]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-sese-to-poly.c
* configure.ac: Eliminate ClooG installation dependency.
[thirdparty/gcc.git] / gcc / graphite-sese-to-poly.c
CommitLineData
c6bb733d 1/* Conversion of SESE regions to Polyhedra.
3aea1f79 2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
c6bb733d 3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
87e20041 22
429cca51 23#ifdef HAVE_isl
87e20041 24#include <isl/set.h>
25#include <isl/map.h>
26#include <isl/union_map.h>
27#include <isl/constraint.h>
28#include <isl/aff.h>
ea48ac01 29#include <isl/val.h>
30/* For C++ linkage of C functions.
31 Missing from isl/val_gmp.h in isl 0.12 versions.
32 Appearing in isl/val_gmp.h in isl 0.13.
33 To be removed when passing to isl 0.13. */
34#if defined(__cplusplus)
35extern "C" {
36#endif
37#include <isl/val_gmp.h>
38#if defined(__cplusplus)
39}
40#endif
429cca51 41#ifdef HAVE_cloog
87e20041 42#include <cloog/cloog.h>
43#include <cloog/cloog.h>
44#include <cloog/isl/domain.h>
45#endif
429cca51 46#endif
87e20041 47
c6bb733d 48#include "system.h"
49#include "coretypes.h"
41a8aa41 50#include "tree.h"
bc61cadb 51#include "basic-block.h"
52#include "tree-ssa-alias.h"
53#include "internal-fn.h"
54#include "gimple-expr.h"
55#include "is-a.h"
073c1fd5 56#include "gimple.h"
dcf1a1ec 57#include "gimple-iterator.h"
e795d6e1 58#include "gimplify.h"
59#include "gimplify-me.h"
073c1fd5 60#include "gimple-ssa.h"
61#include "tree-cfg.h"
62#include "tree-phinodes.h"
63#include "ssa-iterators.h"
9ed99284 64#include "stringpool.h"
073c1fd5 65#include "tree-ssanames.h"
05d9c18a 66#include "tree-ssa-loop-manip.h"
67#include "tree-ssa-loop-niter.h"
073c1fd5 68#include "tree-ssa-loop.h"
69#include "tree-into-ssa.h"
f0a18dd2 70#include "tree-pass.h"
c6bb733d 71#include "cfgloop.h"
72#include "tree-chrec.h"
73#include "tree-data-ref.h"
74#include "tree-scalar-evolution.h"
c6bb733d 75#include "domwalk.h"
c6bb733d 76#include "sese.h"
f8ba3083 77#include "tree-ssa-propagate.h"
c6bb733d 78
429cca51 79#ifdef HAVE_isl
3ebca59c 80#include "expr.h"
c6bb733d 81#include "graphite-poly.h"
c6bb733d 82#include "graphite-sese-to-poly.h"
83
87e20041 84
85/* Assigns to RES the value of the INTEGER_CST T. */
86
87static inline void
88tree_int_to_gmp (tree t, mpz_t res)
89{
ab2c1de8 90 wi::to_mpz (t, res, TYPE_SIGN (TREE_TYPE (t)));
87e20041 91}
92
9d828157 93/* Returns the index of the PHI argument defined in the outermost
94 loop. */
c6bb733d 95
96static size_t
9d828157 97phi_arg_in_outermost_loop (gimple phi)
c6bb733d 98{
99 loop_p loop = gimple_bb (phi)->loop_father;
9d828157 100 size_t i, res = 0;
c6bb733d 101
102 for (i = 0; i < gimple_phi_num_args (phi); i++)
103 if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
9d828157 104 {
105 loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
106 res = i;
107 }
c6bb733d 108
9d828157 109 return res;
c6bb733d 110}
111
112/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
113 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
114
115static void
116remove_simple_copy_phi (gimple_stmt_iterator *psi)
117{
118 gimple phi = gsi_stmt (*psi);
119 tree res = gimple_phi_result (phi);
9d828157 120 size_t entry = phi_arg_in_outermost_loop (phi);
c6bb733d 121 tree init = gimple_phi_arg_def (phi, entry);
122 gimple stmt = gimple_build_assign (res, init);
123 edge e = gimple_phi_arg_edge (phi, entry);
124
125 remove_phi_node (psi, false);
126 gsi_insert_on_edge_immediate (e, stmt);
c6bb733d 127}
128
129/* Removes an invariant phi node at position PSI by inserting on the
130 loop ENTRY edge the assignment RES = INIT. */
131
132static void
133remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
134{
135 gimple phi = gsi_stmt (*psi);
136 loop_p loop = loop_containing_stmt (phi);
137 tree res = gimple_phi_result (phi);
138 tree scev = scalar_evolution_in_region (region, loop, res);
9d828157 139 size_t entry = phi_arg_in_outermost_loop (phi);
c6bb733d 140 edge e = gimple_phi_arg_edge (phi, entry);
141 tree var;
142 gimple stmt;
e3a19533 143 gimple_seq stmts = NULL;
c6bb733d 144
145 if (tree_contains_chrecs (scev, NULL))
146 scev = gimple_phi_arg_def (phi, entry);
147
148 var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
149 stmt = gimple_build_assign (res, var);
150 remove_phi_node (psi, false);
151
e3a19533 152 gimple_seq_add_stmt (&stmts, stmt);
c6bb733d 153 gsi_insert_seq_on_edge (e, stmts);
154 gsi_commit_edge_inserts ();
155 SSA_NAME_DEF_STMT (res) = stmt;
156}
157
158/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
159
160static inline bool
161simple_copy_phi_p (gimple phi)
162{
163 tree res;
164
165 if (gimple_phi_num_args (phi) != 2)
166 return false;
167
168 res = gimple_phi_result (phi);
169 return (res == gimple_phi_arg_def (phi, 0)
170 || res == gimple_phi_arg_def (phi, 1));
171}
172
173/* Returns true when the phi node at position PSI is a reduction phi
174 node in REGION. Otherwise moves the pointer PSI to the next phi to
175 be considered. */
176
177static bool
178reduction_phi_p (sese region, gimple_stmt_iterator *psi)
179{
180 loop_p loop;
c6bb733d 181 gimple phi = gsi_stmt (*psi);
182 tree res = gimple_phi_result (phi);
183
c6bb733d 184 loop = loop_containing_stmt (phi);
185
186 if (simple_copy_phi_p (phi))
187 {
5d92ac74 188 /* PRE introduces phi nodes like these, for an example,
c6bb733d 189 see id-5.f in the fortran graphite testsuite:
190
191 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
192 */
193 remove_simple_copy_phi (psi);
194 return false;
195 }
196
15822b8e 197 if (scev_analyzable_p (res, region))
c6bb733d 198 {
15822b8e 199 tree scev = scalar_evolution_in_region (region, loop, res);
200
201 if (evolution_function_is_invariant_p (scev, loop->num))
30105622 202 remove_invariant_phi (region, psi);
203 else
204 gsi_next (psi);
205
c6bb733d 206 return false;
207 }
208
c6bb733d 209 /* All the other cases are considered reductions. */
210 return true;
211}
212
c6bb733d 213/* Store the GRAPHITE representation of BB. */
214
215static gimple_bb_p
f1f41a6c 216new_gimple_bb (basic_block bb, vec<data_reference_p> drs)
c6bb733d 217{
218 struct gimple_bb *gbb;
219
220 gbb = XNEW (struct gimple_bb);
221 bb->aux = gbb;
222 GBB_BB (gbb) = bb;
223 GBB_DATA_REFS (gbb) = drs;
f1f41a6c 224 GBB_CONDITIONS (gbb).create (0);
225 GBB_CONDITION_CASES (gbb).create (0);
c6bb733d 226
227 return gbb;
228}
229
ae11f03b 230static void
f1f41a6c 231free_data_refs_aux (vec<data_reference_p> datarefs)
ae11f03b 232{
233 unsigned int i;
234 struct data_reference *dr;
1a95516e 235
f1f41a6c 236 FOR_EACH_VEC_ELT (datarefs, i, dr)
1a95516e 237 if (dr->aux)
ae11f03b 238 {
e9a3f95f 239 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1a95516e 240
dd045aee 241 free (bap->alias_set);
1a95516e 242
e9a3f95f 243 free (bap);
ae11f03b 244 dr->aux = NULL;
245 }
246}
c6bb733d 247/* Frees GBB. */
248
249static void
250free_gimple_bb (struct gimple_bb *gbb)
251{
ae11f03b 252 free_data_refs_aux (GBB_DATA_REFS (gbb));
c6bb733d 253 free_data_refs (GBB_DATA_REFS (gbb));
254
f1f41a6c 255 GBB_CONDITIONS (gbb).release ();
256 GBB_CONDITION_CASES (gbb).release ();
c6bb733d 257 GBB_BB (gbb)->aux = 0;
258 XDELETE (gbb);
259}
260
261/* Deletes all gimple bbs in SCOP. */
262
263static void
264remove_gbbs_in_scop (scop_p scop)
265{
266 int i;
267 poly_bb_p pbb;
268
f1f41a6c 269 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
c6bb733d 270 free_gimple_bb (PBB_BLACK_BOX (pbb));
271}
272
273/* Deletes all scops in SCOPS. */
274
275void
f1f41a6c 276free_scops (vec<scop_p> scops)
c6bb733d 277{
278 int i;
279 scop_p scop;
280
f1f41a6c 281 FOR_EACH_VEC_ELT (scops, i, scop)
c6bb733d 282 {
283 remove_gbbs_in_scop (scop);
284 free_sese (SCOP_REGION (scop));
285 free_scop (scop);
286 }
287
f1f41a6c 288 scops.release ();
c6bb733d 289}
290
221a697e 291/* Same as outermost_loop_in_sese, returns the outermost loop
292 containing BB in REGION, but makes sure that the returned loop
293 belongs to the REGION, and so this returns the first loop in the
294 REGION when the loop containing BB does not belong to REGION. */
295
296static loop_p
297outermost_loop_in_sese_1 (sese region, basic_block bb)
298{
299 loop_p nest = outermost_loop_in_sese (region, bb);
300
301 if (loop_in_sese_p (nest, region))
302 return nest;
303
304 /* When the basic block BB does not belong to a loop in the region,
305 return the first loop in the region. */
306 nest = nest->inner;
307 while (nest)
308 if (loop_in_sese_p (nest, region))
309 break;
310 else
311 nest = nest->next;
312
313 gcc_assert (nest);
314 return nest;
315}
316
c6bb733d 317/* Generates a polyhedral black box only if the bb contains interesting
318 information. */
319
8c6b3774 320static gimple_bb_p
321try_generate_gimple_bb (scop_p scop, basic_block bb)
c6bb733d 322{
f1f41a6c 323 vec<data_reference_p> drs;
324 drs.create (5);
221a697e 325 sese region = SCOP_REGION (scop);
326 loop_p nest = outermost_loop_in_sese_1 (region, bb);
c6bb733d 327 gimple_stmt_iterator gsi;
328
329 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3f6c0a40 330 {
331 gimple stmt = gsi_stmt (gsi);
221a697e 332 loop_p loop;
333
334 if (is_gimple_debug (stmt))
335 continue;
336
337 loop = loop_containing_stmt (stmt);
338 if (!loop_in_sese_p (loop, region))
339 loop = nest;
340
341 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
3f6c0a40 342 }
c6bb733d 343
8c6b3774 344 return new_gimple_bb (bb, drs);
c6bb733d 345}
346
347/* Returns true if all predecessors of BB, that are not dominated by BB, are
348 marked in MAP. The predecessors dominated by BB are loop latches and will
349 be handled after BB. */
350
351static bool
352all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
353{
354 edge e;
355 edge_iterator ei;
356
357 FOR_EACH_EDGE (e, ei, bb->preds)
08b7917c 358 if (!bitmap_bit_p (map, e->src->index)
c6bb733d 359 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
360 return false;
361
362 return true;
363}
364
365/* Compare the depth of two basic_block's P1 and P2. */
366
367static int
368compare_bb_depths (const void *p1, const void *p2)
369{
370 const_basic_block const bb1 = *(const_basic_block const*)p1;
371 const_basic_block const bb2 = *(const_basic_block const*)p2;
372 int d1 = loop_depth (bb1->loop_father);
373 int d2 = loop_depth (bb2->loop_father);
374
375 if (d1 < d2)
376 return 1;
377
378 if (d1 > d2)
379 return -1;
380
381 return 0;
382}
383
384/* Sort the basic blocks from DOM such that the first are the ones at
385 a deepest loop level. */
386
387static void
f1f41a6c 388graphite_sort_dominated_info (vec<basic_block> dom)
c6bb733d 389{
f1f41a6c 390 dom.qsort (compare_bb_depths);
c6bb733d 391}
392
393/* Recursive helper function for build_scops_bbs. */
394
395static void
8c6b3774 396build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
c6bb733d 397{
398 sese region = SCOP_REGION (scop);
f1f41a6c 399 vec<basic_block> dom;
8c6b3774 400 poly_bb_p pbb;
c6bb733d 401
08b7917c 402 if (bitmap_bit_p (visited, bb->index)
c6bb733d 403 || !bb_in_sese_p (bb, region))
404 return;
405
8c6b3774 406 pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
f1f41a6c 407 SCOP_BBS (scop).safe_push (pbb);
08b7917c 408 bitmap_set_bit (visited, bb->index);
c6bb733d 409
410 dom = get_dominated_by (CDI_DOMINATORS, bb);
411
f1f41a6c 412 if (!dom.exists ())
c6bb733d 413 return;
414
415 graphite_sort_dominated_info (dom);
416
f1f41a6c 417 while (!dom.is_empty ())
c6bb733d 418 {
419 int i;
420 basic_block dom_bb;
421
f1f41a6c 422 FOR_EACH_VEC_ELT (dom, i, dom_bb)
c6bb733d 423 if (all_non_dominated_preds_marked_p (dom_bb, visited))
424 {
8c6b3774 425 build_scop_bbs_1 (scop, visited, dom_bb);
f1f41a6c 426 dom.unordered_remove (i);
c6bb733d 427 break;
428 }
429 }
430
f1f41a6c 431 dom.release ();
c6bb733d 432}
433
434/* Gather the basic blocks belonging to the SCOP. */
435
8c6b3774 436static void
437build_scop_bbs (scop_p scop)
c6bb733d 438{
fe672ac0 439 sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
c6bb733d 440 sese region = SCOP_REGION (scop);
441
53c5d9d4 442 bitmap_clear (visited);
8c6b3774 443 build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
c6bb733d 444 sbitmap_free (visited);
445}
446
87e20041 447/* Return an ISL identifier for the polyhedral basic block PBB. */
448
449static isl_id *
450isl_id_for_pbb (scop_p s, poly_bb_p pbb)
451{
452 char name[50];
453 snprintf (name, sizeof (name), "S_%d", pbb_index (pbb));
454 return isl_id_alloc (s->ctx, name, pbb);
455}
456
c6bb733d 457/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
458 We generate SCATTERING_DIMENSIONS scattering dimensions.
459
460 CLooG 0.15.0 and previous versions require, that all
461 scattering functions of one CloogProgram have the same number of
462 scattering dimensions, therefore we allow to specify it. This
463 should be removed in future versions of CLooG.
