]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-scop-detection.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
CommitLineData
2abae5f1 1/* Detection of Static Control Parts (SCoP) for Graphite.
33ad93b9 2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
2abae5f1
SP
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
33ad93b9
RG
23
24#ifdef HAVE_cloog
25#include <isl/set.h>
26#include <isl/map.h>
27#include <isl/union_map.h>
28#include <cloog/cloog.h>
29#include <cloog/isl/domain.h>
30#endif
31
2abae5f1
SP
32#include "system.h"
33#include "coretypes.h"
2abae5f1 34#include "tree-flow.h"
2abae5f1
SP
35#include "cfgloop.h"
36#include "tree-chrec.h"
37#include "tree-data-ref.h"
38#include "tree-scalar-evolution.h"
39#include "tree-pass.h"
2abae5f1
SP
40#include "sese.h"
41
42#ifdef HAVE_cloog
2abae5f1
SP
43#include "graphite-poly.h"
44#include "graphite-scop-detection.h"
45
99e2796b
BS
46/* Forward declarations. */
47static void make_close_phi_nodes_unique (basic_block);
48
2abae5f1
SP
49/* The type of the analyzed basic block. */
50
51typedef enum gbb_type {
52 GBB_UNKNOWN,
53 GBB_LOOP_SING_EXIT_HEADER,
54 GBB_LOOP_MULT_EXIT_HEADER,
55 GBB_LOOP_EXIT,
56 GBB_COND_HEADER,
57 GBB_SIMPLE,
58 GBB_LAST
59} gbb_type;
60
61/* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
64 any other type. */
65
66static gbb_type
67get_bb_type (basic_block bb, struct loop *last_loop)
68{
69 VEC (basic_block, heap) *dom;
70 int nb_dom, nb_suc;
71 struct loop *loop = bb->loop_father;
72
73 /* Check, if we entry into a new loop. */
74 if (loop != last_loop)
75 {
76 if (single_exit (loop) != NULL)
77 return GBB_LOOP_SING_EXIT_HEADER;
78 else if (loop->num != 0)
79 return GBB_LOOP_MULT_EXIT_HEADER;
80 else
81 return GBB_COND_HEADER;
82 }
83
84 dom = get_dominated_by (CDI_DOMINATORS, bb);
85 nb_dom = VEC_length (basic_block, dom);
86 VEC_free (basic_block, heap, dom);
87
88 if (nb_dom == 0)
89 return GBB_LAST;
90
91 nb_suc = VEC_length (edge, bb->succs);
92
93 if (nb_dom == 1 && nb_suc == 1)
94 return GBB_SIMPLE;
95
96 return GBB_COND_HEADER;
97}
98
99/* A SCoP detection region, defined using bbs as borders.
100
101 All control flow touching this region, comes in passing basic_block
102 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
103 edges for the borders we are able to represent also regions that do
104 not have a single entry or exit edge.
105
106 But as they have a single entry basic_block and a single exit
107 basic_block, we are able to generate for every sd_region a single
108 entry and exit edge.
109
110 1 2
111 \ /
112 3 <- entry
113 |
114 4
115 / \ This region contains: {3, 4, 5, 6, 7, 8}
116 5 6
117 | |
118 7 8
119 \ /
120 9 <- exit */
121
122
123typedef struct sd_region_p
124{
125 /* The entry bb dominates all bbs in the sd_region. It is part of
126 the region. */
127 basic_block entry;
128
129 /* The exit bb postdominates all bbs in the sd_region, but is not
130 part of the region. */
131 basic_block exit;
132} sd_region;
133
134DEF_VEC_O(sd_region);
135DEF_VEC_ALLOC_O(sd_region, heap);
136
137
138/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
139
140static void
141move_sd_regions (VEC (sd_region, heap) **source,
142 VEC (sd_region, heap) **target)
143{
144 sd_region *s;
145 int i;
146
ac47786e 147 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
2abae5f1
SP
148 VEC_safe_push (sd_region, heap, *target, s);
149
150 VEC_free (sd_region, heap, *source);
151}
152
153/* Something like "n * m" is not allowed. */
154
155static bool
156graphite_can_represent_init (tree e)
157{
158 switch (TREE_CODE (e))
159 {
160 case POLYNOMIAL_CHREC:
161 return graphite_can_represent_init (CHREC_LEFT (e))
162 && graphite_can_represent_init (CHREC_RIGHT (e));
163
164 case MULT_EXPR:
165 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
d505015a
SP
166 return graphite_can_represent_init (TREE_OPERAND (e, 0))
167 && host_integerp (TREE_OPERAND (e, 1), 0);
2abae5f1 168 else
d505015a
SP
169 return graphite_can_represent_init (TREE_OPERAND (e, 1))
170 && host_integerp (TREE_OPERAND (e, 0), 0);
2abae5f1
SP
171
172 case PLUS_EXPR:
173 case POINTER_PLUS_EXPR:
174 case MINUS_EXPR:
175 return graphite_can_represent_init (TREE_OPERAND (e, 0))
176 && graphite_can_represent_init (TREE_OPERAND (e, 1));
177
178 case NEGATE_EXPR:
179 case BIT_NOT_EXPR:
180 CASE_CONVERT:
181 case NON_LVALUE_EXPR:
182 return graphite_can_represent_init (TREE_OPERAND (e, 0));
183
184 default:
185 break;
186 }
187
188 return true;
189}
190
191/* Return true when SCEV can be represented in the polyhedral model.
