]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/vtable-verify.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / vtable-verify.c
CommitLineData
d353bf18 1/* Copyright (C) 2013-2015 Free Software Foundation, Inc.
b710ec85 2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13for more details.
14
15You should have received a copy of the GNU General Public License
16along with GCC; see the file COPYING3. If not see
17<http://www.gnu.org/licenses/>. */
18
19/* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20 before using them for virtual method dispatches. */
21
22/* This file is part of the vtable security feature implementation.
23 The vtable security feature is designed to detect when a virtual
24 call is about to be made through an invalid vtable pointer
25 (possibly due to data corruption or malicious attacks). The
26 compiler finds every virtual call, and inserts a verification call
27 before the virtual call. The verification call takes the actual
28 vtable pointer value in the object through which the virtual call
29 is being made, and compares the vtable pointer against a set of all
30 valid vtable pointers that the object could contain (this set is
31 based on the declared type of the object). If the pointer is in
32 the valid set, execution is allowed to continue; otherwise the
33 program is halted.
34
35 There are several pieces needed in order to make this work: 1. For
36 every virtual class in the program (i.e. a class that contains
37 virtual methods), we need to build the set of all possible valid
38 vtables that an object of that class could point to. This includes
39 vtables for any class(es) that inherit from the class under
40 consideration. 2. For every such data set we build up, we need a
41 way to find and reference the data set. This is complicated by the
42 fact that the real vtable addresses are not known until runtime,
43 when the program is loaded into memory, but we need to reference the
44 sets at compile time when we are inserting verification calls into
45 the program. 3. We need to find every virtual call in the program,
46 and insert the verification call (with the appropriate arguments)
47 before the virtual call. 4. We need some runtime library pieces:
48 the code to build up the data sets at runtime; the code to actually
49 perform the verification using the data sets; and some code to set
50 protections on the data sets, so they themselves do not become
51 hacker targets.
52
53 To find and reference the set of valid vtable pointers for any given
54 virtual class, we create a special global variable for each virtual
55 class. We refer to this as the "vtable map variable" for that
56 class. The vtable map variable has the type "void *", and is
57 initialized by the compiler to NULL. At runtime when the set of
58 valid vtable pointers for a virtual class, e.g. class Foo, is built,
59 the vtable map variable for class Foo is made to point to the set.
60 During compile time, when the compiler is inserting verification
61 calls into the program, it passes the vtable map variable for the
62 appropriate class to the verification call, so that at runtime the
63 verification call can find the appropriate data set.
64
65 The actual set of valid vtable pointers for a virtual class,
66 e.g. class Foo, cannot be built until runtime, when the vtables get
67 loaded into memory and their addresses are known. But the knowledge
68 about which vtables belong in which class' hierarchy is only known
69 at compile time. Therefore at compile time we collect class
70 hierarchy and vtable information about every virtual class, and we
71 generate calls to build up the data sets at runtime. To build the
72 data sets, we call one of the functions we add to the runtime
73 library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
74 a vtable map variable and the address of a vtable. If the vtable
75 map variable is currently NULL, it creates a new data set (hash
76 table), makes the vtable map variable point to the new data set, and
77 inserts the vtable address into the data set. If the vtable map
78 variable is not NULL, it just inserts the vtable address into the
79 data set. In order to make sure that our data sets are built before
80 any verification calls happen, we create a special constructor
81 initialization function for each compilation unit, give it a very
82 high initialization priority, and insert all of our calls to
83 __VLTRegisterPair into our special constructor initialization
84 function.
85
86 The vtable verification feature is controlled by the flag
87 '-fvtable-verify='. There are three flavors of this:
88 '-fvtable-verify=std', '-fvtable-verify=preinit', and
89 '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
90 used, then our constructor initialization function gets put into the
91 preinit array. This is necessary if there are data sets that need
92 to be built very early in execution. If the constructor
93 initialization function gets put into the preinit array, the we also
94 add calls to __VLTChangePermission at the beginning and end of the
95 function. The call at the beginning sets the permissions on the
96 data sets and vtable map variables to read/write, and the one at the
97 end makes them read-only. If the '-fvtable-verify=std' option is
98 used, the constructor initialization functions are executed at their
99 normal time, and the __VLTChangePermission calls are handled
100 differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101 The option '-fvtable-verify=none' turns off vtable verification.
