]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-predcom.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / tree-predcom.c
CommitLineData
bbc8a8dc 1/* Predictive commoning.
e08120b1 2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
c75c517d 3 Free Software Foundation, Inc.
b8698a0f 4
bbc8a8dc 5This file is part of GCC.
b8698a0f 6
bbc8a8dc
ZD
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9dcd6f09 9Free Software Foundation; either version 3, or (at your option) any
bbc8a8dc 10later version.
b8698a0f 11
bbc8a8dc
ZD
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
b8698a0f 16
bbc8a8dc 17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
bbc8a8dc
ZD
20
21/* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
b8698a0f 33
bbc8a8dc
ZD
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
b8698a0f 67
bbc8a8dc
ZD
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
b8698a0f 80 single root reference of the chain (adjusting their distance
bbc8a8dc
ZD
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
073a8998 103 of a reference reusing its value. Variables R0 up to RN are created,
bbc8a8dc
ZD
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
b8698a0f 136
bbc8a8dc
ZD
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188#include "config.h"
189#include "system.h"
190#include "coretypes.h"
191#include "tm.h"
192#include "tree.h"
193#include "tm_p.h"
194#include "cfgloop.h"
195#include "tree-flow.h"
196#include "ggc.h"
197#include "tree-data-ref.h"
198#include "tree-scalar-evolution.h"
199#include "tree-chrec.h"
200#include "params.h"
cf835838 201#include "gimple-pretty-print.h"
bbc8a8dc
ZD
202#include "tree-pass.h"
203#include "tree-affine.h"
204#include "tree-inline.h"
205
206/* The maximum number of iterations between the considered memory
207 references. */
208
209#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
b8698a0f 210
726a989a
RB
211/* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
bbc8a8dc 213
7e5487a2 214typedef struct dref_d
bbc8a8dc
ZD
215{
216 /* The reference itself. */
217 struct data_reference *ref;
218
219 /* The statement in that the reference appears. */
726a989a
RB
220 gimple stmt;
221
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
bbc8a8dc
ZD
226
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
230
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
233
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
236
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240} *dref;
241
242DEF_VEC_P (dref);
243DEF_VEC_ALLOC_P (dref, heap);
244
245/* Type of the chain of the references. */
246
247enum chain_type
248{
249 /* The addresses of the references in the chain are constant. */
250 CT_INVARIANT,
251
252 /* There are only loads in the chain. */
253 CT_LOAD,
254
255 /* Root of the chain is store, the rest are loads. */
256 CT_STORE_LOAD,
257
258 /* A combination of two chains. */
259 CT_COMBINATION
260};
261
262/* Chains of data references. */
263
264typedef struct chain
265{
266 /* Type of the chain. */
267 enum chain_type type;
268
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
82d6e6fc 271 enum tree_code op;
bbc8a8dc
ZD
272 tree rslt_type;
273 struct chain *ch1, *ch2;
274
275 /* The references in the chain. */
276 VEC(dref,heap) *refs;
277
278 /* The maximum distance of the reference in the chain from the root. */
279 unsigned length;
280
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree,heap) *vars;
283
284 /* Initializers for the variables. */
285 VEC(tree,heap) *inits;
286
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after : 1;
290
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed : 1;
293
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined : 1;
296} *chain_p;
297
298DEF_VEC_P (chain_p);
299DEF_VEC_ALLOC_P (chain_p, heap);
300
301/* Describes the knowledge about the step of the memory references in
302 the component. */
303
304enum ref_step_type
305{
306 /* The step is zero. */
307 RS_INVARIANT,
308
309 /* The step is nonzero. */
310 RS_NONZERO,
311
312 /* The step may or may not be nonzero. */
313 RS_ANY
314};
315
316/* Components of the data dependence graph. */
317
318struct component
319{
320 /* The references in the component. */
321 VEC(dref,heap) *refs;
322
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step;
325
326 /* Next component in the list. */
327 struct component *next;
328};
329
330/* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331
332static bitmap looparound_phis;
333
334/* Cache used by tree_to_aff_combination_expand. */
335
336static struct pointer_map_t *name_expansions;
337
338/* Dumps data reference REF to FILE. */
339
340extern void dump_dref (FILE *, dref);
341void
342dump_dref (FILE *file, dref ref)
343{
344 if (ref->ref)
345 {
346 fprintf (file, " ");
347 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348 fprintf (file, " (id %u%s)\n", ref->pos,
349 DR_IS_READ (ref->ref) ? "" : ", write");
350
351 fprintf (file, " offset ");
352 dump_double_int (file, ref->offset, false);
353 fprintf (file, "\n");
354
355 fprintf (file, " distance %u\n", ref->distance);
356 }
357 else
358 {
726a989a 359 if (gimple_code (ref->stmt) == GIMPLE_PHI)
bbc8a8dc
ZD
360 fprintf (file, " looparound ref\n");
361 else
362 fprintf (file, " combination ref\n");
363 fprintf (file, " in statement ");
726a989a 364 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
bbc8a8dc
ZD
365 fprintf (file, "\n");
366 fprintf (file, " distance %u\n", ref->distance);
367 }
368
369}
370
371/* Dumps CHAIN to FILE. */
372
373extern void dump_chain (FILE *, chain_p);
374void
375dump_chain (FILE *file, chain_p chain)
376{
377 dref a;
378 const char *chain_type;
379 unsigned i;
380 tree var;
381
382 switch (chain->type)
383 {
384 case CT_INVARIANT:
385 chain_type = "Load motion";
386 break;
387
388 case CT_LOAD:
389 chain_type = "Loads-only";
390 break;
391
392 case CT_STORE_LOAD:
393 chain_type = "Store-loads";
394 break;
395
396 case CT_COMBINATION:
397 chain_type = "Combination";
398 break;
399
400 default:
401 gcc_unreachable ();
402 }
403
404 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 chain->combined ? " (combined)" : "");
406 if (chain->type != CT_INVARIANT)
407 fprintf (file, " max distance %u%s\n", chain->length,
408 chain->has_max_use_after ? "" : ", may reuse first");
409
410 if (chain->type == CT_COMBINATION)
411 {
412 fprintf (file, " equal to %p %s %p in type ",
82d6e6fc 413 (void *) chain->ch1, op_symbol_code (chain->op),
bbc8a8dc
ZD
414 (void *) chain->ch2);
415 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416 fprintf (file, "\n");
417 }
418
419 if (chain->vars)
420 {
421 fprintf (file, " vars");
ac47786e 422 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
bbc8a8dc
ZD
423 {
424 fprintf (file, " ");
425 print_generic_expr (file, var, TDF_SLIM);
426 }
427 fprintf (file, "\n");
428 }
429
430 if (chain->inits)
431 {
432 fprintf (file, " inits");
ac47786e 433 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
bbc8a8dc
ZD
434 {
435 fprintf (file, " ");
436 print_generic_expr (file, var, TDF_SLIM);
437 }
438 fprintf (file, "\n");
439 }
440
441 fprintf (file, " references:\n");
ac47786e 442 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
bbc8a8dc
ZD
443 dump_dref (file, a);
444
445 fprintf (file, "\n");
446}
447
448/* Dumps CHAINS to FILE. */
449
450extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451void
452dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453{
454 chain_p chain;
455 unsigned i;
456
ac47786e 457 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
bbc8a8dc
ZD
458 dump_chain (file, chain);
459}
460
461/* Dumps COMP to FILE. */
462
463extern void dump_component (FILE *, struct component *);
464void
465dump_component (FILE *file, struct component *comp)
466{
467 dref a;
468 unsigned i;
469
470 fprintf (file, "Component%s:\n",
471 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
ac47786e 472 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
bbc8a8dc
ZD
473 dump_dref (file, a);
474 fprintf (file, "\n");
475}
476
477/* Dumps COMPS to FILE. */
478