192
193 An expression can be represented, if it can be expressed as an
194 affine expression. For loops (i, j) and parameters (m, n) all
195 affine expressions are of the form:
196
197 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
198
199 1 i + 20 j + (-2) m + 25
200
56f30f65 201 Something like "i * n" or "n * m" is not allowed. */
2abae5f1
SP
202
203static bool
56f30f65 204graphite_can_represent_scev (tree scev)
2abae5f1
SP
205{
206 if (chrec_contains_undetermined (scev))
207 return false;
208
4b216ab0
SP
209 switch (TREE_CODE (scev))
210 {
211 case PLUS_EXPR:
212 case MINUS_EXPR:
56f30f65
VK
213 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
214 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
2abae5f1 215
4b216ab0
SP
216 case MULT_EXPR:
217 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
218 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
219 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
220 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
c4c4983e 221 && graphite_can_represent_init (scev)
56f30f65
VK
222 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
223 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
2abae5f1 224
4b216ab0
SP
225 case POLYNOMIAL_CHREC:
226 /* Check for constant strides. With a non constant stride of
227 'n' we would have a value of 'iv * n'. Also check that the
228 initial value can represented: for example 'n * m' cannot be
229 represented. */
230 if (!evolution_function_right_is_integer_cst (scev)
231 || !graphite_can_represent_init (scev))
232 return false;
233
234 default:
235 break;
236 }
2abae5f1
SP
237
238 /* Only affine functions can be represented. */
239 if (!scev_is_linear_expression (scev))
240 return false;
241
d9ae7906 242 return true;
2abae5f1
SP
243}
244
245
246/* Return true when EXPR can be represented in the polyhedral model.
247
248 This means an expression can be represented, if it is linear with
249 respect to the loops and the strides are non parametric.
56f30f65 250 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
2abae5f1
SP
251 entry of the region we analyse. */
252
253static bool
254graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
56f30f65 255 tree expr)
2abae5f1
SP
256{
257 tree scev = analyze_scalar_evolution (loop, expr);
258
259 scev = instantiate_scev (scop_entry, loop, scev);
260
56f30f65 261 return graphite_can_represent_scev (scev);
2abae5f1
SP
262}
263
2abae5f1
SP
264/* Return true if the data references of STMT can be represented by
265 Graphite. */
266
267static bool
390b24dc
RG
268stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
269 gimple stmt)
2abae5f1
SP
270{
271 data_reference_p dr;
272 unsigned i;
273 int j;
274 bool res = true;
390b24dc
RG
275 VEC (data_reference_p, heap) *drs = NULL;
276 loop_p outer;
277
278 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
279 {
280 graphite_find_data_references_in_stmt (outer,
281 loop_containing_stmt (stmt),
282 stmt, &drs);
283
284 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
285 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
286 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
287 {
288 res = false;
289 goto done;
290 }
291
292 free_data_refs (drs);
293 drs = NULL;
294 }
2abae5f1
SP
295
296 done:
297 free_data_refs (drs);
298 return res;
299}
300
2abae5f1
SP
301/* Return true only when STMT is simple enough for being handled by
302 Graphite. This depends on SCOP_ENTRY, as the parameters are
303 initialized relatively to this basic block, the linear functions
304 are initialized to OUTERMOST_LOOP and BB is the place where we try
305 to evaluate the STMT. */
306
307static bool
308stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
309 gimple stmt, basic_block bb)
310{
311 loop_p loop = bb->loop_father;
312
313 gcc_assert (scop_entry);
314
315 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
316 Calls have side-effects, except those to const or pure
317 functions. */
318 if (gimple_has_volatile_ops (stmt)
319 || (gimple_code (stmt) == GIMPLE_CALL
320 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
321 || (gimple_code (stmt) == GIMPLE_ASM))
322 return false;
323
a3201927
AO
324 if (is_gimple_debug (stmt))
325 return true;
326
2abae5f1
SP
327 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
328 return false;
329
330 switch (gimple_code (stmt))
331 {
332 case GIMPLE_RETURN:
333 case GIMPLE_LABEL:
334 return true;
335
336 case GIMPLE_COND:
337 {
338 tree op;
339 ssa_op_iter op_iter;
340 enum tree_code code = gimple_cond_code (stmt);
341
342 /* We can handle all binary comparisons. Inequalities are
343 also supported as they can be represented with union of
344 polyhedra. */
345 if (!(code == LT_EXPR
346 || code == GT_EXPR
347 || code == LE_EXPR
348 || code == GE_EXPR
349 || code == EQ_EXPR
350 || code == NE_EXPR))
351 return false;
352
353 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
56f30f65 354 if (!graphite_can_represent_expr (scop_entry, loop, op)
2abae5f1
SP
355 /* We can not handle REAL_TYPE. Failed for pr39260. */
356 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
357 return false;
358
359 return true;
360 }
361
362 case GIMPLE_ASSIGN:
2abae5f1 363 case GIMPLE_CALL:
c8ae0613 364 return true;
2abae5f1
SP
365
366 default:
367 /* These nodes cut a new scope. */
368 return false;
369 }
370
371 return false;
372}
373
374/* Returns the statement of BB that contains a harmful operation: that
375 can be a function call with side effects, the induction variables
376 are not linear with respect to SCOP_ENTRY, etc. The current open
377 scop should end before this statement. The evaluation is limited using
378 OUTERMOST_LOOP as outermost loop that may change. */
379
380static gimple
381harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
382{
383 gimple_stmt_iterator gsi;
384
385 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
386 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
387 return gsi_stmt (gsi);
388
389 return NULL;
390}
391
45fc26fc
VK
392/* Return true if LOOP can be represented in the polyhedral
393 representation. This is evaluated taking SCOP_ENTRY and
394 OUTERMOST_LOOP in mind. */
2abae5f1
SP
395
396static bool
56f30f65 397graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
2abae5f1 398{
cbc1994b
SP
399 tree niter;
400 struct tree_niter_desc niter_desc;
2abae5f1 401
cbc1994b
SP
402 /* FIXME: For the moment, graphite cannot be used on loops that
403 iterate using induction variables that wrap. */
2abae5f1 404
cbc1994b
SP
405 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