102
103 This file contains code for the tree pass that goes through all the
104 statements in each basic block, looking for virtual calls, and
105 inserting a call to __VLTVerifyVtablePointer (with appropriate
106 arguments) before each one. It also contains the hash table
107 functions for the data structures used for collecting the class
108 hierarchy data and building/maintaining the vtable map variable data
109 are defined in gcc/vtable-verify.h. These data structures are
110 shared with the code in the C++ front end that collects the class
111 hierarchy & vtable information and generates the vtable map
112 variables (see cp/vtable-class-hierarchy.c). This tree pass should
113 run just before the gimple is converted to RTL.
114
115 Some implementation details for this pass:
116
117 To find all of the virtual calls, we iterate through all the
118 gimple statements in each basic block, looking for any call
119 statement with the code "OBJ_TYPE_REF". Once we have found the
120 virtual call, we need to find the vtable pointer through which the
121 call is being made, and the type of the object containing the
122 pointer (to find the appropriate vtable map variable). We then use
123 these to build a call to __VLTVerifyVtablePointer, passing the
124 vtable map variable, and the vtable pointer. We insert the
125 verification call just after the gimple statement that gets the
126 vtable pointer out of the object, and we update the next
127 statement to depend on the result returned from
128 __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129 subsequent compiler phases don't remove or reorder the call (it's no
130 good to have the verification occur after the virtual call, for
131 example). To find the vtable pointer being used (and the type of
132 the object) we search backwards through the def_stmts chain from the
133 virtual call (see verify_bb_vtables for more details). */
134
135#include "config.h"
136#include "system.h"
137#include "coretypes.h"
9ef16211 138#include "backend.h"
7c29e30e 139#include "hard-reg-set.h"
b20a8bb4 140#include "tree.h"
9ef16211 141#include "gimple.h"
7c29e30e 142#include "tree-pass.h"
9ef16211 143#include "ssa.h"
7c29e30e 144#include "alias.h"
9ef16211 145#include "fold-const.h"
bc61cadb 146#include "internal-fn.h"
dcf1a1ec 147#include "gimple-iterator.h"
b710ec85 148#include "cfgloop.h"
149
150#include "vtable-verify.h"
151
152unsigned num_vtable_map_nodes = 0;
153int total_num_virtual_calls = 0;
154int total_num_verified_vcalls = 0;
155
156extern GTY(()) tree verify_vtbl_ptr_fndecl;
157tree verify_vtbl_ptr_fndecl = NULL_TREE;
158
159/* Keep track of whether or not any virtual call were verified. */
160static bool any_verification_calls_generated = false;
161
162unsigned int vtable_verify_main (void);
163
164
165/* The following few functions are for the vtbl pointer hash table
166 in the 'registered' field of the struct vtable_map_node. The hash
167 table keeps track of which vtable pointers have been used in
168 calls to __VLTRegisterPair with that particular vtable map variable. */
169
170/* This function checks to see if a particular VTABLE_DECL and OFFSET are
171 already in the 'registered' hash table for NODE. */
172
173bool
174vtbl_map_node_registration_find (struct vtbl_map_node *node,
175 tree vtable_decl,
176 unsigned offset)
177{
178 struct vtable_registration key;
179 struct vtable_registration **slot;
180
c1f445d2 181 gcc_assert (node && node->registered);
b710ec85 182
183 key.vtable_decl = vtable_decl;
c1f445d2 184 slot = node->registered->find_slot (&key, NO_INSERT);
b710ec85 185
186 if (slot && (*slot))
187 {
188 unsigned i;
9af5ce0c 189 for (i = 0; i < ((*slot)->offsets).length (); ++i)
b710ec85 190 if ((*slot)->offsets[i] == offset)
191 return true;
192 }
193
194 return false;
195}
196
197/* This function inserts VTABLE_DECL and OFFSET into the 'registered'
198 hash table for NODE. It returns a boolean indicating whether or not
199 it actually inserted anything. */
200
201bool
202vtbl_map_node_registration_insert (struct vtbl_map_node *node,
203 tree vtable_decl,
