]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ggc-page.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / ggc-page.c
CommitLineData
21341cfd 1/* "Bag-of-pages" garbage collector for the GNU compiler.
a9429e29 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
87fb500b 3 2010, 2011 Free Software Foundation, Inc.
21341cfd 4
1322177d 5This file is part of GCC.
21341cfd 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
21341cfd 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
21341cfd 16
b9bfacf0 17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
21341cfd 20
21341cfd 21#include "config.h"
21341cfd 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
21341cfd 25#include "tree.h"
e5ecd4ea 26#include "rtl.h"
1b42a6a9 27#include "tm_p.h"
718f9c0f 28#include "diagnostic-core.h"
21341cfd 29#include "flags.h"
e5ecd4ea 30#include "ggc.h"
a9429e29 31#include "ggc-internal.h"
2a9a326b 32#include "timevar.h"
3788cc17 33#include "params.h"
07724022 34#include "tree-flow.h"
b78cd885 35#include "cfgloop.h"
ae2392a9 36#include "plugin.h"
e5ecd4ea 37
825b6926
ZW
38/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40#ifdef HAVE_MMAP_ANON
41# undef HAVE_MMAP_DEV_ZERO
825b6926 42# define USING_MMAP
005537df 43#endif
21341cfd 44
825b6926 45#ifdef HAVE_MMAP_DEV_ZERO
825b6926 46# define USING_MMAP
8342b467
RH
47#endif
48
130fadbb
RH
49#ifndef USING_MMAP
50#define USING_MALLOC_PAGE_GROUPS
5b918807 51#endif
21341cfd 52
87fb500b
RO
53#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
711a3d82
AK
55# define USING_MADVISE
56#endif
57
0fa2e4df 58/* Strategy:
21341cfd
AS
59
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
65
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
70
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
589005ff 73 in the current (highest-numbered) context may be collected.
21341cfd
AS
74
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
81
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
86
21341cfd
AS
87/* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
6d2f8887 92 4: Object marks as well. */
21341cfd
AS
93#define GGC_DEBUG_LEVEL (0)
94\f
95#ifndef HOST_BITS_PER_PTR
96#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
97#endif
98
21341cfd
AS
99\f
100/* A two-level tree is used to look up the page-entry for a given
101 pointer. Two chunks of the pointer's bits are extracted to index
102 the first and second levels of the tree, as follows:
103
104 HOST_PAGE_SIZE_BITS
105 32 | |
106 msb +----------------+----+------+------+ lsb
107 | | |
108 PAGE_L1_BITS |
109 | |
110 PAGE_L2_BITS
111
112 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113 pages are aligned on system page boundaries. The next most
114 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
589005ff 115 index values in the lookup table, respectively.
21341cfd 116
005537df
RH
117 For 32-bit architectures and the settings below, there are no
118 leftover bits. For architectures with wider pointers, the lookup
119 tree points to a list of pages, which must be scanned to find the
120 correct one. */
21341cfd
AS
121
122#define PAGE_L1_BITS (8)
123#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
2a6e6fea
TG
124#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
125#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
21341cfd
AS
126
127#define LOOKUP_L1(p) \
2a6e6fea 128 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
21341cfd
AS
129
130#define LOOKUP_L2(p) \
2a6e6fea 131 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
21341cfd 132
2be510b8
MM
133/* The number of objects per allocation page, for objects on a page of
134 the indicated ORDER. */
135#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136
17211ab5
GK
137/* The number of objects in P. */
138#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139
2be510b8
MM
140/* The size of an object on a page of the indicated ORDER. */
141#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142
8537ed68
ZW
143/* For speed, we avoid doing a general integer divide to locate the
144 offset in the allocation bitmap, by precalculating numbers M, S
145 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146 within the page which is evenly divisible by the object size Z. */
147#define DIV_MULT(ORDER) inverse_table[ORDER].mult
148#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149#define OFFSET_TO_BIT(OFFSET, ORDER) \
150 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151
b78cd885
RG
152/* We use this structure to determine the alignment required for
153 allocations. For power-of-two sized allocations, that's not a
154 problem, but it does matter for odd-sized allocations.
155 We do not care about alignment for floating-point types. */
156
157struct max_alignment {
158 char c;
159 union {
160 HOST_WIDEST_INT i;
161 void *p;
162 } u;
163};
164
165/* The biggest alignment required. */
166
167#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
168
169
2be510b8
MM
170/* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
172
ca7558fc 173#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2be510b8 174
d1f1cc6a 175#define RTL_SIZE(NSLOTS) \
e1de1560 176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
d1f1cc6a 177
5e26df64
SB
178#define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180
2be510b8
MM
181/* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
184
185static const size_t extra_order_size_table[] = {
b78cd885
RG
186 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187 There are a lot of structures with these sizes and explicitly
188 listing them risks orders being dropped because they changed size. */
189 MAX_ALIGNMENT * 3,
190 MAX_ALIGNMENT * 5,
191 MAX_ALIGNMENT * 6,
192 MAX_ALIGNMENT * 7,
193 MAX_ALIGNMENT * 9,
194 MAX_ALIGNMENT * 10,
195 MAX_ALIGNMENT * 11,
196 MAX_ALIGNMENT * 12,
197 MAX_ALIGNMENT * 13,
198 MAX_ALIGNMENT * 14,
199 MAX_ALIGNMENT * 15,
820cc88f
DB
200 sizeof (struct tree_decl_non_common),
201 sizeof (struct tree_field_decl),
202 sizeof (struct tree_parm_decl),
203 sizeof (struct tree_var_decl),
51545682 204 sizeof (struct tree_type_non_common),
f5938dcd
RG
205 sizeof (struct function),
206 sizeof (struct basic_block_def),
b78cd885
RG
207 sizeof (struct cgraph_node),
208 sizeof (struct loop),
2be510b8
MM
209};
210
211/* The total number of orders. */
212
213#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214
17211ab5
GK
215/* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
217
218#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
220/* Compute the smallest multiple of F that is >= X. */
221
222#define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
3bc50163
AK
224/* Round X to next multiple of the page size */
225
226#define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227
2be510b8
MM
228/* The Ith entry is the number of objects on a page or order I. */
229
230static unsigned objects_per_page_table[NUM_ORDERS];
231
232/* The Ith entry is the size of an object on a page of order I. */
233
234static size_t object_size_table[NUM_ORDERS];
21341cfd 235
8537ed68
ZW
236/* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
239
240static struct
241{
75d75435 242 size_t mult;
8537ed68
ZW
243 unsigned int shift;
244}
245inverse_table[NUM_ORDERS];
246
21341cfd
AS
247/* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
589005ff 249typedef struct page_entry
21341cfd
AS
250{
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry *next;
254
9bf793f9
JL
255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
71cc389b 257 keep the cost of ggc_free manageable. */
9bf793f9
JL
258 struct page_entry *prev;
259
21341cfd
AS
260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
262 size_t bytes;
263
264 /* The address at which the memory is allocated. */
265 char *page;
266
130fadbb
RH
267#ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group *group;
270#endif
271
c4775f82
MS
272 /* This is the index in the by_depth varray where this page table
273 can be found. */
274 unsigned long index_by_depth;
21341cfd
AS
275
276 /* Context depth of this page. */
ae373eda 277 unsigned short context_depth;
21341cfd
AS
278
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects;
281
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint;
285
ae373eda
MM
286 /* The lg of size of objects allocated from this page. */
287 unsigned char order;
288
711a3d82
AK
289 /* Discarded page? */
290 bool discarded;
291
21341cfd
AS
292 /* A bit vector indicating whether or not objects are in use. The
293 Nth bit is one if the Nth object on this page is allocated. This
294 array is dynamically sized. */
295 unsigned long in_use_p[1];
296} page_entry;
297
130fadbb
RH
298#ifdef USING_MALLOC_PAGE_GROUPS
299/* A page_group describes a large allocation from malloc, from which
300 we parcel out aligned pages. */
301typedef struct page_group
302{
303 /* A linked list of all extant page groups. */
304 struct page_group *next;
305
306 /* The address we received from malloc. */
307 char *allocation;
308
309 /* The size of the block. */
310 size_t alloc_size;
311
312 /* A bitmask of pages in use. */
313 unsigned int in_use;
314} page_group;
315#endif
21341cfd
AS
316
317#if HOST_BITS_PER_PTR <= 32
318
319/* On 32-bit hosts, we use a two level page table, as pictured above. */
320typedef page_entry **page_table[PAGE_L1_SIZE];
321
322#else
323
005537df
RH
324/* On 64-bit hosts, we use the same two level page tables plus a linked
325 list that disambiguates the top 32-bits. There will almost always be
21341cfd
AS
326 exactly one entry in the list. */
327typedef struct page_table_chain
328{
329 struct page_table_chain *next;
330 size_t high_bits;
331 page_entry **table[PAGE_L1_SIZE];
332} *page_table;
333
334#endif
335
9957322d
DK
336#ifdef ENABLE_GC_ALWAYS_COLLECT
337/* List of free objects to be verified as actually free on the
338 next collection. */
339struct free_object
340{
341 void *object;
342 struct free_object *next;
343};
344#endif
345
21341cfd
AS
346/* The rest of the global variables. */
347static struct globals
348{
349 /* The Nth element in this array is a page with objects of size 2^N.
350 If there are any pages with free objects, they will be at the
351 head of the list. NULL if there are no page-entries for this
352 object size. */
2be510b8 353 page_entry *pages[NUM_ORDERS];
21341cfd
AS
354
355 /* The Nth element in this array is the last page with objects of
356 size 2^N. NULL if there are no page-entries for this object
357 size. */
2be510b8 358 page_entry *page_tails[NUM_ORDERS];
21341cfd
AS
359
360 /* Lookup table for associating allocation pages with object addresses. */
361 page_table lookup;
362
363 /* The system's page size. */
364 size_t pagesize;
365 size_t lg_pagesize;
366
367 /* Bytes currently allocated. */
368 size_t allocated;
369
370 /* Bytes currently allocated at the end of the last collection. */
371 size_t allocated_last_gc;
372
3277221c
MM
373 /* Total amount of memory mapped. */
374 size_t bytes_mapped;
375
52895e1a
RH
376 /* Bit N set if any allocations have been done at context depth N. */
377 unsigned long context_depth_allocations;
378
379 /* Bit N set if any collections have been done at context depth N. */
380 unsigned long context_depth_collections;
381
21341cfd 382 /* The current depth in the context stack. */
d416576b 383 unsigned short context_depth;
21341cfd
AS
384
385 /* A file descriptor open to /dev/zero for reading. */
825b6926 386#if defined (HAVE_MMAP_DEV_ZERO)
21341cfd
AS
387 int dev_zero_fd;
388#endif
389
390 /* A cache of free system pages. */
391 page_entry *free_pages;
392
130fadbb
RH
393#ifdef USING_MALLOC_PAGE_GROUPS
394 page_group *page_groups;
395#endif
396
21341cfd
AS
397 /* The file descriptor for debugging output. */
398 FILE *debug_file;
c4775f82
MS
399
400 /* Current number of elements in use in depth below. */
401 unsigned int depth_in_use;
402
403 /* Maximum number of elements that can be used before resizing. */
404 unsigned int depth_max;
405
fa10beec 406 /* Each element of this array is an index in by_depth where the given
c4775f82
MS
407 depth starts. This structure is indexed by that given depth we
408 are interested in. */
409 unsigned int *depth;
410
411 /* Current number of elements in use in by_depth below. */
412 unsigned int by_depth_in_use;
413
414 /* Maximum number of elements that can be used before resizing. */
415 unsigned int by_depth_max;
416
417 /* Each element of this array is a pointer to a page_entry, all
418 page_entries can be found in here by increasing depth.