406 && niter_desc.control.no_overflow
407 && (niter = number_of_latch_executions (loop))
408 && !chrec_contains_undetermined (niter)
409 && graphite_can_represent_expr (scop_entry, loop, niter);
2abae5f1
SP
410}
411
412/* Store information needed by scopdet_* functions. */
413
414struct scopdet_info
415{
416 /* Exit of the open scop would stop if the current BB is harmful. */
417 basic_block exit;
418
419 /* Where the next scop would start if the current BB is harmful. */
420 basic_block next;
421
422 /* The bb or one of its children contains open loop exits. That means
423 loop exit nodes that are not surrounded by a loop dominated by bb. */
424 bool exits;
425
426 /* The bb or one of its children contains only structures we can handle. */
427 bool difficult;
428};
429
430static struct scopdet_info build_scops_1 (basic_block, loop_p,
431 VEC (sd_region, heap) **, loop_p);
432
433/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
434 to SCOPS. TYPE is the gbb_type of BB. */
435
436static struct scopdet_info
437scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
438 VEC (sd_region, heap) **scops, gbb_type type)
439{
440 loop_p loop = bb->loop_father;
441 struct scopdet_info result;
442 gimple stmt;
443
444 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
445 basic_block entry_block = ENTRY_BLOCK_PTR;
446 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
447 result.difficult = (stmt != NULL);
448 result.exit = NULL;
449
450 switch (type)
451 {
452 case GBB_LAST:
453 result.next = NULL;
454 result.exits = false;
455
456 /* Mark bbs terminating a SESE region difficult, if they start
457 a condition. */
458 if (!single_succ_p (bb))
459 result.difficult = true;
460 else
461 result.exit = single_succ (bb);
462
463 break;
464
465 case GBB_SIMPLE:
466 result.next = single_succ (bb);
467 result.exits = false;
468 result.exit = single_succ (bb);
469 break;
470
471 case GBB_LOOP_SING_EXIT_HEADER:
472 {
473 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
474 struct scopdet_info sinfo;
475 edge exit_e = single_exit (loop);
476
477 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
478
56f30f65 479 if (!graphite_can_represent_loop (entry_block, loop))
2abae5f1
SP
480 result.difficult = true;
481
482 result.difficult |= sinfo.difficult;
483
484 /* Try again with another loop level. */
485 if (result.difficult
486 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
487 {
488 outermost_loop = loop;
489
490 VEC_free (sd_region, heap, regions);
491 regions = VEC_alloc (sd_region, heap, 3);
492
493 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
494
495 result = sinfo;
496 result.difficult = true;
497
498 if (sinfo.difficult)
499 move_sd_regions (&regions, scops);
500 else
501 {
502 sd_region open_scop;
503 open_scop.entry = bb;
504 open_scop.exit = exit_e->dest;
505 VEC_safe_push (sd_region, heap, *scops, &open_scop);
506 VEC_free (sd_region, heap, regions);
507 }
508 }
509 else
510 {
511 result.exit = exit_e->dest;
512 result.next = exit_e->dest;
513
514 /* If we do not dominate result.next, remove it. It's either
515 the EXIT_BLOCK_PTR, or another bb dominates it and will
516 call the scop detection for this bb. */
517 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
518 result.next = NULL;
519
520 if (exit_e->src->loop_father != loop)
521 result.next = NULL;
522
523 result.exits = false;
524
525 if (result.difficult)
526 move_sd_regions (&regions, scops);
527 else
528 VEC_free (sd_region, heap, regions);
529 }
530
531 break;
532 }
533
534 case GBB_LOOP_MULT_EXIT_HEADER:
535 {
536 /* XXX: For now we just do not join loops with multiple exits. If the
537 exits lead to the same bb it may be possible to join the loop. */
538 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
539 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
540 edge e;
541 int i;
542 build_scops_1 (bb, loop, &regions, loop);
543
544 /* Scan the code dominated by this loop. This means all bbs, that are
545 are dominated by a bb in this loop, but are not part of this loop.
546
547 The easiest case:
548 - The loop exit destination is dominated by the exit sources.
549
550 TODO: We miss here the more complex cases:
551 - The exit destinations are dominated by another bb inside
552 the loop.
553 - The loop dominates bbs, that are not exit destinations. */
ac47786e 554 FOR_EACH_VEC_ELT (edge, exits, i, e)
2abae5f1
SP
555 if (e->src->loop_father == loop
556 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
557 {
558 if (loop_outer (outermost_loop))
559 outermost_loop = loop_outer (outermost_loop);
560
561 /* Pass loop_outer to recognize e->dest as loop header in
562 build_scops_1. */
563 if (e->dest->loop_father->header == e->dest)
564 build_scops_1 (e->dest, outermost_loop, &regions,
565 loop_outer (e->dest->loop_father));
566 else
567 build_scops_1 (e->dest, outermost_loop, &regions,
568 e->dest->loop_father);
569 }
570
571 result.next = NULL;
572 result.exit = NULL;
573 result.difficult = true;
574 result.exits = false;
575 move_sd_regions (&regions, scops);
576 VEC_free (edge, heap, exits);
577 break;
578 }
579 case GBB_COND_HEADER:
580 {
581 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
582 struct scopdet_info sinfo;
583 VEC (basic_block, heap) *dominated;
584 int i;
585 basic_block dom_bb;
586 basic_block last_exit = NULL;
587 edge e;
588 result.exits = false;
589
590 /* First check the successors of BB, and check if it is
591 possible to join the different branches. */
ac47786e 592 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
2abae5f1
SP
593 {
594 /* Ignore loop exits. They will be handled after the loop
595 body. */
f4ce375d 596 if (loop_exits_to_bb_p (loop, e->dest))
2abae5f1
SP
597 {
598 result.exits = true;
599 continue;
600 }
601
602 /* Do not follow edges that lead to the end of the
603 conditions block. For example, in
604
605 | 0
606 | /|\
607 | 1 2 |
608 | | | |
609 | 3 4 |
610 | \|/
611 | 6
612
613 the edge from 0 => 6. Only check if all paths lead to
614 the same node 6. */
615
616 if (!single_pred_p (e->dest))
617 {
618 /* Check, if edge leads directly to the end of this
619 condition. */
620 if (!last_exit)
621 last_exit = e->dest;
622
623 if (e->dest != last_exit)
624 result.difficult = true;
625
626 continue;
627 }
628
629 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
630 {
631 result.difficult = true;
632 continue;
633 }
634
635 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
636
637 result.exits |= sinfo.exits;
638 result.difficult |= sinfo.difficult;
639
640 /* Checks, if all branches end at the same point.
