]> git.ipfire.org Git - thirdparty/qemu.git/blame - hw/i386/x86.c
Merge remote-tracking branch 'remotes/elmarco/tags/slirp-pull-request' into staging
[thirdparty/qemu.git] / hw / i386 / x86.c
CommitLineData
549e984e
SL
1/*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 */
23#include "qemu/osdep.h"
24#include "qemu/error-report.h"
25#include "qemu/option.h"
26#include "qemu/cutils.h"
27#include "qemu/units.h"
28#include "qemu-common.h"
29#include "qapi/error.h"
30#include "qapi/qmp/qerror.h"
31#include "qapi/qapi-visit-common.h"
32#include "qapi/visitor.h"
33#include "sysemu/qtest.h"
34#include "sysemu/numa.h"
35#include "sysemu/replay.h"
36#include "sysemu/sysemu.h"
89a289c7 37#include "trace.h"
549e984e
SL
38
39#include "hw/i386/x86.h"
549e984e
SL
40#include "target/i386/cpu.h"
41#include "hw/i386/topology.h"
42#include "hw/i386/fw_cfg.h"
852c27e2 43#include "hw/intc/i8259.h"
549e984e
SL
44
45#include "hw/acpi/cpu_hotplug.h"
89a289c7 46#include "hw/irq.h"
549e984e
SL
47#include "hw/nmi.h"
48#include "hw/loader.h"
49#include "multiboot.h"
50#include "elf.h"
51#include "standard-headers/asm-x86/bootparam.h"
89a289c7
PB
52#include "config-devices.h"
53#include "kvm_i386.h"
549e984e
SL
54
55#define BIOS_FILENAME "bios.bin"
56
57/* Physical Address of PVH entry point read from kernel ELF NOTE */
58static size_t pvh_start_addr;
59
53a5e7bd
BM
60inline void init_topo_info(X86CPUTopoInfo *topo_info,
61 const X86MachineState *x86ms)
62{
63 MachineState *ms = MACHINE(x86ms);
64
c24a41bb 65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
53a5e7bd
BM
66 topo_info->dies_per_pkg = x86ms->smp_dies;
67 topo_info->cores_per_die = ms->smp.cores;
68 topo_info->threads_per_core = ms->smp.threads;
69}
70
549e984e
SL
71/*
72 * Calculates initial APIC ID for a specific CPU index
73 *
74 * Currently we need to be able to calculate the APIC ID from the CPU index
75 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
76 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
77 * all CPUs up to max_cpus.
78 */
703a548a 79uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
549e984e
SL
80 unsigned int cpu_index)
81{
f0bb276b 82 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
53a5e7bd 83 X86CPUTopoInfo topo_info;
549e984e
SL
84 uint32_t correct_id;
85 static bool warned;
86
53a5e7bd
BM
87 init_topo_info(&topo_info, x86ms);
88
89 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
f0bb276b 90 if (x86mc->compat_apic_id_mode) {
549e984e
SL
91 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
92 error_report("APIC IDs set in compatibility mode, "
93 "CPU topology won't match the configuration");
94 warned = true;
95 }
96 return cpu_index;
97 } else {
98 return correct_id;
99 }
100}
101
703a548a
SL
102
103void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
549e984e
SL
104{
105 Object *cpu = NULL;
106 Error *local_err = NULL;
549e984e 107
703a548a 108 cpu = object_new(MACHINE(x86ms)->cpu_type);
549e984e 109
549e984e
SL
110 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
111 object_property_set_bool(cpu, true, "realized", &local_err);
112
113 object_unref(cpu);
114 error_propagate(errp, local_err);
115}
116
703a548a 117void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
549e984e
SL
118{
119 int i;
120 const CPUArchIdList *possible_cpus;
703a548a
SL
121 MachineState *ms = MACHINE(x86ms);
122 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
549e984e 123
703a548a 124 x86_cpu_set_default_version(default_cpu_version);
549e984e
SL
125
126 /*
127 * Calculates the limit to CPU APIC ID values
128 *
129 * Limit for the APIC ID value, so that all
703a548a 130 * CPU APIC IDs are < x86ms->apic_id_limit.
