]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - include/asm-powerpc/mmu.h
[PATCH] powerpc: Fix iSeries bug in VMALLOCBASE/VMALLOC_START consolidation
[thirdparty/kernel/stable.git] / include / asm-powerpc / mmu.h
CommitLineData
047ea784
PM
1#ifndef _ASM_POWERPC_MMU_H_
2#define _ASM_POWERPC_MMU_H_
3
4#ifndef CONFIG_PPC64
5#include <asm-ppc/mmu.h>
6#else
7
1da177e4
LT
8/*
9 * PowerPC memory management structures
10 *
11 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
12 * PPC64 rework.
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
3ddfbcf1 20#include <asm/asm-compat.h>
1da177e4 21#include <asm/page.h>
1da177e4 22
1f8d419e
DG
23/*
24 * Segment table
25 */
1da177e4
LT
26
27#define STE_ESID_V 0x80
28#define STE_ESID_KS 0x20
29#define STE_ESID_KP 0x10
30#define STE_ESID_N 0x08
31
32#define STE_VSID_SHIFT 12
33
1f8d419e 34/* Location of cpu0's segment table */
c59c464a 35#define STAB0_PAGE 0x6
758438a7
ME
36#define STAB0_OFFSET (STAB0_PAGE << 12)
37#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
c59c464a
DG
38
39#ifndef __ASSEMBLY__
40extern char initial_stab[];
41#endif /* ! __ASSEMBLY */
1f8d419e
DG
42
43/*
44 * SLB
45 */
1da177e4 46
1f8d419e
DG
47#define SLB_NUM_BOLTED 3
48#define SLB_CACHE_ENTRIES 8
49
50/* Bits in the SLB ESID word */
51#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
52
53/* Bits in the SLB VSID word */
54#define SLB_VSID_SHIFT 12
3c726f8d
BH
55#define SLB_VSID_B ASM_CONST(0xc000000000000000)
56#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
57#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
1f8d419e
DG
58#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
59#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
60#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
3c726f8d 61#define SLB_VSID_L ASM_CONST(0x0000000000000100)
1f8d419e 62#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
3c726f8d
BH
63#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
64#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
65#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
66#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
67#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
68#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
69
14b34661
DG
70#define SLB_VSID_KERNEL (SLB_VSID_KP)
71#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
72
73#define SLBIE_C (0x08000000)
1f8d419e
DG
74
75/*
76 * Hash table
77 */
1da177e4
LT
78
79#define HPTES_PER_GROUP 8
80
96e28449
DG
81#define HPTE_V_AVPN_SHIFT 7
82#define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
83#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
3c726f8d 84#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
96e28449
DG
85#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90
91#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92#define HPTE_R_TS ASM_CONST(0x4000000000000000)
93#define HPTE_R_RPN_SHIFT 12
94#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
95#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
96#define HPTE_R_PP ASM_CONST(0x0000000000000003)
3c726f8d 97#define HPTE_R_N ASM_CONST(0x0000000000000004)
96e28449 98
1f8d419e
DG
99/* Values for PP (assumes Ks=0, Kp=1) */
100/* pp0 will always be 0 for linux */
101#define PP_RWXX 0 /* Supervisor read/write, User none */
102#define PP_RWRX 1 /* Supervisor read/write, User read */
103#define PP_RWRW 2 /* Supervisor read/write, User read/write */
104#define PP_RXRX 3 /* Supervisor read, User read */
105
106#ifndef __ASSEMBLY__
107
1da177e4 108typedef struct {
96e28449
DG
109 unsigned long v;
110 unsigned long r;
111} hpte_t;
1da177e4 112
96e28449
DG
113extern hpte_t *htab_address;
114extern unsigned long htab_hash_mask;
1da177e4 115
3c726f8d
BH
116/*
117 * Page size definition
118 *
119 * shift : is the "PAGE_SHIFT" value for that page size
120 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
121 * directly to a slbmte "vsid" value
122 * penc : is the HPTE encoding mask for the "LP" field:
123 *
124 */
125struct mmu_psize_def
1da177e4 126{
3c726f8d
BH
127 unsigned int shift; /* number of bits */
128 unsigned int penc; /* HPTE encoding */
129 unsigned int tlbiel; /* tlbiel supported for that page size */
130 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
131 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
132};
1da177e4 133
3c726f8d 134#endif /* __ASSEMBLY__ */
1da177e4 135
3c726f8d
BH
136/*
137 * The kernel use the constants below to index in the page sizes array.
138 * The use of fixed constants for this purpose is better for performances
139 * of the low level hash refill handlers.
