]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/shrink-wrap.c
Move MEMMODEL_* from coretypes.h to memmodel.h
[thirdparty/gcc.git] / gcc / shrink-wrap.c
CommitLineData
e974b93b 1/* Shrink-wrapping related optimizations.
818ab71a 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
f30e25a3
ZC
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This file handles shrink-wrapping related optimizations. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
c7131fb2 25#include "backend.h"
957060b5 26#include "target.h"
c7131fb2 27#include "rtl.h"
957060b5 28#include "tree.h"
957060b5 29#include "cfghooks.h"
c7131fb2 30#include "df.h"
4d0cdd0c 31#include "memmodel.h"
957060b5 32#include "tm_p.h"
957060b5 33#include "regs.h"
c997869f 34#include "insn-config.h"
957060b5 35#include "emit-rtl.h"
f30e25a3 36#include "output.h"
f30e25a3 37#include "tree-pass.h"
60393bbc 38#include "cfgrtl.h"
c997869f 39#include "cfgbuild.h"
f30e25a3
ZC
40#include "params.h"
41#include "bb-reorder.h"
42#include "shrink-wrap.h"
a2e6c10c 43#include "regcprop.h"
2b63a3ac 44#include "rtl-iter.h"
015337d3 45#include "valtrack.h"
f30e25a3 46
f30e25a3
ZC
47
48/* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
2eba0ed5 52bool
939d7575 53requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
f30e25a3
ZC
54 HARD_REG_SET set_up_by_prologue)
55{
bfac633a 56 df_ref def, use;
f30e25a3
ZC
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (hardregs);
bfac633a 68 FOR_EACH_INSN_DEF (def, insn)
f30e25a3 69 {
bfac633a 70 rtx dreg = DF_REF_REG (def);
f30e25a3
ZC
71
72 if (!REG_P (dreg))
73 continue;
74
23997c53 75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
f30e25a3
ZC
76 }
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
bfac633a 85 FOR_EACH_INSN_USE (use, insn)
f30e25a3 86 {
bfac633a 87 rtx reg = DF_REF_REG (use);
f30e25a3
ZC
88
89 if (!REG_P (reg))
90 continue;
91
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
94 }
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
97
98 return false;
99}
100
e974b93b
ZC
101/* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
f30e25a3 104
e974b93b
ZC
105static edge
106live_edge_for_reg (basic_block bb, int regno, int end_regno)
f30e25a3
ZC
107{
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
115 {
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
138
e974b93b
ZC
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
f30e25a3
ZC
142 return NULL;
143
e974b93b 144 return live_edge;
f30e25a3
ZC
145}
146
147/* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
e974b93b
ZC
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
f30e25a3
ZC
151
152static bool
939d7575 153move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
f30e25a3 154 const HARD_REG_SET uses,
e974b93b 155 const HARD_REG_SET defs,
015337d3
JJ
156 bool *split_p,
157 struct dead_debug_local *debug)
f30e25a3
ZC
158{
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses, bb_defs;
2b63a3ac
JW
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
f30e25a3 164 basic_block next_block;
e974b93b 165 edge live_edge;
015337d3
JJ
166 rtx_insn *dinsn;
167 df_ref def;
f30e25a3 168
069d7fc5
RH
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
f30e25a3
ZC
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
2b63a3ac 179
069d7fc5
RH
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src))
200 ;
201 else if (!REG_P (src))
2b63a3ac 202 {
2b63a3ac
JW
203 rtx src_inner = NULL_RTX;
204
2cfc4ade
JW
205 if (can_throw_internal (insn))
206 return false;
207
2b63a3ac
JW
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
210 {
211 rtx x = *iter;
069d7fc5 212 switch (GET_RTX_CLASS (GET_CODE (x)))
2b63a3ac 213 {
069d7fc5
RH
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
3f2012e4 232 case LO_SUM:
069d7fc5
RH
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
2b63a3ac 250 }
2b63a3ac
JW
251 }
252
069d7fc5 253 if (src_inner != NULL)
2b63a3ac
JW
254 src = src_inner;
255 }
256
f30e25a3 257 /* Make sure that the source register isn't defined later in BB. */
2b63a3ac
JW
258 if (REG_P (src))
259 {
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
264 }
f30e25a3
ZC
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
e974b93b
ZC
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
f30e25a3
ZC
276 return false;
277
e974b93b
ZC
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
281 {
88f32f0f
ZC
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
285
d29d688a
ZC
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
289
d0d9aad7 290 basic_block old_dest = live_edge->dest;
e974b93b
ZC
291 next_block = split_edge (live_edge);
292
d29d688a
ZC
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
d0d9aad7
JW
296
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
e974b93b
ZC
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
d0d9aad7
JW
302 if (*split_p)
303 return false;
304
e974b93b
ZC
305 *split_p = true;
306 }
307
f30e25a3
ZC
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
015337d3
JJ
312 if (MAY_HAVE_DEBUG_INSNS)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_INSN_P (dinsn))
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
322 }
323 else if (dinsn == insn)
324 break;
325 }
f30e25a3
ZC
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 bb_uses = &DF_LR_BB_INFO (bb)->use;
334 bb_defs = &DF_LR_BB_INFO (bb)->def;
335 if (df_live)
336 {
337 for (i = dregno; i < end_dregno; i++)
338 {
e974b93b
ZC
339 if (*split_p
340 || REGNO_REG_SET_P (bb_uses, i)
341 || REGNO_REG_SET_P (bb_defs, i)
f30e25a3
ZC
342 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
343 next_block = NULL;
344 CLEAR_REGNO_REG_SET (live_out, i);
345 CLEAR_REGNO_REG_SET (live_in, i);
346 }
347
348 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
349 Either way, SRC is now live on entry. */
350 for (i = sregno; i < end_sregno; i++)
351 {
e974b93b
ZC
352 if (*split_p
353 || REGNO_REG_SET_P (bb_defs, i)
f30e25a3
ZC
354 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
355 next_block = NULL;
356 SET_REGNO_REG_SET (live_out, i);
357 SET_REGNO_REG_SET (live_in, i);
358 }
359 }
360 else
361 {
362 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
363 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
364 at -O1, just give up searching NEXT_BLOCK. */
365 next_block = NULL;
366 for (i = dregno; i < end_dregno; i++)
367 {
368 CLEAR_REGNO_REG_SET (live_out, i);
369 CLEAR_REGNO_REG_SET (live_in, i);
370 }
371
372 for (i = sregno; i < end_sregno; i++)
373 {
374 SET_REGNO_REG_SET (live_out, i);
375 SET_REGNO_REG_SET (live_in, i);
376 }
377 }
378
379 /* If we don't need to add the move to BB, look for a single
380 successor block. */
381 if (next_block)
e974b93b
ZC
382 {
383 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
384 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
385 break;
386 next_block = live_edge->dest;
387 }
f30e25a3
ZC
388 }
389 while (next_block);
390
e974b93b
ZC
391 /* For the new created basic block, there is no dataflow info at all.