419 index_by_depth in the page_entry is the index into this data
420 structure where that page_entry can be found. This is used to
421 speed up finding all page_entries at a particular depth. */
422 page_entry **by_depth;
423
424 /* Each element is a pointer to the saved in_use_p bits, if any,
425 zero otherwise. We allocate them all together, to enable a
426 better runtime data access pattern. */
427 unsigned long **save_in_use;
685fe032
RH
428
429#ifdef ENABLE_GC_ALWAYS_COLLECT
430 /* List of free objects to be verified as actually free on the
431 next collection. */
9957322d 432 struct free_object *free_object_list;
685fe032
RH
433#endif
434
adc4adcd
GP
435 struct
436 {
a9429e29 437 /* Total GC-allocated memory. */
adc4adcd 438 unsigned long long total_allocated;
a9429e29 439 /* Total overhead for GC-allocated memory. */
adc4adcd
GP
440 unsigned long long total_overhead;
441
442 /* Total allocations and overhead for sizes less than 32, 64 and 128.
443 These sizes are interesting because they are typical cache line
938d968e 444 sizes. */
b8698a0f 445
adc4adcd
GP
446 unsigned long long total_allocated_under32;
447 unsigned long long total_overhead_under32;
b8698a0f 448
adc4adcd
GP
449 unsigned long long total_allocated_under64;
450 unsigned long long total_overhead_under64;
b8698a0f 451
adc4adcd
GP
452 unsigned long long total_allocated_under128;
453 unsigned long long total_overhead_under128;
b8698a0f 454
439a7e54
DN
455 /* The allocations for each of the allocation orders. */
456 unsigned long long total_allocated_per_order[NUM_ORDERS];
457
938d968e 458 /* The overhead for each of the allocation orders. */
adc4adcd
GP
459 unsigned long long total_overhead_per_order[NUM_ORDERS];
460 } stats;
21341cfd
AS
461} G;
462
21341cfd
AS
463/* The size in bytes required to maintain a bitmap for the objects
464 on a page-entry. */
465#define BITMAP_SIZE(Num_objects) \
2be510b8 466 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
21341cfd 467
130fadbb
RH
468/* Allocate pages in chunks of this size, to throttle calls to memory
469 allocation routines. The first page is used, the rest go onto the
470 free list. This cannot be larger than HOST_BITS_PER_INT for the
772299b3 471 in_use bitmask for page_group. Hosts that need a different value
471854f8 472 can override this by defining GGC_QUIRE_SIZE explicitly. */
772299b3
MA
473#ifndef GGC_QUIRE_SIZE
474# ifdef USING_MMAP
6c995fa5 475# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
772299b3
MA
476# else
477# define GGC_QUIRE_SIZE 16
478# endif
479#endif
c4775f82
MS
480
481/* Initial guess as to how many page table entries we might need. */
482#define INITIAL_PTE_COUNT 128
21341cfd 483\f
20c1dc5e
AJ
484static int ggc_allocated_p (const void *);
485static page_entry *lookup_page_table_entry (const void *);
486static void set_page_table_entry (void *, page_entry *);
130fadbb 487#ifdef USING_MMAP
25f0ea81 488static char *alloc_anon (char *, size_t, bool check);
130fadbb
RH
489#endif
490#ifdef USING_MALLOC_PAGE_GROUPS
20c1dc5e
AJ
491static size_t page_group_index (char *, char *);
492static void set_page_group_in_use (page_group *, char *);
493static void clear_page_group_in_use (page_group *, char *);
130fadbb 494#endif
20c1dc5e
AJ
495static struct page_entry * alloc_page (unsigned);
496static void free_page (struct page_entry *);
497static void release_pages (void);
498static void clear_marks (void);
499static void sweep_pages (void);
500static void ggc_recalculate_in_use_p (page_entry *);
501static void compute_inverse (unsigned);
502static inline void adjust_depth (void);
503static void move_ptes_to_front (int, int);
21341cfd 504
20c1dc5e
AJ
505void debug_print_page_list (int);
506static void push_depth (unsigned int);
507static void push_by_depth (page_entry *, unsigned long *);
b6f61163 508
c4775f82
MS
509/* Push an entry onto G.depth. */
510
511inline static void
20c1dc5e 512push_depth (unsigned int i)
c4775f82
MS
513{
514 if (G.depth_in_use >= G.depth_max)
515 {
516 G.depth_max *= 2;
d3bfe4de 517 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
c4775f82
MS
518 }
519 G.depth[G.depth_in_use++] = i;
520}
521
522/* Push an entry onto G.by_depth and G.save_in_use. */
523
524inline static void
20c1dc5e 525push_by_depth (page_entry *p, unsigned long *s)
c4775f82
MS
526{
527 if (G.by_depth_in_use >= G.by_depth_max)
528 {
529 G.by_depth_max *= 2;
d3bfe4de
KG
530 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
531 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
532 G.by_depth_max);
c4775f82
MS
533 }
534 G.by_depth[G.by_depth_in_use] = p;
535 G.save_in_use[G.by_depth_in_use++] = s;
536}
537
538#if (GCC_VERSION < 3001)
539#define prefetch(X) ((void) X)
540#else
541#define prefetch(X) __builtin_prefetch (X)
542#endif
543
544#define save_in_use_p_i(__i) \
545 (G.save_in_use[__i])
546#define save_in_use_p(__p) \
547 (save_in_use_p_i (__p->index_by_depth))
548
cc2902df 549/* Returns nonzero if P was allocated in GC'able memory. */
21341cfd 550
005537df 551static inline int
20c1dc5e 552ggc_allocated_p (const void *p)
21341cfd
AS
553{
554 page_entry ***base;
005537df 555 size_t L1, L2;
21341cfd
AS
556
557#if HOST_BITS_PER_PTR <= 32
558 base = &G.lookup[0];
559#else
560 page_table table = G.lookup;
2a6e6fea 561 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
562 while (1)
563 {
564 if (table == NULL)
565 return 0;
566 if (table->high_bits == high_bits)
567 break;
568 table = table->next;
569 }
21341cfd
AS
570 base = &table->table[0];
571#endif
572
eaec9b3d 573 /* Extract the level 1 and 2 indices. */
74c937ca
MM
574 L1 = LOOKUP_L1 (p);
575 L2 = LOOKUP_L2 (p);
576
577 return base[L1] && base[L1][L2];
578}
579
589005ff 580/* Traverse the page table and find the entry for a page.
74c937ca
MM
581 Die (probably) if the object wasn't allocated via GC. */
582
583static inline page_entry *
20c1dc5e 584lookup_page_table_entry (const void *p)
74c937ca
MM
585{
586 page_entry ***base;
587 size_t L1, L2;
588
005537df
RH
589#if HOST_BITS_PER_PTR <= 32
590 base = &G.lookup[0];
591#else
592 page_table table = G.lookup;
2a6e6fea 593 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
594 while (table->high_bits != high_bits)
595 table = table->next;
596 base = &table->table[0];
597#endif
74c937ca 598
eaec9b3d 599 /* Extract the level 1 and 2 indices. */
21341cfd
AS
600 L1 = LOOKUP_L1 (p);
601 L2 = LOOKUP_L2 (p);
602
603 return base[L1][L2];
604}
605
21341cfd 606/* Set the page table entry for a page. */
cb2ec151 607
21341cfd 608static void
20c1dc5e 609set_page_table_entry (void *p, page_entry *entry)
21341cfd
AS
610{
611 page_entry ***base;
612 size_t L1, L2;
613
614#if HOST_BITS_PER_PTR <= 32
615 base = &G.lookup[0];
616#else
617 page_table table;
2a6e6fea 618 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
21341cfd
AS
619 for (table = G.lookup; table; table = table->next)
620 if (table->high_bits == high_bits)
621 goto found;
622
623 /* Not found -- allocate a new table. */
4dc6c528 624 table = XCNEW (struct page_table_chain);
21341cfd
AS
625 table->next = G.lookup;
626 table->high_bits = high_bits;
627 G.lookup = table;
628found:
629 base = &table->table[0];
630#endif
631
eaec9b3d 632 /* Extract the level 1 and 2 indices. */
21341cfd
AS
633 L1 = LOOKUP_L1 (p);
634 L2 = LOOKUP_L2 (p);
635
636 if (base[L1] == NULL)
5ed6ace5 637 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
21341cfd
AS
638
639 base[L1][L2] = entry;
640}
641
21341cfd 642/* Prints the page-entry for object size ORDER, for debugging. */
cb2ec151 643
24e47c76 644DEBUG_FUNCTION void
20c1dc5e 645debug_print_page_list (int order)
21341cfd
AS
646{
647 page_entry *p;
20c1dc5e
AJ
648 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
649 (void *) G.page_tails[order]);
21341cfd
AS
650 p = G.pages[order];
651 while (p != NULL)
652 {
20c1dc5e 653 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
683eb0e9 654 p->num_free_objects);
21341cfd
AS
655 p = p->next;
656 }
657 printf ("NULL\n");
658 fflush (stdout);
659}
660
130fadbb 661#ifdef USING_MMAP
21341cfd 662/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
825b6926
ZW
663 (if non-null). The ifdef structure here is intended to cause a
664 compile error unless exactly one of the HAVE_* is defined. */
cb2ec151 665
21341cfd 666static inline char *
25f0ea81 667alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
21341cfd 668{
825b6926 669#ifdef HAVE_MMAP_ANON
d3bfe4de
KG
670 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
671 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
825b6926
ZW
672#endif
673#ifdef HAVE_MMAP_DEV_ZERO
d3bfe4de
KG
674 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
675 MAP_PRIVATE, G.dev_zero_fd, 0);
21341cfd 676#endif
825b6926
ZW
677
678 if (page == (char *) MAP_FAILED)
005537df 679 {
25f0ea81
AK
680 if (!check)
681 return NULL;
1f978f5f 682 perror ("virtual memory exhausted");
bd0f0717 683 exit (FATAL_EXIT_CODE);
005537df 684 }
21341cfd 685
3277221c
MM
686 /* Remember that we allocated this memory. */
687 G.bytes_mapped += size;
688
9a0a7d5d 689 /* Pretend we don't have access to the allocated pages. We'll enable
a9429e29 690 access to smaller pieces of the area in ggc_internal_alloc. Discard the
9a0a7d5d 691 handle to avoid handle leak. */
35dee980 692 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