140 *
141 * A non supported page size has a "shift" field set to 0
142 *
143 * Any new page size being implemented can get a new entry in here. Whether
144 * the kernel will use it or not is a different matter though. The actual page
145 * size used by hugetlbfs is not defined here and may be made variable
146 */
1da177e4 147
3c726f8d
BH
148#define MMU_PAGE_4K 0 /* 4K */
149#define MMU_PAGE_64K 1 /* 64K */
150#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
151#define MMU_PAGE_1M 3 /* 1M */
152#define MMU_PAGE_16M 4 /* 16M */
153#define MMU_PAGE_16G 5 /* 16G */
154#define MMU_PAGE_COUNT 6
1da177e4 155
3c726f8d 156#ifndef __ASSEMBLY__
1da177e4 157
3c726f8d
BH
158/*
159 * The current system page sizes
160 */
161extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
162extern int mmu_linear_psize;
163extern int mmu_virtual_psize;
f4c82d51 164
3c726f8d
BH
165#ifdef CONFIG_HUGETLB_PAGE
166/*
167 * The page size index of the huge pages for use by hugetlbfs
168 */
169extern int mmu_huge_psize;
f4c82d51 170
3c726f8d 171#endif /* CONFIG_HUGETLB_PAGE */
f4c82d51 172
3c726f8d
BH
173/*
174 * This function sets the AVPN and L fields of the HPTE appropriately
175 * for the page size
176 */
177static inline unsigned long hpte_encode_v(unsigned long va, int psize)
178{
179 unsigned long v =
180 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
181 v <<= HPTE_V_AVPN_SHIFT;
182 if (psize != MMU_PAGE_4K)
183 v |= HPTE_V_LARGE;
184 return v;
185}
f4c82d51 186
3c726f8d
BH
187/*
188 * This function sets the ARPN, and LP fields of the HPTE appropriately
189 * for the page size. We assume the pa is already "clean" that is properly
190 * aligned for the requested page size
191 */
192static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
193{
194 unsigned long r;
f4c82d51 195
3c726f8d
BH
196 /* A 4K page needs no special encoding */
197 if (psize == MMU_PAGE_4K)
198 return pa & HPTE_R_RPN;
199 else {
200 unsigned int penc = mmu_psize_defs[psize].penc;
201 unsigned int shift = mmu_psize_defs[psize].shift;
202 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
f4c82d51 203 }
3c726f8d 204 return r;
f4c82d51
S
205}
206
1da177e4 207/*
3c726f8d 208 * This hashes a virtual address for a 256Mb segment only for now
1da177e4 209 */
3c726f8d
BH
210
211static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
212{
213 return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
214}
215
216extern int __hash_page_4K(unsigned long ea, unsigned long access,
217 unsigned long vsid, pte_t *ptep, unsigned long trap,
218 unsigned int local);
219extern int __hash_page_64K(unsigned long ea, unsigned long access,
220 unsigned long vsid, pte_t *ptep, unsigned long trap,
221 unsigned int local);
222struct mm_struct;
223extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
cbf52afd
DG
224 unsigned long ea, unsigned long vsid, int local,
225 unsigned long trap);
1da177e4
LT
226
227extern void htab_finish_init(void);
3c726f8d
BH
228extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
229 unsigned long pstart, unsigned long mode,
230 int psize);
1da177e4 231
799d6046
PM
232extern void htab_initialize(void);
233extern void htab_initialize_secondary(void);
1f8d419e
DG
234extern void hpte_init_native(void);
235extern void hpte_init_lpar(void);
236extern void hpte_init_iSeries(void);
49b09853 237extern void mm_init_ppc64(void);
1f8d419e
DG
238
239extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
240 unsigned long va, unsigned long prpn,
3c726f8d
BH
241 unsigned long rflags,
242 unsigned long vflags, int psize);
243
244extern long native_hpte_insert(unsigned long hpte_group,
245 unsigned long va, unsigned long prpn,
246 unsigned long rflags,
247 unsigned long vflags, int psize);
1f8d419e 248
3c726f8d
BH
249extern long iSeries_hpte_insert(unsigned long hpte_group,
250 unsigned long va, unsigned long prpn,
251 unsigned long rflags,
252 unsigned long vflags, int psize);
4c55130b 253
533f0817 254extern void stabs_alloc(void);
3c726f8d 255extern void slb_initialize(void);
799d6046 256extern void stab_initialize(unsigned long stab);
533f0817 257
1da177e4
LT
258#endif /* __ASSEMBLY__ */
259
260/*
1f8d419e
DG
261 * VSID allocation
262 *
263 * We first generate a 36-bit "proto-VSID". For kernel addresses this
264 * is equal to the ESID, for user addresses it is:
265 * (context << 15) | (esid & 0x7fff)
266 *
267 * The two forms are distinguishable because the top bit is 0 for user
268 * addresses, whereas the top two bits are 1 for kernel addresses.