641 If that is true, the condition stays joinable.
642 Have a look at the example above. */
643 if (sinfo.exit)
644 {
645 if (!last_exit)
646 last_exit = sinfo.exit;
647
648 if (sinfo.exit != last_exit)
649 result.difficult = true;
650 }
651 else
652 result.difficult = true;
653 }
654
655 if (!last_exit)
656 result.difficult = true;
657
658 /* Join the branches of the condition if possible. */
659 if (!result.exits && !result.difficult)
660 {
661 /* Only return a next pointer if we dominate this pointer.
662 Otherwise it will be handled by the bb dominating it. */
663 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
664 && last_exit != bb)
665 result.next = last_exit;
666 else
667 result.next = NULL;
668
669 result.exit = last_exit;
670
671 VEC_free (sd_region, heap, regions);
672 break;
673 }
674
675 /* Scan remaining bbs dominated by BB. */
676 dominated = get_dominated_by (CDI_DOMINATORS, bb);
677
ac47786e 678 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
2abae5f1
SP
679 {
680 /* Ignore loop exits: they will be handled after the loop body. */
681 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
682 < loop_depth (loop))
683 {
684 result.exits = true;
685 continue;
686 }
687
688 /* Ignore the bbs processed above. */
689 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
690 continue;
691
692 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
693 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
694 loop_outer (loop));
695 else
696 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
697
698 result.exits |= sinfo.exits;
699 result.difficult = true;
700 result.exit = NULL;
701 }
702
703 VEC_free (basic_block, heap, dominated);
704
705 result.next = NULL;
706 move_sd_regions (&regions, scops);
707
708 break;
709 }
710
711 default:
712 gcc_unreachable ();
713 }
714
715 return result;
716}
717
718/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
719 SCOPS. The analyse if a sd_region can be handled is based on the value
720 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
721 is the loop in which CURRENT is handled.
722
723 TODO: These functions got a little bit big. They definitely should be cleaned
724 up. */
725
726static struct scopdet_info
727build_scops_1 (basic_block current, loop_p outermost_loop,
728 VEC (sd_region, heap) **scops, loop_p loop)
729{
730 bool in_scop = false;
731 sd_region open_scop;
732 struct scopdet_info sinfo;
733
734 /* Initialize result. */
735 struct scopdet_info result;
736 result.exits = false;
737 result.difficult = false;
738 result.next = NULL;
739 result.exit = NULL;
740 open_scop.entry = NULL;
741 open_scop.exit = NULL;
742 sinfo.exit = NULL;
743
744 /* Loop over the dominance tree. If we meet a difficult bb, close
745 the current SCoP. Loop and condition header start a new layer,
746 and can only be added if all bbs in deeper layers are simple. */
747 while (current != NULL)
748 {
749 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
750 get_bb_type (current, loop));
751
752 if (!in_scop && !(sinfo.exits || sinfo.difficult))
753 {
754 open_scop.entry = current;
755 open_scop.exit = NULL;
756 in_scop = true;
757 }
758 else if (in_scop && (sinfo.exits || sinfo.difficult))
759 {
760 open_scop.exit = current;
761 VEC_safe_push (sd_region, heap, *scops, &open_scop);
762 in_scop = false;
763 }
764
765 result.difficult |= sinfo.difficult;
766 result.exits |= sinfo.exits;
767
768 current = sinfo.next;
769 }
770
771 /* Try to close open_scop, if we are still in an open SCoP. */
772 if (in_scop)
773 {
774 open_scop.exit = sinfo.exit;
775 gcc_assert (open_scop.exit);
776 VEC_safe_push (sd_region, heap, *scops, &open_scop);
777 }
778
779 result.exit = sinfo.exit;
780 return result;
781}
782
783/* Checks if a bb is contained in REGION. */
784
785static bool
786bb_in_sd_region (basic_block bb, sd_region *region)
787{
788 return bb_in_region (bb, region->entry, region->exit);
789}
790
791/* Returns the single entry edge of REGION, if it does not exits NULL. */
792
793static edge
794find_single_entry_edge (sd_region *region)
795{
796 edge e;
797 edge_iterator ei;
798 edge entry = NULL;
799
800 FOR_EACH_EDGE (e, ei, region->entry->preds)
801 if (!bb_in_sd_region (e->src, region))
802 {
803 if (entry)
804 {
805 entry = NULL;
806 break;
807 }
808
809 else
810 entry = e;
811 }
812
813 return entry;
814}
815
816/* Returns the single exit edge of REGION, if it does not exits NULL. */
817
818static edge
819find_single_exit_edge (sd_region *region)
820{
821 edge e;
822 edge_iterator ei;
823 edge exit = NULL;
824
825 FOR_EACH_EDGE (e, ei, region->exit->preds)
826 if (bb_in_sd_region (e->src, region))
827 {
828 if (exit)
829 {
830 exit = NULL;
831 break;
832 }
833
834 else
835 exit = e;
836 }
837
838 return exit;
839}
840
841/* Create a single entry edge for REGION. */
842
843static void
844create_single_entry_edge (sd_region *region)
845{
846 if (find_single_entry_edge (region))
847 return;
848
849 /* There are multiple predecessors for bb_3
850
851 | 1 2
852 | | /
853 | |/
854 | 3 <- entry
855 | |\
856 | | |
857 | 4 ^
858 | | |
859 | |/
860 | 5
861
862 There are two edges (1->3, 2->3), that point from outside into the region,
863 and another one (5->3), a loop latch, lead to bb_3.
