]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-sra.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / tree-sra.c
CommitLineData
6de9cd9a
DN
1/* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
ddb555ed 4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
0674b9d0 5 Contributed by Martin Jambor <mjambor@suse.cz>
6de9cd9a
DN
6
7This file is part of GCC.
19114537 8
0674b9d0
MJ
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 3, or (at your option) any later
12version.
19114537 13
0674b9d0
MJ
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
6de9cd9a
DN
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
19114537 18
6de9cd9a 19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6de9cd9a 22
0674b9d0
MJ
23/* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
6de9cd9a
DN
74#include "config.h"
75#include "system.h"
76#include "coretypes.h"
0674b9d0 77#include "alloc-pool.h"
6de9cd9a 78#include "tm.h"
6de9cd9a 79#include "tree.h"
726a989a 80#include "gimple.h"
07ffa034 81#include "cgraph.h"
0674b9d0 82#include "tree-flow.h"
7ee2468b 83#include "tree-pass.h"
3f84bf08 84#include "ipa-prop.h"
2a45675f 85#include "statistics.h"
61b58001 86#include "params.h"
0674b9d0
MJ
87#include "target.h"
88#include "flags.h"
567a4beb 89#include "dbgcnt.h"
29be3835 90#include "tree-inline.h"
56a42add 91#include "gimple-pretty-print.h"
e7f23018 92#include "ipa-inline.h"
6de9cd9a 93
0674b9d0 94/* Enumeration of all aggregate reductions we can do. */
07ffa034
MJ
95enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
96 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
97 SRA_MODE_INTRA }; /* late intraprocedural SRA */
6de9cd9a 98
0674b9d0
MJ
99/* Global variable describing which aggregate reduction we are performing at
100 the moment. */
101static enum sra_mode sra_mode;
97e73bd2 102
0674b9d0 103struct assign_link;
97e73bd2 104
0674b9d0
MJ
105/* ACCESS represents each access to an aggregate variable (as a whole or a
106 part). It can also represent a group of accesses that refer to exactly the
107 same fragment of an aggregate (i.e. those that have exactly the same offset
108 and size). Such representatives for a single aggregate, once determined,
109 are linked in a linked list and have the group fields set.
97e73bd2 110
0674b9d0
MJ
111 Moreover, when doing intraprocedural SRA, a tree is built from those
112 representatives (by the means of first_child and next_sibling pointers), in
113 which all items in a subtree are "within" the root, i.e. their offset is
114 greater or equal to offset of the root and offset+size is smaller or equal
115 to offset+size of the root. Children of an access are sorted by offset.
97e73bd2 116
0674b9d0
MJ
117 Note that accesses to parts of vector and complex number types always
118 represented by an access to the whole complex number or a vector. It is a
119 duty of the modifying functions to replace them appropriately. */
97e73bd2 120
0674b9d0
MJ
121struct access
122{
123 /* Values returned by `get_ref_base_and_extent' for each component reference
124 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
125 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
126 HOST_WIDE_INT offset;
127 HOST_WIDE_INT size;
128 tree base;
6de9cd9a 129
09f0dc45
MJ
130 /* Expression. It is context dependent so do not use it to create new
131 expressions to access the original aggregate. See PR 42154 for a
132 testcase. */
0674b9d0
MJ
133 tree expr;
134 /* Type. */
135 tree type;
6de9cd9a 136
07ffa034
MJ
137 /* The statement this access belongs to. */
138 gimple stmt;
139
0674b9d0
MJ
140 /* Next group representative for this aggregate. */
141 struct access *next_grp;
142
143 /* Pointer to the group representative. Pointer to itself if the struct is
144 the representative. */
145 struct access *group_representative;
146
147 /* If this access has any children (in terms of the definition above), this
148 points to the first one. */
149 struct access *first_child;
150
30a20e97
MJ
151 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
152 described above. In IPA-SRA this is a pointer to the next access
153 belonging to the same group (having the same representative). */
0674b9d0
MJ
154 struct access *next_sibling;
155
156 /* Pointers to the first and last element in the linked list of assign
157 links. */
158 struct assign_link *first_link, *last_link;
159
160 /* Pointer to the next access in the work queue. */
161 struct access *next_queued;
162
163 /* Replacement variable for this access "region." Never to be accessed
164 directly, always only by the means of get_access_replacement() and only
165 when grp_to_be_replaced flag is set. */
166 tree replacement_decl;
167
168 /* Is this particular access write access? */
169 unsigned write : 1;
170
5e9fba51
EB
171 /* Is this access an access to a non-addressable field? */
172 unsigned non_addressable : 1;
173
0674b9d0
MJ
174 /* Is this access currently in the work queue? */
175 unsigned grp_queued : 1;
07ffa034 176
0674b9d0
MJ
177 /* Does this group contain a write access? This flag is propagated down the
178 access tree. */
179 unsigned grp_write : 1;
07ffa034 180
0674b9d0
MJ
181 /* Does this group contain a read access? This flag is propagated down the
182 access tree. */
183 unsigned grp_read : 1;
07ffa034 184
77620011
MJ
185 /* Does this group contain a read access that comes from an assignment
186 statement? This flag is propagated down the access tree. */
187 unsigned grp_assignment_read : 1;
188
fc37536b
MJ
189 /* Does this group contain a write access that comes from an assignment
190 statement? This flag is propagated down the access tree. */
191 unsigned grp_assignment_write : 1;
192
4fd73214
MJ
193 /* Does this group contain a read access through a scalar type? This flag is
194 not propagated in the access tree in any direction. */
195 unsigned grp_scalar_read : 1;
196
197 /* Does this group contain a write access through a scalar type? This flag
198 is not propagated in the access tree in any direction. */
199 unsigned grp_scalar_write : 1;
200
1ac93f10
MJ
201 /* Is this access an artificial one created to scalarize some record
202 entirely? */
203 unsigned grp_total_scalarization : 1;
204
fef94f76
MJ
205 /* Other passes of the analysis use this bit to make function
206 analyze_access_subtree create scalar replacements for this group if
207 possible. */
208 unsigned grp_hint : 1;
07ffa034 209
0674b9d0
MJ
210 /* Is the subtree rooted in this access fully covered by scalar
211 replacements? */
212 unsigned grp_covered : 1;
07ffa034 213
0674b9d0
MJ
214 /* If set to true, this access and all below it in an access tree must not be
215 scalarized. */
216 unsigned grp_unscalarizable_region : 1;
07ffa034 217
0674b9d0
MJ
218 /* Whether data have been written to parts of the aggregate covered by this
219 access which is not to be scalarized. This flag is propagated up in the
220 access tree. */
221 unsigned grp_unscalarized_data : 1;
07ffa034 222
0674b9d0
MJ
223 /* Does this access and/or group contain a write access through a
224 BIT_FIELD_REF? */
225 unsigned grp_partial_lhs : 1;
226
d94b820b 227 /* Set when a scalar replacement should be created for this variable. */
0674b9d0 228 unsigned grp_to_be_replaced : 1;
07ffa034 229
9271a43c
MJ
230 /* Should TREE_NO_WARNING of a replacement be set? */
231 unsigned grp_no_warning : 1;
232
07ffa034
MJ
233 /* Is it possible that the group refers to data which might be (directly or
234 otherwise) modified? */
235 unsigned grp_maybe_modified : 1;
236
237 /* Set when this is a representative of a pointer to scalar (i.e. by
238 reference) parameter which we consider for turning into a plain scalar
239 (i.e. a by value parameter). */
240 unsigned grp_scalar_ptr : 1;
241
242 /* Set when we discover that this pointer is not safe to dereference in the
243 caller. */
244 unsigned grp_not_necessarilly_dereferenced : 1;
0674b9d0 245};
029f45bd 246
0674b9d0 247typedef struct access *access_p;
6de9cd9a 248
0674b9d0
MJ
249DEF_VEC_P (access_p);
250DEF_VEC_ALLOC_P (access_p, heap);
6de9cd9a 251
0674b9d0
MJ
252/* Alloc pool for allocating access structures. */
253static alloc_pool access_pool;
97e73bd2 254
0674b9d0
MJ
255/* A structure linking lhs and rhs accesses from an aggregate assignment. They
256 are used to propagate subaccesses from rhs to lhs as long as they don't
257 conflict with what is already there. */
258struct assign_link
6de9cd9a 259{
0674b9d0
MJ
260 struct access *lacc, *racc;
261 struct assign_link *next;
262};
6de9cd9a 263
0674b9d0
MJ
264/* Alloc pool for allocating assign link structures. */
265static alloc_pool link_pool;
6de9cd9a 266
0674b9d0
MJ
267/* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
268static struct pointer_map_t *base_access_vec;
6de9cd9a 269
d94b820b 270/* Set of candidates. */
0674b9d0 271static bitmap candidate_bitmap;
d94b820b
RG
272static htab_t candidates;
273
274/* For a candidate UID return the candidates decl. */
275
276static inline tree
277candidate (unsigned uid)
278{
279 struct tree_decl_minimal t;
280 t.uid = uid;
281 return (tree) htab_find_with_hash (candidates, &t, uid);
282}
07ffa034 283
7744b697
MJ
284/* Bitmap of candidates which we should try to entirely scalarize away and
285 those which cannot be (because they are and need be used as a whole). */
286static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
287
0674b9d0
MJ
288/* Obstack for creation of fancy names. */
289static struct obstack name_obstack;
6de9cd9a 290
0674b9d0
MJ
291/* Head of a linked list of accesses that need to have its subaccesses
292 propagated to their assignment counterparts. */
293static struct access *work_queue_head;
6de9cd9a 294
07ffa034
MJ
295/* Number of parameters of the analyzed function when doing early ipa SRA. */
296static int func_param_count;
297
298/* scan_function sets the following to true if it encounters a call to
299 __builtin_apply_args. */
300static bool encountered_apply_args;
301
2f3cdcf5
MJ
302/* Set by scan_function when it finds a recursive call. */
303static bool encountered_recursive_call;
304
305/* Set by scan_function when it finds a recursive call with less actual
306 arguments than formal parameters.. */
307static bool encountered_unchangable_recursive_call;
308
07ffa034
MJ
309/* This is a table in which for each basic block and parameter there is a
310 distance (offset + size) in that parameter which is dereferenced and
311 accessed in that BB. */
312static HOST_WIDE_INT *bb_dereferences;
313/* Bitmap of BBs that can cause the function to "stop" progressing by
314 returning, throwing externally, looping infinitely or calling a function
315 which might abort etc.. */
316static bitmap final_bbs;
317
318/* Representative of no accesses at all. */
319static struct access no_accesses_representant;
320
321/* Predicate to test the special value. */
322
323static inline bool
324no_accesses_p (struct access *access)
325{
326 return access == &no_accesses_representant;
327}
328
0674b9d0
MJ
329/* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
330 representative fields are dumped, otherwise those which only describe the
331 individual access are. */
11fc4275 332
2a45675f
MJ
333static struct
334{
07ffa034
MJ
335 /* Number of processed aggregates is readily available in
336 analyze_all_variable_accesses and so is not stored here. */
337
2a45675f
MJ
338 /* Number of created scalar replacements. */
339 int replacements;
340
341 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
342 expression. */
343 int exprs;
344
345 /* Number of statements created by generate_subtree_copies. */
346 int subtree_copies;
347
348 /* Number of statements created by load_assign_lhs_subreplacements. */
349 int subreplacements;
350
351 /* Number of times sra_modify_assign has deleted a statement. */
352 int deleted;
353
354 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
355 RHS reparately due to type conversions or nonexistent matching
356 references. */
357 int separate_lhs_rhs_handling;
358
07ffa034
MJ
359 /* Number of parameters that were removed because they were unused. */
360 int deleted_unused_parameters;
361
362 /* Number of scalars passed as parameters by reference that have been
363 converted to be passed by value. */
364 int scalar_by_ref_to_by_val;
365
366 /* Number of aggregate parameters that were replaced by one or more of their
367 components. */
368 int aggregate_params_reduced;
369
370 /* Numbber of components created when splitting aggregate parameters. */
371 int param_reductions_created;
2a45675f
MJ
372} sra_stats;
373
0674b9d0
MJ
374static void
375dump_access (FILE *f, struct access *access, bool grp)
376{
377 fprintf (f, "access { ");
378 fprintf (f, "base = (%d)'", DECL_UID (access->base));
379 print_generic_expr (f, access->base, 0);
380 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
381 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
382 fprintf (f, ", expr = ");
383 print_generic_expr (f, access->expr, 0);
384 fprintf (f, ", type = ");
385 print_generic_expr (f, access->type, 0);
386 if (grp)
1ac93f10
MJ
387 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
388 "grp_assignment_write = %d, grp_scalar_read = %d, "
389 "grp_scalar_write = %d, grp_total_scalarization = %d, "
4fd73214 390 "grp_hint = %d, grp_covered = %d, "
fc37536b
MJ
391 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
392 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
393 "grp_maybe_modified = %d, "
07ffa034 394 "grp_not_necessarilly_dereferenced = %d\n",
1ac93f10
MJ
395 access->grp_read, access->grp_write, access->grp_assignment_read,
396 access->grp_assignment_write, access->grp_scalar_read,
397 access->grp_scalar_write, access->grp_total_scalarization,
4fd73214 398 access->grp_hint, access->grp_covered,
fc37536b
MJ
399 access->grp_unscalarizable_region, access->grp_unscalarized_data,
400 access->grp_partial_lhs, access->grp_to_be_replaced,
401 access->grp_maybe_modified,
07ffa034 402 access->grp_not_necessarilly_dereferenced);
0674b9d0 403 else
1ac93f10 404 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
7744b697 405 "grp_partial_lhs = %d\n",
1ac93f10 406 access->write, access->grp_total_scalarization,
0674b9d0
MJ
407 access->grp_partial_lhs);
408}
6de9cd9a 409
0674b9d0 410/* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
a32b97a2 411
0674b9d0
MJ
412static void
413dump_access_tree_1 (FILE *f, struct access *access, int level)
414{
415 do
416 {
417 int i;
d116ffa6 418
0674b9d0
MJ
419 for (i = 0; i < level; i++)
420 fputs ("* ", dump_file);
0890b981 421
0674b9d0 422 dump_access (f, access, true);
510335c8 423
0674b9d0
MJ
424 if (access->first_child)
425 dump_access_tree_1 (f, access->first_child, level + 1);
a32b97a2 426
0674b9d0
MJ
427 access = access->next_sibling;
428 }
429 while (access);
430}
11fc4275 431
0674b9d0
MJ
432/* Dump all access trees for a variable, given the pointer to the first root in
433 ACCESS. */
11fc4275 434
0674b9d0
MJ
435static void
436dump_access_tree (FILE *f, struct access *access)
11fc4275 437{
0674b9d0
MJ
438 for (; access; access = access->next_grp)
439 dump_access_tree_1 (f, access, 0);
440}
11fc4275 441
0674b9d0 442/* Return true iff ACC is non-NULL and has subaccesses. */
11fc4275 443
0674b9d0
MJ
444static inline bool
445access_has_children_p (struct access *acc)
446{
447 return acc && acc->first_child;
448}
11fc4275 449
973a39ae
RG
450/* Return true iff ACC is (partly) covered by at least one replacement. */
451
452static bool
453access_has_replacements_p (struct access *acc)
454{
455 struct access *child;
456 if (acc->grp_to_be_replaced)
457 return true;
458 for (child = acc->first_child; child; child = child->next_sibling)
459 if (access_has_replacements_p (child))
460 return true;
461 return false;
462}
463
0674b9d0
MJ
464/* Return a vector of pointers to accesses for the variable given in BASE or
465 NULL if there is none. */
11fc4275 466
0674b9d0
MJ
467static VEC (access_p, heap) *
468get_base_access_vector (tree base)
469{
470 void **slot;
471
472 slot = pointer_map_contains (base_access_vec, base);
473 if (!slot)
474 return NULL;
475 else
476 return *(VEC (access_p, heap) **) slot;
11fc4275
EB
477}
478
0674b9d0
MJ
479/* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
480 in ACCESS. Return NULL if it cannot be found. */
a32b97a2 481
0674b9d0
MJ
482static struct access *
483find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
484 HOST_WIDE_INT size)
485{
486 while (access && (access->offset != offset || access->size != size))
487 {
488 struct access *child = access->first_child;
a32b97a2 489
0674b9d0
MJ
490 while (child && (child->offset + child->size <= offset))
491 child = child->next_sibling;
492 access = child;
493 }
6de9cd9a 494
0674b9d0
MJ
495 return access;
496}
510335c8 497
0674b9d0 498/* Return the first group representative for DECL or NULL if none exists. */
6de9cd9a 499
0674b9d0
MJ
500static struct access *
501get_first_repr_for_decl (tree base)
6de9cd9a 502{
0674b9d0
MJ
503 VEC (access_p, heap) *access_vec;
504
505 access_vec = get_base_access_vector (base);
506 if (!access_vec)
507 return NULL;
508
509 return VEC_index (access_p, access_vec, 0);
6de9cd9a
DN
510}
511
0674b9d0
MJ
512/* Find an access representative for the variable BASE and given OFFSET and
513 SIZE. Requires that access trees have already been built. Return NULL if
514 it cannot be found. */
6de9cd9a 515
0674b9d0
MJ
516static struct access *
517get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
518 HOST_WIDE_INT size)
6de9cd9a 519{
0674b9d0 520 struct access *access;
6de9cd9a 521
0674b9d0
MJ
522 access = get_first_repr_for_decl (base);
523 while (access && (access->offset + access->size <= offset))
524 access = access->next_grp;
525 if (!access)
526 return NULL;
97e73bd2 527
0674b9d0
MJ
528 return find_access_in_subtree (access, offset, size);
529}
03797ac5 530
0674b9d0
MJ
531/* Add LINK to the linked list of assign links of RACC. */
532static void
533add_link_to_rhs (struct access *racc, struct assign_link *link)
03797ac5 534{
0674b9d0 535 gcc_assert (link->racc == racc);
03797ac5 536
0674b9d0
MJ
537 if (!racc->first_link)
538 {
539 gcc_assert (!racc->last_link);
540 racc->first_link = link;
541 }
542 else
543 racc->last_link->next = link;
6de9cd9a 544
0674b9d0
MJ
545 racc->last_link = link;
546 link->next = NULL;
547}
6de9cd9a 548
0674b9d0
MJ
549/* Move all link structures in their linked list in OLD_RACC to the linked list
550 in NEW_RACC. */
551static void
552relink_to_new_repr (struct access *new_racc, struct access *old_racc)
553{
554 if (!old_racc->first_link)
6de9cd9a 555 {
0674b9d0
MJ
556 gcc_assert (!old_racc->last_link);
557 return;
558 }
6de9cd9a 559
0674b9d0
MJ
560 if (new_racc->first_link)
561 {
562 gcc_assert (!new_racc->last_link->next);
563 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
6de9cd9a 564
0674b9d0
MJ
565 new_racc->last_link->next = old_racc->first_link;
566 new_racc->last_link = old_racc->last_link;
567 }
568 else
569 {
570 gcc_assert (!new_racc->last_link);
6de9cd9a 571
0674b9d0
MJ
572 new_racc->first_link = old_racc->first_link;
573 new_racc->last_link = old_racc->last_link;