549e984e
SL
131 *
132 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
133 */
703a548a 134 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
f0bb276b 135 ms->smp.max_cpus - 1) + 1;
549e984e
SL
136 possible_cpus = mc->possible_cpu_arch_ids(ms);
137 for (i = 0; i < ms->smp.cpus; i++) {
703a548a 138 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
549e984e
SL
139 }
140}
141
142CpuInstanceProperties
143x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
144{
145 MachineClass *mc = MACHINE_GET_CLASS(ms);
146 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
147
148 assert(cpu_index < possible_cpus->len);
149 return possible_cpus->cpus[cpu_index].props;
150}
151
152int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
153{
dcf08bc6 154 X86CPUTopoIDs topo_ids;
f0bb276b 155 X86MachineState *x86ms = X86_MACHINE(ms);
53a5e7bd
BM
156 X86CPUTopoInfo topo_info;
157
158 init_topo_info(&topo_info, x86ms);
549e984e
SL
159
160 assert(idx < ms->possible_cpus->len);
161 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
53a5e7bd 162 &topo_info, &topo_ids);
dcf08bc6 163 return topo_ids.pkg_id % ms->numa_state->num_nodes;
549e984e
SL
164}
165
166const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
167{
f0bb276b 168 X86MachineState *x86ms = X86_MACHINE(ms);
549e984e 169 unsigned int max_cpus = ms->smp.max_cpus;
53a5e7bd
BM
170 X86CPUTopoInfo topo_info;
171 int i;
549e984e
SL
172
173 if (ms->possible_cpus) {
174 /*
175 * make sure that max_cpus hasn't changed since the first use, i.e.
176 * -smp hasn't been parsed after it
177 */
178 assert(ms->possible_cpus->len == max_cpus);
179 return ms->possible_cpus;
180 }
181
182 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
183 sizeof(CPUArchId) * max_cpus);
184 ms->possible_cpus->len = max_cpus;
53a5e7bd
BM
185
186 init_topo_info(&topo_info, x86ms);
187
549e984e 188 for (i = 0; i < ms->possible_cpus->len; i++) {
dcf08bc6 189 X86CPUTopoIDs topo_ids;
549e984e
SL
190
191 ms->possible_cpus->cpus[i].type = ms->cpu_type;
192 ms->possible_cpus->cpus[i].vcpus_count = 1;
193 ms->possible_cpus->cpus[i].arch_id =
703a548a 194 x86_cpu_apic_id_from_index(x86ms, i);
549e984e 195 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
53a5e7bd 196 &topo_info, &topo_ids);
549e984e 197 ms->possible_cpus->cpus[i].props.has_socket_id = true;
dcf08bc6 198 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
f0bb276b 199 if (x86ms->smp_dies > 1) {
549e984e 200 ms->possible_cpus->cpus[i].props.has_die_id = true;
dcf08bc6 201 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
549e984e
SL
202 }
203 ms->possible_cpus->cpus[i].props.has_core_id = true;
dcf08bc6 204 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
549e984e 205 ms->possible_cpus->cpus[i].props.has_thread_id = true;
dcf08bc6 206 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
549e984e
SL
207 }
208 return ms->possible_cpus;
209}
210
f0bb276b
PB
211static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
212{
213 /* cpu index isn't used */
214 CPUState *cs;
215
216 CPU_FOREACH(cs) {
217 X86CPU *cpu = X86_CPU(cs);
218
219 if (!cpu->apic_state) {
220 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
221 } else {
222 apic_deliver_nmi(cpu->apic_state);
223 }
224 }
225}
226
549e984e
SL
227static long get_file_size(FILE *f)
228{
229 long where, size;
230
231 /* XXX: on Unix systems, using fstat() probably makes more sense */
232
233 where = ftell(f);
234 fseek(f, 0, SEEK_END);
235 size = ftell(f);
236 fseek(f, where, SEEK_SET);
237
238 return size;
239}
240
89a289c7
PB
241/* TSC handling */
242uint64_t cpu_get_tsc(CPUX86State *env)
243{
244 return cpu_get_ticks();
245}
246
247/* IRQ handling */
248static void pic_irq_request(void *opaque, int irq, int level)
249{
250 CPUState *cs = first_cpu;
251 X86CPU *cpu = X86_CPU(cs);
252
253 trace_x86_pic_interrupt(irq, level);
254 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
255 CPU_FOREACH(cs) {
256 cpu = X86_CPU(cs);
257 if (apic_accept_pic_intr(cpu->apic_state)) {
258 apic_deliver_pic_intr(cpu->apic_state, level);
259 }
260 }
261 } else {
262 if (level) {
263 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
264 } else {
265 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
266 }
267 }
268}
269