864
865 We split bb_3.
866
867 | 1 2
868 | | /
869 | |/
870 |3.0
871 | |\ (3.0 -> 3.1) = single entry edge
872 |3.1 | <- entry
873 | | |
874 | | |
875 | 4 ^
876 | | |
877 | |/
878 | 5
879
880 If the loop is part of the SCoP, we have to redirect the loop latches.
881
882 | 1 2
883 | | /
884 | |/
885 |3.0
886 | | (3.0 -> 3.1) = entry edge
887 |3.1 <- entry
888 | |\
889 | | |
890 | 4 ^
891 | | |
892 | |/
893 | 5 */
894
895 if (region->entry->loop_father->header != region->entry
896 || dominated_by_p (CDI_DOMINATORS,
897 loop_latch_edge (region->entry->loop_father)->src,
898 region->exit))
899 {
900 edge forwarder = split_block_after_labels (region->entry);
901 region->entry = forwarder->dest;
902 }
903 else
904 /* This case is never executed, as the loop headers seem always to have a
905 single edge pointing from outside into the loop. */
906 gcc_unreachable ();
907
77a74ed7 908 gcc_checking_assert (find_single_entry_edge (region));
2abae5f1
SP
909}
910
911/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
912
913static bool
914sd_region_without_exit (edge e)
915{
916 sd_region *r = (sd_region *) e->aux;
917
918 if (r)
919 return r->exit == NULL;
920 else
921 return false;
922}
923
924/* Create a single exit edge for REGION. */
925
926static void
927create_single_exit_edge (sd_region *region)
928{
929 edge e;
930 edge_iterator ei;
931 edge forwarder = NULL;
932 basic_block exit;
933
2abae5f1
SP
934 /* We create a forwarder bb (5) for all edges leaving this region
935 (3->5, 4->5). All other edges leading to the same bb, are moved
936 to a new bb (6). If these edges where part of another region (2->5)
937 we update the region->exit pointer, of this region.
938
939 To identify which edge belongs to which region we depend on the e->aux
940 pointer in every edge. It points to the region of the edge or to NULL,
941 if the edge is not part of any region.
942
943 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
944 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
945 5 <- exit
946
947 changes to
948
949 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
950 | | \/ 3->5 no region, 4->5 no region,
951 | | 5
952 \| / 5->6 region->exit = 6
953 6
954
955 Now there is only a single exit edge (5->6). */
956 exit = region->exit;
957 region->exit = NULL;
958 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
959
960 /* Unmark the edges, that are no longer exit edges. */
961 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
962 if (e->aux)
963 e->aux = NULL;
964
965 /* Mark the new exit edge. */
966 single_succ_edge (forwarder->src)->aux = region;
967
968 /* Update the exit bb of all regions, where exit edges lead to
969 forwarder->dest. */
970 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
971 if (e->aux)
972 ((sd_region *) e->aux)->exit = forwarder->dest;
973
77a74ed7 974 gcc_checking_assert (find_single_exit_edge (region));
2abae5f1
SP
975}
976
977/* Unmark the exit edges of all REGIONS.
978 See comment in "create_single_exit_edge". */
979
980static void
981unmark_exit_edges (VEC (sd_region, heap) *regions)
982{
983 int i;
984 sd_region *s;
985 edge e;
986 edge_iterator ei;
987
ac47786e 988 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
989 FOR_EACH_EDGE (e, ei, s->exit->preds)
990 e->aux = NULL;
991}
992
993
994/* Mark the exit edges of all REGIONS.