9a0a7d5d 693
21341cfd
AS
694 return page;
695}
130fadbb
RH
696#endif
697#ifdef USING_MALLOC_PAGE_GROUPS
698/* Compute the index for this page into the page group. */
699
700static inline size_t
20c1dc5e 701page_group_index (char *allocation, char *page)
130fadbb 702{
c4f2c499 703 return (size_t) (page - allocation) >> G.lg_pagesize;
130fadbb
RH
704}
705
706/* Set and clear the in_use bit for this page in the page group. */
707
708static inline void
20c1dc5e 709set_page_group_in_use (page_group *group, char *page)
130fadbb
RH
710{
711 group->in_use |= 1 << page_group_index (group->allocation, page);
712}
713
714static inline void
20c1dc5e 715clear_page_group_in_use (page_group *group, char *page)
130fadbb
RH
716{
717 group->in_use &= ~(1 << page_group_index (group->allocation, page));
718}
719#endif
21341cfd
AS
720
721/* Allocate a new page for allocating objects of size 2^ORDER,
722 and return an entry for it. The entry is not added to the
723 appropriate page_table list. */
cb2ec151 724
21341cfd 725static inline struct page_entry *
20c1dc5e 726alloc_page (unsigned order)
21341cfd
AS
727{
728 struct page_entry *entry, *p, **pp;
729 char *page;
730 size_t num_objects;
731 size_t bitmap_size;
732 size_t page_entry_size;
733 size_t entry_size;
130fadbb
RH
734#ifdef USING_MALLOC_PAGE_GROUPS
735 page_group *group;
736#endif
21341cfd
AS
737
738 num_objects = OBJECTS_PER_PAGE (order);
739 bitmap_size = BITMAP_SIZE (num_objects + 1);
740 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2be510b8 741 entry_size = num_objects * OBJECT_SIZE (order);
ca79429a
RH
742 if (entry_size < G.pagesize)
743 entry_size = G.pagesize;
3bc50163 744 entry_size = PAGE_ALIGN (entry_size);
21341cfd
AS
745
746 entry = NULL;
747 page = NULL;
748
749 /* Check the list of free pages for one we can use. */
bd0f0717 750 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
21341cfd
AS
751 if (p->bytes == entry_size)
752 break;
753
754 if (p != NULL)
755 {
711a3d82
AK
756 if (p->discarded)
757 G.bytes_mapped += p->bytes;
758 p->discarded = false;
759
dc297297 760 /* Recycle the allocated memory from this page ... */
21341cfd
AS
761 *pp = p->next;
762 page = p->page;
bd0f0717 763
130fadbb
RH
764#ifdef USING_MALLOC_PAGE_GROUPS
765 group = p->group;
766#endif
bd0f0717 767
21341cfd
AS
768 /* ... and, if possible, the page entry itself. */
769 if (p->order == order)
770 {
771 entry = p;
772 memset (entry, 0, page_entry_size);
773 }
774 else
775 free (p);
776 }
825b6926 777#ifdef USING_MMAP
054f5e69 778 else if (entry_size == G.pagesize)
21341cfd 779 {
054f5e69
ZW
780 /* We want just one page. Allocate a bunch of them and put the
781 extras on the freelist. (Can only do this optimization with
782 mmap for backing store.) */
783 struct page_entry *e, *f = G.free_pages;
25f0ea81 784 int i, entries = GGC_QUIRE_SIZE;
054f5e69 785
25f0ea81
AK
786 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
787 if (page == NULL)
788 {
789 page = alloc_anon(NULL, G.pagesize, true);
790 entries = 1;
791 }
bd0f0717 792
054f5e69
ZW
793 /* This loop counts down so that the chain will be in ascending
794 memory order. */
25f0ea81 795 for (i = entries - 1; i >= 1; i--)
054f5e69 796 {
d3bfe4de 797 e = XCNEWVAR (struct page_entry, page_entry_size);
ca79429a
RH
798 e->order = order;
799 e->bytes = G.pagesize;
800 e->page = page + (i << G.lg_pagesize);
054f5e69
ZW
801 e->next = f;
802 f = e;
803 }
bd0f0717 804
054f5e69 805 G.free_pages = f;
21341cfd 806 }
054f5e69 807 else
25f0ea81 808 page = alloc_anon (NULL, entry_size, true);
130fadbb
RH
809#endif
810#ifdef USING_MALLOC_PAGE_GROUPS
811 else
812 {
813 /* Allocate a large block of memory and serve out the aligned
814 pages therein. This results in much less memory wastage
815 than the traditional implementation of valloc. */
816
817 char *allocation, *a, *enda;
818 size_t alloc_size, head_slop, tail_slop;
819 int multiple_pages = (entry_size == G.pagesize);
820
821 if (multiple_pages)
822 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
823 else
824 alloc_size = entry_size + G.pagesize - 1;
ec4d7730 825 allocation = XNEWVEC (char, alloc_size);
130fadbb 826
2a6e6fea 827 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
130fadbb
RH
828 head_slop = page - allocation;
829 if (multiple_pages)
830 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
831 else
832 tail_slop = alloc_size - entry_size - head_slop;
833 enda = allocation + alloc_size - tail_slop;
834
835 /* We allocated N pages, which are likely not aligned, leaving
836 us with N-1 usable pages. We plan to place the page_group
837 structure somewhere in the slop. */
838 if (head_slop >= sizeof (page_group))
839 group = (page_group *)page - 1;
840 else
841 {
842 /* We magically got an aligned allocation. Too bad, we have
843 to waste a page anyway. */
844 if (tail_slop == 0)
845 {
846 enda -= G.pagesize;
847 tail_slop += G.pagesize;
848 }
282899df 849 gcc_assert (tail_slop >= sizeof (page_group));
130fadbb
RH
850 group = (page_group *)enda;
851 tail_slop -= sizeof (page_group);
852 }
853
854 /* Remember that we allocated this memory. */
855 group->next = G.page_groups;
856 group->allocation = allocation;
857 group->alloc_size = alloc_size;
858 group->in_use = 0;
859 G.page_groups = group;
860 G.bytes_mapped += alloc_size;
861
862 /* If we allocated multiple pages, put the rest on the free list. */
863 if (multiple_pages)
864 {
865 struct page_entry *e, *f = G.free_pages;
866 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
867 {
ec4d7730 868 e = XCNEWVAR (struct page_entry, page_entry_size);
130fadbb
RH
869 e->order = order;
870 e->bytes = G.pagesize;
871 e->page = a;
872 e->group = group;
873 e->next = f;
874 f = e;
875 }
876 G.free_pages = f;
877 }
878 }
879#endif
21341cfd
AS
880
881 if (entry == NULL)
d3bfe4de 882 entry = XCNEWVAR (struct page_entry, page_entry_size);
21341cfd
AS
883
884 entry->bytes = entry_size;
885 entry->page = page;
886 entry->context_depth = G.context_depth;
887 entry->order = order;
888 entry->num_free_objects = num_objects;
889 entry->next_bit_hint = 1;
890
52895e1a
RH
891 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
892
130fadbb
RH
893#ifdef USING_MALLOC_PAGE_GROUPS
894 entry->group = group;
895 set_page_group_in_use (group, page);
896#endif
897
21341cfd
AS
898 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
899 increment the hint. */
900 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
901 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
902
903 set_page_table_entry (page, entry);
904
905 if (GGC_DEBUG_LEVEL >= 2)
589005ff 906 fprintf (G.debug_file,
8a951190 907 "Allocating page at %p, object size=%lu, data %p-%p\n",
20c1dc5e 908 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
bd0f0717 909 page + entry_size - 1);
21341cfd
AS
910
911 return entry;
912}
913
c4775f82
MS
914/* Adjust the size of G.depth so that no index greater than the one
915 used by the top of the G.by_depth is used. */
916
917static inline void
20c1dc5e 918adjust_depth (void)
c4775f82
MS
919{
920 page_entry *top;
921
922 if (G.by_depth_in_use)
923 {
924 top = G.by_depth[G.by_depth_in_use-1];
925
e0bb17a8
KH
926 /* Peel back indices in depth that index into by_depth, so that
927 as new elements are added to by_depth, we note the indices
c4775f82
MS
928 of those elements, if they are for new context depths. */
929 while (G.depth_in_use > (size_t)top->context_depth+1)
930 --G.depth_in_use;
931 }
932}
933
cb2ec151 934/* For a page that is no longer needed, put it on the free page list. */
21341cfd 935
685fe032 936static void
20c1dc5e 937free_page (page_entry *entry)
21341cfd
AS
938{
939 if (GGC_DEBUG_LEVEL >= 2)
589005ff 940 fprintf (G.debug_file,
20c1dc5e 941 "Deallocating page at %p, data %p-%p\n", (void *) entry,
21341cfd
AS
942 entry->page, entry->page + entry->bytes - 1);
943
9a0a7d5d
HPN
944 /* Mark the page as inaccessible. Discard the handle to avoid handle
945 leak. */
35dee980 946 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
9a0a7d5d 947
21341cfd
AS
948 set_page_table_entry (entry->page, NULL);
949
130fadbb
RH
950#ifdef USING_MALLOC_PAGE_GROUPS
951 clear_page_group_in_use (entry->group, entry->page);
952#endif
953
c4775f82
MS
954 if (G.by_depth_in_use > 1)
955 {
956 page_entry *top = G.by_depth[G.by_depth_in_use-1];
282899df
NS
957 int i = entry->index_by_depth;
958
959 /* We cannot free a page from a context deeper than the current
960 one. */
961 gcc_assert (entry->context_depth == top->context_depth);
b8698a0f 962
282899df
NS
963 /* Put top element into freed slot. */
964 G.by_depth[i] = top;
965 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
966 top->index_by_depth = i;
c4775f82
MS
967 }
968 --G.by_depth_in_use;
969
970 adjust_depth ();
971
21341cfd
AS
972 entry->next = G.free_pages;
973 G.free_pages = entry;
974}
975
cb2ec151 976/* Release the free page cache to the system. */
21341cfd 977
4934cc53 978static void
20c1dc5e 979release_pages (void)
21341cfd 980{
711a3d82
AK
981#ifdef USING_MADVISE
982 page_entry *p, *start_p;
983 char *start;
984 size_t len;
d33ef9a5
AK
985 size_t mapped_len;
986 page_entry *next, *prev, *newprev;
987 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
988
989 /* First free larger continuous areas to the OS.