204 unsigned offset)
205{
206 struct vtable_registration key;
207 struct vtable_registration **slot;
208 bool inserted_something = false;
209
c1f445d2 210 if (!node || !node->registered)
b710ec85 211 return false;
212
213 key.vtable_decl = vtable_decl;
c1f445d2 214 slot = node->registered->find_slot (&key, INSERT);
b710ec85 215
216 if (! *slot)
217 {
218 struct vtable_registration *node;
219 node = XNEW (struct vtable_registration);
220 node->vtable_decl = vtable_decl;
221
222 (node->offsets).create (10);
223 (node->offsets).safe_push (offset);
224 *slot = node;
225 inserted_something = true;
226 }
227 else
228 {
229 /* We found the vtable_decl slot; we need to see if it already
230 contains the offset. If not, we need to add the offset. */
231 unsigned i;
232 bool found = false;
9af5ce0c 233 for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
b710ec85 234 if ((*slot)->offsets[i] == offset)
235 found = true;
236
237 if (!found)
238 {
239 ((*slot)->offsets).safe_push (offset);
240 inserted_something = true;
241 }
242 }
243 return inserted_something;
244}
245
246/* Hashtable functions for vtable_registration hashtables. */
247
248inline hashval_t
9969c043 249registration_hasher::hash (const vtable_registration *p)
b710ec85 250{
251 const struct vtable_registration *n = (const struct vtable_registration *) p;
252 return (hashval_t) (DECL_UID (n->vtable_decl));
253}
254
255inline bool
9969c043 256registration_hasher::equal (const vtable_registration *p1,
257 const vtable_registration *p2)
b710ec85 258{
259 const struct vtable_registration *n1 =
260 (const struct vtable_registration *) p1;
261 const struct vtable_registration *n2 =
262 (const struct vtable_registration *) p2;
263 return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
264}
265
266/* End of hashtable functions for "registered" hashtables. */
267
268
269
270/* Hashtable definition and functions for vtbl_map_hash. */
271
770ff93b 272struct vtbl_map_hasher : nofree_ptr_hash <struct vtbl_map_node>
b710ec85 273{
9969c043 274 static inline hashval_t hash (const vtbl_map_node *);
275 static inline bool equal (const vtbl_map_node *, const vtbl_map_node *);
b710ec85 276};
277
278/* Returns a hash code for P. */
279
280inline hashval_t
9969c043 281vtbl_map_hasher::hash (const vtbl_map_node *p)
b710ec85 282{
283 const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
284 return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
285}
286
287/* Returns nonzero if P1 and P2 are equal. */
288
289inline bool
9969c043 290vtbl_map_hasher::equal (const vtbl_map_node *p1, const vtbl_map_node *p2)
b710ec85 291{
292 const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
293 const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
294 return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
295 IDENTIFIER_HASH_VALUE (n2.class_name));
296}
297
298/* Here are the two structures into which we insert vtable map nodes.
299 We use two data structures because of the vastly different ways we need
300 to find the nodes for various tasks (see comments in vtable-verify.h
301 for more details. */
302
c1f445d2 303typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
b710ec85 304typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
305
306/* Vtable map variable nodes stored in a hash table. */
c1f445d2 307static vtbl_map_table_type *vtbl_map_hash;
b710ec85 308
309/* Vtable map variable nodes stored in a vector. */
310vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
311
68a98a70 312/* Vector of mangled names for anonymous classes. */
313extern GTY(()) vec<tree, va_gc> *vtbl_mangled_name_types;
314extern GTY(()) vec<tree, va_gc> *vtbl_mangled_name_ids;
315vec<tree, va_gc> *vtbl_mangled_name_types;
316vec<tree, va_gc> *vtbl_mangled_name_ids;
317
318/* Look up class_type (a type decl for record types) in the vtbl_mangled_names_*
319 vectors. This is a linear lookup. Return the associated mangled name for
320 the class type. This is for handling types from anonymous namespaces, whose
321 DECL_ASSEMBLER_NAME ends up being "<anon>", which is useless for our
322 purposes.