464
465 The scattering polyhedron consists of these dimensions: scattering,
466 loop_iterators, parameters.
467
468 Example:
469
470 | scattering_dimensions = 5
471 | used_scattering_dimensions = 3
472 | nb_iterators = 1
473 | scop_nb_params = 2
474 |
475 | Schedule:
476 | i
477 | 4 5
478 |
479 | Scattering polyhedron:
480 |
481 | scattering: {s1, s2, s3, s4, s5}
482 | loop_iterators: {i}
483 | parameters: {p1, p2}
484 |
485 | s1 s2 s3 s4 s5 i p1 p2 1
486 | 1 0 0 0 0 0 0 0 -4 = 0
487 | 0 1 0 0 0 -1 0 0 0 = 0
488 | 0 0 1 0 0 0 0 0 -5 = 0 */
489
490static void
87e20041 491build_pbb_scattering_polyhedrons (isl_aff *static_sched,
c6bb733d 492 poly_bb_p pbb, int scattering_dimensions)
493{
494 int i;
c6bb733d 495 int nb_iterators = pbb_dim_iter_domain (pbb);
496 int used_scattering_dimensions = nb_iterators * 2 + 1;
ea48ac01 497 isl_val *val;
87e20041 498 isl_space *dc, *dm;
c6bb733d 499
500 gcc_assert (scattering_dimensions >= used_scattering_dimensions);
501
87e20041 502 dc = isl_set_get_space (pbb->domain);
503 dm = isl_space_add_dims (isl_space_from_domain (dc),
504 isl_dim_out, scattering_dimensions);
505 pbb->schedule = isl_map_universe (dm);
c6bb733d 506
507 for (i = 0; i < scattering_dimensions; i++)
508 {
c6bb733d 509 /* Textual order inside this loop. */
510 if ((i % 2) == 0)
511 {
87e20041 512 isl_constraint *c = isl_equality_alloc
513 (isl_local_space_from_space (isl_map_get_space (pbb->schedule)));
514
ea48ac01 515 val = isl_aff_get_coefficient_val (static_sched, isl_dim_in, i / 2);
87e20041 516
ea48ac01 517 val = isl_val_neg (val);
518 c = isl_constraint_set_constant_val (c, val);
87e20041 519 c = isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1);
520 pbb->schedule = isl_map_add_constraint (pbb->schedule, c);
c6bb733d 521 }
522
523 /* Iterations of this loop. */
524 else /* if ((i % 2) == 1) */
525 {
526 int loop = (i - 1) / 2;
87e20041 527 pbb->schedule = isl_map_equate (pbb->schedule, isl_dim_in, loop,
528 isl_dim_out, i);
c6bb733d 529 }
c6bb733d 530 }
531
87e20041 532 pbb->transformed = isl_map_copy (pbb->schedule);
c6bb733d 533}
534
535/* Build for BB the static schedule.
536
537 The static schedule is a Dewey numbering of the abstract syntax
538 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
539
540 The following example informally defines the static schedule:
541
542 A
543 for (i: ...)
544 {
545 for (j: ...)
546 {
547 B
548 C
549 }
550
551 for (k: ...)
552 {
553 D
554 E
555 }
556 }
557 F
558
559 Static schedules for A to F:
560
561 DEPTH
562 0 1 2
563 A 0
564 B 1 0 0
565 C 1 0 1
566 D 1 1 0
567 E 1 1 1
568 F 2
569*/
570
571static void
572build_scop_scattering (scop_p scop)
573{
574 int i;
575 poly_bb_p pbb;
576 gimple_bb_p previous_gbb = NULL;
87e20041 577 isl_space *dc = isl_set_get_space (scop->context);
578 isl_aff *static_sched;
c6bb733d 579
41f75a99 580 dc = isl_space_add_dims (dc, isl_dim_set, number_of_loops (cfun));
87e20041 581 static_sched = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
c6bb733d 582
583 /* We have to start schedules at 0 on the first component and
584 because we cannot compare_prefix_loops against a previous loop,
585 prefix will be equal to zero, and that index will be
586 incremented before copying. */
87e20041 587 static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in, 0, -1);
c6bb733d 588
f1f41a6c 589 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
c6bb733d 590 {
591 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
c6bb733d 592 int prefix;
593 int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
594
595 if (previous_gbb)
596 prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
597 else
598 prefix = 0;
599
600 previous_gbb = gbb;
c6bb733d 601
87e20041 602 static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in,
603 prefix, 1);
604 build_pbb_scattering_polyhedrons (static_sched, pbb, nb_scat_dims);
605 }
606
607 isl_aff_free (static_sched);
608}
609
610static isl_pw_aff *extract_affine (scop_p, tree, __isl_take isl_space *space);
611
612/* Extract an affine expression from the chain of recurrence E. */
c6bb733d 613
87e20041 614static isl_pw_aff *
615extract_affine_chrec (scop_p s, tree e, __isl_take isl_space *space)
616{
617 isl_pw_aff *lhs = extract_affine (s, CHREC_LEFT (e), isl_space_copy (space));
618 isl_pw_aff *rhs = extract_affine (s, CHREC_RIGHT (e), isl_space_copy (space));
619 isl_local_space *ls = isl_local_space_from_space (space);
41f75a99 620 unsigned pos = sese_loop_depth ((sese) s->region, get_chrec_loop (e)) - 1;
87e20041 621 isl_aff *loop = isl_aff_set_coefficient_si
622 (isl_aff_zero_on_domain (ls), isl_dim_in, pos, 1);
623 isl_pw_aff *l = isl_pw_aff_from_aff (loop);
624
625 /* Before multiplying, make sure that the result is affine. */
626 gcc_assert (isl_pw_aff_is_cst (rhs)
627 || isl_pw_aff_is_cst (l));
628
629 return isl_pw_aff_add (lhs, isl_pw_aff_mul (rhs, l));
630}
631
632/* Extract an affine expression from the mult_expr E. */
633
634static isl_pw_aff *
635extract_affine_mul (scop_p s, tree e, __isl_take isl_space *space)
636{
637 isl_pw_aff *lhs = extract_affine (s, TREE_OPERAND (e, 0),
638 isl_space_copy (space));
639 isl_pw_aff *rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
c6bb733d 640
87e20041 641 if (!isl_pw_aff_is_cst (lhs)
642 && !isl_pw_aff_is_cst (rhs))
643 {
644 isl_pw_aff_free (lhs);
645 isl_pw_aff_free (rhs);
646 return NULL;
c6bb733d 647 }
648
87e20041 649 return isl_pw_aff_mul (lhs, rhs);
c6bb733d 650}
651
87e20041 652/* Return an ISL identifier from the name of the ssa_name E. */
c6bb733d 653
87e20041 654static isl_id *
655isl_id_for_ssa_name (scop_p s, tree e)
c6bb733d 656{
87e20041 657 const char *name = get_name (e);
658 isl_id *id;
659
660 if (name)
661 id = isl_id_alloc (s->ctx, name, e);
662 else
663 {
664 char name1[50];
665 snprintf (name1, sizeof (name1), "P_%d", SSA_NAME_VERSION (e));
666 id = isl_id_alloc (s->ctx, name1, e);
667 }
c6bb733d 668
87e20041 669 return id;
670}
c6bb733d 671
87e20041 672/* Return an ISL identifier for the data reference DR. */
c6bb733d 673
87e20041 674static isl_id *
675isl_id_for_dr (scop_p s, data_reference_p dr ATTRIBUTE_UNUSED)
676{
677 /* Data references all get the same isl_id. They need to be comparable
678 and are distinguished through the first dimension, which contains the
679 alias set number. */
680 return isl_id_alloc (s->ctx, "", 0);
c6bb733d 681}
682
87e20041 683/* Extract an affine expression from the ssa_name E. */
c6bb733d 684
87e20041 685static isl_pw_aff *
686extract_affine_name (scop_p s, tree e, __isl_take isl_space *space)
c6bb733d 687{
87e20041 688 isl_aff *aff;
689 isl_set *dom;
690 isl_id *id;
691 int dimension;
692
693 id = isl_id_for_ssa_name (s, e);
694 dimension = isl_space_find_dim_by_id (space, isl_dim_param, id);
9af5ce0c 695 isl_id_free (id);
87e20041 696 dom = isl_set_universe (isl_space_copy (space));
697 aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
698 aff = isl_aff_add_coefficient_si (aff, isl_dim_param, dimension, 1);
699 return isl_pw_aff_alloc (dom, aff);
700}
c6bb733d 701
87e20041 702/* Extract an affine expression from the gmp constant G. */
c6bb733d 703
87e20041 704static isl_pw_aff *
705extract_affine_gmp (mpz_t g, __isl_take isl_space *space)
706{
707 isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
708 isl_aff *aff = isl_aff_zero_on_domain (ls);
709 isl_set *dom = isl_set_universe (space);
ea48ac01 710 isl_val *v;
711 isl_ctx *ct;
c6bb733d 712
ea48ac01 713 ct = isl_aff_get_ctx (aff);
714 v = isl_val_int_from_gmp (ct, g);
715 aff = isl_aff_add_constant_val (aff, v);
c6bb733d 716
87e20041 717 return isl_pw_aff_alloc (dom, aff);
c6bb733d 718}
719
87e20041 720/* Extract an affine expression from the integer_cst E. */
c6bb733d 721
87e20041 722static isl_pw_aff *
723extract_affine_int (tree e, __isl_take isl_space *space)
724{
725 isl_pw_aff *res;
726 mpz_t g;
727
728 mpz_init (g);
729 tree_int_to_gmp (e, g);
730 res = extract_affine_gmp (g, space);
731 mpz_clear (g);
732
733 return res;
734}
735
736/* Compute pwaff mod 2^width. */
737
ea48ac01 738extern isl_ctx *the_isl_ctx;
739
87e20041 740static isl_pw_aff *
741wrap (isl_pw_aff *pwaff, unsigned width)
c6bb733d 742{
ea48ac01 743 isl_val *mod;
c6bb733d 744
ea48ac01 745 mod = isl_val_int_from_ui(the_isl_ctx, width);
746 mod = isl_val_2exp (mod);
747 pwaff = isl_pw_aff_mod_val (pwaff, mod);
87e20041 748
749 return pwaff;
c6bb733d 750}
751
c6bb733d 752/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
753 Otherwise returns -1. */
754
755static inline int
756parameter_index_in_region_1 (tree name, sese region)
757{
758 int i;
759 tree p;
760
761 gcc_assert (TREE_CODE (name) == SSA_NAME);
762
f1f41a6c 763 FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, p)
c6bb733d 764 if (p == name)
765 return i;
766
767 return -1;
768}
769
770/* When the parameter NAME is in REGION, returns its index in
771 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
772 and returns the index of NAME. */
773
774static int
775parameter_index_in_region (tree name, sese region)
776{
777 int i;
778
779 gcc_assert (TREE_CODE (name) == SSA_NAME);
780
781 i = parameter_index_in_region_1 (name, region);
782 if (i != -1)
783 return i;
784
785 gcc_assert (SESE_ADD_PARAMS (region));
786
f1f41a6c 787 i = SESE_PARAMS (region).length ();
788 SESE_PARAMS (region).safe_push (name);
c6bb733d 789 return i;
790}
791
87e20041 792/* Extract an affine expression from the tree E in the scop S. */
c6bb733d 793
87e20041 794static isl_pw_aff *
795extract_affine (scop_p s, tree e, __isl_take isl_space *space)
c6bb733d 796{
87e20041 797 isl_pw_aff *lhs, *rhs, *res;
798 tree type;
799
800 if (e == chrec_dont_know) {
801 isl_space_free (space);
802 return NULL;
803 }
c6bb733d 804
805 switch (TREE_CODE (e))
806 {
807 case POLYNOMIAL_CHREC:
87e20041 808 res = extract_affine_chrec (s, e, space);
c6bb733d 809 break;
810
811 case MULT_EXPR:
87e20041 812 res = extract_affine_mul (s, e, space);
c6bb733d 813 break;
814
815 case PLUS_EXPR:
816 case POINTER_PLUS_EXPR:
87e20041 817 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
818 rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
819 res = isl_pw_aff_add (lhs, rhs);
c6bb733d 820 break;
821
822 case MINUS_EXPR:
87e20041 823 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
824 rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
825 res = isl_pw_aff_sub (lhs, rhs);
826 break;
c6bb733d 827
828 case NEGATE_EXPR:
87e20041 829 case BIT_NOT_EXPR:
830 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
831 rhs = extract_affine (s, integer_minus_one_node, space);
832 res = isl_pw_aff_mul (lhs, rhs);
833 break;
c6bb733d 834
87e20041 835 case SSA_NAME:
836 gcc_assert (-1 != parameter_index_in_region_1 (e, SCOP_REGION (s)));
837 res = extract_affine_name (s, e, space);
838 break;
c6bb733d 839
87e20041 840 case INTEGER_CST:
841 res = extract_affine_int (e, space);
842 /* No need to wrap a single integer. */
843 return res;
c6bb733d 844
87e20041 845 CASE_CONVERT:
846 case NON_LVALUE_EXPR:
847 res = extract_affine (s, TREE_OPERAND (e, 0), space);
848 break;
c6bb733d 849
87e20041 850 default:
851 gcc_unreachable ();
852 break;
853 }
c6bb733d 854
87e20041 855 type = TREE_TYPE (e);
856 if (TYPE_UNSIGNED (type))
857 res = wrap (res, TYPE_PRECISION (type));
c6bb733d 858
87e20041 859 return res;
860}
c6bb733d 861
87e20041 862/* In the context of sese S, scan the expression E and translate it to
863 a linear expression C. When parsing a symbolic multiplication, K
864 represents the constant multiplier of an expression containing
865 parameters. */
c6bb733d 866
87e20041 867static void
868scan_tree_for_params (sese s, tree e)
869{
870 if (e == chrec_dont_know)
871 return;
c6bb733d 872
87e20041 873 switch (TREE_CODE (e))
874 {
875 case POLYNOMIAL_CHREC:
876 scan_tree_for_params (s, CHREC_LEFT (e));
877 break;
c6bb733d 878
87e20041 879 case MULT_EXPR:
880 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
881 scan_tree_for_params (s, TREE_OPERAND (e, 0));
882 else
883 scan_tree_for_params (s, TREE_OPERAND (e, 1));
884 break;
c6bb733d 885
87e20041 886 case PLUS_EXPR:
887 case POINTER_PLUS_EXPR:
888 case MINUS_EXPR:
889 scan_tree_for_params (s, TREE_OPERAND (e, 0));
890 scan_tree_for_params (s, TREE_OPERAND (e, 1));
c6bb733d 891 break;
892
87e20041 893 case NEGATE_EXPR:
894 case BIT_NOT_EXPR:
c6bb733d 895 CASE_CONVERT:
896 case NON_LVALUE_EXPR:
87e20041 897 scan_tree_for_params (s, TREE_OPERAND (e, 0));
c6bb733d 898 break;
899
87e20041 900 case SSA_NAME:
901 parameter_index_in_region (e, s);
902 break;
903
904 case INTEGER_CST:
a1b6cd6a 905 case ADDR_EXPR:
906 break;
907
c6bb733d 908 default:
909 gcc_unreachable ();
910 break;
911 }
912}
913
c6bb733d 914/* Find parameters with respect to REGION in BB. We are looking in memory
915 access functions, conditions and loop bounds. */
916
917static void
918find_params_in_bb (sese region, gimple_bb_p gbb)
919{
920 int i;
db899978 921 unsigned j;
c6bb733d 922 data_reference_p dr;
923 gimple stmt;
924 loop_p loop = GBB_BB (gbb)->loop_father;
c6bb733d 925
db899978 926 /* Find parameters in the access functions of data references. */
f1f41a6c 927 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
db899978 928 for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
87e20041 929 scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
c6bb733d 930
931 /* Find parameters in conditional statements. */
f1f41a6c 932 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
c6bb733d 933 {
c6bb733d 934 tree lhs = scalar_evolution_in_region (region, loop,
935 gimple_cond_lhs (stmt));
936 tree rhs = scalar_evolution_in_region (region, loop,
937 gimple_cond_rhs (stmt));
938
87e20041 939 scan_tree_for_params (region, lhs);
940 scan_tree_for_params (region, rhs);
c6bb733d 941 }
942}
943
944/* Record the parameters used in the SCOP. A variable is a parameter
945 in a scop if it does not vary during the execution of that scop. */
946
947static void
948find_scop_parameters (scop_p scop)
949{
950 poly_bb_p pbb;
951 unsigned i;
952 sese region = SCOP_REGION (scop);
953 struct loop *loop;
87e20041 954 int nbp;
c6bb733d 955
956 /* Find the parameters used in the loop bounds. */
f1f41a6c 957 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
c6bb733d 958 {
959 tree nb_iters = number_of_latch_executions (loop);
960
961 if (!chrec_contains_symbols (nb_iters))
962 continue;
963
964 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
87e20041 965 scan_tree_for_params (region, nb_iters);
c6bb733d 966 }
967
c6bb733d 968 /* Find the parameters used in data accesses. */
f1f41a6c 969 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
c6bb733d 970 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
971
87e20041 972 nbp = sese_nb_params (region);
973 scop_set_nb_params (scop, nbp);
c6bb733d 974 SESE_ADD_PARAMS (region) = false;
acb3969f 975
5d92ac74 976 {
87e20041 977 tree e;
978 isl_space *space = isl_space_set_alloc (scop->ctx, nbp, 0);
5d92ac74 979
f1f41a6c 980 FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, e)
87e20041 981 space = isl_space_set_dim_id (space, isl_dim_param, i,
982 isl_id_for_ssa_name (scop, e));
5d92ac74 983
87e20041 984 scop->context = isl_set_universe (space);
5d92ac74 985 }
5d92ac74 986}
987
c6bb733d 988/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
989 the constraints for the surrounding loops. */
990
991static void
992build_loop_iteration_domains (scop_p scop, struct loop *loop,
87e20041 993 int nb,
994 isl_set *outer, isl_set **doms)
c6bb733d 995{
c6bb733d 996 tree nb_iters = number_of_latch_executions (loop);
c6bb733d 997 sese region = SCOP_REGION (scop);
998
87e20041 999 isl_set *inner = isl_set_copy (outer);
1000 isl_space *space;
1001 isl_constraint *c;
1002 int pos = isl_set_dim (outer, isl_dim_set);
ea48ac01 1003 isl_val *v;
87e20041 1004 mpz_t g;
1005
1006 mpz_init (g);
87e20041 1007
1008 inner = isl_set_add_dims (inner, isl_dim_set, 1);
1009 space = isl_set_get_space (inner);
c6bb733d 1010
1011 /* 0 <= loop_i */
87e20041 1012 c = isl_inequality_alloc
1013 (isl_local_space_from_space (isl_space_copy (space)));
1014 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, 1);
1015 inner = isl_set_add_constraint (inner, c);
c6bb733d 1016
87e20041 1017 /* loop_i <= cst_nb_iters */
c6bb733d 1018 if (TREE_CODE (nb_iters) == INTEGER_CST)
1019 {
87e20041 1020 c = isl_inequality_alloc
9af5ce0c 1021 (isl_local_space_from_space (isl_space_copy (space)));
87e20041 1022 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
1023 tree_int_to_gmp (nb_iters, g);
ea48ac01 1024 v = isl_val_int_from_gmp (the_isl_ctx, g);
1025 c = isl_constraint_set_constant_val (c, v);
87e20041 1026 inner = isl_set_add_constraint (inner, c);
c6bb733d 1027 }
87e20041 1028
1029 /* loop_i <= expr_nb_iters */
c6bb733d 1030 else if (!chrec_contains_undetermined (nb_iters))
1031 {
5de9d3ed 1032 widest_int nit;
87e20041 1033 isl_pw_aff *aff;
1034 isl_set *valid;
1035 isl_local_space *ls;
1036 isl_aff *al;
1037 isl_set *le;
c6bb733d 1038
c6bb733d 1039 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
87e20041 1040
1041 aff = extract_affine (scop, nb_iters, isl_set_get_space (inner));
1042 valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff));
1043 valid = isl_set_project_out (valid, isl_dim_set, 0,
1044 isl_set_dim (valid, isl_dim_set));
1045 scop->context = isl_set_intersect (scop->context, valid);
1046
1047 ls = isl_local_space_from_space (isl_space_copy (space));
1048 al = isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls),
1049 isl_dim_in, pos, 1);
1050 le = isl_pw_aff_le_set (isl_pw_aff_from_aff (al),
1051 isl_pw_aff_copy (aff));
1052 inner = isl_set_intersect (inner, le);
c6bb733d 1053
fee017b3 1054 if (max_stmt_executions (loop, &nit))
87e20041 1055 {
1056 /* Insert in the context the constraints from the
1057 estimation of the number of iterations NIT and the
1058 symbolic number of iterations (involving parameter
1059 names) NB_ITERS. First, build the affine expression
1060 "NIT - NB_ITERS" and then say that it is positive,
1061 i.e., NIT approximates NB_ITERS: "NIT >= NB_ITERS". */
1062 isl_pw_aff *approx;
1063 mpz_t g;
1064 isl_set *x;
1065 isl_constraint *c;
1066
1067 mpz_init (g);
796b6678 1068 wi::to_mpz (nit, g, SIGNED);
87e20041 1069 mpz_sub_ui (g, g, 1);
1070 approx = extract_affine_gmp (g, isl_set_get_space (inner));
1071 x = isl_pw_aff_ge_set (approx, aff);
1072 x = isl_set_project_out (x, isl_dim_set, 0,
1073 isl_set_dim (x, isl_dim_set));
1074 scop->context = isl_set_intersect (scop->context, x);
1075
1076 c = isl_inequality_alloc
1077 (isl_local_space_from_space (isl_space_copy (space)));
1078 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
ea48ac01 1079 v = isl_val_int_from_gmp (the_isl_ctx, g);
87e20041 1080 mpz_clear (g);
ea48ac01 1081 c = isl_constraint_set_constant_val (c, v);
87e20041 1082 inner = isl_set_add_constraint (inner, c);
1083 }
3fb5ff55 1084 else
1085 isl_pw_aff_free (aff);
c6bb733d 1086 }
1087 else
1088 gcc_unreachable ();
1089
1090 if (loop->inner && loop_in_sese_p (loop->inner, region))
87e20041 1091 build_loop_iteration_domains (scop, loop->inner, nb + 1,
1092 isl_set_copy (inner), doms);
c6bb733d 1093
1094 if (nb != 0
1095 && loop->next
1096 && loop_in_sese_p (loop->next, region))
87e20041 1097 build_loop_iteration_domains (scop, loop->next, nb,
1098 isl_set_copy (outer), doms);
c6bb733d 1099
87e20041 1100 doms[loop->num] = inner;
c6bb733d 1101
87e20041 1102 isl_set_free (outer);
1103 isl_space_free (space);
87e20041 1104 mpz_clear (g);
c6bb733d 1105}
1106
1107/* Returns a linear expression for tree T evaluated in PBB. */
1108
87e20041 1109static isl_pw_aff *
1110create_pw_aff_from_tree (poly_bb_p pbb, tree t)
c6bb733d 1111{
87e20041 1112 scop_p scop = PBB_SCOP (pbb);
c6bb733d 1113
87e20041 1114 t = scalar_evolution_in_region (SCOP_REGION (scop), pbb_loop (pbb), t);
c6bb733d 1115 gcc_assert (!automatically_generated_chrec_p (t));
1116
87e20041 1117 return extract_affine (scop, t, isl_set_get_space (pbb->domain));
c6bb733d 1118}
1119
87e20041 1120/* Add conditional statement STMT to pbb. CODE is used as the comparison
1121 operator. This allows us to invert the condition or to handle
1122 inequalities. */
c6bb733d 1123
1124static void
87e20041 1125add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
c6bb733d 1126{
87e20041 1127 isl_pw_aff *lhs = create_pw_aff_from_tree (pbb, gimple_cond_lhs (stmt));
1128 isl_pw_aff *rhs = create_pw_aff_from_tree (pbb, gimple_cond_rhs (stmt));
1129 isl_set *cond;
c6bb733d 1130
87e20041 1131 switch (code)
c6bb733d 1132 {
87e20041 1133 case LT_EXPR:
1134 cond = isl_pw_aff_lt_set (lhs, rhs);
1135 break;
c6bb733d 1136
87e20041 1137 case GT_EXPR:
1138 cond = isl_pw_aff_gt_set (lhs, rhs);
1139 break;
c6bb733d 1140
87e20041 1141 case LE_EXPR:
1142 cond = isl_pw_aff_le_set (lhs, rhs);
1143 break;
c6bb733d 1144
87e20041 1145 case GE_EXPR:
1146 cond = isl_pw_aff_ge_set (lhs, rhs);
1147 break;
c6bb733d 1148
87e20041 1149 case EQ_EXPR:
1150 cond = isl_pw_aff_eq_set (lhs, rhs);
1151 break;
c6bb733d 1152
87e20041 1153 case NE_EXPR:
1154 cond = isl_pw_aff_ne_set (lhs, rhs);
1155 break;
c6bb733d 1156
87e20041 1157 default:
9af5ce0c 1158 isl_pw_aff_free (lhs);
1159 isl_pw_aff_free (rhs);
87e20041 1160 return;
c6bb733d 1161 }
87e20041 1162
1163 cond = isl_set_coalesce (cond);
1164 cond = isl_set_set_tuple_id (cond, isl_set_get_tuple_id (pbb->domain));
1165 pbb->domain = isl_set_intersect (pbb->domain, cond);
c6bb733d 1166}
1167
1168/* Add conditions to the domain of PBB. */
1169
1170static void
1171add_conditions_to_domain (poly_bb_p pbb)
1172{
1173 unsigned int i;
1174 gimple stmt;
1175 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
c6bb733d 1176
f1f41a6c 1177 if (GBB_CONDITIONS (gbb).is_empty ())
c6bb733d 1178 return;
1179
f1f41a6c 1180 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
c6bb733d 1181 switch (gimple_code (stmt))
1182 {
1183 case GIMPLE_COND:
1184 {
1185 enum tree_code code = gimple_cond_code (stmt);
1186
1187 /* The conditions for ELSE-branches are inverted. */
f1f41a6c 1188 if (!GBB_CONDITION_CASES (gbb)[i])
c6bb733d 1189 code = invert_tree_comparison (code, false);
1190
1191 add_condition_to_pbb (pbb, stmt, code);
1192 break;
1193 }
1194
1195 case GIMPLE_SWITCH:
87e20041 1196 /* Switch statements are not supported right now - fall through. */
c6bb733d 1197
1198 default:
1199 gcc_unreachable ();
1200 break;
1201 }
1202}
1203
8c6b3774 1204/* Traverses all the GBBs of the SCOP and add their constraints to the
1205 iteration domains. */
1206
1207static void
1208add_conditions_to_constraints (scop_p scop)
1209{
1210 int i;
1211 poly_bb_p pbb;
1212
f1f41a6c 1213 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
8c6b3774 1214 add_conditions_to_domain (pbb);
1215}
1216
dff64cac 1217/* Returns a COND_EXPR statement when BB has a single predecessor, the
1218 edge between BB and its predecessor is not a loop exit edge, and
1219 the last statement of the single predecessor is a COND_EXPR. */
c6bb733d 1220
1221static gimple
dff64cac 1222single_pred_cond_non_loop_exit (basic_block bb)
c6bb733d 1223{
1224 if (single_pred_p (bb))
1225 {
1226 edge e = single_pred_edge (bb);
1227 basic_block pred = e->src;
dff64cac 1228 gimple stmt;
1229
1230 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
1231 return NULL;
1232
1233 stmt = last_stmt (pred);
c6bb733d 1234
1235 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1236 return stmt;
1237 }
dff64cac 1238
c6bb733d 1239 return NULL;
1240}
1241
54c91640 1242class sese_dom_walker : public dom_walker
1243{
1244public:
1245 sese_dom_walker (cdi_direction, sese);
54c91640 1246
1247 virtual void before_dom_children (basic_block);
1248 virtual void after_dom_children (basic_block);
1249
1250private:
4997014d 1251 auto_vec<gimple, 3> m_conditions, m_cases;
ae84f584 1252 sese m_region;
54c91640 1253};
1254
1255sese_dom_walker::sese_dom_walker (cdi_direction direction, sese region)
ae84f584 1256 : dom_walker (direction), m_region (region)
54c91640 1257{
54c91640 1258}
1259
c6bb733d 1260/* Call-back for dom_walk executed before visiting the dominated
1261 blocks. */
1262
54c91640 1263void
1264sese_dom_walker::before_dom_children (basic_block bb)
c6bb733d 1265{