574 }
575 old_racc->first_link = old_racc->last_link = NULL;
576}
6de9cd9a 577
0674b9d0 578/* Add ACCESS to the work queue (which is actually a stack). */
6de9cd9a 579
0674b9d0
MJ
580static void
581add_access_to_work_queue (struct access *access)
582{
583 if (!access->grp_queued)
584 {
585 gcc_assert (!access->next_queued);
586 access->next_queued = work_queue_head;
587 access->grp_queued = 1;
588 work_queue_head = access;
97e73bd2 589 }
0674b9d0 590}
6de9cd9a 591
0674b9d0 592/* Pop an access from the work queue, and return it, assuming there is one. */
6de9cd9a 593
0674b9d0
MJ
594static struct access *
595pop_access_from_work_queue (void)
596{
597 struct access *access = work_queue_head;
598
599 work_queue_head = access->next_queued;
600 access->next_queued = NULL;
601 access->grp_queued = 0;
602 return access;
603}
604
605
606/* Allocate necessary structures. */
607
608static void
609sra_initialize (void)
610{
611 candidate_bitmap = BITMAP_ALLOC (NULL);
d94b820b
RG
612 candidates = htab_create (VEC_length (tree, cfun->local_decls) / 2,
613 uid_decl_map_hash, uid_decl_map_eq, NULL);
7744b697
MJ
614 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
615 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
0674b9d0
MJ
616 gcc_obstack_init (&name_obstack);
617 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
618 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
619 base_access_vec = pointer_map_create ();
2a45675f 620 memset (&sra_stats, 0, sizeof (sra_stats));
07ffa034 621 encountered_apply_args = false;
2f3cdcf5
MJ
622 encountered_recursive_call = false;
623 encountered_unchangable_recursive_call = false;
6de9cd9a
DN
624}
625
0674b9d0 626/* Hook fed to pointer_map_traverse, deallocate stored vectors. */
35cbb299
KT
627
628static bool
0674b9d0
MJ
629delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
630 void *data ATTRIBUTE_UNUSED)
35cbb299 631{
0674b9d0
MJ
632 VEC (access_p, heap) *access_vec;
633 access_vec = (VEC (access_p, heap) *) *value;
634 VEC_free (access_p, heap, access_vec);
35cbb299 635
0674b9d0 636 return true;
35cbb299
KT
637}
638
0674b9d0 639/* Deallocate all general structures. */
6de9cd9a 640
0674b9d0
MJ
641static void
642sra_deinitialize (void)
6de9cd9a 643{
0674b9d0 644 BITMAP_FREE (candidate_bitmap);
d94b820b 645 htab_delete (candidates);
7744b697
MJ
646 BITMAP_FREE (should_scalarize_away_bitmap);
647 BITMAP_FREE (cannot_scalarize_away_bitmap);
0674b9d0
MJ
648 free_alloc_pool (access_pool);
649 free_alloc_pool (link_pool);
650 obstack_free (&name_obstack, NULL);
6de9cd9a 651
0674b9d0
MJ
652 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
653 pointer_map_destroy (base_access_vec);
654}
6de9cd9a 655
0674b9d0
MJ
656/* Remove DECL from candidates for SRA and write REASON to the dump file if
657 there is one. */
658static void
659disqualify_candidate (tree decl, const char *reason)
660{
d94b820b
RG
661 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
662 htab_clear_slot (candidates,
663 htab_find_slot_with_hash (candidates, decl,
664 DECL_UID (decl), NO_INSERT));
6de9cd9a 665
0674b9d0 666 if (dump_file && (dump_flags & TDF_DETAILS))
97e73bd2 667 {
0674b9d0
MJ
668 fprintf (dump_file, "! Disqualifying ");
669 print_generic_expr (dump_file, decl, 0);
670 fprintf (dump_file, " - %s\n", reason);
97e73bd2 671 }
97e73bd2
RH
672}
673
0674b9d0
MJ
674/* Return true iff the type contains a field or an element which does not allow
675 scalarization. */
97e73bd2
RH
676
677static bool
949cfd0a 678type_internals_preclude_sra_p (tree type, const char **msg)
97e73bd2 679{
0674b9d0
MJ
680 tree fld;
681 tree et;
6de9cd9a 682
97e73bd2 683 switch (TREE_CODE (type))
6de9cd9a 684 {
97e73bd2 685 case RECORD_TYPE:
0674b9d0
MJ
686 case UNION_TYPE:
687 case QUAL_UNION_TYPE:
910ad8de 688 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
0674b9d0
MJ
689 if (TREE_CODE (fld) == FIELD_DECL)
690 {
691 tree ft = TREE_TYPE (fld);
6de9cd9a 692
949cfd0a
AK
693 if (TREE_THIS_VOLATILE (fld))
694 {
695 *msg = "volatile structure field";
696 return true;
697 }
698 if (!DECL_FIELD_OFFSET (fld))
699 {
700 *msg = "no structure field offset";
701 return true;
702 }
703 if (!DECL_SIZE (fld))
704 {
705 *msg = "zero structure field size";
706 return true;
707 }
708 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
709 {
710 *msg = "structure field offset not fixed";
711 return true;
712 }
713 if (!host_integerp (DECL_SIZE (fld), 1))
714 {
715 *msg = "structure field size not fixed";
716 return true;
717 }
718 if (AGGREGATE_TYPE_P (ft)
719 && int_bit_position (fld) % BITS_PER_UNIT != 0)
720 {
721 *msg = "structure field is bit field";
722 return true;
723 }
6de9cd9a 724
949cfd0a 725 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
0674b9d0
MJ
726 return true;
727 }
6de9cd9a 728
0674b9d0 729 return false;
6de9cd9a 730
97e73bd2 731 case ARRAY_TYPE:
0674b9d0 732 et = TREE_TYPE (type);
6de9cd9a 733
c020c92b 734 if (TYPE_VOLATILE (et))
949cfd0a
AK
735 {
736 *msg = "element type is volatile";
737 return true;
738 }
c020c92b 739
949cfd0a 740 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
c020c92b
EB
741 return true;
742
743 return false;
6de9cd9a 744
97e73bd2 745 default:
0674b9d0 746 return false;
97e73bd2
RH
747 }
748}
6de9cd9a 749
07ffa034
MJ
750/* If T is an SSA_NAME, return NULL if it is not a default def or return its
751 base variable if it is. Return T if it is not an SSA_NAME. */
752
753static tree
754get_ssa_base_param (tree t)
755{
756 if (TREE_CODE (t) == SSA_NAME)
757 {
758 if (SSA_NAME_IS_DEFAULT_DEF (t))
759 return SSA_NAME_VAR (t);
760 else
761 return NULL_TREE;
762 }
763 return t;
764}
765
766/* Mark a dereference of BASE of distance DIST in a basic block tht STMT
767 belongs to, unless the BB has already been marked as a potentially
768 final. */
769
770static void
771mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
772{
773 basic_block bb = gimple_bb (stmt);
774 int idx, parm_index = 0;
775 tree parm;
776
777 if (bitmap_bit_p (final_bbs, bb->index))
778 return;
779
780 for (parm = DECL_ARGUMENTS (current_function_decl);
781 parm && parm != base;
910ad8de 782 parm = DECL_CHAIN (parm))
07ffa034
MJ
783 parm_index++;
784
785 gcc_assert (parm_index < func_param_count);
786
787 idx = bb->index * func_param_count + parm_index;
788 if (bb_dereferences[idx] < dist)
789 bb_dereferences[idx] = dist;
790}
791
7744b697
MJ
792/* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
793 the three fields. Also add it to the vector of accesses corresponding to
794 the base. Finally, return the new access. */
795
796static struct access *
797create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
798{
799 VEC (access_p, heap) *vec;
800 struct access *access;
801 void **slot;
802
803 access = (struct access *) pool_alloc (access_pool);
804 memset (access, 0, sizeof (struct access));
805 access->base = base;
806 access->offset = offset;
807 access->size = size;
808
809 slot = pointer_map_contains (base_access_vec, base);
810 if (slot)
811 vec = (VEC (access_p, heap) *) *slot;
812 else
813 vec = VEC_alloc (access_p, heap, 32);
814
815 VEC_safe_push (access_p, heap, vec, access);
816
817 *((struct VEC (access_p,heap) **)
818 pointer_map_insert (base_access_vec, base)) = vec;
819
820 return access;
821}
822
0674b9d0
MJ
823/* Create and insert access for EXPR. Return created access, or NULL if it is
824 not possible. */
6de9cd9a 825
0674b9d0 826static struct access *
07ffa034 827create_access (tree expr, gimple stmt, bool write)
6de9cd9a 828{
0674b9d0 829 struct access *access;
0674b9d0
MJ
830 HOST_WIDE_INT offset, size, max_size;
831 tree base = expr;
07ffa034 832 bool ptr, unscalarizable_region = false;
97e73bd2 833
0674b9d0 834 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
6de9cd9a 835
70f34814
RG
836 if (sra_mode == SRA_MODE_EARLY_IPA
837 && TREE_CODE (base) == MEM_REF)
07ffa034
MJ
838 {
839 base = get_ssa_base_param (TREE_OPERAND (base, 0));
840 if (!base)
841 return NULL;
842 ptr = true;
843 }
844 else
845 ptr = false;
846
0674b9d0
MJ
847 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
848 return NULL;
6de9cd9a 849
07ffa034 850 if (sra_mode == SRA_MODE_EARLY_IPA)
0674b9d0 851 {
07ffa034
MJ
852 if (size < 0 || size != max_size)
853 {
854 disqualify_candidate (base, "Encountered a variable sized access.");
855 return NULL;
856 }
1faab08d
MJ
857 if (TREE_CODE (expr) == COMPONENT_REF
858 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
07ffa034 859 {
1faab08d 860 disqualify_candidate (base, "Encountered a bit-field access.");
07ffa034
MJ
861 return NULL;
862 }
1faab08d 863 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
fa27426e 864
07ffa034
MJ
865 if (ptr)
866 mark_parm_dereference (base, offset + size, stmt);
867 }
868 else
6de9cd9a 869 {
07ffa034
MJ
870 if (size != max_size)
871 {
872 size = max_size;
873 unscalarizable_region = true;
874 }
875 if (size < 0)
876 {
877 disqualify_candidate (base, "Encountered an unconstrained access.");
878 return NULL;
879 }
0674b9d0 880 }
fa27426e 881
7744b697 882 access = create_access_1 (base, offset, size);
0674b9d0
MJ
883 access->expr = expr;
884 access->type = TREE_TYPE (expr);
885 access->write = write;
886 access->grp_unscalarizable_region = unscalarizable_region;
07ffa034 887 access->stmt = stmt;
11fc4275 888
5e9fba51
EB
889 if (TREE_CODE (expr) == COMPONENT_REF
890 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
891 access->non_addressable = 1;
892
7744b697
MJ
893 return access;
894}
fa27426e 895
510335c8 896
7744b697 897/* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
76f76cd0 898 register types or (recursively) records with only these two kinds of fields.
37ccfc46 899 It also returns false if any of these records contains a bit-field. */
fa27426e 900
7744b697
MJ
901static bool
902type_consists_of_records_p (tree type)
903{
904 tree fld;
905
906 if (TREE_CODE (type) != RECORD_TYPE)
907 return false;
908
910ad8de 909 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
7744b697
MJ
910 if (TREE_CODE (fld) == FIELD_DECL)
911 {
912 tree ft = TREE_TYPE (fld);
913
36b86f4a
JZ
914 if (DECL_BIT_FIELD (fld))
915 return false;
916
7744b697
MJ
917 if (!is_gimple_reg_type (ft)
918 && !type_consists_of_records_p (ft))
919 return false;
920 }
76f76cd0 921
7744b697
MJ
922 return true;
923}
924
925/* Create total_scalarization accesses for all scalar type fields in DECL that
926 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
927 must be the top-most VAR_DECL representing the variable, OFFSET must be the
fc734382
MJ
928 offset of DECL within BASE. REF must be the memory reference expression for
929 the given decl. */
7744b697
MJ
930
931static void
fc734382
MJ
932completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
933 tree ref)
7744b697
MJ
934{
935 tree fld, decl_type = TREE_TYPE (decl);
936
910ad8de 937 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
7744b697
MJ
938 if (TREE_CODE (fld) == FIELD_DECL)
939 {
940 HOST_WIDE_INT pos = offset + int_bit_position (fld);
941 tree ft = TREE_TYPE (fld);
fc734382
MJ
942 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
943 NULL_TREE);
7744b697
MJ
944
945 if (is_gimple_reg_type (ft))
946 {
947 struct access *access;
948 HOST_WIDE_INT size;
7744b697
MJ
949
950 size = tree_low_cst (DECL_SIZE (fld), 1);
7744b697 951 access = create_access_1 (base, pos, size);
fc734382 952 access->expr = nref;
7744b697 953 access->type = ft;
1ac93f10 954 access->grp_total_scalarization = 1;
7744b697
MJ
955 /* Accesses for intraprocedural SRA can have their stmt NULL. */
956 }
957 else
fc734382 958 completely_scalarize_record (base, fld, pos, nref);
7744b697 959 }
6de9cd9a
DN
960}
961
1ac93f10
MJ
962/* Create total_scalarization accesses for all scalar type fields in VAR and
963 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
964 type_consists_of_records_p. */
965
966static void
967completely_scalarize_var (tree var)
968{
969 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
970 struct access *access;
971
972 access = create_access_1 (var, 0, size);
973 access->expr = var;
974 access->type = TREE_TYPE (var);
975 access->grp_total_scalarization = 1;
976
977 completely_scalarize_record (var, var, 0, var);
978}
6de9cd9a 979
0674b9d0
MJ
980/* Search the given tree for a declaration by skipping handled components and
981 exclude it from the candidates. */
982
983static void
984disqualify_base_of_expr (tree t, const char *reason)
6de9cd9a 985{
70f34814
RG
986 t = get_base_address (t);
987 if (sra_mode == SRA_MODE_EARLY_IPA
988 && TREE_CODE (t) == MEM_REF)
989 t = get_ssa_base_param (TREE_OPERAND (t, 0));
07ffa034
MJ
990
991 if (t && DECL_P (t))
0674b9d0 992 disqualify_candidate (t, reason);
97e73bd2 993}
19114537 994
0674b9d0
MJ
995/* Scan expression EXPR and create access structures for all accesses to
996 candidates for scalarization. Return the created access or NULL if none is
997 created. */
6de9cd9a 998
0674b9d0 999static struct access *
6cbd3b6a 1000build_access_from_expr_1 (tree expr, gimple stmt, bool write)
97e73bd2 1001{
0674b9d0 1002 struct access *ret = NULL;
0674b9d0 1003 bool partial_ref;
6de9cd9a 1004
0674b9d0
MJ
1005 if (TREE_CODE (expr) == BIT_FIELD_REF
1006 || TREE_CODE (expr) == IMAGPART_EXPR
1007 || TREE_CODE (expr) == REALPART_EXPR)
1008 {
1009 expr = TREE_OPERAND (expr, 0);
1010 partial_ref = true;
1011 }
1012 else
1013 partial_ref = false;
6de9cd9a 1014
0674b9d0
MJ
1015 /* We need to dive through V_C_Es in order to get the size of its parameter
1016 and not the result type. Ada produces such statements. We are also
1017 capable of handling the topmost V_C_E but not any of those buried in other
1018 handled components. */
1019 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1020 expr = TREE_OPERAND (expr, 0);
1021
1022 if (contains_view_convert_expr_p (expr))
1023 {
1024 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1025 "component.");
1026 return NULL;
1027 }
fa27426e 1028
0674b9d0 1029 switch (TREE_CODE (expr))
fa27426e 1030 {
70f34814
RG
1031 case MEM_REF:
1032 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1033 && sra_mode != SRA_MODE_EARLY_IPA)
07ffa034
MJ
1034 return NULL;
1035 /* fall through */
fa27426e
RH
1036 case VAR_DECL:
1037 case PARM_DECL:
1038 case RESULT_DECL:
0674b9d0
MJ
1039 case COMPONENT_REF:
1040 case ARRAY_REF:
1041 case ARRAY_RANGE_REF:
07ffa034 1042 ret = create_access (expr, stmt, write);
0674b9d0 1043 break;
fa27426e 1044
0674b9d0
MJ
1045 default:
1046 break;
1047 }
fa27426e 1048
0674b9d0
MJ
1049 if (write && partial_ref && ret)
1050 ret->grp_partial_lhs = 1;
11fc4275 1051
0674b9d0
MJ
1052 return ret;
1053}
fa27426e 1054
6cbd3b6a
MJ
1055/* Scan expression EXPR and create access structures for all accesses to
1056 candidates for scalarization. Return true if any access has been inserted.
1057 STMT must be the statement from which the expression is taken, WRITE must be
1058 true if the expression is a store and false otherwise. */
510335c8 1059
0674b9d0 1060static bool
6cbd3b6a 1061build_access_from_expr (tree expr, gimple stmt, bool write)
0674b9d0 1062{
7744b697
MJ
1063 struct access *access;
1064
6cbd3b6a 1065 access = build_access_from_expr_1 (expr, stmt, write);
7744b697
MJ
1066 if (access)
1067 {
1068 /* This means the aggregate is accesses as a whole in a way other than an
1069 assign statement and thus cannot be removed even if we had a scalar
1070 replacement for everything. */
1071 if (cannot_scalarize_away_bitmap)
1072 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1073 return true;
1074 }
1075 return false;
6de9cd9a
DN
1076}
1077
0674b9d0
MJ
1078/* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1079 modes in which it matters, return true iff they have been disqualified. RHS
1080 may be NULL, in that case ignore it. If we scalarize an aggregate in
1081 intra-SRA we may need to add statements after each statement. This is not
1082 possible if a statement unconditionally has to end the basic block. */
1083static bool
1084disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
6de9cd9a 1085{
07ffa034
MJ
1086 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1087 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
0674b9d0
MJ
1088 {
1089 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1090 if (rhs)
1091 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1092 return true;
1093 }
1094 return false;
1095}
6de9cd9a 1096
073a8998 1097/* Scan expressions occurring in STMT, create access structures for all accesses
6cbd3b6a 1098 to candidates for scalarization and remove those candidates which occur in
0674b9d0
MJ
1099 statements or expressions that prevent them from being split apart. Return
1100 true if any access has been inserted. */
97e73bd2 1101
6cbd3b6a
MJ
1102static bool
1103build_accesses_from_assign (gimple stmt)
0674b9d0 1104{
6cbd3b6a 1105 tree lhs, rhs;
0674b9d0 1106 struct access *lacc, *racc;
6de9cd9a 1107
47598145
MM
1108 if (!gimple_assign_single_p (stmt)
1109 /* Scope clobbers don't influence scalarization. */
1110 || gimple_clobber_p (stmt))
6cbd3b6a 1111 return false;
6de9cd9a 1112
6cbd3b6a
MJ
1113 lhs = gimple_assign_lhs (stmt);
1114 rhs = gimple_assign_rhs1 (stmt);
6de9cd9a 1115
6cbd3b6a
MJ
1116 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1117 return false;
97e73bd2 1118
6cbd3b6a
MJ
1119 racc = build_access_from_expr_1 (rhs, stmt, false);
1120 lacc = build_access_from_expr_1 (lhs, stmt, true);
97e73bd2 1121
fc37536b 1122 if (lacc)
3515a00b 1123 lacc->grp_assignment_write = 1;
fc37536b 1124
77620011
MJ
1125 if (racc)
1126 {
1127 racc->grp_assignment_read = 1;
1128 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1129 && !is_gimple_reg_type (racc->type))
1130 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1131 }
7744b697 1132
0674b9d0 1133 if (lacc && racc
07ffa034 1134 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
0674b9d0
MJ
1135 && !lacc->grp_unscalarizable_region
1136 && !racc->grp_unscalarizable_region
6cbd3b6a 1137 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
0674b9d0
MJ
1138 && lacc->size == racc->size
1139 && useless_type_conversion_p (lacc->type, racc->type))
97e73bd2 1140 {
0674b9d0 1141 struct assign_link *link;
11fc4275 1142
0674b9d0
MJ
1143 link = (struct assign_link *) pool_alloc (link_pool);
1144 memset (link, 0, sizeof (struct assign_link));
97e73bd2 1145
0674b9d0
MJ
1146 link->lacc = lacc;
1147 link->racc = racc;
97e73bd2 1148
0674b9d0 1149 add_link_to_rhs (racc, link);
97e73bd2
RH
1150 }
1151
6cbd3b6a 1152 return lacc || racc;
97e73bd2
RH
1153}
1154
0674b9d0
MJ
1155/* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1156 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
97e73bd2 1157
0674b9d0
MJ
1158static bool
1159asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1160 void *data ATTRIBUTE_UNUSED)
97e73bd2 1161{
2ea9dc64
RG
1162 op = get_base_address (op);
1163 if (op
1164 && DECL_P (op))
0674b9d0 1165 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
97e73bd2 1166
0674b9d0 1167 return false;
97e73bd2
RH
1168}
1169
2f3cdcf5
MJ
1170/* Return true iff callsite CALL has at least as many actual arguments as there