323
324 We use two vectors of trees to keep track of the mangled names: One is a
325 vector of class types and the other is a vector of the mangled names. The
326 assumption is that these two vectors are kept in perfect lock-step so that
327 vtbl_mangled_name_ids[i] is the mangled name for
328 vtbl_mangled_name_types[i]. */
329
330static tree
331vtbl_find_mangled_name (tree class_type)
332{
333 tree result = NULL_TREE;
334 unsigned i;
335
336 if (!vtbl_mangled_name_types or !vtbl_mangled_name_ids)
337 return result;
338
339 if (vtbl_mangled_name_types->length() != vtbl_mangled_name_ids->length())
340 return result;
341
342 for (i = 0; i < vtbl_mangled_name_types->length(); ++i)
343 if ((*vtbl_mangled_name_types)[i] == class_type)
344 {
345 result = (*vtbl_mangled_name_ids)[i];
346 break;
347 }
348
349 return result;
350}
351
352/* Store a class type decl and its mangled name, for an anonymous RECORD_TYPE,
353 in the vtbl_mangled_names vector. Make sure there is not already an
354 entry for the class type before adding it. */
355
356void
357vtbl_register_mangled_name (tree class_type, tree mangled_name)
358{
359 if (!vtbl_mangled_name_types)
360 vec_alloc (vtbl_mangled_name_types, 10);
361
362 if (!vtbl_mangled_name_ids)
363 vec_alloc (vtbl_mangled_name_ids, 10);
364
365 gcc_assert (vtbl_mangled_name_types->length() ==
366 vtbl_mangled_name_ids->length());
367
368
369 if (vtbl_find_mangled_name (class_type) == NULL_TREE)
370 {
371 vec_safe_push (vtbl_mangled_name_types, class_type);
372 vec_safe_push (vtbl_mangled_name_ids, mangled_name);
373 }
374}
375
b710ec85 376/* Return vtbl_map node for CLASS_NAME without creating a new one. */
377
378struct vtbl_map_node *
379vtbl_map_get_node (tree class_type)
380{
381 struct vtbl_map_node key;
382 struct vtbl_map_node **slot;
383
384 tree class_type_decl;
385 tree class_name;
386 unsigned int type_quals;
387
c1f445d2 388 if (!vtbl_map_hash)
b710ec85 389 return NULL;
390
391 gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
392
393
394 /* Find the TYPE_DECL for the class. */
395 class_type_decl = TYPE_NAME (class_type);
396
397 /* Verify that there aren't any qualifiers on the type. */
398 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
399 gcc_assert (type_quals == TYPE_UNQUALIFIED);
400
401 /* Get the mangled name for the unqualified type. */
402 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
403 class_name = DECL_ASSEMBLER_NAME (class_type_decl);
404
68a98a70 405 if (strstr (IDENTIFIER_POINTER (class_name), "<anon>") != NULL)
406 class_name = vtbl_find_mangled_name (class_type_decl);
407
b710ec85 408 key.class_name = class_name;
c1f445d2 409 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
b710ec85 410 if (!slot)
411 return NULL;
412 return *slot;
413}
414
415/* Return vtbl_map node assigned to BASE_CLASS_TYPE. Create new one
416 when needed. */
417
418struct vtbl_map_node *
419find_or_create_vtbl_map_node (tree base_class_type)
420{
421 struct vtbl_map_node key;
422 struct vtbl_map_node *node;
423 struct vtbl_map_node **slot;
424 tree class_type_decl;
425 unsigned int type_quals;
426
c1f445d2 427 if (!vtbl_map_hash)
428 vtbl_map_hash = new vtbl_map_table_type (10);
b710ec85 429
430 /* Find the TYPE_DECL for the class. */
431 class_type_decl = TYPE_NAME (base_class_type);
432
433 /* Verify that there aren't any type qualifiers on type. */
434 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
435 gcc_assert (type_quals == TYPE_UNQUALIFIED);
436
437 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
438 key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
68a98a70 439
440 if (strstr (IDENTIFIER_POINTER (key.class_name), "<anon>") != NULL)
441 key.class_name = vtbl_find_mangled_name (class_type_decl);
442
c1f445d2 443 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
b710ec85 444
445 if (*slot)
446 return *slot;
447
448 node = XNEW (struct vtbl_map_node);
449 node->vtbl_map_decl = NULL_TREE;
450 node->class_name = key.class_name;
451 node->uid = num_vtable_map_nodes++;
452