479extern void dump_components (FILE *, struct component *);
480void
481dump_components (FILE *file, struct component *comps)
482{
483 struct component *comp;
484
485 for (comp = comps; comp; comp = comp->next)
486 dump_component (file, comp);
487}
488
489/* Frees a chain CHAIN. */
490
491static void
492release_chain (chain_p chain)
493{
494 dref ref;
495 unsigned i;
496
497 if (chain == NULL)
498 return;
499
ac47786e 500 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
bbc8a8dc
ZD
501 free (ref);
502
503 VEC_free (dref, heap, chain->refs);
504 VEC_free (tree, heap, chain->vars);
505 VEC_free (tree, heap, chain->inits);
506
507 free (chain);
508}
509
510/* Frees CHAINS. */
511
512static void
513release_chains (VEC (chain_p, heap) *chains)
514{
515 unsigned i;
516 chain_p chain;
517
ac47786e 518 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
bbc8a8dc
ZD
519 release_chain (chain);
520 VEC_free (chain_p, heap, chains);
521}
522
523/* Frees a component COMP. */
524
525static void
526release_component (struct component *comp)
527{
528 VEC_free (dref, heap, comp->refs);
529 free (comp);
530}
531
532/* Frees list of components COMPS. */
533
534static void
535release_components (struct component *comps)
536{
537 struct component *act, *next;
538
539 for (act = comps; act; act = next)
540 {
541 next = act->next;
542 release_component (act);
543 }
544}
545
546/* Finds a root of tree given by FATHERS containing A, and performs path
547 shortening. */
548
549static unsigned
550component_of (unsigned fathers[], unsigned a)
551{
552 unsigned root, n;
553
554 for (root = a; root != fathers[root]; root = fathers[root])
555 continue;
556
557 for (; a != root; a = n)
558 {
559 n = fathers[a];
560 fathers[a] = root;
561 }
562
563 return root;
564}
565
566/* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
568
569static void
570merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571{
572 unsigned ca = component_of (fathers, a);
573 unsigned cb = component_of (fathers, b);
574
575 if (ca == cb)
576 return;
577
578 if (sizes[ca] < sizes[cb])
579 {
580 sizes[cb] += sizes[ca];
581 fathers[ca] = cb;
582 }
583 else
584 {
585 sizes[ca] += sizes[cb];
586 fathers[cb] = ca;
587 }
588}
589
590/* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
593
594static bool
595suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596{
597 tree ref = DR_REF (a), step = DR_STEP (a);
598
599 if (!step
64fb0d3a 600 || TREE_THIS_VOLATILE (ref)
7e80c6bf
EB
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
bbc8a8dc
ZD
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613}
614
615/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617static void
618aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619{
0d82a1c8 620 tree type = TREE_TYPE (DR_OFFSET (dr));
bbc8a8dc
ZD
621 aff_tree delta;
622
0d82a1c8 623 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
bbc8a8dc 624 &name_expansions);
0d82a1c8 625 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
bbc8a8dc
ZD
626 aff_combination_add (offset, &delta);
627}
628
629/* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
634
635static bool
636determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
638{
639 aff_tree diff, baseb, step;
49379cb1
ZD
640 tree typea, typeb;
641
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
36618b93 645 if (!useless_type_conversion_p (typeb, typea))
49379cb1 646 return false;
bbc8a8dc
ZD
647
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
653
654 if (integer_zerop (DR_STEP (a)))
655 {
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
661 }
662
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
669
0d82a1c8 670 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
bbc8a8dc
ZD
671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
673}
674
675/* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
677
678static basic_block
679last_always_executed_block (struct loop *loop)
680{
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
685
ac47786e 686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
bbc8a8dc
ZD
687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
689
690 return last;
691}
692
693/* Splits dependence graph on DATAREFS described by DEPENDS to components. */
694
695static struct component *
696split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
699{
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
b8698a0f 710
ac47786e 711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
bbc8a8dc
ZD
712 {
713 if (!DR_REF (dr))
714 {
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
718 }
5417e022 719 dr->aux = (void *) (size_t) i;
bbc8a8dc
ZD
720 comp_father[i] = i;
721 comp_size[i] = 1;
722 }
723
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
727
ac47786e 728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
bbc8a8dc
ZD
729 {
730 enum ref_step_type dummy;
731
732 if (!suitable_reference_p (dr, &dummy))
733 {
5417e022 734 ia = (unsigned) (size_t) dr->aux;
bbc8a8dc
ZD
735 merge_comps (comp_father, comp_size, n, ia);
736 }
737 }
738
ac47786e 739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
bbc8a8dc
ZD
740 {
741 double_int dummy_off;
742
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
745
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
5417e022
ZD
748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
bbc8a8dc
ZD
750 if (ia == ib)
751 continue;
752
753 bad = component_of (comp_father, n);
754
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
b8698a0f 760
bbc8a8dc
ZD
761 merge_comps (comp_father, comp_size, ia, ib);
762 }
763
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
ac47786e 766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
bbc8a8dc 767 {
5417e022 768 ia = (unsigned) (size_t) dr->aux;
bbc8a8dc
ZD
769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
772
773 comp = comps[ca];
774 if (!comp)
775 {
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
779 }
780
7e5487a2 781 dataref = XCNEW (struct dref_d);
bbc8a8dc
ZD
782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
786
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
726a989a 789 gimple_bb (dataref->stmt));
bbc8a8dc
ZD
790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
792 }
793
794 for (i = 0; i < n; i++)
795 {
796 comp = comps[i];
797 if (comp)
798 {
799 comp->next = comp_list;
800 comp_list = comp;
801 }
802 }
803 free (comps);
804
805end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
809}
810
811/* Returns true if the component COMP satisfies the conditions
c80b4100 812 described in 2) at the beginning of this file. LOOP is the current
bbc8a8dc 813 loop. */
b8698a0f 814
bbc8a8dc
ZD
815static bool
816suitable_component_p (struct loop *loop, struct component *comp)
817{
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
822
ac47786e 823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
bbc8a8dc 824 {
726a989a 825 ba = gimple_bb (a->stmt);
bbc8a8dc
ZD
826
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
829
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
832
b0af49c4 833 if (DR_IS_WRITE (a->ref))
bbc8a8dc
ZD
834 has_write = true;
835 }
836
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
841
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
843 {
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
846
847#ifdef ENABLE_CHECKING
848 {
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
852 }
853#endif
854 }
855
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
862
863 return true;
864}
b8698a0f 865
bbc8a8dc
ZD
866/* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
c80b4100 869 the beginning of this file. LOOP is the current loop. */
bbc8a8dc
ZD
870
871static struct component *
872filter_suitable_components (struct loop *loop, struct component *comps)
873{
874 struct component **comp, *act;
875
876 for (comp = &comps; *comp; )
877 {
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
882 {
a0044be5
JJ
883 dref ref;
884 unsigned i;
885
bbc8a8dc 886 *comp = act->next;
ac47786e 887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
a0044be5 888 free (ref);
bbc8a8dc
ZD
889 release_component (act);
