]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-math-opts.c
genattrtab.c (write_header): Include hash-set.h...
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
CommitLineData
6c2a63a3 1/* Global, SSA-based optimizations using mathematical identities.
5624e564 2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
b8698a0f 3
6c2a63a3 4This file is part of GCC.
b8698a0f 5
6c2a63a3
PB
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
6c2a63a3 9later version.
b8698a0f 10
6c2a63a3
PB
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
6c2a63a3 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
6c2a63a3
PB
19
20/* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
bc23502b
PB
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
6c2a63a3
PB
86
87#include "config.h"
88#include "system.h"
89#include "coretypes.h"
90#include "tm.h"
91#include "flags.h"
60393bbc
AM
92#include "hash-set.h"
93#include "machmode.h"
40e23961
MC
94#include "vec.h"
95#include "double-int.h"
96#include "input.h"
97#include "alias.h"
98#include "symtab.h"
99#include "wide-int.h"
100#include "inchash.h"
101#include "tree.h"
102#include "fold-const.h"
103#include "predict.h"
60393bbc
AM
104#include "hard-reg-set.h"
105#include "input.h"
106#include "function.h"
107#include "dominance.h"
108#include "cfg.h"
2fb9a547
AM
109#include "basic-block.h"
110#include "tree-ssa-alias.h"
111#include "internal-fn.h"
112#include "gimple-fold.h"
113#include "gimple-expr.h"
114#include "is-a.h"
18f429e2 115#include "gimple.h"
5be5c238 116#include "gimple-iterator.h"
73984f84 117#include "gimplify.h"
18f429e2 118#include "gimplify-me.h"
d8a2d370 119#include "stor-layout.h"
442b4905
AM
120#include "gimple-ssa.h"
121#include "tree-cfg.h"
122#include "tree-phinodes.h"
123#include "ssa-iterators.h"
d8a2d370 124#include "stringpool.h"
442b4905 125#include "tree-ssanames.h"
d8a2d370 126#include "expr.h"
442b4905 127#include "tree-dfa.h"
7a300452 128#include "tree-ssa.h"
6c2a63a3 129#include "tree-pass.h"
bc23502b 130#include "alloc-pool.h"
bc23502b 131#include "target.h"
cf835838 132#include "gimple-pretty-print.h"
9b2b7279 133#include "builtins.h"
40013784
SB
134
135/* FIXME: RTL headers have to be included here for optabs. */
136#include "rtl.h" /* Because optabs.h wants enum rtx_code. */
137#include "expr.h" /* Because optabs.h wants sepops. */
b0710fe1 138#include "insn-codes.h"
03bd2f1a 139#include "optabs.h"
bc23502b
PB
140
141/* This structure represents one basic block that either computes a
142 division, or is a common dominator for basic block that compute a
143 division. */
144struct occurrence {
145 /* The basic block represented by this structure. */
146 basic_block bb;
147
148 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
149 inserted in BB. */
150 tree recip_def;
151
726a989a 152 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
bc23502b 153 was inserted in BB. */
726a989a 154 gimple recip_def_stmt;
bc23502b
PB
155
156 /* Pointer to a list of "struct occurrence"s for blocks dominated
157 by BB. */
158 struct occurrence *children;
159
160 /* Pointer to the next "struct occurrence"s in the list of blocks
161 sharing a common dominator. */
162 struct occurrence *next;
163
164 /* The number of divisions that are in BB before compute_merit. The
165 number of divisions that are in BB or post-dominate it after
166 compute_merit. */
167 int num_divisions;
168
169 /* True if the basic block has a division, false if it is a common
170 dominator for basic blocks that do. If it is false and trapping
171 math is active, BB is not a candidate for inserting a reciprocal. */
172 bool bb_has_division;
173};
174
4da3b811
NF
175static struct
176{
177 /* Number of 1.0/X ops inserted. */
178 int rdivs_inserted;
179
180 /* Number of 1.0/FUNC ops inserted. */
181 int rfuncs_inserted;
182} reciprocal_stats;
183
184static struct
185{
186 /* Number of cexpi calls inserted. */
187 int inserted;
188} sincos_stats;
189
190static struct
191{
73984f84 192 /* Number of hand-written 16-bit nop / bswaps found. */
1df855ce
CL
193 int found_16bit;
194
73984f84 195 /* Number of hand-written 32-bit nop / bswaps found. */
4da3b811
NF
196 int found_32bit;
197
73984f84 198 /* Number of hand-written 64-bit nop / bswaps found. */
4da3b811 199 int found_64bit;
73984f84 200} nop_stats, bswap_stats;
4da3b811
NF
201
202static struct
203{
204 /* Number of widening multiplication ops inserted. */
205 int widen_mults_inserted;
206
207 /* Number of integer multiply-and-accumulate ops inserted. */
208 int maccs_inserted;
209
210 /* Number of fp fused multiply-add ops inserted. */
211 int fmas_inserted;
212} widen_mul_stats;
bc23502b
PB
213
214/* The instance of "struct occurrence" representing the highest
215 interesting block in the dominator tree. */
216static struct occurrence *occ_head;
217
218/* Allocation pool for getting instances of "struct occurrence". */
219static alloc_pool occ_pool;
220
221
222
223/* Allocate and return a new struct occurrence for basic block BB, and
224 whose children list is headed by CHILDREN. */
225static struct occurrence *
226occ_new (basic_block bb, struct occurrence *children)
6c2a63a3 227{
bc23502b
PB
228 struct occurrence *occ;
229
c22940cd 230 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
bc23502b
PB
231 memset (occ, 0, sizeof (struct occurrence));
232
233 occ->bb = bb;
234 occ->children = children;
235 return occ;
6c2a63a3
PB
236}
237
bc23502b
PB
238
239/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
240 list of "struct occurrence"s, one per basic block, having IDOM as
241 their common dominator.
242
243 We try to insert NEW_OCC as deep as possible in the tree, and we also
244 insert any other block that is a common dominator for BB and one
245 block already in the tree. */
246
247static void
248insert_bb (struct occurrence *new_occ, basic_block idom,
249 struct occurrence **p_head)
2ef571e2 250{
bc23502b 251 struct occurrence *occ, **p_occ;
2ef571e2 252
bc23502b
PB
253 for (p_occ = p_head; (occ = *p_occ) != NULL; )
254 {
255 basic_block bb = new_occ->bb, occ_bb = occ->bb;
256 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
257 if (dom == bb)
258 {
259 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
260 from its list. */
261 *p_occ = occ->next;
262 occ->next = new_occ->children;
263 new_occ->children = occ;
264
265 /* Try the next block (it may as well be dominated by BB). */
266 }
267
268 else if (dom == occ_bb)
269 {
270 /* OCC_BB dominates BB. Tail recurse to look deeper. */
271 insert_bb (new_occ, dom, &occ->children);
272 return;
273 }
274
275 else if (dom != idom)
276 {
277 gcc_assert (!dom->aux);
278
279 /* There is a dominator between IDOM and BB, add it and make
280 two children out of NEW_OCC and OCC. First, remove OCC from
281 its list. */
282 *p_occ = occ->next;
283 new_occ->next = occ;
284 occ->next = NULL;
285
286 /* None of the previous blocks has DOM as a dominator: if we tail
287 recursed, we would reexamine them uselessly. Just switch BB with
288 DOM, and go on looking for blocks dominated by DOM. */
289 new_occ = occ_new (dom, new_occ);
290 }
291
292 else
293 {
294 /* Nothing special, go on with the next element. */
295 p_occ = &occ->next;
296 }
297 }
298
299 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
300 new_occ->next = *p_head;
301 *p_head = new_occ;
302}
303
304/* Register that we found a division in BB. */
305
306static inline void
307register_division_in (basic_block bb)
308{
309 struct occurrence *occ;
310
311 occ = (struct occurrence *) bb->aux;
312 if (!occ)
313 {
314 occ = occ_new (bb, NULL);
fefa31b5 315 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
bc23502b
PB
316 }
317
318 occ->bb_has_division = true;
319 occ->num_divisions++;
320}
321
322
323/* Compute the number of divisions that postdominate each block in OCC and
324 its children. */
6c2a63a3 325
6c2a63a3 326static void
bc23502b 327compute_merit (struct occurrence *occ)
6c2a63a3 328{
bc23502b
PB
329 struct occurrence *occ_child;
330 basic_block dom = occ->bb;
6c2a63a3 331
bc23502b 332 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
6c2a63a3 333 {
bc23502b
PB
334 basic_block bb;
335 if (occ_child->children)
336 compute_merit (occ_child);
337
338 if (flag_exceptions)
339 bb = single_noncomplex_succ (dom);
340 else
341 bb = dom;
342
343 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
344 occ->num_divisions += occ_child->num_divisions;
345 }
346}
347
348
349/* Return whether USE_STMT is a floating-point division by DEF. */
350static inline bool
726a989a 351is_division_by (gimple use_stmt, tree def)
bc23502b 352{
726a989a
RB
353 return is_gimple_assign (use_stmt)
354 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
355 && gimple_assign_rhs2 (use_stmt) == def
8a5b57cd
RG
356 /* Do not recognize x / x as valid division, as we are getting
357 confused later by replacing all immediate uses x in such
358 a stmt. */
726a989a 359 && gimple_assign_rhs1 (use_stmt) != def;
bc23502b
PB
360}
361
362/* Walk the subset of the dominator tree rooted at OCC, setting the
363 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
364 the given basic block. The field may be left NULL, of course,
365 if it is not possible or profitable to do the optimization.
366
367 DEF_BSI is an iterator pointing at the statement defining DEF.
368 If RECIP_DEF is set, a dominator already has a computation that can
369 be used. */
370
371static void
726a989a 372insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
bc23502b
PB
373 tree def, tree recip_def, int threshold)
374{
726a989a 375 tree type;
538dd0b7 376 gassign *new_stmt;
726a989a 377 gimple_stmt_iterator gsi;
bc23502b
PB
378 struct occurrence *occ_child;
379
380 if (!recip_def
381 && (occ->bb_has_division || !flag_trapping_math)
382 && occ->num_divisions >= threshold)
383 {
384 /* Make a variable with the replacement and substitute it. */
385 type = TREE_TYPE (def);
7cc434a3 386 recip_def = create_tmp_reg (type, "reciptmp");
0d0e4a03
JJ
387 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
388 build_one_cst (type), def);
b8698a0f 389
bc23502b
PB
390 if (occ->bb_has_division)
391 {
392 /* Case 1: insert before an existing division. */
726a989a
RB
393 gsi = gsi_after_labels (occ->bb);
394 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
395 gsi_next (&gsi);
bc23502b 396
726a989a 397 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
bc23502b 398 }
726a989a 399 else if (def_gsi && occ->bb == def_gsi->bb)
ac264fef 400 {
bc23502b
PB
401 /* Case 2: insert right after the definition. Note that this will
402 never happen if the definition statement can throw, because in
403 that case the sole successor of the statement's basic block will
404 dominate all the uses as well. */
726a989a 405 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
ac264fef 406 }
bc23502b
PB
407 else
408 {
409 /* Case 3: insert in a basic block not containing defs/uses. */
726a989a
RB
410 gsi = gsi_after_labels (occ->bb);
411 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
bc23502b
PB
412 }
413
4da3b811
NF
414 reciprocal_stats.rdivs_inserted++;
415
bc23502b 416 occ->recip_def_stmt = new_stmt;
6c2a63a3
PB
417 }
418
bc23502b
PB
419 occ->recip_def = recip_def;
420 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
726a989a 421 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
bc23502b
PB
422}
423
424
425/* Replace the division at USE_P with a multiplication by the reciprocal, if
426 possible. */
427
428static inline void
429replace_reciprocal (use_operand_p use_p)
430{
726a989a
RB
431 gimple use_stmt = USE_STMT (use_p);
432 basic_block bb = gimple_bb (use_stmt);
bc23502b
PB
433 struct occurrence *occ = (struct occurrence *) bb->aux;
434
efd8f750
JH
435 if (optimize_bb_for_speed_p (bb)
436 && occ->recip_def && use_stmt != occ->recip_def_stmt)
bc23502b 437 {
59401b92 438 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
726a989a 439 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
bc23502b 440 SET_USE (use_p, occ->recip_def);
59401b92 441 fold_stmt_inplace (&gsi);
bc23502b
PB
442 update_stmt (use_stmt);
443 }
444}
445
446
447/* Free OCC and return one more "struct occurrence" to be freed. */
448
449static struct occurrence *
450free_bb (struct occurrence *occ)
451{
452 struct occurrence *child, *next;
453
454 /* First get the two pointers hanging off OCC. */
455 next = occ->next;
456 child = occ->children;
457 occ->bb->aux = NULL;
458 pool_free (occ_pool, occ);
459
460 /* Now ensure that we don't recurse unless it is necessary. */
461 if (!child)
462 return next;
2ef571e2 463 else
bc23502b
PB
464 {
465 while (next)
466 next = free_bb (next);
467
468 return child;
469 }
470}
471
472
473/* Look for floating-point divisions among DEF's uses, and try to
474 replace them by multiplications with the reciprocal. Add
475 as many statements computing the reciprocal as needed.