392 So skip the following dataflow update and check. */
393 if (!(*split_p))
f30e25a3 394 {
e974b93b
ZC
395 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
396 (next loop). */
397 for (i = dregno; i < end_dregno; i++)
398 {
399 CLEAR_REGNO_REG_SET (bb_uses, i);
400 SET_REGNO_REG_SET (bb_defs, i);
401 }
f30e25a3 402
e974b93b
ZC
403 /* BB now uses SRC. */
404 for (i = sregno; i < end_sregno; i++)
405 SET_REGNO_REG_SET (bb_uses, i);
406 }
f30e25a3 407
015337d3
JJ
408 /* Insert debug temps for dead REGs used in subsequent debug insns. */
409 if (debug->used && !bitmap_empty_p (debug->used))
410 FOR_EACH_INSN_DEF (def, insn)
411 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
412 DEBUG_TEMP_BEFORE_WITH_VALUE);
413
f30e25a3
ZC
414 emit_insn_after (PATTERN (insn), bb_note (bb));
415 delete_insn (insn);
416 return true;
417}
418
419/* Look for register copies in the first block of the function, and move
420 them down into successor blocks if the register is used only on one
421 path. This exposes more opportunities for shrink-wrapping. These
422 kinds of sets often occur when incoming argument registers are moved
423 to call-saved registers because their values are live across one or
424 more calls during the function. */
425
8b661145 426static void
f30e25a3
ZC
427prepare_shrink_wrap (basic_block entry_block)
428{
939d7575
DM
429 rtx_insn *insn, *curr;
430 rtx x;
f30e25a3 431 HARD_REG_SET uses, defs;
bfac633a 432 df_ref def, use;
e974b93b 433 bool split_p = false;
015337d3
JJ
434 unsigned int i;
435 struct dead_debug_local debug;
f30e25a3 436
a2e6c10c
ZC
437 if (JUMP_P (BB_END (entry_block)))
438 {
439 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
440 to sink the copies from parameter to callee saved register out of
441 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
442 to release some dependences. */
443 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
444 }
445
015337d3 446 dead_debug_local_init (&debug, NULL, NULL);
f30e25a3
ZC
447 CLEAR_HARD_REG_SET (uses);
448 CLEAR_HARD_REG_SET (defs);
015337d3 449
f30e25a3
ZC
450 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
451 if (NONDEBUG_INSN_P (insn)
e974b93b 452 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
015337d3 453 &split_p, &debug))
f30e25a3
ZC
454 {
455 /* Add all defined registers to DEFs. */
bfac633a 456 FOR_EACH_INSN_DEF (def, insn)
f30e25a3 457 {
bfac633a 458 x = DF_REF_REG (def);
f30e25a3 459 if (REG_P (x) && HARD_REGISTER_P (x))
015337d3
JJ
460 for (i = REGNO (x); i < END_REGNO (x); i++)
461 SET_HARD_REG_BIT (defs, i);
f30e25a3
ZC
462 }
463
464 /* Add all used registers to USESs. */
bfac633a 465 FOR_EACH_INSN_USE (use, insn)
f30e25a3 466 {
bfac633a 467 x = DF_REF_REG (use);
f30e25a3 468 if (REG_P (x) && HARD_REGISTER_P (x))
015337d3
JJ
469 for (i = REGNO (x); i < END_REGNO (x); i++)
470 SET_HARD_REG_BIT (uses, i);
f30e25a3
ZC
471 }
472 }
015337d3
JJ
473
474 dead_debug_local_finish (&debug, NULL);
f30e25a3
ZC
475}
476
6c98d499
SB
477/* Return whether basic block PRO can get the prologue. It can not if it
478 has incoming complex edges that need a prologue inserted (we make a new
479 block for the prologue, so those edges would need to be redirected, which
480 does not work). It also can not if there exist registers live on entry
481 to PRO that are clobbered by the prologue. */
482
483static bool
484can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
485{
486 edge e;
487 edge_iterator ei;
488 FOR_EACH_EDGE (e, ei, pro->preds)
489 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
490 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
491 return false;
492
493 HARD_REG_SET live;
494 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
495 if (hard_reg_set_intersect_p (live, prologue_clobbered))
496 return false;
497
498 return true;
499}
500
23997c53
SB
501/* Return whether we can duplicate basic block BB for shrink wrapping. We
502 cannot if the block cannot be duplicated at all, or if any of its incoming
503 edges are complex and come from a block that does not require a prologue
504 (we cannot redirect such edges), or if the block is too big to copy.
505 PRO is the basic block before which we would put the prologue, MAX_SIZE is
506 the maximum size block we allow to be copied. */
507
508static bool
509can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
f30e25a3 510{
23997c53
SB
511 if (!can_duplicate_block_p (bb))
512 return false;
f30e25a3 513
23997c53
SB
514 edge e;
515 edge_iterator ei;
516 FOR_EACH_EDGE (e, ei, bb->preds)
6c98d499 517 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
23997c53
SB
518 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
519 return false;
f30e25a3 520
23997c53 521 unsigned size = 0;
f30e25a3 522
23997c53
SB
523 rtx_insn *insn;
524 FOR_BB_INSNS (bb, insn)
525 if (NONDEBUG_INSN_P (insn))
f30e25a3 526 {
23997c53
SB
527 size += get_attr_min_length (insn);
528 if (size > max_size)
529 return false;
f30e25a3 530 }
23997c53
SB
531
532 return true;
f30e25a3
ZC
533}
534
33fec8d5
SB
535/* Do whatever needs to be done for exits that run without prologue.