453 node->class_info = XNEW (struct vtv_graph_node);
454 node->class_info->class_type = base_class_type;
455 node->class_info->class_uid = node->uid;
456 node->class_info->num_processed_children = 0;
457
458 (node->class_info->parents).create (4);
459 (node->class_info->children).create (4);
460
c1f445d2 461 node->registered = new register_table_type (16);
b710ec85 462
463 node->is_used = false;
464
465 vtbl_map_nodes_vec.safe_push (node);
466 gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
467
468 *slot = node;
469 return node;
470}
471
472/* End of hashtable functions for vtable_map variables hash table. */
473
474/* Given a gimple STMT, this function checks to see if the statement
475 is an assignment, the rhs of which is getting the vtable pointer
476 value out of an object. (i.e. it's the value we need to verify
477 because its the vtable pointer that will be used for a virtual
478 call). */
479
480static bool
42acab1c 481is_vtable_assignment_stmt (gimple *stmt)
b710ec85 482{
483
484 if (gimple_code (stmt) != GIMPLE_ASSIGN)
485 return false;
486 else
487 {
488 tree lhs = gimple_assign_lhs (stmt);
489 tree rhs = gimple_assign_rhs1 (stmt);
490
491 if (TREE_CODE (lhs) != SSA_NAME)
492 return false;
493
494 if (TREE_CODE (rhs) != COMPONENT_REF)
495 return false;
496
497 if (! (TREE_OPERAND (rhs, 1))
498 || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
499 return false;
500
501 if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
502 return false;
503 }
504
505 return true;
506}
507
508/* This function attempts to recover the declared class of an object
509 that is used in making a virtual call. We try to get the type from
510 the type cast in the gimple assignment statement that extracts the
511 vtable pointer from the object (DEF_STMT). The gimple statement
512 usually looks something like this:
513
514 D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event */
515
516static tree
517extract_object_class_type (tree rhs)
518{
519 tree result = NULL_TREE;
520
521 /* Try to find and extract the type cast from that stmt. */
522 if (TREE_CODE (rhs) == COMPONENT_REF)
523 {
524 tree op0 = TREE_OPERAND (rhs, 0);
525 tree op1 = TREE_OPERAND (rhs, 1);
526
527 if (TREE_CODE (op1) == FIELD_DECL
528 && DECL_VIRTUAL_P (op1))
529 {
530 if (TREE_CODE (op0) == COMPONENT_REF
531 && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
532 && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
533 result = TREE_TYPE (TREE_OPERAND (op0, 0));
534 else
535 result = TREE_TYPE (op0);
536 }
537 else if (TREE_CODE (op0) == COMPONENT_REF)
538 {
539 result = extract_object_class_type (op0);
540 if (result == NULL_TREE
541 && TREE_CODE (op1) == COMPONENT_REF)
542 result = extract_object_class_type (op1);
543 }
544 }
545
546 return result;
547}
548
549/* This function traces forward through the def-use chain of an SSA
550 variable to see if it ever gets used in a virtual function call. It
551 returns a boolean indicating whether or not it found a virtual call in
552 the use chain. */
553
554static bool
68a98a70 555var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth,
556 int *recursion_depth)
b710ec85 557{
558 imm_use_iterator imm_iter;
559 bool found_vcall = false;
560 use_operand_p use_p;
561
562 if (TREE_CODE (lhs) != SSA_NAME)
563 return false;
564
565 if (*mem_ref_depth > 2)
566 return false;
567
68a98a70 568 if (*recursion_depth > 25)
569 /* If we've recursed this far the chances are pretty good that
570 we're not going to find what we're looking for, and that we've
571 gone down a recursion black hole. Time to stop. */
572 return false;
573
574 *recursion_depth = *recursion_depth + 1;
575
b710ec85 576 /* Iterate through the immediate uses of the current variable. If
577 it's a virtual function call, we're done. Otherwise, if there's
578 an LHS for the use stmt, add the ssa var to the work list
579 (assuming it's not already in the list and is not a variable
580 we've already examined. */
581
582 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
583 {
42acab1c 584 gimple *stmt2 = USE_STMT (use_p);