995 See comment in "create_single_exit_edge". */
996
997static void
998mark_exit_edges (VEC (sd_region, heap) *regions)
999{
1000 int i;
1001 sd_region *s;
1002 edge e;
1003 edge_iterator ei;
1004
ac47786e 1005 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
1006 FOR_EACH_EDGE (e, ei, s->exit->preds)
1007 if (bb_in_sd_region (e->src, s))
1008 e->aux = s;
1009}
1010
1011/* Create for all scop regions a single entry and a single exit edge. */
1012
1013static void
1014create_sese_edges (VEC (sd_region, heap) *regions)
1015{
1016 int i;
1017 sd_region *s;
1018
ac47786e 1019 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
1020 create_single_entry_edge (s);
1021
1022 mark_exit_edges (regions);
1023
ac47786e 1024 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
4caa8e21
SP
1025 /* Don't handle multiple edges exiting the function. */
1026 if (!find_single_exit_edge (s)
1027 && s->exit != EXIT_BLOCK_PTR)
1028 create_single_exit_edge (s);
2abae5f1
SP
1029
1030 unmark_exit_edges (regions);
1031
cc360b36 1032 calculate_dominance_info (CDI_DOMINATORS);
2abae5f1
SP
1033 fix_loop_structure (NULL);
1034
1035#ifdef ENABLE_CHECKING
1036 verify_loop_structure ();
2abae5f1
SP
1037 verify_ssa (false);
1038#endif
1039}
1040
1041/* Create graphite SCoPs from an array of scop detection REGIONS. */
1042
1043static void
1044build_graphite_scops (VEC (sd_region, heap) *regions,
1045 VEC (scop_p, heap) **scops)
1046{
1047 int i;
1048 sd_region *s;
1049
ac47786e 1050 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
1051 {
1052 edge entry = find_single_entry_edge (s);
1053 edge exit = find_single_exit_edge (s);
4caa8e21
SP
1054 scop_p scop;
1055
1056 if (!exit)
1057 continue;
1058
1059 scop = new_scop (new_sese (entry, exit));
2abae5f1
SP
1060 VEC_safe_push (scop_p, heap, *scops, scop);
1061
1062 /* Are there overlapping SCoPs? */
1063#ifdef ENABLE_CHECKING
1064 {
1065 int j;
1066 sd_region *s2;
1067
ac47786e 1068 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
2abae5f1
SP
1069 if (s != s2)
1070 gcc_assert (!bb_in_sd_region (s->entry, s2));
1071 }
1072#endif
1073 }
1074}
1075
1076/* Returns true when BB contains only close phi nodes. */
1077
1078static bool
1079contains_only_close_phi_nodes (basic_block bb)
1080{
1081 gimple_stmt_iterator gsi;
1082
1083 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1084 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1085 return false;
1086
1087 return true;
1088}
1089
1090/* Print statistics for SCOP to FILE. */
1091
1092static void
1093print_graphite_scop_statistics (FILE* file, scop_p scop)
1094{
1095 long n_bbs = 0;
1096 long n_loops = 0;
1097 long n_stmts = 0;
1098 long n_conditions = 0;
1099 long n_p_bbs = 0;
1100 long n_p_loops = 0;
1101 long n_p_stmts = 0;
1102 long n_p_conditions = 0;
1103
1104 basic_block bb;
1105
1106 FOR_ALL_BB (bb)
1107 {
1108 gimple_stmt_iterator psi;
1109 loop_p loop = bb->loop_father;
1110
1111 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1112 continue;
1113
1114 n_bbs++;
1115 n_p_bbs += bb->count;
1116
1117 if (VEC_length (edge, bb->succs) > 1)
1118 {
1119 n_conditions++;
1120 n_p_conditions += bb->count;
1121 }
1122
1123 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1124 {
1125 n_stmts++;
1126 n_p_stmts += bb->count;
1127 }
1128
1129 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1130 {
1131 n_loops++;
1132 n_p_loops += bb->count;
1133 }
1134
1135 }
1136
1137 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1138 fprintf (file, "BBS:%ld, ", n_bbs);
1139 fprintf (file, "LOOPS:%ld, ", n_loops);
1140 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1141 fprintf (file, "STMTS:%ld)\n", n_stmts);
1142 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1143 fprintf (file, "BBS:%ld, ", n_p_bbs);
1144 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1145 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1146 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1147}
1148
1149/* Print statistics for SCOPS to FILE. */
1150
1151static void
1152print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1153{
1154 int i;
1155 scop_p scop;
1156
ac47786e 1157 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
2abae5f1
SP
1158 print_graphite_scop_statistics (file, scop);
1159}
1160
2abae5f1
SP
1161/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1162
1163 Example:
1164
1165 for (i |
1166 { |
1167 for (j | SCoP 1
1168 for (k |
1169 } |
1170
1171 * SCoP frontier, as this line is not surrounded by any loop. *
1172
1173 for (l | SCoP 2
1174
1175 This is necessary as scalar evolution and parameter detection need a
1176 outermost loop to initialize parameters correctly.
1177
1178 TODO: FIX scalar evolution and parameter detection to allow more flexible
1179 SCoP frontiers. */
1180
1181static void
1182limit_scops (VEC (scop_p, heap) **scops)
1183{
1184 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1185
1186 int i;
1187 scop_p scop;
1188
ac47786e 1189 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
2abae5f1
SP
1190 {
1191 int j;
1192 loop_p loop;
1193 sese region = SCOP_REGION (scop);
2abae5f1
SP
1194 build_sese_loop_nests (region);
1195
ac47786e 1196 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
2abae5f1
SP
1197 if (!loop_in_sese_p (loop_outer (loop), region)
1198 && single_exit (loop))
1199 {
1200 sd_region open_scop;
1201 open_scop.entry = loop->header;
1202 open_scop.exit = single_exit (loop)->dest;
1203
1204 /* This is a hack on top of the limit_scops hack. The
1205 limit_scops hack should disappear all together. */
1206 if (single_succ_p (open_scop.exit)
1207 && contains_only_close_phi_nodes (open_scop.exit))
1208 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1209
1210 VEC_safe_push (sd_region, heap, regions, &open_scop);
1211 }
1212 }
1213
7a521ff2 1214 free_scops (*scops);
2abae5f1
SP
1215 *scops = VEC_alloc (scop_p, heap, 3);
1216
1217 create_sese_edges (regions);
1218 build_graphite_scops (regions, scops);
1219 VEC_free (sd_region, heap, regions);
1220}
1221
3a292d59
SP