536 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
23997c53 537
33fec8d5
SB
538static void
539handle_simple_exit (edge e)
23997c53 540{
23997c53 541
33fec8d5
SB
542 if (e->flags & EDGE_SIBCALL)
543 {
544 /* Tell function.c to take no further action on this edge. */
545 e->flags |= EDGE_IGNORE;
546
547 e->flags &= ~EDGE_FALLTHRU;
548 emit_barrier_after_bb (e->src);
549 return;
550 }
551
552 /* If the basic block the edge comes from has multiple successors,
553 split the edge. */
554 if (EDGE_COUNT (e->src->succs) > 1)
555 {
556 basic_block old_bb = e->src;
557 rtx_insn *end = BB_END (old_bb);
558 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
559 basic_block new_bb = create_basic_block (note, note, old_bb);
560 BB_COPY_PARTITION (new_bb, old_bb);
561 BB_END (old_bb) = end;
562
563 redirect_edge_succ (e, new_bb);
564 e->flags |= EDGE_FALLTHRU;
565
566 e = make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
567 }
23997c53 568
33fec8d5
SB
569 e->flags &= ~EDGE_FALLTHRU;
570 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
571 BB_END (e->src));
572 JUMP_LABEL (ret) = simple_return_rtx;
573 emit_barrier_after_bb (e->src);
23997c53 574
33fec8d5
SB
575 if (dump_file)
576 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
577 INSN_UID (ret), e->src->index);
23997c53 578}
f30e25a3
ZC
579
580/* Try to perform a kind of shrink-wrapping, making sure the
581 prologue/epilogue is emitted only around those parts of the
23997c53
SB
582 function that require it.
583
584 There will be exactly one prologue, and it will be executed either
585 zero or one time, on any path. Depending on where the prologue is
586 placed, some of the basic blocks can be reached via both paths with
587 and without a prologue. Such blocks will be duplicated here, and the
588 edges changed to match.
589
590 Paths that go to the exit without going through the prologue will use
591 a simple_return instead of the epilogue. We maximize the number of
592 those, making sure to only duplicate blocks that can be duplicated.
593 If the prologue can then still be placed in multiple locations, we
594 place it as early as possible.
595
596 An example, where we duplicate blocks with control flow (legend:
597 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
598 be taken to point down or to the right, to simplify the diagram; here,
599 block 3 needs a prologue, the rest does not):
600
601
602 B B
603 | |
604 2 2
605 |\ |\
606 | 3 becomes | 3
607 |/ | \
608 4 7 4
609 |\ |\ |\
610 | 5 | 8 | 5
611 |/ |/ |/
612 6 9 6
613 | | |
614 R S R
615
616
617 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
618 edge 2->3).
619
620 Another example, where part of a loop is duplicated (again, bb 3 is
621 the only block that needs a prologue):
622
623
624 B 3<-- B ->3<--
625 | | | | | | |
626 | v | becomes | | v |
627 2---4--- 2---5-- 4---
628 | | |
629 R S R
630
631
632 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
633
634 ENTRY_EDGE is the edge where the prologue will be placed, possibly
33fec8d5 635 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
f30e25a3
ZC
636
637void
33fec8d5 638try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
f30e25a3 639{
23997c53
SB
640 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
641 no sense to shrink-wrap: then do not shrink-wrap! */
642
643 if (!SHRINK_WRAPPING_ENABLED)
644 return;
645
646 if (crtl->profile && !targetm.profile_before_prologue ())
647 return;
f30e25a3 648
23997c53
SB
649 if (crtl->calls_eh_return)
650 return;
651
652 bool empty_prologue = true;
653 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
654 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
f30e25a3 655 {
23997c53 656 empty_prologue = false;
f30e25a3
ZC
657 break;
658 }
23997c53
SB
659 if (empty_prologue)
660 return;
661
662 /* Move some code down to expose more shrink-wrapping opportunities. */
663
664 basic_block entry = (*entry_edge)->dest;
665 prepare_shrink_wrap (entry);
666
667 if (dump_file)
668 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
669
670 /* Compute the registers set and used in the prologue. */
671
672 HARD_REG_SET prologue_clobbered, prologue_used;
673 CLEAR_HARD_REG_SET (prologue_clobbered);
674 CLEAR_HARD_REG_SET (prologue_used);
675 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
676 if (NONDEBUG_INSN_P (insn))
677 {
678 HARD_REG_SET this_used;
679 CLEAR_HARD_REG_SET (this_used);
680 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
681 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
682 IOR_HARD_REG_SET (prologue_used, this_used);
683 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
684 }
6c98d499
SB
685 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
686 if (frame_pointer_needed)
687 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
f30e25a3 688
23997c53
SB
689 /* Find out what registers are set up by the prologue; any use of these
690 cannot happen before the prologue. */
691
692 struct hard_reg_set_container set_up_by_prologue;
693 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
694 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
695 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
696 if (frame_pointer_needed)
697 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
698 HARD_FRAME_POINTER_REGNUM);
699 if (pic_offset_table_rtx
700 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
701 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
702 PIC_OFFSET_TABLE_REGNUM);
703 if (crtl->drap_reg)
704 add_to_hard_reg_set (&set_up_by_prologue.set,
705 GET_MODE (crtl->drap_reg),
706 REGNO (crtl->drap_reg));
707 if (targetm.set_up_by_prologue)
708 targetm.set_up_by_prologue (&set_up_by_prologue);
709
710 /* We will insert the prologue before the basic block PRO. PRO should
711 dominate all basic blocks that need the prologue to be executed
712 before them. First, make PRO the "tightest wrap" possible. */
713
714 calculate_dominance_info (CDI_DOMINATORS);
715
716 basic_block pro = 0;
717
718 basic_block bb;
719 edge e;
720 edge_iterator ei;
721 FOR_EACH_BB_FN (bb, cfun)
f30e25a3 722 {
23997c53
SB
723 rtx_insn *insn;
724 FOR_BB_INSNS (bb, insn)
725 if (NONDEBUG_INSN_P (insn)
726 && requires_stack_frame_p (insn, prologue_used,
727 set_up_by_prologue.set))
728 {
729 if (dump_file)
730 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
731 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
732 break;
733 }
734 }
f30e25a3 735
23997c53
SB
736 /* If nothing needs a prologue, just put it at the start. This really
737 shouldn't happen, but we cannot fix it here. */
738
739 if (pro == 0)
740 {
f30e25a3 741 if (dump_file)
23997c53
SB
742 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
743 "putting it at the start.\n");
744 pro = entry;
745 }
f30e25a3 746
23997c53
SB
747 if (dump_file)
748 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
749 pro->index);
f30e25a3 750
23997c53 751 /* Now see if we can put the prologue at the start of PRO. Putting it
6c98d499
SB
752 there might require duplicating a block that cannot be duplicated,
753 or in some cases we cannot insert the prologue there at all. If PRO
754 wont't do, try again with the immediate dominator of PRO, and so on.