890 }
891 }
892
893 return comps;
894}
895
896/* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
898
899static int
900order_drefs (const void *a, const void *b)
901{
3d9a9f94
KG
902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
bbc8a8dc
ZD
904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
905
906 if (offcmp != 0)
907 return offcmp;
908
909 return (*da)->pos - (*db)->pos;
910}
911
912/* Returns root of the CHAIN. */
913
914static inline dref
915get_chain_root (chain_p chain)
916{
917 return VEC_index (dref, chain->refs, 0);
918}
919
920/* Adds REF to the chain CHAIN. */
921
922static void
923add_ref_to_chain (chain_p chain, dref ref)
924{
925 dref root = get_chain_root (chain);
926 double_int dist;
927
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
bdc45386 929 dist = double_int_sub (ref->offset, root->offset);
bbc8a8dc 930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
a0044be5
JJ
931 {
932 free (ref);
933 return;
934 }
bbc8a8dc
ZD
935 gcc_assert (double_int_fits_in_uhwi_p (dist));
936
937 VEC_safe_push (dref, heap, chain->refs, ref);
938
939 ref->distance = double_int_to_uhwi (dist);
940
941 if (ref->distance >= chain->length)
942 {
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
945 }
946
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
950
951 chain->all_always_accessed &= ref->always_accessed;
952}
953
954/* Returns the chain for invariant component COMP. */
955
956static chain_p
957make_invariant_chain (struct component *comp)
958{
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
962
963 chain->type = CT_INVARIANT;
964
965 chain->all_always_accessed = true;
966
ac47786e 967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
bbc8a8dc
ZD
968 {
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
971 }
972
973 return chain;
974}
975
976/* Make a new chain rooted at REF. */
977
978static chain_p
979make_rooted_chain (dref ref)
980{
981 chain_p chain = XCNEW (struct chain);
982
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
984
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
987
988 ref->distance = 0;
989
990 return chain;
991}
992
993/* Returns true if CHAIN is not trivial. */
994
995static bool
996nontrivial_chain_p (chain_p chain)
997{
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
999}
1000
1001/* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1003
1004static tree
1005name_for_ref (dref ref)
1006{
1007 tree name;
1008
726a989a 1009 if (is_gimple_assign (ref->stmt))
bbc8a8dc
ZD
1010 {
1011 if (!ref->ref || DR_IS_READ (ref->ref))
726a989a 1012 name = gimple_assign_lhs (ref->stmt);
bbc8a8dc 1013 else
726a989a 1014 name = gimple_assign_rhs1 (ref->stmt);
bbc8a8dc
ZD
1015 }
1016 else
1017 name = PHI_RESULT (ref->stmt);
1018
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1020}
1021
1022/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1024
1025static bool
1026valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1028{
1029 aff_tree diff, base, step;
1030 double_int off;
1031
bbc8a8dc
ZD
1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1035
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1039
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1045
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1052
0d82a1c8
RG
1053 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1054 &step, &name_expansions);
bbc8a8dc
ZD
1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1057
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1060
1061 return true;
1062}
1063
1064/* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1068
726a989a 1069static gimple
bbc8a8dc
ZD
1070find_looparound_phi (struct loop *loop, dref ref, dref root)
1071{
726a989a
RB
1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
bbc8a8dc
ZD
1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
726a989a 1076 gimple_stmt_iterator psi;
bbc8a8dc 1077
726a989a 1078 if (is_gimple_assign (ref->stmt))
bbc8a8dc
ZD
1079 {
1080 if (DR_IS_READ (ref->ref))
726a989a 1081 name = gimple_assign_lhs (ref->stmt);
bbc8a8dc 1082 else
726a989a 1083 name = gimple_assign_rhs1 (ref->stmt);
bbc8a8dc
ZD
1084 }
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
726a989a 1088 return NULL;
bbc8a8dc 1089
726a989a
RB
1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1091 {
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1095 }
bbc8a8dc 1096
726a989a
RB
1097 if (gsi_end_p (psi))
1098 return NULL;
bbc8a8dc
ZD
1099
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
726a989a 1102 return NULL;
bbc8a8dc 1103 init_stmt = SSA_NAME_DEF_STMT (init);
726a989a
RB
1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
bbc8a8dc 1107
726a989a 1108 init_ref = gimple_assign_rhs1 (init_stmt);
bbc8a8dc
ZD
1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
726a989a 1111 return NULL;
bbc8a8dc
ZD
1112
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
4e4452b6 1118 if (!dr_analyze_innermost (&init_dr, loop))
3661e899 1119 return NULL;
bbc8a8dc
ZD
1120
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
726a989a 1122 return NULL;
bbc8a8dc
ZD
1123
1124 return phi;
1125}
1126
1127/* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128
1129static void
726a989a 1130insert_looparound_copy (chain_p chain, dref ref, gimple phi)
bbc8a8dc 1131{
7e5487a2 1132 dref nw = XCNEW (struct dref_d), aref;
bbc8a8dc
ZD
1133 unsigned i;
1134
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1138
ac47786e 1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
bbc8a8dc
ZD
1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1143
1144 if (nw->distance > chain->length)
1145 {
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1148 }
1149}
1150
1151/* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1155
1156static void
1157add_looparound_copies (struct loop *loop, chain_p chain)
1158{
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
726a989a 1161 gimple phi;
bbc8a8dc 1162
ac47786e 1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
bbc8a8dc
ZD
1164 {
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1168
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1171 }
1172}
1173
1174/* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1177
1178static void
1179determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1182{
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
b61b1f17 1186 double_int last_ofs = double_int_zero;
bbc8a8dc
ZD
1187
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1190 {
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1194 }
1195
5095da95 1196 VEC_qsort (dref, comp->refs, order_drefs);
bbc8a8dc 1197
ac47786e 1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
bbc8a8dc 1199 {
b0af49c4 1200 if (!chain || DR_IS_WRITE (a->ref)
b61b1f17 1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
bdc45386 1202 double_int_sub (a->offset, last_ofs)) <= 0)
bbc8a8dc
ZD
1203 {
1204 if (nontrivial_chain_p (chain))
b61b1f17
MM
1205 {
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1208 }
bbc8a8dc
ZD
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
b61b1f17 1212 last_ofs = a->offset;
bbc8a8dc
ZD
1213 continue;
1214 }
1215
1216 add_ref_to_chain (chain, a);
1217 }
1218
1219 if (nontrivial_chain_p (chain))
1220 {
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1223 }
1224 else
1225 release_chain (chain);
1226}
1227
1228/* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1230
1231static void
1232determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1234{
1235 struct component *comp;
1236
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1239}
1240
1241/* Replace the reference in statement STMT with temporary variable
82d6e6fc 1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
bbc8a8dc
ZD
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1245
1246static void
82d6e6fc 1247replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
bbc8a8dc 1248{
726a989a
RB
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
bbc8a8dc 1252
726a989a 1253 if (gimple_code (stmt) == GIMPLE_PHI)
bbc8a8dc
ZD
1254 {
1255 gcc_assert (!in_lhs && !set);
1256
1257 val = PHI_RESULT (stmt);
