();
1053
b548dffb
ZW
1054 ret:
1055 free (subpos);
09051660
RH
1056 return sub;
1057}
1058\f
9e9f3ede
RH
1059/* A subroutine of maybe_both_true; compares two modes.
1060 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1061
1062static int
1063maybe_both_true_mode (m1, m2)
1064 enum machine_mode m1, m2;
1065{
1066 enum mode_class other_mode_class;
1067
1068 /* Pmode is not a distinct mode. We do know that it is
1069 either MODE_INT or MODE_PARTIAL_INT though. */
1070 if (m1 == Pmode)
1071 other_mode_class = GET_MODE_CLASS (m2);
1072 else if (m2 == Pmode)
1073 other_mode_class = GET_MODE_CLASS (m1);
1074 else
1075 return m1 == m2;
1076
1077 return (other_mode_class == MODE_INT
1078 || other_mode_class == MODE_PARTIAL_INT
1079 ? -1 : 0);
1080}
1081
09051660
RH
1082/* A subroutine of maybe_both_true; examines only one test.
1083 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1084
1085static int
1086maybe_both_true_2 (d1, d2)
1087 struct decision_test *d1, *d2;
1088{
1089 if (d1->type == d2->type)
1090 {
1091 switch (d1->type)
1092 {
1093 case DT_mode:
9e9f3ede 1094 return maybe_both_true_mode (d1->u.mode, d2->u.mode);
09051660
RH
1095
1096 case DT_code:
1097 return d1->u.code == d2->u.code;
1098
1099 case DT_veclen:
1100 return d1->u.veclen == d2->u.veclen;
1101
1102 case DT_elt_zero_int:
1103 case DT_elt_one_int:
1104 case DT_elt_zero_wide:
070ef6f4 1105 case DT_elt_zero_wide_safe:
09051660
RH
1106 return d1->u.intval == d2->u.intval;
1107
1108 default:
1109 break;
1110 }
1111 }
1112
1113 /* If either has a predicate that we know something about, set
1114 things up so that D1 is the one that always has a known
1115 predicate. Then see if they have any codes in common. */
1116
1117 if (d1->type == DT_pred || d2->type == DT_pred)
1118 {
1119 if (d2->type == DT_pred)
1120 {
1121 struct decision_test *tmp;
1122 tmp = d1, d1 = d2, d2 = tmp;
1123 }
1124
1125 /* If D2 tests a mode, see if it matches D1. */
1126 if (d1->u.pred.mode != VOIDmode)
1127 {
1128 if (d2->type == DT_mode)
1129 {
9e9f3ede 1130 if (maybe_both_true_mode (d1->u.pred.mode, d2->u.mode) == 0
8f496bc2
HPN
1131 /* The mode of an address_operand predicate is the
1132 mode of the memory, not the operand. It can only
1133 be used for testing the predicate, so we must
1134 ignore it here. */
1135 && strcmp (d1->u.pred.name, "address_operand") != 0)
09051660
RH
1136 return 0;
1137 }
4dc320a5
RH
1138 /* Don't check two predicate modes here, because if both predicates
1139 accept CONST_INT, then both can still be true even if the modes
1140 are different. If they don't accept CONST_INT, there will be a
1141 separate DT_mode that will make maybe_both_true_1 return 0. */
09051660
RH
1142 }
1143
1144 if (d1->u.pred.index >= 0)
1145 {
1146 /* If D2 tests a code, see if it is in the list of valid
1147 codes for D1's predicate. */
1148 if (d2->type == DT_code)
1149 {
1150 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1151 while (*c != 0)
1152 {
1153 if (*c == d2->u.code)
1154 break;
1155 ++c;
1156 }
1157 if (*c == 0)
1158 return 0;
1159 }
1160
1161 /* Otherwise see if the predicates have any codes in common. */
1162 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
ec65fa66 1163 {
09051660
RH
1164 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1165 int common = 0;
1166
1167 while (*c1 != 0 && !common)
1168 {
1169 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1170 while (*c2 != 0 && !common)
1171 {
1172 common = (*c1 == *c2);
1173 ++c2;
1174 }
1175 ++c1;
1176 }
1177
1178 if (!common)
1179 return 0;
ec65fa66
RK
1180 }
1181 }
ec65fa66 1182 }
09051660 1183
521b9224
RH
1184 /* Tests vs veclen may be known when strict equality is involved. */
1185 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1186 return d1->u.veclen >= d2->u.veclen;
1187 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1188 return d2->u.veclen >= d1->u.veclen;
1189
09051660 1190 return -1;
ec65fa66 1191}
09051660
RH
1192
1193/* A subroutine of maybe_both_true; examines all the tests for a given node.
1194 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1195
1196static int
1197maybe_both_true_1 (d1, d2)
1198 struct decision_test *d1, *d2;
1199{
1200 struct decision_test *t1, *t2;
1201
1202 /* A match_operand with no predicate can match anything. Recognize
1203 this by the existance of a lone DT_accept_op test. */
1204 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1205 return 1;
1206
1207 /* Eliminate pairs of tests while they can exactly match. */
1208 while (d1 && d2 && d1->type == d2->type)
1209 {
1210 if (maybe_both_true_2 (d1, d2) == 0)
1211 return 0;
1212 d1 = d1->next, d2 = d2->next;
1213 }
1214
1215 /* After that, consider all pairs. */
1216 for (t1 = d1; t1 ; t1 = t1->next)
1217 for (t2 = d2; t2 ; t2 = t2->next)
1218 if (maybe_both_true_2 (t1, t2) == 0)
1219 return 0;
1220
1221 return -1;
1222}
1223
1224/* Return 0 if we can prove that there is no RTL that can match both
1225 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
e0689256 1226 can match both or just that we couldn't prove there wasn't such an RTL).
ec65fa66 1227
e0689256
RK
1228 TOPLEVEL is non-zero if we are to only look at the top level and not
1229 recursively descend. */
ec65fa66 1230
e0689256 1231static int
09051660 1232maybe_both_true (d1, d2, toplevel)
e0689256
RK
1233 struct decision *d1, *d2;
1234 int toplevel;
ec65fa66 1235{
e0689256 1236 struct decision *p1, *p2;
00ec6daa
JH
1237 int cmp;
1238
1239 /* Don't compare strings on the different positions in insn. Doing so
1240 is incorrect and results in false matches from constructs like
1241
1242 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1243 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1244 vs
1245 [(set (match_operand:HI "register_operand" "r")
1246 (match_operand:HI "register_operand" "r"))]
1247
1248 If we are presented with such, we are recursing through the remainder
1249 of a node's success nodes (from the loop at the end of this function).
1250 Skip forward until we come to a position that matches.
1251
1252 Due to the way position strings are constructed, we know that iterating
1253 forward from the lexically lower position (e.g. "00") will run into
1254 the lexically higher position (e.g. "1") and not the other way around.