270qemu_irq x86_allocate_cpu_irq(void)
271{
272 return qemu_allocate_irq(pic_irq_request, NULL, 0);
273}
274
275int cpu_get_pic_interrupt(CPUX86State *env)
276{
277 X86CPU *cpu = env_archcpu(env);
278 int intno;
279
280 if (!kvm_irqchip_in_kernel()) {
281 intno = apic_get_interrupt(cpu->apic_state);
282 if (intno >= 0) {
283 return intno;
284 }
285 /* read the irq from the PIC */
286 if (!apic_accept_pic_intr(cpu->apic_state)) {
287 return -1;
288 }
289 }
290
291 intno = pic_read_irq(isa_pic);
292 return intno;
293}
294
295DeviceState *cpu_get_current_apic(void)
296{
297 if (current_cpu) {
298 X86CPU *cpu = X86_CPU(current_cpu);
299 return cpu->apic_state;
300 } else {
301 return NULL;
302 }
303}
304
305void gsi_handler(void *opaque, int n, int level)
306{
307 GSIState *s = opaque;
308
309 trace_x86_gsi_interrupt(n, level);
310 if (n < ISA_NUM_IRQS) {
64c033ba 311 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
89a289c7
PB
312 qemu_set_irq(s->i8259_irq[n], level);
313 }
314 qemu_set_irq(s->ioapic_irq[n], level);
315}
316
317void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
318{
319 DeviceState *dev;
320 SysBusDevice *d;
321 unsigned int i;
322
14a1bb48 323 assert(parent_name);
89a289c7
PB
324 if (kvm_ioapic_in_kernel()) {
325 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
326 } else {
327 dev = qdev_create(NULL, TYPE_IOAPIC);
328 }
14a1bb48
PMD
329 object_property_add_child(object_resolve_path(parent_name, NULL),
330 "ioapic", OBJECT(dev), NULL);
89a289c7
PB
331 qdev_init_nofail(dev);
332 d = SYS_BUS_DEVICE(dev);
333 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
334
335 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
336 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
337 }
338}
339
549e984e
SL
340struct setup_data {
341 uint64_t next;
342 uint32_t type;
343 uint32_t len;
f7795e40 344 uint8_t data[];
549e984e
SL
345} __attribute__((packed));
346
347
348/*
349 * The entry point into the kernel for PVH boot is different from
350 * the native entry point. The PVH entry is defined by the x86/HVM
351 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
352 *
353 * This function is passed to load_elf() when it is called from
354 * load_elfboot() which then additionally checks for an ELF Note of
355 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
356 * parse the PVH entry address from the ELF Note.
357 *
358 * Due to trickery in elf_opts.h, load_elf() is actually available as
359 * load_elf32() or load_elf64() and this routine needs to be able
360 * to deal with being called as 32 or 64 bit.
361 *
362 * The address of the PVH entry point is saved to the 'pvh_start_addr'
363 * global variable. (although the entry point is 32-bit, the kernel
364 * binary can be either 32-bit or 64-bit).
365 */
366static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
367{
368 size_t *elf_note_data_addr;
369
370 /* Check if ELF Note header passed in is valid */
371 if (arg1 == NULL) {
372 return 0;
373 }
374
375 if (is64) {
376 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
377 uint64_t nhdr_size64 = sizeof(struct elf64_note);
378 uint64_t phdr_align = *(uint64_t *)arg2;
379 uint64_t nhdr_namesz = nhdr64->n_namesz;
380
381 elf_note_data_addr =
382 ((void *)nhdr64) + nhdr_size64 +
383 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
384 } else {
385 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
386 uint32_t nhdr_size32 = sizeof(struct elf32_note);
387 uint32_t phdr_align = *(uint32_t *)arg2;
388 uint32_t nhdr_namesz = nhdr32->n_namesz;
389
390 elf_note_data_addr =
391 ((void *)nhdr32) + nhdr_size32 +
392 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
393 }
394
395 pvh_start_addr = *elf_note_data_addr;
396
397 return pvh_start_addr;
398}
399
400static bool load_elfboot(const char *kernel_filename,
401 int kernel_file_size,
402 uint8_t *header,
403 size_t pvh_xen_start_addr,
404 FWCfgState *fw_cfg)
405{
406 uint32_t flags = 0;
407 uint32_t mh_load_addr = 0;
408 uint32_t elf_kernel_size = 0;
409 uint64_t elf_entry;
410 uint64_t elf_low, elf_high;
411 int kernel_size;
412
413 if (ldl_p(header) != 0x464c457f) {
414 return false; /* no elfboot */
415 }
416
417 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
418 flags = elf_is64 ?