f30e25a3 755
23997c53
SB
756 The blocks that need duplicating are those reachable from PRO but
757 not dominated by it. We keep in BB_WITH a bitmap of the blocks
758 reachable from PRO that we already found, and in VEC a stack of
759 those we still need to consider (to find successors). */
f30e25a3 760
33fec8d5 761 bitmap bb_with = BITMAP_ALLOC (NULL);
23997c53 762 bitmap_set_bit (bb_with, pro->index);
f30e25a3 763
23997c53
SB
764 vec<basic_block> vec;
765 vec.create (n_basic_blocks_for_fn (cfun));
766 vec.quick_push (pro);
f30e25a3 767
23997c53
SB
768 unsigned max_grow_size = get_uncond_jump_length ();
769 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
f30e25a3 770
23997c53
SB
771 while (!vec.is_empty () && pro != entry)
772 {
6c98d499
SB
773 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
774 {
775 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
776
82ad5144
SB
777 if (bitmap_set_bit (bb_with, pro->index))
778 vec.quick_push (pro);
6c98d499
SB
779 }
780
23997c53
SB
781 basic_block bb = vec.pop ();
782 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
783 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
784 {
785 gcc_assert (pro != entry);
f30e25a3 786
23997c53
SB
787 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
788
82ad5144
SB
789 if (bitmap_set_bit (bb_with, pro->index))
790 vec.quick_push (pro);
23997c53
SB
791 }
792
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
795 && bitmap_set_bit (bb_with, e->dest->index))
796 vec.quick_push (e->dest);
797 }
798
23997c53
SB
799 if (dump_file)
800 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
801 pro->index);
802
803 /* If we can move PRO back without having to duplicate more blocks, do so.
5d59ed63 804 We do this because putting the prologue earlier is better for scheduling.
52ad5601 805
23997c53 806 We can move back to a block PRE if every path from PRE will eventually
5d59ed63 807 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
52ad5601
SB
808 to dominate every block reachable from itself. We keep in BB_TMP a
809 bitmap of the blocks reachable from PRE that we already found, and in
810 VEC a stack of those we still need to consider.
811
812 Any block reachable from PRE is also reachable from all predecessors
813 of PRE, so if we find we need to move PRE back further we can leave
814 everything not considered so far on the stack. Any block dominated
815 by PRE is also dominated by all other dominators of PRE, so anything
816 found good for some PRE does not need to be reconsidered later.
817
818 We don't need to update BB_WITH because none of the new blocks found
819 can jump to a block that does not need the prologue. */
23997c53
SB
820
821 if (pro != entry)
822 {
823 calculate_dominance_info (CDI_POST_DOMINATORS);
f30e25a3 824
5d59ed63
SB
825 bitmap bb_tmp = BITMAP_ALLOC (NULL);
826 bitmap_copy (bb_tmp, bb_with);
6c98d499 827 basic_block last_ok = pro;
5d59ed63
SB
828 vec.truncate (0);
829
23997c53 830 while (pro != entry)
f30e25a3 831 {
23997c53 832 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
6c98d499 833 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
23997c53 834 break;
6c98d499 835
5d59ed63
SB
836 if (bitmap_set_bit (bb_tmp, pre->index))
837 vec.quick_push (pre);
838
839 bool ok = true;
840 while (!vec.is_empty ())
841 {
52ad5601 842 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
5d59ed63
SB
843 {
844 ok = false;
845 break;
846 }
847
52ad5601 848 basic_block bb = vec.pop ();
5d59ed63 849 FOR_EACH_EDGE (e, ei, bb->succs)
52ad5601 850 if (bitmap_set_bit (bb_tmp, e->dest->index))
5d59ed63
SB
851 vec.quick_push (e->dest);
852 }
853
854 if (ok && can_get_prologue (pre, prologue_clobbered))
855 last_ok = pre;
856
6c98d499 857 pro = pre;
f30e25a3 858 }
5d59ed63 859
6c98d499 860 pro = last_ok;
f30e25a3 861
5d59ed63 862 BITMAP_FREE (bb_tmp);
23997c53
SB
863 free_dominance_info (CDI_POST_DOMINATORS);
864 }
f30e25a3 865
5d59ed63
SB
866 vec.release ();
867
23997c53
SB
868 if (dump_file)
869 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
870 pro->index);
871
6c98d499 872 if (pro == entry)
23997c53 873 {
33fec8d5 874 BITMAP_FREE (bb_with);
6c98d499
SB
875 free_dominance_info (CDI_DOMINATORS);
876 return;
23997c53
SB
877 }
878
23997c53
SB
879 /* Compute what fraction of the frequency and count of the blocks that run
880 both with and without prologue are for running with prologue. This gives
881 the correct answer for reducible flow graphs; for irreducible flow graphs
882 our profile is messed up beyond repair anyway. */
883
6c98d499
SB
884 gcov_type num = 0;
885 gcov_type den = 0;
23997c53 886
6c98d499
SB
887 FOR_EACH_EDGE (e, ei, pro->preds)
888 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
889 {
890 num += EDGE_FREQUENCY (e);
891 den += e->src->frequency;
892 }
23997c53 893
6c98d499
SB
894 if (den == 0)
895 den = 1;
23997c53
SB
896
897 /* All is okay, so do it. */
898
899 crtl->shrink_wrapped = true;
900 if (dump_file)
901 fprintf (dump_file, "Performing shrink-wrapping.\n");
902
903 /* Copy the blocks that can run both with and without prologue. The
904 originals run with prologue, the copies without. Store a pointer to
905 the copy in the ->aux field of the original. */
906
907 FOR_EACH_BB_FN (bb, cfun)
908 if (bitmap_bit_p (bb_with, bb->index)
909 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
910 {
911 basic_block dup = duplicate_block (bb, 0, 0);
912
913 bb->aux = dup;
914
915 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
916 emit_barrier_after_bb (dup);
917
918 if (EDGE_COUNT (dup->succs) == 0)
919 emit_barrier_after_bb (dup);
920
921 if (dump_file)
922 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
923
924 bb->frequency = RDIV (num * bb->frequency, den);
925 dup->frequency -= bb->frequency;
926 bb->count = RDIV (num * bb->count, den);
927 dup->count -= bb->count;
928 }
929
23997c53
SB
930 /* Now change the edges to point to the copies, where appropriate. */
931
932 FOR_EACH_BB_FN (bb, cfun)
933 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
934 {
935 basic_block src = bb;
936 if (bitmap_bit_p (bb_with, bb->index))
937 src = (basic_block) bb->aux;
938
939 FOR_EACH_EDGE (e, ei, src->succs)
f30e25a3 940 {
23997c53 941 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
f30e25a3 942 continue;
f30e25a3 943
23997c53
SB
944 if (bitmap_bit_p (bb_with, e->dest->index)
945 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
f30e25a3 946 {
23997c53
SB
947 if (dump_file)
948 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
949 e->src->index, e->dest->index,
950 ((basic_block) e->dest->aux)->index);
951 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
f30e25a3 952 }
23997c53
SB
953 else if (e->flags & EDGE_FALLTHRU
954 && bitmap_bit_p (bb_with, bb->index))
955 force_nonfallthru (e);
956 }
957 }
f30e25a3 958
23997c53 959 /* Also redirect the function entry edge if necessary. */
f30e25a3 960
23997c53
SB
961 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
962 if (bitmap_bit_p (bb_with, e->dest->index)
963 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
964 {
965 basic_block split_bb = split_edge (e);
966 e = single_succ_edge (split_bb);
967 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
968 }
f30e25a3 969
d07d2177 970 /* Make a simple_return for those exits that run without prologue. */
23997c53 971
d07d2177 972 FOR_EACH_BB_REVERSE_FN (bb, cfun)
23997c53
SB
973 if (!bitmap_bit_p (bb_with, bb->index))
974 FOR_EACH_EDGE (e, ei, bb->succs)
975 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
33fec8d5 976 handle_simple_exit (e);
23997c53 977
6c98d499
SB
978 /* Finally, we want a single edge to put the prologue on. Make a new
979 block before the PRO block; the edge beteen them is the edge we want.