476
477 DEF must be a GIMPLE register of a floating-point type. */
478
479static void
726a989a 480execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
bc23502b
PB
481{
482 use_operand_p use_p;
483 imm_use_iterator use_iter;
484 struct occurrence *occ;
485 int count = 0, threshold;
6c2a63a3 486
bc23502b
PB
487 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
488
489 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
6c2a63a3 490 {
726a989a 491 gimple use_stmt = USE_STMT (use_p);
bc23502b 492 if (is_division_by (use_stmt, def))
6c2a63a3 493 {
726a989a 494 register_division_in (gimple_bb (use_stmt));
bc23502b 495 count++;
6c2a63a3
PB
496 }
497 }
b8698a0f 498
bc23502b
PB
499 /* Do the expensive part only if we can hope to optimize something. */
500 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
501 if (count >= threshold)
502 {
726a989a 503 gimple use_stmt;
bc23502b
PB
504 for (occ = occ_head; occ; occ = occ->next)
505 {
506 compute_merit (occ);
726a989a 507 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
bc23502b
PB
508 }
509
6c00f606 510 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
bc23502b 511 {
bc23502b 512 if (is_division_by (use_stmt, def))
6c00f606
AM
513 {
514 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
515 replace_reciprocal (use_p);
516 }
bc23502b
PB
517 }
518 }
519
520 for (occ = occ_head; occ; )
521 occ = free_bb (occ);
522
523 occ_head = NULL;
6c2a63a3
PB
524}
525
bc23502b
PB
526/* Go through all the floating-point SSA_NAMEs, and call
527 execute_cse_reciprocals_1 on each of them. */
be55bfe6
TS
528namespace {
529
530const pass_data pass_data_cse_reciprocals =
531{
532 GIMPLE_PASS, /* type */
533 "recip", /* name */
534 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
535 TV_NONE, /* tv_id */
536 PROP_ssa, /* properties_required */
537 0, /* properties_provided */
538 0, /* properties_destroyed */
539 0, /* todo_flags_start */
3bea341f 540 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
541};
542
543class pass_cse_reciprocals : public gimple_opt_pass
544{
545public:
546 pass_cse_reciprocals (gcc::context *ctxt)
547 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
548 {}
549
550 /* opt_pass methods: */
551 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
552 virtual unsigned int execute (function *);
553
554}; // class pass_cse_reciprocals
555
556unsigned int
557pass_cse_reciprocals::execute (function *fun)
6c2a63a3
PB
558{
559 basic_block bb;
a8f82ec4 560 tree arg;
ac264fef 561
bc23502b
PB
562 occ_pool = create_alloc_pool ("dominators for recip",
563 sizeof (struct occurrence),
be55bfe6 564 n_basic_blocks_for_fn (fun) / 3 + 1);
ac264fef 565
4da3b811 566 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
d898f3ce
PB
567 calculate_dominance_info (CDI_DOMINATORS);
568 calculate_dominance_info (CDI_POST_DOMINATORS);
bc23502b
PB
569
570#ifdef ENABLE_CHECKING
be55bfe6 571 FOR_EACH_BB_FN (bb, fun)
bc23502b
PB
572 gcc_assert (!bb->aux);
573#endif
574
be55bfe6 575 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
32244553 576 if (FLOAT_TYPE_P (TREE_TYPE (arg))
bc23502b 577 && is_gimple_reg (arg))
32244553 578 {
be55bfe6 579 tree name = ssa_default_def (fun, arg);
32244553
RG
580 if (name)
581 execute_cse_reciprocals_1 (NULL, name);
582 }
a8f82ec4 583
be55bfe6 584 FOR_EACH_BB_FN (bb, fun)
6c2a63a3 585 {
726a989a 586 tree def;
6c2a63a3 587
538dd0b7
DM
588 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
589 gsi_next (&gsi))
6c2a63a3 590 {
538dd0b7 591 gphi *phi = gsi.phi ();
6c2a63a3 592 def = PHI_RESULT (phi);
ea057359
RG
593 if (! virtual_operand_p (def)
594 && FLOAT_TYPE_P (TREE_TYPE (def)))
bc23502b 595 execute_cse_reciprocals_1 (NULL, def);
6c2a63a3
PB
596 }
597
538dd0b7
DM
598 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
599 gsi_next (&gsi))
6c2a63a3 600 {
726a989a 601 gimple stmt = gsi_stmt (gsi);
2f397a93 602
726a989a 603 if (gimple_has_lhs (stmt)
6c2a63a3
PB
604 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
605 && FLOAT_TYPE_P (TREE_TYPE (def))
a8f82ec4 606 && TREE_CODE (def) == SSA_NAME)
726a989a 607 execute_cse_reciprocals_1 (&gsi, def);
6c2a63a3 608 }
6b889d89 609
efd8f750
JH
610 if (optimize_bb_for_size_p (bb))
611 continue;
612
6b889d89 613 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
538dd0b7
DM
614 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
615 gsi_next (&gsi))
6b889d89 616 {
726a989a 617 gimple stmt = gsi_stmt (gsi);
6b889d89
UB
618 tree fndecl;
619
726a989a
RB
620 if (is_gimple_assign (stmt)
621 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
6b889d89 622 {
726a989a
RB
623 tree arg1 = gimple_assign_rhs2 (stmt);
624 gimple stmt1;
ac10986f
UB
625
626 if (TREE_CODE (arg1) != SSA_NAME)
627 continue;
628
629 stmt1 = SSA_NAME_DEF_STMT (arg1);
6b889d89 630
726a989a
RB
631 if (is_gimple_call (stmt1)
632 && gimple_call_lhs (stmt1)
633 && (fndecl = gimple_call_fndecl (stmt1))
6b889d89
UB
634 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
635 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
636 {
637 enum built_in_function code;
79af7c1f
MM
638 bool md_code, fail;
639 imm_use_iterator ui;
640 use_operand_p use_p;
6b889d89
UB
641
642 code = DECL_FUNCTION_CODE (fndecl);
ac10986f
UB
643 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
644
645 fndecl = targetm.builtin_reciprocal (code, md_code, false);
6b889d89
UB
646 if (!fndecl)
647 continue;
648
79af7c1f
MM
649 /* Check that all uses of the SSA name are divisions,
650 otherwise replacing the defining statement will do
651 the wrong thing. */
652 fail = false;
653 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
654 {
655 gimple stmt2 = USE_STMT (use_p);
656 if (is_gimple_debug (stmt2))
657 continue;
658 if (!is_gimple_assign (stmt2)
659 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
660 || gimple_assign_rhs1 (stmt2) == arg1
661 || gimple_assign_rhs2 (stmt2) != arg1)
662 {
663 fail = true;
664 break;
665 }
666 }
667 if (fail)
668 continue;
669
ff2a63a7 670 gimple_replace_ssa_lhs (stmt1, arg1);
7c9577be 671 gimple_call_set_fndecl (stmt1, fndecl);
6b889d89 672 update_stmt (stmt1);
4da3b811 673 reciprocal_stats.rfuncs_inserted++;
6b889d89 674
79af7c1f
MM
675 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
676 {
59401b92 677 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
79af7c1f 678 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
59401b92 679 fold_stmt_inplace (&gsi);
79af7c1f
MM
680 update_stmt (stmt);
681 }
6b889d89
UB
682 }
683 }
684 }
6c2a63a3 685 }
ac264fef 686
be55bfe6 687 statistics_counter_event (fun, "reciprocal divs inserted",
4da3b811 688 reciprocal_stats.rdivs_inserted);
be55bfe6 689 statistics_counter_event (fun, "reciprocal functions inserted",
4da3b811
NF
690 reciprocal_stats.rfuncs_inserted);
691
d898f3ce
PB
692 free_dominance_info (CDI_DOMINATORS);
693 free_dominance_info (CDI_POST_DOMINATORS);
bc23502b 694 free_alloc_pool (occ_pool);
c2924966 695 return 0;
6c2a63a3
PB
696}
697
27a4cd48
DM
698} // anon namespace
699
700gimple_opt_pass *
701make_pass_cse_reciprocals (gcc::context *ctxt)
702{
703 return new pass_cse_reciprocals (ctxt);
704}
705
88512ba0 706/* Records an occurrence at statement USE_STMT in the vector of trees
2f397a93 707 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
88512ba0 708 is not yet initialized. Returns true if the occurrence was pushed on
2f397a93
RG
709 the vector. Adjusts *TOP_BB to be the basic block dominating all
710 statements in the vector. */
711
712static bool
9771b263 713maybe_record_sincos (vec<gimple> *stmts,
726a989a 714 basic_block *top_bb, gimple use_stmt)
2f397a93 715{
726a989a 716 basic_block use_bb = gimple_bb (use_stmt);
2f397a93
RG
717 if (*top_bb
718 && (*top_bb == use_bb
719 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
9771b263 720 stmts->safe_push (use_stmt);
2f397a93
RG
721 else if (!*top_bb
722 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
723 {
9771b263 724 stmts->safe_push (use_stmt);
2f397a93
RG
725 *top_bb = use_bb;
726 }
727 else
728 return false;
729
730 return true;
731}
732
733/* Look for sin, cos and cexpi calls with the same argument NAME and
734 create a single call to cexpi CSEing the result in this case.
735 We first walk over all immediate uses of the argument collecting
736 statements that we can CSE in a vector and in a second pass replace
737 the statement rhs with a REALPART or IMAGPART expression on the
738 result of the cexpi call we insert before the use statement that
739 dominates all other candidates. */
740
90bc1cb8 741static bool
2f397a93
RG
742execute_cse_sincos_1 (tree name)
743{
726a989a 744 gimple_stmt_iterator gsi;
2f397a93 745 imm_use_iterator use_iter;
726a989a
RB
746 tree fndecl, res, type;
747 gimple def_stmt, use_stmt, stmt;
2f397a93 748 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
9370adeb 749 auto_vec<gimple> stmts;
2f397a93
RG
750 basic_block top_bb = NULL;
751 int i;
90bc1cb8 752 bool cfg_changed = false;
2f397a93
RG
753
754 type = TREE_TYPE (name);
755 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
756 {
726a989a
RB
757 if (gimple_code (use_stmt) != GIMPLE_CALL
758 || !gimple_call_lhs (use_stmt)
759 || !(fndecl = gimple_call_fndecl (use_stmt))
2f397a93
RG
760 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
761 continue;
762
763 switch (DECL_FUNCTION_CODE (fndecl))
764 {
765 CASE_FLT_FN (BUILT_IN_COS):
766 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
767 break;
768
769 CASE_FLT_FN (BUILT_IN_SIN):
770 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
771 break;
772
773 CASE_FLT_FN (BUILT_IN_CEXPI):
774 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
775 break;
776
777 default:;
778 }
779 }
780
781 if (seen_cos + seen_sin + seen_cexpi <= 1)
9370adeb 782 return false;
2f397a93
RG
783
784 /* Simply insert cexpi at the beginning of top_bb but not earlier than
785 the name def statement. */
786 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
787 if (!fndecl)
90bc1cb8 788 return false;
726a989a 789 stmt = gimple_build_call (fndecl, 1, name);
83d5977e 790 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
726a989a
RB
791 gimple_call_set_lhs (stmt, res);
792
2f397a93 793 def_stmt = SSA_NAME_DEF_STMT (name);
59805c3b 794 if (!SSA_NAME_IS_DEFAULT_DEF (name)
726a989a
RB
795 && gimple_code (def_stmt) != GIMPLE_PHI
796 && gimple_bb (def_stmt) == top_bb)
2f397a93 797 {
726a989a
RB
798 gsi = gsi_for_stmt (def_stmt);
799 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
2f397a93
RG
800 }
801 else
802 {
726a989a
RB
803 gsi = gsi_after_labels (top_bb);
804 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2f397a93 805 }
4da3b811 806 sincos_stats.inserted++;
2f397a93
RG
807
808 /* And adjust the recorded old call sites. */
9771b263 809 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
2f397a93 810 {
726a989a
RB
811 tree rhs = NULL;
812 fndecl = gimple_call_fndecl (use_stmt);
813
2f397a93
RG
814 switch (DECL_FUNCTION_CODE (fndecl))
815 {
816 CASE_FLT_FN (BUILT_IN_COS):
726a989a 817 rhs = fold_build1 (REALPART_EXPR, type, res);
2f397a93
RG
818 break;
819
820 CASE_FLT_FN (BUILT_IN_SIN):
726a989a 821 rhs = fold_build1 (IMAGPART_EXPR, type, res);
2f397a93
RG
822 break;
823
824 CASE_FLT_FN (BUILT_IN_CEXPI):
726a989a 825 rhs = res;
2f397a93
RG
826 break;
827
828 default:;
829 gcc_unreachable ();
830 }
831
726a989a
RB
832 /* Replace call with a copy. */
833 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
834
835 gsi = gsi_for_stmt (use_stmt);
90bc1cb8
RG
836 gsi_replace (&gsi, stmt, true);
837 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
838 cfg_changed = true;
2f397a93
RG
839 }
840
90bc1cb8 841 return cfg_changed;
2f397a93
RG
842}
843
78be79d5
BS
844/* To evaluate powi(x,n), the floating point value x raised to the
845 constant integer exponent n, we use a hybrid algorithm that
846 combines the "window method" with look-up tables. For an
847 introduction to exponentiation algorithms and "addition chains",
848 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
849 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
850 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
851 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
852
853/* Provide a default value for POWI_MAX_MULTS, the maximum number of
854 multiplications to inline before calling the system library's pow
855 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
856 so this default never requires calling pow, powf or powl. */
857
858#ifndef POWI_MAX_MULTS
859#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
860#endif
861
862/* The size of the "optimal power tree" lookup table. All
863 exponents less than this value are simply looked up in the
864 powi_table below. This threshold is also used to size the
865 cache of pseudo registers that hold intermediate results. */
866#define POWI_TABLE_SIZE 256
867
868/* The size, in bits of the window, used in the "window method"
869 exponentiation algorithm. This is equivalent to a radix of
870 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
871#define POWI_WINDOW_SIZE 3
872
873/* The following table is an efficient representation of an
874 "optimal power tree". For each value, i, the corresponding
875 value, j, in the table states than an optimal evaluation
876 sequence for calculating pow(x,i) can be found by evaluating
877 pow(x,j)*pow(x,i-j). An optimal power tree for the first
878 100 integers is given in Knuth's "Seminumerical algorithms". */
879
880static const unsigned char powi_table[POWI_TABLE_SIZE] =
881 {
882 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
883 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
884 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
885 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
886 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
887 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
888 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
889 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
890 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
891 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
892 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
893 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
894 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
895 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
896 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
897 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
898 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
899 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
900 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
901 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
902 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
903 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
904 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
905 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
906 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
907 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
908 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
909 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
910 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
911 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
912 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
913 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
914 };
915
916
917/* Return the number of multiplications required to calculate
918 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
919 subroutine of powi_cost. CACHE is an array indicating
920 which exponents have already been calculated. */
921
922static int
923powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
924{
925 /* If we've already calculated this exponent, then this evaluation
926 doesn't require any additional multiplications. */
927 if (cache[n])
928 return 0;
929
930 cache[n] = true;
931 return powi_lookup_cost (n - powi_table[n], cache)
932 + powi_lookup_cost (powi_table[n], cache) + 1;
933}
934
935/* Return the number of multiplications required to calculate
936 powi(x,n) for an arbitrary x, given the exponent N. This
937 function needs to be kept in sync with powi_as_mults below. */
938
939static int
940powi_cost (HOST_WIDE_INT n)
941{
942 bool cache[POWI_TABLE_SIZE];
943 unsigned HOST_WIDE_INT digit;
944 unsigned HOST_WIDE_INT val;
945 int result;
946
947 if (n == 0)
948 return 0;
949
950 /* Ignore the reciprocal when calculating the cost. */
951 val = (n < 0) ? -n : n;
952
953 /* Initialize the exponent cache. */
954 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
955 cache[1] = true;
956
957 result = 0;
958
959 while (val >= POWI_TABLE_SIZE)
960 {
961 if (val & 1)
962 {
963 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
964 result += powi_lookup_cost (digit, cache)
965 + POWI_WINDOW_SIZE + 1;
966 val >>= POWI_WINDOW_SIZE;
967 }
968 else
969 {
970 val >>= 1;
971 result++;
972 }
973 }
974
975 return result + powi_lookup_cost (val, cache);
976}
977
978/* Recursive subroutine of powi_as_mults. This function takes the
979 array, CACHE, of already calculated exponents and an exponent N and
980 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
981
982static tree
983powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
83d5977e 984 HOST_WIDE_INT n, tree *cache)
78be79d5
BS
985{
986 tree op0, op1, ssa_target;
987 unsigned HOST_WIDE_INT digit;
538dd0b7 988 gassign *mult_stmt;
78be79d5
BS
989
990 if (n < POWI_TABLE_SIZE && cache[n])
991 return cache[n];
992
83d5977e 993 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
78be79d5
BS
994
995 if (n < POWI_TABLE_SIZE)
996 {
997 cache[n] = ssa_target;
83d5977e
RG
998 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
78be79d5
BS
1000 }
1001 else if (n & 1)
1002 {
1003 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
83d5977e
RG
1004 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1005 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
78be79d5
BS
1006 }
1007 else
1008 {
83d5977e 1009 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
78be79d5
BS
1010 op1 = op0;
1011 }
1012
0d0e4a03 1013 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
ba869341 1014 gimple_set_location (mult_stmt, loc);
78be79d5
BS
1015 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1016
1017 return ssa_target;
1018}
1019
1020/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1021 This function needs to be kept in sync with powi_cost above. */
1022
1023static tree
1024powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1025 tree arg0, HOST_WIDE_INT n)
1026{
83d5977e 1027 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
538dd0b7 1028 gassign *div_stmt;
83d5977e 1029 tree target;
78be79d5
BS
1030
1031 if (n == 0)
1032 return build_real (type, dconst1);
1033
1034 memset (cache, 0, sizeof (cache));
1035 cache[1] = arg0;
1036
83d5977e 1037 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
78be79d5
BS
1038 if (n >= 0)
1039 return result;
1040
1041 /* If the original exponent was negative, reciprocate the result. */
83d5977e 1042 target = make_temp_ssa_name (type, NULL, "powmult");
0d0e4a03
JJ
1043 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1044 build_real (type, dconst1), result);
ba869341 1045 gimple_set_location (div_stmt, loc);
78be79d5
BS
1046 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1047
1048 return target;
1049}
1050
1051/* ARG0 and N are the two arguments to a powi builtin in GSI with
1052 location info LOC. If the arguments are appropriate, create an
1053 equivalent sequence of statements prior to GSI using an optimal
1054 number of multiplications, and return an expession holding the
1055 result. */
1056
1057static tree
1058gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1059 tree arg0, HOST_WIDE_INT n)
1060{
1061 /* Avoid largest negative number. */
1062 if (n != -n
1063 && ((n >= -1 && n <= 2)
1064 || (optimize_function_for_speed_p (cfun)
1065 && powi_cost (n) <= POWI_MAX_MULTS)))
1066 return powi_as_mults (gsi, loc, arg0, n);
1067
1068 return NULL_TREE;
1069}
1070
ba869341 1071/* Build a gimple call statement that calls FN with argument ARG.