419 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
420
421 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
422 error_report("elfboot unsupported flags = %x", flags);
423 exit(1);
424 }
425
426 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
427 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
428 NULL, &elf_note_type, &elf_entry,
6cdda0ff 429 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
549e984e
SL
430 0, 0);
431
432 if (kernel_size < 0) {
433 error_report("Error while loading elf kernel");
434 exit(1);
435 }
436 mh_load_addr = elf_low;
437 elf_kernel_size = elf_high - elf_low;
438
439 if (pvh_start_addr == 0) {
440 error_report("Error loading uncompressed kernel without PVH ELF Note");
441 exit(1);
442 }
443 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
444 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
445 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
446
447 return true;
448}
449
703a548a
SL
450void x86_load_linux(X86MachineState *x86ms,
451 FWCfgState *fw_cfg,
452 int acpi_data_size,
453 bool pvh_enabled,
454 bool linuxboot_dma_enabled)
549e984e
SL
455{
456 uint16_t protocol;
457 int setup_size, kernel_size, cmdline_size;
458 int dtb_size, setup_data_offset;
459 uint32_t initrd_max;
460 uint8_t header[8192], *setup, *kernel;
461 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
462 FILE *f;
463 char *vmode;
703a548a 464 MachineState *machine = MACHINE(x86ms);
549e984e
SL
465 struct setup_data *setup_data;
466 const char *kernel_filename = machine->kernel_filename;
467 const char *initrd_filename = machine->initrd_filename;
468 const char *dtb_filename = machine->dtb;
469 const char *kernel_cmdline = machine->kernel_cmdline;
470
471 /* Align to 16 bytes as a paranoia measure */
472 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
473
474 /* load the kernel header */
475 f = fopen(kernel_filename, "rb");
476 if (!f) {
477 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
478 kernel_filename, strerror(errno));
479 exit(1);
480 }
481
482 kernel_size = get_file_size(f);
483 if (!kernel_size ||
484 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
485 MIN(ARRAY_SIZE(header), kernel_size)) {
486 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
487 kernel_filename, strerror(errno));
488 exit(1);
489 }
490
491 /* kernel protocol version */
492 if (ldl_p(header + 0x202) == 0x53726448) {
493 protocol = lduw_p(header + 0x206);
494 } else {
495 /*
496 * This could be a multiboot kernel. If it is, let's stop treating it
497 * like a Linux kernel.
498 * Note: some multiboot images could be in the ELF format (the same of
499 * PVH), so we try multiboot first since we check the multiboot magic
500 * header before to load it.
501 */
502 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
503 kernel_cmdline, kernel_size, header)) {
504 return;
505 }
506 /*
507 * Check if the file is an uncompressed kernel file (ELF) and load it,
508 * saving the PVH entry point used by the x86/HVM direct boot ABI.
509 * If load_elfboot() is successful, populate the fw_cfg info.
510 */
703a548a 511 if (pvh_enabled &&
549e984e
SL
512 load_elfboot(kernel_filename, kernel_size,
513 header, pvh_start_addr, fw_cfg)) {
514 fclose(f);
515
516 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
517 strlen(kernel_cmdline) + 1);
518 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
519
520 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
521 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
522 header, sizeof(header));
523
524 /* load initrd */
525 if (initrd_filename) {
526 GMappedFile *mapped_file;
527 gsize initrd_size;
528 gchar *initrd_data;
529 GError *gerr = NULL;
530
531 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
532 if (!mapped_file) {
533 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
534 initrd_filename, gerr->message);
535 exit(1);
536 }
f0bb276b 537 x86ms->initrd_mapped_file = mapped_file;
549e984e
SL
538
539 initrd_data = g_mapped_file_get_contents(mapped_file);
540 initrd_size = g_mapped_file_get_length(mapped_file);
703a548a 541 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
549e984e
SL
542 if (initrd_size >= initrd_max) {
543 fprintf(stderr, "qemu: initrd is too large, cannot support."