1255 This saves a bit of effort. */
1256
1257 cmp = strcmp (d1->position, d2->position);
1258 if (cmp != 0)
1259 {
1260 if (toplevel)
1261 abort();
1262
1263 /* If the d2->position was lexically lower, swap. */
1264 if (cmp > 0)
ace91ff1 1265 p1 = d1, d1 = d2, d2 = p1;
00ec6daa
JH
1266
1267 if (d1->success.first == 0)
29360e56 1268 return 1;
00ec6daa 1269 for (p1 = d1->success.first; p1; p1 = p1->next)
09051660
RH
1270 if (maybe_both_true (p1, d2, 0))
1271 return 1;
00ec6daa 1272
09051660 1273 return 0;
00ec6daa 1274 }
e0689256 1275
09051660
RH
1276 /* Test the current level. */
1277 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1278 if (cmp >= 0)
1279 return cmp;
1280
1281 /* We can't prove that D1 and D2 cannot both be true. If we are only
1282 to check the top level, return 1. Otherwise, see if we can prove
1283 that all choices in both successors are mutually exclusive. If
1284 either does not have any successors, we can't prove they can't both
1285 be true. */
1286
1287 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
e0689256
RK
1288 return 1;
1289
09051660
RH
1290 for (p1 = d1->success.first; p1; p1 = p1->next)
1291 for (p2 = d2->success.first; p2; p2 = p2->next)
1292 if (maybe_both_true (p1, p2, 0))
1293 return 1;
e0689256 1294
09051660
RH
1295 return 0;
1296}
ec65fa66 1297
09051660 1298/* A subroutine of nodes_identical. Examine two tests for equivalence. */
ec65fa66 1299
09051660
RH
1300static int
1301nodes_identical_1 (d1, d2)
1302 struct decision_test *d1, *d2;
1303{
1304 switch (d1->type)
ec65fa66 1305 {
09051660
RH
1306 case DT_mode:
1307 return d1->u.mode == d2->u.mode;
e0689256 1308
09051660
RH
1309 case DT_code:
1310 return d1->u.code == d2->u.code;
e0689256 1311
09051660
RH
1312 case DT_pred:
1313 return (d1->u.pred.mode == d2->u.pred.mode
1314 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
e0689256 1315
09051660
RH
1316 case DT_c_test:
1317 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
e0689256 1318
09051660 1319 case DT_veclen:
521b9224 1320 case DT_veclen_ge:
09051660 1321 return d1->u.veclen == d2->u.veclen;
e0689256 1322
09051660
RH
1323 case DT_dup:
1324 return d1->u.dup == d2->u.dup;
e0689256 1325
09051660
RH
1326 case DT_elt_zero_int:
1327 case DT_elt_one_int:
1328 case DT_elt_zero_wide:
070ef6f4 1329 case DT_elt_zero_wide_safe:
09051660 1330 return d1->u.intval == d2->u.intval;
e0689256 1331
09051660
RH
1332 case DT_accept_op:
1333 return d1->u.opno == d2->u.opno;
1334
1335 case DT_accept_insn:
1336 /* Differences will be handled in merge_accept_insn. */
1337 return 1;
1338
1339 default:
1340 abort ();
ec65fa66 1341 }
09051660 1342}
ec65fa66 1343
09051660 1344/* True iff the two nodes are identical (on one level only). Due
5b7c7046 1345 to the way these lists are constructed, we shouldn't have to
09051660 1346 consider different orderings on the tests. */
ec65fa66 1347
09051660
RH
1348static int
1349nodes_identical (d1, d2)
1350 struct decision *d1, *d2;
1351{
1352 struct decision_test *t1, *t2;
e0689256 1353
09051660
RH
1354 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1355 {
1356 if (t1->type != t2->type)
1357 return 0;
1358 if (! nodes_identical_1 (t1, t2))
e0689256 1359 return 0;
09051660 1360 }
e0689256 1361
09051660 1362 /* For success, they should now both be null. */
aece2740
RH
1363 if (t1 != t2)
1364 return 0;
1365
1366 /* Check that their subnodes are at the same position, as any one set
2cec75a1
RH
1367 of sibling decisions must be at the same position. Allowing this
1368 requires complications to find_afterward and when change_state is
1369 invoked. */
aece2740
RH
1370 if (d1->success.first
1371 && d2->success.first
1372 && strcmp (d1->success.first->position, d2->success.first->position))
1373 return 0;
1374
1375 return 1;
e0689256 1376}
e0689256 1377
09051660
RH
1378/* A subroutine of merge_trees; given two nodes that have been declared
1379 identical, cope with two insn accept states. If they differ in the
1380 number of clobbers, then the conflict was created by make_insn_sequence
5b7c7046 1381 and we can drop the with-clobbers version on the floor. If both
09051660
RH
1382 nodes have no additional clobbers, we have found an ambiguity in the
1383 source machine description. */
1384
1385static void
1386merge_accept_insn (oldd, addd)
1387 struct decision *oldd, *addd;
ec65fa66 1388{
09051660
RH
1389 struct decision_test *old, *add;
1390
1391 for (old = oldd->tests; old; old = old->next)
1392 if (old->type == DT_accept_insn)
1393 break;
1394 if (old == NULL)
1395 return;
e0689256 1396
09051660
RH
1397 for (add = addd->tests; add; add = add->next)
1398 if (add->type == DT_accept_insn)
1399 break;
1400 if (add == NULL)
1401 return;
e0689256 1402
09051660
RH
1403 /* If one node is for a normal insn and the second is for the base
1404 insn with clobbers stripped off, the second node should be ignored. */
e0689256 1405
09051660
RH
1406 if (old->u.insn.num_clobbers_to_add == 0
1407 && add->u.insn.num_clobbers_to_add > 0)
1408 {
1409 /* Nothing to do here. */
1410 }
1411 else if (old->u.insn.num_clobbers_to_add > 0
1412 && add->u.insn.num_clobbers_to_add == 0)
1413 {
1414 /* In this case, replace OLD with ADD. */
1415 old->u.insn = add->u.insn;
1416 }
1417 else
1418 {
bcdaba58
RH
1419 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1420 get_insn_name (add->u.insn.code_number),
1421 get_insn_name (old->u.insn.code_number));
1422 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1423 get_insn_name (old->u.insn.code_number));
1424 error_count++;
09051660 1425 }
e0689256 1426}
e0689256 1427
09051660
RH
1428/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1429
1430static void
e0689256 1431merge_trees (oldh, addh)
09051660 1432 struct decision_head *oldh, *addh;
e0689256 1433{
09051660 1434 struct decision *next, *add;
e0689256 1435
09051660
RH
1436 if (addh->first == 0)
1437 return;
1438 if (oldh->first == 0)
1439 {
1440 *oldh = *addh;
1441 return;
1442 }
ec65fa66 1443
09051660
RH
1444 /* Trying to merge bits at different positions isn't possible. */
1445 if (strcmp (oldh->first->position, addh->first->position))
e0689256
RK
1446 abort ();
1447
09051660 1448 for (add = addh->first; add ; add = next)
ec65fa66 1449 {
09051660 1450 struct decision *old, *insert_before = NULL;
e0689256
RK
1451
1452 next = add->next;
1453
09051660
RH
1454 /* The semantics of pattern matching state that the tests are
1455 done in the order given in the MD file so that if an insn
1456 matches two patterns, the first one will be used. However,
1457 in practice, most, if not all, patterns are unambiguous so
1458 that their order is independent. In that case, we can merge
1459 identical tests and group all similar modes and codes together.
e0689256
RK
1460
1461 Scan starting from the end of OLDH until we reach a point
09051660
RH
1462 where we reach the head of the list or where we pass a
1463 pattern that could also be true if NEW is true. If we find
1464 an identical pattern, we can merge them. Also, record the
1465 last node that tests the same code and mode and the last one
1466 that tests just the same mode.
e0689256
RK
1467
1468 If we have no match, place NEW after the closest match we found. */
5b7c7046 1469
09051660 1470 for (old = oldh->last; old; old = old->prev)
ec65fa66 1471 {
09051660 1472 if (nodes_identical (old, add))
e0689256 1473 {
09051660
RH
1474 merge_accept_insn (old, add);
1475 merge_trees (&old->success, &add->success);
1476 goto merged_nodes;
1477 }
e0689256 1478
09051660
RH
1479 if (maybe_both_true (old, add, 0))
1480 break;
e0689256 1481
09051660
RH
1482 /* Insert the nodes in DT test type order, which is roughly
1483 how expensive/important the test is. Given that the tests
1484 are also ordered within the list, examining the first is
1485 sufficient. */
dbbbbf3b 1486 if ((int) add->tests->type < (int) old->tests->type)
09051660
RH
1487 insert_before = old;
1488 }
de6a431b 1489
09051660
RH
1490 if (insert_before == NULL)
1491 {
1492 add->next = NULL;
1493 add->prev = oldh->last;
1494 oldh->last->next = add;
1495 oldh->last = add;
1496 }
1497 else
1498 {
1499 if ((add->prev = insert_before->prev) != NULL)
1500 add->prev->next = add;
1501 else
1502 oldh->first = add;
1503 add->next = insert_before;
1504 insert_before->prev = add;
1505 }
1506
1507 merged_nodes:;
1508 }
1509}
1510\f
5b7c7046 1511/* Walk the tree looking for sub-nodes that perform common tests.