1171 are formal parameters of the function currently processed by IPA-SRA. */
1172
1173static inline bool
1174callsite_has_enough_arguments_p (gimple call)
1175{
1176 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1177}
97e73bd2 1178
6cbd3b6a
MJ
1179/* Scan function and look for interesting expressions and create access
1180 structures for them. Return true iff any access is created. */
d4d3aad9 1181
0674b9d0 1182static bool
6cbd3b6a 1183scan_function (void)
97e73bd2
RH
1184{
1185 basic_block bb;
0674b9d0 1186 bool ret = false;
97e73bd2
RH
1187
1188 FOR_EACH_BB (bb)
97e73bd2 1189 {
6cbd3b6a
MJ
1190 gimple_stmt_iterator gsi;
1191 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
97e73bd2 1192 {
0674b9d0 1193 gimple stmt = gsi_stmt (gsi);
6cbd3b6a
MJ
1194 tree t;
1195 unsigned i;
7ec49257 1196
6cbd3b6a 1197 if (final_bbs && stmt_can_throw_external (stmt))
07ffa034 1198 bitmap_set_bit (final_bbs, bb->index);
0674b9d0 1199 switch (gimple_code (stmt))
510335c8 1200 {
0674b9d0 1201 case GIMPLE_RETURN:
6cbd3b6a
MJ
1202 t = gimple_return_retval (stmt);
1203 if (t != NULL_TREE)
1204 ret |= build_access_from_expr (t, stmt, false);
1205 if (final_bbs)
07ffa034 1206 bitmap_set_bit (final_bbs, bb->index);
0674b9d0 1207 break;
510335c8 1208
0674b9d0 1209 case GIMPLE_ASSIGN:
6cbd3b6a 1210 ret |= build_accesses_from_assign (stmt);
0674b9d0 1211 break;
510335c8 1212
0674b9d0 1213 case GIMPLE_CALL:
0674b9d0 1214 for (i = 0; i < gimple_call_num_args (stmt); i++)
6cbd3b6a
MJ
1215 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1216 stmt, false);
510335c8 1217
6cbd3b6a 1218 if (sra_mode == SRA_MODE_EARLY_IPA)
07ffa034
MJ
1219 {
1220 tree dest = gimple_call_fndecl (stmt);
1221 int flags = gimple_call_flags (stmt);
1222
2f3cdcf5
MJ
1223 if (dest)
1224 {
1225 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1226 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1227 encountered_apply_args = true;
1228 if (cgraph_get_node (dest)
1229 == cgraph_get_node (current_function_decl))
1230 {
1231 encountered_recursive_call = true;
1232 if (!callsite_has_enough_arguments_p (stmt))
1233 encountered_unchangable_recursive_call = true;
1234 }
1235 }
07ffa034
MJ
1236
1237 if (final_bbs
1238 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1239 bitmap_set_bit (final_bbs, bb->index);
1240 }
1241
6cbd3b6a
MJ
1242 t = gimple_call_lhs (stmt);
1243 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1244 ret |= build_access_from_expr (t, stmt, true);
0674b9d0 1245 break;
510335c8 1246
0674b9d0 1247 case GIMPLE_ASM:
6cbd3b6a
MJ
1248 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1249 asm_visit_addr);
1250 if (final_bbs)
1251 bitmap_set_bit (final_bbs, bb->index);
1252
0674b9d0
MJ
1253 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1254 {
6cbd3b6a
MJ
1255 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1256 ret |= build_access_from_expr (t, stmt, false);
0674b9d0
MJ
1257 }
1258 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1259 {
6cbd3b6a
MJ
1260 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1261 ret |= build_access_from_expr (t, stmt, true);
0674b9d0 1262 }
07ffa034 1263 break;
97e73bd2 1264
0674b9d0
MJ
1265 default:
1266 break;
1267 }
97e73bd2 1268 }
87c476a2 1269 }
97e73bd2 1270
0674b9d0 1271 return ret;
97e73bd2
RH
1272}
1273
0674b9d0
MJ
1274/* Helper of QSORT function. There are pointers to accesses in the array. An
1275 access is considered smaller than another if it has smaller offset or if the
1276 offsets are the same but is size is bigger. */
97e73bd2 1277
0674b9d0
MJ
1278static int
1279compare_access_positions (const void *a, const void *b)
1280{
1281 const access_p *fp1 = (const access_p *) a;
1282 const access_p *fp2 = (const access_p *) b;
1283 const access_p f1 = *fp1;
1284 const access_p f2 = *fp2;
1285
1286 if (f1->offset != f2->offset)
1287 return f1->offset < f2->offset ? -1 : 1;
1288
1289 if (f1->size == f2->size)
1290 {
d05fe940
MJ
1291 if (f1->type == f2->type)
1292 return 0;
0674b9d0 1293 /* Put any non-aggregate type before any aggregate type. */
d05fe940 1294 else if (!is_gimple_reg_type (f1->type)
9fda11a2 1295 && is_gimple_reg_type (f2->type))
0674b9d0
MJ
1296 return 1;
1297 else if (is_gimple_reg_type (f1->type)
1298 && !is_gimple_reg_type (f2->type))
1299 return -1;
9fda11a2
MJ
1300 /* Put any complex or vector type before any other scalar type. */
1301 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1302 && TREE_CODE (f1->type) != VECTOR_TYPE
1303 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1304 || TREE_CODE (f2->type) == VECTOR_TYPE))
1305 return 1;
1306 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1307 || TREE_CODE (f1->type) == VECTOR_TYPE)
1308 && TREE_CODE (f2->type) != COMPLEX_TYPE
1309 && TREE_CODE (f2->type) != VECTOR_TYPE)
1310 return -1;
0674b9d0
MJ
1311 /* Put the integral type with the bigger precision first. */
1312 else if (INTEGRAL_TYPE_P (f1->type)
9fda11a2 1313 && INTEGRAL_TYPE_P (f2->type))
d05fe940 1314 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
0674b9d0
MJ
1315 /* Put any integral type with non-full precision last. */
1316 else if (INTEGRAL_TYPE_P (f1->type)
1317 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1318 != TYPE_PRECISION (f1->type)))
1319 return 1;
1320 else if (INTEGRAL_TYPE_P (f2->type)
1321 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1322 != TYPE_PRECISION (f2->type)))
1323 return -1;
1324 /* Stabilize the sort. */
1325 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1326 }
1327
1328 /* We want the bigger accesses first, thus the opposite operator in the next
1329 line: */
1330 return f1->size > f2->size ? -1 : 1;
1331}
1332
1333
1334/* Append a name of the declaration to the name obstack. A helper function for
1335 make_fancy_name. */
0bca51f0
DN
1336
1337static void
0674b9d0 1338make_fancy_decl_name (tree decl)
0bca51f0 1339{
0674b9d0 1340 char buffer[32];
6de9cd9a 1341
0674b9d0
MJ
1342 tree name = DECL_NAME (decl);
1343 if (name)
1344 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1345 IDENTIFIER_LENGTH (name));
1346 else
1347 {
1348 sprintf (buffer, "D%u", DECL_UID (decl));
1349 obstack_grow (&name_obstack, buffer, strlen (buffer));
1350 }
726a989a 1351}
38635499 1352
0674b9d0 1353/* Helper for make_fancy_name. */
d116ffa6
RH
1354
1355static void
0674b9d0 1356make_fancy_name_1 (tree expr)
d116ffa6 1357{
0674b9d0
MJ
1358 char buffer[32];
1359 tree index;
1360
1361 if (DECL_P (expr))
d116ffa6 1362 {
0674b9d0
MJ
1363 make_fancy_decl_name (expr);
1364 return;
d116ffa6 1365 }
6de9cd9a 1366
0674b9d0 1367 switch (TREE_CODE (expr))
6de9cd9a 1368 {
0674b9d0
MJ
1369 case COMPONENT_REF:
1370 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1371 obstack_1grow (&name_obstack, '$');
1372 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1373 break;
6de9cd9a 1374
0674b9d0
MJ
1375 case ARRAY_REF:
1376 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1377 obstack_1grow (&name_obstack, '$');
1378 /* Arrays with only one element may not have a constant as their
1379 index. */
1380 index = TREE_OPERAND (expr, 1);
1381 if (TREE_CODE (index) != INTEGER_CST)
1382 break;
1383 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1384 obstack_grow (&name_obstack, buffer, strlen (buffer));
70f34814 1385 break;
6de9cd9a 1386
70f34814
RG
1387 case ADDR_EXPR:
1388 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1389 break;
1390
1391 case MEM_REF:
1392 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1393 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1394 {
1395 obstack_1grow (&name_obstack, '$');
1396 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1397 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1398 obstack_grow (&name_obstack, buffer, strlen (buffer));
1399 }
0674b9d0 1400 break;
6de9cd9a 1401
0674b9d0
MJ
1402 case BIT_FIELD_REF:
1403 case REALPART_EXPR:
1404 case IMAGPART_EXPR:
1405 gcc_unreachable (); /* we treat these as scalars. */
1406 break;
97e73bd2 1407 default:
0674b9d0 1408 break;
97e73bd2 1409 }
6de9cd9a
DN
1410}
1411
0674b9d0 1412/* Create a human readable name for replacement variable of ACCESS. */
6de9cd9a 1413
0674b9d0
MJ
1414static char *
1415make_fancy_name (tree expr)
97e73bd2 1416{
0674b9d0
MJ
1417 make_fancy_name_1 (expr);
1418 obstack_1grow (&name_obstack, '\0');
1419 return XOBFINISH (&name_obstack, char *);
97e73bd2
RH
1420}
1421
d242d063
MJ
1422/* Construct a MEM_REF that would reference a part of aggregate BASE of type
1423 EXP_TYPE at the given OFFSET. If BASE is something for which
1424 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1425 to insert new statements either before or below the current one as specified
1426 by INSERT_AFTER. This function is not capable of handling bitfields. */
70f34814 1427
d242d063 1428tree
e4b5cace 1429build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
d242d063
MJ
1430 tree exp_type, gimple_stmt_iterator *gsi,
1431 bool insert_after)
1432{
1433 tree prev_base = base;
1434 tree off;
d242d063 1435 HOST_WIDE_INT base_offset;
aff86594
RG
1436 unsigned HOST_WIDE_INT misalign;
1437 unsigned int align;
d242d063
MJ
1438
1439 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1440
1441 base = get_addr_base_and_unit_offset (base, &base_offset);
1442
1443 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1444 offset such as array[var_index]. */
1445 if (!base)
1446 {
1447 gimple stmt;
1448 tree tmp, addr;
1449
1450 gcc_checking_assert (gsi);
83d5977e 1451 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)), NULL);
d242d063 1452 addr = build_fold_addr_expr (unshare_expr (prev_base));
1d60cc55 1453 STRIP_USELESS_TYPE_CONVERSION (addr);
d242d063 1454 stmt = gimple_build_assign (tmp, addr);
e4b5cace 1455 gimple_set_location (stmt, loc);
d242d063
MJ
1456 if (insert_after)
1457 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1458 else
1459 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
d242d063
MJ
1460
1461 off = build_int_cst (reference_alias_ptr_type (prev_base),
1462 offset / BITS_PER_UNIT);
1463 base = tmp;
1464 }
1465 else if (TREE_CODE (base) == MEM_REF)
1466 {
1467 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1468 base_offset + offset / BITS_PER_UNIT);
d35936ab 1469 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
d242d063
MJ
1470 base = unshare_expr (TREE_OPERAND (base, 0));
1471 }
1472 else
1473 {
1474 off = build_int_cst (reference_alias_ptr_type (base),
1475 base_offset + offset / BITS_PER_UNIT);
1476 base = build_fold_addr_expr (unshare_expr (base));
1477 }
1478
aff86594
RG
1479 /* If prev_base were always an originally performed access
1480 we can extract more optimistic alignment information
1481 by looking at the access mode. That would constrain the
1482 alignment of base + base_offset which we would need to
85998a93 1483 adjust according to offset. */
644ffefd
MJ
1484 if (!get_pointer_alignment_1 (base, &align, &misalign))
1485 {
1486 gcc_assert (misalign == 0);
1487 if (TREE_CODE (prev_base) == MEM_REF
1488 || TREE_CODE (prev_base) == TARGET_MEM_REF)
1489 align = TYPE_ALIGN (TREE_TYPE (prev_base));
1490 }
aff86594
RG
1491 misalign += (double_int_sext (tree_to_double_int (off),
1492 TYPE_PRECISION (TREE_TYPE (off))).low
1493 * BITS_PER_UNIT);
1494 misalign = misalign & (align - 1);
1495 if (misalign != 0)
1496 align = (misalign & -misalign);
1497 if (align < TYPE_ALIGN (exp_type))
1498 exp_type = build_aligned_type (exp_type, align);
1499
d242d063
MJ
1500 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1501}
1502
1503/* Construct a memory reference to a part of an aggregate BASE at the given
36e57e16
MJ
1504 OFFSET and of the same type as MODEL. In case this is a reference to a
1505 bit-field, the function will replicate the last component_ref of model's
1506 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1507 build_ref_for_offset. */
d242d063
MJ
1508
1509static tree
e4b5cace 1510build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
d242d063
MJ
1511 struct access *model, gimple_stmt_iterator *gsi,
1512 bool insert_after)
1513{
36e57e16
MJ
1514 if (TREE_CODE (model->expr) == COMPONENT_REF
1515 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
d242d063 1516 {
36e57e16
MJ
1517 /* This access represents a bit-field. */
1518 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1519
1520 offset -= int_bit_position (fld);
1521 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1522 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1523 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1524 NULL_TREE);
d242d063 1525 }
36e57e16
MJ
1526 else
1527 return build_ref_for_offset (loc, base, offset, model->type,
1528 gsi, insert_after);
d242d063
MJ
1529}
1530
1531/* Construct a memory reference consisting of component_refs and array_refs to
1532 a part of an aggregate *RES (which is of type TYPE). The requested part
1533 should have type EXP_TYPE at be the given OFFSET. This function might not
1534 succeed, it returns true when it does and only then *RES points to something
1535 meaningful. This function should be used only to build expressions that we
1536 might need to present to user (e.g. in warnings). In all other situations,
1537 build_ref_for_model or build_ref_for_offset should be used instead. */
510335c8
AO
1538
1539static bool
d242d063
MJ
1540build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1541 tree exp_type)
45f94ec7 1542{
0674b9d0 1543 while (1)
510335c8 1544 {
0674b9d0 1545 tree fld;
22fc64b4 1546 tree tr_size, index, minidx;
0674b9d0 1547 HOST_WIDE_INT el_size;
510335c8 1548
0674b9d0 1549 if (offset == 0 && exp_type
71d4d3eb 1550 && types_compatible_p (exp_type, type))
0674b9d0 1551 return true;
510335c8 1552
0674b9d0 1553 switch (TREE_CODE (type))
510335c8 1554 {
0674b9d0
MJ
1555 case UNION_TYPE:
1556 case QUAL_UNION_TYPE:
1557 case RECORD_TYPE:
910ad8de 1558 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
0674b9d0
MJ
1559 {
1560 HOST_WIDE_INT pos, size;
ca8d9092 1561 tree tr_pos, expr, *expr_ptr;
510335c8 1562
0674b9d0
MJ
1563 if (TREE_CODE (fld) != FIELD_DECL)
1564 continue;
4c44c315 1565
ca8d9092
EB
1566 tr_pos = bit_position (fld);
1567 if (!tr_pos || !host_integerp (tr_pos, 1))
1568 continue;
1569 pos = TREE_INT_CST_LOW (tr_pos);
0674b9d0 1570 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
a1aa1701
EB
1571 tr_size = DECL_SIZE (fld);
1572 if (!tr_size || !host_integerp (tr_size, 1))
1573 continue;
ca8d9092 1574 size = TREE_INT_CST_LOW (tr_size);
fff08961
MJ
1575 if (size == 0)
1576 {
1577 if (pos != offset)
1578 continue;
1579 }
1580 else if (pos > offset || (pos + size) <= offset)
0674b9d0 1581 continue;
2fb5f2af 1582
d242d063
MJ
1583 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1584 NULL_TREE);
1585 expr_ptr = &expr;
1586 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1587 offset - pos, exp_type))
0674b9d0 1588 {
d242d063 1589 *res = expr;
0674b9d0
MJ
1590 return true;
1591 }
1592 }
1593 return false;
ff1fe457 1594
0674b9d0
MJ
1595 case ARRAY_TYPE:
1596 tr_size = TYPE_SIZE (TREE_TYPE (type));
1597 if (!tr_size || !host_integerp (tr_size, 1))
1598 return false;
1599 el_size = tree_low_cst (tr_size, 1);
ff1fe457 1600
22fc64b4 1601 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
746e119f 1602 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
22fc64b4 1603 return false;
d242d063
MJ
1604 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1605 if (!integer_zerop (minidx))
d35936ab 1606 index = int_const_binop (PLUS_EXPR, index, minidx);
d242d063
MJ
1607 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1608 NULL_TREE, NULL_TREE);
0674b9d0
MJ
1609 offset = offset % el_size;
1610 type = TREE_TYPE (type);
1611 break;
510335c8 1612
0674b9d0
MJ
1613 default:
1614 if (offset != 0)
1615 return false;
510335c8 1616
0674b9d0
MJ
1617 if (exp_type)
1618 return false;
1619 else
1620 return true;
1621 }
d573123d 1622 }
45f94ec7
AO
1623}
1624
1e9fb3de
MJ
1625/* Return true iff TYPE is stdarg va_list type. */
1626
1627static inline bool
1628is_va_list_type (tree type)
1629{
1630 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1631}
1632
949cfd0a
AK
1633/* Print message to dump file why a variable was rejected. */
1634
1635static void
1636reject (tree var, const char *msg)
1637{
1638 if (dump_file && (dump_flags & TDF_DETAILS))
1639 {
1640 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1641 print_generic_expr (dump_file, var, 0);
1642 fprintf (dump_file, "\n");
1643 }
1644}
1645
d94b820b
RG
1646/* Return true if VAR is a candidate for SRA. */
1647
1648static bool
1649maybe_add_sra_candidate (tree var)
1650{
1651 tree type = TREE_TYPE (var);
1652 const char *msg;
1653 void **slot;
1654
1655 if (!AGGREGATE_TYPE_P (type))
1656 {
1657 reject (var, "not aggregate");
1658 return false;
1659 }
1660 if (needs_to_live_in_memory (var))
1661 {
1662 reject (var, "needs to live in memory");
1663 return false;
1664 }
1665 if (TREE_THIS_VOLATILE (var))
1666 {
1667 reject (var, "is volatile");
1668 return false;
1669 }
1670 if (!COMPLETE_TYPE_P (type))
1671 {
1672 reject (var, "has incomplete type");
1673 return false;
1674 }
1675 if (!host_integerp (TYPE_SIZE (type), 1))
1676 {
1677 reject (var, "type size not fixed");
1678 return false;
1679 }
1680 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1681 {
1682 reject (var, "type size is zero");
1683 return false;
1684 }
1685 if (type_internals_preclude_sra_p (type, &msg))
1686 {
1687 reject (var, msg);
1688 return false;
1689 }
1690 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1691 we also want to schedule it rather late. Thus we ignore it in
1692 the early pass. */
1693 (sra_mode == SRA_MODE_EARLY_INTRA
1694 && is_va_list_type (type)))
1695 {
1696 reject (var, "is va_list");
1697 return false;
1698 }
1699
1700 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1701 slot = htab_find_slot_with_hash (candidates, var, DECL_UID (var), INSERT);
1702 *slot = (void *) var;
1703
1704 if (dump_file && (dump_flags & TDF_DETAILS))
1705 {
1706 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1707 print_generic_expr (dump_file, var, 0);
1708 fprintf (dump_file, "\n");
1709 }
1710
1711 return true;
1712}
1713
0674b9d0
MJ
1714/* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1715 those with type which is suitable for scalarization. */
aee91ff0 1716
0674b9d0
MJ
1717static bool
1718find_var_candidates (void)
1719{
d94b820b
RG
1720 tree var, parm;
1721 unsigned int i;
0674b9d0 1722 bool ret = false;
510335c8 1723
d94b820b
RG
1724 for (parm = DECL_ARGUMENTS (current_function_decl);
1725 parm;
1726 parm = DECL_CHAIN (parm))
1727 ret |= maybe_add_sra_candidate (parm);
1728
1729 FOR_EACH_LOCAL_DECL (cfun, i, var)
510335c8 1730 {
d94b820b 1731 if (TREE_CODE (var) != VAR_DECL)
0674b9d0 1732 continue;
0674b9d0 1733
d94b820b 1734 ret |= maybe_add_sra_candidate (var);
510335c8
AO
1735 }
1736
0674b9d0
MJ
1737 return ret;
1738}
510335c8 1739
0674b9d0
MJ
1740/* Sort all accesses for the given variable, check for partial overlaps and
1741 return NULL if there are any. If there are none, pick a representative for
1742 each combination of offset and size and create a linked list out of them.