544 "(max: %"PRIu32", need %"PRId64")\n",
545 initrd_max, (uint64_t)initrd_size);
546 exit(1);
547 }
548
549 initrd_addr = (initrd_max - initrd_size) & ~4095;
550
551 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
552 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
553 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
554 initrd_size);
555 }
556
557 option_rom[nb_option_roms].bootindex = 0;
558 option_rom[nb_option_roms].name = "pvh.bin";
559 nb_option_roms++;
560
561 return;
562 }
563 protocol = 0;
564 }
565
566 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
567 /* Low kernel */
568 real_addr = 0x90000;
569 cmdline_addr = 0x9a000 - cmdline_size;
570 prot_addr = 0x10000;
571 } else if (protocol < 0x202) {
572 /* High but ancient kernel */
573 real_addr = 0x90000;
574 cmdline_addr = 0x9a000 - cmdline_size;
575 prot_addr = 0x100000;
576 } else {
577 /* High and recent kernel */
578 real_addr = 0x10000;
579 cmdline_addr = 0x20000;
580 prot_addr = 0x100000;
581 }
582
583 /* highest address for loading the initrd */
584 if (protocol >= 0x20c &&
585 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
586 /*
587 * Linux has supported initrd up to 4 GB for a very long time (2007,
588 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
589 * though it only sets initrd_max to 2 GB to "work around bootloader
590 * bugs". Luckily, QEMU firmware(which does something like bootloader)
591 * has supported this.
592 *
593 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
594 * be loaded into any address.
595 *
596 * In addition, initrd_max is uint32_t simply because QEMU doesn't
597 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
598 * field).
599 *
600 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
601 */
602 initrd_max = UINT32_MAX;
603 } else if (protocol >= 0x203) {
604 initrd_max = ldl_p(header + 0x22c);
605 } else {
606 initrd_max = 0x37ffffff;
607 }
608
703a548a
SL
609 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
610 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
549e984e
SL
611 }
612
613 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
614 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
615 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
616
617 if (protocol >= 0x202) {
618 stl_p(header + 0x228, cmdline_addr);
619 } else {
620 stw_p(header + 0x20, 0xA33F);
621 stw_p(header + 0x22, cmdline_addr - real_addr);
622 }
623
624 /* handle vga= parameter */
625 vmode = strstr(kernel_cmdline, "vga=");
626 if (vmode) {
627 unsigned int video_mode;
a88c40f0 628 const char *end;
549e984e
SL
629 int ret;
630 /* skip "vga=" */
631 vmode += 4;
632 if (!strncmp(vmode, "normal", 6)) {
633 video_mode = 0xffff;
634 } else if (!strncmp(vmode, "ext", 3)) {
635 video_mode = 0xfffe;
636 } else if (!strncmp(vmode, "ask", 3)) {
637 video_mode = 0xfffd;
638 } else {
a88c40f0
PW
639 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
640 if (ret != 0 || (*end && *end != ' ')) {
641 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
549e984e
SL
642 exit(1);
643 }
644 }
645 stw_p(header + 0x1fa, video_mode);
646 }
647
648 /* loader type */
649 /*
650 * High nybble = B reserved for QEMU; low nybble is revision number.
651 * If this code is substantially changed, you may want to consider
652 * incrementing the revision.