09051660
RH
1512 Factor out the common test into a new node. This enables us
1513 (depending on the test type) to emit switch statements later. */
1514
1515static void
1516factor_tests (head)
1517 struct decision_head *head;
1518{
1519 struct decision *first, *next;
e0689256 1520
09051660
RH
1521 for (first = head->first; first && first->next; first = next)
1522 {
1523 enum decision_type type;
1524 struct decision *new, *old_last;
e0689256 1525
09051660
RH
1526 type = first->tests->type;
1527 next = first->next;
e0689256 1528
09051660
RH
1529 /* Want at least two compatible sequential nodes. */
1530 if (next->tests->type != type)
1531 continue;
ec65fa66 1532
5b7c7046 1533 /* Don't want all node types, just those we can turn into
09051660
RH
1534 switch statements. */
1535 if (type != DT_mode
1536 && type != DT_code
1537 && type != DT_veclen
1538 && type != DT_elt_zero_int
1539 && type != DT_elt_one_int
070ef6f4 1540 && type != DT_elt_zero_wide_safe)
e0689256 1541 continue;
ec65fa66 1542
09051660
RH
1543 /* If we'd been performing more than one test, create a new node
1544 below our first test. */
1545 if (first->tests->next != NULL)
1546 {
1547 new = new_decision (first->position, &first->success);
1548 new->tests = first->tests->next;
1549 first->tests->next = NULL;
1550 }
5b7c7046 1551
09051660
RH
1552 /* Crop the node tree off after our first test. */
1553 first->next = NULL;
1554 old_last = head->last;
1555 head->last = first;
1556
1557 /* For each compatible test, adjust to perform only one test in
1558 the top level node, then merge the node back into the tree. */
1559 do
1560 {
1561 struct decision_head h;
1562
1563 if (next->tests->next != NULL)
1564 {
1565 new = new_decision (next->position, &next->success);
1566 new->tests = next->tests->next;
1567 next->tests->next = NULL;
1568 }
1569 new = next;
1570 next = next->next;
1571 new->next = NULL;
1572 h.first = h.last = new;
ec65fa66 1573
09051660
RH
1574 merge_trees (head, &h);
1575 }
1576 while (next && next->tests->type == type);
ec65fa66 1577
09051660
RH
1578 /* After we run out of compatible tests, graft the remaining nodes
1579 back onto the tree. */
1580 if (next)
e0689256 1581 {
09051660
RH
1582 next->prev = head->last;
1583 head->last->next = next;
1584 head->last = old_last;
e0689256 1585 }
09051660 1586 }
ec65fa66 1587
09051660
RH
1588 /* Recurse. */
1589 for (first = head->first; first; first = first->next)
1590 factor_tests (&first->success);
1591}
1592
1593/* After factoring, try to simplify the tests on any one node.
1594 Tests that are useful for switch statements are recognizable
1595 by having only a single test on a node -- we'll be manipulating
1596 nodes with multiple tests:
1597
1598 If we have mode tests or code tests that are redundant with
1599 predicates, remove them. */
1600
1601static void
1602simplify_tests (head)
1603 struct decision_head *head;
1604{
1605 struct decision *tree;
1606
1607 for (tree = head->first; tree; tree = tree->next)
1608 {
1609 struct decision_test *a, *b;
1610
1611 a = tree->tests;
1612 b = a->next;
1613 if (b == NULL)
1614 continue;
1615
1616 /* Find a predicate node. */
1617 while (b && b->type != DT_pred)
1618 b = b->next;
1619 if (b)
e0689256 1620 {
09051660
RH
1621 /* Due to how these tests are constructed, we don't even need
1622 to check that the mode and code are compatible -- they were
1623 generated from the predicate in the first place. */
1624 while (a->type == DT_mode || a->type == DT_code)
1625 a = a->next;
1626 tree->tests = a;
e0689256
RK
1627 }
1628 }
ec65fa66 1629
09051660
RH
1630 /* Recurse. */
1631 for (tree = head->first; tree; tree = tree->next)
1632 simplify_tests (&tree->success);
ec65fa66 1633}
09051660 1634
e0689256
RK
1635/* Count the number of subnodes of HEAD. If the number is high enough,
1636 make the first node in HEAD start a separate subroutine in the C code
09051660 1637 that is generated. */
ec65fa66
RK
1638
1639static int
09051660
RH
1640break_out_subroutines (head, initial)
1641 struct decision_head *head;
e0689256 1642 int initial;
ec65fa66
RK
1643{
1644 int size = 0;
87bd0490 1645 struct decision *sub;
e0689256 1646
09051660
RH
1647 for (sub = head->first; sub; sub = sub->next)
1648 size += 1 + break_out_subroutines (&sub->success, 0);
e0689256
RK
1649
1650 if (size > SUBROUTINE_THRESHOLD && ! initial)
ec65fa66 1651 {
09051660 1652 head->first->subroutine_number = ++next_subroutine_number;
ec65fa66
RK
1653 size = 1;
1654 }
1655 return size;
1656}
09051660
RH
1657
1658/* For each node p, find the next alternative that might be true
1659 when p is true. */
ec65fa66
RK
1660
1661static void
09051660
RH
1662find_afterward (head, real_afterward)
1663 struct decision_head *head;
1664 struct decision *real_afterward;
ec65fa66 1665{
09051660 1666 struct decision *p, *q, *afterward;
69277eec 1667
5b7c7046 1668 /* We can't propogate alternatives across subroutine boundaries.
09051660 1669 This is not incorrect, merely a minor optimization loss. */
ec65fa66 1670
09051660
RH
1671 p = head->first;
1672 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
e0689256 1673
09051660 1674 for ( ; p ; p = p->next)
e0689256 1675 {
09051660
RH
1676 /* Find the next node that might be true if this one fails. */
1677 for (q = p->next; q ; q = q->next)
1678 if (maybe_both_true (p, q, 1))
1679 break;
e0689256 1680
5b7c7046 1681 /* If we reached the end of the list without finding one,
09051660
RH
1682 use the incoming afterward position. */
1683 if (!q)
1684 q = afterward;
1685 p->afterward = q;
1686 if (q)
1687 q->need_label = 1;
e0689256
RK
1688 }
1689
09051660
RH
1690 /* Recurse. */
1691 for (p = head->first; p ; p = p->next)
1692 if (p->success.first)
1693 find_afterward (&p->success, p->afterward);
1694
1695 /* When we are generating a subroutine, record the real afterward
1696 position in the first node where write_tree can find it, and we
1697 can do the right thing at the subroutine call site. */
1698 p = head->first;
1699 if (p->subroutine_number > 0)
1700 p->afterward = real_afterward;
1701}
1702\f
1703/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1704 actions are necessary to move to NEWPOS. If we fail to move to the
1705 new state, branch to node AFTERWARD if non-zero, otherwise return.