990 This allows other allocators to grab these areas if needed.
991 This is only done on larger chunks to avoid fragmentation.
992 This does not always work because the free_pages list is only
993 approximately sorted. */
994
995 p = G.free_pages;
996 prev = NULL;
997 while (p)
998 {
999 start = p->page;
1000 start_p = p;
1001 len = 0;
1002 mapped_len = 0;
1003 newprev = prev;
1004 while (p && p->page == start + len)
1005 {
1006 len += p->bytes;
1007 if (!p->discarded)
1008 mapped_len += p->bytes;
1009 newprev = p;
1010 p = p->next;
1011 }
1012 if (len >= free_unit)
1013 {
1014 while (start_p != p)
1015 {
1016 next = start_p->next;
1017 free (start_p);
1018 start_p = next;
1019 }
1020 munmap (start, len);
1021 if (prev)
1022 prev->next = p;
1023 else
1024 G.free_pages = p;
1025 G.bytes_mapped -= mapped_len;
1026 continue;
1027 }
1028 prev = newprev;
1029 }
1030
1031 /* Now give back the fragmented pages to the OS, but keep the address
1032 space to reuse it next time. */
711a3d82
AK
1033
1034 for (p = G.free_pages; p; )
1035 {
1036 if (p->discarded)
1037 {
1038 p = p->next;
1039 continue;
1040 }
1041 start = p->page;
1042 len = p->bytes;
1043 start_p = p;
1044 p = p->next;
1045 while (p && p->page == start + len)
1046 {
1047 len += p->bytes;
1048 p = p->next;
1049 }
1050 /* Give the page back to the kernel, but don't free the mapping.
1051 This avoids fragmentation in the virtual memory map of the
1052 process. Next time we can reuse it by just touching it. */
1053 madvise (start, len, MADV_DONTNEED);
1054 /* Don't count those pages as mapped to not touch the garbage collector
1055 unnecessarily. */
1056 G.bytes_mapped -= len;
1057 while (start_p != p)
1058 {
1059 start_p->discarded = true;
1060 start_p = start_p->next;
1061 }
1062 }
1063#endif
1064#if defined(USING_MMAP) && !defined(USING_MADVISE)
130fadbb 1065 page_entry *p, *next;
21341cfd
AS
1066 char *start;
1067 size_t len;
1068
054f5e69 1069 /* Gather up adjacent pages so they are unmapped together. */
21341cfd 1070 p = G.free_pages;
21341cfd
AS
1071
1072 while (p)
1073 {
054f5e69 1074 start = p->page;
21341cfd 1075 next = p->next;
054f5e69 1076 len = p->bytes;
21341cfd
AS
1077 free (p);
1078 p = next;
21341cfd 1079
054f5e69
ZW
1080 while (p && p->page == start + len)
1081 {
1082 next = p->next;
1083 len += p->bytes;
1084 free (p);
1085 p = next;
1086 }
1087
1088 munmap (start, len);
1089 G.bytes_mapped -= len;
1090 }
005537df 1091
21341cfd 1092 G.free_pages = NULL;
130fadbb
RH
1093#endif
1094#ifdef USING_MALLOC_PAGE_GROUPS
1095 page_entry **pp, *p;
1096 page_group **gp, *g;
1097
1098 /* Remove all pages from free page groups from the list. */
1099 pp = &G.free_pages;
1100 while ((p = *pp) != NULL)
1101 if (p->group->in_use == 0)
1102 {
1103 *pp = p->next;
1104 free (p);
1105 }
1106 else
1107 pp = &p->next;
1108
1109 /* Remove all free page groups, and release the storage. */
1110 gp = &G.page_groups;
1111 while ((g = *gp) != NULL)
1112 if (g->in_use == 0)
1113 {
1114 *gp = g->next;
589005ff 1115 G.bytes_mapped -= g->alloc_size;
130fadbb
RH
1116 free (g->allocation);
1117 }
1118 else
1119 gp = &g->next;
1120#endif
21341cfd
AS
1121}
1122
21341cfd 1123/* This table provides a fast way to determine ceil(log_2(size)) for
9fd51e67 1124 allocation requests. The minimum allocation size is eight bytes. */
6583cf15
NC
1125#define NUM_SIZE_LOOKUP 512
1126static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
9fd51e67 1127{
589005ff
KH
1128 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1129 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1130 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1131 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1132 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1133 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1134 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd 1135 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd
AS
1136 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1137 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1138 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
f5938dcd
RG
1144 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1145 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1146 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
ecf7b86f 1159 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
21341cfd
AS
1160};
1161
b9bd6f74
TT
1162/* For a given size of memory requested for allocation, return the
1163 actual size that is going to be allocated, as well as the size
1164 order. */
1165
1166static void
1167ggc_round_alloc_size_1 (size_t requested_size,
1168 size_t *size_order,
1169 size_t *alloced_size)
1170{
1171 size_t order, object_size;
1172
1173 if (requested_size < NUM_SIZE_LOOKUP)
1174 {
1175 order = size_lookup[requested_size];
1176 object_size = OBJECT_SIZE (order);
1177 }
1178 else
1179 {
1180 order = 10;
1181 while (requested_size > (object_size = OBJECT_SIZE (order)))
1182 order++;
1183 }
1184
1185 if (size_order)
1186 *size_order = order;
1187 if (alloced_size)
1188 *alloced_size = object_size;
1189}
1190
1191/* For a given size of memory requested for allocation, return the
1192 actual size that is going to be allocated. */
1193
1194size_t
1195ggc_round_alloc_size (size_t requested_size)
1196{
1197 size_t size = 0;
1198
1199 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1200 return size;
1201}
1202
b6f61163
DB
1203/* Typed allocation function. Does nothing special in this collector. */
1204
1205void *
b9dcdee4
JH
1206ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1207 MEM_STAT_DECL)
b6f61163 1208{
a9429e29 1209 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
b6f61163
DB
1210}
1211
aa40083d 1212/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
cb2ec151 1213
005537df 1214void *
a9429e29 1215ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
21341cfd 1216{
685fe032 1217 size_t order, word, bit, object_offset, object_size;
21341cfd
AS
1218 struct page_entry *entry;
1219 void *result;
1220
b9bd6f74 1221 ggc_round_alloc_size_1 (size, &order, &object_size);
21341cfd
AS
1222
1223 /* If there are non-full pages for this size allocation, they are at
1224 the head of the list. */
1225 entry = G.pages[order];
1226
1227 /* If there is no page for this object size, or all pages in this
1228 context are full, allocate a new page. */
4934cc53 1229 if (entry == NULL || entry->num_free_objects == 0)
21341cfd
AS
1230 {
1231 struct page_entry *new_entry;
1232 new_entry = alloc_page (order);
589005ff 1233
c4775f82
MS
1234 new_entry->index_by_depth = G.by_depth_in_use;
1235 push_by_depth (new_entry, 0);
1236
1237 /* We can skip context depths, if we do, make sure we go all the
1238 way to the new depth. */
1239 while (new_entry->context_depth >= G.depth_in_use)
1240 push_depth (G.by_depth_in_use-1);
1241
9bf793f9
JL
1242 /* If this is the only entry, it's also the tail. If it is not
1243 the only entry, then we must update the PREV pointer of the
1244 ENTRY (G.pages[order]) to point to our new page entry. */
21341cfd
AS
1245 if (entry == NULL)
1246 G.page_tails[order] = new_entry;
9bf793f9
JL
1247 else
1248 entry->prev = new_entry;
589005ff 1249
9bf793f9
JL
1250 /* Put new pages at the head of the page list. By definition the
1251 entry at the head of the list always has a NULL pointer. */
21341cfd 1252 new_entry->next = entry;
9bf793f9 1253 new_entry->prev = NULL;
21341cfd
AS
1254 entry = new_entry;
1255 G.pages[order] = new_entry;
1256
1257 /* For a new page, we know the word and bit positions (in the
1258 in_use bitmap) of the first available object -- they're zero. */
1259 new_entry->next_bit_hint = 1;
1260 word = 0;
1261 bit = 0;
1262 object_offset = 0;
1263 }
1264 else
1265 {
1266 /* First try to use the hint left from the previous allocation
1267 to locate a clear bit in the in-use bitmap. We've made sure
1268 that the one-past-the-end bit is always set, so if the hint
1269 has run over, this test will fail. */
1270 unsigned hint = entry->next_bit_hint;
1271 word = hint / HOST_BITS_PER_LONG;
1272 bit = hint % HOST_BITS_PER_LONG;
589005ff 1273
21341cfd
AS
1274 /* If the hint didn't work, scan the bitmap from the beginning. */
1275 if ((entry->in_use_p[word] >> bit) & 1)
1276 {
1277 word = bit = 0;
1278 while (~entry->in_use_p[word] == 0)
1279 ++word;
6f0947e4
SB
1280
1281#if GCC_VERSION >= 3004
1282 bit = __builtin_ctzl (~entry->in_use_p[word]);
1283#else
21341cfd
AS
1284 while ((entry->in_use_p[word] >> bit) & 1)
1285 ++bit;
6f0947e4
SB
1286#endif
1287
21341cfd
AS
1288 hint = word * HOST_BITS_PER_LONG + bit;
1289 }
1290
1291 /* Next time, try the next bit. */
1292 entry->next_bit_hint = hint + 1;
1293
685fe032 1294 object_offset = hint * object_size;
21341cfd
AS
1295 }
1296
1297 /* Set the in-use bit. */
1298 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1299
1300 /* Keep a running total of the number of free objects. If this page
1301 fills up, we may have to move it to the end of the list if the
1302 next page isn't full. If the next page is full, all subsequent
1303 pages are full, so there's no need to move it. */
1304 if (--entry->num_free_objects == 0
1305 && entry->next != NULL
1306 && entry->next->num_free_objects > 0)
1307 {
9bf793f9 1308 /* We have a new head for the list. */
21341cfd 1309 G.pages[order] = entry->next;
9bf793f9
JL
1310
1311 /* We are moving ENTRY to the end of the page table list.