653 */
654 if (protocol >= 0x200) {
655 header[0x210] = 0xB0;
656 }
657 /* heap */
658 if (protocol >= 0x201) {
659 header[0x211] |= 0x80; /* CAN_USE_HEAP */
660 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
661 }
662
663 /* load initrd */
664 if (initrd_filename) {
665 GMappedFile *mapped_file;
666 gsize initrd_size;
667 gchar *initrd_data;
668 GError *gerr = NULL;
669
670 if (protocol < 0x200) {
671 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
672 exit(1);
673 }
674
675 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
676 if (!mapped_file) {
677 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
678 initrd_filename, gerr->message);
679 exit(1);
680 }
f0bb276b 681 x86ms->initrd_mapped_file = mapped_file;
549e984e
SL
682
683 initrd_data = g_mapped_file_get_contents(mapped_file);
684 initrd_size = g_mapped_file_get_length(mapped_file);
685 if (initrd_size >= initrd_max) {
686 fprintf(stderr, "qemu: initrd is too large, cannot support."
687 "(max: %"PRIu32", need %"PRId64")\n",
688 initrd_max, (uint64_t)initrd_size);
689 exit(1);
690 }
691
692 initrd_addr = (initrd_max - initrd_size) & ~4095;
693
694 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
695 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
696 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
697
698 stl_p(header + 0x218, initrd_addr);
699 stl_p(header + 0x21c, initrd_size);
700 }
701
702 /* load kernel and setup */
703 setup_size = header[0x1f1];
704 if (setup_size == 0) {
705 setup_size = 4;
706 }
707 setup_size = (setup_size + 1) * 512;
708 if (setup_size > kernel_size) {
709 fprintf(stderr, "qemu: invalid kernel header\n");
710 exit(1);
711 }
712 kernel_size -= setup_size;
713
714 setup = g_malloc(setup_size);
715 kernel = g_malloc(kernel_size);
716 fseek(f, 0, SEEK_SET);
717 if (fread(setup, 1, setup_size, f) != setup_size) {
718 fprintf(stderr, "fread() failed\n");
719 exit(1);
720 }
721 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
722 fprintf(stderr, "fread() failed\n");
723 exit(1);
724 }
725 fclose(f);
726
727 /* append dtb to kernel */
728 if (dtb_filename) {
729 if (protocol < 0x209) {
730 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
731 exit(1);
732 }
733
734 dtb_size = get_image_size(dtb_filename);
735 if (dtb_size <= 0) {
736 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
737 dtb_filename, strerror(errno));
738 exit(1);
739 }
740
741 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
742 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
743 kernel = g_realloc(kernel, kernel_size);
744
745 stq_p(header + 0x250, prot_addr + setup_data_offset);
746
747 setup_data = (struct setup_data *)(kernel + setup_data_offset);
748 setup_data->next = 0;
749 setup_data->type = cpu_to_le32(SETUP_DTB);
750 setup_data->len = cpu_to_le32(dtb_size);
751
752 load_image_size(dtb_filename, setup_data->data, dtb_size);
753 }
754
755 memcpy(setup, header, MIN(sizeof(header), setup_size));
756
757 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
758 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
759 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
760
761 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
762 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
763 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
764
765 option_rom[nb_option_roms].bootindex = 0;
766 option_rom[nb_option_roms].name = "linuxboot.bin";
703a548a 767 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
549e984e
SL
768 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
769 }
770 nb_option_roms++;
771}
772
773void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
774{
775 char *filename;
776 MemoryRegion *bios, *isa_bios;
777 int bios_size, isa_bios_size;
778 int ret;
779
780 /* BIOS load */
781 if (bios_name == NULL) {
782 bios_name = BIOS_FILENAME;
783 }
784 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
785 if (filename) {
786 bios_size = get_image_size(filename);
787 } else {
788 bios_size = -1;
789 }
790 if (bios_size <= 0 ||
791 (bios_size % 65536) != 0) {
792 goto bios_error;
793 }
794 bios = g_malloc(sizeof(*bios));
795 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
796 if (!isapc_ram_fw) {
797 memory_region_set_readonly(bios, true);
798 }
799 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
800 if (ret != 0) {
801 bios_error:
802 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
803 exit(1);
804 }
805 g_free(filename);