83d5977e 1072 Set the lhs of the call statement to a fresh SSA name. Insert the
ba869341
BS
1073 statement prior to GSI's current position, and return the fresh
1074 SSA name. */
1075
1076static tree
6e96f98a 1077build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
83d5977e 1078 tree fn, tree arg)
ba869341 1079{
538dd0b7 1080 gcall *call_stmt;
ba869341
BS
1081 tree ssa_target;
1082
ba869341 1083 call_stmt = gimple_build_call (fn, 1, arg);
83d5977e 1084 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
ba869341
BS
1085 gimple_set_lhs (call_stmt, ssa_target);
1086 gimple_set_location (call_stmt, loc);
1087 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1088
1089 return ssa_target;
1090}
1091
6e96f98a
BS
1092/* Build a gimple binary operation with the given CODE and arguments
1093 ARG0, ARG1, assigning the result to a new SSA name for variable
1094 TARGET. Insert the statement prior to GSI's current position, and
1095 return the fresh SSA name.*/
1096
1097static tree
1098build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
83d5977e
RG
1099 const char *name, enum tree_code code,
1100 tree arg0, tree arg1)
6e96f98a 1101{
83d5977e 1102 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
0d0e4a03 1103 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
6e96f98a
BS
1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
1107}
1108
d7e2a1c1 1109/* Build a gimple reference operation with the given CODE and argument
83d5977e 1110 ARG, assigning the result to a new SSA name of TYPE with NAME.
d7e2a1c1
BS
1111 Insert the statement prior to GSI's current position, and return
1112 the fresh SSA name. */
1113
1114static inline tree
1115build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
83d5977e 1116 const char *name, enum tree_code code, tree arg0)
d7e2a1c1 1117{
83d5977e 1118 tree result = make_temp_ssa_name (type, NULL, name);
d7e2a1c1
BS
1119 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1120 gimple_set_location (stmt, loc);
1121 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1122 return result;
1123}
1124
83d5977e 1125/* Build a gimple assignment to cast VAL to TYPE. Insert the statement
5dfe80ba
AS
1126 prior to GSI's current position, and return the fresh SSA name. */
1127
1128static tree
1129build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
83d5977e 1130 tree type, tree val)
5dfe80ba 1131{
b731b390 1132 tree result = make_ssa_name (type);
0d0e4a03 1133 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
83d5977e
RG
1134 gimple_set_location (stmt, loc);
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136 return result;
5dfe80ba
AS
1137}
1138
d24ad7d6
BS
1139/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1140 with location info LOC. If possible, create an equivalent and
1141 less expensive sequence of statements prior to GSI, and return an
1142 expession holding the result. */
1143
1144static tree
1145gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1146 tree arg0, tree arg1)
1147{
ba869341 1148 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
6e96f98a 1149 REAL_VALUE_TYPE c2, dconst3;
d24ad7d6 1150 HOST_WIDE_INT n;
6e96f98a 1151 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
ef4bddc2 1152 machine_mode mode;
0bfbca58 1153 bool hw_sqrt_exists, c_is_int, c2_is_int;
d24ad7d6
BS
1154
1155 /* If the exponent isn't a constant, there's nothing of interest
1156 to be done. */
1157 if (TREE_CODE (arg1) != REAL_CST)
1158 return NULL_TREE;
1159
ba869341
BS
1160 /* If the exponent is equivalent to an integer, expand to an optimal
1161 multiplication sequence when profitable. */
d24ad7d6
BS
1162 c = TREE_REAL_CST (arg1);
1163 n = real_to_integer (&c);
807e902e 1164 real_from_integer (&cint, VOIDmode, n, SIGNED);
0bfbca58 1165 c_is_int = real_identical (&c, &cint);
d24ad7d6 1166
0bfbca58 1167 if (c_is_int
d24ad7d6
BS
1168 && ((n >= -1 && n <= 2)
1169 || (flag_unsafe_math_optimizations
72798784 1170 && optimize_bb_for_speed_p (gsi_bb (*gsi))
d24ad7d6
BS
1171 && powi_cost (n) <= POWI_MAX_MULTS)))
1172 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1173
ba869341
BS
1174 /* Attempt various optimizations using sqrt and cbrt. */
1175 type = TREE_TYPE (arg0);
1176 mode = TYPE_MODE (type);
1177 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1178
1179 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1180 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1181 sqrt(-0) = -0. */
1182 if (sqrtfn
1183 && REAL_VALUES_EQUAL (c, dconsthalf)
1184 && !HONOR_SIGNED_ZEROS (mode))
83d5977e 1185 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1186
1187 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1188 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1189 so do this optimization even if -Os. Don't do this optimization
1190 if we don't have a hardware sqrt insn. */
1191 dconst1_4 = dconst1;
1192 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
d7e2a1c1 1193 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
ba869341
BS
1194
1195 if (flag_unsafe_math_optimizations
1196 && sqrtfn
1197 && REAL_VALUES_EQUAL (c, dconst1_4)
1198 && hw_sqrt_exists)
1199 {
1200 /* sqrt(x) */
83d5977e 1201 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1202
1203 /* sqrt(sqrt(x)) */
83d5977e 1204 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
ba869341
BS
1205 }
1206
1207 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1208 optimizing for space. Don't do this optimization if we don't have
1209 a hardware sqrt insn. */
807e902e 1210 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
ba869341
BS
1211 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1212
1213 if (flag_unsafe_math_optimizations
1214 && sqrtfn
1215 && optimize_function_for_speed_p (cfun)
1216 && REAL_VALUES_EQUAL (c, dconst3_4)
1217 && hw_sqrt_exists)
1218 {
1219 /* sqrt(x) */
83d5977e 1220 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1221
1222 /* sqrt(sqrt(x)) */
83d5977e 1223 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
ba869341
BS
1224
1225 /* sqrt(x) * sqrt(sqrt(x)) */
83d5977e 1226 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a 1227 sqrt_arg0, sqrt_sqrt);
ba869341
BS
1228 }
1229
1230 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1231 optimizations since 1./3. is not exactly representable. If x
1232 is negative and finite, the correct value of pow(x,1./3.) is
1233 a NaN with the "invalid" exception raised, because the value
1234 of 1./3. actually has an even denominator. The correct value
1235 of cbrt(x) is a negative real value. */
1236 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1237 dconst1_3 = real_value_truncate (mode, dconst_third ());
1238
1239 if (flag_unsafe_math_optimizations
1240 && cbrtfn
06bc3ec7 1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ba869341 1242 && REAL_VALUES_EQUAL (c, dconst1_3))
83d5977e 1243 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
ba869341
BS
1244
1245 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1246 if we don't have a hardware sqrt insn. */
1247 dconst1_6 = dconst1_3;
1248 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1249
1250 if (flag_unsafe_math_optimizations
1251 && sqrtfn
1252 && cbrtfn
06bc3ec7 1253 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ba869341
BS
1254 && optimize_function_for_speed_p (cfun)
1255 && hw_sqrt_exists
1256 && REAL_VALUES_EQUAL (c, dconst1_6))
1257 {
1258 /* sqrt(x) */
83d5977e 1259 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1260
1261 /* cbrt(sqrt(x)) */
83d5977e 1262 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
6e96f98a
BS
1263 }
1264
0bfbca58
JJ
1265 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1266 and c not an integer, into
6e96f98a
BS
1267
1268 sqrt(x) * powi(x, n/2), n > 0;
1269 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1270
1271 Do not calculate the powi factor when n/2 = 0. */
1272 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1273 n = real_to_integer (&c2);
807e902e 1274 real_from_integer (&cint, VOIDmode, n, SIGNED);
0bfbca58 1275 c2_is_int = real_identical (&c2, &cint);
6e96f98a
BS
1276
1277 if (flag_unsafe_math_optimizations
1278 && sqrtfn
0bfbca58
JJ
1279 && c2_is_int
1280 && !c_is_int
1281 && optimize_function_for_speed_p (cfun))
6e96f98a
BS
1282 {
1283 tree powi_x_ndiv2 = NULL_TREE;
1284
1285 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1286 possible or profitable, give up. Skip the degenerate case when
1287 n is 1 or -1, where the result is always 1. */
4c9cf7af 1288 if (absu_hwi (n) != 1)
6e96f98a 1289 {
9f813990
PC
1290 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1291 abs_hwi (n / 2));
6e96f98a
BS
1292 if (!powi_x_ndiv2)
1293 return NULL_TREE;
1294 }
1295
1296 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1297 result of the optimal multiply sequence just calculated. */
83d5977e 1298 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
6e96f98a 1299
4c9cf7af 1300 if (absu_hwi (n) == 1)
6e96f98a
BS
1301 result = sqrt_arg0;
1302 else
83d5977e 1303 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1304 sqrt_arg0, powi_x_ndiv2);
1305
1306 /* If n is negative, reciprocate the result. */
1307 if (n < 0)
83d5977e 1308 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
6e96f98a
BS
1309 build_real (type, dconst1), result);
1310 return result;
1311 }
1312
1313 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1314
1315 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1316 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1317
1318 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1319 different from pow(x, 1./3.) due to rounding and behavior with
1320 negative x, we need to constrain this transformation to unsafe
1321 math and positive x or finite math. */
807e902e 1322 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
6e96f98a
BS
1323 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1324 real_round (&c2, mode, &c2);
1325 n = real_to_integer (&c2);
807e902e 1326 real_from_integer (&cint, VOIDmode, n, SIGNED);
6e96f98a
BS
1327 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1328 real_convert (&c2, mode, &c2);
1329
1330 if (flag_unsafe_math_optimizations
1331 && cbrtfn
06bc3ec7 1332 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
6e96f98a 1333 && real_identical (&c2, &c)