726a989a
RB
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
bbc8a8dc 1261
726a989a 1262 /* Turn the phi node into GIMPLE_ASSIGN. */
82d6e6fc 1263 new_stmt = gimple_build_assign (val, new_tree);
726a989a 1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
bbc8a8dc
ZD
1265 return;
1266 }
b8698a0f 1267
bbc8a8dc
ZD
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
726a989a
RB
1270 gcc_assert (is_gimple_assign (stmt));
1271
1272 bsi = gsi_for_stmt (stmt);
bbc8a8dc 1273
82d6e6fc 1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
bbc8a8dc
ZD
1275 if (!set)
1276 {
1277 gcc_assert (!in_lhs);
82d6e6fc 1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
726a989a 1279 stmt = gsi_stmt (bsi);
bbc8a8dc
ZD
1280 update_stmt (stmt);
1281 return;
1282 }
1283
bbc8a8dc
ZD
1284 if (in_lhs)
1285 {
726a989a 1286 /* We have statement
b8698a0f 1287
726a989a 1288 OLD = VAL
bbc8a8dc 1289
726a989a
RB
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
bbc8a8dc
ZD
1292
1293 OLD = VAL
1294 NEW = VAL
1295
b8698a0f 1296 Otherwise, we are replacing a combination chain,
726a989a
RB
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1299
1300 OLD = VAL
1301 NEW = OLD
1302
1303 */
1304
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1307 {
726a989a 1308 val = gimple_assign_rhs1 (stmt);
7e8b1c4b
JJ
1309 gcc_assert (gimple_assign_single_p (stmt));
1310 if (TREE_CLOBBER_P (val))
32244553 1311 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
7e8b1c4b
JJ
1312 else
1313 gcc_assert (gimple_assign_copy_p (stmt));
726a989a 1314 }
bbc8a8dc
ZD
1315 }
1316 else
1317 {
bbc8a8dc
ZD
1318 /* VAL = OLD
1319
1320 is transformed to
1321
1322 VAL = OLD
1323 NEW = VAL */
726a989a
RB
1324
1325 val = gimple_assign_lhs (stmt);
bbc8a8dc
ZD
1326 }
1327
82d6e6fc 1328 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
726a989a 1329 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
bbc8a8dc
ZD
1330}
1331
1332/* Returns the reference to the address of REF in the ITER-th iteration of
1333 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1334 try to preserve the original shape of the reference (not rewrite it
1335 as an indirect ref to the address), to make tree_could_trap_p in
1336 prepare_initializers_chain return false more often. */
1337
1338static tree
1339ref_at_iteration (struct loop *loop, tree ref, int iter)
1340{
1341 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1342 affine_iv iv;
1343 bool ok;
1344
1345 if (handled_component_p (ref))
1346 {
1347 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1348 if (!op0)
1349 return NULL_TREE;
1350 }
70f34814
RG
1351 else if (!INDIRECT_REF_P (ref)
1352 && TREE_CODE (ref) != MEM_REF)
bbc8a8dc
ZD
1353 return unshare_expr (ref);
1354
be1ac4ec 1355 if (TREE_CODE (ref) == MEM_REF)
bbc8a8dc 1356 {
70f34814 1357 ret = unshare_expr (ref);
bbc8a8dc
ZD
1358 idx = TREE_OPERAND (ref, 0);
1359 idx_p = &TREE_OPERAND (ret, 0);
1360 }
1361 else if (TREE_CODE (ref) == COMPONENT_REF)
1362 {
1363 /* Check that the offset is loop invariant. */
1364 if (TREE_OPERAND (ref, 2)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1366 return NULL_TREE;
1367
1368 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1369 unshare_expr (TREE_OPERAND (ref, 1)),
1370 unshare_expr (TREE_OPERAND (ref, 2)));
1371 }
1372 else if (TREE_CODE (ref) == ARRAY_REF)
1373 {
1374 /* Check that the lower bound and the step are loop invariant. */
1375 if (TREE_OPERAND (ref, 2)
1376 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1377 return NULL_TREE;
1378 if (TREE_OPERAND (ref, 3)
1379 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1380 return NULL_TREE;
1381
1382 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1383 unshare_expr (TREE_OPERAND (ref, 2)),
1384 unshare_expr (TREE_OPERAND (ref, 3)));
1385 idx = TREE_OPERAND (ref, 1);
1386 idx_p = &TREE_OPERAND (ret, 1);
1387 }
1388 else
1389 return NULL_TREE;
1390
f017bf5e 1391 ok = simple_iv (loop, loop, idx, &iv, true);
bbc8a8dc
ZD
1392 if (!ok)
1393 return NULL_TREE;
1394 iv.base = expand_simple_operations (iv.base);
1395 if (integer_zerop (iv.step))
1396 *idx_p = unshare_expr (iv.base);
1397 else
1398 {
1399 type = TREE_TYPE (iv.base);
5be014d5
AP
1400 if (POINTER_TYPE_P (type))
1401 {
1402 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1403 size_int (iter));
5d49b6a7 1404 val = fold_build_pointer_plus (iv.base, val);
5be014d5
AP
1405 }
1406 else
1407 {
1408 val = fold_build2 (MULT_EXPR, type, iv.step,
1409 build_int_cst_type (type, iter));
1410 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1411 }
bbc8a8dc
ZD
1412 *idx_p = unshare_expr (val);
1413 }
1414
1415 return ret;
1416}
1417
1418/* Get the initialization expression for the INDEX-th temporary variable
1419 of CHAIN. */
1420
1421static tree
1422get_init_expr (chain_p chain, unsigned index)
1423{
1424 if (chain->type == CT_COMBINATION)
1425 {
1426 tree e1 = get_init_expr (chain->ch1, index);
1427 tree e2 = get_init_expr (chain->ch2, index);
1428
82d6e6fc 1429 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
bbc8a8dc
ZD
1430 }
1431 else
1432 return VEC_index (tree, chain->inits, index);
1433}
1434
2664efb6
ZD
1435/* Returns a new temporary variable used for the I-th variable carrying
1436 value of REF. The variable's uid is marked in TMP_VARS. */
1437
1438static tree
1439predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1440{
1441 tree type = TREE_TYPE (ref);
2664efb6
ZD
1442 /* We never access the components of the temporary variable in predictive
1443 commoning. */
acd63801 1444 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
2664efb6
ZD
1445 bitmap_set_bit (tmp_vars, DECL_UID (var));
1446 return var;
1447}
1448
bbc8a8dc
ZD
1449/* Creates the variables for CHAIN, as well as phi nodes for them and
1450 initialization on entry to LOOP. Uids of the newly created
1451 temporary variables are marked in TMP_VARS. */
1452
1453static void
1454initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1455{
1456 unsigned i;
1457 unsigned n = chain->length;
1458 dref root = get_chain_root (chain);
1459 bool reuse_first = !chain->has_max_use_after;
726a989a
RB
1460 tree ref, init, var, next;
1461 gimple phi;
1462 gimple_seq stmts;
bbc8a8dc
ZD
1463 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1464
1465 /* If N == 0, then all the references are within the single iteration. And
1466 since this is an nonempty chain, reuse_first cannot be true. */
1467 gcc_assert (n > 0 || !reuse_first);
1468
1469 chain->vars = VEC_alloc (tree, heap, n + 1);
1470
1471 if (chain->type == CT_COMBINATION)
726a989a 1472 ref = gimple_assign_lhs (root->stmt);
bbc8a8dc
ZD
1473 else
1474 ref = DR_REF (root->ref);
1475
1476 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1477 {
2664efb6 1478 var = predcom_tmp_var (ref, i, tmp_vars);
bbc8a8dc
ZD
1479 VEC_quick_push (tree, chain->vars, var);
1480 }
1481 if (reuse_first)
1482 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
b8698a0f 1483
ac47786e 1484 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
726a989a 1485 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
bbc8a8dc
ZD
1486
1487 for (i = 0; i < n; i++)
1488 {
1489 var = VEC_index (tree, chain->vars, i);
1490 next = VEC_index (tree, chain->vars, i + 1);
1491 init = get_init_expr (chain, i);
1492
1493 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1494 if (stmts)
5006671f 1495 gsi_insert_seq_on_edge_immediate (entry, stmts);
bbc8a8dc
ZD
1496
1497 phi = create_phi_node (var, loop->header);
9e227d60
DC
1498 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1499 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
bbc8a8dc
ZD
1500 }
1501}
1502
1503/* Create the variables and initialization statement for root of chain
1504 CHAIN. Uids of the newly created temporary variables are marked
1505 in TMP_VARS. */
1506
1507static void
1508initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1509{
1510 dref root = get_chain_root (chain);
1511 bool in_lhs = (chain->type == CT_STORE_LOAD
1512 || chain->type == CT_COMBINATION);
1513
1514 initialize_root_vars (loop, chain, tmp_vars);
1515 replace_ref_with (root->stmt,