1743 Return the pointer to the first representative and make sure it is the first
1744 one in the vector of accesses. */
510335c8 1745
0674b9d0
MJ
1746static struct access *
1747sort_and_splice_var_accesses (tree var)
1748{
1749 int i, j, access_count;
1750 struct access *res, **prev_acc_ptr = &res;
1751 VEC (access_p, heap) *access_vec;
1752 bool first = true;
1753 HOST_WIDE_INT low = -1, high = 0;
510335c8 1754
0674b9d0
MJ
1755 access_vec = get_base_access_vector (var);
1756 if (!access_vec)
1757 return NULL;
1758 access_count = VEC_length (access_p, access_vec);
510335c8 1759
0674b9d0 1760 /* Sort by <OFFSET, SIZE>. */
5095da95 1761 VEC_qsort (access_p, access_vec, compare_access_positions);
510335c8 1762
0674b9d0
MJ
1763 i = 0;
1764 while (i < access_count)
510335c8 1765 {
0674b9d0 1766 struct access *access = VEC_index (access_p, access_vec, i);
fef94f76 1767 bool grp_write = access->write;
0674b9d0 1768 bool grp_read = !access->write;
4fd73214
MJ
1769 bool grp_scalar_write = access->write
1770 && is_gimple_reg_type (access->type);
1771 bool grp_scalar_read = !access->write
1772 && is_gimple_reg_type (access->type);
77620011 1773 bool grp_assignment_read = access->grp_assignment_read;
fc37536b 1774 bool grp_assignment_write = access->grp_assignment_write;
4fd73214 1775 bool multiple_scalar_reads = false;
1ac93f10 1776 bool total_scalarization = access->grp_total_scalarization;
0674b9d0
MJ
1777 bool grp_partial_lhs = access->grp_partial_lhs;
1778 bool first_scalar = is_gimple_reg_type (access->type);
1779 bool unscalarizable_region = access->grp_unscalarizable_region;
510335c8 1780
0674b9d0 1781 if (first || access->offset >= high)
510335c8 1782 {
0674b9d0
MJ
1783 first = false;
1784 low = access->offset;
1785 high = access->offset + access->size;
510335c8 1786 }
0674b9d0
MJ
1787 else if (access->offset > low && access->offset + access->size > high)
1788 return NULL;
510335c8 1789 else
0674b9d0
MJ
1790 gcc_assert (access->offset >= low
1791 && access->offset + access->size <= high);
1792
1793 j = i + 1;
1794 while (j < access_count)
510335c8 1795 {
0674b9d0
MJ
1796 struct access *ac2 = VEC_index (access_p, access_vec, j);
1797 if (ac2->offset != access->offset || ac2->size != access->size)
1798 break;
fef94f76 1799 if (ac2->write)
4fd73214
MJ
1800 {
1801 grp_write = true;
1802 grp_scalar_write = (grp_scalar_write
1803 || is_gimple_reg_type (ac2->type));
1804 }
fef94f76
MJ
1805 else
1806 {
4fd73214
MJ
1807 grp_read = true;
1808 if (is_gimple_reg_type (ac2->type))
1809 {
1810 if (grp_scalar_read)
1811 multiple_scalar_reads = true;
1812 else
1813 grp_scalar_read = true;
1814 }
fef94f76 1815 }
77620011 1816 grp_assignment_read |= ac2->grp_assignment_read;
fc37536b 1817 grp_assignment_write |= ac2->grp_assignment_write;
0674b9d0
MJ
1818 grp_partial_lhs |= ac2->grp_partial_lhs;
1819 unscalarizable_region |= ac2->grp_unscalarizable_region;
1ac93f10 1820 total_scalarization |= ac2->grp_total_scalarization;
0674b9d0
MJ
1821 relink_to_new_repr (access, ac2);
1822
1823 /* If there are both aggregate-type and scalar-type accesses with
1824 this combination of size and offset, the comparison function
1825 should have put the scalars first. */
1826 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1827 ac2->group_representative = access;
1828 j++;
510335c8
AO
1829 }
1830
0674b9d0
MJ
1831 i = j;
1832
1833 access->group_representative = access;
fef94f76 1834 access->grp_write = grp_write;
0674b9d0 1835 access->grp_read = grp_read;
4fd73214
MJ
1836 access->grp_scalar_read = grp_scalar_read;
1837 access->grp_scalar_write = grp_scalar_write;
77620011 1838 access->grp_assignment_read = grp_assignment_read;
fc37536b 1839 access->grp_assignment_write = grp_assignment_write;
4fd73214 1840 access->grp_hint = multiple_scalar_reads || total_scalarization;
1ac93f10 1841 access->grp_total_scalarization = total_scalarization;
0674b9d0
MJ
1842 access->grp_partial_lhs = grp_partial_lhs;
1843 access->grp_unscalarizable_region = unscalarizable_region;
1844 if (access->first_link)
1845 add_access_to_work_queue (access);
1846
1847 *prev_acc_ptr = access;
1848 prev_acc_ptr = &access->next_grp;
510335c8
AO
1849 }
1850
0674b9d0
MJ
1851 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1852 return res;
510335c8
AO
1853}
1854
0674b9d0
MJ
1855/* Create a variable for the given ACCESS which determines the type, name and a
1856 few other properties. Return the variable declaration and store it also to
1857 ACCESS->replacement. */
97e73bd2 1858
0674b9d0 1859static tree
13714310 1860create_access_replacement (struct access *access)
6de9cd9a 1861{
0674b9d0 1862 tree repl;
97e73bd2 1863
0674b9d0 1864 repl = create_tmp_var (access->type, "SR");
3f5f6592
RG
1865 if (TREE_CODE (access->type) == COMPLEX_TYPE
1866 || TREE_CODE (access->type) == VECTOR_TYPE)
1867 {
1868 if (!access->grp_partial_lhs)
1869 DECL_GIMPLE_REG_P (repl) = 1;
1870 }
1871 else if (access->grp_partial_lhs
1872 && is_gimple_reg_type (access->type))
1873 TREE_ADDRESSABLE (repl) = 1;
0563fe8b 1874
0674b9d0
MJ
1875 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1876 DECL_ARTIFICIAL (repl) = 1;
ec24771f 1877 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
0674b9d0
MJ
1878
1879 if (DECL_NAME (access->base)
1880 && !DECL_IGNORED_P (access->base)
1881 && !DECL_ARTIFICIAL (access->base))
6de9cd9a 1882 {
0674b9d0 1883 char *pretty_name = make_fancy_name (access->expr);
823e9473 1884 tree debug_expr = unshare_expr (access->expr), d;
70b5e7dc 1885 bool fail = false;
0674b9d0
MJ
1886
1887 DECL_NAME (repl) = get_identifier (pretty_name);
1888 obstack_free (&name_obstack, pretty_name);
1889
823e9473
JJ
1890 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1891 as DECL_DEBUG_EXPR isn't considered when looking for still
1892 used SSA_NAMEs and thus they could be freed. All debug info
1893 generation cares is whether something is constant or variable
1894 and that get_ref_base_and_extent works properly on the
70b5e7dc
RG
1895 expression. It cannot handle accesses at a non-constant offset
1896 though, so just give up in those cases. */
1897 for (d = debug_expr; !fail && handled_component_p (d);
1898 d = TREE_OPERAND (d, 0))
823e9473
JJ
1899 switch (TREE_CODE (d))
1900 {
1901 case ARRAY_REF:
1902 case ARRAY_RANGE_REF:
1903 if (TREE_OPERAND (d, 1)
70b5e7dc
RG
1904 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
1905 fail = true;
823e9473 1906 if (TREE_OPERAND (d, 3)
70b5e7dc
RG
1907 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
1908 fail = true;
823e9473
JJ
1909 /* FALLTHRU */
1910 case COMPONENT_REF:
1911 if (TREE_OPERAND (d, 2)
70b5e7dc
RG
1912 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
1913 fail = true;
823e9473
JJ
1914 break;
1915 default:
1916 break;
1917 }
70b5e7dc
RG
1918 if (!fail)
1919 {
1920 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1921 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1922 }
9271a43c
MJ
1923 if (access->grp_no_warning)
1924 TREE_NO_WARNING (repl) = 1;
1925 else
1926 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
97e73bd2 1927 }
ec24771f
MJ
1928 else
1929 TREE_NO_WARNING (repl) = 1;
0674b9d0
MJ
1930
1931 if (dump_file)
97e73bd2 1932 {
0674b9d0
MJ
1933 fprintf (dump_file, "Created a replacement for ");
1934 print_generic_expr (dump_file, access->base, 0);
1935 fprintf (dump_file, " offset: %u, size: %u: ",
1936 (unsigned) access->offset, (unsigned) access->size);
1937 print_generic_expr (dump_file, repl, 0);
1938 fprintf (dump_file, "\n");
97e73bd2 1939 }
2a45675f 1940 sra_stats.replacements++;
0674b9d0
MJ
1941
1942 return repl;
97e73bd2 1943}
6de9cd9a 1944
0674b9d0 1945/* Return ACCESS scalar replacement, create it if it does not exist yet. */
6de9cd9a 1946
0674b9d0
MJ
1947static inline tree
1948get_access_replacement (struct access *access)
97e73bd2 1949{
5feb49f0 1950 if (!access->replacement_decl)
13714310 1951 access->replacement_decl = create_access_replacement (access);
5feb49f0
MJ
1952 return access->replacement_decl;
1953}
1954
1955
0674b9d0
MJ
1956/* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1957 linked list along the way. Stop when *ACCESS is NULL or the access pointed
591d4f4a
MJ
1958 to it is not "within" the root. Return false iff some accesses partially
1959 overlap. */
e4521d11 1960
591d4f4a 1961static bool
0674b9d0
MJ
1962build_access_subtree (struct access **access)
1963{
1964 struct access *root = *access, *last_child = NULL;
1965 HOST_WIDE_INT limit = root->offset + root->size;
6de9cd9a 1966
0674b9d0
MJ
1967 *access = (*access)->next_grp;
1968 while (*access && (*access)->offset + (*access)->size <= limit)
97e73bd2 1969 {
0674b9d0
MJ
1970 if (!last_child)
1971 root->first_child = *access;
1972 else
1973 last_child->next_sibling = *access;
1974 last_child = *access;
6de9cd9a 1975
591d4f4a
MJ
1976 if (!build_access_subtree (access))
1977 return false;
97e73bd2 1978 }
591d4f4a
MJ
1979
1980 if (*access && (*access)->offset < limit)
1981 return false;
1982
1983 return true;
97e73bd2 1984}
6de9cd9a 1985
0674b9d0 1986/* Build a tree of access representatives, ACCESS is the pointer to the first
591d4f4a
MJ
1987 one, others are linked in a list by the next_grp field. Return false iff
1988 some accesses partially overlap. */
6de9cd9a 1989
591d4f4a 1990static bool
0674b9d0 1991build_access_trees (struct access *access)
6de9cd9a 1992{
0674b9d0 1993 while (access)
bfeebecf 1994 {
0674b9d0 1995 struct access *root = access;
6de9cd9a 1996
591d4f4a
MJ
1997 if (!build_access_subtree (&access))
1998 return false;
0674b9d0 1999 root->next_grp = access;
6de9cd9a 2000 }
591d4f4a 2001 return true;
97e73bd2 2002}
6de9cd9a 2003
22fc64b4
MJ
2004/* Return true if expr contains some ARRAY_REFs into a variable bounded
2005 array. */
2006
2007static bool
2008expr_with_var_bounded_array_refs_p (tree expr)
2009{
2010 while (handled_component_p (expr))
2011 {
2012 if (TREE_CODE (expr) == ARRAY_REF
2013 && !host_integerp (array_ref_low_bound (expr), 0))
2014 return true;
2015 expr = TREE_OPERAND (expr, 0);
2016 }
2017 return false;
2018}
2019
0674b9d0 2020/* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
77620011
MJ
2021 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2022 sorts of access flags appropriately along the way, notably always set
2023 grp_read and grp_assign_read according to MARK_READ and grp_write when
fc37536b
MJ
2024 MARK_WRITE is true.
2025
2026 Creating a replacement for a scalar access is considered beneficial if its
2027 grp_hint is set (this means we are either attempting total scalarization or
2028 there is more than one direct read access) or according to the following
2029 table:
2030
4fd73214 2031 Access written to through a scalar type (once or more times)
fc37536b 2032 |
4fd73214 2033 | Written to in an assignment statement
fc37536b 2034 | |
4fd73214 2035 | | Access read as scalar _once_
fc37536b 2036 | | |
4fd73214 2037 | | | Read in an assignment statement
fc37536b
MJ
2038 | | | |
2039 | | | | Scalarize Comment
2040-----------------------------------------------------------------------------
2041 0 0 0 0 No access for the scalar
2042 0 0 0 1 No access for the scalar
2043 0 0 1 0 No Single read - won't help
2044 0 0 1 1 No The same case
2045 0 1 0 0 No access for the scalar
2046 0 1 0 1 No access for the scalar
2047 0 1 1 0 Yes s = *g; return s.i;
2048 0 1 1 1 Yes The same case as above
2049 1 0 0 0 No Won't help
2050 1 0 0 1 Yes s.i = 1; *g = s;
2051 1 0 1 0 Yes s.i = 5; g = s.i;
2052 1 0 1 1 Yes The same case as above
2053 1 1 0 0 No Won't help.
2054 1 1 0 1 Yes s.i = 1; *g = s;
2055 1 1 1 0 Yes s = *g; return s.i;
2056 1 1 1 1 Yes Any of the above yeses */
71956db3 2057
0674b9d0 2058static bool
d9c77712
MJ
2059analyze_access_subtree (struct access *root, struct access *parent,
2060 bool allow_replacements)
71956db3 2061{
0674b9d0
MJ
2062 struct access *child;
2063 HOST_WIDE_INT limit = root->offset + root->size;
2064 HOST_WIDE_INT covered_to = root->offset;
2065 bool scalar = is_gimple_reg_type (root->type);
2066 bool hole = false, sth_created = false;
71956db3 2067
d9c77712 2068 if (parent)
fc37536b 2069 {
d9c77712
MJ
2070 if (parent->grp_read)
2071 root->grp_read = 1;
2072 if (parent->grp_assignment_read)
2073 root->grp_assignment_read = 1;
2074 if (parent->grp_write)
2075 root->grp_write = 1;
2076 if (parent->grp_assignment_write)
2077 root->grp_assignment_write = 1;
1ac93f10
MJ
2078 if (parent->grp_total_scalarization)
2079 root->grp_total_scalarization = 1;
fc37536b 2080 }
0674b9d0
MJ
2081
2082 if (root->grp_unscalarizable_region)
2083 allow_replacements = false;
2084
22fc64b4
MJ
2085 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2086 allow_replacements = false;
2087
0674b9d0 2088 for (child = root->first_child; child; child = child->next_sibling)
97e73bd2 2089 {
1ac93f10 2090 hole |= covered_to < child->offset;
d9c77712
MJ
2091 sth_created |= analyze_access_subtree (child, root,
2092 allow_replacements && !scalar);
0674b9d0
MJ
2093
2094 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1ac93f10
MJ
2095 root->grp_total_scalarization &= child->grp_total_scalarization;
2096 if (child->grp_covered)
2097 covered_to += child->size;
2098 else
2099 hole = true;
97e73bd2 2100 }
6de9cd9a 2101
fef94f76
MJ
2102 if (allow_replacements && scalar && !root->first_child
2103 && (root->grp_hint
4fd73214
MJ
2104 || ((root->grp_scalar_read || root->grp_assignment_read)
2105 && (root->grp_scalar_write || root->grp_assignment_write))))
97e73bd2 2106 {
da990dc0 2107 bool new_integer_type;
8085c586
RG
2108 /* Always create access replacements that cover the whole access.
2109 For integral types this means the precision has to match.
2110 Avoid assumptions based on the integral type kind, too. */
2111 if (INTEGRAL_TYPE_P (root->type)
2112 && (TREE_CODE (root->type) != INTEGER_TYPE
2113 || TYPE_PRECISION (root->type) != root->size)
2114 /* But leave bitfield accesses alone. */
e8257960
RG
2115 && (TREE_CODE (root->expr) != COMPONENT_REF
2116 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
da990dc0
MJ
2117 {
2118 tree rt = root->type;
e8257960
RG
2119 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2120 && (root->size % BITS_PER_UNIT) == 0);
8085c586 2121 root->type = build_nonstandard_integer_type (root->size,
da990dc0 2122 TYPE_UNSIGNED (rt));
8085c586
RG
2123 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2124 root->base, root->offset,
2125 root->type, NULL, false);
da990dc0
MJ
2126 new_integer_type = true;
2127 }
2128 else
2129 new_integer_type = false;
2130
0674b9d0 2131 if (dump_file && (dump_flags & TDF_DETAILS))
6de9cd9a 2132 {
0674b9d0
MJ
2133 fprintf (dump_file, "Marking ");
2134 print_generic_expr (dump_file, root->base, 0);
da990dc0 2135 fprintf (dump_file, " offset: %u, size: %u ",
0674b9d0 2136 (unsigned) root->offset, (unsigned) root->size);
da990dc0
MJ
2137 fprintf (dump_file, " to be replaced%s.\n",
2138 new_integer_type ? " with an integer": "");
97e73bd2 2139 }
6de9cd9a 2140
0674b9d0
MJ
2141 root->grp_to_be_replaced = 1;
2142 sth_created = true;
2143 hole = false;
97e73bd2 2144 }
1ac93f10
MJ
2145 else
2146 {
2147 if (covered_to < limit)
2148 hole = true;
2149 if (scalar)
2150 root->grp_total_scalarization = 0;
2151 }
402a3dec 2152
1ac93f10
MJ
2153 if (sth_created
2154 && (!hole || root->grp_total_scalarization))
0674b9d0
MJ
2155 {
2156 root->grp_covered = 1;
2157 return true;
2158 }
2159 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2160 root->grp_unscalarized_data = 1; /* not covered and written to */
2161 if (sth_created)
2162 return true;
2163 return false;
97e73bd2 2164}
6de9cd9a 2165
0674b9d0
MJ
2166/* Analyze all access trees linked by next_grp by the means of
2167 analyze_access_subtree. */
fa588429 2168static bool
0674b9d0 2169analyze_access_trees (struct access *access)
fa588429 2170{
0674b9d0 2171 bool ret = false;
fa588429 2172
0674b9d0 2173 while (access)
fa588429 2174 {
d9c77712 2175 if (analyze_access_subtree (access, NULL, true))
0674b9d0
MJ
2176 ret = true;
2177 access = access->next_grp;
fa588429
RH
2178 }
2179
2180 return ret;
2181}
2182
0674b9d0
MJ
2183/* Return true iff a potential new child of LACC at offset OFFSET and with size
2184 SIZE would conflict with an already existing one. If exactly such a child
2185 already exists in LACC, store a pointer to it in EXACT_MATCH. */
6de9cd9a 2186
0674b9d0
MJ
2187static bool
2188child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2189 HOST_WIDE_INT size, struct access **exact_match)
6de9cd9a 2190{
0674b9d0
MJ
2191 struct access *child;
2192
2193 for (child = lacc->first_child; child; child = child->next_sibling)
2194 {
2195 if (child->offset == norm_offset && child->size == size)
2196 {
2197 *exact_match = child;
2198 return true;
2199 }
6de9cd9a 2200
0674b9d0
MJ
2201 if (child->offset < norm_offset + size
2202 && child->offset + child->size > norm_offset)
2203 return true;
2204 }
2205
2206 return false;
6de9cd9a
DN
2207}
2208
0674b9d0
MJ
2209/* Create a new child access of PARENT, with all properties just like MODEL
2210 except for its offset and with its grp_write false and grp_read true.
4a50e99c
MJ
2211 Return the new access or NULL if it cannot be created. Note that this access
2212 is created long after all splicing and sorting, it's not located in any
2213 access vector and is automatically a representative of its group. */
0674b9d0
MJ
2214
2215static struct access *
2216create_artificial_child_access (struct access *parent, struct access *model,
2217 HOST_WIDE_INT new_offset)
6de9cd9a 2218{
0674b9d0
MJ
2219 struct access *access;
2220 struct access **child;
d242d063 2221 tree expr = parent->base;
6de9cd9a 2222
0674b9d0 2223 gcc_assert (!model->grp_unscalarizable_region);
4a50e99c 2224
0674b9d0
MJ
2225 access = (struct access *) pool_alloc (access_pool);
2226 memset (access, 0, sizeof (struct access));
9271a43c
MJ
2227 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2228 model->type))
2229 {
2230 access->grp_no_warning = true;
2231 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2232 new_offset, model, NULL, false);
2233 }
2234
0674b9d0 2235 access->base = parent->base;
4a50e99c 2236 access->expr = expr;
0674b9d0
MJ
2237 access->offset = new_offset;
2238 access->size = model->size;
0674b9d0
MJ
2239 access->type = model->type;
2240 access->grp_write = true;
2241 access->grp_read = false;
510335c8 2242
0674b9d0
MJ
2243 child = &parent->first_child;
2244 while (*child && (*child)->offset < new_offset)
2245 child = &(*child)->next_sibling;
510335c8 2246
0674b9d0
MJ
2247 access->next_sibling = *child;
2248 *child = access;
510335c8 2249
0674b9d0
MJ
2250 return access;
2251}
510335c8 2252
0674b9d0
MJ
2253
2254/* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2255 true if any new subaccess was created. Additionally, if RACC is a scalar
4a50e99c 2256 access but LACC is not, change the type of the latter, if possible. */
510335c8
AO
2257
2258static bool
8a1326b3 2259propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
510335c8 2260{
0674b9d0
MJ
2261 struct access *rchild;
2262 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
0674b9d0 2263 bool ret = false;
510335c8 2264
0674b9d0
MJ
2265 if (is_gimple_reg_type (lacc->type)
2266 || lacc->grp_unscalarizable_region
2267 || racc->grp_unscalarizable_region)
2268 return false;
510335c8 2269
d3705186 2270 if (is_gimple_reg_type (racc->type))
510335c8 2271 {
d3705186 2272 if (!lacc->first_child && !racc->first_child)
4a50e99c 2273 {
d3705186
MJ
2274 tree t = lacc->base;
2275
2276 lacc->type = racc->type;
2277 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2278 lacc->offset, racc->type))
2279 lacc->expr = t;
2280 else
2281 {
2282 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2283 lacc->base, lacc->offset,
2284 racc, NULL, false);
2285 lacc->grp_no_warning = true;
2286 }
4a50e99c 2287 }
0674b9d0
MJ
2288 return false;
2289 }
510335c8 2290
0674b9d0
MJ
2291 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2292 {
2293 struct access *new_acc = NULL;
2294 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
510335c8 2295
0674b9d0
MJ
2296 if (rchild->grp_unscalarizable_region)
2297 continue;
510335c8 2298
0674b9d0
MJ
2299 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2300 &new_acc))
510335c8 2301 {
fef94f76
MJ
2302 if (new_acc)
2303 {
2304 rchild->grp_hint = 1;
2305 new_acc->grp_hint |= new_acc->grp_read;
2306 if (rchild->first_child)
8a1326b3 2307 ret |= propagate_subaccesses_across_link (new_acc, rchild);
fef94f76 2308 }
0674b9d0 2309 continue;
510335c8 2310 }
0674b9d0 2311
fef94f76 2312 rchild->grp_hint = 1;
0674b9d0 2313 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
4a50e99c
MJ
2314 if (new_acc)
2315 {
2316 ret = true;
2317 if (racc->first_child)
8a1326b3 2318 propagate_subaccesses_across_link (new_acc, rchild);
4a50e99c 2319 }
510335c8
AO
2320 }
2321
2322 return ret;
2323}
2324
0674b9d0 2325/* Propagate all subaccesses across assignment links. */
510335c8
AO
2326
2327static void
0674b9d0 2328propagate_all_subaccesses (void)
510335c8 2329{
0674b9d0 2330 while (work_queue_head)
510335c8 2331 {
0674b9d0
MJ
2332 struct access *racc = pop_access_from_work_queue ();
2333 struct assign_link *link;
510335c8 2334
0674b9d0 2335 gcc_assert (racc->first_link);
510335c8 2336
0674b9d0 2337 for (link = racc->first_link; link; link = link->next)
510335c8 2338 {
0674b9d0 2339 struct access *lacc = link->lacc;
510335c8 2340
0674b9d0
MJ
2341 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2342 continue;
2343 lacc = lacc->group_representative;
8a1326b3 2344 if (propagate_subaccesses_across_link (lacc, racc)
0674b9d0
MJ
2345 && lacc->first_link)
2346 add_access_to_work_queue (lacc);
2347 }
2348 }
2349}
510335c8 2350
0674b9d0
MJ
2351/* Go through all accesses collected throughout the (intraprocedural) analysis
2352 stage, exclude overlapping ones, identify representatives and build trees
2353 out of them, making decisions about scalarization on the way. Return true
2354 iff there are any to-be-scalarized variables after this stage. */
088371ac 2355
0674b9d0
MJ
2356static bool
2357analyze_all_variable_accesses (void)
2358{
2a45675f 2359 int res = 0;
aecd4d81
RG
2360 bitmap tmp = BITMAP_ALLOC (NULL);
2361 bitmap_iterator bi;
7744b697
MJ
2362 unsigned i, max_total_scalarization_size;
2363
2364 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2365 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2366
2367 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2368 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2369 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2370 {
d94b820b 2371 tree var = candidate (i);
7744b697
MJ
2372
2373 if (TREE_CODE (var) == VAR_DECL
7744b697
MJ
2374 && type_consists_of_records_p (TREE_TYPE (var)))
2375 {
e923ef41
MJ
2376 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2377 <= max_total_scalarization_size)
2378 {
2379 completely_scalarize_var (var);
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2381 {
2382 fprintf (dump_file, "Will attempt to totally scalarize ");
