]> git.ipfire.org Git - people/ms/gcc.git/blame - gcc/wide-int.h
c++: namespace-scoped friend in local class [PR69410]
[people/ms/gcc.git] / gcc / wide-int.h
CommitLineData
807e902e 1/* Operations with very long integers. -*- C++ -*-
aeee4812 2 Copyright (C) 2012-2023 Free Software Foundation, Inc.
807e902e
KZ
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef WIDE_INT_H
21#define WIDE_INT_H
22
23/* wide-int.[cc|h] implements a class that efficiently performs
24 mathematical operations on finite precision integers. wide_ints
25 are designed to be transient - they are not for long term storage
26 of values. There is tight integration between wide_ints and the
27 other longer storage GCC representations (rtl and tree).
28
29 The actual precision of a wide_int depends on the flavor. There
30 are three predefined flavors:
31
32 1) wide_int (the default). This flavor does the math in the
33 precision of its input arguments. It is assumed (and checked)
34 that the precisions of the operands and results are consistent.
35 This is the most efficient flavor. It is not possible to examine
36 bits above the precision that has been specified. Because of
37 this, the default flavor has semantics that are simple to
38 understand and in general model the underlying hardware that the
39 compiler is targetted for.
40
41 This flavor must be used at the RTL level of gcc because there
42 is, in general, not enough information in the RTL representation
43 to extend a value beyond the precision specified in the mode.
44
45 This flavor should also be used at the TREE and GIMPLE levels of
46 the compiler except for the circumstances described in the
47 descriptions of the other two flavors.
48
49 The default wide_int representation does not contain any
50 information inherent about signedness of the represented value,
51 so it can be used to represent both signed and unsigned numbers.
52 For operations where the results depend on signedness (full width
53 multiply, division, shifts, comparisons, and operations that need
54 overflow detected), the signedness must be specified separately.
55
032c80e9
RS
56 2) offset_int. This is a fixed-precision integer that can hold
57 any address offset, measured in either bits or bytes, with at
58 least one extra sign bit. At the moment the maximum address
59 size GCC supports is 64 bits. With 8-bit bytes and an extra
60 sign bit, offset_int therefore needs to have at least 68 bits
61 of precision. We round this up to 128 bits for efficiency.
62 Values of type T are converted to this precision by sign- or
63 zero-extending them based on the signedness of T.
64
65 The extra sign bit means that offset_int is effectively a signed
66 128-bit integer, i.e. it behaves like int128_t.
67
68 Since the values are logically signed, there is no need to
69 distinguish between signed and unsigned operations. Sign-sensitive
70 comparison operators <, <=, > and >= are therefore supported.
8de73453
RS
71 Shift operators << and >> are also supported, with >> being
72 an _arithmetic_ right shift.
032c80e9
RS
73
74 [ Note that, even though offset_int is effectively int128_t,
75 it can still be useful to use unsigned comparisons like
76 wi::leu_p (a, b) as a more efficient short-hand for
77 "a >= 0 && a <= b". ]
807e902e
KZ
78
79 3) widest_int. This representation is an approximation of
80 infinite precision math. However, it is not really infinite
81 precision math as in the GMP library. It is really finite
82 precision math where the precision is 4 times the size of the
83 largest integer that the target port can represent.
84
032c80e9
RS
85 Like offset_int, widest_int is wider than all the values that
86 it needs to represent, so the integers are logically signed.
8de73453
RS
87 Sign-sensitive comparison operators <, <=, > and >= are supported,
88 as are << and >>.
807e902e
KZ
89
90 There are several places in the GCC where this should/must be used:
91
92 * Code that does induction variable optimizations. This code
93 works with induction variables of many different types at the
94 same time. Because of this, it ends up doing many different
95 calculations where the operands are not compatible types. The
96 widest_int makes this easy, because it provides a field where
97 nothing is lost when converting from any variable,
98
99 * There are a small number of passes that currently use the
100 widest_int that should use the default. These should be
101 changed.
102
103 There are surprising features of offset_int and widest_int
104 that the users should be careful about:
105
106 1) Shifts and rotations are just weird. You have to specify a
107 precision in which the shift or rotate is to happen in. The bits
108 above this precision are zeroed. While this is what you
109 want, it is clearly non obvious.
110
111 2) Larger precision math sometimes does not produce the same
112 answer as would be expected for doing the math at the proper
113 precision. In particular, a multiply followed by a divide will
114 produce a different answer if the first product is larger than
115 what can be represented in the input precision.
116
117 The offset_int and the widest_int flavors are more expensive
118 than the default wide int, so in addition to the caveats with these
119 two, the default is the prefered representation.
120
121 All three flavors of wide_int are represented as a vector of
122 HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
123 to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
124 enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
125 in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
126 in element 0.
127
128 The default wide_int contains three fields: the vector (VAL),
129 the precision and a length (LEN). The length is the number of HWIs
130 needed to represent the value. widest_int and offset_int have a
131 constant precision that cannot be changed, so they only store the
132 VAL and LEN fields.
133
134 Since most integers used in a compiler are small values, it is
135 generally profitable to use a representation of the value that is
136 as small as possible. LEN is used to indicate the number of
137 elements of the vector that are in use. The numbers are stored as
138 sign extended numbers as a means of compression. Leading
139 HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
140 as long as they can be reconstructed from the top bit that is being
141 represented.
142
143 The precision and length of a wide_int are always greater than 0.
144 Any bits in a wide_int above the precision are sign-extended from the
145 most significant bit. For example, a 4-bit value 0x8 is represented as
146 VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
147 constants to be represented with undefined bits above the precision.
148 This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
149 so that the INTEGER_CST representation can be used both in TYPE_PRECISION
150 and in wider precisions.
151
152 There are constructors to create the various forms of wide_int from
8e6cdc90 153 trees, rtl and constants. For trees the options are:
807e902e
KZ
154
155 tree t = ...;
8e6cdc90
RS
156 wi::to_wide (t) // Treat T as a wide_int
157 wi::to_offset (t) // Treat T as an offset_int
158 wi::to_widest (t) // Treat T as a widest_int
807e902e 159
8e6cdc90
RS
160 All three are light-weight accessors that should have no overhead
161 in release builds. If it is useful for readability reasons to
162 store the result in a temporary variable, the preferred method is:
163
164 wi::tree_to_wide_ref twide = wi::to_wide (t);
165 wi::tree_to_offset_ref toffset = wi::to_offset (t);
166 wi::tree_to_widest_ref twidest = wi::to_widest (t);
167
168 To make an rtx into a wide_int, you have to pair it with a mode.
169 The canonical way to do this is with rtx_mode_t as in:
807e902e
KZ
170
171 rtx r = ...
f079167a 172 wide_int x = rtx_mode_t (r, mode);
807e902e
KZ
173
174 Similarly, a wide_int can only be constructed from a host value if
175 the target precision is given explicitly, such as in:
176
177 wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
178 wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
179
180 However, offset_int and widest_int have an inherent precision and so
181 can be initialized directly from a host value:
182
183 offset_int x = (int) c; // sign-extend C
184 widest_int x = (unsigned int) c; // zero-extend C
185
8e6cdc90 186 It is also possible to do arithmetic directly on rtx_mode_ts and
807e902e
KZ
187 constants. For example:
188
8e6cdc90
RS
189 wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2
190 wi::add (r1, 1); // add 1 to rtx_mode_t r1
807e902e
KZ
191 wi::lshift (1, 100); // 1 << 100 as a widest_int
192
193 Many binary operations place restrictions on the combinations of inputs,
194 using the following rules:
195
8e6cdc90 196 - {rtx, wide_int} op {rtx, wide_int} -> wide_int
807e902e
KZ
197 The inputs must be the same precision. The result is a wide_int
198 of the same precision
199
8e6cdc90
RS
200 - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
201 (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
807e902e
KZ
202 The HOST_WIDE_INT is extended or truncated to the precision of
203 the other input. The result is a wide_int of the same precision
204 as that input.
205
206 - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
207 The inputs are extended to widest_int precision and produce a
208 widest_int result.
209
210 - offset_int op offset_int -> offset_int
211 offset_int op (un)signed HOST_WIDE_INT -> offset_int
212 (un)signed HOST_WIDE_INT op offset_int -> offset_int
213
214 - widest_int op widest_int -> widest_int
215 widest_int op (un)signed HOST_WIDE_INT -> widest_int
216 (un)signed HOST_WIDE_INT op widest_int -> widest_int
217
218 Other combinations like:
219
220 - widest_int op offset_int and
221 - wide_int op offset_int
222
223 are not allowed. The inputs should instead be extended or truncated
224 so that they match.
225
226 The inputs to comparison functions like wi::eq_p and wi::lts_p
227 follow the same compatibility rules, although their return types
228 are different. Unary functions on X produce the same result as
229 a binary operation X + X. Shift functions X op Y also produce
230 the same result as X + X; the precision of the shift amount Y
231 can be arbitrarily different from X. */
232
807e902e
KZ
233/* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
234 early examination of the target's mode file. The WIDE_INT_MAX_ELTS
235 can accomodate at least 1 more bit so that unsigned numbers of that
236 mode can be represented as a signed value. Note that it is still
237 possible to create fixed_wide_ints that have precisions greater than
238 MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
239 double-width multiplication result, for example. */
240#define WIDE_INT_MAX_ELTS \
241 ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
242
243#define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
244
245/* This is the max size of any pointer on any machine. It does not
246 seem to be as easy to sniff this out of the machine description as
247 it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
248 multiple address sizes and may have different address sizes for
249 different address spaces. However, currently the largest pointer
250 on any platform is 64 bits. When that changes, then it is likely
251 that a target hook should be defined so that targets can make this
252 value larger for those targets. */
253#define ADDR_MAX_BITSIZE 64
254
255/* This is the internal precision used when doing any address
256 arithmetic. The '4' is really 3 + 1. Three of the bits are for
257 the number of extra bits needed to do bit addresses and the other bit
258 is to allow everything to be signed without loosing any precision.
259 Then everything is rounded up to the next HWI for efficiency. */
260#define ADDR_MAX_PRECISION \
261 ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
262 & ~(HOST_BITS_PER_WIDE_INT - 1))
263
264/* The number of HWIs needed to store an offset_int. */
265#define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
266
267/* The type of result produced by a binary operation on types T1 and T2.
268 Defined purely for brevity. */
269#define WI_BINARY_RESULT(T1, T2) \
270 typename wi::binary_traits <T1, T2>::result_type
271
7b27cb4b
RS
272/* Likewise for binary operators, which excludes the case in which neither
273 T1 nor T2 is a wide-int-based type. */
274#define WI_BINARY_OPERATOR_RESULT(T1, T2) \
275 typename wi::binary_traits <T1, T2>::operator_result
276
8de73453
RS
277/* The type of result produced by T1 << T2. Leads to substitution failure
278 if the operation isn't supported. Defined purely for brevity. */
279#define WI_SIGNED_SHIFT_RESULT(T1, T2) \
280 typename wi::binary_traits <T1, T2>::signed_shift_result_type
281
7b27cb4b
RS
282/* The type of result produced by a sign-agnostic binary predicate on
283 types T1 and T2. This is bool if wide-int operations make sense for
284 T1 and T2 and leads to substitution failure otherwise. */
285#define WI_BINARY_PREDICATE_RESULT(T1, T2) \
286 typename wi::binary_traits <T1, T2>::predicate_result
287
032c80e9
RS
288/* The type of result produced by a signed binary predicate on types T1 and T2.
289 This is bool if signed comparisons make sense for T1 and T2 and leads to
290 substitution failure otherwise. */
291#define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
292 typename wi::binary_traits <T1, T2>::signed_predicate_result
293
807e902e
KZ
294/* The type of result produced by a unary operation on type T. */
295#define WI_UNARY_RESULT(T) \
e535b963 296 typename wi::binary_traits <T, T>::result_type
807e902e
KZ
297
298/* Define a variable RESULT to hold the result of a binary operation on
299 X and Y, which have types T1 and T2 respectively. Define VAL to
300 point to the blocks of RESULT. Once the user of the macro has
301 filled in VAL, it should call RESULT.set_len to set the number
302 of initialized blocks. */
303#define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
304 WI_BINARY_RESULT (T1, T2) RESULT = \
305 wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
306 HOST_WIDE_INT *VAL = RESULT.write_val ()
307
308/* Similar for the result of a unary operation on X, which has type T. */
309#define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
310 WI_UNARY_RESULT (T) RESULT = \
311 wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
312 HOST_WIDE_INT *VAL = RESULT.write_val ()
313
3655abdd 314template <typename T> class generic_wide_int;
92237f43 315template <int N> class fixed_wide_int_storage;
a4ff2ef3 316class wide_int_storage;
807e902e
KZ
317
318/* An N-bit integer. Until we can use typedef templates, use this instead. */
319#define FIXED_WIDE_INT(N) \
320 generic_wide_int < fixed_wide_int_storage <N> >
321
322typedef generic_wide_int <wide_int_storage> wide_int;
323typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
324typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
3bb1161f
AH
325/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
326 so as not to confuse gengtype. */
327typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
807e902e 328
8e6cdc90
RS
329/* wi::storage_ref can be a reference to a primitive type,
330 so this is the conservatively-correct setting. */
331template <bool SE, bool HDP = true>
99b1c316 332class wide_int_ref_storage;
807e902e
KZ
333
334typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
335
336/* This can be used instead of wide_int_ref if the referenced value is
337 known to have type T. It carries across properties of T's representation,
338 such as whether excess upper bits in a HWI are defined, and can therefore
339 help avoid redundant work.
340
341 The macro could be replaced with a template typedef, once we're able
342 to use those. */
343#define WIDE_INT_REF_FOR(T) \
344 generic_wide_int \
8e6cdc90
RS
345 <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
346 wi::int_traits <T>::host_dependent_precision> >
807e902e
KZ
347
348namespace wi
349{
4a669ac3
AH
350 /* Operations that calculate overflow do so even for
351 TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in
352 an unsigned int is 0 and does not overflow in C/C++, but wi::add
353 will set the overflow argument in case it's needed for further
354 analysis.
355
356 For operations that require overflow, these are the different
357 types of overflow. */
358 enum overflow_type {
359 OVF_NONE = 0,
360 OVF_UNDERFLOW = -1,
361 OVF_OVERFLOW = 1,
362 /* There was an overflow, but we are unsure whether it was an
363 overflow or an underflow. */
364 OVF_UNKNOWN = 2
365 };
366
807e902e
KZ
367 /* Classifies an integer based on its precision. */
368 enum precision_type {
369 /* The integer has both a precision and defined signedness. This allows
370 the integer to be converted to any width, since we know whether to fill
371 any extra bits with zeros or signs. */
372 FLEXIBLE_PRECISION,
373
374 /* The integer has a variable precision but no defined signedness. */
375 VAR_PRECISION,
376
377 /* The integer has a constant precision (known at GCC compile time)
032c80e9 378 and is signed. */
807e902e
KZ
379 CONST_PRECISION
380 };
381
382 /* This class, which has no default implementation, is expected to
383 provide the following members:
384
385 static const enum precision_type precision_type;
386 Classifies the type of T.
387
388 static const unsigned int precision;
389 Only defined if precision_type == CONST_PRECISION. Specifies the
390 precision of all integers of type T.