e0689256 1706
09051660 1707 Failure to move to the new state can only occur if we are trying to
dc297297 1708 match multiple insns and we try to step past the end of the stream. */
e0689256 1709
09051660
RH
1710static void
1711change_state (oldpos, newpos, afterward, indent)
1712 const char *oldpos;
1713 const char *newpos;
1714 struct decision *afterward;
1715 const char *indent;
1716{
1717 int odepth = strlen (oldpos);
1718 int ndepth = strlen (newpos);
1719 int depth;
1720 int old_has_insn, new_has_insn;
e0689256 1721
09051660
RH
1722 /* Pop up as many levels as necessary. */
1723 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1724 continue;
ec65fa66 1725
09051660
RH
1726 /* Hunt for the last [A-Z] in both strings. */
1727 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1728 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1729 break;
0deeec4e 1730 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
09051660
RH
1731 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1732 break;
e0689256 1733
09051660
RH
1734 /* Go down to desired level. */
1735 while (depth < ndepth)
1736 {
dc297297 1737 /* It's a different insn from the first one. */
09051660 1738 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
ec65fa66 1739 {
09051660
RH
1740 /* We can only fail if we're moving down the tree. */
1741 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
e0689256 1742 {
5b7c7046 1743 printf ("%stem = peep2_next_insn (%d);\n",
09051660 1744 indent, newpos[depth] - 'A');
e0689256
RK
1745 }
1746 else
1747 {
5b7c7046 1748 printf ("%stem = peep2_next_insn (%d);\n",
09051660
RH
1749 indent, newpos[depth] - 'A');
1750 printf ("%sif (tem == NULL_RTX)\n", indent);
1751 if (afterward)
1752 printf ("%s goto L%d;\n", indent, afterward->number);
e0689256 1753 else
09051660 1754 printf ("%s goto ret0;\n", indent);
e0689256 1755 }
23280139 1756 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
ec65fa66 1757 }
09051660
RH
1758 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1759 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1760 indent, depth + 1, depth, newpos[depth] - 'a');
1761 else
1762 printf ("%sx%d = XEXP (x%d, %c);\n",
1763 indent, depth + 1, depth, newpos[depth]);
1764 ++depth;
1765 }
1766}
1767\f
1768/* Print the enumerator constant for CODE -- the upcase version of
1769 the name. */
1770
1771static void
1772print_code (code)
1773 enum rtx_code code;
1774{
1775 register const char *p;
1776 for (p = GET_RTX_NAME (code); *p; p++)
1777 putchar (TOUPPER (*p));
1778}
ec65fa66 1779
09051660 1780/* Emit code to cross an afterward link -- change state and branch. */
ec65fa66 1781
09051660
RH
1782static void
1783write_afterward (start, afterward, indent)
1784 struct decision *start;
1785 struct decision *afterward;
1786 const char *indent;
1787{
1788 if (!afterward || start->subroutine_number > 0)
1789 printf("%sgoto ret0;\n", indent);
1790 else
1791 {
1792 change_state (start->position, afterward->position, NULL, indent);
1793 printf ("%sgoto L%d;\n", indent, afterward->number);
1794 }
1795}
e0689256 1796
5b7c7046 1797/* Emit a switch statement, if possible, for an initial sequence of
09051660 1798 nodes at START. Return the first node yet untested. */
e0689256 1799
09051660
RH
1800static struct decision *
1801write_switch (start, depth)
1802 struct decision *start;
1803 int depth;
1804{
1805 struct decision *p = start;
1806 enum decision_type type = p->tests->type;
1651ab85 1807 struct decision *needs_label = NULL;
ec65fa66 1808
09051660
RH
1809 /* If we have two or more nodes in sequence that test the same one
1810 thing, we may be able to use a switch statement. */
e0689256 1811
09051660
RH
1812 if (!p->next
1813 || p->tests->next
1814 || p->next->tests->type != type
2cec75a1
RH
1815 || p->next->tests->next
1816 || nodes_identical_1 (p->tests, p->next->tests))
09051660 1817 return p;
e0689256 1818
09051660
RH
1819 /* DT_code is special in that we can do interesting things with
1820 known predicates at the same time. */
1821 if (type == DT_code)
1822 {
1823 char codemap[NUM_RTX_CODE];
1824 struct decision *ret;
1e193337 1825 RTX_CODE code;
ec65fa66 1826
09051660 1827 memset (codemap, 0, sizeof(codemap));
ec65fa66 1828
09051660 1829 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1e193337 1830 code = p->tests->u.code;
5b7c7046 1831 do
ec65fa66 1832 {
1651ab85
AO
1833 if (p != start && p->need_label && needs_label == NULL)
1834 needs_label = p;
1835
09051660
RH
1836 printf (" case ");
1837 print_code (code);
1838 printf (":\n goto L%d;\n", p->success.first->number);
1839 p->success.first->need_label = 1;
1840
1841 codemap[code] = 1;
1842 p = p->next;
1843 }
1e193337
RH
1844 while (p
1845 && ! p->tests->next
1846 && p->tests->type == DT_code
1847 && ! codemap[code = p->tests->u.code]);
09051660
RH
1848
1849 /* If P is testing a predicate that we know about and we haven't
1850 seen any of the codes that are valid for the predicate, we can
1851 write a series of "case" statement, one for each possible code.
1852 Since we are already in a switch, these redundant tests are very
1853 cheap and will reduce the number of predicates called. */
1854
1855 /* Note that while we write out cases for these predicates here,
1856 we don't actually write the test here, as it gets kinda messy.
1857 It is trivial to leave this to later by telling our caller that
1858 we only processed the CODE tests. */
1651ab85
AO
1859 if (needs_label != NULL)
1860 ret = needs_label;
1861 else
1862 ret = p;
09051660
RH
1863
1864 while (p && p->tests->type == DT_pred
1865 && p->tests->u.pred.index >= 0)
1866 {
1867 const RTX_CODE *c;
ec65fa66 1868
09051660
RH
1869 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1870 if (codemap[(int) *c] != 0)
1871 goto pred_done;
e0689256 1872
09051660 1873 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
ec65fa66 1874 {
09051660
RH
1875 printf (" case ");
1876 print_code (*c);
1877 printf (":\n");
1878 codemap[(int) *c] = 1;
ec65fa66 1879 }
e0689256 1880
09051660
RH
1881 printf (" goto L%d;\n", p->number);
1882 p->need_label = 1;
1883 p = p->next;
ec65fa66
RK
1884 }
1885
09051660
RH
1886 pred_done:
1887 /* Make the default case skip the predicates we managed to match. */
e0689256 1888
09051660
RH
1889 printf (" default:\n");
1890 if (p != ret)
ec65fa66 1891 {
09051660 1892 if (p)
b030d598 1893 {
09051660
RH
1894 printf (" goto L%d;\n", p->number);
1895 p->need_label = 1;
b030d598 1896 }
e0689256 1897 else
09051660 1898 write_afterward (start, start->afterward, " ");
ec65fa66 1899 }
ec65fa66 1900 else
09051660
RH
1901 printf (" break;\n");
1902 printf (" }\n");
1903
1904 return ret;
1905 }
1906 else if (type == DT_mode
1907 || type == DT_veclen
1908 || type == DT_elt_zero_int
1909 || type == DT_elt_one_int
070ef6f4 1910 || type == DT_elt_zero_wide_safe)
09051660 1911 {
9e9f3ede
RH
1912 /* Pmode may not be a compile-time constant. */
1913 if (type == DT_mode && p->tests->u.mode == Pmode)
1914 return p;
1915
09051660
RH
1916 printf (" switch (");
1917 switch (type)
1918 {
1919 case DT_mode:
c8d8ed65 1920 printf ("GET_MODE (x%d)", depth);
09051660
RH
1921 break;
1922 case DT_veclen:
c8d8ed65 1923 printf ("XVECLEN (x%d, 0)", depth);
09051660
RH
1924 break;
1925 case DT_elt_zero_int:
c8d8ed65 1926 printf ("XINT (x%d, 0)", depth);