1516 VEC_index (tree, chain->vars, chain->length),
1517 true, in_lhs);
1518}
1519
1520/* Initializes a variable for load motion for ROOT and prepares phi nodes and
1521 initialization on entry to LOOP if necessary. The ssa name for the variable
1522 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1523 around the loop is created. Uid of the newly created temporary variable
1524 is marked in TMP_VARS. INITS is the list containing the (single)
1525 initializer. */
1526
1527static void
1528initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1529 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1530 bitmap tmp_vars)
1531{
1532 unsigned i;
726a989a
RB
1533 tree ref = DR_REF (root->ref), init, var, next;
1534 gimple_seq stmts;
1535 gimple phi;
bbc8a8dc
ZD
1536 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1537
1538 /* Find the initializer for the variable, and check that it cannot
1539 trap. */
1540 init = VEC_index (tree, inits, 0);
1541
1542 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
2664efb6 1543 var = predcom_tmp_var (ref, 0, tmp_vars);
bbc8a8dc
ZD
1544 VEC_quick_push (tree, *vars, var);
1545 if (written)
1546 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
b8698a0f 1547
ac47786e 1548 FOR_EACH_VEC_ELT (tree, *vars, i, var)
726a989a 1549 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
bbc8a8dc
ZD
1550
1551 var = VEC_index (tree, *vars, 0);
b8698a0f 1552
bbc8a8dc
ZD
1553 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1554 if (stmts)
5006671f 1555 gsi_insert_seq_on_edge_immediate (entry, stmts);
bbc8a8dc
ZD
1556
1557 if (written)
1558 {
1559 next = VEC_index (tree, *vars, 1);
1560 phi = create_phi_node (var, loop->header);
9e227d60
DC
1561 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1562 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
bbc8a8dc
ZD
1563 }
1564 else
1565 {
726a989a 1566 gimple init_stmt = gimple_build_assign (var, init);
726a989a 1567 gsi_insert_on_edge_immediate (entry, init_stmt);
bbc8a8dc
ZD
1568 }
1569}
1570
1571
1572/* Execute load motion for references in chain CHAIN. Uids of the newly
1573 created temporary variables are marked in TMP_VARS. */
1574
1575static void
1576execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1577{
1578 VEC (tree, heap) *vars;
1579 dref a;
1580 unsigned n_writes = 0, ridx, i;
1581 tree var;
1582
1583 gcc_assert (chain->type == CT_INVARIANT);
1584 gcc_assert (!chain->combined);
ac47786e 1585 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
b0af49c4 1586 if (DR_IS_WRITE (a->ref))
bbc8a8dc 1587 n_writes++;
b8698a0f 1588
bbc8a8dc
ZD
1589 /* If there are no reads in the loop, there is nothing to do. */
1590 if (n_writes == VEC_length (dref, chain->refs))
1591 return;
1592
1593 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1594 &vars, chain->inits, tmp_vars);
1595
1596 ridx = 0;
ac47786e 1597 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
bbc8a8dc
ZD
1598 {
1599 bool is_read = DR_IS_READ (a->ref);
bbc8a8dc 1600
b0af49c4 1601 if (DR_IS_WRITE (a->ref))
bbc8a8dc
ZD
1602 {
1603 n_writes--;
1604 if (n_writes)
1605 {
1606 var = VEC_index (tree, vars, 0);
726a989a 1607 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
bbc8a8dc
ZD
1608 VEC_replace (tree, vars, 0, var);
1609 }
1610 else
1611 ridx = 1;
1612 }
b8698a0f 1613
bbc8a8dc
ZD
1614 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1615 !is_read, !is_read);
1616 }
1617
1618 VEC_free (tree, heap, vars);
1619}
1620
1621/* Returns the single statement in that NAME is used, excepting
1622 the looparound phi nodes contained in one of the chains. If there is no
726a989a 1623 such statement, or more statements, NULL is returned. */
bbc8a8dc 1624
726a989a 1625static gimple
bbc8a8dc
ZD
1626single_nonlooparound_use (tree name)
1627{
1628 use_operand_p use;
1629 imm_use_iterator it;
726a989a 1630 gimple stmt, ret = NULL;
bbc8a8dc
ZD
1631
1632 FOR_EACH_IMM_USE_FAST (use, it, name)
1633 {
1634 stmt = USE_STMT (use);
1635
726a989a 1636 if (gimple_code (stmt) == GIMPLE_PHI)
bbc8a8dc
ZD
1637 {
1638 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1639 could not be processed anyway, so just fail for them. */
1640 if (bitmap_bit_p (looparound_phis,
1641 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1642 continue;
1643
726a989a 1644 return NULL;
bbc8a8dc 1645 }
b63f974e
JJ
1646 else if (is_gimple_debug (stmt))
1647 continue;
726a989a
RB
1648 else if (ret != NULL)
1649 return NULL;
bbc8a8dc
ZD
1650 else
1651 ret = stmt;
1652 }
1653
1654 return ret;
1655}
1656
1657/* Remove statement STMT, as well as the chain of assignments in that it is
1658 used. */
1659
1660static void
726a989a 1661remove_stmt (gimple stmt)
bbc8a8dc 1662{
726a989a
RB
1663 tree name;
1664 gimple next;
1665 gimple_stmt_iterator psi;
bbc8a8dc 1666
726a989a 1667 if (gimple_code (stmt) == GIMPLE_PHI)
bbc8a8dc
ZD
1668 {
1669 name = PHI_RESULT (stmt);
1670 next = single_nonlooparound_use (name);
273ccb6d 1671 reset_debug_uses (stmt);
726a989a
RB
1672 psi = gsi_for_stmt (stmt);
1673 remove_phi_node (&psi, true);
bbc8a8dc
ZD
1674
1675 if (!next
5f8ecf45 1676 || !gimple_assign_ssa_name_copy_p (next)
726a989a 1677 || gimple_assign_rhs1 (next) != name)
bbc8a8dc
ZD
1678 return;
1679
1680 stmt = next;
1681 }
1682
1683 while (1)
1684 {
726a989a 1685 gimple_stmt_iterator bsi;
b8698a0f 1686
726a989a 1687 bsi = gsi_for_stmt (stmt);
bbc8a8dc 1688
726a989a 1689 name = gimple_assign_lhs (stmt);
bbc8a8dc
ZD
1690 gcc_assert (TREE_CODE (name) == SSA_NAME);
1691
1692 next = single_nonlooparound_use (name);
273ccb6d 1693 reset_debug_uses (stmt);
bbc8a8dc 1694
13714310 1695 unlink_stmt_vdef (stmt);
726a989a 1696 gsi_remove (&bsi, true);
5f8ecf45 1697 release_defs (stmt);
bbc8a8dc
ZD
1698
1699 if (!next
5f8ecf45 1700 || !gimple_assign_ssa_name_copy_p (next)
726a989a 1701 || gimple_assign_rhs1 (next) != name)
bbc8a8dc
ZD
1702 return;
1703
1704 stmt = next;
1705 }
1706}
1707
1708/* Perform the predictive commoning optimization for a chain CHAIN.
1709 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1710
1711static void
1712execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1713 bitmap tmp_vars)
1714{
1715 unsigned i;
13714310 1716 dref a;
bbc8a8dc
ZD
1717 tree var;
1718
1719 if (chain->combined)
1720 {
1721 /* For combined chains, just remove the statements that are used to
1722 compute the values of the expression (except for the root one). */
1723 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1724 remove_stmt (a->stmt);
1725 }
1726 else
1727 {
1728 /* For non-combined chains, set up the variables that hold its value,
1729 and replace the uses of the original references by these
1730 variables. */
bbc8a8dc
ZD
1731 initialize_root (loop, chain, tmp_vars);
1732 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1733 {
bbc8a8dc
ZD
1734 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1735 replace_ref_with (a->stmt, var, false, false);
1736 }
1737 }
1738}
1739
1740/* Determines the unroll factor necessary to remove as many temporary variable
1741 copies as possible. CHAINS is the list of chains that will be
1742 optimized. */
1743
1744static unsigned
1745determine_unroll_factor (VEC (chain_p, heap) *chains)
1746{
1747 chain_p chain;
1748 unsigned factor = 1, af, nfactor, i;
1749 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1750
ac47786e 1751 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
bbc8a8dc
ZD
1752 {
1753 if (chain->type == CT_INVARIANT || chain->combined)
1754 continue;
1755
1756 /* The best unroll factor for this chain is equal to the number of
1757 temporary variables that we create for it. */
1758 af = chain->length;
1759 if (chain->has_max_use_after)
1760 af++;
1761
1762 nfactor = factor * af / gcd (factor, af);
1763 if (nfactor <= max)
1764 factor = nfactor;
1765 }
1766
1767 return factor;
1768}
1769
1770/* Perform the predictive commoning optimization for CHAINS.
1771 Uids of the newly created temporary variables are marked in TMP_VARS. */
1772
1773static void
1774execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1775 bitmap tmp_vars)
1776{
1777 chain_p chain;
1778 unsigned i;