391
392 static const bool host_dependent_precision;
393 True if the precision of T depends (or can depend) on the host.
394
395 static unsigned int get_precision (const T &x)
396 Return the number of bits in X.
397
398 static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
399 unsigned int precision, const T &x)
400 Decompose X as a PRECISION-bit integer, returning the associated
401 wi::storage_ref. SCRATCH is available as scratch space if needed.
402 The routine should assert that PRECISION is acceptable. */
403 template <typename T> struct int_traits;
404
405 /* This class provides a single type, result_type, which specifies the
406 type of integer produced by a binary operation whose inputs have
407 types T1 and T2. The definition should be symmetric. */
408 template <typename T1, typename T2,
409 enum precision_type P1 = int_traits <T1>::precision_type,
410 enum precision_type P2 = int_traits <T2>::precision_type>
411 struct binary_traits;
412
807e902e
KZ
413 /* Specify the result type for each supported combination of binary
414 inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
415 mixed, in order to give stronger type checking. When both inputs
416 are CONST_PRECISION, they must have the same precision. */
807e902e
KZ
417 template <typename T1, typename T2>
418 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
419 {
420 typedef widest_int result_type;
7b27cb4b 421 /* Don't define operators for this combination. */
807e902e
KZ
422 };
423
807e902e
KZ
424 template <typename T1, typename T2>
425 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
426 {
427 typedef wide_int result_type;
7b27cb4b
RS
428 typedef result_type operator_result;
429 typedef bool predicate_result;
807e902e
KZ
430 };
431
807e902e
KZ
432 template <typename T1, typename T2>
433 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
434 {
435 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
436 so as not to confuse gengtype. */
437 typedef generic_wide_int < fixed_wide_int_storage
438 <int_traits <T2>::precision> > result_type;
7b27cb4b
RS
439 typedef result_type operator_result;
440 typedef bool predicate_result;
e535b963 441 typedef result_type signed_shift_result_type;
032c80e9 442 typedef bool signed_predicate_result;
807e902e
KZ
443 };
444
807e902e
KZ
445 template <typename T1, typename T2>
446 struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
447 {
448 typedef wide_int result_type;
7b27cb4b
RS
449 typedef result_type operator_result;
450 typedef bool predicate_result;
807e902e
KZ
451 };
452
807e902e
KZ
453 template <typename T1, typename T2>
454 struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
455 {
456 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
457 so as not to confuse gengtype. */
458 typedef generic_wide_int < fixed_wide_int_storage
459 <int_traits <T1>::precision> > result_type;
7b27cb4b
RS
460 typedef result_type operator_result;
461 typedef bool predicate_result;
8de73453 462 typedef result_type signed_shift_result_type;
032c80e9 463 typedef bool signed_predicate_result;
807e902e
KZ
464 };
465
807e902e
KZ
466 template <typename T1, typename T2>
467 struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
468 {
7b27cb4b 469 STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
807e902e
KZ
470 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
471 so as not to confuse gengtype. */
807e902e
KZ
472 typedef generic_wide_int < fixed_wide_int_storage
473 <int_traits <T1>::precision> > result_type;
7b27cb4b
RS
474 typedef result_type operator_result;
475 typedef bool predicate_result;
8de73453 476 typedef result_type signed_shift_result_type;
032c80e9 477 typedef bool signed_predicate_result;
807e902e
KZ
478 };
479
807e902e
KZ
480 template <typename T1, typename T2>
481 struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
482 {
483 typedef wide_int result_type;
7b27cb4b
RS
484 typedef result_type operator_result;
485 typedef bool predicate_result;
807e902e
KZ
486 };
487}
488
489/* Public functions for querying and operating on integers. */
490namespace wi
491{
492 template <typename T>
493 unsigned int get_precision (const T &);
494
495 template <typename T1, typename T2>
496 unsigned int get_binary_precision (const T1 &, const T2 &);
497
498 template <typename T1, typename T2>
499 void copy (T1 &, const T2 &);
500
501#define UNARY_PREDICATE \
502 template <typename T> bool
503#define UNARY_FUNCTION \
504 template <typename T> WI_UNARY_RESULT (T)
505#define BINARY_PREDICATE \
506 template <typename T1, typename T2> bool
507#define BINARY_FUNCTION \
508 template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
509#define SHIFT_FUNCTION \
510 template <typename T1, typename T2> WI_UNARY_RESULT (T1)
511
512 UNARY_PREDICATE fits_shwi_p (const T &);
513 UNARY_PREDICATE fits_uhwi_p (const T &);
514 UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
515
516 template <typename T>
517 HOST_WIDE_INT sign_mask (const T &);
518
519 BINARY_PREDICATE eq_p (const T1 &, const T2 &);
520 BINARY_PREDICATE ne_p (const T1 &, const T2 &);
521 BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
522 BINARY_PREDICATE lts_p (const T1 &, const T2 &);
523 BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
524 BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
525 BINARY_PREDICATE les_p (const T1 &, const T2 &);
526 BINARY_PREDICATE leu_p (const T1 &, const T2 &);
527 BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
528 BINARY_PREDICATE gts_p (const T1 &, const T2 &);
529 BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
530 BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
531 BINARY_PREDICATE ges_p (const T1 &, const T2 &);
532 BINARY_PREDICATE geu_p (const T1 &, const T2 &);
533
534 template <typename T1, typename T2>
535 int cmp (const T1 &, const T2 &, signop);
536
537 template <typename T1, typename T2>
538 int cmps (const T1 &, const T2 &);
539
540 template <typename T1, typename T2>
541 int cmpu (const T1 &, const T2 &);
542
543 UNARY_FUNCTION bit_not (const T &);
544 UNARY_FUNCTION neg (const T &);
4a669ac3 545 UNARY_FUNCTION neg (const T &, overflow_type *);
807e902e
KZ
546 UNARY_FUNCTION abs (const T &);
547 UNARY_FUNCTION ext (const T &, unsigned int, signop);
548 UNARY_FUNCTION sext (const T &, unsigned int);
549 UNARY_FUNCTION zext (const T &, unsigned int);
550 UNARY_FUNCTION set_bit (const T &, unsigned int);
551
552 BINARY_FUNCTION min (const T1 &, const T2 &, signop);
553 BINARY_FUNCTION smin (const T1 &, const T2 &);
554 BINARY_FUNCTION umin (const T1 &, const T2 &);
555 BINARY_FUNCTION max (const T1 &, const T2 &, signop);
556 BINARY_FUNCTION smax (const T1 &, const T2 &);
557 BINARY_FUNCTION umax (const T1 &, const T2 &);
558
559 BINARY_FUNCTION bit_and (const T1 &, const T2 &);
560 BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
561 BINARY_FUNCTION bit_or (const T1 &, const T2 &);
562 BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
563 BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
564 BINARY_FUNCTION add (const T1 &, const T2 &);
4a669ac3 565 BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
807e902e 566 BINARY_FUNCTION sub (const T1 &, const T2 &);
4a669ac3 567 BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
807e902e 568 BINARY_FUNCTION mul (const T1 &, const T2 &);
4a669ac3
AH
569 BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
570 BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
571 BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
807e902e 572 BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
4a669ac3
AH
573 BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
574 overflow_type * = 0);
807e902e
KZ
575 BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
576 BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
4a669ac3
AH
577 BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
578 overflow_type * = 0);
807e902e
KZ
579 BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
580 BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
4a669ac3
AH
581 BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
582 overflow_type * = 0);
7cfb4d93 583 BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
4a669ac3
AH
584 BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
585 overflow_type * = 0);
807e902e
KZ
586 BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
587 WI_BINARY_RESULT (T1, T2) *);
d9a6bd32 588 BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
4a669ac3
AH
589 BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
590 overflow_type * = 0);
807e902e
KZ
591 BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
592 BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
4a669ac3
AH
593 BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
594 overflow_type * = 0);
807e902e 595 BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
4a669ac3
AH
596 BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
597 overflow_type * = 0);
598 BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
599 overflow_type * = 0);
807e902e 600
7588d8aa
RS
601 template <typename T1, typename T2>
602 bool multiple_of_p (const T1 &, const T2 &, signop);
603
807e902e
KZ
604 template <typename T1, typename T2>
605 bool multiple_of_p (const T1 &, const T2 &, signop,
606 WI_BINARY_RESULT (T1, T2) *);
607
608 SHIFT_FUNCTION lshift (const T1 &, const T2 &);
609 SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
610 SHIFT_FUNCTION arshift (const T1 &, const T2 &);
611 SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
612 SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
613 SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
614
615#undef SHIFT_FUNCTION
616#undef BINARY_PREDICATE
617#undef BINARY_FUNCTION
618#undef UNARY_PREDICATE
619#undef UNARY_FUNCTION
620
621 bool only_sign_bit_p (const wide_int_ref &, unsigned int);
622 bool only_sign_bit_p (const wide_int_ref &);
623 int clz (const wide_int_ref &);
624 int clrsb (const wide_int_ref &);
625 int ctz (const wide_int_ref &);
626 int exact_log2 (const wide_int_ref &);
627 int floor_log2 (const wide_int_ref &);
628 int ffs (const wide_int_ref &);
629 int popcount (const wide_int_ref &);
630 int parity (const wide_int_ref &);
631
632 template <typename T>
633 unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
634
635 template <typename T>
636 unsigned int min_precision (const T &, signop);
4a669ac3
AH
637
638 static inline void accumulate_overflow (overflow_type &, overflow_type);
807e902e
KZ
639}
640
641namespace wi
642{
643 /* Contains the components of a decomposed integer for easy, direct
644 access. */
6c1dae73 645 class storage_ref
807e902e 646 {
6c1dae73 647 public:
0c12fc9b 648 storage_ref () {}
807e902e
KZ
649 storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
650
651 const HOST_WIDE_INT *val;
652 unsigned int len;
653 unsigned int precision;
654
655 /* Provide enough trappings for this class to act as storage for
656 generic_wide_int. */
657 unsigned int get_len () const;
658 unsigned int get_precision () const;
659 const HOST_WIDE_INT *get_val () const;
660 };
661}
662
663inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
664 unsigned int len_in,
665 unsigned int precision_in)
666 : val (val_in), len (len_in), precision (precision_in)
667{
668}
669
670inline unsigned int
671wi::storage_ref::get_len () const
672{
673 return len;
674}
675
676inline unsigned int
677wi::storage_ref::get_precision () const
678{
679 return precision;
680}
681
682inline const HOST_WIDE_INT *
683wi::storage_ref::get_val () const
684{
685 return val;
686}
687
688/* This class defines an integer type using the storage provided by the
689 template argument. The storage class must provide the following
690 functions:
691
692 unsigned int get_precision () const
693 Return the number of bits in the integer.
694
695 HOST_WIDE_INT *get_val () const
696 Return a pointer to the array of blocks that encodes the integer.
697
698 unsigned int get_len () const
699 Return the number of blocks in get_val (). If this is smaller
700 than the number of blocks implied by get_precision (), the
701 remaining blocks are sign extensions of block get_len () - 1.
702
703 Although not required by generic_wide_int itself, writable storage
704 classes can also provide the following functions:
705
706 HOST_WIDE_INT *write_val ()
707 Get a modifiable version of get_val ()
708
709 unsigned int set_len (unsigned int len)
710 Set the value returned by get_len () to LEN. */
711template <typename storage>
712class GTY(()) generic_wide_int : public storage
713{
714public:
715 generic_wide_int ();
716
717 template <typename T>
718 generic_wide_int (const T &);
719
720 template <typename T>
721 generic_wide_int (const T &, unsigned int);
722
723 /* Conversions. */
724 HOST_WIDE_INT to_shwi (unsigned int) const;
725 HOST_WIDE_INT to_shwi () const;
726 unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
727 unsigned HOST_WIDE_INT to_uhwi () const;
728 HOST_WIDE_INT to_short_addr () const;
729
730 /* Public accessors for the interior of a wide int. */
731 HOST_WIDE_INT sign_mask () const;
732 HOST_WIDE_INT elt (unsigned int) const;
5d5bb9bc 733 HOST_WIDE_INT sext_elt (unsigned int) const;
807e902e
KZ
734 unsigned HOST_WIDE_INT ulow () const;
735 unsigned HOST_WIDE_INT uhigh () const;
736 HOST_WIDE_INT slow () const;
737 HOST_WIDE_INT shigh () const;
738
739 template <typename T>
740 generic_wide_int &operator = (const T &);
741
807e902e
KZ
742#define ASSIGNMENT_OPERATOR(OP, F) \
743 template <typename T> \
744 generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
745
8de73453
RS
746/* Restrict these to cases where the shift operator is defined. */
747#define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
748 template <typename T> \
749 generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
750
807e902e
KZ
751#define INCDEC_OPERATOR(OP, DELTA) \
752 generic_wide_int &OP () { *this += DELTA; return *this; }
753
807e902e
KZ
754 ASSIGNMENT_OPERATOR (operator &=, bit_and)
755 ASSIGNMENT_OPERATOR (operator |=, bit_or)
756 ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
757 ASSIGNMENT_OPERATOR (operator +=, add)
758 ASSIGNMENT_OPERATOR (operator -=, sub)
759 ASSIGNMENT_OPERATOR (operator *=, mul)
e535b963 760 ASSIGNMENT_OPERATOR (operator <<=, lshift)
8de73453 761 SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
807e902e
KZ
762 INCDEC_OPERATOR (operator ++, 1)
763 INCDEC_OPERATOR (operator --, -1)
764
8de73453 765#undef SHIFT_ASSIGNMENT_OPERATOR
807e902e
KZ
766#undef ASSIGNMENT_OPERATOR
767#undef INCDEC_OPERATOR
768
769 /* Debugging functions. */
770 void dump () const;
771
772 static const bool is_sign_extended
773 = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
774};
775
776template <typename storage>
777inline generic_wide_int <storage>::generic_wide_int () {}
778
779template <typename storage>
780template <typename T>
781inline generic_wide_int <storage>::generic_wide_int (const T &x)
782 : storage (x)
783{
784}
785
786template <typename storage>
787template <typename T>
788inline generic_wide_int <storage>::generic_wide_int (const T &x,
789 unsigned int precision)
790 : storage (x, precision)
791{
792}
793
794/* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
795 If THIS does not fit in PRECISION, the information is lost. */
796template <typename storage>
797inline HOST_WIDE_INT
798generic_wide_int <storage>::to_shwi (unsigned int precision) const
799{
800 if (precision < HOST_BITS_PER_WIDE_INT)
801 return sext_hwi (this->get_val ()[0], precision);
802 else
803 return this->get_val ()[0];
804}
805
806/* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
807template <typename storage>
808inline HOST_WIDE_INT
809generic_wide_int <storage>::to_shwi () const
810{
811 if (is_sign_extended)
812 return this->get_val ()[0];
813 else
814 return to_shwi (this->get_precision ());
815}
816
817/* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
818 PRECISION. If THIS does not fit in PRECISION, the information
819 is lost. */
820template <typename storage>
821inline unsigned HOST_WIDE_INT
822generic_wide_int <storage>::to_uhwi (unsigned int precision) const
823{
824 if (precision < HOST_BITS_PER_WIDE_INT)
825 return zext_hwi (this->get_val ()[0], precision);
826 else
827 return this->get_val ()[0];
828}
829
830/* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
831template <typename storage>
832inline unsigned HOST_WIDE_INT
833generic_wide_int <storage>::to_uhwi () const
834{
835 return to_uhwi (this->get_precision ());
836}
837
838/* TODO: The compiler is half converted from using HOST_WIDE_INT to
839 represent addresses to using offset_int to represent addresses.