b710ec85 585
475a6b35 586 if (is_gimple_call (stmt2))
b710ec85 587 {
588 tree fncall = gimple_call_fn (stmt2);
475a6b35 589 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
b710ec85 590 found_vcall = true;
591 else
592 return false;
593 }
594 else if (gimple_code (stmt2) == GIMPLE_PHI)
595 {
596 found_vcall = var_is_used_for_virtual_call_p
597 (gimple_phi_result (stmt2),
68a98a70 598 mem_ref_depth,
599 recursion_depth);
b710ec85 600 }
475a6b35 601 else if (is_gimple_assign (stmt2))
b710ec85 602 {
603 tree rhs = gimple_assign_rhs1 (stmt2);
604 if (TREE_CODE (rhs) == ADDR_EXPR
605 || TREE_CODE (rhs) == MEM_REF)
606 *mem_ref_depth = *mem_ref_depth + 1;
607
608 if (TREE_CODE (rhs) == COMPONENT_REF)
609 {
610 while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
611 rhs = TREE_OPERAND (rhs, 0);
612
613 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
614 || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
615 *mem_ref_depth = *mem_ref_depth + 1;
616 }
617
618 if (*mem_ref_depth < 3)
619 found_vcall = var_is_used_for_virtual_call_p
620 (gimple_assign_lhs (stmt2),
68a98a70 621 mem_ref_depth,
622 recursion_depth);
b710ec85 623 }
624
625 else
626 break;
627
628 if (found_vcall)
629 return true;
630 }
631
632 return false;
633}
634
635/* Search through all the statements in a basic block (BB), searching
636 for virtual method calls. For each virtual method dispatch, find
637 the vptr value used, and the statically declared type of the
638 object; retrieve the vtable map variable for the type of the
639 object; generate a call to __VLTVerifyVtablePointer; and insert the
640 generated call into the basic block, after the point where the vptr
641 value is gotten out of the object and before the virtual method
642 dispatch. Make the virtual method dispatch depend on the return
643 value from the verification call, so that subsequent optimizations
644 cannot reorder the two calls. */
645
646static void
647verify_bb_vtables (basic_block bb)
648{
649 gimple_seq stmts;
42acab1c 650 gimple *stmt = NULL;
b710ec85 651 gimple_stmt_iterator gsi_vtbl_assign;
652 gimple_stmt_iterator gsi_virtual_call;
653
654 stmts = bb_seq (bb);
655 gsi_virtual_call = gsi_start (stmts);
656 for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
657 {
658 stmt = gsi_stmt (gsi_virtual_call);
659
660 /* Count virtual calls. */
0340f4fd 661 if (is_gimple_call (stmt))
b710ec85 662 {
663 tree fncall = gimple_call_fn (stmt);
0340f4fd 664 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
b710ec85 665 total_num_virtual_calls++;
666 }
667
668 if (is_vtable_assignment_stmt (stmt))
669 {
670 tree lhs = gimple_assign_lhs (stmt);
671 tree vtbl_var_decl = NULL_TREE;
672 struct vtbl_map_node *vtable_map_node;
673 tree vtbl_decl = NULL_TREE;
1a91d914 674 gcall *call_stmt;
b710ec85 675 const char *vtable_name = "<unknown>";
676 tree tmp0;
677 bool found;
678 int mem_ref_depth = 0;
68a98a70 679 int recursion_depth = 0;
b710ec85 680
681 /* Make sure this vptr field access is for a virtual call. */
68a98a70 682 if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth,
683 &recursion_depth))
b710ec85 684 continue;
685
686 /* Now we have found the virtual method dispatch and
687 the preceding access of the _vptr.* field... Next
688 we need to find the statically declared type of
689 the object, so we can find and use the right
690 vtable map variable in the verification call. */
691 tree class_type = extract_object_class_type
692 (gimple_assign_rhs1 (stmt));
693
694 gsi_vtbl_assign = gsi_for_stmt (stmt);
695
696 if (class_type
697 && (TREE_CODE (class_type) == RECORD_TYPE)
698 && TYPE_BINFO (class_type))
699 {
700 /* Get the vtable VAR_DECL for the type. */
701 vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
702
703 if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
704 vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
705 0);
706
707 gcc_assert (vtbl_var_decl);
708
709 vtbl_decl = vtbl_var_decl;
710 vtable_map_node = vtbl_map_get_node
711 (TYPE_MAIN_VARIANT (class_type));