0bfbca58 1334 && !c2_is_int
6e96f98a
BS
1335 && optimize_function_for_speed_p (cfun)
1336 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1337 {
1338 tree powi_x_ndiv3 = NULL_TREE;
1339
1340 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1341 possible or profitable, give up. Skip the degenerate case when
1342 abs(n) < 3, where the result is always 1. */
4c9cf7af 1343 if (absu_hwi (n) >= 3)
6e96f98a
BS
1344 {
1345 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
9f813990 1346 abs_hwi (n / 3));
6e96f98a
BS
1347 if (!powi_x_ndiv3)
1348 return NULL_TREE;
1349 }
1350
1351 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1352 as that creates an unnecessary variable. Instead, just produce
1353 either cbrt(x) or cbrt(x) * cbrt(x). */
83d5977e 1354 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
6e96f98a 1355
4c9cf7af 1356 if (absu_hwi (n) % 3 == 1)
6e96f98a
BS
1357 powi_cbrt_x = cbrt_x;
1358 else
83d5977e 1359 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1360 cbrt_x, cbrt_x);
1361
1362 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
4c9cf7af 1363 if (absu_hwi (n) < 3)
6e96f98a
BS
1364 result = powi_cbrt_x;
1365 else
83d5977e 1366 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1367 powi_x_ndiv3, powi_cbrt_x);
1368
1369 /* If n is negative, reciprocate the result. */
1370 if (n < 0)
83d5977e 1371 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
6e96f98a
BS
1372 build_real (type, dconst1), result);
1373
1374 return result;
ba869341
BS
1375 }
1376
6e96f98a 1377 /* No optimizations succeeded. */
d24ad7d6
BS
1378 return NULL_TREE;
1379}
1380
d7e2a1c1
BS
1381/* ARG is the argument to a cabs builtin call in GSI with location info
1382 LOC. Create a sequence of statements prior to GSI that calculates
1383 sqrt(R*R + I*I), where R and I are the real and imaginary components
1384 of ARG, respectively. Return an expression holding the result. */
1385
1386static tree
1387gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1388{
83d5977e 1389 tree real_part, imag_part, addend1, addend2, sum, result;
d7e2a1c1
BS
1390 tree type = TREE_TYPE (TREE_TYPE (arg));
1391 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
ef4bddc2 1392 machine_mode mode = TYPE_MODE (type);
d7e2a1c1
BS
1393
1394 if (!flag_unsafe_math_optimizations
1395 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1396 || !sqrtfn
1397 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1398 return NULL_TREE;
1399
83d5977e 1400 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
d7e2a1c1 1401 REALPART_EXPR, arg);
83d5977e 1402 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
d7e2a1c1 1403 real_part, real_part);
83d5977e 1404 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
d7e2a1c1 1405 IMAGPART_EXPR, arg);
83d5977e 1406 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
d7e2a1c1 1407 imag_part, imag_part);
83d5977e
RG
1408 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1409 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
d7e2a1c1
BS
1410
1411 return result;
1412}
1413
2f397a93 1414/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
78be79d5
BS
1415 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1416 an optimal number of multiplies, when n is a constant. */
2f397a93 1417
be55bfe6
TS
1418namespace {
1419
1420const pass_data pass_data_cse_sincos =
1421{
1422 GIMPLE_PASS, /* type */
1423 "sincos", /* name */
1424 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
1425 TV_NONE, /* tv_id */
1426 PROP_ssa, /* properties_required */
1427 0, /* properties_provided */
1428 0, /* properties_destroyed */
1429 0, /* todo_flags_start */
3bea341f 1430 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
1431};
1432
1433class pass_cse_sincos : public gimple_opt_pass
1434{
1435public:
1436 pass_cse_sincos (gcc::context *ctxt)
1437 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1438 {}
1439
1440 /* opt_pass methods: */
1441 virtual bool gate (function *)
1442 {
1443 /* We no longer require either sincos or cexp, since powi expansion
1444 piggybacks on this pass. */
1445 return optimize;
1446 }
1447
1448 virtual unsigned int execute (function *);
1449
1450}; // class pass_cse_sincos
1451
1452unsigned int
1453pass_cse_sincos::execute (function *fun)
2f397a93
RG
1454{
1455 basic_block bb;
90bc1cb8 1456 bool cfg_changed = false;
2f397a93
RG
1457
1458 calculate_dominance_info (CDI_DOMINATORS);
4da3b811 1459 memset (&sincos_stats, 0, sizeof (sincos_stats));
2f397a93 1460
be55bfe6 1461 FOR_EACH_BB_FN (bb, fun)
2f397a93 1462 {
726a989a 1463 gimple_stmt_iterator gsi;
3b9ee1cc 1464 bool cleanup_eh = false;
2f397a93 1465
726a989a 1466 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2f397a93 1467 {
726a989a 1468 gimple stmt = gsi_stmt (gsi);
2f397a93
RG
1469 tree fndecl;
1470
3b9ee1cc
JJ
1471 /* Only the last stmt in a bb could throw, no need to call
1472 gimple_purge_dead_eh_edges if we change something in the middle
1473 of a basic block. */
1474 cleanup_eh = false;
1475
726a989a
RB
1476 if (is_gimple_call (stmt)
1477 && gimple_call_lhs (stmt)
1478 && (fndecl = gimple_call_fndecl (stmt))
2f397a93
RG
1479 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1480 {
78be79d5
BS
1481 tree arg, arg0, arg1, result;
1482 HOST_WIDE_INT n;
1483 location_t loc;
2f397a93
RG
1484
1485 switch (DECL_FUNCTION_CODE (fndecl))
1486 {
1487 CASE_FLT_FN (BUILT_IN_COS):
1488 CASE_FLT_FN (BUILT_IN_SIN):
1489 CASE_FLT_FN (BUILT_IN_CEXPI):
fa65a9cf 1490 /* Make sure we have either sincos or cexp. */
d33d9e47
AI
1491 if (!targetm.libc_has_function (function_c99_math_complex)
1492 && !targetm.libc_has_function (function_sincos))
fa65a9cf
BS
1493 break;
1494
726a989a 1495 arg = gimple_call_arg (stmt, 0);
2f397a93 1496 if (TREE_CODE (arg) == SSA_NAME)
90bc1cb8 1497 cfg_changed |= execute_cse_sincos_1 (arg);
2f397a93
RG
1498 break;
1499
d24ad7d6
BS
1500 CASE_FLT_FN (BUILT_IN_POW):
1501 arg0 = gimple_call_arg (stmt, 0);
1502 arg1 = gimple_call_arg (stmt, 1);
1503
1504 loc = gimple_location (stmt);
1505 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1506
1507 if (result)
1508 {
1509 tree lhs = gimple_get_lhs (stmt);
538dd0b7 1510 gassign *new_stmt = gimple_build_assign (lhs, result);
d24ad7d6
BS
1511 gimple_set_location (new_stmt, loc);
1512 unlink_stmt_vdef (stmt);
1513 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1514 cleanup_eh = true;
3d3f2249
RG
1515 if (gimple_vdef (stmt))
1516 release_ssa_name (gimple_vdef (stmt));
d24ad7d6
BS
1517 }
1518 break;
1519
78be79d5
BS
1520 CASE_FLT_FN (BUILT_IN_POWI):
1521 arg0 = gimple_call_arg (stmt, 0);
1522 arg1 = gimple_call_arg (stmt, 1);
78be79d5 1523 loc = gimple_location (stmt);
0fa6e0ef 1524
e3530904 1525 if (real_minus_onep (arg0))
0fa6e0ef
TB
1526 {
1527 tree t0, t1, cond, one, minus_one;
538dd0b7 1528 gassign *stmt;
0fa6e0ef
TB
1529
1530 t0 = TREE_TYPE (arg0);
1531 t1 = TREE_TYPE (arg1);
1532 one = build_real (t0, dconst1);
1533 minus_one = build_real (t0, dconstm1);
1534
1535 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
0d0e4a03
JJ
1536 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1537 arg1, build_int_cst (t1, 1));
0fa6e0ef
TB
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540
1541 result = make_temp_ssa_name (t0, NULL, "powi");
0d0e4a03
JJ
1542 stmt = gimple_build_assign (result, COND_EXPR, cond,
1543 minus_one, one);
0fa6e0ef
TB
1544 gimple_set_location (stmt, loc);
1545 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1546 }
1547 else
1548 {
9541ffee 1549 if (!tree_fits_shwi_p (arg1))
daf4e940
TB
1550 break;
1551
eb1ce453 1552 n = tree_to_shwi (arg1);
0fa6e0ef
TB
1553 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1554 }
78be79d5
BS
1555
1556 if (result)
1557 {
1558 tree lhs = gimple_get_lhs (stmt);
538dd0b7 1559 gassign *new_stmt = gimple_build_assign (lhs, result);
78be79d5 1560 gimple_set_location (new_stmt, loc);
d7e2a1c1
BS
1561 unlink_stmt_vdef (stmt);
1562 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1563 cleanup_eh = true;
3d3f2249
RG
1564 if (gimple_vdef (stmt))
1565 release_ssa_name (gimple_vdef (stmt));
d7e2a1c1
BS
1566 }
1567 break;
1568
1569 CASE_FLT_FN (BUILT_IN_CABS):
1570 arg0 = gimple_call_arg (stmt, 0);
1571 loc = gimple_location (stmt);
1572 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1573
1574 if (result)
1575 {
1576 tree lhs = gimple_get_lhs (stmt);
538dd0b7 1577 gassign *new_stmt = gimple_build_assign (lhs, result);
d7e2a1c1 1578 gimple_set_location (new_stmt, loc);
78be79d5
BS
1579 unlink_stmt_vdef (stmt);
1580 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1581 cleanup_eh = true;
3d3f2249
RG
1582 if (gimple_vdef (stmt))
1583 release_ssa_name (gimple_vdef (stmt));
78be79d5
BS
1584 }
1585 break;
1586
2f397a93
RG
1587 default:;
1588 }
1589 }
1590 }
3b9ee1cc
JJ
1591 if (cleanup_eh)
1592 cfg_changed |= gimple_purge_dead_eh_edges (bb);
2f397a93
RG
1593 }
1594
be55bfe6 1595 statistics_counter_event (fun, "sincos statements inserted",
4da3b811
NF
1596 sincos_stats.inserted);
1597
2f397a93 1598 free_dominance_info (CDI_DOMINATORS);
90bc1cb8 1599 return cfg_changed ? TODO_cleanup_cfg : 0;
2f397a93
RG
1600}
1601
27a4cd48
DM
1602} // anon namespace
1603
1604gimple_opt_pass *
1605make_pass_cse_sincos (gcc::context *ctxt)
1606{
1607 return new pass_cse_sincos (ctxt);
1608}
1609
03bd2f1a
AK
1610/* A symbolic number is used to detect byte permutation and selection
1611 patterns. Therefore the field N contains an artificial number
e3ef4162 1612 consisting of octet sized markers:
03bd2f1a 1613
e3ef4162 1614 0 - target byte has the value 0
aa29ea0c 1615 FF - target byte has an unknown value (eg. due to sign extension)
e3ef4162 1616 1..size - marker value is the target byte index minus one.
73984f84
TP
1617
1618 To detect permutations on memory sources (arrays and structures), a symbolic
1619 number is also associated a base address (the array or structure the load is
1620 made from), an offset from the base address and a range which gives the
1621 difference between the highest and lowest accessed memory location to make
1622 such a symbolic number. The range is thus different from size which reflects
1623 the size of the type of current expression. Note that for non memory source,
1624 range holds the same value as size.