269 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
270 * now.
271 *
272 * The proto-VSIDs are then scrambled into real VSIDs with the
273 * multiplicative hash:
274 *
275 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
276 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
277 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
278 *
279 * This scramble is only well defined for proto-VSIDs below
280 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
281 * reserved. VSID_MULTIPLIER is prime, so in particular it is
282 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
283 * Because the modulus is 2^n-1 we can compute it efficiently without
284 * a divide or extra multiply (see below).
285 *
286 * This scheme has several advantages over older methods:
287 *
288 * - We have VSIDs allocated for every kernel address
289 * (i.e. everything above 0xC000000000000000), except the very top
290 * segment, which simplifies several things.
291 *
292 * - We allow for 15 significant bits of ESID and 20 bits of
293 * context for user addresses. i.e. 8T (43 bits) of address space for
294 * up to 1M contexts (although the page table structure and context
295 * allocation will need changes to take advantage of this).
296 *
297 * - The scramble function gives robust scattering in the hash
298 * table (at least based on some initial results). The previous
299 * method was more susceptible to pathological cases giving excessive
300 * hash collisions.
301 */
302/*
303 * WARNING - If you change these you must make sure the asm
304 * implementations in slb_allocate (slb_low.S), do_stab_bolted
305 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
306 *
307 * You'll also need to change the precomputed VSID values in head.S
308 * which are used by the iSeries firmware.
1da177e4 309 */
1da177e4
LT
310
311#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
312#define VSID_BITS 36
313#define VSID_MODULUS ((1UL<<VSID_BITS)-1)
314
e28f7faf
DG
315#define CONTEXT_BITS 19
316#define USER_ESID_BITS 16
317
318#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
1da177e4
LT
319
320/*
321 * This macro generates asm code to compute the VSID scramble
322 * function. Used in slb_allocate() and do_stab_bolted. The function
323 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
324 *
325 * rt = register continaing the proto-VSID and into which the
326 * VSID will be stored
327 * rx = scratch register (clobbered)
328 *
329 * - rt and rx must be different registers
330 * - The answer will end up in the low 36 bits of rt. The higher
331 * bits may contain other garbage, so you may need to mask the
332 * result.
333 */
334#define ASM_VSID_SCRAMBLE(rt, rx) \
335 lis rx,VSID_MULTIPLIER@h; \
336 ori rx,rx,VSID_MULTIPLIER@l; \
337 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
338 \
339 srdi rx,rt,VSID_BITS; \
340 clrldi rt,rt,(64-VSID_BITS); \
341 add rt,rt,rx; /* add high and low bits */ \
342 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
343 * 2^36-1+2^28-1. That in particular means that if r3 >= \
344 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
345 * the bit clear, r3 already has the answer we want, if it \
346 * doesn't, the answer is the low 36 bits of r3+1. So in all \
347 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
348 addi rx,rt,1; \
349 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
350 add rt,rt,rx
351
1f8d419e
DG
352
353#ifndef __ASSEMBLY__
354
355typedef unsigned long mm_context_id_t;
356
357typedef struct {
358 mm_context_id_t id;
359#ifdef CONFIG_HUGETLB_PAGE
c594adad 360 u16 low_htlb_areas, high_htlb_areas;
1f8d419e
DG
361#endif
362} mm_context_t;
363
364
365static inline unsigned long vsid_scramble(unsigned long protovsid)
366{
367#if 0
368 /* The code below is equivalent to this function for arguments
369 * < 2^VSID_BITS, which is all this should ever be called
370 * with. However gcc is not clever enough to compute the
371 * modulus (2^n-1) without a second multiply. */
372 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
373#else /* 1 */
374 unsigned long x;
375
376 x = protovsid * VSID_MULTIPLIER;
377 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
378 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
379#endif /* 1 */
380}
381
382/* This is only valid for addresses >= KERNELBASE */
383static inline unsigned long get_kernel_vsid(unsigned long ea)
384{
385 return vsid_scramble(ea >> SID_SHIFT);
386}
387
388/* This is only valid for user addresses (which are below 2^41) */
389static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
390{
391 return vsid_scramble((context << USER_ESID_BITS)
392 | (ea >> SID_SHIFT));
393}
394
488f8499
DG
395#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
396#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
397
d1405b86
BH
398/* Physical address used by some IO functions */
399typedef unsigned long phys_addr_t;
400
401
1f8d419e
DG
402#endif /* __ASSEMBLY */
403
047ea784
PM
404#endif /* CONFIG_PPC64 */
405#endif /* _ASM_POWERPC_MMU_H_ */