2383 print_generic_expr (dump_file, var, 0);
2384 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2385 }
2386 }
2387 else if (dump_file && (dump_flags & TDF_DETAILS))
7744b697 2388 {
e923ef41 2389 fprintf (dump_file, "Too big to totally scalarize: ");
7744b697 2390 print_generic_expr (dump_file, var, 0);
e923ef41 2391 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
7744b697
MJ
2392 }
2393 }
2394 }
510335c8 2395
aecd4d81
RG
2396 bitmap_copy (tmp, candidate_bitmap);
2397 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2398 {
d94b820b 2399 tree var = candidate (i);
aecd4d81
RG
2400 struct access *access;
2401
2402 access = sort_and_splice_var_accesses (var);
591d4f4a 2403 if (!access || !build_access_trees (access))
aecd4d81
RG
2404 disqualify_candidate (var,
2405 "No or inhibitingly overlapping accesses.");
2406 }
510335c8 2407
0674b9d0 2408 propagate_all_subaccesses ();
510335c8 2409
aecd4d81
RG
2410 bitmap_copy (tmp, candidate_bitmap);
2411 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2412 {
d94b820b 2413 tree var = candidate (i);
aecd4d81 2414 struct access *access = get_first_repr_for_decl (var);
510335c8 2415
aecd4d81
RG
2416 if (analyze_access_trees (access))
2417 {
2418 res++;
2419 if (dump_file && (dump_flags & TDF_DETAILS))
2420 {
2421 fprintf (dump_file, "\nAccess trees for ");
2422 print_generic_expr (dump_file, var, 0);
2423 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2424 dump_access_tree (dump_file, access);
2425 fprintf (dump_file, "\n");
2426 }
2427 }
2428 else
2429 disqualify_candidate (var, "No scalar replacements to be created.");
2430 }
2431
2432 BITMAP_FREE (tmp);
510335c8 2433
2a45675f
MJ
2434 if (res)
2435 {
2436 statistics_counter_event (cfun, "Scalarized aggregates", res);
2437 return true;
2438 }
2439 else
2440 return false;
510335c8
AO
2441}
2442
0674b9d0 2443/* Generate statements copying scalar replacements of accesses within a subtree
ea395a11
MJ
2444 into or out of AGG. ACCESS, all its children, siblings and their children
2445 are to be processed. AGG is an aggregate type expression (can be a
2446 declaration but does not have to be, it can for example also be a mem_ref or
2447 a series of handled components). TOP_OFFSET is the offset of the processed
2448 subtree which has to be subtracted from offsets of individual accesses to
2449 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
d242d063
MJ
2450 replacements in the interval <start_offset, start_offset + chunk_size>,
2451 otherwise copy all. GSI is a statement iterator used to place the new
2452 statements. WRITE should be true when the statements should write from AGG
2453 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2454 statements will be added after the current statement in GSI, they will be
2455 added before the statement otherwise. */
6de9cd9a
DN
2456
2457static void
0674b9d0
MJ
2458generate_subtree_copies (struct access *access, tree agg,
2459 HOST_WIDE_INT top_offset,
2460 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2461 gimple_stmt_iterator *gsi, bool write,
e4b5cace 2462 bool insert_after, location_t loc)
6de9cd9a 2463{
0674b9d0 2464 do
6de9cd9a 2465 {
0674b9d0
MJ
2466 if (chunk_size && access->offset >= start_offset + chunk_size)
2467 return;
510335c8 2468
0674b9d0
MJ
2469 if (access->grp_to_be_replaced
2470 && (chunk_size == 0
2471 || access->offset + access->size > start_offset))
510335c8 2472 {
d242d063 2473 tree expr, repl = get_access_replacement (access);
0674b9d0 2474 gimple stmt;
510335c8 2475
e4b5cace 2476 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
d242d063 2477 access, gsi, insert_after);
510335c8 2478
0674b9d0 2479 if (write)
510335c8 2480 {
0674b9d0
MJ
2481 if (access->grp_partial_lhs)
2482 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2483 !insert_after,
2484 insert_after ? GSI_NEW_STMT
2485 : GSI_SAME_STMT);
2486 stmt = gimple_build_assign (repl, expr);
2487 }
2488 else
2489 {
2490 TREE_NO_WARNING (repl) = 1;
2491 if (access->grp_partial_lhs)
2492 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2493 !insert_after,
2494 insert_after ? GSI_NEW_STMT
2495 : GSI_SAME_STMT);
2496 stmt = gimple_build_assign (expr, repl);
510335c8 2497 }
e4b5cace 2498 gimple_set_location (stmt, loc);
510335c8 2499
0674b9d0
MJ
2500 if (insert_after)
2501 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
b5dcec1e 2502 else
0674b9d0
MJ
2503 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2504 update_stmt (stmt);
71d4d3eb 2505 sra_stats.subtree_copies++;
510335c8 2506 }
510335c8 2507
0674b9d0
MJ
2508 if (access->first_child)
2509 generate_subtree_copies (access->first_child, agg, top_offset,
2510 start_offset, chunk_size, gsi,
e4b5cace 2511 write, insert_after, loc);
510335c8 2512
0674b9d0 2513 access = access->next_sibling;
510335c8 2514 }
0674b9d0
MJ
2515 while (access);
2516}
2517
2518/* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2519 the root of the subtree to be processed. GSI is the statement iterator used
2520 for inserting statements which are added after the current statement if
2521 INSERT_AFTER is true or before it otherwise. */
2522
2523static void
2524init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
e4b5cace 2525 bool insert_after, location_t loc)
0674b9d0
MJ
2526
2527{
2528 struct access *child;
2529
2530 if (access->grp_to_be_replaced)
510335c8 2531 {
0674b9d0 2532 gimple stmt;
510335c8 2533
0674b9d0 2534 stmt = gimple_build_assign (get_access_replacement (access),
e8160c9a 2535 build_zero_cst (access->type));
0674b9d0
MJ
2536 if (insert_after)
2537 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2538 else
2539 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2540 update_stmt (stmt);
e4b5cace 2541 gimple_set_location (stmt, loc);
0674b9d0 2542 }
510335c8 2543
0674b9d0 2544 for (child = access->first_child; child; child = child->next_sibling)
e4b5cace 2545 init_subtree_with_zero (child, gsi, insert_after, loc);
0674b9d0 2546}
510335c8 2547
0674b9d0
MJ
2548/* Search for an access representative for the given expression EXPR and
2549 return it or NULL if it cannot be found. */
510335c8 2550
0674b9d0
MJ
2551static struct access *
2552get_access_for_expr (tree expr)
2553{
2554 HOST_WIDE_INT offset, size, max_size;
2555 tree base;
510335c8 2556
0674b9d0
MJ
2557 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2558 a different size than the size of its argument and we need the latter
2559 one. */
2560 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2561 expr = TREE_OPERAND (expr, 0);
510335c8 2562
0674b9d0
MJ
2563 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2564 if (max_size == -1 || !DECL_P (base))
2565 return NULL;
510335c8 2566
0674b9d0
MJ
2567 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2568 return NULL;
2569
2570 return get_var_base_offset_size_access (base, offset, max_size);
2571}
2572
6cbd3b6a
MJ
2573/* Replace the expression EXPR with a scalar replacement if there is one and
2574 generate other statements to do type conversion or subtree copying if
2575 necessary. GSI is used to place newly created statements, WRITE is true if
2576 the expression is being written to (it is on a LHS of a statement or output
2577 in an assembly statement). */
0674b9d0
MJ
2578
2579static bool
6cbd3b6a 2580sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
0674b9d0 2581{
e4b5cace 2582 location_t loc;
0674b9d0
MJ
2583 struct access *access;
2584 tree type, bfr;
510335c8 2585
0674b9d0
MJ
2586 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2587 {
2588 bfr = *expr;
2589 expr = &TREE_OPERAND (*expr, 0);
510335c8 2590 }
97e73bd2 2591 else
0674b9d0
MJ
2592 bfr = NULL_TREE;
2593
2594 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2595 expr = &TREE_OPERAND (*expr, 0);
2596 access = get_access_for_expr (*expr);
2597 if (!access)
2598 return false;
2599 type = TREE_TYPE (*expr);
2600
e4b5cace 2601 loc = gimple_location (gsi_stmt (*gsi));
0674b9d0 2602 if (access->grp_to_be_replaced)
6de9cd9a 2603 {
0674b9d0
MJ
2604 tree repl = get_access_replacement (access);
2605 /* If we replace a non-register typed access simply use the original
2606 access expression to extract the scalar component afterwards.
2607 This happens if scalarizing a function return value or parameter
2608 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
9fda11a2
MJ
2609 gcc.c-torture/compile/20011217-1.c.
2610
2611 We also want to use this when accessing a complex or vector which can
2612 be accessed as a different type too, potentially creating a need for
caee6ca1
MJ
2613 type conversion (see PR42196) and when scalarized unions are involved
2614 in assembler statements (see PR42398). */
2615 if (!useless_type_conversion_p (type, access->type))
0674b9d0 2616 {
d242d063 2617 tree ref;
09f0dc45 2618
e4b5cace 2619 ref = build_ref_for_model (loc, access->base, access->offset, access,
d242d063 2620 NULL, false);
09f0dc45 2621
0674b9d0
MJ
2622 if (write)
2623 {
09f0dc45
MJ
2624 gimple stmt;
2625
0674b9d0
MJ
2626 if (access->grp_partial_lhs)
2627 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2628 false, GSI_NEW_STMT);
2629 stmt = gimple_build_assign (repl, ref);
e4b5cace 2630 gimple_set_location (stmt, loc);
0674b9d0
MJ
2631 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2632 }
2633 else
2634 {
09f0dc45
MJ
2635 gimple stmt;
2636
0674b9d0
MJ
2637 if (access->grp_partial_lhs)
2638 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2639 true, GSI_SAME_STMT);
09f0dc45 2640 stmt = gimple_build_assign (ref, repl);
e4b5cace 2641 gimple_set_location (stmt, loc);
0674b9d0
MJ
2642 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2643 }
2644 }
143569a8 2645 else
caee6ca1 2646 *expr = repl;
2a45675f 2647 sra_stats.exprs++;
0674b9d0
MJ
2648 }
2649
2650 if (access->first_child)
2651 {
2652 HOST_WIDE_INT start_offset, chunk_size;
2653 if (bfr
2654 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2655 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2656 {
fac52fdd 2657 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
f57017cd
MJ
2658 start_offset = access->offset
2659 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
d116ffa6 2660 }
0674b9d0
MJ
2661 else
2662 start_offset = chunk_size = 0;
2663
2664 generate_subtree_copies (access->first_child, access->base, 0,
e4b5cace
MJ
2665 start_offset, chunk_size, gsi, write, write,
2666 loc);
6de9cd9a 2667 }
0674b9d0 2668 return true;
6de9cd9a
DN
2669}
2670
fac52fdd
MJ
2671/* Where scalar replacements of the RHS have been written to when a replacement
2672 of a LHS of an assigments cannot be direclty loaded from a replacement of
2673 the RHS. */
2674enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2675 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2676 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2677
0674b9d0 2678/* Store all replacements in the access tree rooted in TOP_RACC either to their
ea395a11
MJ
2679 base aggregate if there are unscalarized data or directly to LHS of the
2680 statement that is pointed to by GSI otherwise. */
6de9cd9a 2681
fac52fdd 2682static enum unscalarized_data_handling
ea395a11 2683handle_unscalarized_data_in_subtree (struct access *top_racc,
0674b9d0 2684 gimple_stmt_iterator *gsi)
6de9cd9a 2685{
0674b9d0 2686 if (top_racc->grp_unscalarized_data)
fac52fdd
MJ
2687 {
2688 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
e4b5cace
MJ
2689 gsi, false, false,
2690 gimple_location (gsi_stmt (*gsi)));
fac52fdd
MJ
2691 return SRA_UDH_RIGHT;
2692 }
0674b9d0 2693 else
fac52fdd 2694 {
ea395a11 2695 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
fac52fdd 2696 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
e4b5cace
MJ
2697 0, 0, gsi, false, false,
2698 gimple_location (gsi_stmt (*gsi)));
fac52fdd
MJ
2699 return SRA_UDH_LEFT;
2700 }
0674b9d0 2701}
6de9cd9a 2702
97e73bd2 2703
ea395a11
MJ
2704/* Try to generate statements to load all sub-replacements in an access subtree
2705 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2706 If that is not possible, refresh the TOP_RACC base aggregate and load the
2707 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2708 copied. NEW_GSI is stmt iterator used for statement insertions after the
2709 original assignment, OLD_GSI is used to insert statements before the
2710 assignment. *REFRESHED keeps the information whether we have needed to
2711 refresh replacements of the LHS and from which side of the assignments this
2712 takes place. */
726a989a 2713
0674b9d0
MJ
2714static void
2715load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2716 HOST_WIDE_INT left_offset,
0674b9d0
MJ
2717 gimple_stmt_iterator *old_gsi,
2718 gimple_stmt_iterator *new_gsi,
ea395a11 2719 enum unscalarized_data_handling *refreshed)
0674b9d0 2720{
e4b5cace 2721 location_t loc = gimple_location (gsi_stmt (*old_gsi));
ea395a11 2722 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
97e73bd2 2723 {
0674b9d0 2724 if (lacc->grp_to_be_replaced)
6de9cd9a 2725 {
0674b9d0 2726 struct access *racc;
ea395a11 2727 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
0674b9d0
MJ
2728 gimple stmt;
2729 tree rhs;
2730
2731 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2732 if (racc && racc->grp_to_be_replaced)
2733 {
2734 rhs = get_access_replacement (racc);
2735 if (!useless_type_conversion_p (lacc->type, racc->type))
db3927fb 2736 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
3e44f600
MJ
2737
2738 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2739 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2740 true, GSI_SAME_STMT);
0674b9d0
MJ
2741 }
2742 else
2743 {
0674b9d0
MJ
2744 /* No suitable access on the right hand side, need to load from
2745 the aggregate. See if we have to update it first... */
fac52fdd 2746 if (*refreshed == SRA_UDH_NONE)
ea395a11 2747 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
e4b5cace 2748 old_gsi);
fac52fdd
MJ
2749
2750 if (*refreshed == SRA_UDH_LEFT)
e4b5cace 2751 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
d242d063 2752 new_gsi, true);
fac52fdd 2753 else
e4b5cace 2754 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
d242d063 2755 new_gsi, true);
6a9ceb17
MJ
2756 if (lacc->grp_partial_lhs)
2757 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2758 false, GSI_NEW_STMT);
0674b9d0 2759 }
97e73bd2 2760
0674b9d0
MJ
2761 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2762 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
e4b5cace 2763 gimple_set_location (stmt, loc);
0674b9d0 2764 update_stmt (stmt);
2a45675f 2765 sra_stats.subreplacements++;
0674b9d0 2766 }
fac52fdd
MJ
2767 else if (*refreshed == SRA_UDH_NONE
2768 && lacc->grp_read && !lacc->grp_covered)
ea395a11 2769 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
fac52fdd 2770 old_gsi);
0674b9d0
MJ
2771
2772 if (lacc->first_child)
ea395a11
MJ
2773 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2774 old_gsi, new_gsi, refreshed);
6de9cd9a 2775 }
97e73bd2 2776}
6de9cd9a 2777
6cbd3b6a
MJ
2778/* Result code for SRA assignment modification. */
2779enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2780 SRA_AM_MODIFIED, /* stmt changed but not
2781 removed */
2782 SRA_AM_REMOVED }; /* stmt eliminated */
2783
0674b9d0
MJ
2784/* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2785 to the assignment and GSI is the statement iterator pointing at it. Returns
2786 the same values as sra_modify_assign. */
6de9cd9a 2787
6cbd3b6a 2788static enum assignment_mod_result
0674b9d0 2789sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
6de9cd9a 2790{
0674b9d0
MJ
2791 tree lhs = gimple_assign_lhs (*stmt);
2792 struct access *acc;
e4b5cace 2793 location_t loc;
6de9cd9a 2794
0674b9d0
MJ
2795 acc = get_access_for_expr (lhs);
2796 if (!acc)
6cbd3b6a 2797 return SRA_AM_NONE;
6de9cd9a 2798
13604927
RG
2799 if (gimple_clobber_p (*stmt))
2800 {
2801 /* Remove clobbers of fully scalarized variables, otherwise
2802 do nothing. */
2803 if (acc->grp_covered)
2804 {
2805 unlink_stmt_vdef (*stmt);
2806 gsi_remove (gsi, true);
3d3f2249 2807 release_defs (*stmt);
13604927
RG
2808 return SRA_AM_REMOVED;
2809 }
2810 else
2811 return SRA_AM_NONE;
2812 }
2813
e4b5cace 2814 loc = gimple_location (*stmt);
0674b9d0
MJ
2815 if (VEC_length (constructor_elt,
2816 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
400196f1 2817 {
0674b9d0
MJ
2818 /* I have never seen this code path trigger but if it can happen the
2819 following should handle it gracefully. */
2820 if (access_has_children_p (acc))
2821 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
e4b5cace 2822 true, true, loc);
6cbd3b6a 2823 return SRA_AM_MODIFIED;
400196f1 2824 }
6de9cd9a 2825
0674b9d0 2826 if (acc->grp_covered)
97e73bd2 2827 {
e4b5cace 2828 init_subtree_with_zero (acc, gsi, false, loc);
0674b9d0
MJ
2829 unlink_stmt_vdef (*stmt);
2830 gsi_remove (gsi, true);
3d3f2249 2831 release_defs (*stmt);
6cbd3b6a 2832 return SRA_AM_REMOVED;
97e73bd2
RH
2833 }
2834 else
2835 {
e4b5cace 2836 init_subtree_with_zero (acc, gsi, true, loc);
6cbd3b6a 2837 return SRA_AM_MODIFIED;
6de9cd9a
DN
2838 }
2839}
2840
56a42add
MJ
2841/* Create and return a new suitable default definition SSA_NAME for RACC which
2842 is an access describing an uninitialized part of an aggregate that is being
2843 loaded. */
0f2ffb9a 2844
56a42add
MJ
2845static tree
2846get_repl_default_def_ssa_name (struct access *racc)
0f2ffb9a 2847{
32244553 2848 return get_or_create_ssa_default_def (cfun, get_access_replacement (racc));
0f2ffb9a 2849}
6de9cd9a 2850
4cc13d9d
MJ
2851/* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2852 somewhere in it. */
2853
2854static inline bool
2855contains_bitfld_comp_ref_p (const_tree ref)
2856{
2857 while (handled_component_p (ref))
2858 {
2859 if (TREE_CODE (ref) == COMPONENT_REF
2860 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2861 return true;
2862 ref = TREE_OPERAND (ref, 0);
2863 }
2864
2865 return false;
2866}
2867
2868/* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2869 bit-field field declaration somewhere in it. */
2870
2871static inline bool
2872contains_vce_or_bfcref_p (const_tree ref)
2873{
2874 while (handled_component_p (ref))
2875 {
2876 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2877 || (TREE_CODE (ref) == COMPONENT_REF
2878 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2879 return true;
2880 ref = TREE_OPERAND (ref, 0);
2881 }
2882
2883 return false;
2884}
2885
6cbd3b6a
MJ
2886/* Examine both sides of the assignment statement pointed to by STMT, replace
2887 them with a scalare replacement if there is one and generate copying of
2888 replacements if scalarized aggregates have been used in the assignment. GSI
2889 is used to hold generated statements for type conversions and subtree
0674b9d0
MJ
2890 copying. */
2891
6cbd3b6a
MJ
2892static enum assignment_mod_result
2893sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
6de9cd9a 2894{
0674b9d0
MJ
2895 struct access *lacc, *racc;
2896 tree lhs, rhs;
2897 bool modify_this_stmt = false;
2898 bool force_gimple_rhs = false;
e4b5cace 2899 location_t loc;
002cda0a 2900 gimple_stmt_iterator orig_gsi = *gsi;
6de9cd9a 2901
0674b9d0 2902 if (!gimple_assign_single_p (*stmt))
6cbd3b6a 2903 return SRA_AM_NONE;
0674b9d0
MJ
2904 lhs = gimple_assign_lhs (*stmt);
2905 rhs = gimple_assign_rhs1 (*stmt);
6de9cd9a 2906
0674b9d0
MJ
2907 if (TREE_CODE (rhs) == CONSTRUCTOR)
2908 return sra_modify_constructor_assign (stmt, gsi);
6de9cd9a 2909
0674b9d0
MJ
2910 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2911 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2912 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2913 {
2914 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
6cbd3b6a 2915 gsi, false);
0674b9d0 2916 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
6cbd3b6a
MJ
2917 gsi, true);
2918 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
0674b9d0 2919 }
6de9cd9a 2920
0674b9d0
MJ
2921 lacc = get_access_for_expr (lhs);
2922 racc = get_access_for_expr (rhs);
2923 if (!lacc && !racc)
6cbd3b6a 2924 return SRA_AM_NONE;
6de9cd9a 2925
e4b5cace 2926 loc = gimple_location (*stmt);
0674b9d0 2927 if (lacc && lacc->grp_to_be_replaced)
97e73bd2 2928 {
0674b9d0
MJ
2929 lhs = get_access_replacement (lacc);
2930 gimple_assign_set_lhs (*stmt, lhs);
2931 modify_this_stmt = true;
2932 if (lacc->grp_partial_lhs)
2933 force_gimple_rhs = true;
2a45675f 2934 sra_stats.exprs++;
97e73bd2 2935 }
6de9cd9a 2936
0674b9d0
MJ
2937 if (racc && racc->grp_to_be_replaced)
2938 {
2939 rhs = get_access_replacement (racc);
2940 modify_this_stmt = true;
2941 if (racc->grp_partial_lhs)
2942 force_gimple_rhs = true;
2a45675f 2943 sra_stats.exprs++;
0674b9d0 2944 }
fdad69c1 2945 else if (racc
fdad69c1 2946 && !racc->grp_unscalarized_data
973a39ae
RG
2947 && TREE_CODE (lhs) == SSA_NAME
2948 && !access_has_replacements_p (racc))
fdad69c1
RG
2949 {
2950 rhs = get_repl_default_def_ssa_name (racc);
2951 modify_this_stmt = true;
2952 sra_stats.exprs++;
2953 }
6de9cd9a 2954
0674b9d0
MJ
2955 if (modify_this_stmt)
2956 {
2957 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
6de9cd9a 2958 {
0674b9d0
MJ
2959 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2960 ??? This should move to fold_stmt which we simply should
2961 call after building a VIEW_CONVERT_EXPR here. */
2962 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
4cc13d9d 2963 && !contains_bitfld_comp_ref_p (lhs)
0674b9d0
MJ
2964 && !access_has_children_p (lacc))
2965 {
e80b21ed 2966 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
d242d063 2967 gimple_assign_set_lhs (*stmt, lhs);
0674b9d0
MJ
2968 }
2969 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
4cc13d9d 2970 && !contains_vce_or_bfcref_p (rhs)
0674b9d0 2971 && !access_has_children_p (racc))
e80b21ed 2972 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
d242d063 2973
0674b9d0 2974 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
0ec19b8c 2975 {
d242d063
MJ
2976 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2977 rhs);
1bea3098
RG
2978 if (is_gimple_reg_type (TREE_TYPE (lhs))
2979 && TREE_CODE (lhs) != SSA_NAME)
0ec19b8c
MJ
2980 force_gimple_rhs = true;
2981 }
0674b9d0 2982 }
0674b9d0 2983 }
97e73bd2 2984
0674b9d0
MJ
2985 /* From this point on, the function deals with assignments in between
2986 aggregates when at least one has scalar reductions of some of its
2987 components. There are three possible scenarios: Both the LHS and RHS have
2988 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2989
2990 In the first case, we would like to load the LHS components from RHS
2991 components whenever possible. If that is not possible, we would like to
2992 read it directly from the RHS (after updating it by storing in it its own
2993 components). If there are some necessary unscalarized data in the LHS,
2994 those will be loaded by the original assignment too. If neither of these
2995 cases happen, the original statement can be removed. Most of this is done
2996 by load_assign_lhs_subreplacements.