840 We use to_short_addr at the interface from new code to old,
841 unconverted code. */
842template <typename storage>
843inline HOST_WIDE_INT
844generic_wide_int <storage>::to_short_addr () const
845{
846 return this->get_val ()[0];
847}
848
849/* Return the implicit value of blocks above get_len (). */
850template <typename storage>
851inline HOST_WIDE_INT
852generic_wide_int <storage>::sign_mask () const
853{
854 unsigned int len = this->get_len ();
49fb45c8
MS
855 gcc_assert (len > 0);
856
807e902e
KZ
857 unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
858 if (!is_sign_extended)
859 {
860 unsigned int precision = this->get_precision ();
861 int excess = len * HOST_BITS_PER_WIDE_INT - precision;
862 if (excess > 0)
863 high <<= excess;
864 }
865 return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
866}
867
868/* Return the signed value of the least-significant explicitly-encoded
869 block. */
870template <typename storage>
871inline HOST_WIDE_INT
872generic_wide_int <storage>::slow () const
873{
874 return this->get_val ()[0];
875}
876
877/* Return the signed value of the most-significant explicitly-encoded
878 block. */
879template <typename storage>
880inline HOST_WIDE_INT
881generic_wide_int <storage>::shigh () const
882{
883 return this->get_val ()[this->get_len () - 1];
884}
885
886/* Return the unsigned value of the least-significant
887 explicitly-encoded block. */
888template <typename storage>
889inline unsigned HOST_WIDE_INT
890generic_wide_int <storage>::ulow () const
891{
892 return this->get_val ()[0];
893}
894
895/* Return the unsigned value of the most-significant
896 explicitly-encoded block. */
897template <typename storage>
898inline unsigned HOST_WIDE_INT
899generic_wide_int <storage>::uhigh () const
900{
901 return this->get_val ()[this->get_len () - 1];
902}
903
904/* Return block I, which might be implicitly or explicit encoded. */
905template <typename storage>
906inline HOST_WIDE_INT
907generic_wide_int <storage>::elt (unsigned int i) const
908{
909 if (i >= this->get_len ())
910 return sign_mask ();
911 else
912 return this->get_val ()[i];
913}
914
5d5bb9bc
RS
915/* Like elt, but sign-extend beyond the upper bit, instead of returning
916 the raw encoding. */
917template <typename storage>
918inline HOST_WIDE_INT
919generic_wide_int <storage>::sext_elt (unsigned int i) const
920{
921 HOST_WIDE_INT elt_i = elt (i);
922 if (!is_sign_extended)
923 {
924 unsigned int precision = this->get_precision ();
925 unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
926 if (precision - lsb < HOST_BITS_PER_WIDE_INT)
927 elt_i = sext_hwi (elt_i, precision - lsb);
928 }
929 return elt_i;
930}
931
807e902e
KZ
932template <typename storage>
933template <typename T>
8de73453 934inline generic_wide_int <storage> &
807e902e
KZ
935generic_wide_int <storage>::operator = (const T &x)
936{
937 storage::operator = (x);
938 return *this;
939}
940
941/* Dump the contents of the integer to stderr, for debugging. */
942template <typename storage>
943void
944generic_wide_int <storage>::dump () const
945{
946 unsigned int len = this->get_len ();
947 const HOST_WIDE_INT *val = this->get_val ();
948 unsigned int precision = this->get_precision ();
949 fprintf (stderr, "[");
950 if (len * HOST_BITS_PER_WIDE_INT < precision)
951 fprintf (stderr, "...,");
952 for (unsigned int i = 0; i < len - 1; ++i)
953 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
954 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
955 val[0], precision);
956}
957
958namespace wi
959{
807e902e
KZ
960 template <typename storage>
961 struct int_traits < generic_wide_int <storage> >
962 : public wi::int_traits <storage>
963 {
964 static unsigned int get_precision (const generic_wide_int <storage> &);
965 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
966 const generic_wide_int <storage> &);
967 };
968}
969
970template <typename storage>
971inline unsigned int
972wi::int_traits < generic_wide_int <storage> >::
973get_precision (const generic_wide_int <storage> &x)
974{
975 return x.get_precision ();
976}
977
978template <typename storage>
979inline wi::storage_ref
980wi::int_traits < generic_wide_int <storage> >::
981decompose (HOST_WIDE_INT *, unsigned int precision,
982 const generic_wide_int <storage> &x)
983{
984 gcc_checking_assert (precision == x.get_precision ());
985 return wi::storage_ref (x.get_val (), x.get_len (), precision);
986}
987
988/* Provide the storage for a wide_int_ref. This acts like a read-only
989 wide_int, with the optimization that VAL is normally a pointer to
990 another integer's storage, so that no array copy is needed. */
8e6cdc90 991template <bool SE, bool HDP>
6c1dae73 992class wide_int_ref_storage : public wi::storage_ref
807e902e
KZ
993{
994private:
995 /* Scratch space that can be used when decomposing the original integer.
996 It must live as long as this object. */
997 HOST_WIDE_INT scratch[2];
998
999public:
0c12fc9b
RS
1000 wide_int_ref_storage () {}
1001
807e902e
KZ
1002 wide_int_ref_storage (const wi::storage_ref &);
1003
1004 template <typename T>
1005 wide_int_ref_storage (const T &);
1006
1007 template <typename T>
1008 wide_int_ref_storage (const T &, unsigned int);
1009};
1010
1011/* Create a reference from an existing reference. */
8e6cdc90
RS
1012template <bool SE, bool HDP>
1013inline wide_int_ref_storage <SE, HDP>::
807e902e
KZ
1014wide_int_ref_storage (const wi::storage_ref &x)
1015 : storage_ref (x)
1016{}
1017
1018/* Create a reference to integer X in its natural precision. Note
1019 that the natural precision is host-dependent for primitive
1020 types. */
8e6cdc90 1021template <bool SE, bool HDP>
807e902e 1022template <typename T>
8e6cdc90 1023inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
807e902e
KZ
1024 : storage_ref (wi::int_traits <T>::decompose (scratch,
1025 wi::get_precision (x), x))
1026{
1027}
1028
1029/* Create a reference to integer X in precision PRECISION. */
8e6cdc90 1030template <bool SE, bool HDP>
807e902e 1031template <typename T>
8e6cdc90
RS
1032inline wide_int_ref_storage <SE, HDP>::
1033wide_int_ref_storage (const T &x, unsigned int precision)
807e902e
KZ
1034 : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
1035{
1036}
1037
1038namespace wi
1039{
8e6cdc90
RS
1040 template <bool SE, bool HDP>
1041 struct int_traits <wide_int_ref_storage <SE, HDP> >
807e902e
KZ
1042 {
1043 static const enum precision_type precision_type = VAR_PRECISION;
8e6cdc90 1044 static const bool host_dependent_precision = HDP;
807e902e
KZ
1045 static const bool is_sign_extended = SE;
1046 };
1047}
1048
1049namespace wi
1050{
1051 unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1052 unsigned int, unsigned int, unsigned int,
1053 signop sgn);
1054 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1055 unsigned int, unsigned int, bool = true);
1056}
1057
1058/* The storage used by wide_int. */
1059class GTY(()) wide_int_storage
1060{
1061private:
1062 HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
1063 unsigned int len;
1064 unsigned int precision;
1065
1066public:
1067 wide_int_storage ();
1068 template <typename T>
1069 wide_int_storage (const T &);
1070
1071 /* The standard generic_wide_int storage methods. */
1072 unsigned int get_precision () const;
1073 const HOST_WIDE_INT *get_val () const;
1074 unsigned int get_len () const;
1075 HOST_WIDE_INT *write_val ();
1076 void set_len (unsigned int, bool = false);
1077
c8c6a29e
RB
1078 template <typename T>
1079 wide_int_storage &operator = (const T &);
1080
807e902e
KZ
1081 static wide_int from (const wide_int_ref &, unsigned int, signop);
1082 static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
1083 unsigned int, bool = true);
1084 static wide_int create (unsigned int);
1085
1086 /* FIXME: target-dependent, so should disappear. */
1087 wide_int bswap () const;
1088};
1089
1090namespace wi
1091{
1092 template <>
1093 struct int_traits <wide_int_storage>
1094 {
1095 static const enum precision_type precision_type = VAR_PRECISION;
1096 /* Guaranteed by a static assert in the wide_int_storage constructor. */
1097 static const bool host_dependent_precision = false;
1098 static const bool is_sign_extended = true;
1099 template <typename T1, typename T2>
1100 static wide_int get_binary_result (const T1 &, const T2 &);
1101 };
1102}
1103
1104inline wide_int_storage::wide_int_storage () {}
1105
1106/* Initialize the storage from integer X, in its natural precision.
1107 Note that we do not allow integers with host-dependent precision
1108 to become wide_ints; wide_ints must always be logically independent
1109 of the host. */
1110template <typename T>
1111inline wide_int_storage::wide_int_storage (const T &x)
1112{
1113 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1114 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1115 WIDE_INT_REF_FOR (T) xi (x);
1116 precision = xi.precision;
1117 wi::copy (*this, xi);
1118}
1119
c8c6a29e
RB
1120template <typename T>
1121inline wide_int_storage&
1122wide_int_storage::operator = (const T &x)
1123{
1124 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1125 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1126 WIDE_INT_REF_FOR (T) xi (x);
1127 precision = xi.precision;
1128 wi::copy (*this, xi);
1129 return *this;
1130}
1131
807e902e
KZ
1132inline unsigned int
1133wide_int_storage::get_precision () const
1134{
1135 return precision;
1136}
1137
1138inline const HOST_WIDE_INT *
1139wide_int_storage::get_val () const
1140{
1141 return val;
1142}
1143
1144inline unsigned int
1145wide_int_storage::get_len () const
1146{
1147 return len;
1148}
1149
1150inline HOST_WIDE_INT *
1151wide_int_storage::write_val ()
1152{
1153 return val;
1154}
1155
1156inline void
1157wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
1158{
1159 len = l;
1160 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
1161 val[len - 1] = sext_hwi (val[len - 1],
1162 precision % HOST_BITS_PER_WIDE_INT);
1163}
1164
1165/* Treat X as having signedness SGN and convert it to a PRECISION-bit
1166 number. */
1167inline wide_int
1168wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
1169 signop sgn)
1170{
1171 wide_int result = wide_int::create (precision);
1172 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1173 x.precision, precision, sgn));
1174 return result;
1175}
1176
1177/* Create a wide_int from the explicit block encoding given by VAL and
1178 LEN. PRECISION is the precision of the integer. NEED_CANON_P is
1179 true if the encoding may have redundant trailing blocks. */
1180inline wide_int
1181wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
1182 unsigned int precision, bool need_canon_p)
1183{
1184 wide_int result = wide_int::create (precision);
1185 result.set_len (wi::from_array (result.write_val (), val, len, precision,
1186 need_canon_p));
1187 return result;
1188}
1189
1190/* Return an uninitialized wide_int with precision PRECISION. */
1191inline wide_int
1192wide_int_storage::create (unsigned int precision)
1193{
1194 wide_int x;
1195 x.precision = precision;
1196 return x;
1197}
1198
1199template <typename T1, typename T2>
1200inline wide_int
1201wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
1202{
1203 /* This shouldn't be used for two flexible-precision inputs. */
1204 STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
1205 || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
1206 if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
1207 return wide_int::create (wi::get_precision (y));
1208 else
1209 return wide_int::create (wi::get_precision (x));
1210}
1211
1212/* The storage used by FIXED_WIDE_INT (N). */
1213template <int N>
1214class GTY(()) fixed_wide_int_storage
1215{
1216private:
1217 HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
1218 unsigned int len;
1219
1220public:
1221 fixed_wide_int_storage ();
1222 template <typename T>
1223 fixed_wide_int_storage (const T &);
1224
1225 /* The standard generic_wide_int storage methods. */
1226 unsigned int get_precision () const;
1227 const HOST_WIDE_INT *get_val () const;
1228 unsigned int get_len () const;
1229 HOST_WIDE_INT *write_val ();
1230 void set_len (unsigned int, bool = false);
1231
1232 static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
1233 static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
1234 bool = true);
1235};
1236
1237namespace wi
1238{
807e902e
KZ
1239 template <int N>
1240 struct int_traits < fixed_wide_int_storage <N> >
1241 {
1242 static const enum precision_type precision_type = CONST_PRECISION;
1243 static const bool host_dependent_precision = false;
1244 static const bool is_sign_extended = true;
1245 static const unsigned int precision = N;
1246 template <typename T1, typename T2>
1247 static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
1248 };
1249}
1250
1251template <int N>
1252inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
1253
1254/* Initialize the storage from integer X, in precision N. */
1255template <int N>
1256template <typename T>
1257inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
1258{
1259 /* Check for type compatibility. We don't want to initialize a
1260 fixed-width integer from something like a wide_int. */
1261 WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
1262 wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
1263}
1264
1265template <int N>
1266inline unsigned int
1267fixed_wide_int_storage <N>::get_precision () const
1268{
1269 return N;
1270}
1271
1272template <int N>
1273inline const HOST_WIDE_INT *
1274fixed_wide_int_storage <N>::get_val () const
1275{
1276 return val;
1277}
1278
1279template <int N>
1280inline unsigned int
1281fixed_wide_int_storage <N>::get_len () const
1282{
1283 return len;
1284}
1285
1286template <int N>
1287inline HOST_WIDE_INT *
1288fixed_wide_int_storage <N>::write_val ()
1289{
1290 return val;
1291}
1292
1293template <int N>
1294inline void
1295fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
1296{
1297 len = l;
1298 /* There are no excess bits in val[len - 1]. */
1299 STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
1300}
1301
1302/* Treat X as having signedness SGN and convert it to an N-bit number. */
1303template <int N>
1304inline FIXED_WIDE_INT (N)
1305fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
1306{
1307 FIXED_WIDE_INT (N) result;
1308 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1309 x.precision, N, sgn));
1310 return result;
1311}
1312
1313/* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
1314 VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
1315 trailing blocks. */
1316template <int N>
1317inline FIXED_WIDE_INT (N)
1318fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
1319 unsigned int len,
1320 bool need_canon_p)
1321{
1322 FIXED_WIDE_INT (N) result;
1323 result.set_len (wi::from_array (result.write_val (), val, len,
1324 N, need_canon_p));
1325 return result;
1326}
1327
1328template <int N>
1329template <typename T1, typename T2>
1330inline FIXED_WIDE_INT (N)
1331wi::int_traits < fixed_wide_int_storage <N> >::
1332get_binary_result (const T1 &, const T2 &)
1333{
1334 return FIXED_WIDE_INT (N) ();
1335}
1336
1337/* A reference to one element of a trailing_wide_ints structure. */
1338class trailing_wide_int_storage
1339{
1340private:
1341 /* The precision of the integer, which is a fixed property of the
1342 parent trailing_wide_ints. */
1343 unsigned int m_precision;
1344
1345 /* A pointer to the length field. */
1346 unsigned char *m_len;
1347
1348 /* A pointer to the HWI array. There are enough elements to hold all
1349 values of precision M_PRECISION. */
1350 HOST_WIDE_INT *m_val;
1351
1352public:
1353 trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
1354
1355 /* The standard generic_wide_int storage methods. */
1356 unsigned int get_len () const;
1357 unsigned int get_precision () const;
1358 const HOST_WIDE_INT *get_val () const;
1359 HOST_WIDE_INT *write_val ();
1360 void set_len (unsigned int, bool = false);
1361
1362 template <typename T>
1363 trailing_wide_int_storage &operator = (const T &);
1364};
1365
1366typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
1367
1368/* trailing_wide_int behaves like a wide_int. */
1369namespace wi
1370{
1371 template <>
1372 struct int_traits <trailing_wide_int_storage>
1373 : public int_traits <wide_int_storage> {};
1374}
1375
1697806f
AH
1376/* A variable-length array of wide_int-like objects that can be put
1377 at the end of a variable-sized structure. The number of objects is
1378 at most N and can be set at runtime by using set_precision().