980 Then redirect those edges into PRO that come from blocks without the
981 prologue, to point to the new block instead. The new prologue block
982 is put at the end of the insn chain. */
983
984 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
985 BB_COPY_PARTITION (new_bb, pro);
986 if (dump_file)
987 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
988
989 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
990 {
991 if (bitmap_bit_p (bb_with, e->src->index)
992 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
993 {
994 ei_next (&ei);
995 continue;
996 }
997
998 new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
999 new_bb->frequency += EDGE_FREQUENCY (e);
1000
1001 redirect_edge_and_branch_force (e, new_bb);
1002 if (dump_file)
1003 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1004 }
1005
1006 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1007 force_nonfallthru (*entry_edge);
1008
33fec8d5 1009 BITMAP_FREE (bb_with);
23997c53 1010 free_dominance_info (CDI_DOMINATORS);
f30e25a3 1011}
c997869f
SB
1012\f
1013/* Separate shrink-wrapping
1014
1015 Instead of putting all of the prologue and epilogue in one spot, we
1016 can put parts of it in places where those components are executed less
1017 frequently. The following code does this, for prologue and epilogue
1018 components that can be put in more than one location, and where those
1019 components can be executed more than once (the epilogue component will
1020 always be executed before the prologue component is executed a second
1021 time).
1022
1023 What exactly is a component is target-dependent. The more usual
1024 components are simple saves/restores to/from the frame of callee-saved
1025 registers. This code treats components abstractly (as an sbitmap),
1026 letting the target handle all details.
1027
1028 Prologue components are placed in such a way that for every component
1029 the prologue is executed as infrequently as possible. We do this by
1030 walking the dominator tree, comparing the cost of placing a prologue
1031 component before a block to the sum of costs determined for all subtrees
1032 of that block.
1033
1034 From this placement, we then determine for each component all blocks
1035 where at least one of this block's dominators (including itself) will
1036 get a prologue inserted. That then is how the components are placed.
1037 We could place the epilogue components a bit smarter (we can save a
1038 bit of code size sometimes); this is a possible future improvement.
1039
1040 Prologues and epilogues are preferably placed into a block, either at
1041 the beginning or end of it, if it is needed for all predecessor resp.
1042 successor edges; or placed on the edge otherwise.
1043
1044 If the placement of any prologue/epilogue leads to a situation we cannot
1045 handle (for example, an abnormal edge would need to be split, or some
1046 targets want to use some specific registers that may not be available
1047 where we want to put them), separate shrink-wrapping for the components
1048 in that prologue/epilogue is aborted. */
1049
1050
1051/* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1052 label LABEL. */
1053static void
1054dump_components (const char *label, sbitmap components)
1055{
1056 if (bitmap_empty_p (components))
1057 return;
1058
1059 fprintf (dump_file, " [%s", label);
1060
1061 for (unsigned int j = 0; j < components->n_bits; j++)
1062 if (bitmap_bit_p (components, j))
1063 fprintf (dump_file, " %u", j);
1064
1065 fprintf (dump_file, "]");
1066}
1067
1068/* The data we collect for each bb. */
1069struct sw {
1070 /* What components does this BB need? */
1071 sbitmap needs_components;
1072
1073 /* What components does this BB have? This is the main decision this
1074 pass makes. */
1075 sbitmap has_components;
1076
1077 /* The components for which we placed code at the start of the BB (instead
1078 of on all incoming edges). */
1079 sbitmap head_components;
1080
1081 /* The components for which we placed code at the end of the BB (instead
1082 of on all outgoing edges). */
1083 sbitmap tail_components;
1084
1085 /* The frequency of executing the prologue for this BB, if a prologue is
1086 placed on this BB. This is a pessimistic estimate (no prologue is
1087 needed for edges from blocks that have the component under consideration
1088 active already). */
1089 gcov_type own_cost;
1090
1091 /* The frequency of executing the prologue for this BB and all BBs
1092 dominated by it. */
1093 gcov_type total_cost;
1094};
1095
1096/* A helper function for accessing the pass-specific info. */
1097static inline struct sw *
1098SW (basic_block bb)
1099{
1100 gcc_assert (bb->aux);
1101 return (struct sw *) bb->aux;
1102}
1103
1104/* Create the pass-specific data structures for separately shrink-wrapping
1105 with components COMPONENTS. */
1106static void
1107init_separate_shrink_wrap (sbitmap components)
1108{
1109 basic_block bb;
1110 FOR_ALL_BB_FN (bb, cfun)
1111 {
1112 bb->aux = xcalloc (1, sizeof (struct sw));
1113
1114 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1115
1116 /* Mark all basic blocks without successor as needing all components.