d3746d81 1266 gimple_bb_p gbb;
1267 gimple stmt;
c6bb733d 1268
ae84f584 1269 if (!bb_in_sese_p (bb, m_region))
c6bb733d 1270 return;
1271
dff64cac 1272 stmt = single_pred_cond_non_loop_exit (bb);
d3746d81 1273
c6bb733d 1274 if (stmt)
1275 {
1276 edge e = single_pred_edge (bb);
1277
ae84f584 1278 m_conditions.safe_push (stmt);
c6bb733d 1279
1280 if (e->flags & EDGE_TRUE_VALUE)
ae84f584 1281 m_cases.safe_push (stmt);
c6bb733d 1282 else
ae84f584 1283 m_cases.safe_push (NULL);
c6bb733d 1284 }
1285
d3746d81 1286 gbb = gbb_from_bb (bb);
1287
c6bb733d 1288 if (gbb)
1289 {
ae84f584 1290 GBB_CONDITIONS (gbb) = m_conditions.copy ();
1291 GBB_CONDITION_CASES (gbb) = m_cases.copy ();
c6bb733d 1292 }
1293}
1294
1295/* Call-back for dom_walk executed after visiting the dominated
1296 blocks. */
1297
54c91640 1298void
1299sese_dom_walker::after_dom_children (basic_block bb)
c6bb733d 1300{
ae84f584 1301 if (!bb_in_sese_p (bb, m_region))
c6bb733d 1302 return;
1303
dff64cac 1304 if (single_pred_cond_non_loop_exit (bb))
c6bb733d 1305 {
ae84f584 1306 m_conditions.pop ();
1307 m_cases.pop ();
c6bb733d 1308 }
1309}
1310
c6bb733d 1311/* Add constraints on the possible values of parameter P from the type
1312 of P. */
1313
1314static void
87e20041 1315add_param_constraints (scop_p scop, graphite_dim_t p)
c6bb733d 1316{
f1f41a6c 1317 tree parameter = SESE_PARAMS (SCOP_REGION (scop))[p];
c6bb733d 1318 tree type = TREE_TYPE (parameter);
88a62e9b 1319 tree lb = NULL_TREE;
1320 tree ub = NULL_TREE;
c6bb733d 1321
8424df5f 1322 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1323 lb = lower_bound_in_type (type, type);
1324 else
1325 lb = TYPE_MIN_VALUE (type);
1326
1327 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1328 ub = upper_bound_in_type (type, type);
1329 else
1330 ub = TYPE_MAX_VALUE (type);
c6bb733d 1331
1332 if (lb)
1333 {
87e20041 1334 isl_space *space = isl_set_get_space (scop->context);
1335 isl_constraint *c;
1336 mpz_t g;
ea48ac01 1337 isl_val *v;
87e20041 1338
1339 c = isl_inequality_alloc (isl_local_space_from_space (space));
1340 mpz_init (g);
87e20041 1341 tree_int_to_gmp (lb, g);
ea48ac01 1342 v = isl_val_int_from_gmp (the_isl_ctx, g);
1343 v = isl_val_neg (v);
87e20041 1344 mpz_clear (g);
ea48ac01 1345 c = isl_constraint_set_constant_val (c, v);
87e20041 1346 c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, 1);
1347
1348 scop->context = isl_set_add_constraint (scop->context, c);
c6bb733d 1349 }
1350
1351 if (ub)
1352 {
87e20041 1353 isl_space *space = isl_set_get_space (scop->context);
1354 isl_constraint *c;
1355 mpz_t g;
ea48ac01 1356 isl_val *v;
87e20041 1357
1358 c = isl_inequality_alloc (isl_local_space_from_space (space));
1359
1360 mpz_init (g);
87e20041 1361 tree_int_to_gmp (ub, g);
ea48ac01 1362 v = isl_val_int_from_gmp (the_isl_ctx, g);
87e20041 1363 mpz_clear (g);
ea48ac01 1364 c = isl_constraint_set_constant_val (c, v);
87e20041 1365 c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, -1);
1366
1367 scop->context = isl_set_add_constraint (scop->context, c);
c6bb733d 1368 }
1369}
1370
1371/* Build the context of the SCOP. The context usually contains extra
1372 constraints that are added to the iteration domains that constrain
1373 some parameters. */
1374
1375static void
1376build_scop_context (scop_p scop)
1377{
c6bb733d 1378 graphite_dim_t p, n = scop_nb_params (scop);
1379
c6bb733d 1380 for (p = 0; p < n; p++)
87e20041 1381 add_param_constraints (scop, p);
c6bb733d 1382}
1383
1384/* Build the iteration domains: the loops belonging to the current
1385 SCOP, and that vary for the execution of the current basic block.
1386 Returns false if there is no loop in SCOP. */
1387
1388static void
1389build_scop_iteration_domain (scop_p scop)
1390{
1391 struct loop *loop;
1392 sese region = SCOP_REGION (scop);
1393 int i;
c6bb733d 1394 poly_bb_p pbb;
41f75a99 1395 int nb_loops = number_of_loops (cfun);
87e20041 1396 isl_set **doms = XCNEWVEC (isl_set *, nb_loops);
c6bb733d 1397
f1f41a6c 1398 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
c6bb733d 1399 if (!loop_in_sese_p (loop_outer (loop), region))
87e20041 1400 build_loop_iteration_domains (scop, loop, 0,
1401 isl_set_copy (scop->context), doms);
c6bb733d 1402
f1f41a6c 1403 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
87e20041 1404 {
1405 loop = pbb_loop (pbb);
1406
1407 if (doms[loop->num])
1408 pbb->domain = isl_set_copy (doms[loop->num]);
1409 else
1410 pbb->domain = isl_set_copy (scop->context);
1411
1412 pbb->domain = isl_set_set_tuple_id (pbb->domain,
1413 isl_id_for_pbb (scop, pbb));
1414 }
c6bb733d 1415
628eaf60 1416 for (i = 0; i < nb_loops; i++)
87e20041 1417 if (doms[i])
1418 isl_set_free (doms[i]);
c6bb733d 1419
87e20041 1420 free (doms);
c6bb733d 1421}
1422
1423/* Add a constrain to the ACCESSES polyhedron for the alias set of
1424 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1425 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1426 domain. */
1427
87e20041 1428static isl_map *
1429pdr_add_alias_set (isl_map *acc, data_reference_p dr)
c6bb733d 1430{
87e20041 1431 isl_constraint *c;
c6bb733d 1432 int alias_set_num = 0;
e9a3f95f 1433 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
c6bb733d 1434
1a95516e 1435 if (bap && bap->alias_set)
e9a3f95f 1436 alias_set_num = *(bap->alias_set);
c6bb733d 1437
87e20041 1438 c = isl_equality_alloc
1439 (isl_local_space_from_space (isl_map_get_space (acc)));
1440 c = isl_constraint_set_constant_si (c, -alias_set_num);
1441 c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
1442
1443 return isl_map_add_constraint (acc, c);
1444}
1445
1446/* Assign the affine expression INDEX to the output dimension POS of
1447 MAP and return the result. */
1448
1449static isl_map *
1450set_index (isl_map *map, int pos, isl_pw_aff *index)
1451{
1452 isl_map *index_map;
1453 int len = isl_map_dim (map, isl_dim_out);
1454 isl_id *id;
1455
1456 index_map = isl_map_from_pw_aff (index);
1457 index_map = isl_map_insert_dims (index_map, isl_dim_out, 0, pos);
1458 index_map = isl_map_add_dims (index_map, isl_dim_out, len - pos - 1);
c6bb733d 1459
87e20041 1460 id = isl_map_get_tuple_id (map, isl_dim_out);
1461 index_map = isl_map_set_tuple_id (index_map, isl_dim_out, id);
1462 id = isl_map_get_tuple_id (map, isl_dim_in);
1463 index_map = isl_map_set_tuple_id (index_map, isl_dim_in, id);
c6bb733d 1464
87e20041 1465 return isl_map_intersect (map, index_map);
c6bb733d 1466}
1467
1468/* Add to ACCESSES polyhedron equalities defining the access functions
1469 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1470 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1471 PBB is the poly_bb_p that contains the data reference DR. */
1472
87e20041 1473static isl_map *
1474pdr_add_memory_accesses (isl_map *acc, data_reference_p dr, poly_bb_p pbb)
c6bb733d 1475{
1476 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
c6bb733d 1477 scop_p scop = PBB_SCOP (pbb);
c6bb733d 1478
1479 for (i = 0; i < nb_subscripts; i++)
1480 {
87e20041 1481 isl_pw_aff *aff;
c6bb733d 1482 tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
1483
87e20041 1484 aff = extract_affine (scop, afn,
1485 isl_space_domain (isl_map_get_space (acc)));
1486 acc = set_index (acc, i + 1, aff);
c6bb733d 1487 }
1488
87e20041 1489 return acc;
c6bb733d 1490}
1491
1492/* Add constrains representing the size of the accessed data to the
19b42529 1493 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1494 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
c6bb733d 1495 domain. */
1496
87e20041 1497static isl_set *
1498pdr_add_data_dimensions (isl_set *extent, scop_p scop, data_reference_p dr)
c6bb733d 1499{
1500 tree ref = DR_REF (dr);
1501 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
c6bb733d 1502
249d544d 1503 for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
c6bb733d 1504 {
249d544d 1505 tree low, high;
c6bb733d 1506
249d544d 1507 if (TREE_CODE (ref) != ARRAY_REF)
c6bb733d 1508 break;
1509
249d544d 1510 low = array_ref_low_bound (ref);
249d544d 1511 high = array_ref_up_bound (ref);
1512
87e20041 1513 /* XXX The PPL code dealt separately with
1514 subscript - low >= 0 and high - subscript >= 0 in case one of
1515 the two bounds isn't known. Do the same here? */
1516
e913b5cd 1517 if (tree_fits_shwi_p (low)
87e20041 1518 && high
e913b5cd 1519 && tree_fits_shwi_p (high)
3354e72e 1520 /* 1-element arrays at end of structures may extend over
1521 their declared size. */
1522 && !(array_at_struct_end_p (ref)
1523 && operand_equal_p (low, high, 0)))
249d544d 1524 {
87e20041 1525 isl_id *id;
1526 isl_aff *aff;
1527 isl_set *univ, *lbs, *ubs;
1528 isl_pw_aff *index;
1529 isl_space *space;
1530 isl_set *valid;
1531 isl_pw_aff *lb = extract_affine_int (low, isl_set_get_space (extent));
1532 isl_pw_aff *ub = extract_affine_int (high, isl_set_get_space (extent));
1533
1534 /* high >= 0 */
1535 valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub));
1536 valid = isl_set_project_out (valid, isl_dim_set, 0,
1537 isl_set_dim (valid, isl_dim_set));
1538 scop->context = isl_set_intersect (scop->context, valid);
1539
1540 space = isl_set_get_space (extent);
1541 aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
1542 aff = isl_aff_add_coefficient_si (aff, isl_dim_in, i + 1, 1);
1543 univ = isl_set_universe (isl_space_domain (isl_aff_get_space (aff)));
1544 index = isl_pw_aff_alloc (univ, aff);
1545
1546 id = isl_set_get_tuple_id (extent);
1547 lb = isl_pw_aff_set_tuple_id (lb, isl_dim_in, isl_id_copy (id));
1548 ub = isl_pw_aff_set_tuple_id (ub, isl_dim_in, id);
1549
1550 /* low <= sub_i <= high */
1551 lbs = isl_pw_aff_ge_set (isl_pw_aff_copy (index), lb);
1552 ubs = isl_pw_aff_le_set (index, ub);
1553 extent = isl_set_intersect (extent, lbs);
1554 extent = isl_set_intersect (extent, ubs);
249d544d 1555 }
c6bb733d 1556 }
87e20041 1557
1558 return extent;
c6bb733d 1559}
1560
1561/* Build data accesses for DR in PBB. */
1562
1563static void
1564build_poly_dr (data_reference_p dr, poly_bb_p pbb)
1565{
ae11f03b 1566 int dr_base_object_set;
87e20041 1567 isl_map *acc;
1568 isl_set *extent;
1569 scop_p scop = PBB_SCOP (pbb);
c6bb733d 1570
87e20041 1571 {
1572 isl_space *dc = isl_set_get_space (pbb->domain);
1573 int nb_out = 1 + DR_NUM_DIMENSIONS (dr);
1574 isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
1575 isl_dim_out, nb_out);
c6bb733d 1576
87e20041 1577 acc = isl_map_universe (space);
1578 acc = isl_map_set_tuple_id (acc, isl_dim_out, isl_id_for_dr (scop, dr));
1579 }
c6bb733d 1580
87e20041 1581 acc = pdr_add_alias_set (acc, dr);
1582 acc = pdr_add_memory_accesses (acc, dr, pbb);
c6bb733d 1583
87e20041 1584 {
1585 isl_id *id = isl_id_for_dr (scop, dr);
1586 int nb = 1 + DR_NUM_DIMENSIONS (dr);
1587 isl_space *space = isl_space_set_alloc (scop->ctx, 0, nb);
1588 int alias_set_num = 0;
1589 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1590
1591 if (bap && bap->alias_set)
1592 alias_set_num = *(bap->alias_set);
1593
1594 space = isl_space_set_tuple_id (space, isl_dim_set, id);
1595 extent = isl_set_nat_universe (space);
1596 extent = isl_set_fix_si (extent, isl_dim_set, 0, alias_set_num);
1597 extent = pdr_add_data_dimensions (extent, scop, dr);
1598 }
c6bb733d 1599
3ebac17a 1600 gcc_assert (dr->aux);
1601 dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
ae11f03b 1602
87e20041 1603 new_poly_dr (pbb, dr_base_object_set,
3ebac17a 1604 DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
87e20041 1605 dr, DR_NUM_DIMENSIONS (dr), acc, extent);
ae11f03b 1606}
c6bb733d 1607
96233858 1608/* Write to FILE the alias graph of data references in DIMACS format. */
8dee37ec 1609
1610static inline bool
1611write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
f1f41a6c 1612 vec<data_reference_p> drs)
8dee37ec 1613{
f1f41a6c 1614 int num_vertex = drs.length ();
8dee37ec 1615 int edge_num = 0;
1616 data_reference_p dr1, dr2;
1617 int i, j;
1618
1619 if (num_vertex == 0)
1620 return true;
1621
f1f41a6c 1622 FOR_EACH_VEC_ELT (drs, i, dr1)
1623 for (j = i + 1; drs.iterate (j, &dr2); j++)
5fc88ffd 1624 if (dr_may_alias_p (dr1, dr2, true))
8dee37ec 1625 edge_num++;