1379
1380 Use extra_size to calculate how many bytes beyond the
1381 sizeof need to be allocated. Use set_precision to initialize the
1382 structure. */
807e902e 1383template <int N>
6c1dae73 1384struct GTY((user)) trailing_wide_ints
807e902e
KZ
1385{
1386private:
1387 /* The shared precision of each number. */
1388 unsigned short m_precision;
1389
1390 /* The shared maximum length of each number. */
1391 unsigned char m_max_len;
1392
1697806f
AH
1393 /* The number of elements. */
1394 unsigned char m_num_elements;
1395
0da3e766
JH
1396 /* The current length of each number.
1397 Avoid char array so the whole structure is not a typeless storage
1398 that will, in turn, turn off TBAA on gimple, trees and RTL. */
1399 struct {unsigned char len;} m_len[N];
807e902e
KZ
1400
1401 /* The variable-length part of the structure, which always contains
1402 at least one HWI. Element I starts at index I * M_MAX_LEN. */
1403 HOST_WIDE_INT m_val[1];
1404
1405public:
0c12fc9b
RS
1406 typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
1407
1697806f 1408 void set_precision (unsigned int precision, unsigned int num_elements = N);
0c12fc9b 1409 unsigned int get_precision () const { return m_precision; }
1697806f 1410 unsigned int num_elements () const { return m_num_elements; }
807e902e 1411 trailing_wide_int operator [] (unsigned int);
0c12fc9b 1412 const_reference operator [] (unsigned int) const;
1697806f
AH
1413 static size_t extra_size (unsigned int precision,
1414 unsigned int num_elements = N);
1415 size_t extra_size () const { return extra_size (m_precision,
1416 m_num_elements); }
807e902e
KZ
1417};
1418
1419inline trailing_wide_int_storage::
1420trailing_wide_int_storage (unsigned int precision, unsigned char *len,
1421 HOST_WIDE_INT *val)
1422 : m_precision (precision), m_len (len), m_val (val)
1423{
1424}
1425
1426inline unsigned int
1427trailing_wide_int_storage::get_len () const
1428{
1429 return *m_len;
1430}
1431
1432inline unsigned int
1433trailing_wide_int_storage::get_precision () const
1434{
1435 return m_precision;
1436}
1437
1438inline const HOST_WIDE_INT *
1439trailing_wide_int_storage::get_val () const
1440{
1441 return m_val;
1442}
1443
1444inline HOST_WIDE_INT *
1445trailing_wide_int_storage::write_val ()
1446{
1447 return m_val;
1448}
1449
1450inline void
1451trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
1452{
1453 *m_len = len;
1454 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
1455 m_val[len - 1] = sext_hwi (m_val[len - 1],
1456 m_precision % HOST_BITS_PER_WIDE_INT);
1457}
1458
1459template <typename T>
1460inline trailing_wide_int_storage &
1461trailing_wide_int_storage::operator = (const T &x)
1462{
1463 WIDE_INT_REF_FOR (T) xi (x, m_precision);
1464 wi::copy (*this, xi);
1465 return *this;
1466}
1467
1468/* Initialize the structure and record that all elements have precision
1697806f 1469 PRECISION. NUM_ELEMENTS can be no more than N. */
807e902e
KZ
1470template <int N>
1471inline void
1697806f
AH
1472trailing_wide_ints <N>::set_precision (unsigned int precision,
1473 unsigned int num_elements)
807e902e 1474{
1697806f
AH
1475 gcc_checking_assert (num_elements <= N);
1476 m_num_elements = num_elements;
807e902e
KZ
1477 m_precision = precision;
1478 m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1479 / HOST_BITS_PER_WIDE_INT);
1480}
1481
1482/* Return a reference to element INDEX. */
1483template <int N>
1484inline trailing_wide_int
1485trailing_wide_ints <N>::operator [] (unsigned int index)
1486{
0da3e766 1487 return trailing_wide_int_storage (m_precision, &m_len[index].len,
807e902e
KZ
1488 &m_val[index * m_max_len]);
1489}
1490
0c12fc9b
RS
1491template <int N>
1492inline typename trailing_wide_ints <N>::const_reference
1493trailing_wide_ints <N>::operator [] (unsigned int index) const
1494{
1495 return wi::storage_ref (&m_val[index * m_max_len],
0da3e766 1496 m_len[index].len, m_precision);
0c12fc9b
RS
1497}
1498
1697806f
AH
1499/* Return how many extra bytes need to be added to the end of the
1500 structure in order to handle NUM_ELEMENTS wide_ints of precision
1501 PRECISION. NUM_ELEMENTS is the number of elements, and defaults
1502 to N. */
807e902e
KZ
1503template <int N>
1504inline size_t
1697806f
AH
1505trailing_wide_ints <N>::extra_size (unsigned int precision,
1506 unsigned int num_elements)
807e902e
KZ
1507{
1508 unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1509 / HOST_BITS_PER_WIDE_INT);
1697806f
AH
1510 gcc_checking_assert (num_elements <= N);
1511 return (num_elements * max_len - 1) * sizeof (HOST_WIDE_INT);
807e902e
KZ
1512}
1513
1514/* This macro is used in structures that end with a trailing_wide_ints field
1515 called FIELD. It declares get_NAME() and set_NAME() methods to access
1516 element I of FIELD. */
1517#define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
1518 trailing_wide_int get_##NAME () { return FIELD[I]; } \
1519 template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
1520
1521namespace wi
1522{
1523 /* Implementation of int_traits for primitive integer types like "int". */
1524 template <typename T, bool signed_p>
1525 struct primitive_int_traits
1526 {
1527 static const enum precision_type precision_type = FLEXIBLE_PRECISION;
1528 static const bool host_dependent_precision = true;
1529 static const bool is_sign_extended = true;
1530 static unsigned int get_precision (T);
1531 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
1532 };
1533}
1534
1535template <typename T, bool signed_p>
1536inline unsigned int
1537wi::primitive_int_traits <T, signed_p>::get_precision (T)
1538{
1539 return sizeof (T) * CHAR_BIT;
1540}
1541
1542template <typename T, bool signed_p>
1543inline wi::storage_ref
1544wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
1545 unsigned int precision, T x)
1546{
1547 scratch[0] = x;
1548 if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1549 return wi::storage_ref (scratch, 1, precision);
1550 scratch[1] = 0;
1551 return wi::storage_ref (scratch, 2, precision);
1552}
1553
1554/* Allow primitive C types to be used in wi:: routines. */
1555namespace wi
1556{
b0567726
RS
1557 template <>
1558 struct int_traits <unsigned char>
1559 : public primitive_int_traits <unsigned char, false> {};
1560
1561 template <>
1562 struct int_traits <unsigned short>
1563 : public primitive_int_traits <unsigned short, false> {};
1564
807e902e
KZ
1565 template <>
1566 struct int_traits <int>
1567 : public primitive_int_traits <int, true> {};
1568
1569 template <>
1570 struct int_traits <unsigned int>
1571 : public primitive_int_traits <unsigned int, false> {};
1572
807e902e 1573 template <>
d93461f7
RB
1574 struct int_traits <long>
1575 : public primitive_int_traits <long, true> {};
807e902e
KZ
1576
1577 template <>
d93461f7
RB
1578 struct int_traits <unsigned long>
1579 : public primitive_int_traits <unsigned long, false> {};
1580
1581#if defined HAVE_LONG_LONG
1582 template <>
1583 struct int_traits <long long>
1584 : public primitive_int_traits <long long, true> {};
1585
1586 template <>
1587 struct int_traits <unsigned long long>
1588 : public primitive_int_traits <unsigned long long, false> {};
1589#endif
807e902e
KZ
1590}
1591
1592namespace wi
1593{
1594 /* Stores HWI-sized integer VAL, treating it as having signedness SGN
1595 and precision PRECISION. */
6c1dae73 1596 class hwi_with_prec
807e902e 1597 {
6c1dae73 1598 public:
e535b963 1599 hwi_with_prec () {}
807e902e
KZ
1600 hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
1601 HOST_WIDE_INT val;
1602 unsigned int precision;
1603 signop sgn;
1604 };
1605
1606 hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
1607 hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
1608
1609 hwi_with_prec minus_one (unsigned int);
1610 hwi_with_prec zero (unsigned int);
1611 hwi_with_prec one (unsigned int);
1612 hwi_with_prec two (unsigned int);
1613}
1614
1615inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
1616 signop s)
4ea9e1a5 1617 : precision (p), sgn (s)
807e902e 1618{
4ea9e1a5
AH
1619 if (precision < HOST_BITS_PER_WIDE_INT)
1620 val = sext_hwi (v, precision);
1621 else
1622 val = v;
807e902e
KZ
1623}
1624
1625/* Return a signed integer that has value VAL and precision PRECISION. */
1626inline wi::hwi_with_prec
1627wi::shwi (HOST_WIDE_INT val, unsigned int precision)
1628{
1629 return hwi_with_prec (val, precision, SIGNED);
1630}
1631
1632/* Return an unsigned integer that has value VAL and precision PRECISION. */
1633inline wi::hwi_with_prec
1634wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
1635{
1636 return hwi_with_prec (val, precision, UNSIGNED);
1637}
1638
1639/* Return a wide int of -1 with precision PRECISION. */
1640inline wi::hwi_with_prec
1641wi::minus_one (unsigned int precision)
1642{
1643 return wi::shwi (-1, precision);
1644}
1645
1646/* Return a wide int of 0 with precision PRECISION. */
1647inline wi::hwi_with_prec
1648wi::zero (unsigned int precision)
1649{
1650 return wi::shwi (0, precision);
1651}
1652
1653/* Return a wide int of 1 with precision PRECISION. */
1654inline wi::hwi_with_prec
1655wi::one (unsigned int precision)
1656{
1657 return wi::shwi (1, precision);
1658}
1659
1660/* Return a wide int of 2 with precision PRECISION. */
1661inline wi::hwi_with_prec
1662wi::two (unsigned int precision)
1663{
1664 return wi::shwi (2, precision);
1665}
1666
e535b963
RS
1667namespace wi
1668{
1669 /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
1670 gives that T the same precision as X. */
1671 template<typename T, precision_type = int_traits<T>::precision_type>
1672 struct ints_for
1673 {
1674 static int zero (const T &) { return 0; }
1675 };
1676
1677 template<typename T>
1678 struct ints_for<T, VAR_PRECISION>
1679 {
1680 static hwi_with_prec zero (const T &);
1681 };
1682}
1683
1684template<typename T>
1685inline wi::hwi_with_prec
1686wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
1687{
1688 return wi::zero (wi::get_precision (x));
1689}
1690
807e902e
KZ
1691namespace wi
1692{
1693 template <>
1694 struct int_traits <wi::hwi_with_prec>
1695 {
1696 static const enum precision_type precision_type = VAR_PRECISION;
1697 /* hwi_with_prec has an explicitly-given precision, rather than the
1698 precision of HOST_WIDE_INT. */
1699 static const bool host_dependent_precision = false;
1700 static const bool is_sign_extended = true;
1701 static unsigned int get_precision (const wi::hwi_with_prec &);
1702 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1703 const wi::hwi_with_prec &);
1704 };
1705}
1706
1707inline unsigned int
1708wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
1709{
1710 return x.precision;
1711}
1712
1713inline wi::storage_ref
1714wi::int_traits <wi::hwi_with_prec>::
1715decompose (HOST_WIDE_INT *scratch, unsigned int precision,
1716 const wi::hwi_with_prec &x)
1717{
1718 gcc_checking_assert (precision == x.precision);
1719 scratch[0] = x.val;
1720 if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1721 return wi::storage_ref (scratch, 1, precision);
1722 scratch[1] = 0;
1723 return wi::storage_ref (scratch, 2, precision);
1724}
1725
1726/* Private functions for handling large cases out of line. They take
1727 individual length and array parameters because that is cheaper for
1728 the inline caller than constructing an object on the stack and
1729 passing a reference to it. (Although many callers use wide_int_refs,
1730 we generally want those to be removed by SRA.) */
1731namespace wi
1732{
1733 bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
1734 const HOST_WIDE_INT *, unsigned int, unsigned int);
1735 bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1736 const HOST_WIDE_INT *, unsigned int);
1737 bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1738 const HOST_WIDE_INT *, unsigned int);
1739 int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1740 const HOST_WIDE_INT *, unsigned int);
1741 int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1742 const HOST_WIDE_INT *, unsigned int);
1743 unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1744 unsigned int,
1745 unsigned int, unsigned int);
1746 unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1747 unsigned int,
1748 unsigned int, unsigned int);
1749 unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1750 unsigned int, unsigned int, unsigned int);
1751 unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1752 unsigned int, unsigned int, unsigned int);
1753 unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1754 unsigned int, unsigned int, unsigned int,
1755 unsigned int);
1756 unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1757 unsigned int, unsigned int, unsigned int,
1758 unsigned int);
1759 unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1760 const HOST_WIDE_INT *, unsigned int, unsigned int);
1761 unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1762 unsigned int, const HOST_WIDE_INT *,
1763 unsigned int, unsigned int);
1764 unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1765 const HOST_WIDE_INT *, unsigned int, unsigned int);
1766 unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1767 unsigned int, const HOST_WIDE_INT *,
1768 unsigned int, unsigned int);
1769 unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1770 const HOST_WIDE_INT *, unsigned int, unsigned int);
1771 unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1772 const HOST_WIDE_INT *, unsigned int, unsigned int,
4a669ac3 1773 signop, overflow_type *);
807e902e
KZ
1774 unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1775 const HOST_WIDE_INT *, unsigned int, unsigned int,
4a669ac3 1776 signop, overflow_type *);
807e902e
KZ
1777 unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1778 unsigned int, const HOST_WIDE_INT *,
4a669ac3
AH
1779 unsigned int, unsigned int, signop,
1780 overflow_type *, bool);
807e902e
KZ
1781 unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
1782 HOST_WIDE_INT *, const HOST_WIDE_INT *,
1783 unsigned int, unsigned int,
1784 const HOST_WIDE_INT *,
1785 unsigned int, unsigned int,
4a669ac3 1786 signop, overflow_type *);
807e902e
KZ
1787}
1788
1789/* Return the number of bits that integer X can hold. */
1790template <typename T>
1791inline unsigned int
1792wi::get_precision (const T &x)
1793{
1794 return wi::int_traits <T>::get_precision (x);
1795}
1796
1797/* Return the number of bits that the result of a binary operation can
1798 hold when the input operands are X and Y. */
1799template <typename T1, typename T2>
1800inline unsigned int
1801wi::get_binary_precision (const T1 &x, const T2 &y)
1802{
1803 return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
1804 get_binary_result (x, y));
1805}
1806
1807/* Copy the contents of Y to X, but keeping X's current precision. */
1808template <typename T1, typename T2>
1809inline void
1810wi::copy (T1 &x, const T2 &y)
1811{
1812 HOST_WIDE_INT *xval = x.write_val ();
1813 const HOST_WIDE_INT *yval = y.get_val ();
1814 unsigned int len = y.get_len ();
1815 unsigned int i = 0;
1816 do
1817 xval[i] = yval[i];
1818 while (++i < len);
1819 x.set_len (len, y.is_sign_extended);
1820}
1821
1822/* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
1823template <typename T>
1824inline bool
1825wi::fits_shwi_p (const T &x)
1826{
1827 WIDE_INT_REF_FOR (T) xi (x);
1828 return xi.len == 1;
1829}
1830
1831/* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
1832 precision. */
1833template <typename T>
1834inline bool
1835wi::fits_uhwi_p (const T &x)
1836{
1837 WIDE_INT_REF_FOR (T) xi (x);
1838 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
1839 return true;
1840 if (xi.len == 1)
1841 return xi.slow () >= 0;
1842 return xi.len == 2 && xi.uhigh () == 0;
1843}
1844
1845/* Return true if X is negative based on the interpretation of SGN.