806
807 /* map the last 128KB of the BIOS in ISA space */
808 isa_bios_size = MIN(bios_size, 128 * KiB);
809 isa_bios = g_malloc(sizeof(*isa_bios));
810 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
811 bios_size - isa_bios_size, isa_bios_size);
812 memory_region_add_subregion_overlap(rom_memory,
813 0x100000 - isa_bios_size,
814 isa_bios,
815 1);
816 if (!isapc_ram_fw) {
817 memory_region_set_readonly(isa_bios, true);
818 }
819
820 /* map all the bios at the top of memory */
821 memory_region_add_subregion(rom_memory,
822 (uint32_t)(-bios_size),
823 bios);
824}
f0bb276b
PB
825
826static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
827 const char *name, void *opaque,
828 Error **errp)
829{
830 X86MachineState *x86ms = X86_MACHINE(obj);
831 uint64_t value = x86ms->max_ram_below_4g;
832
833 visit_type_size(v, name, &value, errp);
834}
835
836static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
837 const char *name, void *opaque,
838 Error **errp)
839{
840 X86MachineState *x86ms = X86_MACHINE(obj);
841 Error *error = NULL;
842 uint64_t value;
843
844 visit_type_size(v, name, &value, &error);
845 if (error) {
846 error_propagate(errp, error);
847 return;
848 }
849 if (value > 4 * GiB) {
850 error_setg(&error,
851 "Machine option 'max-ram-below-4g=%"PRIu64
852 "' expects size less than or equal to 4G", value);
853 error_propagate(errp, error);
854 return;
855 }
856
857 if (value < 1 * MiB) {
858 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
859 "BIOS may not work with less than 1MiB", value);
860 }
861
862 x86ms->max_ram_below_4g = value;
863}
864
ed9e923c
PB
865bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
866{
867 bool smm_available = false;
868
869 if (x86ms->smm == ON_OFF_AUTO_OFF) {
870 return false;
871 }
872
873 if (tcg_enabled() || qtest_enabled()) {
874 smm_available = true;
875 } else if (kvm_enabled()) {
876 smm_available = kvm_has_smm();
877 }
878
879 if (smm_available) {
880 return true;
881 }
882
883 if (x86ms->smm == ON_OFF_AUTO_ON) {
884 error_report("System Management Mode not supported by this hypervisor.");
885 exit(1);
886 }
887 return false;
888}
889
890static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
891 void *opaque, Error **errp)
892{
893 X86MachineState *x86ms = X86_MACHINE(obj);
894 OnOffAuto smm = x86ms->smm;
895
896 visit_type_OnOffAuto(v, name, &smm, errp);
897}
898
899static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
900 void *opaque, Error **errp)
901{
902 X86MachineState *x86ms = X86_MACHINE(obj);
903
904 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
905}
906
f0bb276b
PB
907static void x86_machine_initfn(Object *obj)
908{
909 X86MachineState *x86ms = X86_MACHINE(obj);
910
ed9e923c 911 x86ms->smm = ON_OFF_AUTO_AUTO;
f0bb276b
PB
912 x86ms->max_ram_below_4g = 0; /* use default */
913 x86ms->smp_dies = 1;
914}
915
916static void x86_machine_class_init(ObjectClass *oc, void *data)
917{
918 MachineClass *mc = MACHINE_CLASS(oc);
919 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
920 NMIClass *nc = NMI_CLASS(oc);
921
922 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
923 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
924 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
925 x86mc->compat_apic_id_mode = false;
2f34ebf2 926 x86mc->save_tsc_khz = true;
f0bb276b
PB
927 nc->nmi_monitor_handler = x86_nmi;
928
929 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
930 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
931 NULL, NULL, &error_abort);
f0bb276b
PB
932 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
933 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
ed9e923c
PB
934
935 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
936 x86_machine_get_smm, x86_machine_set_smm,
937 NULL, NULL, &error_abort);
938 object_class_property_set_description(oc, X86_MACHINE_SMM,
939 "Enable SMM", &error_abort);
f0bb276b
PB
940}
941
942static const TypeInfo x86_machine_info = {
943 .name = TYPE_X86_MACHINE,
944 .parent = TYPE_MACHINE,
945 .abstract = true,
946 .instance_size = sizeof(X86MachineState),
947 .instance_init = x86_machine_initfn,
948 .class_size = sizeof(X86MachineClass),
949 .class_init = x86_machine_class_init,
950 .interfaces = (InterfaceInfo[]) {
951 { TYPE_NMI },
952 { }
953 },
954};
955
956static void x86_machine_register_types(void)
957{
958 type_register_static(&x86_machine_info);
959}
960
961type_init(x86_machine_register_types)