1626
1627 fprintf (file, "$\n");
1628
1629 if (comment)
1630 fprintf (file, "c %s\n", comment);
1631
1632 fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
1633
f1f41a6c 1634 FOR_EACH_VEC_ELT (drs, i, dr1)
1635 for (j = i + 1; drs.iterate (j, &dr2); j++)
5fc88ffd 1636 if (dr_may_alias_p (dr1, dr2, true))
8dee37ec 1637 fprintf (file, "e %d %d\n", i + 1, j + 1);
1638
1639 return true;
1640}
1641
96233858 1642/* Write to FILE the alias graph of data references in DOT format. */
1643
1644static inline bool
1645write_alias_graph_to_ascii_dot (FILE *file, char *comment,
f1f41a6c 1646 vec<data_reference_p> drs)
96233858 1647{
f1f41a6c 1648 int num_vertex = drs.length ();
96233858 1649 data_reference_p dr1, dr2;
1650 int i, j;
1651
1652 if (num_vertex == 0)
1653 return true;
1654
1655 fprintf (file, "$\n");
1656
1657 if (comment)
1658 fprintf (file, "c %s\n", comment);
1659
1660 /* First print all the vertices. */
f1f41a6c 1661 FOR_EACH_VEC_ELT (drs, i, dr1)
96233858 1662 fprintf (file, "n%d;\n", i);
1663
f1f41a6c 1664 FOR_EACH_VEC_ELT (drs, i, dr1)
1665 for (j = i + 1; drs.iterate (j, &dr2); j++)
5fc88ffd 1666 if (dr_may_alias_p (dr1, dr2, true))
96233858 1667 fprintf (file, "n%d n%d\n", i, j);
1668
1669 return true;
1670}
1671
1672/* Write to FILE the alias graph of data references in ECC format. */
1673
1674static inline bool
1675write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
f1f41a6c 1676 vec<data_reference_p> drs)
96233858 1677{
f1f41a6c 1678 int num_vertex = drs.length ();
96233858 1679 data_reference_p dr1, dr2;
1680 int i, j;
1681
1682 if (num_vertex == 0)
1683 return true;
1684
1685 fprintf (file, "$\n");
1686
1687 if (comment)
1688 fprintf (file, "c %s\n", comment);
1689
f1f41a6c 1690 FOR_EACH_VEC_ELT (drs, i, dr1)
1691 for (j = i + 1; drs.iterate (j, &dr2); j++)
5fc88ffd 1692 if (dr_may_alias_p (dr1, dr2, true))
96233858 1693 fprintf (file, "%d %d\n", i, j);
1694
1695 return true;
1696}
1697
e9a3f95f 1698/* Check if DR1 and DR2 are in the same object set. */
1699
1700static bool
1701dr_same_base_object_p (const struct data_reference *dr1,
1702 const struct data_reference *dr2)
1703{
1704 return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
1705}
96233858 1706
1707/* Uses DFS component number as representative of alias-sets. Also tests for
1708 optimality by verifying if every connected component is a clique. Returns
1709 true (1) if the above test is true, and false (0) otherwise. */
1710
1711static int
f1f41a6c 1712build_alias_set_optimal_p (vec<data_reference_p> drs)
c6bb733d 1713{
f1f41a6c 1714 int num_vertices = drs.length ();
96233858 1715 struct graph *g = new_graph (num_vertices);
c6bb733d 1716 data_reference_p dr1, dr2;
1717 int i, j;
96233858 1718 int num_connected_components;
1719 int v_indx1, v_indx2, num_vertices_in_component;
1720 int *all_vertices;
1721 int *vertices;
1722 struct graph_edge *e;
f289f81b 1723 int this_component_is_clique;
1724 int all_components_are_cliques = 1;
c6bb733d 1725
f1f41a6c 1726 FOR_EACH_VEC_ELT (drs, i, dr1)
1727 for (j = i+1; drs.iterate (j, &dr2); j++)
5fc88ffd 1728 if (dr_may_alias_p (dr1, dr2, true))
c6bb733d 1729 {
1730 add_edge (g, i, j);
1731 add_edge (g, j, i);
1732 }
1733
96233858 1734 all_vertices = XNEWVEC (int, num_vertices);
1735 vertices = XNEWVEC (int, num_vertices);
1736 for (i = 0; i < num_vertices; i++)
1737 all_vertices[i] = i;
1738
e9a3f95f 1739 num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
1740 NULL, true, NULL);
1741 for (i = 0; i < g->n_vertices; i++)
1742 {
f1f41a6c 1743 data_reference_p dr = drs[i];
e9a3f95f 1744 base_alias_pair *bap;
1a95516e 1745
3ebac17a 1746 gcc_assert (dr->aux);
1747 bap = (base_alias_pair *)(dr->aux);
1a95516e 1748
e9a3f95f 1749 bap->alias_set = XNEW (int);
1750 *(bap->alias_set) = g->vertices[i].component + 1;
1751 }
1752
96233858 1753 /* Verify if the DFS numbering results in optimal solution. */
1754 for (i = 0; i < num_connected_components; i++)
1755 {
1756 num_vertices_in_component = 0;
1757 /* Get all vertices whose DFS component number is the same as i. */
1758 for (j = 0; j < num_vertices; j++)
1759 if (g->vertices[j].component == i)
1760 vertices[num_vertices_in_component++] = j;
1761
1762 /* Now test if the vertices in 'vertices' form a clique, by testing
1763 for edges among each pair. */
1764 this_component_is_clique = 1;
1765 for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
1766 {
1767 for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
1768 {
1769 /* Check if the two vertices are connected by iterating
1770 through all the edges which have one of these are source. */
1771 e = g->vertices[vertices[v_indx2]].pred;
1772 while (e)
1773 {
1774 if (e->src == vertices[v_indx1])
1775 break;
1776 e = e->pred_next;
1777 }
1778 if (!e)
1779 {
1780 this_component_is_clique = 0;
1781 break;
1782 }
1783 }
1784 if (!this_component_is_clique)
1785 all_components_are_cliques = 0;
1786 }
1787 }
c6bb733d 1788
96233858 1789 free (all_vertices);
1790 free (vertices);
c6bb733d 1791 free_graph (g);
96233858 1792 return all_components_are_cliques;
c6bb733d 1793}
1794
8c6b3774 1795/* Group each data reference in DRS with its base object set num. */
ae11f03b 1796
1797static void
f1f41a6c 1798build_base_obj_set_for_drs (vec<data_reference_p> drs)
ae11f03b 1799{
f1f41a6c 1800 int num_vertex = drs.length ();
e9a3f95f 1801 struct graph *g = new_graph (num_vertex);
1802 data_reference_p dr1, dr2;
1803 int i, j;
e9a3f95f 1804 int *queue;
1805
f1f41a6c 1806 FOR_EACH_VEC_ELT (drs, i, dr1)
1807 for (j = i + 1; drs.iterate (j, &dr2); j++)
e9a3f95f 1808 if (dr_same_base_object_p (dr1, dr2))
1809 {
1810 add_edge (g, i, j);
1811 add_edge (g, j, i);
1812 }
1813
1814 queue = XNEWVEC (int, num_vertex);
1815 for (i = 0; i < num_vertex; i++)
1816 queue[i] = i;
1817
1a95516e 1818 graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
e9a3f95f 1819
1820 for (i = 0; i < g->n_vertices; i++)
1821 {
f1f41a6c 1822 data_reference_p dr = drs[i];
e9a3f95f 1823 base_alias_pair *bap;
1a95516e 1824
3ebac17a 1825 gcc_assert (dr->aux);
1826 bap = (base_alias_pair *)(dr->aux);
1a95516e 1827
e9a3f95f 1828 bap->base_obj_set = g->vertices[i].component + 1;
1829 }
1830
1831 free (queue);
1832 free_graph (g);
ae11f03b 1833}
1834
c6bb733d 1835/* Build the data references for PBB. */
1836
1837static void
1838build_pbb_drs (poly_bb_p pbb)
1839{
1840 int j;
1841 data_reference_p dr;
f1f41a6c 1842 vec<data_reference_p> gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
c6bb733d 1843
f1f41a6c 1844 FOR_EACH_VEC_ELT (gbb_drs, j, dr)
c6bb733d 1845 build_poly_dr (dr, pbb);
1846}
1847
aa16918e 1848/* Dump to file the alias graphs for the data references in DRS. */
1849
1850static void
f1f41a6c 1851dump_alias_graphs (vec<data_reference_p> drs)
aa16918e 1852{
1853 char comment[100];
1854 FILE *file_dimacs, *file_ecc, *file_dot;
1855
1856 file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
1857 if (file_dimacs)
1858 {
1859 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1860 current_function_name ());
1861 write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
1862 fclose (file_dimacs);
1863 }
1864
1865 file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
1866 if (file_ecc)
1867 {
1868 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1869 current_function_name ());
1870 write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
1871 fclose (file_ecc);
1872 }
1873
1874 file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
1875 if (file_dot)
1876 {
1877 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1878 current_function_name ());
1879 write_alias_graph_to_ascii_dot (file_dot, comment, drs);
1880 fclose (file_dot);
1881 }
1882}
1883
c6bb733d 1884/* Build data references in SCOP. */
1885
1886static void
1887build_scop_drs (scop_p scop)
1888{
da6ec3dd 1889 int i, j;
c6bb733d 1890 poly_bb_p pbb;
da6ec3dd 1891 data_reference_p dr;
4997014d 1892 auto_vec<data_reference_p, 3> drs;
da6ec3dd 1893
8c6b3774 1894 /* Remove all the PBBs that do not have data references: these basic
1895 blocks are not handled in the polyhedral representation. */
f1f41a6c 1896 for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++)
1897 if (GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).is_empty ())
1688f172 1898 {
bf0d0e76 1899 free_gimple_bb (PBB_BLACK_BOX (pbb));
479a6d79 1900 free_poly_bb (pbb);
f1f41a6c 1901 SCOP_BBS (scop).ordered_remove (i);
1688f172 1902 i--;
1903 }
8c6b3774 1904
f1f41a6c 1905 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
1906 for (j = 0; GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).iterate (j, &dr); j++)
1907 drs.safe_push (dr);
da6ec3dd 1908
f1f41a6c 1909 FOR_EACH_VEC_ELT (drs, i, dr)
e9a3f95f 1910 dr->aux = XNEW (base_alias_pair);
1911
1912 if (!build_alias_set_optimal_p (drs))
1913 {
1914 /* TODO: Add support when building alias set is not optimal. */
1915 ;
1916 }
1917
9c48819a 1918 build_base_obj_set_for_drs (drs);
ae11f03b 1919
8dee37ec 1920 /* When debugging, enable the following code. This cannot be used
1921 in production compilers. */
aa16918e 1922 if (0)
1923 dump_alias_graphs (drs);
8dee37ec 1924
f1f41a6c 1925 drs.release ();
c6bb733d 1926
f1f41a6c 1927 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
c6bb733d 1928 build_pbb_drs (pbb);
1929}
1930
30f4f4a6 1931/* Return a gsi at the position of the phi node STMT. */
1932
1933static gimple_stmt_iterator
1934gsi_for_phi_node (gimple stmt)
1935{
1936 gimple_stmt_iterator psi;
1937 basic_block bb = gimple_bb (stmt);
1938
1939 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1940 if (stmt == gsi_stmt (psi))
1941 return psi;
1942
1943 gcc_unreachable ();
1944 return psi;
1945}
1946
1688f172 1947/* Analyze all the data references of STMTS and add them to the
1948 GBB_DATA_REFS vector of BB. */
1949
1950static void
f1f41a6c 1951analyze_drs_in_stmts (scop_p scop, basic_block bb, vec<gimple> stmts)
1688f172 1952{
1953 loop_p nest;
1688f172 1954 gimple_bb_p gbb;
1955 gimple stmt;
1956 int i;
221a697e 1957 sese region = SCOP_REGION (scop);
1688f172 1958
221a697e 1959 if (!bb_in_sese_p (bb, region))
1688f172 1960 return;
1961
221a697e 1962 nest = outermost_loop_in_sese_1 (region, bb);
1688f172 1963 gbb = gbb_from_bb (bb);
1964
f1f41a6c 1965 FOR_EACH_VEC_ELT (stmts, i, stmt)
221a697e 1966 {
1967 loop_p loop;
1968
1969 if (is_gimple_debug (stmt))
1970 continue;
1971
1972 loop = loop_containing_stmt (stmt);
1973 if (!loop_in_sese_p (loop, region))
1974 loop = nest;
1975
1976 graphite_find_data_references_in_stmt (nest, loop, stmt,
1688f172 1977 &GBB_DATA_REFS (gbb));
221a697e 1978 }
1688f172 1979}
1980
1981/* Insert STMT at the end of the STMTS sequence and then insert the
1982 statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
1983 on STMTS. */
1984
1985static void
1986insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
1987 gimple_stmt_iterator insert_gsi)
1988{
1989 gimple_stmt_iterator gsi;
4997014d 1990 auto_vec<gimple, 3> x;
1688f172 1991
e3a19533 1992 gimple_seq_add_stmt (&stmts, stmt);
1688f172 1993 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
f1f41a6c 1994 x.safe_push (gsi_stmt (gsi));
1688f172 1995
1996 gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
1997 analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
1688f172 1998}
1999
8c6b3774 2000/* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
c6bb733d 2001
2002static void
1688f172 2003insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
c6bb733d 2004{
c6bb733d 2005 gimple_seq stmts;
52123e43 2006 gimple_stmt_iterator gsi;
8c6b3774 2007 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
11db727d 2008 gimple stmt = gimple_build_assign (unshare_expr (res), var);
4997014d 2009 auto_vec<gimple, 3> x;
c6bb733d 2010
e3a19533 2011 gimple_seq_add_stmt (&stmts, stmt);
1688f172 2012 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
f1f41a6c 2013 x.safe_push (gsi_stmt (gsi));
52123e43 2014
39a34dd8 2015 if (gimple_code (after_stmt) == GIMPLE_PHI)
52123e43 2016 {
39a34dd8 2017 gsi = gsi_after_labels (gimple_bb (after_stmt));