1779
ac47786e 1780 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
bbc8a8dc
ZD
1781 {
1782 if (chain->type == CT_INVARIANT)
1783 execute_load_motion (loop, chain, tmp_vars);
1784 else
1785 execute_pred_commoning_chain (loop, chain, tmp_vars);
1786 }
b8698a0f 1787
bbc8a8dc
ZD
1788 update_ssa (TODO_update_ssa_only_virtuals);
1789}
1790
c80b4100 1791/* For each reference in CHAINS, if its defining statement is
726a989a 1792 phi node, record the ssa name that is defined by it. */
bbc8a8dc
ZD
1793
1794static void
1795replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1796{
1797 chain_p chain;
1798 dref a;
1799 unsigned i, j;
1800
ac47786e
NF
1801 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1802 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
bbc8a8dc 1803 {
726a989a
RB
1804 if (gimple_code (a->stmt) == GIMPLE_PHI)
1805 {
1806 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1807 a->stmt = NULL;
1808 }
bbc8a8dc
ZD
1809 }
1810}
1811
726a989a
RB
1812/* For each reference in CHAINS, if name_defined_by_phi is not
1813 NULL, use it to set the stmt field. */
bbc8a8dc
ZD
1814
1815static void
1816replace_names_by_phis (VEC (chain_p, heap) *chains)
1817{
1818 chain_p chain;
1819 dref a;
1820 unsigned i, j;
1821
ac47786e
NF
1822 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1823 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
726a989a 1824 if (a->stmt == NULL)
bbc8a8dc 1825 {
726a989a
RB
1826 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1827 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1828 a->name_defined_by_phi = NULL_TREE;
bbc8a8dc
ZD
1829 }
1830}
1831
1832/* Wrapper over execute_pred_commoning, to pass it as a callback
1833 to tree_transform_and_unroll_loop. */
1834
1835struct epcc_data
1836{
1837 VEC (chain_p, heap) *chains;
1838 bitmap tmp_vars;
1839};
1840
1841static void
1842execute_pred_commoning_cbck (struct loop *loop, void *data)
1843{
3d9a9f94 1844 struct epcc_data *const dta = (struct epcc_data *) data;
bbc8a8dc
ZD
1845
1846 /* Restore phi nodes that were replaced by ssa names before
1847 tree_transform_and_unroll_loop (see detailed description in
1848 tree_predictive_commoning_loop). */
1849 replace_names_by_phis (dta->chains);
1850 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1851}
1852
bbc8a8dc
ZD
1853/* Base NAME and all the names in the chain of phi nodes that use it
1854 on variable VAR. The phi nodes are recognized by being in the copies of
1855 the header of the LOOP. */
1856
1857static void
1858base_names_in_chain_on (struct loop *loop, tree name, tree var)
1859{
726a989a 1860 gimple stmt, phi;
bbc8a8dc 1861 imm_use_iterator iter;
bbc8a8dc 1862
b2ec94d4 1863 replace_ssa_name_symbol (name, var);
bbc8a8dc
ZD
1864
1865 while (1)
1866 {
1867 phi = NULL;
1868 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1869 {
726a989a
RB
1870 if (gimple_code (stmt) == GIMPLE_PHI
1871 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
bbc8a8dc
ZD
1872 {
1873 phi = stmt;
1874 BREAK_FROM_IMM_USE_STMT (iter);
1875 }
1876 }
1877 if (!phi)
1878 return;
1879
bbc8a8dc 1880 name = PHI_RESULT (phi);
b2ec94d4 1881 replace_ssa_name_symbol (name, var);
bbc8a8dc
ZD
1882 }
1883}
1884
1885/* Given an unrolled LOOP after predictive commoning, remove the
1886 register copies arising from phi nodes by changing the base
1887 variables of SSA names. TMP_VARS is the set of the temporary variables
1888 for those we want to perform this. */
1889
1890static void
1891eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1892{
1893 edge e;
726a989a
RB
1894 gimple phi, stmt;
1895 tree name, use, var;
1896 gimple_stmt_iterator psi;
bbc8a8dc
ZD
1897
1898 e = loop_latch_edge (loop);
726a989a 1899 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
bbc8a8dc 1900 {
726a989a 1901 phi = gsi_stmt (psi);
bbc8a8dc
ZD
1902 name = PHI_RESULT (phi);
1903 var = SSA_NAME_VAR (name);
70b5e7dc 1904 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
bbc8a8dc
ZD
1905 continue;
1906 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1907 gcc_assert (TREE_CODE (use) == SSA_NAME);
1908
1909 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1910 stmt = SSA_NAME_DEF_STMT (use);
726a989a 1911 while (gimple_code (stmt) == GIMPLE_PHI
1b0cfaa6
ZD
1912 /* In case we could not unroll the loop enough to eliminate
1913 all copies, we may reach the loop header before the defining
1914 statement (in that case, some register copies will be present
1915 in loop latch in the final code, corresponding to the newly
1916 created looparound phi nodes). */
726a989a 1917 && gimple_bb (stmt) != loop->header)
bbc8a8dc 1918 {
726a989a 1919 gcc_assert (single_pred_p (gimple_bb (stmt)));
bbc8a8dc
ZD
1920 use = PHI_ARG_DEF (stmt, 0);
1921 stmt = SSA_NAME_DEF_STMT (use);
1922 }
1923
1924 base_names_in_chain_on (loop, use, var);
1925 }
1926}
1927
1928/* Returns true if CHAIN is suitable to be combined. */
1929
1930static bool
1931chain_can_be_combined_p (chain_p chain)
1932{
1933 return (!chain->combined
1934 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1935}
1936
1937/* Returns the modify statement that uses NAME. Skips over assignment
1938 statements, NAME is replaced with the actual name used in the returned
1939 statement. */
1940
726a989a 1941static gimple
bbc8a8dc
ZD
1942find_use_stmt (tree *name)
1943{
726a989a
RB
1944 gimple stmt;
1945 tree rhs, lhs;
bbc8a8dc
ZD
1946
1947 /* Skip over assignments. */
1948 while (1)
1949 {
1950 stmt = single_nonlooparound_use (*name);
1951 if (!stmt)
726a989a 1952 return NULL;
bbc8a8dc 1953
726a989a
RB
1954 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1955 return NULL;
bbc8a8dc 1956
726a989a 1957 lhs = gimple_assign_lhs (stmt);
bbc8a8dc 1958 if (TREE_CODE (lhs) != SSA_NAME)
726a989a 1959 return NULL;
bbc8a8dc 1960
726a989a
RB
1961 if (gimple_assign_copy_p (stmt))
1962 {
1963 rhs = gimple_assign_rhs1 (stmt);
1964 if (rhs != *name)
1965 return NULL;
bbc8a8dc 1966
726a989a
RB
1967 *name = lhs;
1968 }
1969 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1970 == GIMPLE_BINARY_RHS)
1971 return stmt;
1972 else
1973 return NULL;
bbc8a8dc 1974 }
bbc8a8dc
ZD
1975}
1976
1977/* Returns true if we may perform reassociation for operation CODE in TYPE. */
1978
1979static bool
1980may_reassociate_p (tree type, enum tree_code code)
1981{
1982 if (FLOAT_TYPE_P (type)
1983 && !flag_unsafe_math_optimizations)
1984 return false;
1985
1986 return (commutative_tree_code (code)
1987 && associative_tree_code (code));
1988}
1989
1990/* If the operation used in STMT is associative and commutative, go through the
1991 tree of the same operations and returns its root. Distance to the root
1992 is stored in DISTANCE. */
1993
726a989a
RB
1994static gimple
1995find_associative_operation_root (gimple stmt, unsigned *distance)
bbc8a8dc 1996{
726a989a
RB
1997 tree lhs;
1998 gimple next;
1999 enum tree_code code = gimple_assign_rhs_code (stmt);
2000 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
bbc8a8dc
ZD
2001 unsigned dist = 0;
2002
726a989a
RB
2003 if (!may_reassociate_p (type, code))
2004 return NULL;
bbc8a8dc
ZD
2005
2006 while (1)
2007 {
726a989a 2008 lhs = gimple_assign_lhs (stmt);
bbc8a8dc
ZD
2009 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2010
2011 next = find_use_stmt (&lhs);
726a989a
RB
2012 if (!next
2013 || gimple_assign_rhs_code (next) != code)
bbc8a8dc
ZD
2014 break;
2015
2016 stmt = next;
2017 dist++;
2018 }
2019
2020 if (distance)
2021 *distance = dist;
2022 return stmt;
2023}
2024
2025/* Returns the common statement in that NAME1 and NAME2 have a use. If there
2026 is no such statement, returns NULL_TREE. In case the operation used on
c80b4100 2027 NAME1 and NAME2 is associative and commutative, returns the root of the
bbc8a8dc
ZD
2028 tree formed by this operation instead of the statement that uses NAME1 or
2029 NAME2. */
2030
726a989a 2031static gimple
bbc8a8dc
ZD
2032find_common_use_stmt (tree *name1, tree *name2)
2033{
726a989a 2034 gimple stmt1, stmt2;
bbc8a8dc
ZD
2035
2036 stmt1 = find_use_stmt (name1);
2037 if (!stmt1)
726a989a 2038 return NULL;
bbc8a8dc
ZD
2039