1312 The new page at the head of the list will have NULL in
1313 its PREV field and ENTRY will have NULL in its NEXT field. */
1314 entry->next->prev = NULL;
21341cfd 1315 entry->next = NULL;
9bf793f9
JL
1316
1317 /* Append ENTRY to the tail of the list. */
1318 entry->prev = G.page_tails[order];
21341cfd
AS
1319 G.page_tails[order]->next = entry;
1320 G.page_tails[order] = entry;
1321 }
1322
1323 /* Calculate the object's address. */
1324 result = entry->page + object_offset;
7aa6d18a
SB
1325 if (GATHER_STATISTICS)
1326 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1327 result FINAL_PASS_MEM_STAT);
21341cfd 1328
3788cc17 1329#ifdef ENABLE_GC_CHECKING
9a0a7d5d
HPN
1330 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1331 exact same semantics in presence of memory bugs, regardless of
1332 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1333 handle to avoid handle leak. */
35dee980 1334 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
9a0a7d5d 1335
f8a83ee3
ZW
1336 /* `Poison' the entire allocated object, including any padding at
1337 the end. */
685fe032 1338 memset (result, 0xaf, object_size);
9a0a7d5d
HPN
1339
1340 /* Make the bytes after the end of the object unaccessible. Discard the
1341 handle to avoid handle leak. */
35dee980
HPN
1342 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1343 object_size - size));
21341cfd 1344#endif
cb2ec151 1345
9a0a7d5d
HPN
1346 /* Tell Valgrind that the memory is there, but its content isn't
1347 defined. The bytes at the end of the object are still marked
1348 unaccessible. */
35dee980 1349 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
9a0a7d5d 1350
21341cfd
AS
1351 /* Keep track of how many bytes are being allocated. This
1352 information is used in deciding when to collect. */
685fe032 1353 G.allocated += object_size;
21341cfd 1354
8d18c628
ZD
1355 /* For timevar statistics. */
1356 timevar_ggc_mem_total += object_size;
1357
7aa6d18a
SB
1358 if (GATHER_STATISTICS)
1359 {
1360 size_t overhead = object_size - size;
adc4adcd 1361
7aa6d18a
SB
1362 G.stats.total_overhead += overhead;
1363 G.stats.total_allocated += object_size;
1364 G.stats.total_overhead_per_order[order] += overhead;
1365 G.stats.total_allocated_per_order[order] += object_size;
adc4adcd 1366
7aa6d18a
SB
1367 if (size <= 32)
1368 {
1369 G.stats.total_overhead_under32 += overhead;
1370 G.stats.total_allocated_under32 += object_size;
1371 }
1372 if (size <= 64)
1373 {
1374 G.stats.total_overhead_under64 += overhead;
1375 G.stats.total_allocated_under64 += object_size;
1376 }
1377 if (size <= 128)
1378 {
1379 G.stats.total_overhead_under128 += overhead;
1380 G.stats.total_allocated_under128 += object_size;
1381 }
1382 }
685fe032 1383
21341cfd 1384 if (GGC_DEBUG_LEVEL >= 3)
589005ff 1385 fprintf (G.debug_file,
8a951190 1386 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
685fe032 1387 (unsigned long) size, (unsigned long) object_size, result,
20c1dc5e 1388 (void *) entry);
21341cfd
AS
1389
1390 return result;
1391}
1392
dae4174e
TT
1393/* Mark function for strings. */
1394
1395void
1396gt_ggc_m_S (const void *p)
1397{
1398 page_entry *entry;
1399 unsigned bit, word;
1400 unsigned long mask;
1401 unsigned long offset;
1402
1403 if (!p || !ggc_allocated_p (p))
1404 return;
1405
1406 /* Look up the page on which the object is alloced. . */
1407 entry = lookup_page_table_entry (p);
1408 gcc_assert (entry);
1409
1410 /* Calculate the index of the object on the page; this is its bit
1411 position in the in_use_p bitmap. Note that because a char* might
1412 point to the middle of an object, we need special code here to
1413 make sure P points to the start of an object. */
1414 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1415 if (offset)
1416 {
1417 /* Here we've seen a char* which does not point to the beginning
1418 of an allocated object. We assume it points to the middle of
1419 a STRING_CST. */
1420 gcc_assert (offset == offsetof (struct tree_string, str));
1421 p = ((const char *) p) - offset;
d3bfe4de 1422 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
dae4174e
TT
1423 return;
1424 }
1425
1426 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1427 word = bit / HOST_BITS_PER_LONG;
1428 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1429
1430 /* If the bit was previously set, skip it. */
1431 if (entry->in_use_p[word] & mask)
1432 return;
1433
1434 /* Otherwise set it, and decrement the free object count. */
1435 entry->in_use_p[word] |= mask;
1436 entry->num_free_objects -= 1;
1437
1438 if (GGC_DEBUG_LEVEL >= 4)
1439 fprintf (G.debug_file, "Marking %p\n", p);
1440
1441 return;
1442}
1443
0823efed
DN
1444
1445/* User-callable entry points for marking string X. */
1446
1447void
1448gt_ggc_mx (const char *& x)
1449{
1450 gt_ggc_m_S (x);
1451}
1452
1453void
1454gt_ggc_mx (unsigned char *& x)
1455{
1456 gt_ggc_m_S (x);
1457}
1458
1459void
1460gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1461{
1462}
1463
cb2ec151 1464/* If P is not marked, marks it and return false. Otherwise return true.
21341cfd
AS
1465 P must have been allocated by the GC allocator; it mustn't point to
1466 static objects, stack variables, or memory allocated with malloc. */
cb2ec151 1467
005537df 1468int
20c1dc5e 1469ggc_set_mark (const void *p)
21341cfd
AS
1470{
1471 page_entry *entry;
1472 unsigned bit, word;
1473 unsigned long mask;
1474
1475 /* Look up the page on which the object is alloced. If the object
1476 wasn't allocated by the collector, we'll probably die. */
74c937ca 1477 entry = lookup_page_table_entry (p);
282899df 1478 gcc_assert (entry);
21341cfd
AS
1479
1480 /* Calculate the index of the object on the page; this is its bit
1481 position in the in_use_p bitmap. */
8537ed68 1482 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
21341cfd
AS
1483 word = bit / HOST_BITS_PER_LONG;
1484 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1485
dc297297 1486 /* If the bit was previously set, skip it. */
21341cfd
AS
1487 if (entry->in_use_p[word] & mask)
1488 return 1;
1489
1490 /* Otherwise set it, and decrement the free object count. */
1491 entry->in_use_p[word] |= mask;
1492 entry->num_free_objects -= 1;
1493
21341cfd
AS
1494 if (GGC_DEBUG_LEVEL >= 4)
1495 fprintf (G.debug_file, "Marking %p\n", p);
1496
1497 return 0;
1498}
1499
589005ff 1500/* Return 1 if P has been marked, zero otherwise.
4c160717
RK
1501 P must have been allocated by the GC allocator; it mustn't point to
1502 static objects, stack variables, or memory allocated with malloc. */
1503
1504int
20c1dc5e 1505ggc_marked_p (const void *p)
4c160717
RK
1506{
1507 page_entry *entry;
1508 unsigned bit, word;
1509 unsigned long mask;
1510
1511 /* Look up the page on which the object is alloced. If the object
1512 wasn't allocated by the collector, we'll probably die. */
1513 entry = lookup_page_table_entry (p);
282899df 1514 gcc_assert (entry);
4c160717
RK
1515
1516 /* Calculate the index of the object on the page; this is its bit
1517 position in the in_use_p bitmap. */
8537ed68 1518 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
4c160717
RK
1519 word = bit / HOST_BITS_PER_LONG;
1520 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1521
a4b5b2ae 1522 return (entry->in_use_p[word] & mask) != 0;
4c160717
RK
1523}
1524
cb2ec151
RH
1525/* Return the size of the gc-able object P. */
1526
3277221c 1527size_t
20c1dc5e 1528ggc_get_size (const void *p)
3277221c
MM
1529{
1530 page_entry *pe = lookup_page_table_entry (p);
2be510b8 1531 return OBJECT_SIZE (pe->order);
3277221c 1532}
685fe032
RH
1533
1534/* Release the memory for object P. */
1535
1536void
1537ggc_free (void *p)
1538{
1539 page_entry *pe = lookup_page_table_entry (p);
1540 size_t order = pe->order;
1541 size_t size = OBJECT_SIZE (order);
1542
7aa6d18a
SB
1543 if (GATHER_STATISTICS)
1544 ggc_free_overhead (p);
07724022 1545
685fe032
RH
1546 if (GGC_DEBUG_LEVEL >= 3)
1547 fprintf (G.debug_file,
1548 "Freeing object, actual size=%lu, at %p on %p\n",
1549 (unsigned long) size, p, (void *) pe);
1550
1551#ifdef ENABLE_GC_CHECKING
1552 /* Poison the data, to indicate the data is garbage. */
35dee980 1553 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
685fe032
RH
1554 memset (p, 0xa5, size);
1555#endif
1556 /* Let valgrind know the object is free. */
35dee980 1557 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
685fe032
RH
1558
1559#ifdef ENABLE_GC_ALWAYS_COLLECT
1560 /* In the completely-anal-checking mode, we do *not* immediately free
b8698a0f 1561 the data, but instead verify that the data is *actually* not
685fe032
RH
1562 reachable the next time we collect. */
1563 {
5ed6ace5 1564 struct free_object *fo = XNEW (struct free_object);
685fe032
RH
1565 fo->object = p;
1566 fo->next = G.free_object_list;
1567 G.free_object_list = fo;
1568 }
1569#else
1570 {
1571 unsigned int bit_offset, word, bit;
1572
1573 G.allocated -= size;
1574
1575 /* Mark the object not-in-use. */
1576 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1577 word = bit_offset / HOST_BITS_PER_LONG;
1578 bit = bit_offset % HOST_BITS_PER_LONG;
1579 pe->in_use_p[word] &= ~(1UL << bit);
1580
1581 if (pe->num_free_objects++ == 0)
1582 {
9bf793f9
JL
1583 page_entry *p, *q;
1584
685fe032
RH
1585 /* If the page is completely full, then it's supposed to
1586 be after all pages that aren't. Since we've freed one
1587 object from a page that was full, we need to move the
b8698a0f 1588 page to the head of the list.