2997
2998 In the second case, we would like to store all RHS scalarized components
2999 directly into LHS and if they cover the aggregate completely, remove the
3000 statement too. In the third case, we want the LHS components to be loaded
3001 directly from the RHS (DSE will remove the original statement if it
3002 becomes redundant).
3003
3004 This is a bit complex but manageable when types match and when unions do
3005 not cause confusion in a way that we cannot really load a component of LHS
3006 from the RHS or vice versa (the access representing this level can have
3007 subaccesses that are accessible only through a different union field at a
3008 higher level - different from the one used in the examined expression).
3009 Unions are fun.
3010
3011 Therefore, I specially handle a fourth case, happening when there is a
3012 specific type cast or it is impossible to locate a scalarized subaccess on
3013 the other side of the expression. If that happens, I simply "refresh" the
3014 RHS by storing in it is scalarized components leave the original statement
3015 there to do the copying and then load the scalar replacements of the LHS.
3016 This is what the first branch does. */
3017
b807e627
MJ
3018 if (modify_this_stmt
3019 || gimple_has_volatile_ops (*stmt)
4cc13d9d
MJ
3020 || contains_vce_or_bfcref_p (rhs)
3021 || contains_vce_or_bfcref_p (lhs))
0674b9d0
MJ
3022 {
3023 if (access_has_children_p (racc))
3024 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
e4b5cace 3025 gsi, false, false, loc);
0674b9d0
MJ
3026 if (access_has_children_p (lacc))
3027 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
e4b5cace 3028 gsi, true, true, loc);
2a45675f 3029 sra_stats.separate_lhs_rhs_handling++;
fdad69c1
RG
3030
3031 /* This gimplification must be done after generate_subtree_copies,
3032 lest we insert the subtree copies in the middle of the gimplified
3033 sequence. */
3034 if (force_gimple_rhs)
3035 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3036 true, GSI_SAME_STMT);
3037 if (gimple_assign_rhs1 (*stmt) != rhs)
3038 {
3039 modify_this_stmt = true;
3040 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3041 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3042 }
3043
3044 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
0674b9d0
MJ
3045 }
3046 else
3047 {
429576ac
MJ
3048 if (access_has_children_p (lacc)
3049 && access_has_children_p (racc)
3050 /* When an access represents an unscalarizable region, it usually
3051 represents accesses with variable offset and thus must not be used
3052 to generate new memory accesses. */
3053 && !lacc->grp_unscalarizable_region
3054 && !racc->grp_unscalarizable_region)
0674b9d0
MJ
3055 {
3056 gimple_stmt_iterator orig_gsi = *gsi;
fac52fdd 3057 enum unscalarized_data_handling refreshed;
510335c8 3058
0674b9d0 3059 if (lacc->grp_read && !lacc->grp_covered)
ea395a11 3060 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
0674b9d0 3061 else
fac52fdd 3062 refreshed = SRA_UDH_NONE;
19114537 3063
ea395a11
MJ
3064 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3065 &orig_gsi, gsi, &refreshed);
fac52fdd 3066 if (refreshed != SRA_UDH_RIGHT)
97e73bd2 3067 {
75a75e91 3068 gsi_next (gsi);
0674b9d0
MJ
3069 unlink_stmt_vdef (*stmt);
3070 gsi_remove (&orig_gsi, true);
3d3f2249 3071 release_defs (*stmt);
2a45675f 3072 sra_stats.deleted++;
6cbd3b6a 3073 return SRA_AM_REMOVED;
97e73bd2 3074 }
6de9cd9a 3075 }
97e73bd2 3076 else
0674b9d0 3077 {
fdad69c1
RG
3078 if (access_has_children_p (racc)
3079 && !racc->grp_unscalarized_data)
0674b9d0 3080 {
fdad69c1 3081 if (dump_file)
0674b9d0 3082 {
fdad69c1
RG
3083 fprintf (dump_file, "Removing load: ");
3084 print_gimple_stmt (dump_file, *stmt, 0, 0);
0674b9d0 3085 }
fdad69c1
RG
3086 generate_subtree_copies (racc->first_child, lhs,
3087 racc->offset, 0, 0, gsi,
3088 false, false, loc);
3089 gcc_assert (*stmt == gsi_stmt (*gsi));
3090 unlink_stmt_vdef (*stmt);
3091 gsi_remove (gsi, true);
3d3f2249 3092 release_defs (*stmt);
fdad69c1
RG
3093 sra_stats.deleted++;
3094 return SRA_AM_REMOVED;
0674b9d0 3095 }
63d7ceaa
RG
3096 /* Restore the aggregate RHS from its components so the
3097 prevailing aggregate copy does the right thing. */
fdad69c1 3098 if (access_has_children_p (racc))
63d7ceaa
RG
3099 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3100 gsi, false, false, loc);
3101 /* Re-load the components of the aggregate copy destination.
3102 But use the RHS aggregate to load from to expose more
3103 optimization opportunities. */
0f2ffb9a 3104 if (access_has_children_p (lacc))
0674b9d0 3105 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
e4b5cace 3106 0, 0, gsi, true, true, loc);
0674b9d0 3107 }
002cda0a 3108
fdad69c1 3109 return SRA_AM_NONE;
002cda0a 3110 }
6cbd3b6a
MJ
3111}
3112
3113/* Traverse the function body and all modifications as decided in
8cbeddcc
MJ
3114 analyze_all_variable_accesses. Return true iff the CFG has been
3115 changed. */
6cbd3b6a 3116
8cbeddcc 3117static bool
6cbd3b6a
MJ
3118sra_modify_function_body (void)
3119{
8cbeddcc 3120 bool cfg_changed = false;
6cbd3b6a
MJ
3121 basic_block bb;
3122
3123 FOR_EACH_BB (bb)
3124 {
3125 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3126 while (!gsi_end_p (gsi))
3127 {
3128 gimple stmt = gsi_stmt (gsi);
3129 enum assignment_mod_result assign_result;
3130 bool modified = false, deleted = false;
3131 tree *t;
3132 unsigned i;
3133
3134 switch (gimple_code (stmt))
3135 {
3136 case GIMPLE_RETURN:
3137 t = gimple_return_retval_ptr (stmt);
3138 if (*t != NULL_TREE)
3139 modified |= sra_modify_expr (t, &gsi, false);
3140 break;
3141
3142 case GIMPLE_ASSIGN:
3143 assign_result = sra_modify_assign (&stmt, &gsi);
3144 modified |= assign_result == SRA_AM_MODIFIED;
3145 deleted = assign_result == SRA_AM_REMOVED;
3146 break;
3147
3148 case GIMPLE_CALL:
3149 /* Operands must be processed before the lhs. */
3150 for (i = 0; i < gimple_call_num_args (stmt); i++)
3151 {
3152 t = gimple_call_arg_ptr (stmt, i);
3153 modified |= sra_modify_expr (t, &gsi, false);
3154 }
3155
3156 if (gimple_call_lhs (stmt))
3157 {
3158 t = gimple_call_lhs_ptr (stmt);
3159 modified |= sra_modify_expr (t, &gsi, true);
3160 }
3161 break;
3162
3163 case GIMPLE_ASM:
3164 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3165 {
3166 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3167 modified |= sra_modify_expr (t, &gsi, false);
3168 }
3169 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3170 {
3171 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3172 modified |= sra_modify_expr (t, &gsi, true);
3173 }
3174 break;
3175
3176 default:
3177 break;
3178 }
3179
3180 if (modified)
3181 {
3182 update_stmt (stmt);
8cbeddcc
MJ
3183 if (maybe_clean_eh_stmt (stmt)
3184 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3185 cfg_changed = true;
6cbd3b6a
MJ
3186 }
3187 if (!deleted)
3188 gsi_next (&gsi);
3189 }
3190 }
8cbeddcc
MJ
3191
3192 return cfg_changed;
6de9cd9a
DN
3193}
3194
0674b9d0
MJ
3195/* Generate statements initializing scalar replacements of parts of function
3196 parameters. */
6de9cd9a 3197
97e73bd2 3198static void
0674b9d0 3199initialize_parameter_reductions (void)
6de9cd9a 3200{
0674b9d0 3201 gimple_stmt_iterator gsi;
726a989a 3202 gimple_seq seq = NULL;
0674b9d0 3203 tree parm;
6de9cd9a 3204
355a7673 3205 gsi = gsi_start (seq);
0674b9d0
MJ
3206 for (parm = DECL_ARGUMENTS (current_function_decl);
3207 parm;
910ad8de 3208 parm = DECL_CHAIN (parm))
0bca51f0 3209 {
0674b9d0
MJ
3210 VEC (access_p, heap) *access_vec;
3211 struct access *access;
97e73bd2 3212
0674b9d0
MJ
3213 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3214 continue;
3215 access_vec = get_base_access_vector (parm);
3216 if (!access_vec)
3217 continue;
6de9cd9a 3218
0674b9d0
MJ
3219 for (access = VEC_index (access_p, access_vec, 0);
3220 access;
3221 access = access->next_grp)
e4b5cace
MJ
3222 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3223 EXPR_LOCATION (parm));
0674b9d0 3224 }
97e73bd2 3225
355a7673 3226 seq = gsi_seq (gsi);
0674b9d0
MJ
3227 if (seq)
3228 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
97e73bd2 3229}
6de9cd9a 3230
0674b9d0
MJ
3231/* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3232 it reveals there are components of some aggregates to be scalarized, it runs
3233 the required transformations. */
3234static unsigned int
3235perform_intra_sra (void)
ea900239 3236{
0674b9d0
MJ
3237 int ret = 0;
3238 sra_initialize ();
ea900239 3239
0674b9d0
MJ
3240 if (!find_var_candidates ())
3241 goto out;
ea900239 3242
6cbd3b6a 3243 if (!scan_function ())
0674b9d0 3244 goto out;
726a989a 3245
0674b9d0
MJ
3246 if (!analyze_all_variable_accesses ())
3247 goto out;
6de9cd9a 3248
8cbeddcc
MJ
3249 if (sra_modify_function_body ())
3250 ret = TODO_update_ssa | TODO_cleanup_cfg;
3251 else
3252 ret = TODO_update_ssa;
0674b9d0 3253 initialize_parameter_reductions ();
2a45675f
MJ
3254
3255 statistics_counter_event (cfun, "Scalar replacements created",
3256 sra_stats.replacements);
3257 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3258 statistics_counter_event (cfun, "Subtree copy stmts",
3259 sra_stats.subtree_copies);
3260 statistics_counter_event (cfun, "Subreplacement stmts",
3261 sra_stats.subreplacements);
3262 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3263 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3264 sra_stats.separate_lhs_rhs_handling);
3265
0674b9d0
MJ
3266 out:
3267 sra_deinitialize ();
3268 return ret;
6de9cd9a
DN
3269}
3270
0674b9d0 3271/* Perform early intraprocedural SRA. */
029f45bd 3272static unsigned int
0674b9d0 3273early_intra_sra (void)
029f45bd 3274{
0674b9d0
MJ
3275 sra_mode = SRA_MODE_EARLY_INTRA;
3276 return perform_intra_sra ();
3277}
029f45bd 3278
0674b9d0
MJ
3279/* Perform "late" intraprocedural SRA. */
3280static unsigned int
3281late_intra_sra (void)
3282{
3283 sra_mode = SRA_MODE_INTRA;
3284 return perform_intra_sra ();
029f45bd
RH
3285}
3286
0674b9d0 3287
6de9cd9a 3288static bool
0674b9d0 3289gate_intra_sra (void)
6de9cd9a 3290{
567a4beb 3291 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
6de9cd9a
DN
3292}
3293
0674b9d0 3294
8ddbbcae 3295struct gimple_opt_pass pass_sra_early =
029f45bd 3296{
8ddbbcae
JH
3297 {
3298 GIMPLE_PASS,
0674b9d0
MJ
3299 "esra", /* name */
3300 gate_intra_sra, /* gate */
3301 early_intra_sra, /* execute */
029f45bd
RH
3302 NULL, /* sub */
3303 NULL, /* next */
3304 0, /* static_pass_number */
3305 TV_TREE_SRA, /* tv_id */
0674b9d0 3306 PROP_cfg | PROP_ssa, /* properties_required */
029f45bd 3307 0, /* properties_provided */
0674b9d0 3308 0, /* properties_destroyed */
029f45bd 3309 0, /* todo_flags_start */
22c5fa5f 3310 TODO_update_ssa
029f45bd 3311 | TODO_ggc_collect
8ddbbcae
JH
3312 | TODO_verify_ssa /* todo_flags_finish */
3313 }
029f45bd
RH
3314};
3315
8ddbbcae 3316struct gimple_opt_pass pass_sra =
6de9cd9a 3317{
8ddbbcae
JH
3318 {
3319 GIMPLE_PASS,
0674b9d0
MJ
3320 "sra", /* name */
3321 gate_intra_sra, /* gate */
3322 late_intra_sra, /* execute */
6de9cd9a
DN
3323 NULL, /* sub */
3324 NULL, /* next */
3325 0, /* static_pass_number */
3326 TV_TREE_SRA, /* tv_id */
0674b9d0 3327 PROP_cfg | PROP_ssa, /* properties_required */
6de9cd9a 3328 0, /* properties_provided */
0674b9d0 3329 0, /* properties_destroyed */
5006671f 3330 TODO_update_address_taken, /* todo_flags_start */
22c5fa5f 3331 TODO_update_ssa
38635499 3332 | TODO_ggc_collect
8ddbbcae
JH
3333 | TODO_verify_ssa /* todo_flags_finish */
3334 }
6de9cd9a 3335};
07ffa034
MJ
3336
3337
3338/* Return true iff PARM (which must be a parm_decl) is an unused scalar
3339 parameter. */
3340
3341static bool
3342is_unused_scalar_param (tree parm)
3343{
3344 tree name;
3345 return (is_gimple_reg (parm)
32244553 3346 && (!(name = ssa_default_def (cfun, parm))
07ffa034
MJ
3347 || has_zero_uses (name)));
3348}
3349
3350/* Scan immediate uses of a default definition SSA name of a parameter PARM and
3351 examine whether there are any direct or otherwise infeasible ones. If so,
3352 return true, otherwise return false. PARM must be a gimple register with a
3353 non-NULL default definition. */
3354
3355static bool
3356ptr_parm_has_direct_uses (tree parm)
3357{
3358 imm_use_iterator ui;
3359 gimple stmt;
32244553 3360 tree name = ssa_default_def (cfun, parm);
07ffa034
MJ
3361 bool ret = false;
3362
3363 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3364 {
44f89620
RG
3365 int uses_ok = 0;
3366 use_operand_p use_p;
3367
3368 if (is_gimple_debug (stmt))
3369 continue;
3370
3371 /* Valid uses include dereferences on the lhs and the rhs. */
3372 if (gimple_has_lhs (stmt))
07ffa034 3373 {
44f89620
RG
3374 tree lhs = gimple_get_lhs (stmt);
3375 while (handled_component_p (lhs))
3376 lhs = TREE_OPERAND (lhs, 0);
70f34814
RG
3377 if (TREE_CODE (lhs) == MEM_REF
3378 && TREE_OPERAND (lhs, 0) == name
3379 && integer_zerop (TREE_OPERAND (lhs, 1))
3380 && types_compatible_p (TREE_TYPE (lhs),
0de204de
AP
3381 TREE_TYPE (TREE_TYPE (name)))
3382 && !TREE_THIS_VOLATILE (lhs))
44f89620 3383 uses_ok++;
07ffa034 3384 }
44f89620 3385 if (gimple_assign_single_p (stmt))
07ffa034 3386 {
44f89620
RG
3387 tree rhs = gimple_assign_rhs1 (stmt);
3388 while (handled_component_p (rhs))
3389 rhs = TREE_OPERAND (rhs, 0);
70f34814
RG
3390 if (TREE_CODE (rhs) == MEM_REF
3391 && TREE_OPERAND (rhs, 0) == name
3392 && integer_zerop (TREE_OPERAND (rhs, 1))
3393 && types_compatible_p (TREE_TYPE (rhs),
0de204de
AP
3394 TREE_TYPE (TREE_TYPE (name)))
3395 && !TREE_THIS_VOLATILE (rhs))
44f89620 3396 uses_ok++;
07ffa034
MJ
3397 }
3398 else if (is_gimple_call (stmt))
3399 {
3400 unsigned i;
44f89620 3401 for (i = 0; i < gimple_call_num_args (stmt); ++i)
07ffa034
MJ
3402 {
3403 tree arg = gimple_call_arg (stmt, i);
44f89620
RG
3404 while (handled_component_p (arg))
3405 arg = TREE_OPERAND (arg, 0);
70f34814
RG
3406 if (TREE_CODE (arg) == MEM_REF
3407 && TREE_OPERAND (arg, 0) == name
3408 && integer_zerop (TREE_OPERAND (arg, 1))
3409 && types_compatible_p (TREE_TYPE (arg),
0de204de
AP
3410 TREE_TYPE (TREE_TYPE (name)))
3411 && !TREE_THIS_VOLATILE (arg))
44f89620 3412 uses_ok++;
07ffa034
MJ
3413 }
3414 }
44f89620
RG
3415
3416 /* If the number of valid uses does not match the number of
3417 uses in this stmt there is an unhandled use. */
3418 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3419 --uses_ok;
3420
3421 if (uses_ok != 0)
07ffa034
MJ
3422 ret = true;
3423
3424 if (ret)
3425 BREAK_FROM_IMM_USE_STMT (ui);
3426 }
3427
3428 return ret;
3429}
3430
3431/* Identify candidates for reduction for IPA-SRA based on their type and mark
3432 them in candidate_bitmap. Note that these do not necessarily include
3433 parameter which are unused and thus can be removed. Return true iff any
3434 such candidate has been found. */
3435
3436static bool
3437find_param_candidates (void)
3438{
3439 tree parm;
3440 int count = 0;
3441 bool ret = false;
949cfd0a 3442 const char *msg;
07ffa034
MJ
3443
3444 for (parm = DECL_ARGUMENTS (current_function_decl);
3445 parm;
910ad8de 3446 parm = DECL_CHAIN (parm))
07ffa034 3447 {
1e9fb3de 3448 tree type = TREE_TYPE (parm);
d94b820b 3449 void **slot;
07ffa034
MJ
3450
3451 count++;
1e9fb3de 3452
07ffa034 3453 if (TREE_THIS_VOLATILE (parm)
1e9fb3de 3454 || TREE_ADDRESSABLE (parm)
a7752396 3455 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
07ffa034
MJ
3456 continue;
3457
3458 if (is_unused_scalar_param (parm))
3459 {
3460 ret = true;
3461 continue;
3462 }
3463
07ffa034
MJ
3464 if (POINTER_TYPE_P (type))
3465 {
3466 type = TREE_TYPE (type);
3467
3468 if (TREE_CODE (type) == FUNCTION_TYPE
3469 || TYPE_VOLATILE (type)
c2cf2f4a
EB
3470 || (TREE_CODE (type) == ARRAY_TYPE
3471 && TYPE_NONALIASED_COMPONENT (type))
07ffa034 3472 || !is_gimple_reg (parm)
1e9fb3de 3473 || is_va_list_type (type)
07ffa034
MJ
3474 || ptr_parm_has_direct_uses (parm))
3475 continue;
3476 }
3477 else if (!AGGREGATE_TYPE_P (type))
3478 continue;
3479
3480 if (!COMPLETE_TYPE_P (type)
3481 || !host_integerp (TYPE_SIZE (type), 1)
3482 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3483 || (AGGREGATE_TYPE_P (type)
949cfd0a 3484 && type_internals_preclude_sra_p (type, &msg)))
07ffa034
MJ
3485 continue;
3486
3487 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
d94b820b
RG
3488 slot = htab_find_slot_with_hash (candidates, parm,
3489 DECL_UID (parm), INSERT);
3490 *slot = (void *) parm;
3491
07ffa034
MJ
3492 ret = true;
3493 if (dump_file && (dump_flags & TDF_DETAILS))
3494 {
3495 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3496 print_generic_expr (dump_file, parm, 0);
3497 fprintf (dump_file, "\n");
3498 }
3499 }
3500
3501 func_param_count = count;
3502 return ret;
3503}
3504
3505/* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3506 maybe_modified. */
3507
3508static bool
3509mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3510 void *data)
3511{
3512 struct access *repr = (struct access *) data;
3513
3514 repr->grp_maybe_modified = 1;
3515 return true;
3516}
3517
3518/* Analyze what representatives (in linked lists accessible from
3519 REPRESENTATIVES) can be modified by side effects of statements in the
3520 current function. */
3521
3522static void
3523analyze_modified_params (VEC (access_p, heap) *representatives)
3524{
3525 int i;
3526
3527 for (i = 0; i < func_param_count; i++)
3528 {
2b93f88d 3529 struct access *repr;
07ffa034 3530
2b93f88d
MJ
3531 for (repr = VEC_index (access_p, representatives, i);
3532 repr;
3533 repr = repr->next_grp)
07ffa034 3534 {
30a20e97
MJ
3535 struct access *access;
3536 bitmap visited;
3537 ao_ref ar;
2b93f88d
MJ
3538
3539 if (no_accesses_p (repr))
3540 continue;
30a20e97 3541 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
2b93f88d
MJ
3542 || repr->grp_maybe_modified)
3543 continue;
3544
30a20e97
MJ
3545 ao_ref_init (&ar, repr->expr);
3546 visited = BITMAP_ALLOC (NULL);
3547 for (access = repr; access; access = access->next_sibling)
2b93f88d 3548 {
2b93f88d
MJ
3549 /* All accesses are read ones, otherwise grp_maybe_modified would
3550 be trivially set. */
2b93f88d 3551 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
30a20e97 3552 mark_maybe_modified, repr, &visited);
2b93f88d
MJ
3553 if (repr->grp_maybe_modified)
3554 break;
3555 }
30a20e97 3556 BITMAP_FREE (visited);
07ffa034
MJ
3557 }
3558 }
3559}
3560
3561/* Propagate distances in bb_dereferences in the opposite direction than the
3562 control flow edges, in each step storing the maximum of the current value
3563 and the minimum of all successors. These steps are repeated until the table
3564 stabilizes. Note that BBs which might terminate the functions (according to
3565 final_bbs bitmap) never updated in this way. */
3566
3567static void
3568propagate_dereference_distances (void)
3569{
3570 VEC (basic_block, heap) *queue;
3571 basic_block bb;
3572
3573 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3574 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3575 FOR_EACH_BB (bb)
3576 {
3577 VEC_quick_push (basic_block, queue, bb);
3578 bb->aux = bb;
3579 }
3580
3581 while (!VEC_empty (basic_block, queue))
3582 {
3583 edge_iterator ei;
3584 edge e;
3585 bool change = false;
3586 int i;
3587
3588 bb = VEC_pop (basic_block, queue);
3589 bb->aux = NULL;
3590
3591 if (bitmap_bit_p (final_bbs, bb->index))
3592 continue;
3593
3594 for (i = 0; i < func_param_count; i++)
3595 {
3596 int idx = bb->index * func_param_count + i;
3597 bool first = true;
3598 HOST_WIDE_INT inh = 0;
3599
3600 FOR_EACH_EDGE (e, ei, bb->succs)
3601 {
3602 int succ_idx = e->dest->index * func_param_count + i;
3603
3604 if (e->src == EXIT_BLOCK_PTR)
3605 continue;
3606
3607 if (first)
3608 {
3609 first = false;
3610 inh = bb_dereferences [succ_idx];
3611 }
3612 else if (bb_dereferences [succ_idx] < inh)
3613 inh = bb_dereferences [succ_idx];
3614 }
3615
3616 if (!first && bb_dereferences[idx] < inh)
3617 {
3618 bb_dereferences[idx] = inh;
3619 change = true;
3620 }
3621 }
3622
3623 if (change && !bitmap_bit_p (final_bbs, bb->index))
3624 FOR_EACH_EDGE (e, ei, bb->preds)
3625 {
3626 if (e->src->aux)
3627 continue;
3628
3629 e->src->aux = e->src;
3630 VEC_quick_push (basic_block, queue, e->src);
3631 }
3632 }
3633
3634 VEC_free (basic_block, heap, queue);
3635}
3636
3637/* Dump a dereferences TABLE with heading STR to file F. */
3638
3639static void
3640dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3641{
3642 basic_block bb;
3643
3644 fprintf (dump_file, str);
3645 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3646 {
3647 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3648 if (bb != EXIT_BLOCK_PTR)
3649 {
3650 int i;
3651 for (i = 0; i < func_param_count; i++)
3652 {
3653 int idx = bb->index * func_param_count + i;
3654 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3655 }
3656 }
3657 fprintf (f, "\n");
3658 }
3659 fprintf (dump_file, "\n");
3660}
3661
3662/* Determine what (parts of) parameters passed by reference that are not
3663 assigned to are not certainly dereferenced in this function and thus the
3664 dereferencing cannot be safely moved to the caller without potentially
3665 introducing a segfault. Mark such REPRESENTATIVES as
3666 grp_not_necessarilly_dereferenced.