2040 stmt2 = find_use_stmt (name2);
2041 if (!stmt2)
726a989a 2042 return NULL;
bbc8a8dc
ZD
2043
2044 if (stmt1 == stmt2)
2045 return stmt1;
2046
2047 stmt1 = find_associative_operation_root (stmt1, NULL);
2048 if (!stmt1)
726a989a 2049 return NULL;
bbc8a8dc
ZD
2050 stmt2 = find_associative_operation_root (stmt2, NULL);
2051 if (!stmt2)
726a989a 2052 return NULL;
bbc8a8dc 2053
726a989a 2054 return (stmt1 == stmt2 ? stmt1 : NULL);
bbc8a8dc
ZD
2055}
2056
2057/* Checks whether R1 and R2 are combined together using CODE, with the result
2058 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2059 if it is true. If CODE is ERROR_MARK, set these values instead. */
2060
2061static bool
2062combinable_refs_p (dref r1, dref r2,
2063 enum tree_code *code, bool *swap, tree *rslt_type)
2064{
2065 enum tree_code acode;
2066 bool aswap;
2067 tree atype;
726a989a
RB
2068 tree name1, name2;
2069 gimple stmt;
bbc8a8dc
ZD
2070
2071 name1 = name_for_ref (r1);
2072 name2 = name_for_ref (r2);
2073 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2074
2075 stmt = find_common_use_stmt (&name1, &name2);
2076
2077 if (!stmt)
2078 return false;
2079
726a989a 2080 acode = gimple_assign_rhs_code (stmt);
bbc8a8dc 2081 aswap = (!commutative_tree_code (acode)
726a989a
RB
2082 && gimple_assign_rhs1 (stmt) != name1);
2083 atype = TREE_TYPE (gimple_assign_lhs (stmt));
bbc8a8dc
ZD
2084
2085 if (*code == ERROR_MARK)
2086 {
2087 *code = acode;
2088 *swap = aswap;
2089 *rslt_type = atype;
2090 return true;
2091 }
2092
2093 return (*code == acode
2094 && *swap == aswap
2095 && *rslt_type == atype);
2096}
2097
2098/* Remove OP from the operation on rhs of STMT, and replace STMT with
2099 an assignment of the remaining operand. */
2100
2101static void
726a989a 2102remove_name_from_operation (gimple stmt, tree op)
bbc8a8dc 2103{
726a989a
RB
2104 tree other_op;
2105 gimple_stmt_iterator si;
bbc8a8dc 2106
726a989a 2107 gcc_assert (is_gimple_assign (stmt));
bbc8a8dc 2108
726a989a
RB
2109 if (gimple_assign_rhs1 (stmt) == op)
2110 other_op = gimple_assign_rhs2 (stmt);
bbc8a8dc 2111 else
726a989a
RB
2112 other_op = gimple_assign_rhs1 (stmt);
2113
2114 si = gsi_for_stmt (stmt);
2115 gimple_assign_set_rhs_from_tree (&si, other_op);
2116
2117 /* We should not have reallocated STMT. */
2118 gcc_assert (gsi_stmt (si) == stmt);
2119
bbc8a8dc
ZD
2120 update_stmt (stmt);
2121}
2122
2123/* Reassociates the expression in that NAME1 and NAME2 are used so that they
2124 are combined in a single statement, and returns this statement. */
2125
726a989a 2126static gimple
bbc8a8dc
ZD
2127reassociate_to_the_same_stmt (tree name1, tree name2)
2128{
726a989a
RB
2129 gimple stmt1, stmt2, root1, root2, s1, s2;
2130 gimple new_stmt, tmp_stmt;
2131 tree new_name, tmp_name, var, r1, r2;
bbc8a8dc
ZD
2132 unsigned dist1, dist2;
2133 enum tree_code code;
2134 tree type = TREE_TYPE (name1);
726a989a 2135 gimple_stmt_iterator bsi;
bbc8a8dc
ZD
2136
2137 stmt1 = find_use_stmt (&name1);
2138 stmt2 = find_use_stmt (&name2);
2139 root1 = find_associative_operation_root (stmt1, &dist1);
2140 root2 = find_associative_operation_root (stmt2, &dist2);
726a989a 2141 code = gimple_assign_rhs_code (stmt1);
bbc8a8dc
ZD
2142
2143 gcc_assert (root1 && root2 && root1 == root2
726a989a 2144 && code == gimple_assign_rhs_code (stmt2));
bbc8a8dc
ZD
2145
2146 /* Find the root of the nearest expression in that both NAME1 and NAME2
2147 are used. */
2148 r1 = name1;
2149 s1 = stmt1;
2150 r2 = name2;
2151 s2 = stmt2;
2152
2153 while (dist1 > dist2)
2154 {
2155 s1 = find_use_stmt (&r1);
726a989a 2156 r1 = gimple_assign_lhs (s1);
bbc8a8dc
ZD
2157 dist1--;
2158 }
2159 while (dist2 > dist1)
2160 {
2161 s2 = find_use_stmt (&r2);
726a989a 2162 r2 = gimple_assign_lhs (s2);
bbc8a8dc
ZD
2163 dist2--;
2164 }
2165
2166 while (s1 != s2)
2167 {
2168 s1 = find_use_stmt (&r1);
726a989a 2169 r1 = gimple_assign_lhs (s1);
bbc8a8dc 2170 s2 = find_use_stmt (&r2);
726a989a 2171 r2 = gimple_assign_lhs (s2);
bbc8a8dc
ZD
2172 }
2173
2174 /* Remove NAME1 and NAME2 from the statements in that they are used
2175 currently. */
2176 remove_name_from_operation (stmt1, name1);
2177 remove_name_from_operation (stmt2, name2);
2178
2179 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2180 combine it with the rhs of S1. */
acd63801 2181 var = create_tmp_reg (type, "predreastmp");
726a989a
RB
2182 new_name = make_ssa_name (var, NULL);
2183 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
bbc8a8dc 2184
acd63801 2185 var = create_tmp_reg (type, "predreastmp");
726a989a
RB
2186 tmp_name = make_ssa_name (var, NULL);
2187
2188 /* Rhs of S1 may now be either a binary expression with operation
2189 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2190 so that name1 or name2 was removed from it). */
2191 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2192 tmp_name,
2193 gimple_assign_rhs1 (s1),
2194 gimple_assign_rhs2 (s1));
2195
2196 bsi = gsi_for_stmt (s1);
2197 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2198 s1 = gsi_stmt (bsi);
bbc8a8dc
ZD
2199 update_stmt (s1);
2200
726a989a
RB
2201 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2202 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
bbc8a8dc
ZD
2203
2204 return new_stmt;
2205}
2206
2207/* Returns the statement that combines references R1 and R2. In case R1
2208 and R2 are not used in the same statement, but they are used with an
2209 associative and commutative operation in the same expression, reassociate
2210 the expression so that they are used in the same statement. */
2211
726a989a 2212static gimple
bbc8a8dc
ZD
2213stmt_combining_refs (dref r1, dref r2)
2214{
726a989a 2215 gimple stmt1, stmt2;
bbc8a8dc
ZD
2216 tree name1 = name_for_ref (r1);
2217 tree name2 = name_for_ref (r2);
2218
2219 stmt1 = find_use_stmt (&name1);
2220 stmt2 = find_use_stmt (&name2);
2221 if (stmt1 == stmt2)
2222 return stmt1;
2223
2224 return reassociate_to_the_same_stmt (name1, name2);
2225}
2226
2227/* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2228 description of the new chain is returned, otherwise we return NULL. */
2229
2230static chain_p
2231combine_chains (chain_p ch1, chain_p ch2)
2232{
2233 dref r1, r2, nw;
2234 enum tree_code op = ERROR_MARK;
2235 bool swap = false;
2236 chain_p new_chain;
2237 unsigned i;
726a989a 2238 gimple root_stmt;
bbc8a8dc
ZD
2239 tree rslt_type = NULL_TREE;
2240
2241 if (ch1 == ch2)
a90352a0 2242 return NULL;
bbc8a8dc
ZD
2243 if (ch1->length != ch2->length)
2244 return NULL;
2245
2246 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2247 return NULL;
2248
2249 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2250 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2251 {
2252 if (r1->distance != r2->distance)
2253 return NULL;
2254
2255 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2256 return NULL;
2257 }
2258
2259 if (swap)
2260 {
2261 chain_p tmp = ch1;
2262 ch1 = ch2;
2263 ch2 = tmp;
2264 }
2265
2266 new_chain = XCNEW (struct chain);
2267 new_chain->type = CT_COMBINATION;
82d6e6fc 2268 new_chain->op = op;
bbc8a8dc
ZD
2269 new_chain->ch1 = ch1;
2270 new_chain->ch2 = ch2;
2271 new_chain->rslt_type = rslt_type;
2272 new_chain->length = ch1->length;
2273
2274 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2275 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2276 {
7e5487a2 2277 nw = XCNEW (struct dref_d);
bbc8a8dc
ZD
2278 nw->stmt = stmt_combining_refs (r1, r2);
2279 nw->distance = r1->distance;
2280
2281 VEC_safe_push (dref, heap, new_chain->refs, nw);
2282 }
2283
2284 new_chain->has_max_use_after = false;
2285 root_stmt = get_chain_root (new_chain)->stmt;
2286 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2287 {
2288 if (nw->distance == new_chain->length
2289 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2290 {
2291 new_chain->has_max_use_after = true;
2292 break;
2293 }
2294 }
2295
2296 ch1->combined = true;
2297 ch2->combined = true;
2298 return new_chain;
2299}
2300
2301/* Try to combine the CHAINS. */
2302
2303static void
2304try_combine_chains (VEC (chain_p, heap) **chains)
2305{
2306 unsigned i, j;
2307 chain_p ch1, ch2, cch;