685fe032 1589
9bf793f9
JL
1590 PE is the node we want to move. Q is the previous node
1591 and P is the next node in the list. */
1592 q = pe->prev;
685fe032
RH
1593 if (q && q->num_free_objects == 0)
1594 {
1595 p = pe->next;
9bf793f9 1596
685fe032 1597 q->next = p;
9bf793f9
JL
1598
1599 /* If PE was at the end of the list, then Q becomes the
1600 new end of the list. If PE was not the end of the
1601 list, then we need to update the PREV field for P. */
685fe032
RH
1602 if (!p)
1603 G.page_tails[order] = q;
9bf793f9
JL
1604 else
1605 p->prev = q;
1606
1607 /* Move PE to the head of the list. */
685fe032 1608 pe->next = G.pages[order];
9bf793f9
JL
1609 pe->prev = NULL;
1610 G.pages[order]->prev = pe;
685fe032
RH
1611 G.pages[order] = pe;
1612 }
1613
1614 /* Reset the hint bit to point to the only free object. */
1615 pe->next_bit_hint = bit_offset;
1616 }
1617 }
1618#endif
1619}
21341cfd 1620\f
8537ed68
ZW
1621/* Subroutine of init_ggc which computes the pair of numbers used to
1622 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1623
1624 This algorithm is taken from Granlund and Montgomery's paper
1625 "Division by Invariant Integers using Multiplication"
1626 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1627 constants). */
1628
1629static void
20c1dc5e 1630compute_inverse (unsigned order)
8537ed68 1631{
b8698a0f 1632 size_t size, inv;
75d75435 1633 unsigned int e;
280cf02a 1634
8537ed68
ZW
1635 size = OBJECT_SIZE (order);
1636 e = 0;
1637 while (size % 2 == 0)
1638 {
1639 e++;
1640 size >>= 1;
1641 }
cb2ec151 1642
8537ed68
ZW
1643 inv = size;
1644 while (inv * size != 1)
1645 inv = inv * (2 - inv*size);
1646
1647 DIV_MULT (order) = inv;
1648 DIV_SHIFT (order) = e;
1649}
1650
1651/* Initialize the ggc-mmap allocator. */
21341cfd 1652void
20c1dc5e 1653init_ggc (void)
21341cfd 1654{
2be510b8
MM
1655 unsigned order;
1656
21341cfd
AS
1657 G.pagesize = getpagesize();
1658 G.lg_pagesize = exact_log2 (G.pagesize);
1659
825b6926 1660#ifdef HAVE_MMAP_DEV_ZERO
21341cfd
AS
1661 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1662 if (G.dev_zero_fd == -1)
c770ac2b 1663 internal_error ("open /dev/zero: %m");
21341cfd
AS
1664#endif
1665
1666#if 0
1667 G.debug_file = fopen ("ggc-mmap.debug", "w");
1668#else
1669 G.debug_file = stdout;
1670#endif
1671
825b6926 1672#ifdef USING_MMAP
1b3e1423
RH
1673 /* StunOS has an amazing off-by-one error for the first mmap allocation
1674 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1675 believe, is an unaligned page allocation, which would cause us to
1676 hork badly if we tried to use it. */
1677 {
25f0ea81 1678 char *p = alloc_anon (NULL, G.pagesize, true);
825b6926 1679 struct page_entry *e;
2a6e6fea 1680 if ((uintptr_t)p & (G.pagesize - 1))
1b3e1423
RH
1681 {
1682 /* How losing. Discard this one and try another. If we still
1683 can't get something useful, give up. */
1684
25f0ea81 1685 p = alloc_anon (NULL, G.pagesize, true);
2a6e6fea 1686 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1b3e1423 1687 }
825b6926 1688
dc297297 1689 /* We have a good page, might as well hold onto it... */
5ed6ace5 1690 e = XCNEW (struct page_entry);
825b6926
ZW
1691 e->bytes = G.pagesize;
1692 e->page = p;
1693 e->next = G.free_pages;
1694 G.free_pages = e;
1b3e1423
RH
1695 }
1696#endif
2be510b8
MM
1697
1698 /* Initialize the object size table. */
1699 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1700 object_size_table[order] = (size_t) 1 << order;
1701 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
b1095f9c
MM
1702 {
1703 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
a469a4f2
RG
1704
1705 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1706 so that we're sure of getting aligned memory. */
1707 s = ROUND_UP (s, MAX_ALIGNMENT);
b1095f9c
MM
1708 object_size_table[order] = s;
1709 }
2be510b8 1710
8537ed68 1711 /* Initialize the objects-per-page and inverse tables. */
2be510b8
MM
1712 for (order = 0; order < NUM_ORDERS; ++order)
1713 {
1714 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1715 if (objects_per_page_table[order] == 0)
1716 objects_per_page_table[order] = 1;
8537ed68 1717 compute_inverse (order);
2be510b8
MM
1718 }
1719
1720 /* Reset the size_lookup array to put appropriately sized objects in
1721 the special orders. All objects bigger than the previous power
1722 of two, but no greater than the special size, should go in the
a469a4f2 1723 new order. */
2be510b8
MM
1724 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1725 {
a469a4f2
RG
1726 int o;
1727 int i;
c4775f82 1728
6583cf15
NC
1729 i = OBJECT_SIZE (order);
1730 if (i >= NUM_SIZE_LOOKUP)
1731 continue;
1732
1733 for (o = size_lookup[i]; o == size_lookup [i]; --i)
a469a4f2
RG
1734 size_lookup[i] = order;
1735 }
ecf7b86f 1736
c4775f82
MS
1737 G.depth_in_use = 0;
1738 G.depth_max = 10;
5ed6ace5 1739 G.depth = XNEWVEC (unsigned int, G.depth_max);
c4775f82
MS
1740
1741 G.by_depth_in_use = 0;
1742 G.by_depth_max = INITIAL_PTE_COUNT;
5ed6ace5
MD
1743 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1744 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
21341cfd
AS
1745}
1746
4934cc53
MM
1747/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1748 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1749
1750static void
20c1dc5e 1751ggc_recalculate_in_use_p (page_entry *p)
4934cc53
MM
1752{
1753 unsigned int i;
1754 size_t num_objects;
1755
589005ff 1756 /* Because the past-the-end bit in in_use_p is always set, we
4934cc53 1757 pretend there is one additional object. */
17211ab5 1758 num_objects = OBJECTS_IN_PAGE (p) + 1;
4934cc53
MM
1759
1760 /* Reset the free object count. */
1761 p->num_free_objects = num_objects;
1762
1763 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
589005ff 1764 for (i = 0;
2be510b8
MM
1765 i < CEIL (BITMAP_SIZE (num_objects),
1766 sizeof (*p->in_use_p));
4934cc53
MM
1767 ++i)
1768 {
1769 unsigned long j;
1770
1771 /* Something is in use if it is marked, or if it was in use in a
1772 context further down the context stack. */
c4775f82 1773 p->in_use_p[i] |= save_in_use_p (p)[i];
4934cc53
MM
1774
1775 /* Decrement the free object count for every object allocated. */
1776 for (j = p->in_use_p[i]; j; j >>= 1)
1777 p->num_free_objects -= (j & 1);
1778 }
1779
282899df 1780 gcc_assert (p->num_free_objects < num_objects);
4934cc53 1781}
21341cfd 1782\f
cb2ec151
RH
1783/* Unmark all objects. */
1784
685fe032 1785static void
20c1dc5e 1786clear_marks (void)
21341cfd
AS
1787{
1788 unsigned order;
1789
2be510b8 1790 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1791 {
21341cfd
AS
1792 page_entry *p;
1793
1794 for (p = G.pages[order]; p != NULL; p = p->next)
1795 {
17211ab5
GK
1796 size_t num_objects = OBJECTS_IN_PAGE (p);
1797 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1798
21341cfd 1799 /* The data should be page-aligned. */
2a6e6fea 1800 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
21341cfd
AS
1801
1802 /* Pages that aren't in the topmost context are not collected;
1803 nevertheless, we need their in-use bit vectors to store GC
1804 marks. So, back them up first. */
4934cc53 1805 if (p->context_depth < G.context_depth)
21341cfd 1806 {
c4775f82 1807 if (! save_in_use_p (p))
d3bfe4de 1808 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
c4775f82 1809 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
21341cfd
AS
1810 }
1811
1812 /* Reset reset the number of free objects and clear the
1813 in-use bits. These will be adjusted by mark_obj. */
1814 p->num_free_objects = num_objects;
1815 memset (p->in_use_p, 0, bitmap_size);
1816
1817 /* Make sure the one-past-the-end bit is always set. */
589005ff 1818 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
21341cfd
AS
1819 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1820 }
1821 }
1822}
1823
cb2ec151
RH
1824/* Free all empty pages. Partially empty pages need no attention
1825 because the `mark' bit doubles as an `unused' bit. */
1826
685fe032 1827static void
20c1dc5e 1828sweep_pages (void)
21341cfd
AS
1829{
1830 unsigned order;
1831
2be510b8 1832 for (order = 2; order < NUM_ORDERS; order++)
21341cfd
AS
1833 {
1834 /* The last page-entry to consider, regardless of entries
1835 placed at the end of the list. */
1836 page_entry * const last = G.page_tails[order];
1837
17211ab5 1838 size_t num_objects;
054f5e69 1839 size_t live_objects;
21341cfd
AS
1840 page_entry *p, *previous;
1841 int done;
589005ff 1842
21341cfd
AS
1843 p = G.pages[order];
1844 if (p == NULL)
1845 continue;
1846
1847 previous = NULL;
1848 do
1849 {
1850 page_entry *next = p->next;
1851
1852 /* Loop until all entries have been examined. */
1853 done = (p == last);
20c1dc5e 1854
17211ab5 1855 num_objects = OBJECTS_IN_PAGE (p);
21341cfd 1856
054f5e69
ZW
1857 /* Add all live objects on this page to the count of
1858 allocated memory. */
1859 live_objects = num_objects - p->num_free_objects;
1860
2be510b8 1861 G.allocated += OBJECT_SIZE (order) * live_objects;
054f5e69 1862
21341cfd
AS
1863 /* Only objects on pages in the topmost context should get
1864 collected. */
1865 if (p->context_depth < G.context_depth)
1866 ;
1867
1868 /* Remove the page if it's empty. */
054f5e69 1869 else if (live_objects == 0)
21341cfd 1870 {
9bf793f9
JL
1871 /* If P was the first page in the list, then NEXT
1872 becomes the new first page in the list, otherwise
1873 splice P out of the forward pointers. */
21341cfd
AS
1874 if (! previous)
1875 G.pages[order] = next;
1876 else
1877 previous->next = next;
b8698a0f 1878
9bf793f9
JL
1879 /* Splice P out of the back pointers too. */
1880 if (next)
1881 next->prev = previous;
21341cfd
AS
1882
1883 /* Are we removing the last element? */
1884 if (p == G.page_tails[order])
1885 G.page_tails[order] = previous;
1886 free_page (p);
1887 p = previous;
1888 }
1889
1890 /* If the page is full, move it to the end. */
1891 else if (p->num_free_objects == 0)
1892 {
1893 /* Don't move it if it's already at the end. */
1894 if (p != G.page_tails[order])
1895 {
1896 /* Move p to the end of the list. */
1897 p->next = NULL;
9bf793f9 1898 p->prev = G.page_tails[order];