09051660
RH
1927 break;
1928 case DT_elt_one_int:
c8d8ed65 1929 printf ("XINT (x%d, 1)", depth);
09051660 1930 break;
070ef6f4 1931 case DT_elt_zero_wide_safe:
c8d8ed65
RK
1932 /* Convert result of XWINT to int for portability since some C
1933 compilers won't do it and some will. */
1934 printf ("(int) XWINT (x%d, 0)", depth);
09051660
RH
1935 break;
1936 default:
1937 abort ();
1938 }
09051660 1939 printf (")\n {\n");
cba998bf 1940
09051660 1941 do
e0689256 1942 {
2cec75a1
RH
1943 /* Merge trees will not unify identical nodes if their
1944 sub-nodes are at different levels. Thus we must check
1945 for duplicate cases. */
1946 struct decision *q;
1947 for (q = start; q != p; q = q->next)
1948 if (nodes_identical_1 (p->tests, q->tests))
1949 goto case_done;
1950
9e9f3ede
RH
1951 /* Pmode may not be a compile-time constant. */
1952 if (type == DT_mode && p->tests->u.mode == Pmode)
1953 goto case_done;
1954
1651ab85
AO
1955 if (p != start && p->need_label && needs_label == NULL)
1956 needs_label = p;
1957
09051660
RH
1958 printf (" case ");
1959 switch (type)
cba998bf 1960 {
09051660
RH
1961 case DT_mode:
1962 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1963 break;
1964 case DT_veclen:
1965 printf ("%d", p->tests->u.veclen);
1966 break;
1967 case DT_elt_zero_int:
1968 case DT_elt_one_int:
1969 case DT_elt_zero_wide:
070ef6f4 1970 case DT_elt_zero_wide_safe:
09051660
RH
1971 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1972 break;
1973 default:
1974 abort ();
cba998bf 1975 }
09051660
RH
1976 printf (":\n goto L%d;\n", p->success.first->number);
1977 p->success.first->need_label = 1;
cba998bf 1978
09051660 1979 p = p->next;
e0689256 1980 }
09051660 1981 while (p && p->tests->type == type && !p->tests->next);
2cec75a1
RH
1982
1983 case_done:
09051660 1984 printf (" default:\n break;\n }\n");
ec65fa66 1985
1651ab85 1986 return needs_label != NULL ? needs_label : p;
09051660
RH
1987 }
1988 else
1989 {
1990 /* None of the other tests are ameanable. */
1991 return p;
1992 }
1993}
ec65fa66 1994
09051660 1995/* Emit code for one test. */
e0689256 1996
09051660
RH
1997static void
1998write_cond (p, depth, subroutine_type)
1999 struct decision_test *p;
2000 int depth;
2001 enum routine_type subroutine_type;
2002{
2003 switch (p->type)
2004 {
2005 case DT_mode:
2006 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2007 break;
e0689256 2008
09051660
RH
2009 case DT_code:
2010 printf ("GET_CODE (x%d) == ", depth);
2011 print_code (p->u.code);
2012 break;
2013
2014 case DT_veclen:
2015 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2016 break;
2017
2018 case DT_elt_zero_int:
2019 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2020 break;
2021
2022 case DT_elt_one_int:
2023 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2024 break;
2025
2026 case DT_elt_zero_wide:
070ef6f4 2027 case DT_elt_zero_wide_safe:
09051660
RH
2028 printf ("XWINT (x%d, 0) == ", depth);
2029 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
2030 break;
2031
521b9224
RH
2032 case DT_veclen_ge:
2033 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2034 break;
2035
09051660
RH
2036 case DT_dup:
2037 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2038 break;
2039
2040 case DT_pred:
2041 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2042 GET_MODE_NAME (p->u.pred.mode));
2043 break;
2044
2045 case DT_c_test:
2046 printf ("(%s)", p->u.c_test);
2047 break;
2048
2049 case DT_accept_insn:
2050 switch (subroutine_type)
2051 {
2052 case RECOG:
2053 if (p->u.insn.num_clobbers_to_add == 0)
2054 abort ();
2055 printf ("pnum_clobbers != NULL");
2056 break;
2057
2058 default:
2059 abort ();
ec65fa66 2060 }
09051660 2061 break;
ec65fa66 2062
09051660
RH
2063 default:
2064 abort ();
e0689256 2065 }
09051660 2066}
ec65fa66 2067
09051660
RH
2068/* Emit code for one action. The previous tests have succeeded;
2069 TEST is the last of the chain. In the normal case we simply
2070 perform a state change. For the `accept' tests we must do more work. */
ec65fa66 2071
09051660 2072static void
23280139
RH
2073write_action (p, test, depth, uncond, success, subroutine_type)
2074 struct decision *p;
09051660
RH
2075 struct decision_test *test;
2076 int depth, uncond;
2077 struct decision *success;
2078 enum routine_type subroutine_type;
2079{
2080 const char *indent;
2081 int want_close = 0;
2082
2083 if (uncond)
2084 indent = " ";
2085 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
e0689256 2086 {
09051660
RH
2087 fputs (" {\n", stdout);
2088 indent = " ";
2089 want_close = 1;
e0689256 2090 }
09051660
RH
2091 else
2092 indent = " ";
ec65fa66 2093
09051660 2094 if (test->type == DT_accept_op)
e0689256 2095 {
09051660
RH
2096 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2097
2098 /* Only allow DT_accept_insn to follow. */
2099 if (test->next)
2100 {
2101 test = test->next;
2102 if (test->type != DT_accept_insn)
2103 abort ();
2104 }
ec65fa66
RK
2105 }
2106
09051660
RH
2107 /* Sanity check that we're now at the end of the list of tests. */
2108 if (test->next)
e0689256 2109 abort ();
ec65fa66 2110
09051660 2111 if (test->type == DT_accept_insn)
ec65fa66 2112 {
09051660
RH
2113 switch (subroutine_type)
2114 {
2115 case RECOG:
2116 if (test->u.insn.num_clobbers_to_add != 0)
2117 printf ("%s*pnum_clobbers = %d;\n",
2118 indent, test->u.insn.num_clobbers_to_add);
2119 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2120 break;
2121
2122 case SPLIT:
2123 printf ("%sreturn gen_split_%d (operands);\n",
2124 indent, test->u.insn.code_number);
2125 break;
2126
2127 case PEEPHOLE2:
23280139
RH
2128 {
2129 int match_len = 0, i;
2130
2131 for (i = strlen (p->position) - 1; i >= 0; --i)
2132 if (p->position[i] >= 'A' && p->position[i] <= 'Z')
2133 {
2134 match_len = p->position[i] - 'A';
2135 break;
2136 }
2137 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2138 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2139 indent, test->u.insn.code_number);
2140 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2141 }
09051660
RH
2142 break;
2143
2144 default:
2145 abort ();
2146 }
ec65fa66
RK
2147 }
2148 else
09051660
RH
2149 {
2150 printf("%sgoto L%d;\n", indent, success->number);
2151 success->need_label = 1;
2152 }
ec65fa66 2153
09051660
RH
2154 if (want_close)
2155 fputs (" }\n", stdout);
ec65fa66
RK
2156}
2157
09051660
RH
2158/* Return 1 if the test is always true and has no fallthru path. Return -1
2159 if the test does have a fallthru path, but requires that the condition be
2160 terminated. Otherwise return 0 for a normal test. */
2161/* ??? is_unconditional is a stupid name for a tri-state function. */
2162
ec65fa66 2163static int
09051660
RH
2164is_unconditional (t, subroutine_type)
2165 struct decision_test *t;
2166 enum routine_type subroutine_type;
ec65fa66 2167{
09051660
RH
2168 if (t->type == DT_accept_op)
2169 return 1;
ec65fa66 2170
09051660
RH
2171 if (t->type == DT_accept_insn)
2172 {
2173 switch (subroutine_type)
2174 {
2175 case RECOG:
2176 return (t->u.insn.num_clobbers_to_add == 0);
2177 case SPLIT:
2178 return 1;
2179 case PEEPHOLE2:
2180 return -1;
2181 default:
2182 abort ();
2183 }
2184 }
ec65fa66 2185
09051660 2186 return 0;
ec65fa66
RK
2187}
2188
09051660
RH
2189/* Emit code for one node -- the conditional and the accompanying action.