1625
1626 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1627 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1628 still have a size of 2 but this time a range of 1. */
03bd2f1a
AK
1629
1630struct symbolic_number {
a9243bfc 1631 uint64_t n;
698ff107 1632 tree type;
73984f84
TP
1633 tree base_addr;
1634 tree offset;
1635 HOST_WIDE_INT bytepos;
1636 tree alias_set;
1637 tree vuse;
1638 unsigned HOST_WIDE_INT range;
03bd2f1a
AK
1639};
1640
e3ef4162 1641#define BITS_PER_MARKER 8
aa29ea0c
TP
1642#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1643#define MARKER_BYTE_UNKNOWN MARKER_MASK
1644#define HEAD_MARKER(n, size) \
1645 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
e3ef4162 1646
73984f84
TP
1647/* The number which the find_bswap_or_nop_1 result should match in
1648 order to have a nop. The number is masked according to the size of
1649 the symbolic number before using it. */
a9243bfc
RB
1650#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1651 (uint64_t)0x08070605 << 32 | 0x04030201)
73984f84
TP
1652
1653/* The number which the find_bswap_or_nop_1 result should match in
1654 order to have a byte swap. The number is masked according to the
1655 size of the symbolic number before using it. */
a9243bfc
RB
1656#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1657 (uint64_t)0x01020304 << 32 | 0x05060708)
73984f84 1658
03bd2f1a
AK
1659/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1660 number N. Return false if the requested operation is not permitted
1661 on a symbolic number. */
1662
1663static inline bool
1664do_shift_rotate (enum tree_code code,
1665 struct symbolic_number *n,
1666 int count)
1667{
aa29ea0c
TP
1668 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1669 unsigned head_marker;
698ff107 1670
e3ef4162 1671 if (count % BITS_PER_UNIT != 0)
03bd2f1a 1672 return false;
e3ef4162 1673 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
03bd2f1a
AK
1674
1675 /* Zero out the extra bits of N in order to avoid them being shifted
1676 into the significant bits. */
e3ef4162
TP
1677 if (size < 64 / BITS_PER_MARKER)
1678 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
03bd2f1a
AK
1679
1680 switch (code)
1681 {
1682 case LSHIFT_EXPR:
1683 n->n <<= count;
1684 break;
1685 case RSHIFT_EXPR:
aa29ea0c 1686 head_marker = HEAD_MARKER (n->n, size);
03bd2f1a 1687 n->n >>= count;
aa29ea0c
TP
1688 /* Arithmetic shift of signed type: result is dependent on the value. */
1689 if (!TYPE_UNSIGNED (n->type) && head_marker)
1690 for (i = 0; i < count / BITS_PER_MARKER; i++)
1691 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1692 << ((size - 1 - i) * BITS_PER_MARKER);
03bd2f1a
AK
1693 break;
1694 case LROTATE_EXPR:
e3ef4162 1695 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
03bd2f1a
AK
1696 break;
1697 case RROTATE_EXPR:
e3ef4162 1698 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
03bd2f1a
AK
1699 break;
1700 default:
1701 return false;
1702 }
5da49a9d 1703 /* Zero unused bits for size. */
e3ef4162
TP
1704 if (size < 64 / BITS_PER_MARKER)
1705 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
03bd2f1a
AK
1706 return true;
1707}
1708
1709/* Perform sanity checking for the symbolic number N and the gimple
1710 statement STMT. */
1711
1712static inline bool
1713verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1714{
1715 tree lhs_type;
1716
1717 lhs_type = gimple_expr_type (stmt);
1718
1719 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1720 return false;
1721
698ff107 1722 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
03bd2f1a
AK
1723 return false;
1724
1725 return true;
1726}
1727
3cc272c1
TP
1728/* Initialize the symbolic number N for the bswap pass from the base element
1729 SRC manipulated by the bitwise OR expression. */
1730
1731static bool
1732init_symbolic_number (struct symbolic_number *n, tree src)
1733{
698ff107
TP
1734 int size;
1735
3cc272c1
TP
1736 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1737
1738 /* Set up the symbolic number N by setting each byte to a value between 1 and
1739 the byte size of rhs1. The highest order byte is set to n->size and the
1740 lowest order byte to 1. */
698ff107
TP
1741 n->type = TREE_TYPE (src);
1742 size = TYPE_PRECISION (n->type);
1743 if (size % BITS_PER_UNIT != 0)
3cc272c1 1744 return false;
698ff107 1745 size /= BITS_PER_UNIT;
e3ef4162 1746 if (size > 64 / BITS_PER_MARKER)
ca6cbdca 1747 return false;
698ff107 1748 n->range = size;
3cc272c1
TP
1749 n->n = CMPNOP;
1750
e3ef4162
TP
1751 if (size < 64 / BITS_PER_MARKER)
1752 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
3cc272c1
TP
1753
1754 return true;
1755}
1756
73984f84
TP
1757/* Check if STMT might be a byte swap or a nop from a memory source and returns
1758 the answer. If so, REF is that memory source and the base of the memory area
1759 accessed and the offset of the access from that base are recorded in N. */
1760
1761bool
1762find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1763{
1764 /* Leaf node is an array or component ref. Memorize its base and
1765 offset from base to compare to other such leaf node. */
1766 HOST_WIDE_INT bitsize, bitpos;
ef4bddc2 1767 machine_mode mode;
73984f84 1768 int unsignedp, volatilep;
3cc272c1 1769 tree offset, base_addr;
73984f84
TP
1770
1771 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1772 return false;
1773
3cc272c1
TP
1774 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1775 &unsignedp, &volatilep, false);
73984f84 1776
3cc272c1 1777 if (TREE_CODE (base_addr) == MEM_REF)
73984f84
TP
1778 {
1779 offset_int bit_offset = 0;
3cc272c1 1780 tree off = TREE_OPERAND (base_addr, 1);
73984f84
TP
1781
1782 if (!integer_zerop (off))
1783 {
3cc272c1 1784 offset_int boff, coff = mem_ref_offset (base_addr);
73984f84
TP
1785 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1786 bit_offset += boff;
1787 }
1788
3cc272c1 1789 base_addr = TREE_OPERAND (base_addr, 0);
73984f84
TP
1790
1791 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1792 if (wi::neg_p (bit_offset))
1793 {
1794 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1795 offset_int tem = bit_offset.and_not (mask);
1796 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1797 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1798 bit_offset -= tem;
1799 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
3cc272c1
TP
1800 if (offset)
1801 offset = size_binop (PLUS_EXPR, offset,
73984f84
TP
1802 wide_int_to_tree (sizetype, tem));
1803 else
3cc272c1 1804 offset = wide_int_to_tree (sizetype, tem);
73984f84
TP
1805 }
1806
1807 bitpos += bit_offset.to_shwi ();
1808 }
1809
1810 if (bitpos % BITS_PER_UNIT)
1811 return false;
1812 if (bitsize % BITS_PER_UNIT)
1813 return false;
1814
2cfa504a
TP
1815 if (!init_symbolic_number (n, ref))
1816 return false;
3cc272c1
TP
1817 n->base_addr = base_addr;
1818 n->offset = offset;
73984f84
TP
1819 n->bytepos = bitpos / BITS_PER_UNIT;
1820 n->alias_set = reference_alias_ptr_type (ref);
1821 n->vuse = gimple_vuse (stmt);
1822 return true;
1823}
1824
1825/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1826 the operation given by the rhs of STMT on the result. If the operation
a31d2741
TP
1827 could successfully be executed the function returns a gimple stmt whose
1828 rhs's first tree is the expression of the source operand and NULL
1829 otherwise. */
03bd2f1a 1830
a31d2741 1831static gimple
73984f84 1832find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
03bd2f1a
AK
1833{
1834 enum tree_code code;
1835 tree rhs1, rhs2 = NULL;
a31d2741 1836 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
03bd2f1a
AK
1837 enum gimple_rhs_class rhs_class;
1838
1839 if (!limit || !is_gimple_assign (stmt))
a31d2741 1840 return NULL;
03bd2f1a
AK
1841
1842 rhs1 = gimple_assign_rhs1 (stmt);
1843
73984f84 1844 if (find_bswap_or_nop_load (stmt, rhs1, n))
a31d2741 1845 return stmt;
73984f84 1846
03bd2f1a 1847 if (TREE_CODE (rhs1) != SSA_NAME)
a31d2741 1848 return NULL;
03bd2f1a
AK
1849
1850 code = gimple_assign_rhs_code (stmt);
1851 rhs_class = gimple_assign_rhs_class (stmt);
1852 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1853
1854 if (rhs_class == GIMPLE_BINARY_RHS)
1855 rhs2 = gimple_assign_rhs2 (stmt);
1856
1857 /* Handle unary rhs and binary rhs with integer constants as second
1858 operand. */
1859
1860 if (rhs_class == GIMPLE_UNARY_RHS
1861 || (rhs_class == GIMPLE_BINARY_RHS
1862 && TREE_CODE (rhs2) == INTEGER_CST))
1863 {
1864 if (code != BIT_AND_EXPR
1865 && code != LSHIFT_EXPR
1866 && code != RSHIFT_EXPR
1867 && code != LROTATE_EXPR
1868 && code != RROTATE_EXPR
625a9766 1869 && !CONVERT_EXPR_CODE_P (code))
a31d2741 1870 return NULL;
03bd2f1a 1871
a31d2741 1872 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
03bd2f1a 1873
73984f84
TP
1874 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1875 we have to initialize the symbolic number. */
a31d2741 1876 if (!source_stmt1)
03bd2f1a 1877 {
3cc272c1
TP
1878 if (gimple_assign_load_p (stmt)
1879 || !init_symbolic_number (n, rhs1))
a31d2741
TP
1880 return NULL;
1881 source_stmt1 = stmt;
03bd2f1a
AK
1882 }
1883
1884 switch (code)
1885 {
1886 case BIT_AND_EXPR:
1887 {
698ff107 1888 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
e3ef4162
TP
1889 uint64_t val = int_cst_value (rhs2), mask = 0;
1890 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
03bd2f1a
AK
1891
1892 /* Only constants masking full bytes are allowed. */
e3ef4162
TP
1893 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1894 if ((val & tmp) != 0 && (val & tmp) != tmp)
a31d2741 1895 return NULL;
e3ef4162 1896 else if (val & tmp)
aa29ea0c 1897 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
03bd2f1a 1898
e3ef4162 1899 n->n &= mask;
03bd2f1a
AK
1900 }
1901 break;
1902 case LSHIFT_EXPR:
1903 case RSHIFT_EXPR:
1904 case LROTATE_EXPR:
1905 case RROTATE_EXPR:
1906 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
a31d2741 1907 return NULL;
03bd2f1a
AK
1908 break;
1909 CASE_CONVERT:
1910 {
aa29ea0c 1911 int i, type_size, old_type_size;
698ff107 1912 tree type;
03bd2f1a 1913
698ff107
TP
1914 type = gimple_expr_type (stmt);
1915 type_size = TYPE_PRECISION (type);
03bd2f1a 1916 if (type_size % BITS_PER_UNIT != 0)
a31d2741 1917 return NULL;
e3ef4162
TP
1918 type_size /= BITS_PER_UNIT;
1919 if (type_size > 64 / BITS_PER_MARKER)
a31d2741 1920 return NULL;
03bd2f1a 1921
698ff107 1922 /* Sign extension: result is dependent on the value. */
e3ef4162 1923 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
aa29ea0c
TP
1924 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1925 && HEAD_MARKER (n->n, old_type_size))
1926 for (i = 0; i < type_size - old_type_size; i++)
8ae9ab2b 1927 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
e4d2f1db 1928 << ((type_size - 1 - i) * BITS_PER_MARKER);
698ff107 1929
e3ef4162 1930 if (type_size < 64 / BITS_PER_MARKER)
03bd2f1a
AK
1931 {
1932 /* If STMT casts to a smaller type mask out the bits not
1933 belonging to the target type. */
e3ef4162 1934 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
03bd2f1a 1935 }
698ff107 1936 n->type = type;
73984f84 1937 if (!n->base_addr)
e3ef4162 1938 n->range = type_size;
03bd2f1a
AK
1939 }
1940 break;
1941 default:
a31d2741 1942 return NULL;
03bd2f1a 1943 };
a31d2741 1944 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
03bd2f1a
AK
1945 }
1946
1947 /* Handle binary rhs. */
1948
1949 if (rhs_class == GIMPLE_BINARY_RHS)
1950 {
698ff107 1951 int i, size;
03bd2f1a 1952 struct symbolic_number n1, n2;
a9243bfc 1953 uint64_t mask;
a31d2741 1954 gimple source_stmt2;
03bd2f1a
AK
1955
1956 if (code != BIT_IOR_EXPR)
a31d2741 1957 return NULL;
03bd2f1a
AK
1958
1959 if (TREE_CODE (rhs2) != SSA_NAME)
a31d2741 1960 return NULL;
03bd2f1a
AK
1961
1962 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1963
1964 switch (code)
1965 {
1966 case BIT_IOR_EXPR:
a31d2741 1967 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
03bd2f1a 1968
a31d2741
TP
1969 if (!source_stmt1)
1970 return NULL;
03bd2f1a 1971
a31d2741 1972 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
73984f84 1973
a31d2741
TP
1974 if (!source_stmt2)
1975 return NULL;
3cc272c1 1976
698ff107 1977 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
a31d2741 1978 return NULL;
03bd2f1a 1979
73984f84
TP
1980 if (!n1.vuse != !n2.vuse ||
1981 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
a31d2741 1982 return NULL;
03bd2f1a 1983
a31d2741
TP
1984 if (gimple_assign_rhs1 (source_stmt1)
1985 != gimple_assign_rhs1 (source_stmt2))
73984f84 1986 {
aa29ea0c 1987 int64_t inc;
73984f84
TP
1988 HOST_WIDE_INT off_sub;
1989 struct symbolic_number *n_ptr;
1990
1991 if (!n1.base_addr || !n2.base_addr
1992 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
a31d2741 1993 return NULL;
73984f84
TP
1994 if (!n1.offset != !n2.offset ||
1995 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
a31d2741 1996 return NULL;
73984f84
TP
1997
1998 /* We swap n1 with n2 to have n1 < n2. */
1999 if (n2.bytepos < n1.bytepos)
2000 {
2001 struct symbolic_number tmpn;
2002
2003 tmpn = n2;
2004 n2 = n1;
2005 n1 = tmpn;
a31d2741 2006 source_stmt1 = source_stmt2;
73984f84
TP
2007 }
2008
2009 off_sub = n2.bytepos - n1.bytepos;
2010
e3ef4162
TP
2011 /* Check that the range of memory covered can be represented by
2012 a symbolic number. */
2013 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
a31d2741 2014 return NULL;
73984f84
TP
2015 n->range = n2.range + off_sub;
2016
2017 /* Reinterpret byte marks in symbolic number holding the value of
58126368 2018 bigger weight according to target endianness. */
73984f84 2019 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
e3ef4162 2020 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
73984f84
TP
2021 if (BYTES_BIG_ENDIAN)
2022 n_ptr = &n1;
2023 else
2024 n_ptr = &n2;
aa29ea0c 2025 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
73984f84 2026 {
aa29ea0c
TP
2027 unsigned marker =
2028 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2029 if (marker && marker != MARKER_BYTE_UNKNOWN)
73984f84
TP
2030 n_ptr->n += inc;
2031 }
2032 }
2033 else
2034 n->range = n1.range;
2035
2036 if (!n1.alias_set
2037 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2038 n->alias_set = n1.alias_set;
2039 else
2040 n->alias_set = ptr_type_node;
2041 n->vuse = n1.vuse;
2042 n->base_addr = n1.base_addr;
2043 n->offset = n1.offset;
2044 n->bytepos = n1.bytepos;
698ff107
TP
2045 n->type = n1.type;
2046 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
aa29ea0c
TP
2047 for (i = 0, mask = MARKER_MASK; i < size;
2048 i++, mask <<= BITS_PER_MARKER)
882a5fbe 2049 {
a9243bfc 2050 uint64_t masked1, masked2;
882a5fbe
TP
2051
2052 masked1 = n1.n & mask;
2053 masked2 = n2.n & mask;
2054 if (masked1 && masked2 && masked1 != masked2)
a31d2741 2055 return NULL;
882a5fbe 2056 }
03bd2f1a
AK
2057 n->n = n1.n | n2.n;
2058
2059 if (!verify_symbolic_number_p (n, stmt))
a31d2741 2060 return NULL;
03bd2f1a
AK
2061
2062 break;
2063 default:
a31d2741 2064 return NULL;
03bd2f1a 2065 }
a31d2741 2066 return source_stmt1;
03bd2f1a 2067 }
a31d2741 2068 return NULL;
03bd2f1a
AK
2069}
2070
73984f84
TP
2071/* Check if STMT completes a bswap implementation or a read in a given
2072 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2073 accordingly. It also sets N to represent the kind of operations
2074 performed: size of the resulting expression and whether it works on
2075 a memory source, and if so alias-set and vuse. At last, the
a31d2741
TP
2076 function returns a stmt whose rhs's first tree is the source
2077 expression. */
03bd2f1a 2078
a31d2741 2079static gimple
73984f84 2080find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
03bd2f1a 2081{
73984f84
TP
2082/* The number which the find_bswap_or_nop_1 result should match in order
2083 to have a full byte swap. The number is shifted to the right
2084 according to the size of the symbolic number before using it. */
a9243bfc
RB
2085 uint64_t cmpxchg = CMPXCHG;
2086 uint64_t cmpnop = CMPNOP;
73984f84 2087
a31d2741 2088 gimple source_stmt;
5da49a9d 2089 int limit;
03bd2f1a 2090
fef015a8 2091 /* The last parameter determines the depth search limit. It usually
73984f84
TP
2092 correlates directly to the number n of bytes to be touched. We
2093 increase that number by log2(n) + 1 here in order to also
2094 cover signed -> unsigned conversions of the src operand as can be seen
5da49a9d
KT
2095 in libgcc, and for initial shift/and operation of the src operand. */
2096 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2097 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
a31d2741 2098 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
03bd2f1a 2099
a31d2741
TP
2100 if (!source_stmt)
2101 return NULL;
03bd2f1a 2102
73984f84
TP
2103 /* Find real size of result (highest non zero byte). */
2104 if (n->base_addr)
03bd2f1a 2105 {
73984f84 2106 int rsize;
a9243bfc 2107 uint64_t tmpn;
03bd2f1a 2108
e3ef4162 2109 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
73984f84 2110 n->range = rsize;
03bd2f1a
AK
2111 }
2112
73984f84 2113 /* Zero out the extra bits of N and CMP*. */
e3ef4162 2114 if (n->range < (int) sizeof (int64_t))
73984f84 2115 {
a9243bfc 2116 uint64_t mask;
73984f84 2117
e3ef4162
TP
2118 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2119 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
73984f84
TP
2120 cmpnop &= mask;
2121 }
2122
2123 /* A complete byte swap should make the symbolic number to start with
2124 the largest digit in the highest order byte. Unchanged symbolic
58126368 2125 number indicates a read with same endianness as target architecture. */
73984f84
TP
2126 if (n->n == cmpnop)
2127 *bswap = false;
2128 else if (n->n == cmpxchg)
2129 *bswap = true;
2130 else
a31d2741 2131 return NULL;
73984f84
TP
2132
2133 /* Useless bit manipulation performed by code. */
2134 if (!n->base_addr && n->n == cmpnop)
a31d2741 2135 return NULL;
03bd2f1a 2136
73984f84 2137 n->range *= BITS_PER_UNIT;
a31d2741 2138 return source_stmt;
03bd2f1a
AK
2139}
2140
be55bfe6
TS
2141namespace {
2142
2143const pass_data pass_data_optimize_bswap =
2144{
2145 GIMPLE_PASS, /* type */
2146 "bswap", /* name */
2147 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2148 TV_NONE, /* tv_id */
2149 PROP_ssa, /* properties_required */
2150 0, /* properties_provided */
2151 0, /* properties_destroyed */
2152 0, /* todo_flags_start */
2153 0, /* todo_flags_finish */
2154};
2155
2156class pass_optimize_bswap : public gimple_opt_pass
2157{
2158public:
2159 pass_optimize_bswap (gcc::context *ctxt)
2160 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2161 {}
2162
2163 /* opt_pass methods: */
2164 virtual bool gate (function *)
2165 {
2166 return flag_expensive_optimizations && optimize;
2167 }
2168
2169 virtual unsigned int execute (function *);
2170
2171}; // class pass_optimize_bswap
2172
f351abd6
TP
2173/* Perform the bswap optimization: replace the expression computed in the rhs
2174 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2175 Which of these alternatives replace the rhs is given by N->base_addr (non
2176 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2177 load to perform are also given in N while the builtin bswap invoke is given
2178 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2179 load statements involved to construct the rhs in CUR_STMT and N->range gives
2180 the size of the rhs expression for maintaining some statistics.