21341cfd
AS
1899 G.page_tails[order]->next = p;
1900
1901 /* Update the tail pointer... */
1902 G.page_tails[order] = p;
1903
1904 /* ... and the head pointer, if necessary. */
1905 if (! previous)
1906 G.pages[order] = next;
1907 else
1908 previous->next = next;
9bf793f9
JL
1909
1910 /* And update the backpointer in NEXT if necessary. */
1911 if (next)
1912 next->prev = previous;
1913
21341cfd
AS
1914 p = previous;
1915 }
1916 }
1917
1918 /* If we've fallen through to here, it's a page in the
1919 topmost context that is neither full nor empty. Such a
1920 page must precede pages at lesser context depth in the
1921 list, so move it to the head. */
1922 else if (p != G.pages[order])
1923 {
1924 previous->next = p->next;
9bf793f9
JL
1925
1926 /* Update the backchain in the next node if it exists. */
1927 if (p->next)
1928 p->next->prev = previous;
1929
1930 /* Move P to the head of the list. */
21341cfd 1931 p->next = G.pages[order];
9bf793f9
JL
1932 p->prev = NULL;
1933 G.pages[order]->prev = p;
1934
1935 /* Update the head pointer. */
21341cfd 1936 G.pages[order] = p;
9bf793f9 1937
21341cfd
AS
1938 /* Are we moving the last element? */
1939 if (G.page_tails[order] == p)
1940 G.page_tails[order] = previous;
1941 p = previous;
1942 }
1943
1944 previous = p;
1945 p = next;
589005ff 1946 }
21341cfd 1947 while (! done);
4934cc53
MM
1948
1949 /* Now, restore the in_use_p vectors for any pages from contexts
1950 other than the current one. */
1951 for (p = G.pages[order]; p; p = p->next)
1952 if (p->context_depth != G.context_depth)
1953 ggc_recalculate_in_use_p (p);
21341cfd
AS
1954 }
1955}
1956
3788cc17 1957#ifdef ENABLE_GC_CHECKING
cb2ec151
RH
1958/* Clobber all free objects. */
1959
685fe032 1960static void
20c1dc5e 1961poison_pages (void)
21341cfd
AS
1962{
1963 unsigned order;
1964
2be510b8 1965 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1966 {
2be510b8 1967 size_t size = OBJECT_SIZE (order);
21341cfd
AS
1968 page_entry *p;
1969
1970 for (p = G.pages[order]; p != NULL; p = p->next)
1971 {
17211ab5 1972 size_t num_objects;
21341cfd 1973 size_t i;
c831fdea
MM
1974
1975 if (p->context_depth != G.context_depth)
1976 /* Since we don't do any collection for pages in pushed
1977 contexts, there's no need to do any poisoning. And
1978 besides, the IN_USE_P array isn't valid until we pop
1979 contexts. */
1980 continue;
1981
17211ab5 1982 num_objects = OBJECTS_IN_PAGE (p);
21341cfd
AS
1983 for (i = 0; i < num_objects; i++)
1984 {
1985 size_t word, bit;
1986 word = i / HOST_BITS_PER_LONG;
1987 bit = i % HOST_BITS_PER_LONG;
1988 if (((p->in_use_p[word] >> bit) & 1) == 0)
9a0a7d5d
HPN
1989 {
1990 char *object = p->page + i * size;
1991
1992 /* Keep poison-by-write when we expect to use Valgrind,
1993 so the exact same memory semantics is kept, in case
1994 there are memory errors. We override this request
1995 below. */
35dee980
HPN
1996 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1997 size));
9a0a7d5d
HPN
1998 memset (object, 0xa5, size);
1999
2000 /* Drop the handle to avoid handle leak. */
35dee980 2001 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
9a0a7d5d 2002 }
21341cfd
AS
2003 }
2004 }
2005 }
2006}
685fe032
RH
2007#else
2008#define poison_pages()
2009#endif
2010
2011#ifdef ENABLE_GC_ALWAYS_COLLECT
2012/* Validate that the reportedly free objects actually are. */
2013
2014static void
2015validate_free_objects (void)
2016{
2017 struct free_object *f, *next, *still_free = NULL;
2018
2019 for (f = G.free_object_list; f ; f = next)
2020 {
2021 page_entry *pe = lookup_page_table_entry (f->object);
2022 size_t bit, word;
2023
2024 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2025 word = bit / HOST_BITS_PER_LONG;
2026 bit = bit % HOST_BITS_PER_LONG;
2027 next = f->next;
2028
2029 /* Make certain it isn't visible from any root. Notice that we
2030 do this check before sweep_pages merges save_in_use_p. */
282899df 2031 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
685fe032
RH
2032
2033 /* If the object comes from an outer context, then retain the
2034 free_object entry, so that we can verify that the address
2035 isn't live on the stack in some outer context. */
2036 if (pe->context_depth != G.context_depth)
2037 {
2038 f->next = still_free;
2039 still_free = f;
2040 }
2041 else
2042 free (f);
2043 }
2044
2045 G.free_object_list = still_free;
2046}
2047#else
2048#define validate_free_objects()
21341cfd
AS
2049#endif
2050
cb2ec151
RH
2051/* Top level mark-and-sweep routine. */
2052
21341cfd 2053void
20c1dc5e 2054ggc_collect (void)
21341cfd 2055{
21341cfd
AS
2056 /* Avoid frequent unnecessary work by skipping collection if the
2057 total allocations haven't expanded much since the last
2058 collection. */
19cc0dd4 2059 float allocated_last_gc =
3788cc17
ZW
2060 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2061
19cc0dd4 2062 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
3788cc17 2063
07724022 2064 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
21341cfd 2065 return;
21341cfd 2066
2a9a326b 2067 timevar_push (TV_GC);
21341cfd 2068 if (!quiet_flag)
b9bfacf0 2069 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
685fe032
RH
2070 if (GGC_DEBUG_LEVEL >= 2)
2071 fprintf (G.debug_file, "BEGIN COLLECTING\n");
21341cfd 2072
054f5e69
ZW
2073 /* Zero the total allocated bytes. This will be recalculated in the
2074 sweep phase. */
21341cfd
AS
2075 G.allocated = 0;
2076
589005ff 2077 /* Release the pages we freed the last time we collected, but didn't
21341cfd
AS
2078 reuse in the interim. */
2079 release_pages ();
2080
52895e1a
RH
2081 /* Indicate that we've seen collections at this context depth. */
2082 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2083
ae2392a9
BS
2084 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2085
21341cfd
AS
2086 clear_marks ();
2087 ggc_mark_roots ();
7aa6d18a
SB
2088
2089 if (GATHER_STATISTICS)
2090 ggc_prune_overhead_list ();
2091
21341cfd 2092 poison_pages ();
685fe032 2093 validate_free_objects ();
cb2ec151
RH
2094 sweep_pages ();
2095
21341cfd
AS
2096 G.allocated_last_gc = G.allocated;
2097
ae2392a9
BS
2098 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2099
2a9a326b 2100 timevar_pop (TV_GC);
21341cfd 2101
21341cfd 2102 if (!quiet_flag)
2a9a326b 2103 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
685fe032
RH
2104 if (GGC_DEBUG_LEVEL >= 2)
2105 fprintf (G.debug_file, "END COLLECTING\n");
21341cfd 2106}
3277221c
MM
2107
2108/* Print allocation statistics. */
fba0bfd4
ZW
2109#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2110 ? (x) \
2111 : ((x) < 1024*1024*10 \
2112 ? (x) / 1024 \
2113 : (x) / (1024*1024))))
07724022 2114#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
3277221c
MM
2115
2116void
20c1dc5e 2117ggc_print_statistics (void)
3277221c
MM
2118{
2119 struct ggc_statistics stats;
4934cc53 2120 unsigned int i;
fba0bfd4 2121 size_t total_overhead = 0;
3277221c
MM
2122
2123 /* Clear the statistics. */
d219c7f1 2124 memset (&stats, 0, sizeof (stats));
589005ff 2125
3277221c
MM
2126 /* Make sure collection will really occur. */
2127 G.allocated_last_gc = 0;
2128
2129 /* Collect and print the statistics common across collectors. */
fba0bfd4 2130 ggc_print_common_statistics (stderr, &stats);
3277221c 2131
4934cc53
MM
2132 /* Release free pages so that we will not count the bytes allocated
2133 there as part of the total allocated memory. */
2134 release_pages ();
2135
589005ff 2136 /* Collect some information about the various sizes of
3277221c 2137 allocation. */
439a7e54
DN
2138 fprintf (stderr,
2139 "Memory still allocated at the end of the compilation process\n");
adc4adcd 2140 fprintf (stderr, "%-5s %10s %10s %10s\n",
9fd51e67 2141 "Size", "Allocated", "Used", "Overhead");
2be510b8 2142 for (i = 0; i < NUM_ORDERS; ++i)
3277221c
MM
2143 {
2144 page_entry *p;
2145 size_t allocated;
2146 size_t in_use;
fba0bfd4 2147 size_t overhead;
3277221c
MM
2148
2149 /* Skip empty entries. */
2150 if (!G.pages[i])
2151 continue;
2152
fba0bfd4 2153 overhead = allocated = in_use = 0;
3277221c
MM
2154
2155 /* Figure out the total number of bytes allocated for objects of
fba0bfd4
ZW
2156 this size, and how many of them are actually in use. Also figure
2157 out how much memory the page table is using. */
3277221c
MM
2158 for (p = G.pages[i]; p; p = p->next)
2159 {
2160 allocated += p->bytes;
20c1dc5e 2161 in_use +=
17211ab5 2162 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
fba0bfd4
ZW
2163
2164 overhead += (sizeof (page_entry) - sizeof (long)
17211ab5 2165 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
3277221c 2166 }
8a951190
AJ
2167 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2168 (unsigned long) OBJECT_SIZE (i),
07724022
JH
2169 SCALE (allocated), STAT_LABEL (allocated),
2170 SCALE (in_use), STAT_LABEL (in_use),
2171 SCALE (overhead), STAT_LABEL (overhead));
fba0bfd4 2172 total_overhead += overhead;
3277221c 2173 }
8a951190 2174 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
07724022
JH
2175 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2176 SCALE (G.allocated), STAT_LABEL(G.allocated),
2177 SCALE (total_overhead), STAT_LABEL (total_overhead));
adc4adcd 2178
7aa6d18a
SB
2179 if (GATHER_STATISTICS)
2180 {
2181 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2182
2183 fprintf (stderr, "Total Overhead: %10lld\n",
2184 G.stats.total_overhead);
2185 fprintf (stderr, "Total Allocated: %10lld\n",
2186 G.stats.total_allocated);
2187
2188 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2189 G.stats.total_overhead_under32);
2190 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2191 G.stats.total_allocated_under32);
2192 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2193 G.stats.total_overhead_under64);
2194 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2195 G.stats.total_allocated_under64);
2196 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2197 G.stats.total_overhead_under128);
2198 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2199 G.stats.total_allocated_under128);
2200
2201 for (i = 0; i < NUM_ORDERS; i++)