2190 Return true if there is no fallthru path. */
2191
ec65fa66 2192static int
09051660
RH
2193write_node (p, depth, subroutine_type)
2194 struct decision *p;
2195 int depth;
2196 enum routine_type subroutine_type;
ec65fa66 2197{
09051660
RH
2198 struct decision_test *test, *last_test;
2199 int uncond;
ec65fa66 2200
09051660
RH
2201 last_test = test = p->tests;
2202 uncond = is_unconditional (test, subroutine_type);
2203 if (uncond == 0)
2204 {
2205 printf (" if (");
2206 write_cond (test, depth, subroutine_type);
2207
2208 while ((test = test->next) != NULL)
2209 {
2210 int uncond2;
2211
2212 last_test = test;
2213 uncond2 = is_unconditional (test, subroutine_type);
2214 if (uncond2 != 0)
2215 break;
2216
2217 printf ("\n && ");
2218 write_cond (test, depth, subroutine_type);
2219 }
2220
2221 printf (")\n");
2222 }
2223
23280139 2224 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
09051660
RH
2225
2226 return uncond > 0;
ec65fa66
RK
2227}
2228
09051660
RH
2229/* Emit code for all of the sibling nodes of HEAD. */
2230
ec65fa66 2231static void
09051660
RH
2232write_tree_1 (head, depth, subroutine_type)
2233 struct decision_head *head;
2234 int depth;
2235 enum routine_type subroutine_type;
ec65fa66 2236{
09051660
RH
2237 struct decision *p, *next;
2238 int uncond = 0;
e0689256 2239
09051660
RH
2240 for (p = head->first; p ; p = next)
2241 {
2242 /* The label for the first element was printed in write_tree. */
2243 if (p != head->first && p->need_label)
2244 OUTPUT_LABEL (" ", p->number);
2245
2246 /* Attempt to write a switch statement for a whole sequence. */
2247 next = write_switch (p, depth);
2248 if (p != next)
2249 uncond = 0;
2250 else
2251 {
2252 /* Failed -- fall back and write one node. */
2253 uncond = write_node (p, depth, subroutine_type);
2254 next = p->next;
2255 }
2256 }
e0689256 2257
09051660
RH
2258 /* Finished with this chain. Close a fallthru path by branching
2259 to the afterward node. */
2260 if (! uncond)
2261 write_afterward (head->last, head->last->afterward, " ");
2262}
e0689256 2263
09051660
RH
2264/* Write out the decision tree starting at HEAD. PREVPOS is the
2265 position at the node that branched to this node. */
e0689256
RK
2266
2267static void
09051660
RH
2268write_tree (head, prevpos, type, initial)
2269 struct decision_head *head;
85fda1eb 2270 const char *prevpos;
e0689256 2271 enum routine_type type;
09051660 2272 int initial;
e0689256 2273{
09051660 2274 register struct decision *p = head->first;
e0689256 2275
09051660
RH
2276 putchar ('\n');
2277 if (p->need_label)
2278 OUTPUT_LABEL (" ", p->number);
2279
2280 if (! initial && p->subroutine_number > 0)
e0689256 2281 {
09051660
RH
2282 static const char * const name_prefix[] = {
2283 "recog", "split", "peephole2"
2284 };
2285
2286 static const char * const call_suffix[] = {
23280139 2287 ", pnum_clobbers", "", ", _pmatch_len"
09051660 2288 };
e0689256 2289
09051660
RH
2290 /* This node has been broken out into a separate subroutine.
2291 Call it, test the result, and branch accordingly. */
2292
2293 if (p->afterward)
e0689256
RK
2294 {
2295 printf (" tem = %s_%d (x0, insn%s);\n",
09051660 2296 name_prefix[type], p->subroutine_number, call_suffix[type]);
ede7cd44 2297 if (IS_SPLIT (type))
09051660 2298 printf (" if (tem != 0)\n return tem;\n");
71bde1f3 2299 else
09051660
RH
2300 printf (" if (tem >= 0)\n return tem;\n");
2301
2302 change_state (p->position, p->afterward->position, NULL, " ");
2303 printf (" goto L%d;\n", p->afterward->number);
e0689256
RK
2304 }
2305 else
09051660
RH
2306 {
2307 printf (" return %s_%d (x0, insn%s);\n",
2308 name_prefix[type], p->subroutine_number, call_suffix[type]);
2309 }
e0689256 2310 }
09051660
RH
2311 else
2312 {
2313 int depth = strlen (p->position);
e0689256 2314
09051660
RH
2315 change_state (prevpos, p->position, head->last->afterward, " ");
2316 write_tree_1 (head, depth, type);
e0689256 2317
09051660
RH
2318 for (p = head->first; p; p = p->next)
2319 if (p->success.first)
2320 write_tree (&p->success, p->position, type, 0);
2321 }
e0689256
RK
2322}
2323
09051660
RH
2324/* Write out a subroutine of type TYPE to do comparisons starting at
2325 node TREE. */
ede7cd44 2326
09051660
RH
2327static void
2328write_subroutine (head, type)
2329 struct decision_head *head;
2330 enum routine_type type;
2331{
e8f9b13a 2332 int subfunction = head->first ? head->first->subroutine_number : 0;
09051660
RH
2333 const char *s_or_e;
2334 char extension[32];
2335 int i;
5b7c7046 2336
09051660 2337 s_or_e = subfunction ? "static " : "";
e0689256 2338
09051660
RH
2339 if (subfunction)
2340 sprintf (extension, "_%d", subfunction);
2341 else if (type == RECOG)
2342 extension[0] = '\0';
2343 else
2344 strcpy (extension, "_insns");
2345
913d0833
KG
2346 switch (type)
2347 {
2348 case RECOG:
a94ae8f5 2349 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
913d0833
KG
2350 printf ("%sint\n\
2351recog%s (x0, insn, pnum_clobbers)\n\
2352 register rtx x0;\n\
2353 rtx insn ATTRIBUTE_UNUSED;\n\
2354 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2355 break;
2356 case SPLIT:
a94ae8f5 2357 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
913d0833
KG
2358 printf ("%srtx\n\
2359split%s (x0, insn)\n\
2360 register rtx x0;\n\
2361 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2362 break;
2363 case PEEPHOLE2:
23280139
RH
2364 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2365 s_or_e, extension);
913d0833 2366 printf ("%srtx\n\
23280139 2367peephole2%s (x0, insn, _pmatch_len)\n\
913d0833
KG
2368 register rtx x0;\n\
2369 rtx insn ATTRIBUTE_UNUSED;\n\
23280139 2370 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
913d0833
KG
2371 break;
2372 }
09051660 2373
0ce8a59c 2374 printf ("{\n register rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
09051660
RH
2375 for (i = 1; i <= max_depth; i++)
2376 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2377
09051660
RH
2378 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2379
d90ffc8d
JH
2380 if (!subfunction)
2381 printf (" recog_data.insn = NULL_RTX;\n");
2382
e8f9b13a
RH
2383 if (head->first)
2384 write_tree (head, "", type, 1);
2385 else
2386 printf (" goto ret0;\n");
09051660 2387
09051660
RH
2388 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2389}
2390
2391/* In break_out_subroutines, we discovered the boundaries for the
2392 subroutines, but did not write them out. Do so now. */
e0689256 2393
ec65fa66 2394static void
09051660
RH
2395write_subroutines (head, type)
2396 struct decision_head *head;
2397 enum routine_type type;
ec65fa66 2398{
09051660 2399 struct decision *p;
ec65fa66 2400
09051660
RH
2401 for (p = head->first; p ; p = p->next)
2402 if (p->success.first)
2403 write_subroutines (&p->success, type);
ec65fa66 2404
09051660
RH
2405 if (head->first->subroutine_number > 0)
2406 write_subroutine (head, type);
2407}
ede7cd44 2408
09051660 2409/* Begin the output file. */
ede7cd44 2410
09051660
RH
2411static void
2412write_header ()
2413{
2414 puts ("\
2415/* Generated automatically by the program `genrecog' from the target\n\
2416 machine description file. */\n\
2417\n\
2418#include \"config.h\"\n\
2419#include \"system.h\"\n\
2420#include \"rtl.h\"\n\
2421#include \"tm_p.h\"\n\
2422#include \"function.h\"\n\
2423#include \"insn-config.h\"\n\
2424#include \"recog.h\"\n\
2425#include \"real.h\"\n\
2426#include \"output.h\"\n\
2427#include \"flags.h\"\n\
b1afd7f4
KG
2428#include \"hard-reg-set.h\"\n\
2429#include \"resource.h\"\n\
04f378ce 2430#include \"toplev.h\"\n\
5b7c7046 2431#include \"reload.h\"\n\
09051660
RH
2432\n");
2433
2434 puts ("\n\
2435/* `recog' contains a decision tree that recognizes whether the rtx\n\
2436 X0 is a valid instruction.\n\
2437\n\
2438 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2439 returns a nonnegative number which is the insn code number for the\n\
2440 pattern that matched. This is the same as the order in the machine\n\
2441 description of the entry that matched. This number can be used as an\n\
3f6790bf
KG
2442 index into `insn_data' and other tables.\n");
2443 puts ("\
09051660
RH
2444 The third argument to recog is an optional pointer to an int. If\n\
2445 present, recog will accept a pattern if it matches except for missing\n\
2446 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2447 the optional pointer will be set to the number of CLOBBERs that need\n\
3f6790bf
KG
2448 to be added (it should be initialized to zero by the caller). If it");
2449 puts ("\
09051660
RH
2450 is set nonzero, the caller should allocate a PARALLEL of the\n\
2451 appropriate size, copy the initial entries, and call add_clobbers\n\
2452 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2453");
2454
2455 puts ("\n\
2456 The function split_insns returns 0 if the rtl could not\n\
2457 be split or the split rtl in a SEQUENCE if it can be.\n\
2458\n\
2459 The function peephole2_insns returns 0 if the rtl could not\n\
2460 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2461 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2462*/\n\n");
2463}
ec65fa66 2464
09051660
RH
2465\f
2466/* Construct and return a sequence of decisions
2467 that will recognize INSN.