1846 For UNSIGNED, this is always false. */
1847template <typename T>
1848inline bool
1849wi::neg_p (const T &x, signop sgn)
1850{
1851 WIDE_INT_REF_FOR (T) xi (x);
1852 if (sgn == UNSIGNED)
1853 return false;
1854 return xi.sign_mask () < 0;
1855}
1856
1857/* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
1858template <typename T>
1859inline HOST_WIDE_INT
1860wi::sign_mask (const T &x)
1861{
1862 WIDE_INT_REF_FOR (T) xi (x);
1863 return xi.sign_mask ();
1864}
1865
1866/* Return true if X == Y. X and Y must be binary-compatible. */
1867template <typename T1, typename T2>
1868inline bool
1869wi::eq_p (const T1 &x, const T2 &y)
1870{
1871 unsigned int precision = get_binary_precision (x, y);
1872 WIDE_INT_REF_FOR (T1) xi (x, precision);
1873 WIDE_INT_REF_FOR (T2) yi (y, precision);
1874 if (xi.is_sign_extended && yi.is_sign_extended)
1875 {
1876 /* This case reduces to array equality. */
1877 if (xi.len != yi.len)
1878 return false;
1879 unsigned int i = 0;
1880 do
1881 if (xi.val[i] != yi.val[i])
1882 return false;
1883 while (++i != xi.len);
1884 return true;
1885 }
22d9c880 1886 if (LIKELY (yi.len == 1))
807e902e
KZ
1887 {
1888 /* XI is only equal to YI if it too has a single HWI. */
1889 if (xi.len != 1)
1890 return false;
1891 /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
1892 with 0 are simple. */
1893 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1894 return xi.val[0] == 0;
1895 /* Otherwise flush out any excess bits first. */
1896 unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
1897 int excess = HOST_BITS_PER_WIDE_INT - precision;
1898 if (excess > 0)
1899 diff <<= excess;
1900 return diff == 0;
1901 }
1902 return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
1903}
1904
1905/* Return true if X != Y. X and Y must be binary-compatible. */
1906template <typename T1, typename T2>
1907inline bool
1908wi::ne_p (const T1 &x, const T2 &y)
1909{
1910 return !eq_p (x, y);
1911}
1912
1913/* Return true if X < Y when both are treated as signed values. */
1914template <typename T1, typename T2>
1915inline bool
1916wi::lts_p (const T1 &x, const T2 &y)
1917{
1918 unsigned int precision = get_binary_precision (x, y);
1919 WIDE_INT_REF_FOR (T1) xi (x, precision);
1920 WIDE_INT_REF_FOR (T2) yi (y, precision);
1921 /* We optimize x < y, where y is 64 or fewer bits. */
1922 if (wi::fits_shwi_p (yi))
1923 {
1924 /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
1925 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1926 return neg_p (xi);
1927 /* If x fits directly into a shwi, we can compare directly. */
1928 if (wi::fits_shwi_p (xi))
1929 return xi.to_shwi () < yi.to_shwi ();
1930 /* If x doesn't fit and is negative, then it must be more
1931 negative than any value in y, and hence smaller than y. */
1932 if (neg_p (xi))
1933 return true;
1934 /* If x is positive, then it must be larger than any value in y,
1935 and hence greater than y. */
1936 return false;
1937 }
1938 /* Optimize the opposite case, if it can be detected at compile time. */
1939 if (STATIC_CONSTANT_P (xi.len == 1))
1940 /* If YI is negative it is lower than the least HWI.
1941 If YI is positive it is greater than the greatest HWI. */
1942 return !neg_p (yi);
1943 return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1944}
1945
1946/* Return true if X < Y when both are treated as unsigned values. */
1947template <typename T1, typename T2>
1948inline bool
1949wi::ltu_p (const T1 &x, const T2 &y)
1950{
1951 unsigned int precision = get_binary_precision (x, y);
1952 WIDE_INT_REF_FOR (T1) xi (x, precision);
1953 WIDE_INT_REF_FOR (T2) yi (y, precision);
1954 /* Optimize comparisons with constants. */
1955 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
1956 return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
1957 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
1958 return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
1959 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
1960 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
1961 values does not change the result. */
22d9c880 1962 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
1963 {
1964 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
1965 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
1966 return xl < yl;
1967 }
1968 return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1969}
1970
1971/* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
1972template <typename T1, typename T2>
1973inline bool
1974wi::lt_p (const T1 &x, const T2 &y, signop sgn)
1975{
1976 if (sgn == SIGNED)
1977 return lts_p (x, y);
1978 else
1979 return ltu_p (x, y);
1980}
1981
1982/* Return true if X <= Y when both are treated as signed values. */
1983template <typename T1, typename T2>
1984inline bool
1985wi::les_p (const T1 &x, const T2 &y)
1986{
1987 return !lts_p (y, x);
1988}
1989
1990/* Return true if X <= Y when both are treated as unsigned values. */
1991template <typename T1, typename T2>
1992inline bool
1993wi::leu_p (const T1 &x, const T2 &y)
1994{
1995 return !ltu_p (y, x);
1996}
1997
1998/* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
1999template <typename T1, typename T2>
2000inline bool
2001wi::le_p (const T1 &x, const T2 &y, signop sgn)
2002{
2003 if (sgn == SIGNED)
2004 return les_p (x, y);
2005 else
2006 return leu_p (x, y);
2007}
2008
2009/* Return true if X > Y when both are treated as signed values. */
2010template <typename T1, typename T2>
2011inline bool
2012wi::gts_p (const T1 &x, const T2 &y)
2013{
2014 return lts_p (y, x);
2015}
2016
2017/* Return true if X > Y when both are treated as unsigned values. */
2018template <typename T1, typename T2>
2019inline bool
2020wi::gtu_p (const T1 &x, const T2 &y)
2021{
2022 return ltu_p (y, x);
2023}
2024
2025/* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
2026template <typename T1, typename T2>
2027inline bool
2028wi::gt_p (const T1 &x, const T2 &y, signop sgn)
2029{
2030 if (sgn == SIGNED)
2031 return gts_p (x, y);
2032 else
2033 return gtu_p (x, y);
2034}
2035
2036/* Return true if X >= Y when both are treated as signed values. */
2037template <typename T1, typename T2>
2038inline bool
2039wi::ges_p (const T1 &x, const T2 &y)
2040{
2041 return !lts_p (x, y);
2042}
2043
2044/* Return true if X >= Y when both are treated as unsigned values. */
2045template <typename T1, typename T2>
2046inline bool
2047wi::geu_p (const T1 &x, const T2 &y)
2048{
2049 return !ltu_p (x, y);
2050}
2051
2052/* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
2053template <typename T1, typename T2>
2054inline bool
2055wi::ge_p (const T1 &x, const T2 &y, signop sgn)
2056{
2057 if (sgn == SIGNED)
2058 return ges_p (x, y);
2059 else
2060 return geu_p (x, y);
2061}
2062
2063/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2064 as signed values. */
2065template <typename T1, typename T2>
2066inline int
2067wi::cmps (const T1 &x, const T2 &y)
2068{
2069 unsigned int precision = get_binary_precision (x, y);
2070 WIDE_INT_REF_FOR (T1) xi (x, precision);
2071 WIDE_INT_REF_FOR (T2) yi (y, precision);
2072 if (wi::fits_shwi_p (yi))
2073 {
2074 /* Special case for comparisons with 0. */
2075 if (STATIC_CONSTANT_P (yi.val[0] == 0))
2076 return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
2077 /* If x fits into a signed HWI, we can compare directly. */
2078 if (wi::fits_shwi_p (xi))
2079 {
2080 HOST_WIDE_INT xl = xi.to_shwi ();
2081 HOST_WIDE_INT yl = yi.to_shwi ();
2082 return xl < yl ? -1 : xl > yl;
2083 }
2084 /* If x doesn't fit and is negative, then it must be more
2085 negative than any signed HWI, and hence smaller than y. */
2086 if (neg_p (xi))
2087 return -1;
2088 /* If x is positive, then it must be larger than any signed HWI,
2089 and hence greater than y. */
2090 return 1;
2091 }
2092 /* Optimize the opposite case, if it can be detected at compile time. */
2093 if (STATIC_CONSTANT_P (xi.len == 1))
2094 /* If YI is negative it is lower than the least HWI.