1117 This avoids problems in at least cfgcleanup, sel-sched, and
1118 regrename (largely to do with all paths to such a block still
1119 needing the same dwarf CFI info). */
1120 if (EDGE_COUNT (bb->succs) == 0)
1121 bitmap_copy (SW (bb)->needs_components, components);
1122
1123 if (dump_file)
1124 {
1125 fprintf (dump_file, "bb %d components:", bb->index);
1126 dump_components ("has", SW (bb)->needs_components);
1127 fprintf (dump_file, "\n");
1128 }
1129
1130 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1131 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1132 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1133 bitmap_clear (SW (bb)->has_components);
1134 bitmap_clear (SW (bb)->head_components);
1135 bitmap_clear (SW (bb)->tail_components);
1136 }
1137}
1138
1139/* Destroy the pass-specific data. */
1140static void
1141fini_separate_shrink_wrap (void)
1142{
1143 basic_block bb;
1144 FOR_ALL_BB_FN (bb, cfun)
1145 if (bb->aux)
1146 {
1147 sbitmap_free (SW (bb)->needs_components);
1148 sbitmap_free (SW (bb)->has_components);
1149 sbitmap_free (SW (bb)->head_components);
1150 sbitmap_free (SW (bb)->tail_components);
1151 free (bb->aux);
1152 bb->aux = 0;
1153 }
1154}
1155
1156/* Place the prologue for component WHICH, in the basic blocks dominated
1157 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1158 HAS_COMPONENTS of a block if either the block has that bit set in
1159 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1160 dominator subtrees separately. */
1161static void
1162place_prologue_for_one_component (unsigned int which, basic_block head)
1163{
1164 /* The block we are currently dealing with. */
1165 basic_block bb = head;
1166 /* Is this the first time we visit this block, i.e. have we just gone
1167 down the tree. */
1168 bool first_visit = true;
1169
1170 /* Walk the dominator tree, visit one block per iteration of this loop.
1171 Each basic block is visited twice: once before visiting any children
1172 of the block, and once after visiting all of them (leaf nodes are
1173 visited only once). As an optimization, we do not visit subtrees
1174 that can no longer influence the prologue placement. */
1175 for (;;)
1176 {
1177 /* First visit of a block: set the (children) cost accumulator to zero;
1178 if the block does not have the component itself, walk down. */
1179 if (first_visit)
1180 {
1181 /* Initialize the cost. The cost is the block execution frequency
1182 that does not come from backedges. Calculating this by simply
1183 adding the cost of all edges that aren't backedges does not
1184 work: this does not always add up to the block frequency at
1185 all, and even if it does, rounding error makes for bad
1186 decisions. */
1187 SW (bb)->own_cost = bb->frequency;
1188
1189 edge e;
1190 edge_iterator ei;
1191 FOR_EACH_EDGE (e, ei, bb->preds)
1192 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1193 {
1194 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1195 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1196 else
1197 SW (bb)->own_cost = 0;
1198 }
1199
1200 SW (bb)->total_cost = 0;
1201
1202 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1203 && first_dom_son (CDI_DOMINATORS, bb))
1204 {
1205 bb = first_dom_son (CDI_DOMINATORS, bb);
1206 continue;
1207 }
1208 }
1209
1210 /* If this block does need the component itself, or it is cheaper to
1211 put the prologue here than in all the descendants that need it,
1212 mark it so. If this block's immediate post-dominator is dominated
1213 by this block, and that needs the prologue, we can put it on this
1214 block as well (earlier is better). */
1215 if (bitmap_bit_p (SW (bb)->needs_components, which)
1216 || SW (bb)->total_cost > SW (bb)->own_cost)
1217 {
1218 SW (bb)->total_cost = SW (bb)->own_cost;
1219 bitmap_set_bit (SW (bb)->has_components, which);
1220 }
1221 else
1222 {
1223 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1224 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1225 && bitmap_bit_p (SW (kid)->has_components, which))
1226 {
1227 SW (bb)->total_cost = SW (bb)->own_cost;
1228 bitmap_set_bit (SW (bb)->has_components, which);
1229 }
1230 }
1231
1232 /* We are back where we started, so we are done now. */
1233 if (bb == head)
1234 return;
1235
1236 /* We now know the cost of the subtree rooted at the current block.
1237 Accumulate this cost in the parent. */
1238 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1239 SW (parent)->total_cost += SW (bb)->total_cost;
1240
1241 /* Don't walk the tree down unless necessary. */
1242 if (next_dom_son (CDI_DOMINATORS, bb)
1243 && SW (parent)->total_cost <= SW (parent)->own_cost)
1244 {
1245 bb = next_dom_son (CDI_DOMINATORS, bb);
1246 first_visit = true;
1247 }
1248 else
1249 {
1250 bb = parent;
1251 first_visit = false;
1252 }
1253 }
1254}
1255
1256/* Mark HAS_COMPONENTS for every block dominated by at least one block with
1257 HAS_COMPONENTS set for the respective components, starting at HEAD. */
1258static void
1259spread_components (basic_block head)
1260{
1261 basic_block bb = head;
1262 bool first_visit = true;
1263 /* This keeps a tally of all components active. */
1264 sbitmap components = SW (head)->has_components;
1265
1266 for (;;)
1267 {
1268 if (first_visit)
1269 {
1270 bitmap_ior (SW (bb)->has_components, SW (bb)->has_components,
1271 components);
1272
1273 if (first_dom_son (CDI_DOMINATORS, bb))
1274 {
1275 components = SW (bb)->has_components;
1276 bb = first_dom_son (CDI_DOMINATORS, bb);
1277 continue;
1278 }
1279 }
1280
1281 components = SW (bb)->has_components;
1282
1283 if (next_dom_son (CDI_DOMINATORS, bb))
1284 {
1285 bb = next_dom_son (CDI_DOMINATORS, bb);
1286 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1287 components = SW (parent)->has_components;
1288 first_visit = true;
1289 }
1290 else
1291 {
1292 if (bb == head)
1293 return;
1294 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1295 first_visit = false;
1296 }
1297 }
1298}
1299
1300/* If we cannot handle placing some component's prologues or epilogues where
1301 we decided we should place them, unmark that component in COMPONENTS so
1302 that it is not wrapped separately. */
1303static void
1304disqualify_problematic_components (sbitmap components)
1305{
1306 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1307 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1308
1309 basic_block bb;
1310 FOR_EACH_BB_FN (bb, cfun)
1311 {
1312 edge e;
1313 edge_iterator ei;