2202 if (G.stats.total_allocated_per_order[i])
2203 {
2204 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2205 (unsigned long) OBJECT_SIZE (i),
2206 G.stats.total_overhead_per_order[i]);
2207 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2208 (unsigned long) OBJECT_SIZE (i),
2209 G.stats.total_allocated_per_order[i]);
2210 }
adc4adcd 2211 }
3277221c 2212}
17211ab5 2213\f
24b97832
ILT
2214struct ggc_pch_ondisk
2215{
2216 unsigned totals[NUM_ORDERS];
2217};
2218
17211ab5
GK
2219struct ggc_pch_data
2220{
24b97832 2221 struct ggc_pch_ondisk d;
2a6e6fea 2222 uintptr_t base[NUM_ORDERS];
17211ab5
GK
2223 size_t written[NUM_ORDERS];
2224};
2225
2226struct ggc_pch_data *
20c1dc5e 2227init_ggc_pch (void)
17211ab5 2228{
5ed6ace5 2229 return XCNEW (struct ggc_pch_data);
17211ab5
GK
2230}
2231
20c1dc5e
AJ
2232void
2233ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
08cee789
DJ
2234 size_t size, bool is_string ATTRIBUTE_UNUSED,
2235 enum gt_types_enum type ATTRIBUTE_UNUSED)
17211ab5
GK
2236{
2237 unsigned order;
2238
6583cf15 2239 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2240 order = size_lookup[size];
2241 else
2242 {
f5938dcd 2243 order = 10;
17211ab5
GK
2244 while (size > OBJECT_SIZE (order))
2245 order++;
2246 }
20c1dc5e 2247
17211ab5
GK
2248 d->d.totals[order]++;
2249}
20c1dc5e 2250
17211ab5 2251size_t
20c1dc5e 2252ggc_pch_total_size (struct ggc_pch_data *d)
17211ab5
GK
2253{
2254 size_t a = 0;
2255 unsigned i;
2256
2257 for (i = 0; i < NUM_ORDERS; i++)
3bc50163 2258 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2259 return a;
2260}
2261
2262void
20c1dc5e 2263ggc_pch_this_base (struct ggc_pch_data *d, void *base)
17211ab5 2264{
2a6e6fea 2265 uintptr_t a = (uintptr_t) base;
17211ab5 2266 unsigned i;
20c1dc5e 2267
17211ab5
GK
2268 for (i = 0; i < NUM_ORDERS; i++)
2269 {
2270 d->base[i] = a;
3bc50163 2271 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2272 }
2273}
2274
2275
2276char *
20c1dc5e 2277ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
08cee789
DJ
2278 size_t size, bool is_string ATTRIBUTE_UNUSED,
2279 enum gt_types_enum type ATTRIBUTE_UNUSED)
17211ab5
GK
2280{
2281 unsigned order;
2282 char *result;
20c1dc5e 2283
6583cf15 2284 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2285 order = size_lookup[size];
2286 else
2287 {
f5938dcd 2288 order = 10;
17211ab5
GK
2289 while (size > OBJECT_SIZE (order))
2290 order++;
2291 }
2292
2293 result = (char *) d->base[order];
2294 d->base[order] += OBJECT_SIZE (order);
2295 return result;
2296}
2297
20c1dc5e
AJ
2298void
2299ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2300 FILE *f ATTRIBUTE_UNUSED)
17211ab5
GK
2301{
2302 /* Nothing to do. */
2303}
2304
2305void
20c1dc5e
AJ
2306ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2307 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
b6f61163 2308 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2309{
2310 unsigned order;
642324bb 2311 static const char emptyBytes[256] = { 0 };
17211ab5 2312
6583cf15 2313 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2314 order = size_lookup[size];
2315 else
2316 {
f5938dcd 2317 order = 10;
17211ab5
GK
2318 while (size > OBJECT_SIZE (order))
2319 order++;
2320 }
20c1dc5e 2321
17211ab5 2322 if (fwrite (x, size, 1, f) != 1)
d8a07487 2323 fatal_error ("can%'t write PCH file: %m");
17211ab5 2324
674c7ef1 2325 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
0ee55ad8 2326 object out to OBJECT_SIZE(order). This happens for strings. */
674c7ef1
RB
2327
2328 if (size != OBJECT_SIZE (order))
2329 {
2330 unsigned padding = OBJECT_SIZE(order) - size;
2331
2332 /* To speed small writes, we use a nulled-out array that's larger
2333 than most padding requests as the source for our null bytes. This
2334 permits us to do the padding with fwrite() rather than fseek(), and
3f117656 2335 limits the chance the OS may try to flush any outstanding writes. */
674c7ef1
RB
2336 if (padding <= sizeof(emptyBytes))
2337 {
2338 if (fwrite (emptyBytes, 1, padding, f) != padding)
d8a07487 2339 fatal_error ("can%'t write PCH file");
674c7ef1
RB
2340 }
2341 else
2342 {
0ee55ad8 2343 /* Larger than our buffer? Just default to fseek. */
674c7ef1 2344 if (fseek (f, padding, SEEK_CUR) != 0)
d8a07487 2345 fatal_error ("can%'t write PCH file");
674c7ef1
RB
2346 }
2347 }
17211ab5
GK
2348
2349 d->written[order]++;
2350 if (d->written[order] == d->d.totals[order]
2351 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2352 G.pagesize),
2353 SEEK_CUR) != 0)
d8a07487 2354 fatal_error ("can%'t write PCH file: %m");
17211ab5
GK
2355}
2356
2357void
20c1dc5e 2358ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
17211ab5
GK
2359{
2360 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
d8a07487 2361 fatal_error ("can%'t write PCH file: %m");
17211ab5
GK
2362 free (d);
2363}
2364
c4775f82
MS
2365/* Move the PCH PTE entries just added to the end of by_depth, to the
2366 front. */
2367
2368static void
20c1dc5e 2369move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
c4775f82
MS
2370{
2371 unsigned i;
2372
2373 /* First, we swap the new entries to the front of the varrays. */
2374 page_entry **new_by_depth;
2375 unsigned long **new_save_in_use;
2376
5ed6ace5
MD
2377 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2378 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
c4775f82
MS
2379
2380 memcpy (&new_by_depth[0],
2381 &G.by_depth[count_old_page_tables],
2382 count_new_page_tables * sizeof (void *));
2383 memcpy (&new_by_depth[count_new_page_tables],
2384 &G.by_depth[0],
2385 count_old_page_tables * sizeof (void *));
2386 memcpy (&new_save_in_use[0],
2387 &G.save_in_use[count_old_page_tables],
2388 count_new_page_tables * sizeof (void *));
2389 memcpy (&new_save_in_use[count_new_page_tables],
2390 &G.save_in_use[0],
2391 count_old_page_tables * sizeof (void *));
2392
2393 free (G.by_depth);
2394 free (G.save_in_use);
20c1dc5e 2395
c4775f82
MS
2396 G.by_depth = new_by_depth;
2397 G.save_in_use = new_save_in_use;
2398
2399 /* Now update all the index_by_depth fields. */
2400 for (i = G.by_depth_in_use; i > 0; --i)
2401 {
2402 page_entry *p = G.by_depth[i-1];
2403 p->index_by_depth = i-1;
2404 }
2405
2406 /* And last, we update the depth pointers in G.depth. The first
2407 entry is already 0, and context 0 entries always start at index
2408 0, so there is nothing to update in the first slot. We need a
2409 second slot, only if we have old ptes, and if we do, they start
2410 at index count_new_page_tables. */
2411 if (count_old_page_tables)
2412 push_depth (count_new_page_tables);
2413}
2414
17211ab5 2415void
20c1dc5e 2416ggc_pch_read (FILE *f, void *addr)
17211ab5
GK
2417{
2418 struct ggc_pch_ondisk d;
2419 unsigned i;
d3bfe4de 2420 char *offs = (char *) addr;
c4775f82
MS
2421 unsigned long count_old_page_tables;
2422 unsigned long count_new_page_tables;
2423
2424 count_old_page_tables = G.by_depth_in_use;
2425
2426 /* We've just read in a PCH file. So, every object that used to be
2427 allocated is now free. */
17211ab5 2428 clear_marks ();
c5d6d04a 2429#ifdef ENABLE_GC_CHECKING
17211ab5
GK
2430 poison_pages ();
2431#endif
ead8827d
LB
2432 /* Since we free all the allocated objects, the free list becomes
2433 useless. Validate it now, which will also clear it. */
2434 validate_free_objects();
17211ab5
GK
2435
2436 /* No object read from a PCH file should ever be freed. So, set the
2437 context depth to 1, and set the depth of all the currently-allocated
2438 pages to be 1 too. PCH pages will have depth 0. */
282899df 2439 gcc_assert (!G.context_depth);
17211ab5
GK
2440 G.context_depth = 1;
2441 for (i = 0; i < NUM_ORDERS; i++)
2442 {
2443 page_entry *p;
2444 for (p = G.pages[i]; p != NULL; p = p->next)
2445 p->context_depth = G.context_depth;
2446 }
2447
2448 /* Allocate the appropriate page-table entries for the pages read from
2449 the PCH file. */
2450 if (fread (&d, sizeof (d), 1, f) != 1)
d8a07487 2451 fatal_error ("can%'t read PCH file: %m");
20c1dc5e 2452
17211ab5
GK
2453 for (i = 0; i < NUM_ORDERS; i++)
2454 {
2455 struct page_entry *entry;
2456 char *pte;
2457 size_t bytes;
2458 size_t num_objs;
2459 size_t j;
c4775f82 2460
17211ab5
GK
2461 if (d.totals[i] == 0)
2462 continue;
c4775f82 2463
3bc50163 2464 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
17211ab5 2465 num_objs = bytes / OBJECT_SIZE (i);
d3bfe4de
KG
2466 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2467 - sizeof (long)
2468 + BITMAP_SIZE (num_objs + 1)));
17211ab5
GK
2469 entry->bytes = bytes;
2470 entry->page = offs;
2471 entry->context_depth = 0;
2472 offs += bytes;
2473 entry->num_free_objects = 0;
2474 entry->order = i;
2475
20c1dc5e 2476 for (j = 0;
17211ab5
GK
2477 j + HOST_BITS_PER_LONG <= num_objs + 1;
2478 j += HOST_BITS_PER_LONG)
2479 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2480 for (; j < num_objs + 1; j++)
20c1dc5e 2481 entry->in_use_p[j / HOST_BITS_PER_LONG]
17211ab5
GK
2482 |= 1L << (j % HOST_BITS_PER_LONG);
2483
20c1dc5e
AJ
2484 for (pte = entry->page;
2485 pte < entry->page + entry->bytes;
17211ab5
GK
2486 pte += G.pagesize)
2487 set_page_table_entry (pte, entry);
2488
2489 if (G.page_tails[i] != NULL)
2490 G.page_tails[i]->next = entry;
2491 else
2492 G.pages[i] = entry;
2493 G.page_tails[i] = entry;
c4775f82
MS
2494
2495 /* We start off by just adding all the new information to the
2496 end of the varrays, later, we will move the new information
2497 to the front of the varrays, as the PCH page tables are at
2498 context 0. */
2499 push_by_depth (entry, 0);
17211ab5
GK
2500 }
2501
c4775f82
MS
2502 /* Now, we update the various data structures that speed page table
2503 handling. */
2504 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2505
2506 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2507
17211ab5
GK
2508 /* Update the statistics. */
2509 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2510}
a9429e29
LB
2511
2512struct alloc_zone
2513{
2514 int dummy;
2515};
2516
2517struct alloc_zone rtl_zone;
2518struct alloc_zone tree_zone;
2519struct alloc_zone tree_id_zone;