1222/* Returns true when P1 and P2 are close phis with the same
1223 argument. */
1224
1225static inline bool
1226same_close_phi_node (gimple p1, gimple p2)
1227{
1228 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1229 gimple_phi_arg_def (p2, 0), 0);
1230}
1231
1232/* Remove the close phi node at GSI and replace its rhs with the rhs
1233 of PHI. */
1234
1235static void
1236remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1237{
1238 gimple use_stmt;
1239 use_operand_p use_p;
1240 imm_use_iterator imm_iter;
1241 tree res = gimple_phi_result (phi);
1242 tree def = gimple_phi_result (gsi_stmt (*gsi));
1243
1244 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1245
1246 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1247 {
1248 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1249 SET_USE (use_p, res);
1250
1251 update_stmt (use_stmt);
99e2796b
BS
1252
1253 /* It is possible that we just created a duplicate close-phi
1254 for an already-processed containing loop. Check for this
1255 case and clean it up. */
1256 if (gimple_code (use_stmt) == GIMPLE_PHI
1257 && gimple_phi_num_args (use_stmt) == 1)
1258 make_close_phi_nodes_unique (gimple_bb (use_stmt));
3a292d59
SP
1259 }
1260
1261 remove_phi_node (gsi, true);
1262}
1263
1264/* Removes all the close phi duplicates from BB. */
1265
1266static void
1267make_close_phi_nodes_unique (basic_block bb)
1268{
1269 gimple_stmt_iterator psi;
1270
1271 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1272 {
1273 gimple_stmt_iterator gsi = psi;
1274 gimple phi = gsi_stmt (psi);
1275
1276 /* At this point, PHI should be a close phi in normal form. */
1277 gcc_assert (gimple_phi_num_args (phi) == 1);
1278
1279 /* Iterate over the next phis and remove duplicates. */
1280 gsi_next (&gsi);
1281 while (!gsi_end_p (gsi))
1282 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1283 remove_duplicate_close_phi (phi, &gsi);
1284 else
1285 gsi_next (&gsi);
1286 }
1287}
1288
2abae5f1
SP
1289/* Transforms LOOP to the canonical loop closed SSA form. */
1290
1291static void
1292canonicalize_loop_closed_ssa (loop_p loop)
1293{
1294 edge e = single_exit (loop);
1295 basic_block bb;
1296
1297 if (!e || e->flags & EDGE_ABNORMAL)
1298 return;
1299
1300 bb = e->dest;
1301
1302 if (VEC_length (edge, bb->preds) == 1)
3a292d59
SP
1303 {
1304 e = split_block_after_labels (bb);
1305 make_close_phi_nodes_unique (e->src);
1306 }
2abae5f1
SP
1307 else
1308 {
1309 gimple_stmt_iterator psi;
1310 basic_block close = split_edge (e);
1311
1312 e = single_succ_edge (close);
1313
1314 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1315 {
1316 gimple phi = gsi_stmt (psi);
1317 unsigned i;
1318
1319 for (i = 0; i < gimple_phi_num_args (phi); i++)
1320 if (gimple_phi_arg_edge (phi, i) == e)
1321 {
1322 tree res, arg = gimple_phi_arg_def (phi, i);
1323 use_operand_p use_p;
1324 gimple close_phi;
1325
1326 if (TREE_CODE (arg) != SSA_NAME)
1327 continue;
1328
dcc748dd
RG
1329 close_phi = create_phi_node (NULL_TREE, close);
1330 res = create_new_def_for (arg, close_phi,
2abae5f1
SP
1331 gimple_phi_result_ptr (close_phi));
1332 add_phi_arg (close_phi, arg,
1333 gimple_phi_arg_edge (close_phi, 0),
9e227d60 1334 UNKNOWN_LOCATION);
2abae5f1
SP
1335 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1336 replace_exp (use_p, res);
1337 update_stmt (phi);
1338 }
1339 }
3a292d59
SP
1340
1341 make_close_phi_nodes_unique (close);
2abae5f1 1342 }
1c3ba85b
SP
1343
1344 /* The code above does not properly handle changes in the post dominance
1345 information (yet). */
1346 free_dominance_info (CDI_POST_DOMINATORS);
2abae5f1
SP
1347}
1348
1349/* Converts the current loop closed SSA form to a canonical form
1350 expected by the Graphite code generation.
1351
1352 The loop closed SSA form has the following invariant: a variable
1353 defined in a loop that is used outside the loop appears only in the
1354 phi nodes in the destination of the loop exit. These phi nodes are
1355 called close phi nodes.
1356
1357 The canonical loop closed SSA form contains the extra invariants:
1358
1359 - when the loop contains only one exit, the close phi nodes contain
1360 only one argument. That implies that the basic block that contains
1361 the close phi nodes has only one predecessor, that is a basic block
1362 in the loop.
1363
1364 - the basic block containing the close phi nodes does not contain
1365 other statements.
3a292d59
SP
1366
1367 - there exist only one phi node per definition in the loop.
2abae5f1
SP
1368*/
1369
1370static void
1371canonicalize_loop_closed_ssa_form (void)
1372{
1373 loop_iterator li;
1374 loop_p loop;
1375
1376#ifdef ENABLE_CHECKING
a3b9e73c 1377 verify_loop_closed_ssa (true);
2abae5f1
SP
1378#endif
1379
1380 FOR_EACH_LOOP (li, loop, 0)
1381 canonicalize_loop_closed_ssa (loop);
1382
1383 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1384 update_ssa (TODO_update_ssa);
1385
1386#ifdef ENABLE_CHECKING
a3b9e73c 1387 verify_loop_closed_ssa (true);
2abae5f1
SP
1388#endif
1389}
1390
1391/* Find Static Control Parts (SCoP) in the current function and pushes
1392 them to SCOPS. */
1393
1394void
1395build_scops (VEC (scop_p, heap) **scops)
1396{
1397 struct loop *loop = current_loops->tree_root;
1398 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1399
1400 canonicalize_loop_closed_ssa_form ();
1401 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
4caa8e21 1402 &regions, loop);
2abae5f1
SP
1403 create_sese_edges (regions);
1404 build_graphite_scops (regions, scops);
1405
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 print_graphite_statistics (dump_file, *scops);
1408
1409 limit_scops (scops);
1410 VEC_free (sd_region, heap, regions);
1411
1412 if (dump_file && (dump_flags & TDF_DETAILS))
1413 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1414 VEC_length (scop_p, *scops));
1415}
1416
afae0207
SP
1417/* Pretty print to FILE all the SCoPs in DOT format and mark them with
1418 different colors. If there are not enough colors, paint the
1419 remaining SCoPs in gray.