52123e43 2018 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2019 }
2020 else
2021 {
39a34dd8 2022 gsi = gsi_for_stmt (after_stmt);
52123e43 2023 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
2024 }
1688f172 2025
2026 analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
c6bb733d 2027}
2028
8c6b3774 2029/* Creates a poly_bb_p for basic_block BB from the existing PBB. */
2030
2031static void
2032new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
2033{
f1f41a6c 2034 vec<data_reference_p> drs;
2035 drs.create (3);
8c6b3774 2036 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
2037 gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
2038 poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
f1f41a6c 2039 int index, n = SCOP_BBS (scop).length ();
8c6b3774 2040
2041 /* The INDEX of PBB in SCOP_BBS. */
2042 for (index = 0; index < n; index++)
f1f41a6c 2043 if (SCOP_BBS (scop)[index] == pbb)
8c6b3774 2044 break;
2045
87e20041 2046 pbb1->domain = isl_set_copy (pbb->domain);
24bc4589 2047 pbb1->domain = isl_set_set_tuple_id (pbb1->domain,
2048 isl_id_for_pbb (scop, pbb1));
93f9c161 2049
8c6b3774 2050 GBB_PBB (gbb1) = pbb1;
f1f41a6c 2051 GBB_CONDITIONS (gbb1) = GBB_CONDITIONS (gbb).copy ();
2052 GBB_CONDITION_CASES (gbb1) = GBB_CONDITION_CASES (gbb).copy ();
2053 SCOP_BBS (scop).safe_insert (index + 1, pbb1);
8c6b3774 2054}
2055
c6bb733d 2056/* Insert on edge E the assignment "RES := EXPR". */
2057
2058static void
8c6b3774 2059insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
c6bb733d 2060{
2061 gimple_stmt_iterator gsi;
e3a19533 2062 gimple_seq stmts = NULL;
c6bb733d 2063 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
11db727d 2064 gimple stmt = gimple_build_assign (unshare_expr (res), var);
8c6b3774 2065 basic_block bb;
4997014d 2066 auto_vec<gimple, 3> x;
c6bb733d 2067
e3a19533 2068 gimple_seq_add_stmt (&stmts, stmt);
1688f172 2069 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
f1f41a6c 2070 x.safe_push (gsi_stmt (gsi));
1688f172 2071
c6bb733d 2072 gsi_insert_seq_on_edge (e, stmts);
2073 gsi_commit_edge_inserts ();
8c6b3774 2074 bb = gimple_bb (stmt);
2075
2076 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
2077 return;
2078
2079 if (!gbb_from_bb (bb))
2080 new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
1688f172 2081
2082 analyze_drs_in_stmts (scop, bb, x);
c6bb733d 2083}
2084
2085/* Creates a zero dimension array of the same type as VAR. */
2086
2087static tree
03c1327b 2088create_zero_dim_array (tree var, const char *base_name)
c6bb733d 2089{
2090 tree index_type = build_index_type (integer_zero_node);
2091 tree elt_type = TREE_TYPE (var);
2092 tree array_type = build_array_type (elt_type, index_type);
03c1327b 2093 tree base = create_tmp_var (array_type, base_name);
c6bb733d 2094
c6bb733d 2095 return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
2096 NULL_TREE);
2097}
2098
2099/* Returns true when PHI is a loop close phi node. */
2100
2101static bool
2102scalar_close_phi_node_p (gimple phi)
2103{
30f4f4a6 2104 if (gimple_code (phi) != GIMPLE_PHI
7c782c9b 2105 || virtual_operand_p (gimple_phi_result (phi)))
c6bb733d 2106 return false;
2107
03ce78db 2108 /* Note that loop close phi nodes should have a single argument
2109 because we translated the representation into a canonical form
2110 before Graphite: see canonicalize_loop_closed_ssa_form. */
c6bb733d 2111 return (gimple_phi_num_args (phi) == 1);
2112}
2113
5d21c24a 2114/* For a definition DEF in REGION, propagates the expression EXPR in
2115 all the uses of DEF outside REGION. */
2116
2117static void
2118propagate_expr_outside_region (tree def, tree expr, sese region)
2119{
2120 imm_use_iterator imm_iter;
2121 gimple use_stmt;
2122 gimple_seq stmts;
2123 bool replaced_once = false;
2124
ed455480 2125 gcc_assert (TREE_CODE (def) == SSA_NAME);
5d21c24a 2126
2127 expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
2128 NULL_TREE);
2129
2130 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2131 if (!is_gimple_debug (use_stmt)
2132 && !bb_in_sese_p (gimple_bb (use_stmt), region))
2133 {
2134 ssa_op_iter iter;
2135 use_operand_p use_p;
2136
2137 FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2138 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
2139 && (replaced_once = true))
2140 replace_exp (use_p, expr);
2141
2142 update_stmt (use_stmt);
2143 }
2144
2145 if (replaced_once)
2146 {
2147 gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
2148 gsi_commit_edge_inserts ();
2149 }
2150}
2151
c6bb733d 2152/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2153 dimension array for it. */
2154
2155static void
8c6b3774 2156rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
c6bb733d 2157{
8c6b3774 2158 sese region = SCOP_REGION (scop);
c6bb733d 2159 gimple phi = gsi_stmt (*psi);
2160 tree res = gimple_phi_result (phi);
55c89f69 2161 basic_block bb = gimple_bb (phi);
2162 gimple_stmt_iterator gsi = gsi_after_labels (bb);
c6bb733d 2163 tree arg = gimple_phi_arg_def (phi, 0);
55c89f69 2164 gimple stmt;
c6bb733d 2165
03ce78db 2166 /* Note that loop close phi nodes should have a single argument
2167 because we translated the representation into a canonical form
2168 before Graphite: see canonicalize_loop_closed_ssa_form. */
2169 gcc_assert (gimple_phi_num_args (phi) == 1);
2170
55c89f69 2171 /* The phi node can be a non close phi node, when its argument is
51ec8951 2172 invariant, or a default definition. */
55c89f69 2173 if (is_gimple_min_invariant (arg)
51ec8951 2174 || SSA_NAME_IS_DEFAULT_DEF (arg))
ed455480 2175 {
2176 propagate_expr_outside_region (res, arg, region);
2177 gsi_next (psi);
2178 return;
2179 }
5d21c24a 2180
68a6a8ba 2181 else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
2182 {
2183 propagate_expr_outside_region (res, arg, region);
2184 stmt = gimple_build_assign (res, arg);
2185 remove_phi_node (psi, false);
2186 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
68a6a8ba 2187 return;
2188 }
2189
5d21c24a 2190 /* If res is scev analyzable and is not a scalar value, it is safe
2191 to ignore the close phi node: it will be code generated in the
2192 out of Graphite pass. */
2193 else if (scev_analyzable_p (res, region))
2194 {
2195 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
2196 tree scev;
2197
2198 if (!loop_in_sese_p (loop, region))
2199 {
2200 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
2201 scev = scalar_evolution_in_region (region, loop, arg);
2202 scev = compute_overall_effect_of_inner_loop (loop, scev);
2203 }
2204 else
ed455480 2205 scev = scalar_evolution_in_region (region, loop, res);
5d21c24a 2206
2207 if (tree_does_not_contain_chrecs (scev))
2208 propagate_expr_outside_region (res, scev, region);
2209
2210 gsi_next (psi);
2211 return;
2212 }
5184a05f 2213 else
55c89f69 2214 {
874117c8 2215 tree zero_dim_array = create_zero_dim_array (res, "Close_Phi");
55c89f69 2216
11db727d 2217 stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
55c89f69 2218
49253930 2219 if (TREE_CODE (arg) == SSA_NAME)
1688f172 2220 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
8c6b3774 2221 SSA_NAME_DEF_STMT (arg));
55c89f69 2222 else
8c6b3774 2223 insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
55c89f69 2224 zero_dim_array, arg);
2225 }
c6bb733d 2226
2227 remove_phi_node (psi, false);
c6bb733d 2228 SSA_NAME_DEF_STMT (res) = stmt;
1688f172 2229
2230 insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
c6bb733d 2231}
2232
2233/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2234 dimension array for it. */
2235
2236static void
8c6b3774 2237rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
c6bb733d 2238{
2239 size_t i;
2240 gimple phi = gsi_stmt (*psi);
2241 basic_block bb = gimple_bb (phi);
2242 tree res = gimple_phi_result (phi);
874117c8 2243 tree zero_dim_array = create_zero_dim_array (res, "phi_out_of_ssa");
c6bb733d 2244 gimple stmt;
c6bb733d 2245
2246 for (i = 0; i < gimple_phi_num_args (phi); i++)
2247 {
2248 tree arg = gimple_phi_arg_def (phi, i);
097e870c 2249 edge e = gimple_phi_arg_edge (phi, i);
c6bb733d 2250
097e870c 2251 /* Avoid the insertion of code in the loop latch to please the
2252 pattern matching of the vectorizer. */
a865acd7 2253 if (TREE_CODE (arg) == SSA_NAME
f5f9fa15 2254 && !SSA_NAME_IS_DEFAULT_DEF (arg)
a865acd7 2255 && e->src == bb->loop_father->latch)
1688f172 2256 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
8c6b3774 2257 SSA_NAME_DEF_STMT (arg));
c6bb733d 2258 else
8c6b3774 2259 insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
c6bb733d 2260 }
2261
11db727d 2262 stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
c6bb733d 2263 remove_phi_node (psi, false);
11db727d 2264 insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
c6bb733d 2265}
2266
b8046a12 2267/* Rewrite the degenerate phi node at position PSI from the degenerate
2268 form "x = phi (y, y, ..., y)" to "x = y". */
2269
2270static void
2271rewrite_degenerate_phi (gimple_stmt_iterator *psi)
2272{
2273 tree rhs;
2274 gimple stmt;
2275 gimple_stmt_iterator gsi;
2276 gimple phi = gsi_stmt (*psi);
2277 tree res = gimple_phi_result (phi);
2278 basic_block bb;
2279
b8046a12 2280 bb = gimple_bb (phi);
2281 rhs = degenerate_phi_result (phi);
2282 gcc_assert (rhs);
2283
2284 stmt = gimple_build_assign (res, rhs);
2285 remove_phi_node (psi, false);
b8046a12 2286
2287 gsi = gsi_after_labels (bb);
2288 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2289}
2290
42ad5d61 2291/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2292
8c6b3774 2293static void
42ad5d61 2294rewrite_reductions_out_of_ssa (scop_p scop)
2295{
2296 basic_block bb;
2297 gimple_stmt_iterator psi;
2298 sese region = SCOP_REGION (scop);
2299
fc00614f 2300 FOR_EACH_BB_FN (bb, cfun)
42ad5d61 2301 if (bb_in_sese_p (bb, region))
2302 for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
2303 {
b8046a12 2304 gimple phi = gsi_stmt (psi);
2305
7c782c9b 2306 if (virtual_operand_p (gimple_phi_result (phi)))
7ba04629 2307 {
2308 gsi_next (&psi);
2309 continue;
2310 }
2311
b8046a12 2312 if (gimple_phi_num_args (phi) > 1
2313 && degenerate_phi_result (phi))
2314 rewrite_degenerate_phi (&psi);
2315
2316 else if (scalar_close_phi_node_p (phi))
8c6b3774 2317 rewrite_close_phi_out_of_ssa (scop, &psi);
b8046a12 2318
42ad5d61 2319 else if (reduction_phi_p (region, &psi))
8c6b3774 2320 rewrite_phi_out_of_ssa (scop, &psi);
42ad5d61 2321 }
2322
2323 update_ssa (TODO_update_ssa);
2324#ifdef ENABLE_CHECKING
2325 verify_loop_closed_ssa (true);
2326#endif
2327}
2328
5061777c 2329/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2330 read from ZERO_DIM_ARRAY. */
2331
2332static void
1688f172 2333rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
8c6b3774 2334 tree def, gimple use_stmt)
5061777c 2335{
874117c8 2336 gimple name_stmt;
2337 tree name;
5061777c 2338 ssa_op_iter iter;
2339 use_operand_p use_p;
5061777c 2340
dd27e8aa 2341 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
5061777c 2342
874117c8 2343 name = copy_ssa_name (def, NULL);
2344 name_stmt = gimple_build_assign (name, zero_dim_array);
2345
dd27e8aa 2346 gimple_assign_set_lhs (name_stmt, name);
1688f172 2347 insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
5061777c 2348
dd27e8aa 2349 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2350 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
2351 replace_exp (use_p, name);
5061777c 2352
2353 update_stmt (use_stmt);
2354}
2355
3ac4f821 2356/* For every definition DEF in the SCOP that is used outside the scop,
2357 insert a closing-scop definition in the basic block just after this
2358 SCOP. */
2359
2360static void
2361handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
2362{
2363 tree var = create_tmp_reg (TREE_TYPE (def), NULL);
2364 tree new_name = make_ssa_name (var, stmt);
2365 bool needs_copy = false;
2366 use_operand_p use_p;
2367 imm_use_iterator imm_iter;
2368 gimple use_stmt;
2369 sese region = SCOP_REGION (scop);
2370
2371 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2372 {
2373 if (!bb_in_sese_p (gimple_bb (use_stmt), region))
2374 {
2375 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