712
713 gcc_assert (verify_vtbl_ptr_fndecl);
714
715 /* Given the vtable pointer for the base class of the
716 object, build the call to __VLTVerifyVtablePointer to
717 verify that the object's vtable pointer (contained in
718 lhs) is in the set of valid vtable pointers for the
719 base class. */
720
721 if (vtable_map_node && vtable_map_node->vtbl_map_decl)
722 {
b710ec85 723 vtable_map_node->is_used = true;
724 vtbl_var_decl = vtable_map_node->vtbl_map_decl;
725
726 if (TREE_CODE (vtbl_decl) == VAR_DECL)
727 vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
728
729 /* Call different routines if we are interested in
730 trace information to debug problems. */
731 if (flag_vtv_debug)
732 {
733 int len1 = IDENTIFIER_LENGTH
734 (DECL_NAME (vtbl_var_decl));
735 int len2 = strlen (vtable_name);
736
737 call_stmt = gimple_build_call
738 (verify_vtbl_ptr_fndecl, 4,
739 build1 (ADDR_EXPR,
740 TYPE_POINTER_TO
741 (TREE_TYPE (vtbl_var_decl)),
742 vtbl_var_decl),
743 lhs,
744 build_string_literal
745 (len1 + 1,
746 IDENTIFIER_POINTER
747 (DECL_NAME
748 (vtbl_var_decl))),
749 build_string_literal (len2 + 1,
750 vtable_name));
751 }
752 else
753 call_stmt = gimple_build_call
754 (verify_vtbl_ptr_fndecl, 2,
755 build1 (ADDR_EXPR,
756 TYPE_POINTER_TO
757 (TREE_TYPE (vtbl_var_decl)),
758 vtbl_var_decl),
759 lhs);
760
761
762 /* Create a new SSA_NAME var to hold the call's
763 return value, and make the call_stmt use the
764 variable for that purpose. */
765 tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
766 gimple_call_set_lhs (call_stmt, tmp0);
767 update_stmt (call_stmt);
768
754f4889 769 /* Replace all uses of lhs with tmp0. */
b710ec85 770 found = false;
754f4889 771 imm_use_iterator iterator;
42acab1c 772 gimple *use_stmt;
754f4889 773 FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
b710ec85 774 {
754f4889 775 use_operand_p use_p;
776 if (use_stmt == call_stmt)
777 continue;
778 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
779 SET_USE (use_p, tmp0);
780 update_stmt (use_stmt);
781 found = true;
b710ec85 782 }
754f4889 783
b710ec85 784 gcc_assert (found);
785
786 /* Insert the new verification call just after the
787 statement that gets the vtable pointer out of the
788 object. */
754f4889 789 gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
b710ec85 790 gsi_insert_after (&gsi_vtbl_assign, call_stmt,
791 GSI_NEW_STMT);
792
793 any_verification_calls_generated = true;
794 total_num_verified_vcalls++;
795 }
796 }
797 }
798 }
799}
800
b710ec85 801/* Definition of this optimization pass. */
802
7620bc82 803namespace {
804
805const pass_data pass_data_vtable_verify =
b710ec85 806{
807 GIMPLE_PASS, /* type */
808 "vtable-verify", /* name */
809 OPTGROUP_NONE, /* optinfo_flags */
b710ec85 810 TV_VTABLE_VERIFICATION, /* tv_id */
811 ( PROP_cfg | PROP_ssa ), /* properties_required */
812 0, /* properties_provided */
813 0, /* properties_destroyed */
814 0, /* todo_flags_start */
815 TODO_update_ssa, /* todo_flags_finish */
816};
817
7620bc82 818class pass_vtable_verify : public gimple_opt_pass
b710ec85 819{
820public:
9af5ce0c 821 pass_vtable_verify (gcc::context *ctxt)
822 : gimple_opt_pass (pass_data_vtable_verify, ctxt)
b710ec85 823 {}
824
825 /* opt_pass methods: */
31315c24 826 virtual bool gate (function *) { return (flag_vtable_verify); }
65b0537f 827 virtual unsigned int execute (function *);
b710ec85 828
829}; // class pass_vtable_verify
830
65b0537f 831/* Loop through all the basic blocks in the current function, passing them to
832 verify_bb_vtables, which searches for virtual calls, and inserts
833 calls to __VLTVerifyVtablePointer. */
834
835unsigned int
836pass_vtable_verify::execute (function *fun)
837{
838 unsigned int ret = 1;
839 basic_block bb;
840
841 FOR_ALL_BB_FN (bb, fun)
842 verify_bb_vtables (bb);
843
844 return ret;
845}
846
7620bc82 847} // anon namespace
848
b710ec85 849gimple_opt_pass *
850make_pass_vtable_verify (gcc::context *ctxt)
851{
852 return new pass_vtable_verify (ctxt);
853}
854
855#include "gt-vtable-verify.h"