2095 If YI is positive it is greater than the greatest HWI. */
2096 return neg_p (yi) ? 1 : -1;
2097 return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
2098}
2099
2100/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2101 as unsigned values. */
2102template <typename T1, typename T2>
2103inline int
2104wi::cmpu (const T1 &x, const T2 &y)
2105{
2106 unsigned int precision = get_binary_precision (x, y);
2107 WIDE_INT_REF_FOR (T1) xi (x, precision);
2108 WIDE_INT_REF_FOR (T2) yi (y, precision);
2109 /* Optimize comparisons with constants. */
2110 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
2111 {
2112 /* If XI doesn't fit in a HWI then it must be larger than YI. */
2113 if (xi.len != 1)
2114 return 1;
2115 /* Otherwise compare directly. */
2116 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2117 unsigned HOST_WIDE_INT yl = yi.val[0];
2118 return xl < yl ? -1 : xl > yl;
2119 }
2120 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
2121 {
2122 /* If YI doesn't fit in a HWI then it must be larger than XI. */
2123 if (yi.len != 1)
2124 return -1;
2125 /* Otherwise compare directly. */
2126 unsigned HOST_WIDE_INT xl = xi.val[0];
2127 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2128 return xl < yl ? -1 : xl > yl;
2129 }
2130 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
2131 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
2132 values does not change the result. */
22d9c880 2133 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2134 {
2135 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2136 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2137 return xl < yl ? -1 : xl > yl;
2138 }
2139 return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
2140}
2141
2142/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
2143 X and Y indicated by SGN. */
2144template <typename T1, typename T2>
2145inline int
2146wi::cmp (const T1 &x, const T2 &y, signop sgn)
2147{
2148 if (sgn == SIGNED)
2149 return cmps (x, y);
2150 else
2151 return cmpu (x, y);
2152}
2153
2154/* Return ~x. */
2155template <typename T>
2156inline WI_UNARY_RESULT (T)
2157wi::bit_not (const T &x)
2158{
2159 WI_UNARY_RESULT_VAR (result, val, T, x);
2160 WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
2161 for (unsigned int i = 0; i < xi.len; ++i)
2162 val[i] = ~xi.val[i];
2163 result.set_len (xi.len);
2164 return result;
2165}
2166
2167/* Return -x. */
2168template <typename T>
2169inline WI_UNARY_RESULT (T)
2170wi::neg (const T &x)
2171{
2172 return sub (0, x);
2173}
2174
4a669ac3
AH
2175/* Return -x. Indicate in *OVERFLOW if performing the negation would
2176 cause an overflow. */
807e902e
KZ
2177template <typename T>
2178inline WI_UNARY_RESULT (T)
4a669ac3 2179wi::neg (const T &x, overflow_type *overflow)
807e902e 2180{
4a669ac3 2181 *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
807e902e
KZ
2182 return sub (0, x);
2183}
2184
2185/* Return the absolute value of x. */
2186template <typename T>
2187inline WI_UNARY_RESULT (T)
2188wi::abs (const T &x)
2189{
2190 return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
2191}
2192
2193/* Return the result of sign-extending the low OFFSET bits of X. */
2194template <typename T>
2195inline WI_UNARY_RESULT (T)
2196wi::sext (const T &x, unsigned int offset)
2197{
2198 WI_UNARY_RESULT_VAR (result, val, T, x);
2199 unsigned int precision = get_precision (result);
2200 WIDE_INT_REF_FOR (T) xi (x, precision);
2201
2202 if (offset <= HOST_BITS_PER_WIDE_INT)
2203 {
2204 val[0] = sext_hwi (xi.ulow (), offset);
2205 result.set_len (1, true);
2206 }
2207 else
2208 result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
2209 return result;
2210}
2211
2212/* Return the result of zero-extending the low OFFSET bits of X. */
2213template <typename T>
2214inline WI_UNARY_RESULT (T)
2215wi::zext (const T &x, unsigned int offset)
2216{
2217 WI_UNARY_RESULT_VAR (result, val, T, x);
2218 unsigned int precision = get_precision (result);
2219 WIDE_INT_REF_FOR (T) xi (x, precision);
2220
2221 /* This is not just an optimization, it is actually required to
2222 maintain canonization. */
2223 if (offset >= precision)
2224 {
2225 wi::copy (result, xi);
2226 return result;
2227 }
2228
2229 /* In these cases we know that at least the top bit will be clear,
2230 so no sign extension is necessary. */
2231 if (offset < HOST_BITS_PER_WIDE_INT)
2232 {
2233 val[0] = zext_hwi (xi.ulow (), offset);
2234 result.set_len (1, true);
2235 }
2236 else
2237 result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
2238 return result;
2239}
2240
2241/* Return the result of extending the low OFFSET bits of X according to
2242 signedness SGN. */
2243template <typename T>
2244inline WI_UNARY_RESULT (T)
2245wi::ext (const T &x, unsigned int offset, signop sgn)
2246{
2247 return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
2248}
2249
2250/* Return an integer that represents X | (1 << bit). */
2251template <typename T>
2252inline WI_UNARY_RESULT (T)
2253wi::set_bit (const T &x, unsigned int bit)
2254{
2255 WI_UNARY_RESULT_VAR (result, val, T, x);
2256 unsigned int precision = get_precision (result);
2257 WIDE_INT_REF_FOR (T) xi (x, precision);
2258 if (precision <= HOST_BITS_PER_WIDE_INT)
2259 {
fecfbfa4 2260 val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
807e902e
KZ
2261 result.set_len (1);
2262 }
2263 else
2264 result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
2265 return result;
2266}
2267
2268/* Return the mininum of X and Y, treating them both as having
2269 signedness SGN. */
2270template <typename T1, typename T2>
2271inline WI_BINARY_RESULT (T1, T2)
2272wi::min (const T1 &x, const T2 &y, signop sgn)
2273{
2274 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2275 unsigned int precision = get_precision (result);
2276 if (wi::le_p (x, y, sgn))
2277 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2278 else
2279 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2280 return result;
2281}
2282
2283/* Return the minimum of X and Y, treating both as signed values. */
2284template <typename T1, typename T2>
2285inline WI_BINARY_RESULT (T1, T2)
2286wi::smin (const T1 &x, const T2 &y)
2287{
33c430b5 2288 return wi::min (x, y, SIGNED);
807e902e
KZ
2289}
2290
2291/* Return the minimum of X and Y, treating both as unsigned values. */
2292template <typename T1, typename T2>
2293inline WI_BINARY_RESULT (T1, T2)
2294wi::umin (const T1 &x, const T2 &y)
2295{
33c430b5 2296 return wi::min (x, y, UNSIGNED);
807e902e
KZ
2297}
2298
2299/* Return the maxinum of X and Y, treating them both as having
2300 signedness SGN. */
2301template <typename T1, typename T2>
2302inline WI_BINARY_RESULT (T1, T2)
2303wi::max (const T1 &x, const T2 &y, signop sgn)
2304{
2305 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2306 unsigned int precision = get_precision (result);
2307 if (wi::ge_p (x, y, sgn))
2308 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2309 else
2310 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2311 return result;
2312}
2313
2314/* Return the maximum of X and Y, treating both as signed values. */
2315template <typename T1, typename T2>
2316inline WI_BINARY_RESULT (T1, T2)
2317wi::smax (const T1 &x, const T2 &y)
2318{
33c430b5 2319 return wi::max (x, y, SIGNED);
807e902e
KZ
2320}
2321
2322/* Return the maximum of X and Y, treating both as unsigned values. */
2323template <typename T1, typename T2>
2324inline WI_BINARY_RESULT (T1, T2)
2325wi::umax (const T1 &x, const T2 &y)
2326{
33c430b5 2327 return wi::max (x, y, UNSIGNED);
807e902e
KZ
2328}
2329
2330/* Return X & Y. */
2331template <typename T1, typename T2>
2332inline WI_BINARY_RESULT (T1, T2)
2333wi::bit_and (const T1 &x, const T2 &y)
2334{
2335 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2336 unsigned int precision = get_precision (result);
2337 WIDE_INT_REF_FOR (T1) xi (x, precision);
2338 WIDE_INT_REF_FOR (T2) yi (y, precision);
2339 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
22d9c880 2340 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2341 {
2342 val[0] = xi.ulow () & yi.ulow ();
2343 result.set_len (1, is_sign_extended);
2344 }
2345 else
2346 result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
2347 precision), is_sign_extended);
2348 return result;
2349}
2350
2351/* Return X & ~Y. */
2352template <typename T1, typename T2>
2353inline WI_BINARY_RESULT (T1, T2)
2354wi::bit_and_not (const T1 &x, const T2 &y)
2355{
2356 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2357 unsigned int precision = get_precision (result);
2358 WIDE_INT_REF_FOR (T1) xi (x, precision);
2359 WIDE_INT_REF_FOR (T2) yi (y, precision);
2360 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
22d9c880 2361 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2362 {
2363 val[0] = xi.ulow () & ~yi.ulow ();
2364 result.set_len (1, is_sign_extended);
2365 }
2366 else
2367 result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
2368 precision), is_sign_extended);
2369 return result;
2370}
2371
2372/* Return X | Y. */
2373template <typename T1, typename T2>
2374inline WI_BINARY_RESULT (T1, T2)
2375wi::bit_or (const T1 &x, const T2 &y)
2376{
2377 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2378 unsigned int precision = get_precision (result);
2379 WIDE_INT_REF_FOR (T1) xi (x, precision);
2380 WIDE_INT_REF_FOR (T2) yi (y, precision);
2381 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
22d9c880 2382 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2383 {
2384 val[0] = xi.ulow () | yi.ulow ();
2385 result.set_len (1, is_sign_extended);
2386 }
2387 else
2388 result.set_len (or_large (val, xi.val, xi.len,
2389 yi.val, yi.len, precision), is_sign_extended);
2390 return result;
2391}
2392
2393/* Return X | ~Y. */
2394template <typename T1, typename T2>
2395inline WI_BINARY_RESULT (T1, T2)
2396wi::bit_or_not (const T1 &x, const T2 &y)
2397{
2398 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2399 unsigned int precision = get_precision (result);
2400 WIDE_INT_REF_FOR (T1) xi (x, precision);
2401 WIDE_INT_REF_FOR (T2) yi (y, precision);
2402 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
22d9c880 2403 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2404 {
2405 val[0] = xi.ulow () | ~yi.ulow ();
2406 result.set_len (1, is_sign_extended);
2407 }
2408 else
2409 result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
2410 precision), is_sign_extended);
2411 return result;
2412}
2413
2414/* Return X ^ Y. */
2415template <typename T1, typename T2>
2416inline WI_BINARY_RESULT (T1, T2)
2417wi::bit_xor (const T1 &x, const T2 &y)
2418{
2419 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2420 unsigned int precision = get_precision (result);
2421 WIDE_INT_REF_FOR (T1) xi (x, precision);
2422 WIDE_INT_REF_FOR (T2) yi (y, precision);
2423 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
22d9c880 2424 if (LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2425 {
2426 val[0] = xi.ulow () ^ yi.ulow ();
2427 result.set_len (1, is_sign_extended);
2428 }
2429 else
2430 result.set_len (xor_large (val, xi.val, xi.len,
2431 yi.val, yi.len, precision), is_sign_extended);
2432 return result;
2433}
2434
2435/* Return X + Y. */
2436template <typename T1, typename T2>
2437inline WI_BINARY_RESULT (T1, T2)
2438wi::add (const T1 &x, const T2 &y)
2439{
2440 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2441 unsigned int precision = get_precision (result);
2442 WIDE_INT_REF_FOR (T1) xi (x, precision);
2443 WIDE_INT_REF_FOR (T2) yi (y, precision);
2444 if (precision <= HOST_BITS_PER_WIDE_INT)
2445 {
2446 val[0] = xi.ulow () + yi.ulow ();
2447 result.set_len (1);
2448 }
2449 /* If the precision is known at compile time to be greater than
2450 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2451 knowing that (a) all bits in those HWIs are significant and
2452 (b) the result has room for at least two HWIs. This provides
2453 a fast path for things like offset_int and widest_int.
2454
2455 The STATIC_CONSTANT_P test prevents this path from being
2456 used for wide_ints. wide_ints with precisions greater than
2457 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2458 point handling them inline. */
2459 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
22d9c880 2460 && LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2461 {
2462 unsigned HOST_WIDE_INT xl = xi.ulow ();
2463 unsigned HOST_WIDE_INT yl = yi.ulow ();
2464 unsigned HOST_WIDE_INT resultl = xl + yl;
2465 val[0] = resultl;
2466 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2467 result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
2468 >> (HOST_BITS_PER_WIDE_INT - 1)));
2469 }
2470 else
2471 result.set_len (add_large (val, xi.val, xi.len,
2472 yi.val, yi.len, precision,
2473 UNSIGNED, 0));
2474 return result;
2475}
2476
2477/* Return X + Y. Treat X and Y as having the signednes given by SGN
2478 and indicate in *OVERFLOW whether the operation overflowed. */
2479template <typename T1, typename T2>
2480inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2481wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2482{
2483 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2484 unsigned int precision = get_precision (result);
2485 WIDE_INT_REF_FOR (T1) xi (x, precision);
2486 WIDE_INT_REF_FOR (T2) yi (y, precision);
2487 if (precision <= HOST_BITS_PER_WIDE_INT)
2488 {
2489 unsigned HOST_WIDE_INT xl = xi.ulow ();
2490 unsigned HOST_WIDE_INT yl = yi.ulow ();
2491 unsigned HOST_WIDE_INT resultl = xl + yl;
2492 if (sgn == SIGNED)
4a669ac3
AH
2493 {
2494 if ((((resultl ^ xl) & (resultl ^ yl))
2495 >> (precision - 1)) & 1)
2496 {
2497 if (xl > resultl)
2498 *overflow = OVF_UNDERFLOW;
2499 else if (xl < resultl)
2500 *overflow = OVF_OVERFLOW;
2501 else
2502 *overflow = OVF_NONE;
2503 }
2504 else
2505 *overflow = OVF_NONE;
2506 }
807e902e
KZ
2507 else
2508 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
4a669ac3
AH
2509 < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2510 ? OVF_OVERFLOW : OVF_NONE;
807e902e
KZ
2511 val[0] = resultl;
2512 result.set_len (1);
2513 }
2514 else
2515 result.set_len (add_large (val, xi.val, xi.len,
2516 yi.val, yi.len, precision,
2517 sgn, overflow));
2518 return result;
2519}
2520
2521/* Return X - Y. */
2522template <typename T1, typename T2>
2523inline WI_BINARY_RESULT (T1, T2)
2524wi::sub (const T1 &x, const T2 &y)
2525{
2526 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2527 unsigned int precision = get_precision (result);
2528 WIDE_INT_REF_FOR (T1) xi (x, precision);
2529 WIDE_INT_REF_FOR (T2) yi (y, precision);
2530 if (precision <= HOST_BITS_PER_WIDE_INT)
2531 {
2532 val[0] = xi.ulow () - yi.ulow ();
2533 result.set_len (1);
2534 }
2535 /* If the precision is known at compile time to be greater than
2536 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2537 knowing that (a) all bits in those HWIs are significant and
2538 (b) the result has room for at least two HWIs. This provides
2539 a fast path for things like offset_int and widest_int.