2181
2182 Note that if the replacement involve a load, CUR_STMT is moved just after
2183 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2184 changing of basic block. */
73984f84
TP
2185
2186static bool
f351abd6
TP
2187bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2188 tree load_type, struct symbolic_number *n, bool bswap)
73984f84 2189{
f351abd6 2190 gimple_stmt_iterator gsi;
a31d2741 2191 tree src, tmp, tgt;
c6e3a931 2192 gimple bswap_stmt;
73984f84 2193
f351abd6 2194 gsi = gsi_for_stmt (cur_stmt);
a31d2741
TP
2195 src = gimple_assign_rhs1 (src_stmt);
2196 tgt = gimple_assign_lhs (cur_stmt);
73984f84
TP
2197
2198 /* Need to load the value from memory first. */
2199 if (n->base_addr)
2200 {
a31d2741 2201 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
73984f84
TP
2202 tree addr_expr, addr_tmp, val_expr, val_tmp;
2203 tree load_offset_ptr, aligned_load_type;
2204 gimple addr_stmt, load_stmt;
2205 unsigned align;
2206
2207 align = get_object_alignment (src);
3fd269db
RB
2208 if (bswap
2209 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2210 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
73984f84
TP
2211 return false;
2212
f351abd6
TP
2213 /* Move cur_stmt just before one of the load of the original
2214 to ensure it has the same VUSE. See PR61517 for what could
2215 go wrong. */
a31d2741
TP
2216 gsi_move_before (&gsi, &gsi_ins);
2217 gsi = gsi_for_stmt (cur_stmt);
2218
73984f84
TP
2219 /* Compute address to load from and cast according to the size
2220 of the load. */
2221 addr_expr = build_fold_addr_expr (unshare_expr (src));
2222 if (is_gimple_min_invariant (addr_expr))
2223 addr_tmp = addr_expr;
2224 else
2225 {
2226 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2227 "load_src");
2228 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
a31d2741 2229 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
73984f84
TP
2230 }
2231
2232 /* Perform the load. */
2233 aligned_load_type = load_type;
2234 if (align < TYPE_ALIGN (load_type))
2235 aligned_load_type = build_aligned_type (load_type, align);
2236 load_offset_ptr = build_int_cst (n->alias_set, 0);
2237 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2238 load_offset_ptr);
2239
2240 if (!bswap)
2241 {
2242 if (n->range == 16)
2243 nop_stats.found_16bit++;
2244 else if (n->range == 32)
2245 nop_stats.found_32bit++;
2246 else
2247 {
2248 gcc_assert (n->range == 64);
2249 nop_stats.found_64bit++;
2250 }
2251
2252 /* Convert the result of load if necessary. */
2253 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2254 {
2255 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2256 "load_dst");
2257 load_stmt = gimple_build_assign (val_tmp, val_expr);
2258 gimple_set_vuse (load_stmt, n->vuse);
a31d2741 2259 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
00d66391 2260 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
73984f84
TP
2261 }
2262 else
a31d2741 2263 {
00d66391 2264 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
a31d2741
TP
2265 gimple_set_vuse (cur_stmt, n->vuse);
2266 }
2267 update_stmt (cur_stmt);
73984f84
TP
2268
2269 if (dump_file)
2270 {
2271 fprintf (dump_file,
58126368 2272 "%d bit load in target endianness found at: ",
73984f84 2273 (int)n->range);
a31d2741 2274 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
73984f84
TP
2275 }
2276 return true;
2277 }
2278 else
2279 {
2280 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2281 load_stmt = gimple_build_assign (val_tmp, val_expr);
2282 gimple_set_vuse (load_stmt, n->vuse);
a31d2741 2283 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
73984f84
TP
2284 }
2285 src = val_tmp;
2286 }
2287
2288 if (n->range == 16)
2289 bswap_stats.found_16bit++;
2290 else if (n->range == 32)
2291 bswap_stats.found_32bit++;
2292 else
2293 {
2294 gcc_assert (n->range == 64);
2295 bswap_stats.found_64bit++;
2296 }
2297
2298 tmp = src;
2299
f351abd6
TP
2300 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2301 are considered as rotation of 2N bit values by N bits is generally not
2302 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2303 0x03040102 while a bswap for that value is 0x04030201. */
c6e3a931 2304 if (bswap && n->range == 16)
73984f84 2305 {
c6e3a931
TP
2306 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2307 bswap_type = TREE_TYPE (src);
2308 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2309 bswap_stmt = gimple_build_assign (NULL, src);
73984f84 2310 }
c6e3a931
TP
2311 else
2312 {
2313 /* Convert the src expression if necessary. */
2314 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2315 {
2316 gimple convert_stmt;
2317 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
0d0e4a03 2318 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
c6e3a931
TP
2319 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2320 }
73984f84 2321
c6e3a931
TP
2322 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2323 }
73984f84
TP
2324
2325 tmp = tgt;
2326
2327 /* Convert the result if necessary. */
2328 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2329 {
2330 gimple convert_stmt;
2331 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
0d0e4a03 2332 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
a31d2741 2333 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
73984f84
TP
2334 }
2335
c6e3a931 2336 gimple_set_lhs (bswap_stmt, tmp);
73984f84
TP
2337
2338 if (dump_file)
2339 {
2340 fprintf (dump_file, "%d bit bswap implementation found at: ",
2341 (int)n->range);
a31d2741 2342 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
73984f84
TP
2343 }
2344
c6e3a931 2345 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
a31d2741 2346 gsi_remove (&gsi, true);
73984f84
TP
2347 return true;
2348}
2349
2350/* Find manual byte swap implementations as well as load in a given
2351 endianness. Byte swaps are turned into a bswap builtin invokation
2352 while endian loads are converted to bswap builtin invokation or
58126368 2353 simple load according to the target endianness. */
73984f84 2354
be55bfe6
TS
2355unsigned int
2356pass_optimize_bswap::execute (function *fun)
03bd2f1a
AK
2357{
2358 basic_block bb;
e4a57350 2359 bool bswap32_p, bswap64_p;
03bd2f1a 2360 bool changed = false;
e4a57350 2361 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
03bd2f1a
AK
2362
2363 if (BITS_PER_UNIT != 8)
2364 return 0;
2365
e79983f4 2366 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
947131ba 2367 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
e79983f4 2368 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
947131ba 2369 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
ba1ee228 2370 || (bswap32_p && word_mode == SImode)));
03bd2f1a 2371
fb6234e0
AK
2372 /* Determine the argument type of the builtins. The code later on
2373 assumes that the return and argument type are the same. */
2374 if (bswap32_p)
2375 {
e79983f4 2376 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
fb6234e0
AK
2377 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2378 }
2379
2380 if (bswap64_p)
2381 {
e79983f4 2382 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
fb6234e0
AK
2383 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2384 }
2385
73984f84 2386 memset (&nop_stats, 0, sizeof (nop_stats));
4da3b811
NF
2387 memset (&bswap_stats, 0, sizeof (bswap_stats));
2388
be55bfe6 2389 FOR_EACH_BB_FN (bb, fun)
03bd2f1a
AK
2390 {
2391 gimple_stmt_iterator gsi;
2392
72a32729 2393 /* We do a reverse scan for bswap patterns to make sure we get the
f351abd6
TP
2394 widest match. As bswap pattern matching doesn't handle previously
2395 inserted smaller bswap replacements as sub-patterns, the wider
2396 variant wouldn't be detected. */
2397 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
03bd2f1a 2398 {
a31d2741
TP
2399 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2400 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
c6e3a931 2401 enum tree_code code;
73984f84
TP
2402 struct symbolic_number n;
2403 bool bswap;
03bd2f1a 2404
f351abd6
TP
2405 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2406 might be moved to a different basic block by bswap_replace and gsi
2407 must not points to it if that's the case. Moving the gsi_prev
2408 there make sure that gsi points to the statement previous to
2409 cur_stmt while still making sure that all statements are
2410 considered in this basic block. */
2411 gsi_prev (&gsi);
2412
c6e3a931 2413 if (!is_gimple_assign (cur_stmt))
03bd2f1a
AK
2414 continue;
2415
c6e3a931
TP
2416 code = gimple_assign_rhs_code (cur_stmt);
2417 switch (code)
2418 {
2419 case LROTATE_EXPR:
2420 case RROTATE_EXPR:
2421 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2422 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2423 % BITS_PER_UNIT)
2424 continue;
2425 /* Fall through. */
2426 case BIT_IOR_EXPR:
2427 break;
2428 default:
2429 continue;
2430 }
2431
a31d2741 2432 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
73984f84 2433
a31d2741 2434 if (!src_stmt)
73984f84 2435 continue;
03bd2f1a 2436
73984f84 2437 switch (n.range)
03bd2f1a 2438 {
1df855ce 2439 case 16:
f351abd6
TP
2440 /* Already in canonical form, nothing to do. */
2441 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2442 continue;
73984f84 2443 load_type = uint16_type_node;
1df855ce 2444 break;
03bd2f1a 2445 case 32:
73984f84 2446 load_type = uint32_type_node;
03bd2f1a 2447 if (bswap32_p)
fb6234e0 2448 {
e79983f4 2449 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
fb6234e0
AK
2450 bswap_type = bswap32_type;
2451 }
03bd2f1a
AK
2452 break;
2453 case 64:
73984f84 2454 load_type = uint64_type_node;
03bd2f1a 2455 if (bswap64_p)
fb6234e0 2456 {
e79983f4 2457 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
fb6234e0
AK
2458 bswap_type = bswap64_type;
2459 }
03bd2f1a
AK
2460 break;
2461 default:
2462 continue;
2463 }
2464
e4a57350 2465 if (bswap && !fndecl && n.range != 16)
03bd2f1a
AK
2466 continue;
2467
f351abd6
TP
2468 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2469 &n, bswap))
73984f84 2470 changed = true;
03bd2f1a
AK
2471 }
2472 }
2473
73984f84
TP
2474 statistics_counter_event (fun, "16-bit nop implementations found",
2475 nop_stats.found_16bit);
2476 statistics_counter_event (fun, "32-bit nop implementations found",
2477 nop_stats.found_32bit);
2478 statistics_counter_event (fun, "64-bit nop implementations found",
2479 nop_stats.found_64bit);
be55bfe6 2480 statistics_counter_event (fun, "16-bit bswap implementations found",
1df855ce 2481 bswap_stats.found_16bit);
be55bfe6 2482 statistics_counter_event (fun, "32-bit bswap implementations found",
4da3b811 2483 bswap_stats.found_32bit);
be55bfe6 2484 statistics_counter_event (fun, "64-bit bswap implementations found",
4da3b811
NF
2485 bswap_stats.found_64bit);
2486
3bea341f 2487 return (changed ? TODO_update_ssa : 0);
03bd2f1a
AK
2488}
2489
27a4cd48
DM
2490} // anon namespace
2491
2492gimple_opt_pass *
2493make_pass_optimize_bswap (gcc::context *ctxt)
2494{
2495 return new pass_optimize_bswap (ctxt);
2496}
2497
7ab6a828
RE
2498/* Return true if stmt is a type conversion operation that can be stripped
2499 when used in a widening multiply operation. */
2500static bool
2501widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2502{
2503 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2504
2505 if (TREE_CODE (result_type) == INTEGER_TYPE)
2506 {
2507 tree op_type;
2508 tree inner_op_type;
2509
2510 if (!CONVERT_EXPR_CODE_P (rhs_code))
2511 return false;
2512
2513 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2514
2515 /* If the type of OP has the same precision as the result, then
2516 we can strip this conversion. The multiply operation will be
2517 selected to create the correct extension as a by-product. */
2518 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2519 return true;
2520
2521 /* We can also strip a conversion if it preserves the signed-ness of
2522 the operation and doesn't narrow the range. */
2523 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2524
e919e5bf
RE
2525 /* If the inner-most type is unsigned, then we can strip any
2526 intermediate widening operation. If it's signed, then the
2527 intermediate widening operation must also be signed. */
2528 if ((TYPE_UNSIGNED (inner_op_type)
2529 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
7ab6a828
RE
2530 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2531 return true;
2532
2533 return false;
2534 }
2535
2536 return rhs_code == FIXED_CONVERT_EXPR;
2537}
2538
26a855d7
AS
2539/* Return true if RHS is a suitable operand for a widening multiplication,
2540 assuming a target type of TYPE.