3667
3668 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3669 part is calculated rather than simple booleans are calculated for each
3670 pointer parameter to handle cases when only a fraction of the whole
3671 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3672 an example).
3673
3674 The maximum dereference distances for each pointer parameter and BB are
3675 already stored in bb_dereference. This routine simply propagates these
3676 values upwards by propagate_dereference_distances and then compares the
3677 distances of individual parameters in the ENTRY BB to the equivalent
3678 distances of each representative of a (fraction of a) parameter. */
3679
3680static void
3681analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3682{
3683 int i;
3684
3685 if (dump_file && (dump_flags & TDF_DETAILS))
3686 dump_dereferences_table (dump_file,
3687 "Dereference table before propagation:\n",
3688 bb_dereferences);
3689
3690 propagate_dereference_distances ();
3691
3692 if (dump_file && (dump_flags & TDF_DETAILS))
3693 dump_dereferences_table (dump_file,
3694 "Dereference table after propagation:\n",
3695 bb_dereferences);
3696
3697 for (i = 0; i < func_param_count; i++)
3698 {
3699 struct access *repr = VEC_index (access_p, representatives, i);
3700 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3701
3702 if (!repr || no_accesses_p (repr))
3703 continue;
3704
3705 do
3706 {
3707 if ((repr->offset + repr->size) > bb_dereferences[idx])
3708 repr->grp_not_necessarilly_dereferenced = 1;
3709 repr = repr->next_grp;
3710 }
3711 while (repr);
3712 }
3713}
3714
3715/* Return the representative access for the parameter declaration PARM if it is
3716 a scalar passed by reference which is not written to and the pointer value
3717 is not used directly. Thus, if it is legal to dereference it in the caller
3718 and we can rule out modifications through aliases, such parameter should be
3719 turned into one passed by value. Return NULL otherwise. */
3720
3721static struct access *
3722unmodified_by_ref_scalar_representative (tree parm)
3723{
3724 int i, access_count;
30a20e97 3725 struct access *repr;
07ffa034
MJ
3726 VEC (access_p, heap) *access_vec;
3727
3728 access_vec = get_base_access_vector (parm);
3729 gcc_assert (access_vec);
30a20e97
MJ
3730 repr = VEC_index (access_p, access_vec, 0);
3731 if (repr->write)
3732 return NULL;
3733 repr->group_representative = repr;
07ffa034 3734
30a20e97
MJ
3735 access_count = VEC_length (access_p, access_vec);
3736 for (i = 1; i < access_count; i++)
07ffa034 3737 {
30a20e97 3738 struct access *access = VEC_index (access_p, access_vec, i);
07ffa034
MJ
3739 if (access->write)
3740 return NULL;
30a20e97
MJ
3741 access->group_representative = repr;
3742 access->next_sibling = repr->next_sibling;
3743 repr->next_sibling = access;
07ffa034
MJ
3744 }
3745
30a20e97
MJ
3746 repr->grp_read = 1;
3747 repr->grp_scalar_ptr = 1;
3748 return repr;
07ffa034
MJ
3749}
3750
c6a2c25d
MJ
3751/* Return true iff this access precludes IPA-SRA of the parameter it is
3752 associated with. */
3753
3754static bool
3755access_precludes_ipa_sra_p (struct access *access)
3756{
3757 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3758 is incompatible assign in a call statement (and possibly even in asm
3759 statements). This can be relaxed by using a new temporary but only for
3760 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3761 intraprocedural SRA we deal with this by keeping the old aggregate around,
3762 something we cannot do in IPA-SRA.) */
3763 if (access->write
3764 && (is_gimple_call (access->stmt)
3765 || gimple_code (access->stmt) == GIMPLE_ASM))
3766 return true;
3767
3768 return false;
3769}
3770
3771
07ffa034
MJ
3772/* Sort collected accesses for parameter PARM, identify representatives for
3773 each accessed region and link them together. Return NULL if there are
3774 different but overlapping accesses, return the special ptr value meaning
3775 there are no accesses for this parameter if that is the case and return the
3776 first representative otherwise. Set *RO_GRP if there is a group of accesses
3777 with only read (i.e. no write) accesses. */
3778
3779static struct access *
3780splice_param_accesses (tree parm, bool *ro_grp)
3781{
3782 int i, j, access_count, group_count;
3783 int agg_size, total_size = 0;
3784 struct access *access, *res, **prev_acc_ptr = &res;
3785 VEC (access_p, heap) *access_vec;
3786
3787 access_vec = get_base_access_vector (parm);
3788 if (!access_vec)
3789 return &no_accesses_representant;
3790 access_count = VEC_length (access_p, access_vec);
3791
5095da95 3792 VEC_qsort (access_p, access_vec, compare_access_positions);
07ffa034
MJ
3793
3794 i = 0;
3795 total_size = 0;
3796 group_count = 0;
3797 while (i < access_count)
3798 {
3799 bool modification;
82d49829 3800 tree a1_alias_type;
07ffa034
MJ
3801 access = VEC_index (access_p, access_vec, i);
3802 modification = access->write;
c6a2c25d
MJ
3803 if (access_precludes_ipa_sra_p (access))
3804 return NULL;
82d49829 3805 a1_alias_type = reference_alias_ptr_type (access->expr);
07ffa034
MJ
3806
3807 /* Access is about to become group representative unless we find some
3808 nasty overlap which would preclude us from breaking this parameter
3809 apart. */
3810
3811 j = i + 1;
3812 while (j < access_count)
3813 {
3814 struct access *ac2 = VEC_index (access_p, access_vec, j);
3815 if (ac2->offset != access->offset)
3816 {
3817 /* All or nothing law for parameters. */
3818 if (access->offset + access->size > ac2->offset)
3819 return NULL;
3820 else
3821 break;
3822 }
3823 else if (ac2->size != access->size)
3824 return NULL;
3825
363e01cc
MJ
3826 if (access_precludes_ipa_sra_p (ac2)
3827 || (ac2->type != access->type
3828 && (TREE_ADDRESSABLE (ac2->type)
82d49829
MJ
3829 || TREE_ADDRESSABLE (access->type)))
3830 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
c6a2c25d
MJ
3831 return NULL;
3832
07ffa034 3833 modification |= ac2->write;
30a20e97
MJ
3834 ac2->group_representative = access;
3835 ac2->next_sibling = access->next_sibling;
3836 access->next_sibling = ac2;
07ffa034
MJ
3837 j++;
3838 }
3839
3840 group_count++;
3841 access->grp_maybe_modified = modification;
3842 if (!modification)
3843 *ro_grp = true;
3844 *prev_acc_ptr = access;
3845 prev_acc_ptr = &access->next_grp;
3846 total_size += access->size;
3847 i = j;
3848 }
3849
3850 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3851 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3852 else
3853 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3854 if (total_size >= agg_size)
3855 return NULL;
3856
3857 gcc_assert (group_count > 0);
3858 return res;
3859}
3860
3861/* Decide whether parameters with representative accesses given by REPR should
3862 be reduced into components. */
3863
3864static int
3865decide_one_param_reduction (struct access *repr)
3866{
3867 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3868 bool by_ref;
3869 tree parm;
3870
3871 parm = repr->base;
3872 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3873 gcc_assert (cur_parm_size > 0);
3874
3875 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3876 {
3877 by_ref = true;
3878 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3879 }
3880 else
3881 {
3882 by_ref = false;
3883 agg_size = cur_parm_size;
3884 }
3885
3886 if (dump_file)
3887 {
3888 struct access *acc;
3889 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3890 print_generic_expr (dump_file, parm, 0);
3891 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3892 for (acc = repr; acc; acc = acc->next_grp)
3893 dump_access (dump_file, acc, true);
3894 }
3895
3896 total_size = 0;
3897 new_param_count = 0;
3898
3899 for (; repr; repr = repr->next_grp)
3900 {
3901 gcc_assert (parm == repr->base);
5e9fba51
EB
3902
3903 /* Taking the address of a non-addressable field is verboten. */
3904 if (by_ref && repr->non_addressable)
3905 return 0;
07ffa034 3906
191879f9
RG
3907 /* Do not decompose a non-BLKmode param in a way that would
3908 create BLKmode params. Especially for by-reference passing
3909 (thus, pointer-type param) this is hardly worthwhile. */
3910 if (DECL_MODE (parm) != BLKmode
3911 && TYPE_MODE (repr->type) == BLKmode)
3912 return 0;
3913
07ffa034
MJ
3914 if (!by_ref || (!repr->grp_maybe_modified
3915 && !repr->grp_not_necessarilly_dereferenced))
3916 total_size += repr->size;
3917 else
3918 total_size += cur_parm_size;
5e9fba51
EB
3919
3920 new_param_count++;
07ffa034
MJ
3921 }
3922
3923 gcc_assert (new_param_count > 0);
3924
3925 if (optimize_function_for_size_p (cfun))
3926 parm_size_limit = cur_parm_size;
3927 else
3928 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3929 * cur_parm_size);
3930
3931 if (total_size < agg_size
3932 && total_size <= parm_size_limit)
3933 {
3934 if (dump_file)
3935 fprintf (dump_file, " ....will be split into %i components\n",
3936 new_param_count);
3937 return new_param_count;
3938 }
3939 else
3940 return 0;
3941}
3942
3943/* The order of the following enums is important, we need to do extra work for
3944 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3945enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3946 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3947
3948/* Identify representatives of all accesses to all candidate parameters for
3949 IPA-SRA. Return result based on what representatives have been found. */
3950
3951static enum ipa_splicing_result
3952splice_all_param_accesses (VEC (access_p, heap) **representatives)
3953{
3954 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3955 tree parm;
3956 struct access *repr;
3957
3958 *representatives = VEC_alloc (access_p, heap, func_param_count);
3959
3960 for (parm = DECL_ARGUMENTS (current_function_decl);
3961 parm;
910ad8de 3962 parm = DECL_CHAIN (parm))
07ffa034
MJ
3963 {
3964 if (is_unused_scalar_param (parm))
3965 {
3966 VEC_quick_push (access_p, *representatives,
3967 &no_accesses_representant);
3968 if (result == NO_GOOD_ACCESS)
3969 result = UNUSED_PARAMS;
3970 }
3971 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3972 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3973 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3974 {
3975 repr = unmodified_by_ref_scalar_representative (parm);
3976 VEC_quick_push (access_p, *representatives, repr);
3977 if (repr)
3978 result = UNMODIF_BY_REF_ACCESSES;
3979 }
3980 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3981 {
3982 bool ro_grp = false;
3983 repr = splice_param_accesses (parm, &ro_grp);
3984 VEC_quick_push (access_p, *representatives, repr);
3985
3986 if (repr && !no_accesses_p (repr))
3987 {
3988 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3989 {
3990 if (ro_grp)
3991 result = UNMODIF_BY_REF_ACCESSES;
3992 else if (result < MODIF_BY_REF_ACCESSES)
3993 result = MODIF_BY_REF_ACCESSES;
3994 }
3995 else if (result < BY_VAL_ACCESSES)
3996 result = BY_VAL_ACCESSES;
3997 }
3998 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3999 result = UNUSED_PARAMS;
4000 }
4001 else
0823efed 4002 VEC_quick_push (access_p, *representatives, (access_p) NULL);
07ffa034
MJ
4003 }
4004
4005 if (result == NO_GOOD_ACCESS)
4006 {
4007 VEC_free (access_p, heap, *representatives);
4008 *representatives = NULL;
4009 return NO_GOOD_ACCESS;
4010 }
4011
4012 return result;
4013}
4014
4015/* Return the index of BASE in PARMS. Abort if it is not found. */
4016
4017static inline int
4018get_param_index (tree base, VEC(tree, heap) *parms)
4019{
4020 int i, len;
4021
4022 len = VEC_length (tree, parms);
4023 for (i = 0; i < len; i++)
4024 if (VEC_index (tree, parms, i) == base)
4025 return i;
4026 gcc_unreachable ();
4027}
4028
4029/* Convert the decisions made at the representative level into compact
4030 parameter adjustments. REPRESENTATIVES are pointers to first
4031 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4032 final number of adjustments. */
4033
4034static ipa_parm_adjustment_vec
4035turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
4036 int adjustments_count)
4037{
4038 VEC (tree, heap) *parms;
4039 ipa_parm_adjustment_vec adjustments;
4040 tree parm;
4041 int i;
4042
4043 gcc_assert (adjustments_count > 0);
4044 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4045 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
4046 parm = DECL_ARGUMENTS (current_function_decl);
910ad8de 4047 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
07ffa034
MJ
4048 {
4049 struct access *repr = VEC_index (access_p, representatives, i);
4050
4051 if (!repr || no_accesses_p (repr))
4052 {
4053 struct ipa_parm_adjustment *adj;
4054
4055 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4056 memset (adj, 0, sizeof (*adj));
4057 adj->base_index = get_param_index (parm, parms);
4058 adj->base = parm;
4059 if (!repr)
4060 adj->copy_param = 1;
4061 else
4062 adj->remove_param = 1;
4063 }
4064 else
4065 {
4066 struct ipa_parm_adjustment *adj;
4067 int index = get_param_index (parm, parms);
4068
4069 for (; repr; repr = repr->next_grp)
4070 {
4071 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4072 memset (adj, 0, sizeof (*adj));
4073 gcc_assert (repr->base == parm);
4074 adj->base_index = index;
4075 adj->base = repr->base;
4076 adj->type = repr->type;
82d49829 4077 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
07ffa034
MJ
4078 adj->offset = repr->offset;
4079 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4080 && (repr->grp_maybe_modified
4081 || repr->grp_not_necessarilly_dereferenced));
4082
4083 }
4084 }
4085 }
4086 VEC_free (tree, heap, parms);
4087 return adjustments;
4088}
4089
4090/* Analyze the collected accesses and produce a plan what to do with the
4091 parameters in the form of adjustments, NULL meaning nothing. */
4092
4093static ipa_parm_adjustment_vec
4094analyze_all_param_acesses (void)
4095{
4096 enum ipa_splicing_result repr_state;
4097 bool proceed = false;
4098 int i, adjustments_count = 0;
4099 VEC (access_p, heap) *representatives;
4100 ipa_parm_adjustment_vec adjustments;
4101
4102 repr_state = splice_all_param_accesses (&representatives);
4103 if (repr_state == NO_GOOD_ACCESS)
4104 return NULL;
4105
4106 /* If there are any parameters passed by reference which are not modified
4107 directly, we need to check whether they can be modified indirectly. */
4108 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4109 {
4110 analyze_caller_dereference_legality (representatives);
4111 analyze_modified_params (representatives);
4112 }
4113
4114 for (i = 0; i < func_param_count; i++)
4115 {
4116 struct access *repr = VEC_index (access_p, representatives, i);
4117
4118 if (repr && !no_accesses_p (repr))
4119 {
4120 if (repr->grp_scalar_ptr)
4121 {
4122 adjustments_count++;
4123 if (repr->grp_not_necessarilly_dereferenced
4124 || repr->grp_maybe_modified)
4125 VEC_replace (access_p, representatives, i, NULL);
4126 else
4127 {
4128 proceed = true;
4129 sra_stats.scalar_by_ref_to_by_val++;
4130 }
4131 }
4132 else
4133 {
4134 int new_components = decide_one_param_reduction (repr);
4135
4136 if (new_components == 0)
4137 {
4138 VEC_replace (access_p, representatives, i, NULL);
4139 adjustments_count++;
4140 }
4141 else
4142 {
4143 adjustments_count += new_components;
4144 sra_stats.aggregate_params_reduced++;
4145 sra_stats.param_reductions_created += new_components;
4146 proceed = true;
4147 }
4148 }
4149 }
4150 else
4151 {
4152 if (no_accesses_p (repr))
4153 {
4154 proceed = true;
4155 sra_stats.deleted_unused_parameters++;
4156 }
4157 adjustments_count++;
4158 }
4159 }
4160
4161 if (!proceed && dump_file)
4162 fprintf (dump_file, "NOT proceeding to change params.\n");
4163
4164 if (proceed)
4165 adjustments = turn_representatives_into_adjustments (representatives,
4166 adjustments_count);
4167 else
4168 adjustments = NULL;
4169
4170 VEC_free (access_p, heap, representatives);
4171 return adjustments;
4172}
4173
4174/* If a parameter replacement identified by ADJ does not yet exist in the form
4175 of declaration, create it and record it, otherwise return the previously
4176 created one. */
4177
4178static tree
4179get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4180{
4181 tree repl;
4182 if (!adj->new_ssa_base)
4183 {
4184 char *pretty_name = make_fancy_name (adj->base);
4185
acd63801 4186 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
07ffa034
MJ
4187 DECL_NAME (repl) = get_identifier (pretty_name);
4188 obstack_free (&name_obstack, pretty_name);
4189
07ffa034
MJ
4190 adj->new_ssa_base = repl;
4191 }
4192 else
4193 repl = adj->new_ssa_base;
4194 return repl;
4195}
4196
4197/* Find the first adjustment for a particular parameter BASE in a vector of
4198 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4199 adjustment. */
4200
4201static struct ipa_parm_adjustment *
4202get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4203{
4204 int i, len;
4205
4206 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4207 for (i = 0; i < len; i++)
4208 {
4209 struct ipa_parm_adjustment *adj;
4210
0823efed 4211 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
07ffa034
MJ
4212 if (!adj->copy_param && adj->base == base)
4213 return adj;
4214 }
4215
4216 return NULL;
4217}
4218
6cbd3b6a
MJ
4219/* If the statement STMT defines an SSA_NAME of a parameter which is to be
4220 removed because its value is not used, replace the SSA_NAME with a one
4221 relating to a created VAR_DECL together all of its uses and return true.