1420
2abae5f1 1421 Special nodes:
afae0207
SP
1422 - "*" after the node number denotes the entry of a SCoP,
1423 - "#" after the node number denotes the exit of a SCoP,
1424 - "()" around the node number denotes the entry or the
1425 exit nodes of the SCOP. These are not part of SCoP. */
2abae5f1
SP
1426
1427static void
1428dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1429{
1430 basic_block bb;
1431 edge e;
1432 edge_iterator ei;
1433 scop_p scop;
1434 const char* color;
1435 int i;
1436
1437 /* Disable debugging while printing graph. */
1438 int tmp_dump_flags = dump_flags;
1439 dump_flags = 0;
1440
1441 fprintf (file, "digraph all {\n");
1442
1443 FOR_ALL_BB (bb)
1444 {
1445 int part_of_scop = false;
1446
1447 /* Use HTML for every bb label. So we are able to print bbs
1448 which are part of two different SCoPs, with two different
1449 background colors. */
1450 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1451 bb->index);
1452 fprintf (file, "CELLSPACING=\"0\">\n");
1453
1454 /* Select color for SCoP. */
ac47786e 1455 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
2abae5f1
SP
1456 {
1457 sese region = SCOP_REGION (scop);
1458 if (bb_in_sese_p (bb, region)
1459 || (SESE_EXIT_BB (region) == bb)
1460 || (SESE_ENTRY_BB (region) == bb))
1461 {
1462 switch (i % 17)
1463 {
1464 case 0: /* red */
1465 color = "#e41a1c";
1466 break;
1467 case 1: /* blue */
1468 color = "#377eb8";
1469 break;
1470 case 2: /* green */
1471 color = "#4daf4a";
1472 break;
1473 case 3: /* purple */
1474 color = "#984ea3";
1475 break;
1476 case 4: /* orange */
1477 color = "#ff7f00";
1478 break;
1479 case 5: /* yellow */
1480 color = "#ffff33";
1481 break;
1482 case 6: /* brown */
1483 color = "#a65628";
1484 break;
1485 case 7: /* rose */
1486 color = "#f781bf";
1487 break;
1488 case 8:
1489 color = "#8dd3c7";
1490 break;
1491 case 9:
1492 color = "#ffffb3";
1493 break;
1494 case 10:
1495 color = "#bebada";
1496 break;
1497 case 11:
1498 color = "#fb8072";
1499 break;
1500 case 12:
1501 color = "#80b1d3";
1502 break;
1503 case 13:
1504 color = "#fdb462";
1505 break;
1506 case 14:
1507 color = "#b3de69";
1508 break;
1509 case 15:
1510 color = "#fccde5";
1511 break;
1512 case 16:
1513 color = "#bc80bd";
1514 break;
1515 default: /* gray */
1516 color = "#999999";
1517 }
1518
1519 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1520
1521 if (!bb_in_sese_p (bb, region))
1522 fprintf (file, " (");
1523
1524 if (bb == SESE_ENTRY_BB (region)
1525 && bb == SESE_EXIT_BB (region))
1526 fprintf (file, " %d*# ", bb->index);
1527 else if (bb == SESE_ENTRY_BB (region))
1528 fprintf (file, " %d* ", bb->index);
1529 else if (bb == SESE_EXIT_BB (region))
1530 fprintf (file, " %d# ", bb->index);
1531 else
1532 fprintf (file, " %d ", bb->index);
1533
1534 if (!bb_in_sese_p (bb,region))
1535 fprintf (file, ")");
1536
1537 fprintf (file, "</TD></TR>\n");
1538 part_of_scop = true;
1539 }
1540 }
1541
1542 if (!part_of_scop)
1543 {
1544 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1545 fprintf (file, " %d </TD></TR>\n", bb->index);
1546 }
1547 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1548 }
1549
1550 FOR_ALL_BB (bb)
1551 {
1552 FOR_EACH_EDGE (e, ei, bb->succs)
1553 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1554 }
1555
1556 fputs ("}\n\n", file);
1557
1558 /* Enable debugging again. */
1559 dump_flags = tmp_dump_flags;
1560}
1561
1562/* Display all SCoPs using dotty. */
1563
1f424006 1564DEBUG_FUNCTION void
2abae5f1
SP
1565dot_all_scops (VEC (scop_p, heap) *scops)
1566{
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569#if 0
1570 int x;
1571 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1572 gcc_assert (stream);
1573
1574 dot_all_scops_1 (stream, scops);
1575 fclose (stream);
1576
4c8f3c48 1577 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1578#else
1579 dot_all_scops_1 (stderr, scops);
1580#endif
1581}
1582
1583/* Display all SCoPs using dotty. */
1584
1f424006 1585DEBUG_FUNCTION void
2abae5f1
SP
1586dot_scop (scop_p scop)
1587{
1588 VEC (scop_p, heap) *scops = NULL;
1589
1590 if (scop)
1591 VEC_safe_push (scop_p, heap, scops, scop);
1592
1593 /* When debugging, enable the following code. This cannot be used
1594 in production compilers because it calls "system". */
1595#if 0
1596 {
1597 int x;
1598 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1599 gcc_assert (stream);
1600
1601 dot_all_scops_1 (stream, scops);
1602 fclose (stream);
4c8f3c48 1603 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1604 }
1605#else
1606 dot_all_scops_1 (stderr, scops);
1607#endif
1608
1609 VEC_free (scop_p, heap, scops);
1610}
1611
1612#endif