ec65fa66 2468
09051660
RH
2469 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2470
2471static struct decision_head
2472make_insn_sequence (insn, type)
2473 rtx insn;
2474 enum routine_type type;
2475{
2476 rtx x;
2477 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2478 struct decision *last;
2479 struct decision_test *test, **place;
2480 struct decision_head head;
3b304f5b 2481 char c_test_pos[2];
09051660
RH
2482
2483 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2484
3b304f5b 2485 c_test_pos[0] = '\0';
09051660 2486 if (type == PEEPHOLE2)
ec65fa66 2487 {
09051660
RH
2488 int i, j;
2489
2490 /* peephole2 gets special treatment:
2491 - X always gets an outer parallel even if it's only one entry
2492 - we remove all traces of outer-level match_scratch and match_dup
2493 expressions here. */
2494 x = rtx_alloc (PARALLEL);
2495 PUT_MODE (x, VOIDmode);
2496 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2497 for (i = j = 0; i < XVECLEN (insn, 0); i++)
ede7cd44 2498 {
09051660
RH
2499 rtx tmp = XVECEXP (insn, 0, i);
2500 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2501 {
2502 XVECEXP (x, 0, j) = tmp;
2503 j++;
2504 }
2505 }
2506 XVECLEN (x, 0) = j;
4e9887c7 2507
4e9887c7
RH
2508 c_test_pos[0] = 'A' + j - 1;
2509 c_test_pos[1] = '\0';
09051660
RH
2510 }
2511 else if (XVECLEN (insn, type == RECOG) == 1)
2512 x = XVECEXP (insn, type == RECOG, 0);
2513 else
2514 {
2515 x = rtx_alloc (PARALLEL);
2516 XVEC (x, 0) = XVEC (insn, type == RECOG);
2517 PUT_MODE (x, VOIDmode);
2518 }
2519
7297e9fc 2520 validate_pattern (x, insn, NULL_RTX, 0);
bcdaba58 2521
09051660
RH
2522 memset(&head, 0, sizeof(head));
2523 last = add_to_sequence (x, &head, "", type, 1);
2524
2525 /* Find the end of the test chain on the last node. */
2526 for (test = last->tests; test->next; test = test->next)
2527 continue;
2528 place = &test->next;
2529
2530 if (c_test[0])
2531 {
2532 /* Need a new node if we have another test to add. */
2533 if (test->type == DT_accept_op)
2534 {
4e9887c7 2535 last = new_decision (c_test_pos, &last->success);
09051660
RH
2536 place = &last->tests;
2537 }
2538 test = new_decision_test (DT_c_test, &place);
2539 test->u.c_test = c_test;
2540 }
2541
2542 test = new_decision_test (DT_accept_insn, &place);
2543 test->u.insn.code_number = next_insn_code;
bcdaba58 2544 test->u.insn.lineno = pattern_lineno;
09051660
RH
2545 test->u.insn.num_clobbers_to_add = 0;
2546
2547 switch (type)
2548 {
2549 case RECOG:
2550 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2551 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2552 If so, set up to recognize the pattern without these CLOBBERs. */
2553
2554 if (GET_CODE (x) == PARALLEL)
2555 {
2556 int i;
2557
2558 /* Find the last non-clobber in the parallel. */
2559 for (i = XVECLEN (x, 0); i > 0; i--)
ede7cd44 2560 {
09051660
RH
2561 rtx y = XVECEXP (x, 0, i - 1);
2562 if (GET_CODE (y) != CLOBBER
2563 || (GET_CODE (XEXP (y, 0)) != REG
2564 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2565 break;
ede7cd44 2566 }
09051660
RH
2567
2568 if (i != XVECLEN (x, 0))
ede7cd44 2569 {
09051660
RH
2570 rtx new;
2571 struct decision_head clobber_head;
ede7cd44 2572
09051660
RH
2573 /* Build a similar insn without the clobbers. */
2574 if (i == 1)
2575 new = XVECEXP (x, 0, 0);
ede7cd44 2576 else
09051660
RH
2577 {
2578 int j;
2579
2580 new = rtx_alloc (PARALLEL);
2581 XVEC (new, 0) = rtvec_alloc (i);
2582 for (j = i - 1; j >= 0; j--)
2583 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2584 }
2585
2586 /* Recognize it. */
2587 memset (&clobber_head, 0, sizeof(clobber_head));
2588 last = add_to_sequence (new, &clobber_head, "", type, 1);
ede7cd44 2589
09051660
RH
2590 /* Find the end of the test chain on the last node. */
2591 for (test = last->tests; test->next; test = test->next)
2592 continue;
2593
2594 /* We definitely have a new test to add -- create a new
2595 node if needed. */
2596 place = &test->next;
2597 if (test->type == DT_accept_op)
2598 {
2599 last = new_decision ("", &last->success);
2600 place = &last->tests;
2601 }
2602
2603 if (c_test[0])
2604 {
2605 test = new_decision_test (DT_c_test, &place);
2606 test->u.c_test = c_test;
2607 }
2608
2609 test = new_decision_test (DT_accept_insn, &place);
2610 test->u.insn.code_number = next_insn_code;
bcdaba58 2611 test->u.insn.lineno = pattern_lineno;
09051660
RH
2612 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2613
2614 merge_trees (&head, &clobber_head);
ede7cd44 2615 }
ede7cd44 2616 }
09051660
RH
2617 break;
2618
2619 case SPLIT:
2620 /* Define the subroutine we will call below and emit in genemit. */
a94ae8f5 2621 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
09051660
RH
2622 break;
2623
2624 case PEEPHOLE2:
2625 /* Define the subroutine we will call below and emit in genemit. */
a94ae8f5 2626 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
09051660
RH
2627 next_insn_code);
2628 break;
ec65fa66 2629 }
e0689256 2630
09051660 2631 return head;
ec65fa66
RK
2632}
2633
09051660
RH
2634static void
2635process_tree (head, subroutine_type)
2636 struct decision_head *head;
2637 enum routine_type subroutine_type;
ec65fa66 2638{
4dc320a5
RH
2639 if (head->first == NULL)
2640 {
2641 /* We can elide peephole2_insns, but not recog or split_insns. */
2642 if (subroutine_type == PEEPHOLE2)
2643 return;
2644 }
2645 else
e8f9b13a
RH
2646 {
2647 factor_tests (head);
ec65fa66 2648
e8f9b13a
RH
2649 next_subroutine_number = 0;
2650 break_out_subroutines (head, 1);
2651 find_afterward (head, NULL);
c1b59dce 2652
4dc320a5
RH
2653 /* We run this after find_afterward, because find_afterward needs
2654 the redundant DT_mode tests on predicates to determine whether
2655 two tests can both be true or not. */
2656 simplify_tests(head);
2657
e8f9b13a
RH
2658 write_subroutines (head, subroutine_type);
2659 }
4dc320a5 2660
09051660
RH
2661 write_subroutine (head, subroutine_type);
2662}
2663\f
a94ae8f5 2664extern int main PARAMS ((int, char **));
36f0e0a6 2665
ec65fa66
RK
2666int
2667main (argc, argv)
2668 int argc;
2669 char **argv;
2670{
2671 rtx desc;