2308 VEC (chain_p, heap) *worklist = NULL;
2309
ac47786e 2310 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
bbc8a8dc
ZD
2311 if (chain_can_be_combined_p (ch1))
2312 VEC_safe_push (chain_p, heap, worklist, ch1);
2313
2314 while (!VEC_empty (chain_p, worklist))
2315 {
2316 ch1 = VEC_pop (chain_p, worklist);
2317 if (!chain_can_be_combined_p (ch1))
2318 continue;
2319
ac47786e 2320 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
bbc8a8dc
ZD
2321 {
2322 if (!chain_can_be_combined_p (ch2))
2323 continue;
2324
2325 cch = combine_chains (ch1, ch2);
2326 if (cch)
2327 {
2328 VEC_safe_push (chain_p, heap, worklist, cch);
2329 VEC_safe_push (chain_p, heap, *chains, cch);
2330 break;
2331 }
2332 }
2333 }
2334}
2335
bbc8a8dc
ZD
2336/* Prepare initializers for CHAIN in LOOP. Returns false if this is
2337 impossible because one of these initializers may trap, true otherwise. */
2338
2339static bool
2340prepare_initializers_chain (struct loop *loop, chain_p chain)
2341{
2342 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2343 struct data_reference *dr = get_chain_root (chain)->ref;
726a989a
RB
2344 tree init;
2345 gimple_seq stmts;
bbc8a8dc
ZD
2346 dref laref;
2347 edge entry = loop_preheader_edge (loop);
2348
2349 /* Find the initializers for the variables, and check that they cannot
2350 trap. */
2351 chain->inits = VEC_alloc (tree, heap, n);
2352 for (i = 0; i < n; i++)
2353 VEC_quick_push (tree, chain->inits, NULL_TREE);
2354
2355 /* If we have replaced some looparound phi nodes, use their initializers
2356 instead of creating our own. */
ac47786e 2357 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
bbc8a8dc 2358 {
726a989a 2359 if (gimple_code (laref->stmt) != GIMPLE_PHI)
bbc8a8dc
ZD
2360 continue;
2361
2362 gcc_assert (laref->distance > 0);
2363 VEC_replace (tree, chain->inits, n - laref->distance,
2364 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2365 }
2366
2367 for (i = 0; i < n; i++)
2368 {
2369 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2370 continue;
2371
2372 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2373 if (!init)
2374 return false;
b8698a0f 2375
bbc8a8dc
ZD
2376 if (!chain->all_always_accessed && tree_could_trap_p (init))
2377 return false;
2378
2379 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2380 if (stmts)
5006671f 2381 gsi_insert_seq_on_edge_immediate (entry, stmts);
bbc8a8dc
ZD
2382
2383 VEC_replace (tree, chain->inits, i, init);
2384 }
2385
2386 return true;
2387}
2388
2389/* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2390 be used because the initializers might trap. */
2391
2392static void
2393prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2394{
2395 chain_p chain;
2396 unsigned i;
2397
2398 for (i = 0; i < VEC_length (chain_p, chains); )
2399 {
2400 chain = VEC_index (chain_p, chains, i);
2401 if (prepare_initializers_chain (loop, chain))
2402 i++;
2403 else
2404 {
2405 release_chain (chain);
2406 VEC_unordered_remove (chain_p, chains, i);
2407 }
2408 }
2409}
2410
2411/* Performs predictive commoning for LOOP. Returns true if LOOP was
2412 unrolled. */
2413
2414static bool
2415tree_predictive_commoning_loop (struct loop *loop)
2416{
01be8516 2417 VEC (loop_p, heap) *loop_nest;
bbc8a8dc
ZD
2418 VEC (data_reference_p, heap) *datarefs;
2419 VEC (ddr_p, heap) *dependences;
2420 struct component *components;
2421 VEC (chain_p, heap) *chains = NULL;
2422 unsigned unroll_factor;
2423 struct tree_niter_desc desc;
2424 bool unroll = false;
2425 edge exit;
2426 bitmap tmp_vars;
2427
2428 if (dump_file && (dump_flags & TDF_DETAILS))
2429 fprintf (dump_file, "Processing loop %d\n", loop->num);
2430
2431 /* Find the data references and split them into components according to their
2432 dependence relations. */
2433 datarefs = VEC_alloc (data_reference_p, heap, 10);
2434 dependences = VEC_alloc (ddr_p, heap, 10);
01be8516 2435 loop_nest = VEC_alloc (loop_p, heap, 3);
9ca3d00e
AB
2436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2437 &dependences))
2438 {
2439 if (dump_file && (dump_flags & TDF_DETAILS))
2440 fprintf (dump_file, "Cannot analyze data dependencies\n");
2441 VEC_free (loop_p, heap, loop_nest);
2442 free_data_refs (datarefs);
2443 free_dependence_relations (dependences);
2444 return false;
2445 }
2446
bbc8a8dc
ZD
2447 if (dump_file && (dump_flags & TDF_DETAILS))
2448 dump_data_dependence_relations (dump_file, dependences);
2449
2450 components = split_data_refs_to_components (loop, datarefs, dependences);
01be8516 2451 VEC_free (loop_p, heap, loop_nest);
bbc8a8dc
ZD
2452 free_dependence_relations (dependences);
2453 if (!components)
2454 {
2455 free_data_refs (datarefs);
2456 return false;
2457 }
2458
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 {
2461 fprintf (dump_file, "Initial state:\n\n");
2462 dump_components (dump_file, components);
2463 }
2464
2465 /* Find the suitable components and split them into chains. */
2466 components = filter_suitable_components (loop, components);
2467
2468 tmp_vars = BITMAP_ALLOC (NULL);
2469 looparound_phis = BITMAP_ALLOC (NULL);
2470 determine_roots (loop, components, &chains);
2471 release_components (components);
2472
2473 if (!chains)
2474 {
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file,
2477 "Predictive commoning failed: no suitable chains\n");
2478 goto end;
2479 }
2480 prepare_initializers (loop, chains);
2481
2482 /* Try to combine the chains that are always worked with together. */
2483 try_combine_chains (&chains);
2484
2485 if (dump_file && (dump_flags & TDF_DETAILS))
2486 {
2487 fprintf (dump_file, "Before commoning:\n\n");
2488 dump_chains (dump_file, chains);
2489 }
2490
2491 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2492 that its number of iterations is divisible by the factor. */
2493 unroll_factor = determine_unroll_factor (chains);
2494 scev_reset ();
e1e6dc73
RG
2495 unroll = (unroll_factor > 1
2496 && can_unroll_loop_p (loop, unroll_factor, &desc));
bbc8a8dc
ZD
2497 exit = single_dom_exit (loop);
2498
2499 /* Execute the predictive commoning transformations, and possibly unroll the
2500 loop. */
2501 if (unroll)
2502 {
2503 struct epcc_data dta;
2504
2505 if (dump_file && (dump_flags & TDF_DETAILS))
2506 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2507
2508 dta.chains = chains;
2509 dta.tmp_vars = tmp_vars;
b8698a0f 2510
bbc8a8dc
ZD
2511 update_ssa (TODO_update_ssa_only_virtuals);
2512
2513 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2514 execute_pred_commoning_cbck is called may cause phi nodes to be
2515 reallocated, which is a problem since CHAINS may point to these
2516 statements. To fix this, we store the ssa names defined by the
2517 phi nodes here instead of the phi nodes themselves, and restore
2518 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2519 replace_phis_by_defined_names (chains);
2520
2521 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2522 execute_pred_commoning_cbck, &dta);
2523 eliminate_temp_copies (loop, tmp_vars);
2524 }
2525 else
2526 {
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file,
2529 "Executing predictive commoning without unrolling.\n");
2530 execute_pred_commoning (loop, chains, tmp_vars);
2531 }
2532
2533end: ;
2534 release_chains (chains);
2535 free_data_refs (datarefs);
2536 BITMAP_FREE (tmp_vars);
2537 BITMAP_FREE (looparound_phis);
2538
2539 free_affine_expand_cache (&name_expansions);
2540
2541 return unroll;
2542}
2543
2544/* Runs predictive commoning. */
2545
592c303d 2546unsigned
bbc8a8dc
ZD
2547tree_predictive_commoning (void)
2548{
2549 bool unrolled = false;
2550 struct loop *loop;
2551 loop_iterator li;
592c303d 2552 unsigned ret = 0;
bbc8a8dc
ZD
2553
2554 initialize_original_copy_tables ();
2555 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
8bcf15f6
JH
2556 if (optimize_loop_for_speed_p (loop))
2557 {
2558 unrolled |= tree_predictive_commoning_loop (loop);
2559 }
bbc8a8dc
ZD
2560
2561 if (unrolled)
2562 {
2563 scev_reset ();
592c303d 2564 ret = TODO_cleanup_cfg;
bbc8a8dc
ZD
2565 }
2566 free_original_copy_tables ();
592c303d
ZD
2567
2568 return ret;
bbc8a8dc 2569}