2540
2541 The STATIC_CONSTANT_P test prevents this path from being
2542 used for wide_ints. wide_ints with precisions greater than
2543 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2544 point handling them inline. */
2545 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
22d9c880 2546 && LIKELY (xi.len + yi.len == 2))
807e902e
KZ
2547 {
2548 unsigned HOST_WIDE_INT xl = xi.ulow ();
2549 unsigned HOST_WIDE_INT yl = yi.ulow ();
2550 unsigned HOST_WIDE_INT resultl = xl - yl;
2551 val[0] = resultl;
2552 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2553 result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
2554 >> (HOST_BITS_PER_WIDE_INT - 1)));
2555 }
2556 else
2557 result.set_len (sub_large (val, xi.val, xi.len,
2558 yi.val, yi.len, precision,
2559 UNSIGNED, 0));
2560 return result;
2561}
2562
2563/* Return X - Y. Treat X and Y as having the signednes given by SGN
2564 and indicate in *OVERFLOW whether the operation overflowed. */
2565template <typename T1, typename T2>
2566inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2567wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2568{
2569 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2570 unsigned int precision = get_precision (result);
2571 WIDE_INT_REF_FOR (T1) xi (x, precision);
2572 WIDE_INT_REF_FOR (T2) yi (y, precision);
2573 if (precision <= HOST_BITS_PER_WIDE_INT)
2574 {
2575 unsigned HOST_WIDE_INT xl = xi.ulow ();
2576 unsigned HOST_WIDE_INT yl = yi.ulow ();
2577 unsigned HOST_WIDE_INT resultl = xl - yl;
2578 if (sgn == SIGNED)
4a669ac3
AH
2579 {
2580 if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
2581 {
2582 if (xl > yl)
2583 *overflow = OVF_UNDERFLOW;
2584 else if (xl < yl)
2585 *overflow = OVF_OVERFLOW;
2586 else
2587 *overflow = OVF_NONE;
2588 }
2589 else
2590 *overflow = OVF_NONE;
2591 }
807e902e
KZ
2592 else
2593 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
4a669ac3
AH
2594 > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2595 ? OVF_UNDERFLOW : OVF_NONE;
807e902e
KZ
2596 val[0] = resultl;
2597 result.set_len (1);
2598 }
2599 else
2600 result.set_len (sub_large (val, xi.val, xi.len,
2601 yi.val, yi.len, precision,
2602 sgn, overflow));
2603 return result;
2604}
2605
2606/* Return X * Y. */
2607template <typename T1, typename T2>
2608inline WI_BINARY_RESULT (T1, T2)
2609wi::mul (const T1 &x, const T2 &y)
2610{
2611 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2612 unsigned int precision = get_precision (result);
2613 WIDE_INT_REF_FOR (T1) xi (x, precision);
2614 WIDE_INT_REF_FOR (T2) yi (y, precision);
2615 if (precision <= HOST_BITS_PER_WIDE_INT)
2616 {
2617 val[0] = xi.ulow () * yi.ulow ();
2618 result.set_len (1);
2619 }
2620 else
2621 result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
2622 precision, UNSIGNED, 0, false));
2623 return result;
2624}
2625
2626/* Return X * Y. Treat X and Y as having the signednes given by SGN
2627 and indicate in *OVERFLOW whether the operation overflowed. */
2628template <typename T1, typename T2>
2629inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2630wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2631{
2632 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2633 unsigned int precision = get_precision (result);
2634 WIDE_INT_REF_FOR (T1) xi (x, precision);
2635 WIDE_INT_REF_FOR (T2) yi (y, precision);
2636 result.set_len (mul_internal (val, xi.val, xi.len,
2637 yi.val, yi.len, precision,
2638 sgn, overflow, false));
2639 return result;
2640}
2641
2642/* Return X * Y, treating both X and Y as signed values. Indicate in
2643 *OVERFLOW whether the operation overflowed. */
2644template <typename T1, typename T2>
2645inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2646wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
807e902e
KZ
2647{
2648 return mul (x, y, SIGNED, overflow);
2649}
2650
2651/* Return X * Y, treating both X and Y as unsigned values. Indicate in
4a669ac3 2652 *OVERFLOW if the result overflows. */
807e902e
KZ
2653template <typename T1, typename T2>
2654inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2655wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
807e902e
KZ
2656{
2657 return mul (x, y, UNSIGNED, overflow);
2658}
2659
2660/* Perform a widening multiplication of X and Y, extending the values
2661 according to SGN, and return the high part of the result. */
2662template <typename T1, typename T2>
2663inline WI_BINARY_RESULT (T1, T2)
2664wi::mul_high (const T1 &x, const T2 &y, signop sgn)
2665{
2666 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2667 unsigned int precision = get_precision (result);
2668 WIDE_INT_REF_FOR (T1) xi (x, precision);
2669 WIDE_INT_REF_FOR (T2) yi (y, precision);
2670 result.set_len (mul_internal (val, xi.val, xi.len,
2671 yi.val, yi.len, precision,
2672 sgn, 0, true));
2673 return result;
2674}
2675
2676/* Return X / Y, rouding towards 0. Treat X and Y as having the
2677 signedness given by SGN. Indicate in *OVERFLOW if the result
2678 overflows. */
2679template <typename T1, typename T2>
2680inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2681wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2682{
2683 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2684 unsigned int precision = get_precision (quotient);
2685 WIDE_INT_REF_FOR (T1) xi (x, precision);
2686 WIDE_INT_REF_FOR (T2) yi (y);
2687
2688 quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
2689 precision,
2690 yi.val, yi.len, yi.precision,
2691 sgn, overflow));
2692 return quotient;
2693}
2694
2695/* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
2696template <typename T1, typename T2>
2697inline WI_BINARY_RESULT (T1, T2)
2698wi::sdiv_trunc (const T1 &x, const T2 &y)
2699{
2700 return div_trunc (x, y, SIGNED);
2701}
2702
2703/* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
2704template <typename T1, typename T2>
2705inline WI_BINARY_RESULT (T1, T2)
2706wi::udiv_trunc (const T1 &x, const T2 &y)
2707{
2708 return div_trunc (x, y, UNSIGNED);
2709}
2710
2711/* Return X / Y, rouding towards -inf. Treat X and Y as having the
2712 signedness given by SGN. Indicate in *OVERFLOW if the result
2713 overflows. */
2714template <typename T1, typename T2>
2715inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2716wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2717{
2718 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2719 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2720 unsigned int precision = get_precision (quotient);
2721 WIDE_INT_REF_FOR (T1) xi (x, precision);
2722 WIDE_INT_REF_FOR (T2) yi (y);
2723
2724 unsigned int remainder_len;
2725 quotient.set_len (divmod_internal (quotient_val,
2726 &remainder_len, remainder_val,
2727 xi.val, xi.len, precision,
2728 yi.val, yi.len, yi.precision, sgn,
2729 overflow));
2730 remainder.set_len (remainder_len);
2731 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2732 return quotient - 1;
2733 return quotient;
2734}
2735
2736/* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
2737template <typename T1, typename T2>
2738inline WI_BINARY_RESULT (T1, T2)
2739wi::sdiv_floor (const T1 &x, const T2 &y)
2740{
2741 return div_floor (x, y, SIGNED);
2742}
2743
2744/* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
2745/* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
2746template <typename T1, typename T2>
2747inline WI_BINARY_RESULT (T1, T2)
2748wi::udiv_floor (const T1 &x, const T2 &y)
2749{
2750 return div_floor (x, y, UNSIGNED);
2751}
2752
2753/* Return X / Y, rouding towards +inf. Treat X and Y as having the
2754 signedness given by SGN. Indicate in *OVERFLOW if the result
2755 overflows. */
2756template <typename T1, typename T2>
2757inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2758wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2759{
2760 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2761 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2762 unsigned int precision = get_precision (quotient);
2763 WIDE_INT_REF_FOR (T1) xi (x, precision);
2764 WIDE_INT_REF_FOR (T2) yi (y);
2765
2766 unsigned int remainder_len;
2767 quotient.set_len (divmod_internal (quotient_val,
2768 &remainder_len, remainder_val,
2769 xi.val, xi.len, precision,
2770 yi.val, yi.len, yi.precision, sgn,
2771 overflow));
2772 remainder.set_len (remainder_len);
2773 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2774 return quotient + 1;
2775 return quotient;
2776}
2777
7cfb4d93
RS
2778/* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */
2779template <typename T1, typename T2>
2780inline WI_BINARY_RESULT (T1, T2)
2781wi::udiv_ceil (const T1 &x, const T2 &y)
2782{
2783 return div_ceil (x, y, UNSIGNED);
2784}
2785
807e902e
KZ
2786/* Return X / Y, rouding towards nearest with ties away from zero.
2787 Treat X and Y as having the signedness given by SGN. Indicate
2788 in *OVERFLOW if the result overflows. */
2789template <typename T1, typename T2>
2790inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2791wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2792{
2793 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2794 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2795 unsigned int precision = get_precision (quotient);
2796 WIDE_INT_REF_FOR (T1) xi (x, precision);
2797 WIDE_INT_REF_FOR (T2) yi (y);
2798
2799 unsigned int remainder_len;
2800 quotient.set_len (divmod_internal (quotient_val,
2801 &remainder_len, remainder_val,
2802 xi.val, xi.len, precision,
2803 yi.val, yi.len, yi.precision, sgn,
2804 overflow));
2805 remainder.set_len (remainder_len);
2806
2807 if (remainder != 0)
2808 {
2809 if (sgn == SIGNED)
2810 {
4db4954f
RS
2811 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2812 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
807e902e
KZ
2813 {
2814 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2815 return quotient - 1;
2816 else
2817 return quotient + 1;
2818 }
2819 }
2820 else
2821 {
4db4954f 2822 if (wi::geu_p (remainder, wi::sub (y, remainder)))
807e902e
KZ
2823 return quotient + 1;
2824 }
2825 }
2826 return quotient;
2827}
2828
2829/* Return X / Y, rouding towards 0. Treat X and Y as having the
2830 signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
2831template <typename T1, typename T2>
2832inline WI_BINARY_RESULT (T1, T2)
2833wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
2834 WI_BINARY_RESULT (T1, T2) *remainder_ptr)
2835{
2836 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2837 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2838 unsigned int precision = get_precision (quotient);
2839 WIDE_INT_REF_FOR (T1) xi (x, precision);
2840 WIDE_INT_REF_FOR (T2) yi (y);
2841
2842 unsigned int remainder_len;
2843 quotient.set_len (divmod_internal (quotient_val,
2844 &remainder_len, remainder_val,
2845 xi.val, xi.len, precision,
2846 yi.val, yi.len, yi.precision, sgn, 0));
2847 remainder.set_len (remainder_len);
2848
2849 *remainder_ptr = remainder;
2850 return quotient;
2851}
2852
d9a6bd32
JJ
2853/* Compute the greatest common divisor of two numbers A and B using
2854 Euclid's algorithm. */
2855template <typename T1, typename T2>
2856inline WI_BINARY_RESULT (T1, T2)
2857wi::gcd (const T1 &a, const T2 &b, signop sgn)
2858{
2859 T1 x, y, z;
2860
2861 x = wi::abs (a);
2862 y = wi::abs (b);
2863
2864 while (gt_p (x, 0, sgn))
2865 {
2866 z = mod_trunc (y, x, sgn);
2867 y = x;
2868 x = z;
2869 }
2870
2871 return y;
2872}
2873
807e902e
KZ
2874/* Compute X / Y, rouding towards 0, and return the remainder.
2875 Treat X and Y as having the signedness given by SGN. Indicate
2876 in *OVERFLOW if the division overflows. */
2877template <typename T1, typename T2>
2878inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2879wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2880{
2881 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2882 unsigned int precision = get_precision (remainder);
2883 WIDE_INT_REF_FOR (T1) xi (x, precision);
2884 WIDE_INT_REF_FOR (T2) yi (y);
2885
2886 unsigned int remainder_len;
2887 divmod_internal (0, &remainder_len, remainder_val,
2888 xi.val, xi.len, precision,
2889 yi.val, yi.len, yi.precision, sgn, overflow);
2890 remainder.set_len (remainder_len);
2891
2892 return remainder;
2893}
2894
2895/* Compute X / Y, rouding towards 0, and return the remainder.
2896 Treat X and Y as signed values. */
2897template <typename T1, typename T2>
2898inline WI_BINARY_RESULT (T1, T2)
2899wi::smod_trunc (const T1 &x, const T2 &y)
2900{
2901 return mod_trunc (x, y, SIGNED);
2902}
2903
2904/* Compute X / Y, rouding towards 0, and return the remainder.
2905 Treat X and Y as unsigned values. */
2906template <typename T1, typename T2>
2907inline WI_BINARY_RESULT (T1, T2)
2908wi::umod_trunc (const T1 &x, const T2 &y)
2909{
2910 return mod_trunc (x, y, UNSIGNED);
2911}
2912
2913/* Compute X / Y, rouding towards -inf, and return the remainder.
2914 Treat X and Y as having the signedness given by SGN. Indicate
2915 in *OVERFLOW if the division overflows. */
2916template <typename T1, typename T2>
2917inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2918wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2919{
2920 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2921 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2922 unsigned int precision = get_precision (quotient);
2923 WIDE_INT_REF_FOR (T1) xi (x, precision);
2924 WIDE_INT_REF_FOR (T2) yi (y);
2925
2926 unsigned int remainder_len;
2927 quotient.set_len (divmod_internal (quotient_val,
2928 &remainder_len, remainder_val,
2929 xi.val, xi.len, precision,
2930 yi.val, yi.len, yi.precision, sgn,
2931 overflow));
2932 remainder.set_len (remainder_len);
2933
2934 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2935 return remainder + y;
2936 return remainder;
2937}
2938
2939/* Compute X / Y, rouding towards -inf, and return the remainder.
2940 Treat X and Y as unsigned values. */
2941/* ??? Why do we have both this and umod_trunc. Aren't they the same? */
2942template <typename T1, typename T2>
2943inline WI_BINARY_RESULT (T1, T2)
2944wi::umod_floor (const T1 &x, const T2 &y)
2945{
2946 return mod_floor (x, y, UNSIGNED);
2947}
2948
2949/* Compute X / Y, rouding towards +inf, and return the remainder.
2950 Treat X and Y as having the signedness given by SGN. Indicate
2951 in *OVERFLOW if the division overflows. */
2952template <typename T1, typename T2>
2953inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2954wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2955{
2956 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2957 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2958 unsigned int precision = get_precision (quotient);
2959 WIDE_INT_REF_FOR (T1) xi (x, precision);
2960 WIDE_INT_REF_FOR (T2) yi (y);
2961
2962 unsigned int remainder_len;
2963 quotient.set_len (divmod_internal (quotient_val,
2964 &remainder_len, remainder_val,
2965 xi.val, xi.len, precision,
2966 yi.val, yi.len, yi.precision, sgn,
2967 overflow));
2968 remainder.set_len (remainder_len);
2969
2970 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2971 return remainder - y;
2972 return remainder;
2973}
2974
2975/* Compute X / Y, rouding towards nearest with ties away from zero,
2976 and return the remainder. Treat X and Y as having the signedness
2977 given by SGN. Indicate in *OVERFLOW if the division overflows. */
2978template <typename T1, typename T2>
2979inline WI_BINARY_RESULT (T1, T2)
4a669ac3 2980wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
807e902e
KZ
2981{
2982 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2983 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2984 unsigned int precision = get_precision (quotient);
2985 WIDE_INT_REF_FOR (T1) xi (x, precision);
2986 WIDE_INT_REF_FOR (T2) yi (y);
2987
2988 unsigned int remainder_len;
2989 quotient.set_len (divmod_internal (quotient_val,
2990 &remainder_len, remainder_val,
2991 xi.val, xi.len, precision,
2992 yi.val, yi.len, yi.precision, sgn,
2993 overflow));
2994 remainder.set_len (remainder_len);
2995
2996 if (remainder != 0)
2997 {
2998 if (sgn == SIGNED)
2999 {
4db4954f
RS
3000 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
3001 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
807e902e
KZ
3002 {
3003 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
3004 return remainder + y;
3005 else
3006 return remainder - y;
3007 }
3008 }
3009 else
3010 {
4db4954f 3011 if (wi::geu_p (remainder, wi::sub (y, remainder)))
807e902e
KZ
3012 return remainder - y;
3013 }
3014 }
3015 return remainder;
3016}
3017
7588d8aa
RS
3018/* Return true if X is a multiple of Y. Treat X and Y as having the
3019 signedness given by SGN. */
3020template <typename T1, typename T2>
3021inline bool
3022wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
3023{
3024 return wi::mod_trunc (x, y, sgn) == 0;
3025}
3026
807e902e
KZ
3027/* Return true if X is a multiple of Y, storing X / Y in *RES if so.
3028 Treat X and Y as having the signedness given by SGN. */
3029template <typename T1, typename T2>
3030inline bool
3031wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
3032 WI_BINARY_RESULT (T1, T2) *res)
3033{
3034 WI_BINARY_RESULT (T1, T2) remainder;
3035 WI_BINARY_RESULT (T1, T2) quotient
3036 = divmod_trunc (x, y, sgn, &remainder);
3037 if (remainder == 0)
3038 {
3039 *res = quotient;
3040 return true;
3041 }
3042 return false;
3043}
3044
3045/* Return X << Y. Return 0 if Y is greater than or equal to
3046 the precision of X. */
3047template <typename T1, typename T2>
3048inline WI_UNARY_RESULT (T1)
3049wi::lshift (const T1 &x, const T2 &y)
3050{
3051 WI_UNARY_RESULT_VAR (result, val, T1, x);
3052 unsigned int precision = get_precision (result);
3053 WIDE_INT_REF_FOR (T1) xi (x, precision);
3054 WIDE_INT_REF_FOR (T2) yi (y);
3055 /* Handle the simple cases quickly. */
3056 if (geu_p (yi, precision))
3057 {
3058 val[0] = 0;
3059 result.set_len (1);
3060 }
3061 else
3062 {
3063 unsigned int shift = yi.to_uhwi ();
3064 /* For fixed-precision integers like offset_int and widest_int,
3065 handle the case where the shift value is constant and the
3066 result is a single nonnegative HWI (meaning that we don't
3067 need to worry about val[1]). This is particularly common
3068 for converting a byte count to a bit count.