1a39adae
RS
2541 There are two cases:
2542
5dfe80ba
AS
2543 - RHS makes some value at least twice as wide. Store that value
2544 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
1a39adae
RS
2545
2546 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2547 but leave *TYPE_OUT untouched. */
0354c0c7
BS
2548
2549static bool
26a855d7
AS
2550is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2551 tree *new_rhs_out)
1a39adae
RS
2552{
2553 gimple stmt;
26a855d7 2554 tree type1, rhs1;
1a39adae
RS
2555
2556 if (TREE_CODE (rhs) == SSA_NAME)
2557 {
1a39adae 2558 stmt = SSA_NAME_DEF_STMT (rhs);
26a855d7
AS
2559 if (is_gimple_assign (stmt))
2560 {
7ab6a828 2561 if (! widening_mult_conversion_strippable_p (type, stmt))
26a855d7
AS
2562 rhs1 = rhs;
2563 else
a6f969f4
AS
2564 {
2565 rhs1 = gimple_assign_rhs1 (stmt);
2566
2567 if (TREE_CODE (rhs1) == INTEGER_CST)
2568 {
2569 *new_rhs_out = rhs1;
2570 *type_out = NULL;
2571 return true;
2572 }
2573 }
26a855d7
AS
2574 }
2575 else
2576 rhs1 = rhs;
1a39adae 2577
1a39adae 2578 type1 = TREE_TYPE (rhs1);
26a855d7 2579
1a39adae 2580 if (TREE_CODE (type1) != TREE_CODE (type)
5dfe80ba 2581 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
1a39adae
RS
2582 return false;
2583
2584 *new_rhs_out = rhs1;
2585 *type_out = type1;
2586 return true;
2587 }
2588
2589 if (TREE_CODE (rhs) == INTEGER_CST)
2590 {
2591 *new_rhs_out = rhs;
2592 *type_out = NULL;
2593 return true;
2594 }
2595
2596 return false;
2597}
2598
26a855d7
AS
2599/* Return true if STMT performs a widening multiplication, assuming the
2600 output type is TYPE. If so, store the unwidened types of the operands
2601 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2602 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2603 and *TYPE2_OUT would give the operands of the multiplication. */
1a39adae
RS
2604
2605static bool
3d71881d 2606is_widening_mult_p (gimple stmt,
1a39adae
RS
2607 tree *type1_out, tree *rhs1_out,
2608 tree *type2_out, tree *rhs2_out)
0354c0c7 2609{
3d71881d
AS
2610 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2611
1a39adae
RS
2612 if (TREE_CODE (type) != INTEGER_TYPE
2613 && TREE_CODE (type) != FIXED_POINT_TYPE)
2614 return false;
0354c0c7 2615
26a855d7
AS
2616 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2617 rhs1_out))
0354c0c7
BS
2618 return false;
2619
26a855d7
AS
2620 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2621 rhs2_out))
1a39adae 2622 return false;
0354c0c7 2623
1a39adae 2624 if (*type1_out == NULL)
0354c0c7 2625 {
1a39adae 2626 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
0354c0c7 2627 return false;
1a39adae 2628 *type1_out = *type2_out;
0354c0c7 2629 }
0354c0c7 2630
1a39adae 2631 if (*type2_out == NULL)
0354c0c7 2632 {
1a39adae 2633 if (!int_fits_type_p (*rhs2_out, *type1_out))
0354c0c7 2634 return false;
1a39adae 2635 *type2_out = *type1_out;
0354c0c7 2636 }
0354c0c7 2637
ff63d754
AS
2638 /* Ensure that the larger of the two operands comes first. */
2639 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2640 {
2641 tree tmp;
2642 tmp = *type1_out;
2643 *type1_out = *type2_out;
2644 *type2_out = tmp;
2645 tmp = *rhs1_out;
2646 *rhs1_out = *rhs2_out;
2647 *rhs2_out = tmp;
2648 }
5dfe80ba 2649
1a39adae
RS
2650 return true;
2651}
0354c0c7 2652
1a39adae
RS
2653/* Process a single gimple statement STMT, which has a MULT_EXPR as
2654 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2655 value is true iff we converted the statement. */
2656
2657static bool
5dfe80ba 2658convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
1a39adae 2659{
83d5977e 2660 tree lhs, rhs1, rhs2, type, type1, type2;
1a39adae 2661 enum insn_code handler;
ef4bddc2 2662 machine_mode to_mode, from_mode, actual_mode;
a484f6ba 2663 optab op;
5dfe80ba
AS
2664 int actual_precision;
2665 location_t loc = gimple_location (stmt);
db719f50 2666 bool from_unsigned1, from_unsigned2;
1a39adae
RS
2667
2668 lhs = gimple_assign_lhs (stmt);
2669 type = TREE_TYPE (lhs);
2670 if (TREE_CODE (type) != INTEGER_TYPE)
0354c0c7
BS
2671 return false;
2672
3d71881d 2673 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
0354c0c7
BS
2674 return false;
2675
a484f6ba
AS
2676 to_mode = TYPE_MODE (type);
2677 from_mode = TYPE_MODE (type1);
db719f50
AS
2678 from_unsigned1 = TYPE_UNSIGNED (type1);
2679 from_unsigned2 = TYPE_UNSIGNED (type2);
a484f6ba 2680
db719f50 2681 if (from_unsigned1 && from_unsigned2)
a484f6ba 2682 op = umul_widen_optab;
db719f50 2683 else if (!from_unsigned1 && !from_unsigned2)
a484f6ba 2684 op = smul_widen_optab;
0354c0c7 2685 else
a484f6ba
AS
2686 op = usmul_widen_optab;
2687
5dfe80ba
AS
2688 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2689 0, &actual_mode);
1a39adae
RS
2690
2691 if (handler == CODE_FOR_nothing)
db719f50
AS
2692 {
2693 if (op != smul_widen_optab)
2694 {
6a228c2c
AS
2695 /* We can use a signed multiply with unsigned types as long as
2696 there is a wider mode to use, or it is the smaller of the two
2697 types that is unsigned. Note that type1 >= type2, always. */
2698 if ((TYPE_UNSIGNED (type1)
2699 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2700 || (TYPE_UNSIGNED (type2)
2701 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2702 {
2703 from_mode = GET_MODE_WIDER_MODE (from_mode);
2704 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2705 return false;
2706 }
db719f50
AS
2707
2708 op = smul_widen_optab;
2709 handler = find_widening_optab_handler_and_mode (op, to_mode,
2710 from_mode, 0,
2711 &actual_mode);
2712
2713 if (handler == CODE_FOR_nothing)
2714 return false;
2715
2716 from_unsigned1 = from_unsigned2 = false;
2717 }
2718 else
2719 return false;
2720 }
1a39adae 2721
5dfe80ba
AS
2722 /* Ensure that the inputs to the handler are in the correct precison
2723 for the opcode. This will be the full mode size. */
2724 actual_precision = GET_MODE_PRECISION (actual_mode);
f409d239
RG
2725 if (2 * actual_precision > TYPE_PRECISION (type))
2726 return false;
db719f50
AS
2727 if (actual_precision != TYPE_PRECISION (type1)
2728 || from_unsigned1 != TYPE_UNSIGNED (type1))
83d5977e
RG
2729 rhs1 = build_and_insert_cast (gsi, loc,
2730 build_nonstandard_integer_type
2731 (actual_precision, from_unsigned1), rhs1);
db719f50
AS
2732 if (actual_precision != TYPE_PRECISION (type2)
2733 || from_unsigned2 != TYPE_UNSIGNED (type2))
83d5977e
RG
2734 rhs2 = build_and_insert_cast (gsi, loc,
2735 build_nonstandard_integer_type
2736 (actual_precision, from_unsigned2), rhs2);
5dfe80ba 2737
a6f969f4
AS
2738 /* Handle constants. */
2739 if (TREE_CODE (rhs1) == INTEGER_CST)
2740 rhs1 = fold_convert (type1, rhs1);
2741 if (TREE_CODE (rhs2) == INTEGER_CST)
2742 rhs2 = fold_convert (type2, rhs2);
2743
5dfe80ba
AS
2744 gimple_assign_set_rhs1 (stmt, rhs1);
2745 gimple_assign_set_rhs2 (stmt, rhs2);
0354c0c7
BS
2746 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2747 update_stmt (stmt);
4da3b811 2748 widen_mul_stats.widen_mults_inserted++;
0354c0c7
BS
2749 return true;
2750}
2751
2752/* Process a single gimple statement STMT, which is found at the
2753 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2754 rhs (given by CODE), and try to convert it into a
2755 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2756 is true iff we converted the statement. */
2757
2758static bool
2759convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2760 enum tree_code code)
2761{
2762 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
cefb4d4f 2763 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
83d5977e 2764 tree type, type1, type2, optype;
0354c0c7
BS
2765 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2766 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2767 optab this_optab;
2768 enum tree_code wmult_code;
5dfe80ba 2769 enum insn_code handler;
ef4bddc2 2770 machine_mode to_mode, from_mode, actual_mode;
5dfe80ba
AS
2771 location_t loc = gimple_location (stmt);
2772 int actual_precision;
db719f50 2773 bool from_unsigned1, from_unsigned2;
0354c0c7
BS
2774
2775 lhs = gimple_assign_lhs (stmt);
2776 type = TREE_TYPE (lhs);
1a39adae
RS
2777 if (TREE_CODE (type) != INTEGER_TYPE
2778 && TREE_CODE (type) != FIXED_POINT_TYPE)
0354c0c7
BS
2779 return false;
2780
2781 if (code == MINUS_EXPR)
2782 wmult_code = WIDEN_MULT_MINUS_EXPR;
2783 else
2784 wmult_code = WIDEN_MULT_PLUS_EXPR;
2785
0354c0c7
BS
2786 rhs1 = gimple_assign_rhs1 (stmt);
2787 rhs2 = gimple_assign_rhs2 (stmt);
2788
2789 if (TREE_CODE (rhs1) == SSA_NAME)
2790 {
2791 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2792 if (is_gimple_assign (rhs1_stmt))
2793 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2794 }
0354c0c7
BS
2795
2796 if (TREE_CODE (rhs2) == SSA_NAME)
2797 {
2798 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2799 if (is_gimple_assign (rhs2_stmt))
2800 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2801 }
0354c0c7 2802
cefb4d4f
AS
2803 /* Allow for one conversion statement between the multiply
2804 and addition/subtraction statement. If there are more than
2805 one conversions then we assume they would invalidate this
2806 transformation. If that's not the case then they should have
2807 been folded before now. */
2808 if (CONVERT_EXPR_CODE_P (rhs1_code))
2809 {
2810 conv1_stmt = rhs1_stmt;
2811 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2812 if (TREE_CODE (rhs1) == SSA_NAME)
2813 {
2814 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2815 if (is_gimple_assign (rhs1_stmt))
2816 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2817 }
2818 else
2819 return false;
2820 }
2821 if (CONVERT_EXPR_CODE_P (rhs2_code))
2822 {
2823 conv2_stmt = rhs2_stmt;
2824 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2825 if (TREE_CODE (rhs2) == SSA_NAME)
2826 {
2827 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2828 if (is_gimple_assign (rhs2_stmt))
2829 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2830 }
2831 else
2832 return false;
2833 }
2834
5dfe80ba
AS
2835 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2836 is_widening_mult_p, but we still need the rhs returns.
2837
2838 It might also appear that it would be sufficient to use the existing
2839 operands of the widening multiply, but that would limit the choice of
42917d01
YZ
2840 multiply-and-accumulate instructions.
2841
2842 If the widened-multiplication result has more than one uses, it is
2843 probably wiser not to do the conversion. */
5dfe80ba
AS
2844 if (code == PLUS_EXPR
2845 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
0354c0c7 2846 {
42917d01
YZ
2847 if (!has_single_use (rhs1)
2848 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2849 &type2, &mult_rhs2))
0354c0c7 2850 return false;
1a39adae 2851 add_rhs = rhs2;
cefb4d4f 2852 conv_stmt = conv1_stmt;
0354c0c7 2853 }
5dfe80ba 2854 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
0354c0c7 2855 {
42917d01
YZ
2856 if (!has_single_use (rhs2)
2857 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2858 &type2, &mult_rhs2))
0354c0c7 2859 return false;
1a39adae 2860 add_rhs = rhs1;
cefb4d4f 2861 conv_stmt = conv2_stmt;
0354c0c7 2862 }
0354c0c7
BS
2863 else
2864 return false;
2865
5dfe80ba
AS
2866 to_mode = TYPE_MODE (type);
2867 from_mode = TYPE_MODE (type1);
db719f50
AS
2868 from_unsigned1 = TYPE_UNSIGNED (type1);
2869 from_unsigned2 = TYPE_UNSIGNED (type2);
3752b2ab 2870 optype = type1;
5dfe80ba 2871
db719f50
AS
2872 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2873 if (from_unsigned1 != from_unsigned2)
2874 {
3752b2ab
RS
2875 if (!INTEGRAL_TYPE_P (type))
2876 return false;
6a228c2c
AS
2877 /* We can use a signed multiply with unsigned types as long as
2878 there is a wider mode to use, or it is the smaller of the two
2879 types that is unsigned. Note that type1 >= type2, always. */
2880 if ((from_unsigned1
2881 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2882 || (from_unsigned2
2883 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
db719f50 2884 {
6a228c2c
AS
2885 from_mode = GET_MODE_WIDER_MODE (from_mode);
2886 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2887 return false;
db719f50 2888 }
6a228c2c
AS
2889
2890 from_unsigned1 = from_unsigned2 = false;
3752b2ab
RS
2891 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2892 false);
db719f50 2893 }
9eab7f91 2894
cefb4d4f
AS
2895 /* If there was a conversion between the multiply and addition
2896 then we need to make sure it fits a multiply-and-accumulate.