2376 {
2377 SET_USE (use_p, new_name);
2378 }
2379 update_stmt (use_stmt);
2380 needs_copy = true;
2381 }
2382 }
2383
2384 /* Insert in the empty BB just after the scop a use of DEF such
2385 that the rewrite of cross_bb_scalar_dependences won't insert
2386 arrays everywhere else. */
2387 if (needs_copy)
2388 {
2389 gimple assign = gimple_build_assign (new_name, def);
2390 gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
2391
3ac4f821 2392 update_stmt (assign);
2393 gsi_insert_before (&psi, assign, GSI_SAME_STMT);
2394 }
2395}
2396
42ad5d61 2397/* Rewrite the scalar dependences crossing the boundary of the BB
c9a67530 2398 containing STMT with an array. Return true when something has been
2399 changed. */
42ad5d61 2400
c9a67530 2401static bool
3ac4f821 2402rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
42ad5d61 2403{
3ac4f821 2404 sese region = SCOP_REGION (scop);
42ad5d61 2405 gimple stmt = gsi_stmt (*gsi);
2406 imm_use_iterator imm_iter;
2407 tree def;
2408 basic_block def_bb;
2409 tree zero_dim_array = NULL_TREE;
2410 gimple use_stmt;
c9a67530 2411 bool res = false;
42ad5d61 2412
b19b9f62 2413 switch (gimple_code (stmt))
2414 {
2415 case GIMPLE_ASSIGN:
2416 def = gimple_assign_lhs (stmt);
2417 break;
2418
2419 case GIMPLE_CALL:
2420 def = gimple_call_lhs (stmt);
2421 break;
2422
2423 default:
c9a67530 2424 return false;
b19b9f62 2425 }
42ad5d61 2426
a4a4b66a 2427 if (!def
2428 || !is_gimple_reg (def))
c9a67530 2429 return false;
42ad5d61 2430
5d21c24a 2431 if (scev_analyzable_p (def, region))
2432 {
2433 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
2434 tree scev = scalar_evolution_in_region (region, loop, def);
2435
c9a67530 2436 if (tree_contains_chrecs (scev, NULL))
2437 return false;
5d21c24a 2438
c9a67530 2439 propagate_expr_outside_region (def, scev, region);
2440 return true;
5d21c24a 2441 }
2442
42ad5d61 2443 def_bb = gimple_bb (stmt);
2444
3ac4f821 2445 handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
2446
42ad5d61 2447 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
c9a67530 2448 if (gimple_code (use_stmt) == GIMPLE_PHI
2449 && (res = true))
5061777c 2450 {
ed455480 2451 gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
42ad5d61 2452
ed455480 2453 if (scalar_close_phi_node_p (gsi_stmt (psi)))
8c6b3774 2454 rewrite_close_phi_out_of_ssa (scop, &psi);
ed455480 2455 else
8c6b3774 2456 rewrite_phi_out_of_ssa (scop, &psi);
ed455480 2457 }
2458
2459 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2460 if (gimple_code (use_stmt) != GIMPLE_PHI
2461 && def_bb != gimple_bb (use_stmt)
c9a67530 2462 && !is_gimple_debug (use_stmt)
2463 && (res = true))
ed455480 2464 {
5061777c 2465 if (!zero_dim_array)
2466 {
03c1327b 2467 zero_dim_array = create_zero_dim_array
874117c8 2468 (def, "Cross_BB_scalar_dependence");
1688f172 2469 insert_out_of_ssa_copy (scop, zero_dim_array, def,
39a34dd8 2470 SSA_NAME_DEF_STMT (def));
5061777c 2471 gsi_next (gsi);
2472 }
2473
2bdae241 2474 rewrite_cross_bb_scalar_dependence (scop, unshare_expr (zero_dim_array),
8c6b3774 2475 def, use_stmt);
5061777c 2476 }
c9a67530 2477
2478 return res;
5061777c 2479}
2480
bf8b5699 2481/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2482
8c6b3774 2483static void
bf8b5699 2484rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
2485{
2486 basic_block bb;
2487 gimple_stmt_iterator psi;
2488 sese region = SCOP_REGION (scop);
c9a67530 2489 bool changed = false;
5061777c 2490
3ac4f821 2491 /* Create an extra empty BB after the scop. */
7133bc6f 2492 split_edge (SESE_EXIT (region));
3ac4f821 2493
fc00614f 2494 FOR_EACH_BB_FN (bb, cfun)
5061777c 2495 if (bb_in_sese_p (bb, region))
2496 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
3ac4f821 2497 changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
5061777c 2498
c9a67530 2499 if (changed)
2500 {
2501 scev_reset_htab ();
2502 update_ssa (TODO_update_ssa);
5061777c 2503#ifdef ENABLE_CHECKING
c9a67530 2504 verify_loop_closed_ssa (true);
5061777c 2505#endif
c9a67530 2506 }
c6bb733d 2507}
2508
2509/* Returns the number of pbbs that are in loops contained in SCOP. */
2510
2511static int
2512nb_pbbs_in_loops (scop_p scop)
2513{
2514 int i;
2515 poly_bb_p pbb;
2516 int res = 0;
2517
f1f41a6c 2518 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
c6bb733d 2519 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
2520 res++;
2521
2522 return res;
2523}
2524
f007fe97 2525/* Return the number of data references in BB that write in
2526 memory. */
2527
2528static int
2529nb_data_writes_in_bb (basic_block bb)
2530{
2531 int res = 0;
2532 gimple_stmt_iterator gsi;
2533
2534 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2535 if (gimple_vdef (gsi_stmt (gsi)))
2536 res++;
2537
2538 return res;
2539}
2540
8c6b3774 2541/* Splits at STMT the basic block BB represented as PBB in the
2542 polyhedral form. */
2543
2544static edge
2545split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
2546{
2547 edge e1 = split_block (bb, stmt);
2548 new_pbb_from_pbb (scop, pbb, e1->dest);
2549 return e1;
2550}
2551
2552/* Splits STMT out of its current BB. This is done for reduction
2553 statements for which we want to ignore data dependences. */
30f4f4a6 2554
2555static basic_block
8c6b3774 2556split_reduction_stmt (scop_p scop, gimple stmt)
30f4f4a6 2557{
30f4f4a6 2558 basic_block bb = gimple_bb (stmt);
8c6b3774 2559 poly_bb_p pbb = pbb_from_bb (bb);
1688f172 2560 gimple_bb_p gbb = gbb_from_bb (bb);
8c6b3774 2561 edge e1;
1688f172 2562 int i;
2563 data_reference_p dr;
30f4f4a6 2564
f007fe97 2565 /* Do not split basic blocks with no writes to memory: the reduction
2566 will be the only write to memory. */
fc2372d9 2567 if (nb_data_writes_in_bb (bb) == 0
2568 /* Or if we have already marked BB as a reduction. */
2569 || PBB_IS_REDUCTION (pbb_from_bb (bb)))
f007fe97 2570 return bb;
2571
8c6b3774 2572 e1 = split_pbb (scop, pbb, bb, stmt);
30f4f4a6 2573
8c6b3774 2574 /* Split once more only when the reduction stmt is not the only one
2575 left in the original BB. */
2576 if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
2577 {
2578 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2579 gsi_prev (&gsi);
2580 e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
2581 }
30f4f4a6 2582
1688f172 2583 /* A part of the data references will end in a different basic block
2584 after the split: move the DRs from the original GBB to the newly
2585 created GBB1. */
f1f41a6c 2586 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
1688f172 2587 {
2588 basic_block bb1 = gimple_bb (DR_STMT (dr));
2589
2590 if (bb1 != bb)
2591 {
2592 gimple_bb_p gbb1 = gbb_from_bb (bb1);
f1f41a6c 2593 GBB_DATA_REFS (gbb1).safe_push (dr);
2594 GBB_DATA_REFS (gbb).ordered_remove (i);
1688f172 2595 i--;
2596 }
2597 }
2598
8c6b3774 2599 return e1->dest;
30f4f4a6 2600}
2601
2602/* Return true when stmt is a reduction operation. */
2603
2604static inline bool
2605is_reduction_operation_p (gimple stmt)
2606{
5daf19b1 2607 enum tree_code code;
2608
2609 gcc_assert (is_gimple_assign (stmt));
2610 code = gimple_assign_rhs_code (stmt);
2611
30f4f4a6 2612 return flag_associative_math
5daf19b1 2613 && commutative_tree_code (code)
2614 && associative_tree_code (code);
30f4f4a6 2615}
2616
2617/* Returns true when PHI contains an argument ARG. */
2618
2619static bool
2620phi_contains_arg (gimple phi, tree arg)
2621{
2622 size_t i;
2623
2624 for (i = 0; i < gimple_phi_num_args (phi); i++)
2625 if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
2626 return true;
2627
2628 return false;
2629}
2630
2631/* Return a loop phi node that corresponds to a reduction containing LHS. */
2632
2633static gimple
2634follow_ssa_with_commutative_ops (tree arg, tree lhs)
2635{
2636 gimple stmt;
2637
2638 if (TREE_CODE (arg) != SSA_NAME)
2639 return NULL;
2640
2641 stmt = SSA_NAME_DEF_STMT (arg);
2642
7f60ea7e 2643 if (gimple_code (stmt) == GIMPLE_NOP
2644 || gimple_code (stmt) == GIMPLE_CALL)
36f22aa0 2645 return NULL;
2646
30f4f4a6 2647 if (gimple_code (stmt) == GIMPLE_PHI)
2648 {
2649 if (phi_contains_arg (stmt, lhs))
2650 return stmt;
2651 return NULL;
2652 }
2653
5daf19b1 2654 if (!is_gimple_assign (stmt))
2655 return NULL;
2656
30f4f4a6 2657 if (gimple_num_ops (stmt) == 2)
2658 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2659
2660 if (is_reduction_operation_p (stmt))
2661 {
2662 gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2663
2664 return res ? res :
2665 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
2666 }
2667
2668 return NULL;
2669}
2670
2671/* Detect commutative and associative scalar reductions starting at
5184a05f 2672 the STMT. Return the phi node of the reduction cycle, or NULL. */
30f4f4a6 2673
2674static gimple
2675detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
f1f41a6c 2676 vec<gimple> *in,
2677 vec<gimple> *out)
30f4f4a6 2678{
2679 gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
2680
5184a05f 2681 if (!phi)
2682 return NULL;
30f4f4a6 2683
f1f41a6c 2684 in->safe_push (stmt);
2685 out->safe_push (stmt);
5184a05f 2686 return phi;
30f4f4a6 2687}
2688
2689/* Detect commutative and associative scalar reductions starting at
5d2603f9 2690 STMT. Return the phi node of the reduction cycle, or NULL. */
30f4f4a6 2691
2692static gimple
f1f41a6c 2693detect_commutative_reduction_assign (gimple stmt, vec<gimple> *in,
2694 vec<gimple> *out)
30f4f4a6 2695{
2696 tree lhs = gimple_assign_lhs (stmt);
2697
2698 if (gimple_num_ops (stmt) == 2)
2699 return detect_commutative_reduction_arg (lhs, stmt,
2700 gimple_assign_rhs1 (stmt),
2701 in, out);
2702
2703 if (is_reduction_operation_p (stmt))
2704 {
2705 gimple res = detect_commutative_reduction_arg (lhs, stmt,
2706 gimple_assign_rhs1 (stmt),
2707 in, out);
2708 return res ? res
2709 : detect_commutative_reduction_arg (lhs, stmt,
2710 gimple_assign_rhs2 (stmt),
2711 in, out);
2712 }
2713
2714 return NULL;
2715}
2716
2717/* Return a loop phi node that corresponds to a reduction containing LHS. */
2718
2719static gimple
2720follow_inital_value_to_phi (tree arg, tree lhs)
2721{
2722 gimple stmt;
2723
2724 if (!arg || TREE_CODE (arg) != SSA_NAME)
2725 return NULL;
2726
2727 stmt = SSA_NAME_DEF_STMT (arg);
2728
2729 if (gimple_code (stmt) == GIMPLE_PHI
2730 && phi_contains_arg (stmt, lhs))
2731 return stmt;
2732
2733 return NULL;
2734}
2735
2736
9d75589a 2737/* Return the argument of the loop PHI that is the initial value coming
30f4f4a6 2738 from outside the loop. */
2739
2740static edge
2741edge_initial_value_for_loop_phi (gimple phi)
2742{
2743 size_t i;
2744
2745 for (i = 0; i < gimple_phi_num_args (phi); i++)
2746 {
2747 edge e = gimple_phi_arg_edge (phi, i);
2748
2749 if (loop_depth (e->src->loop_father)
2750 < loop_depth (e->dest->loop_father))
2751 return e;
2752 }
2753
2754 return NULL;
2755}
2756
9d75589a 2757/* Return the argument of the loop PHI that is the initial value coming
30f4f4a6 2758 from outside the loop. */
2759
2760static tree
2761initial_value_for_loop_phi (gimple phi)
2762{
2763 size_t i;
2764
2765 for (i = 0; i < gimple_phi_num_args (phi); i++)
2766 {
2767 edge e = gimple_phi_arg_edge (phi, i);
2768
2769 if (loop_depth (e->src->loop_father)
2770 < loop_depth (e->dest->loop_father))
2771 return gimple_phi_arg_def (phi, i);
2772 }
2773
2774 return NULL_TREE;
2775}
2776
2528d7cf 2777/* Returns true when DEF is used outside the reduction cycle of
2778 LOOP_PHI. */
2779
2780static bool
2781used_outside_reduction (tree def, gimple loop_phi)
2782{
2783 use_operand_p use_p;
2784 imm_use_iterator imm_iter;
2785 loop_p loop = loop_containing_stmt (loop_phi);
2786
2787 /* In LOOP, DEF should be used only in LOOP_PHI. */
2788 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2789 {
2790 gimple stmt = USE_STMT (use_p);
2791
2792 if (stmt != loop_phi
2793 && !is_gimple_debug (stmt)
2794 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2795 return true;
2796 }
2797
2798 return false;
2799}
2800
93514494 2801/* Detect commutative and associative scalar reductions belonging to
2802 the SCOP starting at the loop closed phi node STMT. Return the phi