3069
3070 For variable-precision integers like wide_int, handle HWI
3071 and sub-HWI integers inline. */
3072 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3073 ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
3074 && xi.len == 1
12bb0436 3075 && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
807e902e
KZ
3076 : precision <= HOST_BITS_PER_WIDE_INT)
3077 {
3078 val[0] = xi.ulow () << shift;
3079 result.set_len (1);
3080 }
3081 else
3082 result.set_len (lshift_large (val, xi.val, xi.len,
3083 precision, shift));
3084 }
3085 return result;
3086}
3087
3088/* Return X >> Y, using a logical shift. Return 0 if Y is greater than
3089 or equal to the precision of X. */
3090template <typename T1, typename T2>
3091inline WI_UNARY_RESULT (T1)
3092wi::lrshift (const T1 &x, const T2 &y)
3093{
3094 WI_UNARY_RESULT_VAR (result, val, T1, x);
3095 /* Do things in the precision of the input rather than the output,
3096 since the result can be no larger than that. */
3097 WIDE_INT_REF_FOR (T1) xi (x);
3098 WIDE_INT_REF_FOR (T2) yi (y);
3099 /* Handle the simple cases quickly. */
3100 if (geu_p (yi, xi.precision))
3101 {
3102 val[0] = 0;
3103 result.set_len (1);
3104 }
3105 else
3106 {
3107 unsigned int shift = yi.to_uhwi ();
3108 /* For fixed-precision integers like offset_int and widest_int,
3109 handle the case where the shift value is constant and the
3110 shifted value is a single nonnegative HWI (meaning that all
3111 bits above the HWI are zero). This is particularly common
3112 for converting a bit count to a byte count.
3113
3114 For variable-precision integers like wide_int, handle HWI
3115 and sub-HWI integers inline. */
3116 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
b1652dde
JJ
3117 ? (shift < HOST_BITS_PER_WIDE_INT
3118 && xi.len == 1
3119 && xi.val[0] >= 0)
807e902e
KZ
3120 : xi.precision <= HOST_BITS_PER_WIDE_INT)
3121 {
3122 val[0] = xi.to_uhwi () >> shift;
3123 result.set_len (1);
3124 }
3125 else
3126 result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
3127 get_precision (result), shift));
3128 }
3129 return result;
3130}
3131
3132/* Return X >> Y, using an arithmetic shift. Return a sign mask if
3133 Y is greater than or equal to the precision of X. */
3134template <typename T1, typename T2>
3135inline WI_UNARY_RESULT (T1)
3136wi::arshift (const T1 &x, const T2 &y)
3137{
3138 WI_UNARY_RESULT_VAR (result, val, T1, x);
3139 /* Do things in the precision of the input rather than the output,
3140 since the result can be no larger than that. */
3141 WIDE_INT_REF_FOR (T1) xi (x);
3142 WIDE_INT_REF_FOR (T2) yi (y);
3143 /* Handle the simple cases quickly. */
3144 if (geu_p (yi, xi.precision))
3145 {
3146 val[0] = sign_mask (x);
3147 result.set_len (1);
3148 }
3149 else
3150 {
3151 unsigned int shift = yi.to_uhwi ();
3152 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
3153 {
3154 val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
3155 result.set_len (1, true);
3156 }
3157 else
3158 result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
3159 get_precision (result), shift));
3160 }
3161 return result;
3162}
3163
3164/* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
3165 logical shift otherwise. */
3166template <typename T1, typename T2>
3167inline WI_UNARY_RESULT (T1)
3168wi::rshift (const T1 &x, const T2 &y, signop sgn)
3169{
3170 if (sgn == UNSIGNED)
3171 return lrshift (x, y);
3172 else
3173 return arshift (x, y);
3174}
3175
3176/* Return the result of rotating the low WIDTH bits of X left by Y
3177 bits and zero-extending the result. Use a full-width rotate if
3178 WIDTH is zero. */
3179template <typename T1, typename T2>
3180WI_UNARY_RESULT (T1)
3181wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
3182{
3183 unsigned int precision = get_binary_precision (x, x);
3184 if (width == 0)
3185 width = precision;
3186 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3187 WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
3188 WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
3189 if (width != precision)
3190 return wi::zext (left, width) | wi::zext (right, width);
3191 return left | right;
3192}
3193
3194/* Return the result of rotating the low WIDTH bits of X right by Y
3195 bits and zero-extending the result. Use a full-width rotate if
3196 WIDTH is zero. */
3197template <typename T1, typename T2>
3198WI_UNARY_RESULT (T1)
3199wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
3200{
3201 unsigned int precision = get_binary_precision (x, x);
3202 if (width == 0)
3203 width = precision;
3204 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3205 WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
3206 WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
3207 if (width != precision)
3208 return wi::zext (left, width) | wi::zext (right, width);
3209 return left | right;
3210}
3211
3212/* Return 0 if the number of 1s in X is even and 1 if the number of 1s
3213 is odd. */
3214inline int
3215wi::parity (const wide_int_ref &x)
3216{
3217 return popcount (x) & 1;
3218}
3219
3220/* Extract WIDTH bits from X, starting at BITPOS. */
3221template <typename T>
3222inline unsigned HOST_WIDE_INT
3223wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
3224{
3225 unsigned precision = get_precision (x);
3226 if (precision < bitpos + width)
3227 precision = bitpos + width;
3228 WIDE_INT_REF_FOR (T) xi (x, precision);
3229
3230 /* Handle this rare case after the above, so that we assert about
3231 bogus BITPOS values. */
3232 if (width == 0)
3233 return 0;
3234
3235 unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
3236 unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
3237 unsigned HOST_WIDE_INT res = xi.elt (start);
3238 res >>= shift;
3239 if (shift + width > HOST_BITS_PER_WIDE_INT)
3240 {
3241 unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
3242 res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
3243 }
3244 return zext_hwi (res, width);
3245}
3246
3247/* Return the minimum precision needed to store X with sign SGN. */
3248template <typename T>
3249inline unsigned int
3250wi::min_precision (const T &x, signop sgn)
3251{
3252 if (sgn == SIGNED)
3253 return get_precision (x) - clrsb (x);
3254 else
3255 return get_precision (x) - clz (x);
3256}
3257
032c80e9
RS
3258#define SIGNED_BINARY_PREDICATE(OP, F) \
3259 template <typename T1, typename T2> \
3260 inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
3261 OP (const T1 &x, const T2 &y) \
3262 { \
3263 return wi::F (x, y); \
3264 }
3265
3266SIGNED_BINARY_PREDICATE (operator <, lts_p)
3267SIGNED_BINARY_PREDICATE (operator <=, les_p)
3268SIGNED_BINARY_PREDICATE (operator >, gts_p)
3269SIGNED_BINARY_PREDICATE (operator >=, ges_p)
3270
3271#undef SIGNED_BINARY_PREDICATE
3272
7b27cb4b
RS
3273#define UNARY_OPERATOR(OP, F) \
3274 template<typename T> \
3275 WI_UNARY_RESULT (generic_wide_int<T>) \
3276 OP (const generic_wide_int<T> &x) \
3277 { \
3278 return wi::F (x); \
3279 }
3280
3281#define BINARY_PREDICATE(OP, F) \
3282 template<typename T1, typename T2> \
3283 WI_BINARY_PREDICATE_RESULT (T1, T2) \
3284 OP (const T1 &x, const T2 &y) \
3285 { \
3286 return wi::F (x, y); \
3287 }
3288
3289#define BINARY_OPERATOR(OP, F) \
3290 template<typename T1, typename T2> \
3291 WI_BINARY_OPERATOR_RESULT (T1, T2) \
3292 OP (const T1 &x, const T2 &y) \
3293 { \
3294 return wi::F (x, y); \
3295 }
3296
e535b963
RS
3297#define SHIFT_OPERATOR(OP, F) \
3298 template<typename T1, typename T2> \
3299 WI_BINARY_OPERATOR_RESULT (T1, T1) \
3300 OP (const T1 &x, const T2 &y) \
3301 { \
3302 return wi::F (x, y); \
3303 }
3304
7b27cb4b
RS
3305UNARY_OPERATOR (operator ~, bit_not)
3306UNARY_OPERATOR (operator -, neg)
3307BINARY_PREDICATE (operator ==, eq_p)
3308BINARY_PREDICATE (operator !=, ne_p)
3309BINARY_OPERATOR (operator &, bit_and)
3310BINARY_OPERATOR (operator |, bit_or)
3311BINARY_OPERATOR (operator ^, bit_xor)
3312BINARY_OPERATOR (operator +, add)
3313BINARY_OPERATOR (operator -, sub)
3314BINARY_OPERATOR (operator *, mul)
e535b963 3315SHIFT_OPERATOR (operator <<, lshift)
7b27cb4b
RS
3316
3317#undef UNARY_OPERATOR
3318#undef BINARY_PREDICATE
3319#undef BINARY_OPERATOR
e535b963
RS
3320#undef SHIFT_OPERATOR
3321
3322template <typename T1, typename T2>
3323inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3324operator >> (const T1 &x, const T2 &y)
3325{
3326 return wi::arshift (x, y);
3327}
7b27cb4b 3328
8de73453
RS
3329template <typename T1, typename T2>
3330inline WI_SIGNED_SHIFT_RESULT (T1, T2)
e535b963 3331operator / (const T1 &x, const T2 &y)
8de73453 3332{
e535b963 3333 return wi::sdiv_trunc (x, y);
8de73453
RS
3334}
3335
3336template <typename T1, typename T2>
3337inline WI_SIGNED_SHIFT_RESULT (T1, T2)
e535b963 3338operator % (const T1 &x, const T2 &y)
8de73453 3339{
e535b963 3340 return wi::smod_trunc (x, y);
8de73453
RS
3341}
3342
807e902e
KZ
3343template<typename T>
3344void
3345gt_ggc_mx (generic_wide_int <T> *)
3346{
3347}
3348
3349template<typename T>
3350void
3351gt_pch_nx (generic_wide_int <T> *)
3352{
3353}
3354
3355template<typename T>
3356void
7ed58b42 3357gt_pch_nx (generic_wide_int <T> *, gt_pointer_operator, void *)
807e902e
KZ
3358{
3359}
3360
3361template<int N>
3362void
3363gt_ggc_mx (trailing_wide_ints <N> *)
3364{
3365}
3366
3367template<int N>
3368void
3369gt_pch_nx (trailing_wide_ints <N> *)
3370{
3371}
3372
3373template<int N>
3374void
7ed58b42 3375gt_pch_nx (trailing_wide_ints <N> *, gt_pointer_operator, void *)
807e902e
KZ
3376{
3377}
3378
3379namespace wi
3380{
3381 /* Used for overloaded functions in which the only other acceptable
3382 scalar type is a pointer. It stops a plain 0 from being treated
3383 as a null pointer. */
3384 struct never_used1 {};
3385 struct never_used2 {};
3386
3387 wide_int min_value (unsigned int, signop);
3388 wide_int min_value (never_used1 *);
3389 wide_int min_value (never_used2 *);
3390 wide_int max_value (unsigned int, signop);
3391 wide_int max_value (never_used1 *);
3392 wide_int max_value (never_used2 *);
3393
3394 /* FIXME: this is target dependent, so should be elsewhere.
3395 It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
3396 wide_int from_buffer (const unsigned char *, unsigned int);
3397
3398#ifndef GENERATOR_FILE
3399 void to_mpz (const wide_int_ref &, mpz_t, signop);
3400#endif
3401
3402 wide_int mask (unsigned int, bool, unsigned int);
3403 wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
3404 wide_int set_bit_in_zero (unsigned int, unsigned int);
3405 wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
3406 unsigned int);
fff22900
RS
3407 wide_int round_down_for_mask (const wide_int &, const wide_int &);
3408 wide_int round_up_for_mask (const wide_int &, const wide_int &);
807e902e 3409
28752261
MG
3410 wide_int mod_inv (const wide_int &a, const wide_int &b);
3411
807e902e
KZ
3412 template <typename T>
3413 T mask (unsigned int, bool);
3414
3415 template <typename T>
3416 T shifted_mask (unsigned int, unsigned int, bool);
3417
3418 template <typename T>
3419 T set_bit_in_zero (unsigned int);
3420
3421 unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
3422 unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
3423 bool, unsigned int);
3424 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
3425 unsigned int, unsigned int, bool);
3426}
3427
3428/* Return a PRECISION-bit integer in which the low WIDTH bits are set
3429 and the other bits are clear, or the inverse if NEGATE_P. */
3430inline wide_int
3431wi::mask (unsigned int width, bool negate_p, unsigned int precision)
3432{
3433 wide_int result = wide_int::create (precision);
3434 result.set_len (mask (result.write_val (), width, negate_p, precision));
3435 return result;
3436}
3437
3438/* Return a PRECISION-bit integer in which the low START bits are clear,
3439 the next WIDTH bits are set, and the other bits are clear,
3440 or the inverse if NEGATE_P. */
3441inline wide_int
3442wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
3443 unsigned int precision)
3444{
3445 wide_int result = wide_int::create (precision);
3446 result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
3447 precision));
3448 return result;
3449}
3450
3451/* Return a PRECISION-bit integer in which bit BIT is set and all the
3452 others are clear. */
3453inline wide_int
3454wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
3455{
3456 return shifted_mask (bit, 1, false, precision);
3457}
3458
3459/* Return an integer of type T in which the low WIDTH bits are set
3460 and the other bits are clear, or the inverse if NEGATE_P. */
3461template <typename T>
3462inline T
3463wi::mask (unsigned int width, bool negate_p)
3464{
3465 STATIC_ASSERT (wi::int_traits<T>::precision);
3466 T result;
3467 result.set_len (mask (result.write_val (), width, negate_p,
3468 wi::int_traits <T>::precision));
3469 return result;
3470}
3471
3472/* Return an integer of type T in which the low START bits are clear,
3473 the next WIDTH bits are set, and the other bits are clear, or the
3474 inverse if NEGATE_P. */
3475template <typename T>
3476inline T
3477wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
3478{
3479 STATIC_ASSERT (wi::int_traits<T>::precision);
3480 T result;
3481 result.set_len (shifted_mask (result.write_val (), start, width,
3482 negate_p,
3483 wi::int_traits <T>::precision));
3484 return result;
3485}
3486
3487/* Return an integer of type T in which bit BIT is set and all the
3488 others are clear. */
3489template <typename T>
3490inline T
3491wi::set_bit_in_zero (unsigned int bit)
3492{
3493 return shifted_mask <T> (bit, 1, false);
3494}
3495
4a669ac3
AH
3496/* Accumulate a set of overflows into OVERFLOW. */
3497
cb3e0eac 3498inline void
4a669ac3
AH
3499wi::accumulate_overflow (wi::overflow_type &overflow,
3500 wi::overflow_type suboverflow)
3501{
3502 if (!suboverflow)
3503 return;
3504 if (!overflow)
3505 overflow = suboverflow;
3506 else if (overflow != suboverflow)
3507 overflow = wi::OVF_UNKNOWN;
3508}
3509
807e902e 3510#endif /* WIDE_INT_H */