2897 The should be a single mode change which does not change the
2898 value. */
2899 if (conv_stmt)
2900 {
db719f50 2901 /* We use the original, unmodified data types for this. */
cefb4d4f
AS
2902 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2903 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2904 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2905 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2906
2907 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2908 {
2909 /* Conversion is a truncate. */
2910 if (TYPE_PRECISION (to_type) < data_size)
2911 return false;
2912 }
2913 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2914 {
2915 /* Conversion is an extend. Check it's the right sort. */
2916 if (TYPE_UNSIGNED (from_type) != is_unsigned
2917 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2918 return false;
2919 }
2920 /* else convert is a no-op for our purposes. */
2921 }
2922
9eab7f91
RS
2923 /* Verify that the machine can perform a widening multiply
2924 accumulate in this mode/signedness combination, otherwise
2925 this transformation is likely to pessimize code. */
db719f50 2926 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
5dfe80ba
AS
2927 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2928 from_mode, 0, &actual_mode);
2929
2930 if (handler == CODE_FOR_nothing)
9eab7f91
RS
2931 return false;
2932
5dfe80ba
AS
2933 /* Ensure that the inputs to the handler are in the correct precison
2934 for the opcode. This will be the full mode size. */
2935 actual_precision = GET_MODE_PRECISION (actual_mode);
db719f50
AS
2936 if (actual_precision != TYPE_PRECISION (type1)
2937 || from_unsigned1 != TYPE_UNSIGNED (type1))
83d5977e
RG
2938 mult_rhs1 = build_and_insert_cast (gsi, loc,
2939 build_nonstandard_integer_type
2940 (actual_precision, from_unsigned1),
2941 mult_rhs1);
db719f50
AS
2942 if (actual_precision != TYPE_PRECISION (type2)
2943 || from_unsigned2 != TYPE_UNSIGNED (type2))
83d5977e
RG
2944 mult_rhs2 = build_and_insert_cast (gsi, loc,
2945 build_nonstandard_integer_type
2946 (actual_precision, from_unsigned2),
2947 mult_rhs2);
0354c0c7 2948
75161d2c 2949 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
83d5977e 2950 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
75161d2c 2951
a6f969f4
AS
2952 /* Handle constants. */
2953 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
c3c5a1cc 2954 mult_rhs1 = fold_convert (type1, mult_rhs1);
a6f969f4 2955 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
c3c5a1cc 2956 mult_rhs2 = fold_convert (type2, mult_rhs2);
a6f969f4 2957
00d66391
JJ
2958 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2959 add_rhs);
0354c0c7 2960 update_stmt (gsi_stmt (*gsi));
4da3b811 2961 widen_mul_stats.maccs_inserted++;
0354c0c7
BS
2962 return true;
2963}
2964
4dbed5f6
RG
2965/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2966 with uses in additions and subtractions to form fused multiply-add
2967 operations. Returns true if successful and MUL_STMT should be removed. */
16949072
RG
2968
2969static bool
4dbed5f6 2970convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
16949072 2971{
4dbed5f6 2972 tree mul_result = gimple_get_lhs (mul_stmt);
16949072 2973 tree type = TREE_TYPE (mul_result);
538dd0b7
DM
2974 gimple use_stmt, neguse_stmt;
2975 gassign *fma_stmt;
16949072
RG
2976 use_operand_p use_p;
2977 imm_use_iterator imm_iter;
2978
2979 if (FLOAT_TYPE_P (type)
2980 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2981 return false;
2982
2983 /* We don't want to do bitfield reduction ops. */
2984 if (INTEGRAL_TYPE_P (type)
2985 && (TYPE_PRECISION (type)
2986 != GET_MODE_PRECISION (TYPE_MODE (type))))
2987 return false;
2988
2989 /* If the target doesn't support it, don't generate it. We assume that
2990 if fma isn't available then fms, fnma or fnms are not either. */
2991 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2992 return false;
2993
0fb808ea
JJ
2994 /* If the multiplication has zero uses, it is kept around probably because
2995 of -fnon-call-exceptions. Don't optimize it away in that case,
2996 it is DCE job. */
2997 if (has_zero_uses (mul_result))
2998 return false;
2999
16949072
RG
3000 /* Make sure that the multiplication statement becomes dead after
3001 the transformation, thus that all uses are transformed to FMAs.
3002 This means we assume that an FMA operation has the same cost
3003 as an addition. */
3004 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3005 {
3006 enum tree_code use_code;
a5f09e73
RH
3007 tree result = mul_result;
3008 bool negate_p = false;
16949072
RG
3009
3010 use_stmt = USE_STMT (use_p);
3011
76b14c29
RG
3012 if (is_gimple_debug (use_stmt))
3013 continue;
3014
16949072
RG
3015 /* For now restrict this operations to single basic blocks. In theory
3016 we would want to support sinking the multiplication in
3017 m = a*b;
3018 if ()
3019 ma = m + c;
3020 else
3021 d = m;
3022 to form a fma in the then block and sink the multiplication to the
3023 else block. */
3024 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3025 return false;
3026
a5f09e73 3027 if (!is_gimple_assign (use_stmt))
16949072
RG
3028 return false;
3029
a5f09e73
RH
3030 use_code = gimple_assign_rhs_code (use_stmt);
3031
3032 /* A negate on the multiplication leads to FNMA. */
3033 if (use_code == NEGATE_EXPR)
3034 {
a758fd67 3035 ssa_op_iter iter;
dae957ae 3036 use_operand_p usep;
a758fd67 3037
a5f09e73
RH
3038 result = gimple_assign_lhs (use_stmt);
3039
3040 /* Make sure the negate statement becomes dead with this
3041 single transformation. */
3042 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3043 &use_p, &neguse_stmt))
3044 return false;
3045
a758fd67 3046 /* Make sure the multiplication isn't also used on that stmt. */
dae957ae
RG
3047 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3048 if (USE_FROM_PTR (usep) == mul_result)
a758fd67
RG
3049 return false;
3050
a5f09e73
RH
3051 /* Re-validate. */
3052 use_stmt = neguse_stmt;
3053 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3054 return false;
3055 if (!is_gimple_assign (use_stmt))
3056 return false;
3057
3058 use_code = gimple_assign_rhs_code (use_stmt);
3059 negate_p = true;
3060 }
16949072 3061
a5f09e73
RH
3062 switch (use_code)
3063 {
3064 case MINUS_EXPR:
a1d8aa4b
RH
3065 if (gimple_assign_rhs2 (use_stmt) == result)
3066 negate_p = !negate_p;
3067 break;
a5f09e73 3068 case PLUS_EXPR:
a5f09e73 3069 break;
a5f09e73
RH
3070 default:
3071 /* FMA can only be formed from PLUS and MINUS. */
3072 return false;
3073 }
16949072 3074
ee8a9b7b
JR
3075 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3076 by a MULT_EXPR that we'll visit later, we might be able to
3077 get a more profitable match with fnma.
3078 OTOH, if we don't, a negate / fma pair has likely lower latency
3079 that a mult / subtract pair. */
3080 if (use_code == MINUS_EXPR && !negate_p
3081 && gimple_assign_rhs1 (use_stmt) == result
3082 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3083 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3084 {
3085 tree rhs2 = gimple_assign_rhs2 (use_stmt);
ee8a9b7b 3086
95c03b36
JR
3087 if (TREE_CODE (rhs2) == SSA_NAME)
3088 {
3089 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3090 if (has_single_use (rhs2)
3091 && is_gimple_assign (stmt2)
3092 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3093 return false;
3094 }
ee8a9b7b
JR
3095 }
3096
a5f09e73
RH
3097 /* We can't handle a * b + a * b. */
3098 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3099 return false;
a1d8aa4b
RH
3100
3101 /* While it is possible to validate whether or not the exact form
3102 that we've recognized is available in the backend, the assumption
3103 is that the transformation is never a loss. For instance, suppose
3104 the target only has the plain FMA pattern available. Consider
3105 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3106 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3107 still have 3 operations, but in the FMA form the two NEGs are
073a8998 3108 independent and could be run in parallel. */
16949072
RG
3109 }
3110
3111 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3112 {
16949072 3113 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
76b14c29 3114 enum tree_code use_code;
4dbed5f6 3115 tree addop, mulop1 = op1, result = mul_result;
a5f09e73 3116 bool negate_p = false;
16949072 3117
76b14c29
RG
3118 if (is_gimple_debug (use_stmt))
3119 continue;
3120
3121 use_code = gimple_assign_rhs_code (use_stmt);
a5f09e73
RH
3122 if (use_code == NEGATE_EXPR)
3123 {
3124 result = gimple_assign_lhs (use_stmt);
3125 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3126 gsi_remove (&gsi, true);
3127 release_defs (use_stmt);
3128
3129 use_stmt = neguse_stmt;
3130 gsi = gsi_for_stmt (use_stmt);
3131 use_code = gimple_assign_rhs_code (use_stmt);
3132 negate_p = true;
3133 }
3134
3135 if (gimple_assign_rhs1 (use_stmt) == result)
16949072
RG
3136 {
3137 addop = gimple_assign_rhs2 (use_stmt);
3138 /* a * b - c -> a * b + (-c) */
3139 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3140 addop = force_gimple_operand_gsi (&gsi,
3141 build1 (NEGATE_EXPR,
3142 type, addop),
3143 true, NULL_TREE, true,
3144 GSI_SAME_STMT);
3145 }
3146 else
3147 {
3148 addop = gimple_assign_rhs1 (use_stmt);
3149 /* a - b * c -> (-b) * c + a */
3150 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
a5f09e73 3151 negate_p = !negate_p;
16949072
RG
3152 }
3153
a5f09e73
RH
3154 if (negate_p)
3155 mulop1 = force_gimple_operand_gsi (&gsi,
3156 build1 (NEGATE_EXPR,
3157 type, mulop1),
3158 true, NULL_TREE, true,
3159 GSI_SAME_STMT);
3160
0d0e4a03
JJ
3161 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3162 FMA_EXPR, mulop1, op2, addop);
16949072 3163 gsi_replace (&gsi, fma_stmt, true);
4da3b811 3164 widen_mul_stats.fmas_inserted++;
16949072
RG
3165 }
3166
3167 return true;
3168}
3169
5b58b39b
BS
3170/* Find integer multiplications where the operands are extended from
3171 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3172 where appropriate. */
3173
be55bfe6
TS
3174namespace {
3175
3176const pass_data pass_data_optimize_widening_mul =
3177{
3178 GIMPLE_PASS, /* type */
3179 "widening_mul", /* name */
3180 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3181 TV_NONE, /* tv_id */
3182 PROP_ssa, /* properties_required */
3183 0, /* properties_provided */
3184 0, /* properties_destroyed */
3185 0, /* todo_flags_start */
3bea341f 3186 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
3187};
3188
3189class pass_optimize_widening_mul : public gimple_opt_pass
3190{
3191public:
3192 pass_optimize_widening_mul (gcc::context *ctxt)
3193 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3194 {}
3195
3196 /* opt_pass methods: */
3197 virtual bool gate (function *)
3198 {
3199 return flag_expensive_optimizations && optimize;
3200 }
3201
3202 virtual unsigned int execute (function *);
3203
3204}; // class pass_optimize_widening_mul
3205
3206unsigned int
3207pass_optimize_widening_mul::execute (function *fun)
5b58b39b 3208{
5b58b39b 3209 basic_block bb;
4dbed5f6 3210 bool cfg_changed = false;
5b58b39b 3211
4da3b811
NF
3212 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3213
be55bfe6 3214 FOR_EACH_BB_FN (bb, fun)
5b58b39b
BS
3215 {
3216 gimple_stmt_iterator gsi;
3217
16949072 3218 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
5b58b39b
BS
3219 {
3220 gimple stmt = gsi_stmt (gsi);
0354c0c7 3221 enum tree_code code;
5b58b39b 3222
16949072
RG
3223 if (is_gimple_assign (stmt))
3224 {
3225 code = gimple_assign_rhs_code (stmt);
3226 switch (code)
3227 {
3228 case MULT_EXPR:
5dfe80ba 3229 if (!convert_mult_to_widen (stmt, &gsi)
4dbed5f6
RG
3230 && convert_mult_to_fma (stmt,
3231 gimple_assign_rhs1 (stmt),
3232 gimple_assign_rhs2 (stmt)))
16949072
RG
3233 {
3234 gsi_remove (&gsi, true);
3235 release_defs (stmt);
3236 continue;
3237 }
3238 break;
3239
3240 case PLUS_EXPR:
3241 case MINUS_EXPR:
3242 convert_plusminus_to_widen (&gsi, stmt, code);
3243 break;
5b58b39b 3244
16949072
RG
3245 default:;
3246 }
3247 }
85a47bed
RG
3248 else if (is_gimple_call (stmt)
3249 && gimple_call_lhs (stmt))
4dbed5f6
RG
3250 {
3251 tree fndecl = gimple_call_fndecl (stmt);
3252 if (fndecl
3253 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3254 {
3255 switch (DECL_FUNCTION_CODE (fndecl))
3256 {
3257 case BUILT_IN_POWF:
3258 case BUILT_IN_POW:
3259 case BUILT_IN_POWL:
3260 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3261 && REAL_VALUES_EQUAL
3262 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3263 dconst2)
3264 && convert_mult_to_fma (stmt,
3265 gimple_call_arg (stmt, 0),
3266 gimple_call_arg (stmt, 0)))
3267 {
0b238a9b 3268 unlink_stmt_vdef (stmt);
b5b3ec3e
RG
3269 if (gsi_remove (&gsi, true)
3270 && gimple_purge_dead_eh_edges (bb))
4dbed5f6 3271 cfg_changed = true;
b5b3ec3e 3272 release_defs (stmt);
4dbed5f6
RG
3273 continue;
3274 }
3275 break;
3276
3277 default:;
3278 }
3279 }
3280 }
16949072 3281 gsi_next (&gsi);
5b58b39b
BS
3282 }
3283 }
0354c0c7 3284
be55bfe6 3285 statistics_counter_event (fun, "widening multiplications inserted",
4da3b811 3286 widen_mul_stats.widen_mults_inserted);
be55bfe6 3287 statistics_counter_event (fun, "widening maccs inserted",
4da3b811 3288 widen_mul_stats.maccs_inserted);
be55bfe6 3289 statistics_counter_event (fun, "fused multiply-adds inserted",
4da3b811
NF
3290 widen_mul_stats.fmas_inserted);
3291
4dbed5f6 3292 return cfg_changed ? TODO_cleanup_cfg : 0;
5b58b39b
BS
3293}
3294
27a4cd48
DM
3295} // anon namespace
3296
3297gimple_opt_pass *
3298make_pass_optimize_widening_mul (gcc::context *ctxt)
3299{
3300 return new pass_optimize_widening_mul (ctxt);
3301}