1314 FOR_EACH_EDGE (e, ei, bb->succs)
1315 {
1316 /* Find which components we want pro/epilogues for here. */
1317 bitmap_and_compl (epi, SW (e->src)->has_components,
1318 SW (e->dest)->has_components);
1319 bitmap_and_compl (pro, SW (e->dest)->has_components,
1320 SW (e->src)->has_components);
1321
1322 /* Ask the target what it thinks about things. */
1323 if (!bitmap_empty_p (epi))
1324 targetm.shrink_wrap.disqualify_components (components, e, epi,
1325 false);
1326 if (!bitmap_empty_p (pro))
1327 targetm.shrink_wrap.disqualify_components (components, e, pro,
1328 true);
1329
1330 /* If this edge doesn't need splitting, we're fine. */
1331 if (single_pred_p (e->dest)
1332 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1333 continue;
1334
1335 /* If the edge can be split, that is fine too. */
1336 if ((e->flags & EDGE_ABNORMAL) == 0)
1337 continue;
1338
1339 /* We also can handle sibcalls. */
1340 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1341 {
1342 gcc_assert (e->flags & EDGE_SIBCALL);
1343 continue;
1344 }
1345
1346 /* Remove from consideration those components we would need
1347 pro/epilogues for on edges where we cannot insert them. */
1348 bitmap_and_compl (components, components, epi);
1349 bitmap_and_compl (components, components, pro);
1350
1351 if (dump_file && !bitmap_subset_p (epi, components))
1352 {
1353 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1354 e->dest->index);
1355 if (e->flags & EDGE_EH)
1356 fprintf (dump_file, " for EH");
1357 dump_components ("epi", epi);
1358 fprintf (dump_file, "\n");
1359 }
1360
1361 if (dump_file && !bitmap_subset_p (pro, components))
1362 {
1363 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1364 e->dest->index);
1365 if (e->flags & EDGE_EH)
1366 fprintf (dump_file, " for EH");
1367 dump_components ("pro", pro);
1368 fprintf (dump_file, "\n");
1369 }
1370 }
1371 }
1372
1373 sbitmap_free (pro);
1374 sbitmap_free (epi);
1375}
1376
1377/* Place code for prologues and epilogues for COMPONENTS where we can put
1378 that code at the start of basic blocks. */
1379static void
1380emit_common_heads_for_components (sbitmap components)
1381{
1382 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1383 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1384 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));
1385
1386 basic_block bb;
1387 FOR_EACH_BB_FN (bb, cfun)
1388 {
1389 /* Find which prologue resp. epilogue components are needed for all
1390 predecessor edges to this block. */
1391
1392 /* First, select all possible components. */
1393 bitmap_copy (epi, components);
1394 bitmap_copy (pro, components);
1395
1396 edge e;
1397 edge_iterator ei;
1398 FOR_EACH_EDGE (e, ei, bb->preds)
1399 {
1400 if (e->flags & EDGE_ABNORMAL)
1401 {
1402 bitmap_clear (epi);
1403 bitmap_clear (pro);
1404 break;
1405 }
1406
1407 /* Deselect those epilogue components that should not be inserted
1408 for this edge. */
1409 bitmap_and_compl (tmp, SW (e->src)->has_components,
1410 SW (e->dest)->has_components);
1411 bitmap_and (epi, epi, tmp);
1412
1413 /* Similar, for the prologue. */
1414 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1415 SW (e->src)->has_components);
1416 bitmap_and (pro, pro, tmp);
1417 }
1418
1419 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1420 fprintf (dump_file, " bb %d", bb->index);
1421
1422 if (dump_file && !bitmap_empty_p (epi))
1423 dump_components ("epi", epi);
1424 if (dump_file && !bitmap_empty_p (pro))
1425 dump_components ("pro", pro);
1426
1427 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1428 fprintf (dump_file, "\n");
1429
1430 /* Place code after the BB note. */
1431 if (!bitmap_empty_p (pro))
1432 {
1433 start_sequence ();
1434 targetm.shrink_wrap.emit_prologue_components (pro);
1435 rtx_insn *seq = get_insns ();
1436 end_sequence ();
1437
1438 emit_insn_after (seq, bb_note (bb));
1439
1440 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1441 }
1442
1443 if (!bitmap_empty_p (epi))
1444 {
1445 start_sequence ();
1446 targetm.shrink_wrap.emit_epilogue_components (epi);
1447 rtx_insn *seq = get_insns ();
1448 end_sequence ();
1449
1450 emit_insn_after (seq, bb_note (bb));
1451
1452 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1453 }
1454 }
1455
1456 sbitmap_free (pro);
1457 sbitmap_free (epi);
1458 sbitmap_free (tmp);
1459}
1460
1461/* Place code for prologues and epilogues for COMPONENTS where we can put
1462 that code at the end of basic blocks. */
1463static void
1464emit_common_tails_for_components (sbitmap components)
1465{
1466 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1467 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1468 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (components));
1469
1470 basic_block bb;
1471 FOR_EACH_BB_FN (bb, cfun)
1472 {
1473 /* Find which prologue resp. epilogue components are needed for all
1474 successor edges from this block. */
1475 if (EDGE_COUNT (bb->succs) == 0)
1476 continue;
1477
1478 /* First, select all possible components. */
1479 bitmap_copy (epi, components);
1480 bitmap_copy (pro, components);
1481
1482 edge e;
1483 edge_iterator ei;
1484 FOR_EACH_EDGE (e, ei, bb->succs)
1485 {
1486 if (e->flags & EDGE_ABNORMAL)
1487 {
1488 bitmap_clear (epi);
1489 bitmap_clear (pro);
1490 break;
1491 }
1492
1493 /* Deselect those epilogue components that should not be inserted
1494 for this edge, and also those that are already put at the head
1495 of the successor block. */
1496 bitmap_and_compl (tmp, SW (e->src)->has_components,
1497 SW (e->dest)->has_components);
1498 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1499 bitmap_and (epi, epi, tmp);
1500
1501 /* Similarly, for the prologue. */
1502 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1503 SW (e->src)->has_components);
1504 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1505 bitmap_and (pro, pro, tmp);
1506 }
1507
1508 /* If the last insn of this block is a control flow insn we cannot
1509 put anything after it. We can put our code before it instead,
1510 but only if that jump insn is a simple jump. */
1511 rtx_insn *last_insn = BB_END (bb);
1512 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1513 {
1514 bitmap_clear (epi);
1515 bitmap_clear (pro);
1516 }
1517
1518 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1519 fprintf (dump_file, " bb %d", bb->index);
1520
1521 if (dump_file && !bitmap_empty_p (epi))
1522 dump_components ("epi", epi);
1523 if (dump_file && !bitmap_empty_p (pro))