09051660 2672 struct decision_head recog_tree, split_tree, peephole2_tree, h;
ec65fa66 2673
f8b6598e 2674 progname = "genrecog";
09051660
RH
2675
2676 memset (&recog_tree, 0, sizeof recog_tree);
2677 memset (&split_tree, 0, sizeof split_tree);
2678 memset (&peephole2_tree, 0, sizeof peephole2_tree);
ec65fa66
RK
2679
2680 if (argc <= 1)
2681 fatal ("No input file name.");
2682
c88c0d42
CP
2683 if (init_md_reader (argv[1]) != SUCCESS_EXIT_CODE)
2684 return (FATAL_EXIT_CODE);
ec65fa66 2685
ec65fa66
RK
2686 next_insn_code = 0;
2687 next_index = 0;
2688
09051660 2689 write_header ();
ec65fa66
RK
2690
2691 /* Read the machine description. */
2692
2693 while (1)
2694 {
c88c0d42
CP
2695 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2696 if (desc == NULL)
ec65fa66 2697 break;
ec65fa66 2698
ec65fa66 2699 if (GET_CODE (desc) == DEFINE_INSN)
09051660
RH
2700 {
2701 h = make_insn_sequence (desc, RECOG);
2702 merge_trees (&recog_tree, &h);
2703 }
ec65fa66 2704 else if (GET_CODE (desc) == DEFINE_SPLIT)
09051660
RH
2705 {
2706 h = make_insn_sequence (desc, SPLIT);
2707 merge_trees (&split_tree, &h);
2708 }
ede7cd44 2709 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
09051660
RH
2710 {
2711 h = make_insn_sequence (desc, PEEPHOLE2);
2712 merge_trees (&peephole2_tree, &h);
2713 }
5b7c7046 2714
ec65fa66
RK
2715 next_index++;
2716 }
2717
bcdaba58
RH
2718 if (error_count)
2719 return FATAL_EXIT_CODE;
2720
09051660 2721 puts ("\n\n");
ec65fa66 2722
09051660
RH
2723 process_tree (&recog_tree, RECOG);
2724 process_tree (&split_tree, SPLIT);
2725 process_tree (&peephole2_tree, PEEPHOLE2);
ede7cd44 2726
ec65fa66 2727 fflush (stdout);
c1b59dce 2728 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
ec65fa66 2729}
09051660 2730\f
a995e389
RH
2731/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2732const char *
2733get_insn_name (code)
2734 int code;
2735{
2736 if (code < insn_name_ptr_size)
2737 return insn_name_ptr[code];
2738 else
2739 return NULL;
2740}
09051660
RH
2741
2742static void
2743record_insn_name (code, name)
2744 int code;
2745 const char *name;
2746{
2747 static const char *last_real_name = "insn";
2748 static int last_real_code = 0;
2749 char *new;
2750
2751 if (insn_name_ptr_size <= code)
2752 {
2753 int new_size;
2754 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2755 insn_name_ptr =
2756 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
5b7c7046 2757 memset (insn_name_ptr + insn_name_ptr_size, 0,
09051660
RH
2758 sizeof(char *) * (new_size - insn_name_ptr_size));
2759 insn_name_ptr_size = new_size;
2760 }
2761
2762 if (!name || name[0] == '\0')
2763 {
2764 new = xmalloc (strlen (last_real_name) + 10);
2765 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2766 }
2767 else
2768 {
2769 last_real_name = new = xstrdup (name);
2770 last_real_code = code;
2771 }
5b7c7046 2772
09051660 2773 insn_name_ptr[code] = new;
5b7c7046 2774}
09051660 2775\f
09051660
RH
2776static void
2777debug_decision_2 (test)
2778 struct decision_test *test;
2779{
2780 switch (test->type)
2781 {
2782 case DT_mode:
2783 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2784 break;
2785 case DT_code:
2786 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2787 break;
2788 case DT_veclen:
2789 fprintf (stderr, "veclen=%d", test->u.veclen);
2790 break;
2791 case DT_elt_zero_int:
2792 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2793 break;
2794 case DT_elt_one_int:
2795 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2796 break;
2797 case DT_elt_zero_wide:
2798 fprintf (stderr, "elt0_w=");
2799 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2800 break;
070ef6f4
RK
2801 case DT_elt_zero_wide_safe:
2802 fprintf (stderr, "elt0_ws=");
2803 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2804 break;
521b9224
RH
2805 case DT_veclen_ge:
2806 fprintf (stderr, "veclen>=%d", test->u.veclen);
2807 break;
09051660
RH
2808 case DT_dup:
2809 fprintf (stderr, "dup=%d", test->u.dup);
2810 break;
2811 case DT_pred:
2812 fprintf (stderr, "pred=(%s,%s)",
2813 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2814 break;
2815 case DT_c_test:
2816 {
2817 char sub[16+4];
2818 strncpy (sub, test->u.c_test, sizeof(sub));
2819 memcpy (sub+16, "...", 4);
2820 fprintf (stderr, "c_test=\"%s\"", sub);
2821 }
2822 break;
2823 case DT_accept_op:
2824 fprintf (stderr, "A_op=%d", test->u.opno);
2825 break;
2826 case DT_accept_insn:
5b7c7046 2827 fprintf (stderr, "A_insn=(%d,%d)",
09051660
RH
2828 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2829 break;
2830
2831 default:
2832 abort ();
2833 }
2834}
2835
2836static void
2837debug_decision_1 (d, indent)
2838 struct decision *d;
2839 int indent;
2840{
2841 int i;
2842 struct decision_test *test;
2843
2844 if (d == NULL)
2845 {
2846 for (i = 0; i < indent; ++i)
2847 putc (' ', stderr);
2848 fputs ("(nil)\n", stderr);
2849 return;
2850 }
2851
2852 for (i = 0; i < indent; ++i)
2853 putc (' ', stderr);
2854
2855 putc ('{', stderr);
2856 test = d->tests;
2857 if (test)
2858 {
2859 debug_decision_2 (test);
2860 while ((test = test->next) != NULL)
2861 {
2862 fputs (" + ", stderr);
2863 debug_decision_2 (test);
2864 }
2865 }
4dc320a5
RH
2866 fprintf (stderr, "} %d n %d a %d\n", d->number,
2867 (d->next ? d->next->number : -1),
2868 (d->afterward ? d->afterward->number : -1));
09051660
RH
2869}
2870
2871static void
2872debug_decision_0 (d, indent, maxdepth)
2873 struct decision *d;
2874 int indent, maxdepth;
2875{
2876 struct decision *n;
2877 int i;
2878
2879 if (maxdepth < 0)
2880 return;
2881 if (d == NULL)
2882 {
2883 for (i = 0; i < indent; ++i)
2884 putc (' ', stderr);
2885 fputs ("(nil)\n", stderr);
2886 return;
2887 }
2888
2889 debug_decision_1 (d, indent);
2890 for (n = d->success.first; n ; n = n->next)
2891 debug_decision_0 (n, indent + 2, maxdepth - 1);
2892}
2893
2894void
2895debug_decision (d)
2896 struct decision *d;
2897{
2898 debug_decision_0 (d, 0, 1000000);
2899}
ec1c89e6
RH
2900
2901void
2902debug_decision_list (d)
2903 struct decision *d;
2904{
2905 while (d)
2906 {
2907 debug_decision_0 (d, 0, 0);
2908 d = d->next;
2909 }
2910}