2803 node of the reduction cycle, or NULL. */
30f4f4a6 2804
2805static gimple
f1f41a6c 2806detect_commutative_reduction (scop_p scop, gimple stmt, vec<gimple> *in,
2807 vec<gimple> *out)
30f4f4a6 2808{
2809 if (scalar_close_phi_node_p (stmt))
2810 {
2528d7cf 2811 gimple def, loop_phi, phi, close_phi = stmt;
2812 tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
5184a05f 2813
2814 if (TREE_CODE (arg) != SSA_NAME)
2815 return NULL;
2816
03ce78db 2817 /* Note that loop close phi nodes should have a single argument
2818 because we translated the representation into a canonical form
2819 before Graphite: see canonicalize_loop_closed_ssa_form. */
2528d7cf 2820 gcc_assert (gimple_phi_num_args (close_phi) == 1);
03ce78db 2821
5184a05f 2822 def = SSA_NAME_DEF_STMT (arg);
2528d7cf 2823 if (!stmt_in_sese_p (def, SCOP_REGION (scop))
2824 || !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
93514494 2825 return NULL;
2826
2528d7cf 2827 lhs = gimple_phi_result (close_phi);
2828 init = initial_value_for_loop_phi (loop_phi);
2829 phi = follow_inital_value_to_phi (init, lhs);
30f4f4a6 2830
2528d7cf 2831 if (phi && (used_outside_reduction (lhs, phi)
2832 || !has_single_use (gimple_phi_result (phi))))
30f4f4a6 2833 return NULL;
2528d7cf 2834
f1f41a6c 2835 in->safe_push (loop_phi);
2836 out->safe_push (close_phi);
2528d7cf 2837 return phi;
30f4f4a6 2838 }
2839
2840 if (gimple_code (stmt) == GIMPLE_ASSIGN)
2841 return detect_commutative_reduction_assign (stmt, in, out);
2842
2843 return NULL;
2844}
2845
2846/* Translate the scalar reduction statement STMT to an array RED
2847 knowing that its recursive phi node is LOOP_PHI. */
2848
2849static void
1688f172 2850translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
2851 gimple stmt, gimple loop_phi)
30f4f4a6 2852{
30f4f4a6 2853 tree res = gimple_phi_result (loop_phi);
53b5bc41 2854 gimple assign = gimple_build_assign (res, unshare_expr (red));
1688f172 2855 gimple_stmt_iterator gsi;
30f4f4a6 2856
1688f172 2857 insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
30f4f4a6 2858
53b5bc41 2859 assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
1688f172 2860 gsi = gsi_for_stmt (stmt);
2861 gsi_next (&gsi);
2862 insert_stmts (scop, assign, NULL, gsi);
30f4f4a6 2863}
2864
eae8f2a1 2865/* Removes the PHI node and resets all the debug stmts that are using
2866 the PHI_RESULT. */
2867
2868static void
2869remove_phi (gimple phi)
2870{
2871 imm_use_iterator imm_iter;
2872 tree def;
2873 use_operand_p use_p;
2874 gimple_stmt_iterator gsi;
4997014d 2875 auto_vec<gimple, 3> update;
eae8f2a1 2876 unsigned int i;
2877 gimple stmt;
2878
2879 def = PHI_RESULT (phi);
2880 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2881 {
2882 stmt = USE_STMT (use_p);
2883
2884 if (is_gimple_debug (stmt))
2885 {
2886 gimple_debug_bind_reset_value (stmt);
f1f41a6c 2887 update.safe_push (stmt);
eae8f2a1 2888 }
2889 }
2890
f1f41a6c 2891 FOR_EACH_VEC_ELT (update, i, stmt)
eae8f2a1 2892 update_stmt (stmt);
2893
eae8f2a1 2894 gsi = gsi_for_phi_node (phi);
2895 remove_phi_node (&gsi, false);
2896}
2897
fa6ed0e9 2898/* Helper function for for_each_index. For each INDEX of the data
2899 reference REF, returns true when its indices are valid in the loop
2900 nest LOOP passed in as DATA. */
2901
2902static bool
2903dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
2904{
2905 loop_p loop;
2906 basic_block header, def_bb;
2907 gimple stmt;
2908
2909 if (TREE_CODE (*index) != SSA_NAME)
2910 return true;
2911
2912 loop = *((loop_p *) data);
2913 header = loop->header;
2914 stmt = SSA_NAME_DEF_STMT (*index);
2915
2916 if (!stmt)
2917 return true;
2918
2919 def_bb = gimple_bb (stmt);
2920
2921 if (!def_bb)
2922 return true;
2923
2924 return dominated_by_p (CDI_DOMINATORS, header, def_bb);
2925}
2926
53b5bc41 2927/* When the result of a CLOSE_PHI is written to a memory location,
2928 return a pointer to that memory reference, otherwise return
2929 NULL_TREE. */
2930
2931static tree
2932close_phi_written_to_memory (gimple close_phi)
2933{
2934 imm_use_iterator imm_iter;
53b5bc41 2935 use_operand_p use_p;
2936 gimple stmt;
fa6ed0e9 2937 tree res, def = gimple_phi_result (close_phi);
53b5bc41 2938
2939 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2940 if ((stmt = USE_STMT (use_p))
2941 && gimple_code (stmt) == GIMPLE_ASSIGN
fa6ed0e9 2942 && (res = gimple_assign_lhs (stmt)))
2943 {
2944 switch (TREE_CODE (res))
2945 {
2946 case VAR_DECL:
2947 case PARM_DECL:
2948 case RESULT_DECL:
2949 return res;
2950
2951 case ARRAY_REF:
2952 case MEM_REF:
2953 {
2954 tree arg = gimple_phi_arg_def (close_phi, 0);
2955 loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
2956
2957 /* FIXME: this restriction is for id-{24,25}.f and
2958 could be handled by duplicating the computation of
2959 array indices before the loop of the close_phi. */
2960 if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
2961 return res;
2962 }
2963 /* Fallthru. */
53b5bc41 2964
fa6ed0e9 2965 default:
2966 continue;
2967 }
2968 }
53b5bc41 2969 return NULL_TREE;
2970}
2971
30f4f4a6 2972/* Rewrite out of SSA the reduction described by the loop phi nodes
2973 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2974 levels like this:
2975
2976 IN: stmt, loop_n, ..., loop_0
2977 OUT: stmt, close_n, ..., close_0
2978
2979 the first element is the reduction statement, and the next elements
2980 are the loop and close phi nodes of each of the outer loops. */
2981
2982static void
8c6b3774 2983translate_scalar_reduction_to_array (scop_p scop,
f1f41a6c 2984 vec<gimple> in,
2985 vec<gimple> out)
30f4f4a6 2986{
30f4f4a6 2987 gimple loop_phi;
f1f41a6c 2988 unsigned int i = out.length () - 1;
2989 tree red = close_phi_written_to_memory (out[i]);
30f4f4a6 2990
f1f41a6c 2991 FOR_EACH_VEC_ELT (in, i, loop_phi)
30f4f4a6 2992 {
f1f41a6c 2993 gimple close_phi = out[i];
30f4f4a6 2994
2995 if (i == 0)
2996 {
2997 gimple stmt = loop_phi;
8c6b3774 2998 basic_block bb = split_reduction_stmt (scop, stmt);
2999 poly_bb_p pbb = pbb_from_bb (bb);
3000 PBB_IS_REDUCTION (pbb) = true;
30f4f4a6 3001 gcc_assert (close_phi == loop_phi);
3002
53b5bc41 3003 if (!red)
3004 red = create_zero_dim_array
3005 (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
3006
f1f41a6c 3007 translate_scalar_reduction_to_array_for_stmt (scop, red, stmt, in[1]);
30f4f4a6 3008 continue;
3009 }
3010
f1f41a6c 3011 if (i == in.length () - 1)
30f4f4a6 3012 {
53b5bc41 3013 insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
3014 unshare_expr (red), close_phi);
39a34dd8 3015 insert_out_of_ssa_copy_on_edge
8c6b3774 3016 (scop, edge_initial_value_for_loop_phi (loop_phi),
53b5bc41 3017 unshare_expr (red), initial_value_for_loop_phi (loop_phi));
30f4f4a6 3018 }
3019
eae8f2a1 3020 remove_phi (loop_phi);
3021 remove_phi (close_phi);
30f4f4a6 3022 }
3023}
3024
c9a67530 3025/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
3026 true when something has been changed. */
30f4f4a6 3027
c9a67530 3028static bool
8c6b3774 3029rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
3030 gimple close_phi)
30f4f4a6 3031{
c9a67530 3032 bool res;
4997014d 3033 auto_vec<gimple, 10> in;
3034 auto_vec<gimple, 10> out;
30f4f4a6 3035
93514494 3036 detect_commutative_reduction (scop, close_phi, &in, &out);
f1f41a6c 3037 res = in.length () > 1;
c9a67530 3038 if (res)
8c6b3774 3039 translate_scalar_reduction_to_array (scop, in, out);
30f4f4a6 3040
c9a67530 3041 return res;
30f4f4a6 3042}
3043
c9a67530 3044/* Rewrites all the commutative reductions from LOOP out of SSA.
3045 Returns true when something has been changed. */
30f4f4a6 3046
c9a67530 3047static bool
8c6b3774 3048rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
3049 loop_p loop)
30f4f4a6 3050{
3051 gimple_stmt_iterator gsi;
3052 edge exit = single_exit (loop);
72085fb7 3053 tree res;
c9a67530 3054 bool changed = false;
30f4f4a6 3055
3056 if (!exit)
c9a67530 3057 return false;
30f4f4a6 3058
3059 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
72085fb7 3060 if ((res = gimple_phi_result (gsi_stmt (gsi)))
7c782c9b 3061 && !virtual_operand_p (res)
8c6b3774 3062 && !scev_analyzable_p (res, SCOP_REGION (scop)))
c9a67530 3063 changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
8c6b3774 3064 (scop, gsi_stmt (gsi));
c9a67530 3065
3066 return changed;
30f4f4a6 3067}
3068
3069/* Rewrites all the commutative reductions from SCOP out of SSA. */
3070
8c6b3774 3071static void
3072rewrite_commutative_reductions_out_of_ssa (scop_p scop)
30f4f4a6 3073{
30f4f4a6 3074 loop_p loop;
c9a67530 3075 bool changed = false;
8c6b3774 3076 sese region = SCOP_REGION (scop);
8643dd0a 3077
f21d4d00 3078 FOR_EACH_LOOP (loop, 0)
30f4f4a6 3079 if (loop_in_sese_p (loop, region))
8c6b3774 3080 changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
ff010926 3081
c9a67530 3082 if (changed)
3083 {
3084 scev_reset_htab ();
3085 gsi_commit_edge_inserts ();
3086 update_ssa (TODO_update_ssa);
ff010926 3087#ifdef ENABLE_CHECKING
c9a67530 3088 verify_loop_closed_ssa (true);
ff010926 3089#endif
c9a67530 3090 }
30f4f4a6 3091}
3092
b43389bd 3093/* Can all ivs be represented by a signed integer?
3094 As CLooG might generate negative values in its expressions, signed loop ivs
3095 are required in the backend. */
d3746d81 3096
b43389bd 3097static bool
3098scop_ivs_can_be_represented (scop_p scop)
3099{
b43389bd 3100 loop_p loop;
18046220 3101 gimple_stmt_iterator psi;
83b709f2 3102 bool result = true;
b43389bd 3103
f21d4d00 3104 FOR_EACH_LOOP (loop, 0)
b43389bd 3105 {
b43389bd 3106 if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
3107 continue;
3108
18046220 3109 for (psi = gsi_start_phis (loop->header);
3110 !gsi_end_p (psi); gsi_next (&psi))
3111 {
3112 gimple phi = gsi_stmt (psi);
3113 tree res = PHI_RESULT (phi);
3114 tree type = TREE_TYPE (res);
b43389bd 3115
18046220 3116 if (TYPE_UNSIGNED (type)
a0553bff 3117 && TYPE_PRECISION (type) >= TYPE_PRECISION (long_long_integer_type_node))
83b709f2 3118 {
3119 result = false;
3120 break;
3121 }
18046220 3122 }
83b709f2 3123 if (!result)
f21d4d00 3124 break;
b43389bd 3125 }
3126
83b709f2 3127 return result;
b43389bd 3128}
3129
c6bb733d 3130/* Builds the polyhedral representation for a SESE region. */
3131
f49215ce 3132void
c6bb733d 3133build_poly_scop (scop_p scop)
3134{
3135 sese region = SCOP_REGION (scop);
c2e502a5 3136 graphite_dim_t max_dim;
30f4f4a6 3137
8c6b3774 3138 build_scop_bbs (scop);
c6bb733d 3139
3140 /* FIXME: This restriction is needed to avoid a problem in CLooG.
3141 Once CLooG is fixed, remove this guard. Anyways, it makes no
3142 sense to optimize a scop containing only PBBs that do not belong
3143 to any loops. */
3144 if (nb_pbbs_in_loops (scop) == 0)
f49215ce 3145 return;
c6bb733d 3146
b43389bd 3147 if (!scop_ivs_can_be_represented (scop))
f49215ce 3148 return;
b43389bd 3149
c5409e1f 3150 if (flag_associative_math)
3151 rewrite_commutative_reductions_out_of_ssa (scop);
3152
c6bb733d 3153 build_sese_loop_nests (region);
54c91640 3154 /* Record all conditions in REGION. */
3155 sese_dom_walker (CDI_DOMINATORS, region).walk (cfun->cfg->x_entry_block_ptr);
c6bb733d 3156 find_scop_parameters (scop);
3157
c2e502a5 3158 max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
3159 if (scop_nb_params (scop) > max_dim)
f49215ce 3160 return;
c2e502a5 3161
c6bb733d 3162 build_scop_iteration_domain (scop);
3163 build_scop_context (scop);
c6bb733d 3164 add_conditions_to_constraints (scop);
8c6b3774 3165
3166 /* Rewrite out of SSA only after having translated the
3167 representation to the polyhedral representation to avoid scev
3168 analysis failures. That means that these functions will insert
3169 new data references that they create in the right place. */
8c6b3774 3170 rewrite_reductions_out_of_ssa (scop);
3171 rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
3172
3173 build_scop_drs (scop);
f77385d3 3174 scop_to_lst (scop);
c6bb733d 3175 build_scop_scattering (scop);
c6bb733d 3176
f49215ce 3177 /* This SCoP has been translated to the polyhedral
3178 representation. */
3179 POLY_SCOP_P (scop) = true;
c6bb733d 3180}
c6bb733d 3181#endif