1524 dump_components ("pro", pro);
1525
1526 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1527 fprintf (dump_file, "\n");
1528
1529 /* Put the code at the end of the BB, but before any final jump. */
1530 if (!bitmap_empty_p (epi))
1531 {
1532 start_sequence ();
1533 targetm.shrink_wrap.emit_epilogue_components (epi);
1534 rtx_insn *seq = get_insns ();
1535 end_sequence ();
1536
1537 if (control_flow_insn_p (last_insn))
1538 emit_insn_before (seq, last_insn);
1539 else
1540 emit_insn_after (seq, last_insn);
1541
1542 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1543 }
1544
1545 if (!bitmap_empty_p (pro))
1546 {
1547 start_sequence ();
1548 targetm.shrink_wrap.emit_prologue_components (pro);
1549 rtx_insn *seq = get_insns ();
1550 end_sequence ();
1551
1552 if (control_flow_insn_p (last_insn))
1553 emit_insn_before (seq, last_insn);
1554 else
1555 emit_insn_after (seq, last_insn);
1556
1557 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1558 }
1559 }
1560
1561 sbitmap_free (pro);
1562 sbitmap_free (epi);
1563 sbitmap_free (tmp);
1564}
1565
1566/* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1567 placed them inside blocks directly. */
1568static void
1569insert_prologue_epilogue_for_components (sbitmap components)
1570{
1571 sbitmap pro = sbitmap_alloc (SBITMAP_SIZE (components));
1572 sbitmap epi = sbitmap_alloc (SBITMAP_SIZE (components));
1573
1574 basic_block bb;
1575 FOR_EACH_BB_FN (bb, cfun)
1576 {
1577 if (!bb->aux)
1578 continue;
1579
1580 edge e;
1581 edge_iterator ei;
1582 FOR_EACH_EDGE (e, ei, bb->succs)
1583 {
1584 /* Find which pro/epilogue components are needed on this edge. */
1585 bitmap_and_compl (epi, SW (e->src)->has_components,
1586 SW (e->dest)->has_components);
1587 bitmap_and_compl (pro, SW (e->dest)->has_components,
1588 SW (e->src)->has_components);
1589 bitmap_and (epi, epi, components);
1590 bitmap_and (pro, pro, components);
1591
1592 /* Deselect those we already have put at the head or tail of the
1593 edge's dest resp. src. */
1594 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1595 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1596 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1597 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1598
1599 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1600 {
1601 if (dump_file)
1602 {
1603 fprintf (dump_file, " %d->%d", e->src->index,
1604 e->dest->index);
1605 dump_components ("epi", epi);
1606 dump_components ("pro", pro);
1607 fprintf (dump_file, "\n");
1608 }
1609
1610 /* Put the epilogue components in place. */
1611 start_sequence ();
1612 targetm.shrink_wrap.emit_epilogue_components (epi);
1613 rtx_insn *seq = get_insns ();
1614 end_sequence ();
1615
1616 if (e->flags & EDGE_SIBCALL)
1617 {
1618 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1619
1620 rtx_insn *insn = BB_END (e->src);
1621 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1622 emit_insn_before (seq, insn);
1623 }
1624 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1625 {
1626 gcc_assert (e->flags & EDGE_FALLTHRU);
1627 basic_block new_bb = split_edge (e);
1628 emit_insn_after (seq, BB_END (new_bb));
1629 }
1630 else
1631 insert_insn_on_edge (seq, e);
1632
1633 /* Put the prologue components in place. */
1634 start_sequence ();
1635 targetm.shrink_wrap.emit_prologue_components (pro);
1636 seq = get_insns ();
1637 end_sequence ();
1638
1639 insert_insn_on_edge (seq, e);
1640 }
1641 }
1642 }
1643
1644 sbitmap_free (pro);
1645 sbitmap_free (epi);
1646
1647 commit_edge_insertions ();
1648}
1649
1650/* The main entry point to this subpass. FIRST_BB is where the prologue
1651 would be normally put. */
1652void
1653try_shrink_wrapping_separate (basic_block first_bb)
1654{
1655 if (HAVE_cc0)
1656 return;
1657
1658 if (!(SHRINK_WRAPPING_ENABLED
1659 && flag_shrink_wrap_separate
1660 && optimize_function_for_speed_p (cfun)
1661 && targetm.shrink_wrap.get_separate_components))
1662 return;
1663
1664 /* We don't handle "strange" functions. */
1665 if (cfun->calls_alloca
1666 || cfun->calls_setjmp
1667 || cfun->can_throw_non_call_exceptions
1668 || crtl->calls_eh_return
1669 || crtl->has_nonlocal_goto
1670 || crtl->saves_all_registers)
1671 return;
1672
1673 /* Ask the target what components there are. If it returns NULL, don't
1674 do anything. */
1675 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1676 if (!components)
1677 return;
1678
1679 /* We need LIVE info. */
1680 df_live_add_problem ();
1681 df_live_set_all_dirty ();
1682 df_analyze ();
1683
1684 calculate_dominance_info (CDI_DOMINATORS);
1685 calculate_dominance_info (CDI_POST_DOMINATORS);
1686
1687 init_separate_shrink_wrap (components);
1688
1689 sbitmap_iterator sbi;
1690 unsigned int j;
1691 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1692 place_prologue_for_one_component (j, first_bb);
1693
1694 spread_components (first_bb);
1695
1696 disqualify_problematic_components (components);
1697
1698 /* Don't separately shrink-wrap anything where the "main" prologue will
1699 go; the target code can often optimize things if it is presented with
1700 all components together (say, if it generates store-multiple insns). */
1701 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1702
1703 if (bitmap_empty_p (components))
1704 {
1705 if (dump_file)
1706 fprintf (dump_file, "Not wrapping anything separately.\n");
1707 }
1708 else
1709 {
1710 if (dump_file)
1711 {
1712 fprintf (dump_file, "The components we wrap separately are");
1713 dump_components ("sep", components);
1714 fprintf (dump_file, "\n");
1715
1716 fprintf (dump_file, "... Inserting common heads...\n");
1717 }
1718
1719 emit_common_heads_for_components (components);
1720
1721 if (dump_file)
1722 fprintf (dump_file, "... Inserting common tails...\n");
1723
1724 emit_common_tails_for_components (components);
1725
1726 if (dump_file)
1727 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1728
1729 insert_prologue_epilogue_for_components (components);
1730
1731 if (dump_file)
1732 fprintf (dump_file, "... Done.\n");
1733
1734 targetm.shrink_wrap.set_handled_components (components);
1735
1736 crtl->shrink_wrapped_separate = true;
1737 }
1738
1739 fini_separate_shrink_wrap ();
1740
1741 sbitmap_free (components);
1742 free_dominance_info (CDI_DOMINATORS);
1743 free_dominance_info (CDI_POST_DOMINATORS);
1744
1745 if (crtl->shrink_wrapped_separate)
1746 {
1747 df_live_set_all_dirty ();
1748 df_analyze ();
1749 }
1750}