4222 ADJUSTMENTS is a pointer to an adjustments vector. */
07ffa034
MJ
4223
4224static bool
6cbd3b6a
MJ
4225replace_removed_params_ssa_names (gimple stmt,
4226 ipa_parm_adjustment_vec adjustments)
07ffa034 4227{
07ffa034
MJ
4228 struct ipa_parm_adjustment *adj;
4229 tree lhs, decl, repl, name;
4230
07ffa034
MJ
4231 if (gimple_code (stmt) == GIMPLE_PHI)
4232 lhs = gimple_phi_result (stmt);
4233 else if (is_gimple_assign (stmt))
4234 lhs = gimple_assign_lhs (stmt);
4235 else if (is_gimple_call (stmt))
4236 lhs = gimple_call_lhs (stmt);
4237 else
4238 gcc_unreachable ();
4239
4240 if (TREE_CODE (lhs) != SSA_NAME)
4241 return false;
70b5e7dc 4242
07ffa034 4243 decl = SSA_NAME_VAR (lhs);
70b5e7dc
RG
4244 if (decl == NULL_TREE
4245 || TREE_CODE (decl) != PARM_DECL)
07ffa034
MJ
4246 return false;
4247
4248 adj = get_adjustment_for_base (adjustments, decl);
4249 if (!adj)
4250 return false;
4251
4252 repl = get_replaced_param_substitute (adj);
4253 name = make_ssa_name (repl, stmt);
4254
4255 if (dump_file)
4256 {
4257 fprintf (dump_file, "replacing an SSA name of a removed param ");
4258 print_generic_expr (dump_file, lhs, 0);
4259 fprintf (dump_file, " with ");
4260 print_generic_expr (dump_file, name, 0);
4261 fprintf (dump_file, "\n");
4262 }
4263
4264 if (is_gimple_assign (stmt))
4265 gimple_assign_set_lhs (stmt, name);
4266 else if (is_gimple_call (stmt))
4267 gimple_call_set_lhs (stmt, name);
4268 else
4269 gimple_phi_set_result (stmt, name);
4270
4271 replace_uses_by (lhs, name);
eed5f58a 4272 release_ssa_name (lhs);
07ffa034
MJ
4273 return true;
4274}
4275
6cbd3b6a
MJ
4276/* If the expression *EXPR should be replaced by a reduction of a parameter, do
4277 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4278 specifies whether the function should care about type incompatibility the
4279 current and new expressions. If it is false, the function will leave
4280 incompatibility issues to the caller. Return true iff the expression
4281 was modified. */
07ffa034
MJ
4282
4283static bool
6cbd3b6a
MJ
4284sra_ipa_modify_expr (tree *expr, bool convert,
4285 ipa_parm_adjustment_vec adjustments)
07ffa034 4286{
07ffa034
MJ
4287 int i, len;
4288 struct ipa_parm_adjustment *adj, *cand = NULL;
4289 HOST_WIDE_INT offset, size, max_size;
4290 tree base, src;
4291
07ffa034
MJ
4292 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4293
4294 if (TREE_CODE (*expr) == BIT_FIELD_REF
4295 || TREE_CODE (*expr) == IMAGPART_EXPR
4296 || TREE_CODE (*expr) == REALPART_EXPR)
c6a2c25d
MJ
4297 {
4298 expr = &TREE_OPERAND (*expr, 0);
6cbd3b6a 4299 convert = true;
c6a2c25d 4300 }
07ffa034
MJ
4301
4302 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4303 if (!base || size == -1 || max_size == -1)
4304 return false;
4305
70f34814
RG
4306 if (TREE_CODE (base) == MEM_REF)
4307 {
4308 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4309 base = TREE_OPERAND (base, 0);
4310 }
07ffa034
MJ
4311
4312 base = get_ssa_base_param (base);
4313 if (!base || TREE_CODE (base) != PARM_DECL)
4314 return false;
4315
4316 for (i = 0; i < len; i++)
4317 {
0823efed 4318 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
07ffa034
MJ
4319
4320 if (adj->base == base &&
4321 (adj->offset == offset || adj->remove_param))
4322 {
4323 cand = adj;
4324 break;
4325 }
4326 }
4327 if (!cand || cand->copy_param || cand->remove_param)
4328 return false;
4329
4330 if (cand->by_ref)
70f34814 4331 src = build_simple_mem_ref (cand->reduction);
07ffa034
MJ
4332 else
4333 src = cand->reduction;
4334
4335 if (dump_file && (dump_flags & TDF_DETAILS))
4336 {
4337 fprintf (dump_file, "About to replace expr ");
4338 print_generic_expr (dump_file, *expr, 0);
4339 fprintf (dump_file, " with ");
4340 print_generic_expr (dump_file, src, 0);
4341 fprintf (dump_file, "\n");
4342 }
4343
6cbd3b6a 4344 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
07ffa034
MJ
4345 {
4346 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4347 *expr = vce;
4348 }
c6a2c25d
MJ
4349 else
4350 *expr = src;
07ffa034
MJ
4351 return true;
4352}
4353
6cbd3b6a
MJ
4354/* If the statement pointed to by STMT_PTR contains any expressions that need
4355 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4356 potential type incompatibilities (GSI is used to accommodate conversion
4357 statements and must point to the statement). Return true iff the statement
4358 was modified. */
07ffa034 4359
6cbd3b6a
MJ
4360static bool
4361sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4362 ipa_parm_adjustment_vec adjustments)
07ffa034
MJ
4363{
4364 gimple stmt = *stmt_ptr;
c6a2c25d
MJ
4365 tree *lhs_p, *rhs_p;
4366 bool any;
07ffa034
MJ
4367
4368 if (!gimple_assign_single_p (stmt))
6cbd3b6a 4369 return false;
07ffa034 4370
c6a2c25d
MJ
4371 rhs_p = gimple_assign_rhs1_ptr (stmt);
4372 lhs_p = gimple_assign_lhs_ptr (stmt);
4373
6cbd3b6a
MJ
4374 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4375 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
c6a2c25d
MJ
4376 if (any)
4377 {
d557591d
MJ
4378 tree new_rhs = NULL_TREE;
4379
c6a2c25d 4380 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
92e97cdd
MJ
4381 {
4382 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4383 {
4384 /* V_C_Es of constructors can cause trouble (PR 42714). */
4385 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
e8160c9a 4386 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
92e97cdd
MJ
4387 else
4388 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4389 }
4390 else
4391 new_rhs = fold_build1_loc (gimple_location (stmt),
4392 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4393 *rhs_p);
4394 }
d557591d
MJ
4395 else if (REFERENCE_CLASS_P (*rhs_p)
4396 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4397 && !is_gimple_reg (*lhs_p))
4398 /* This can happen when an assignment in between two single field
4399 structures is turned into an assignment in between two pointers to
4400 scalars (PR 42237). */
4401 new_rhs = *rhs_p;
4402
4403 if (new_rhs)
c6a2c25d 4404 {
d557591d 4405 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
c6a2c25d
MJ
4406 true, GSI_SAME_STMT);
4407
4408 gimple_assign_set_rhs_from_tree (gsi, tmp);
4409 }
4410
6cbd3b6a 4411 return true;
c6a2c25d 4412 }
07ffa034 4413
6cbd3b6a
MJ
4414 return false;
4415}
4416
4417/* Traverse the function body and all modifications as described in
8cbeddcc 4418 ADJUSTMENTS. Return true iff the CFG has been changed. */
6cbd3b6a 4419
8cbeddcc 4420static bool
6cbd3b6a
MJ
4421ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4422{
8cbeddcc 4423 bool cfg_changed = false;
6cbd3b6a
MJ
4424 basic_block bb;
4425
4426 FOR_EACH_BB (bb)
4427 {
4428 gimple_stmt_iterator gsi;
6cbd3b6a
MJ
4429
4430 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4431 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4432
4433 gsi = gsi_start_bb (bb);
4434 while (!gsi_end_p (gsi))
4435 {
4436 gimple stmt = gsi_stmt (gsi);
4437 bool modified = false;
4438 tree *t;
4439 unsigned i;
4440
4441 switch (gimple_code (stmt))
4442 {
4443 case GIMPLE_RETURN:
4444 t = gimple_return_retval_ptr (stmt);
4445 if (*t != NULL_TREE)
4446 modified |= sra_ipa_modify_expr (t, true, adjustments);
4447 break;
4448
4449 case GIMPLE_ASSIGN:
4450 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4451 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4452 break;
4453
4454 case GIMPLE_CALL:
4455 /* Operands must be processed before the lhs. */
4456 for (i = 0; i < gimple_call_num_args (stmt); i++)
4457 {
4458 t = gimple_call_arg_ptr (stmt, i);
4459 modified |= sra_ipa_modify_expr (t, true, adjustments);
4460 }
4461
4462 if (gimple_call_lhs (stmt))
4463 {
4464 t = gimple_call_lhs_ptr (stmt);
4465 modified |= sra_ipa_modify_expr (t, false, adjustments);
4466 modified |= replace_removed_params_ssa_names (stmt,
4467 adjustments);
4468 }
4469 break;
4470
4471 case GIMPLE_ASM:
4472 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4473 {
4474 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4475 modified |= sra_ipa_modify_expr (t, true, adjustments);
4476 }
4477 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4478 {
4479 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4480 modified |= sra_ipa_modify_expr (t, false, adjustments);
4481 }
4482 break;
4483
4484 default:
4485 break;
4486 }
4487
4488 if (modified)
4489 {
6cbd3b6a 4490 update_stmt (stmt);
8cbeddcc
MJ
4491 if (maybe_clean_eh_stmt (stmt)
4492 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4493 cfg_changed = true;
6cbd3b6a
MJ
4494 }
4495 gsi_next (&gsi);
4496 }
6cbd3b6a 4497 }
8cbeddcc
MJ
4498
4499 return cfg_changed;
07ffa034
MJ
4500}
4501
4502/* Call gimple_debug_bind_reset_value on all debug statements describing
4503 gimple register parameters that are being removed or replaced. */
4504
4505static void
4506sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4507{
4508 int i, len;
ddb555ed 4509 gimple_stmt_iterator *gsip = NULL, gsi;
07ffa034 4510
ddb555ed
JJ
4511 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4512 {
4513 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4514 gsip = &gsi;
4515 }
07ffa034
MJ
4516 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4517 for (i = 0; i < len; i++)
4518 {
4519 struct ipa_parm_adjustment *adj;
4520 imm_use_iterator ui;
ddb555ed
JJ
4521 gimple stmt, def_temp;
4522 tree name, vexpr, copy = NULL_TREE;
4523 use_operand_p use_p;
07ffa034 4524
0823efed 4525 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
07ffa034
MJ
4526 if (adj->copy_param || !is_gimple_reg (adj->base))
4527 continue;
32244553 4528 name = ssa_default_def (cfun, adj->base);
ddb555ed
JJ
4529 vexpr = NULL;
4530 if (name)
4531 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4532 {
4533 /* All other users must have been removed by
4534 ipa_sra_modify_function_body. */
4535 gcc_assert (is_gimple_debug (stmt));
4536 if (vexpr == NULL && gsip != NULL)
4537 {
4538 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4539 vexpr = make_node (DEBUG_EXPR_DECL);
4540 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4541 NULL);
4542 DECL_ARTIFICIAL (vexpr) = 1;
4543 TREE_TYPE (vexpr) = TREE_TYPE (name);
4544 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4545 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4546 }
4547 if (vexpr)
4548 {
4549 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4550 SET_USE (use_p, vexpr);
4551 }
4552 else
4553 gimple_debug_bind_reset_value (stmt);
4554 update_stmt (stmt);
4555 }
4556 /* Create a VAR_DECL for debug info purposes. */
4557 if (!DECL_IGNORED_P (adj->base))
07ffa034 4558 {
ddb555ed
JJ
4559 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4560 VAR_DECL, DECL_NAME (adj->base),
4561 TREE_TYPE (adj->base));
4562 if (DECL_PT_UID_SET_P (adj->base))
4563 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4564 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4565 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4566 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4567 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4568 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4569 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4570 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4571 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4572 SET_DECL_RTL (copy, 0);
4573 TREE_USED (copy) = 1;
4574 DECL_CONTEXT (copy) = current_function_decl;
ddb555ed
JJ
4575 add_local_decl (cfun, copy);
4576 DECL_CHAIN (copy) =
4577 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4578 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4579 }
4580 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4581 {
4582 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4583 if (vexpr)
4584 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4585 else
4586 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4587 NULL);
4588 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
07ffa034
MJ
4589 }
4590 }
4591}
4592
a6f834c5 4593/* Return false iff all callers have at least as many actual arguments as there
2f3cdcf5
MJ
4594 are formal parameters in the current function. */
4595
4596static bool
a6f834c5
JH
4597not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4598 void *data ATTRIBUTE_UNUSED)
2f3cdcf5
MJ
4599{
4600 struct cgraph_edge *cs;
4601 for (cs = node->callers; cs; cs = cs->next_caller)
4602 if (!callsite_has_enough_arguments_p (cs->call_stmt))
a6f834c5 4603 return true;
2f3cdcf5 4604
a6f834c5 4605 return false;
2f3cdcf5
MJ
4606}
4607
a6f834c5 4608/* Convert all callers of NODE. */
2f3cdcf5 4609
a6f834c5
JH
4610static bool
4611convert_callers_for_node (struct cgraph_node *node,
4612 void *data)
07ffa034 4613{
a6f834c5 4614 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
6096017e 4615 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
a6f834c5 4616 struct cgraph_edge *cs;
07ffa034
MJ
4617
4618 for (cs = node->callers; cs; cs = cs->next_caller)
4619 {
960bfb69
JH
4620 current_function_decl = cs->caller->symbol.decl;
4621 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->symbol.decl));
07ffa034
MJ
4622
4623 if (dump_file)
6096017e
MJ
4624 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4625 cs->caller->uid, cs->callee->uid,
036c0102
UB
4626 xstrdup (cgraph_node_name (cs->caller)),
4627 xstrdup (cgraph_node_name (cs->callee)));
07ffa034
MJ
4628
4629 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
07ffa034
MJ
4630
4631 pop_cfun ();
4632 }
6096017e
MJ
4633
4634 for (cs = node->callers; cs; cs = cs->next_caller)
bb7e6d55 4635 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
960bfb69 4636 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->symbol.decl)))
632b4f8e 4637 compute_inline_parameters (cs->caller, true);
6096017e
MJ
4638 BITMAP_FREE (recomputed_callers);
4639
a6f834c5
JH
4640 return true;
4641}
4642
4643/* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4644
4645static void
4646convert_callers (struct cgraph_node *node, tree old_decl,
4647 ipa_parm_adjustment_vec adjustments)
4648{
4649 tree old_cur_fndecl = current_function_decl;
4650 basic_block this_block;
4651
4652 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4653 adjustments, false);
4654
07ffa034 4655 current_function_decl = old_cur_fndecl;
2f3cdcf5
MJ
4656
4657 if (!encountered_recursive_call)
4658 return;
4659
07ffa034
MJ
4660 FOR_EACH_BB (this_block)
4661 {
4662 gimple_stmt_iterator gsi;
4663
4664 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4665 {
4666 gimple stmt = gsi_stmt (gsi);
566f27e4
JJ
4667 tree call_fndecl;
4668 if (gimple_code (stmt) != GIMPLE_CALL)
4669 continue;
4670 call_fndecl = gimple_call_fndecl (stmt);
bb8e5dca 4671 if (call_fndecl == old_decl)
07ffa034
MJ
4672 {
4673 if (dump_file)
4674 fprintf (dump_file, "Adjusting recursive call");
960bfb69 4675 gimple_call_set_fndecl (stmt, node->symbol.decl);
07ffa034
MJ
4676 ipa_modify_call_arguments (NULL, stmt, adjustments);
4677 }
4678 }
4679 }
4680
4681 return;
4682}
4683
4684/* Perform all the modification required in IPA-SRA for NODE to have parameters
8cbeddcc 4685 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
07ffa034 4686
8cbeddcc 4687static bool
07ffa034
MJ
4688modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4689{
29be3835 4690 struct cgraph_node *new_node;
8cbeddcc 4691 bool cfg_changed;
a6f834c5 4692 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
29be3835
MJ
4693
4694 rebuild_cgraph_edges ();
467a8db0 4695 free_dominance_info (CDI_DOMINATORS);
29be3835
MJ
4696 pop_cfun ();
4697 current_function_decl = NULL_TREE;
4698
4699 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
1a2c27e9 4700 false, NULL, NULL, "isra");
960bfb69
JH
4701 current_function_decl = new_node->symbol.decl;
4702 push_cfun (DECL_STRUCT_FUNCTION (new_node->symbol.decl));
29be3835 4703
07ffa034 4704 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
8cbeddcc 4705 cfg_changed = ipa_sra_modify_function_body (adjustments);
07ffa034 4706 sra_ipa_reset_debug_stmts (adjustments);
960bfb69 4707 convert_callers (new_node, node->symbol.decl, adjustments);
29be3835 4708 cgraph_make_node_local (new_node);
8cbeddcc 4709 return cfg_changed;
07ffa034
MJ
4710}
4711
4712/* Return false the function is apparently unsuitable for IPA-SRA based on it's
4713 attributes, return true otherwise. NODE is the cgraph node of the current
4714 function. */
4715
4716static bool
4717ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4718{
4719 if (!cgraph_node_can_be_local_p (node))
4720 {
4721 if (dump_file)
4722 fprintf (dump_file, "Function not local to this compilation unit.\n");
4723 return false;
4724 }
4725
61e03ffc
JH
4726 if (!node->local.can_change_signature)
4727 {
4728 if (dump_file)
4729 fprintf (dump_file, "Function can not change signature.\n");
4730 return false;
4731 }
4732
960bfb69 4733 if (!tree_versionable_function_p (node->symbol.decl))
29be3835
MJ
4734 {
4735 if (dump_file)
a23c4464 4736 fprintf (dump_file, "Function is not versionable.\n");
29be3835
MJ
4737 return false;
4738 }
4739
07ffa034
MJ
4740 if (DECL_VIRTUAL_P (current_function_decl))
4741 {
4742 if (dump_file)
4743 fprintf (dump_file, "Function is a virtual method.\n");
4744 return false;
4745 }
4746
960bfb69 4747 if ((DECL_COMDAT (node->symbol.decl) || DECL_EXTERNAL (node->symbol.decl))
e7f23018 4748 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
07ffa034
MJ
4749 {
4750 if (dump_file)
4751 fprintf (dump_file, "Function too big to be made truly local.\n");
4752 return false;
4753 }
4754
4755 if (!node->callers)
4756 {
4757 if (dump_file)
4758 fprintf (dump_file,
4759 "Function has no callers in this compilation unit.\n");
4760 return false;
4761 }
4762
4763 if (cfun->stdarg)
4764 {
4765 if (dump_file)
4766 fprintf (dump_file, "Function uses stdarg. \n");
4767 return false;
4768 }
4769
960bfb69 4770 if (TYPE_ATTRIBUTES (TREE_TYPE (node->symbol.decl)))
5c20baf1
MJ
4771 return false;
4772
07ffa034
MJ
4773 return true;
4774}
4775
4776/* Perform early interprocedural SRA. */
4777
4778static unsigned int
4779ipa_early_sra (void)
4780{
581985d7 4781 struct cgraph_node *node = cgraph_get_node (current_function_decl);
07ffa034
MJ
4782 ipa_parm_adjustment_vec adjustments;
4783 int ret = 0;
4784
4785 if (!ipa_sra_preliminary_function_checks (node))
4786 return 0;
4787
4788 sra_initialize ();
4789 sra_mode = SRA_MODE_EARLY_IPA;
4790
4791 if (!find_param_candidates ())
4792 {
4793 if (dump_file)
4794 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4795 goto simple_out;
4796 }
4797
a6f834c5
JH
4798 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4799 NULL, true))
2f3cdcf5
MJ
4800 {
4801 if (dump_file)
4802 fprintf (dump_file, "There are callers with insufficient number of "
4803 "arguments.\n");
4804 goto simple_out;
4805 }
4806
07ffa034
MJ
4807 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4808 func_param_count
4809 * last_basic_block_for_function (cfun));
4810 final_bbs = BITMAP_ALLOC (NULL);
4811
6cbd3b6a 4812 scan_function ();
07ffa034
MJ
4813 if (encountered_apply_args)
4814 {
4815 if (dump_file)
4816 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4817 goto out;
4818 }
4819
2f3cdcf5
MJ
4820 if (encountered_unchangable_recursive_call)
4821 {
4822 if (dump_file)
4823 fprintf (dump_file, "Function calls itself with insufficient "
4824 "number of arguments.\n");
4825 goto out;
4826 }
4827
07ffa034
MJ
4828 adjustments = analyze_all_param_acesses ();
4829 if (!adjustments)
4830 goto out;
4831 if (dump_file)
4832 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4833
8cbeddcc
MJ
4834 if (modify_function (node, adjustments))
4835 ret = TODO_update_ssa | TODO_cleanup_cfg;
4836 else
4837 ret = TODO_update_ssa;
07ffa034 4838 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
07ffa034
MJ
4839
4840 statistics_counter_event (cfun, "Unused parameters deleted",
4841 sra_stats.deleted_unused_parameters);
4842 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4843 sra_stats.scalar_by_ref_to_by_val);
4844 statistics_counter_event (cfun, "Aggregate parameters broken up",
4845 sra_stats.aggregate_params_reduced);
4846 statistics_counter_event (cfun, "Aggregate parameter components created",
4847 sra_stats.param_reductions_created);
4848
4849 out:
4850 BITMAP_FREE (final_bbs);
4851 free (bb_dereferences);
4852 simple_out:
4853 sra_deinitialize ();
4854 return ret;
4855}
4856
4857/* Return if early ipa sra shall be performed. */
4858static bool
4859ipa_early_sra_gate (void)
4860{
a1a6c2df 4861 return flag_ipa_sra && dbg_cnt (eipa_sra);
07ffa034
MJ
4862}
4863
4864struct gimple_opt_pass pass_early_ipa_sra =
4865{
4866 {
4867 GIMPLE_PASS,
4868 "eipa_sra", /* name */
4869 ipa_early_sra_gate, /* gate */
4870 ipa_early_sra, /* execute */
4871 NULL, /* sub */
4872 NULL, /* next */
4873 0, /* static_pass_number */
4874 TV_IPA_SRA, /* tv_id */
4875 0, /* properties_required */
4876 0, /* properties_provided */
4877 0, /* properties_destroyed */
4878 0, /* todo_flags_start */
8f940ee6 4879 TODO_dump_symtab /* todo_flags_finish */
07ffa034
MJ
4880 }
4881};