]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - include/linux/memcontrol.h
mm: memcg/percpu: account percpu memory to memory cgroups
[thirdparty/kernel/stable.git] / include / linux / memcontrol.h
CommitLineData
c942fddf 1/* SPDX-License-Identifier: GPL-2.0-or-later */
8cdea7c0
BS
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
8cdea7c0
BS
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
f8d66542 13#include <linux/cgroup.h>
456f998e 14#include <linux/vm_event_item.h>
7ae1e1d0 15#include <linux/hardirq.h>
a8964b9b 16#include <linux/jump_label.h>
33398cf2
MH
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
00f3ca2c
JW
20#include <linux/mm.h>
21#include <linux/vmstat.h>
33398cf2 22#include <linux/writeback.h>
fdf1cdb9 23#include <linux/page-flags.h>
456f998e 24
78fb7466 25struct mem_cgroup;
bf4f0599 26struct obj_cgroup;
8697d331
BS
27struct page;
28struct mm_struct;
2633d7a0 29struct kmem_cache;
78fb7466 30
71cd3113
JW
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
468c3982 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
71cd3113 34 MEMCG_SOCK,
b2807f07 35 MEMCG_NR_STAT,
2a7106f2
GT
36};
37
e27be240
JW
38enum memcg_memory_event {
39 MEMCG_LOW,
71cd3113
JW
40 MEMCG_HIGH,
41 MEMCG_MAX,
42 MEMCG_OOM,
fe6bdfc8 43 MEMCG_OOM_KILL,
4b82ab4f 44 MEMCG_SWAP_HIGH,
f3a53a3a
TH
45 MEMCG_SWAP_MAX,
46 MEMCG_SWAP_FAIL,
e27be240 47 MEMCG_NR_MEMORY_EVENTS,
71cd3113
JW
48};
49
5660048c 50struct mem_cgroup_reclaim_cookie {
ef8f2327 51 pg_data_t *pgdat;
5660048c
JW
52 unsigned int generation;
53};
54
71cd3113
JW
55#ifdef CONFIG_MEMCG
56
57#define MEM_CGROUP_ID_SHIFT 16
58#define MEM_CGROUP_ID_MAX USHRT_MAX
59
60struct mem_cgroup_id {
61 int id;
1c2d479a 62 refcount_t ref;
71cd3113
JW
63};
64
33398cf2
MH
65/*
66 * Per memcg event counter is incremented at every pagein/pageout. With THP,
67 * it will be incremated by the number of pages. This counter is used for
68 * for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 */
71enum mem_cgroup_events_target {
72 MEM_CGROUP_TARGET_THRESH,
73 MEM_CGROUP_TARGET_SOFTLIMIT,
33398cf2
MH
74 MEM_CGROUP_NTARGETS,
75};
76
871789d4
CD
77struct memcg_vmstats_percpu {
78 long stat[MEMCG_NR_STAT];
e27be240 79 unsigned long events[NR_VM_EVENT_ITEMS];
33398cf2
MH
80 unsigned long nr_page_events;
81 unsigned long targets[MEM_CGROUP_NTARGETS];
82};
83
84struct mem_cgroup_reclaim_iter {
85 struct mem_cgroup *position;
86 /* scan generation, increased every round-trip */
87 unsigned int generation;
88};
89
00f3ca2c
JW
90struct lruvec_stat {
91 long count[NR_VM_NODE_STAT_ITEMS];
92};
93
0a4465d3
KT
94/*
95 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
96 * which have elements charged to this memcg.
97 */
98struct memcg_shrinker_map {
99 struct rcu_head rcu;
307ed94c 100 unsigned long map[];
0a4465d3
KT
101};
102
33398cf2 103/*
242c37b4 104 * per-node information in memory controller.
33398cf2 105 */
ef8f2327 106struct mem_cgroup_per_node {
33398cf2 107 struct lruvec lruvec;
a983b5eb 108
815744d7
JW
109 /* Legacy local VM stats */
110 struct lruvec_stat __percpu *lruvec_stat_local;
111
112 /* Subtree VM stats (batched updates) */
a983b5eb
JW
113 struct lruvec_stat __percpu *lruvec_stat_cpu;
114 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
115
b4536f0c 116 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
33398cf2 117
9da83f3f 118 struct mem_cgroup_reclaim_iter iter;
33398cf2 119
0a4465d3 120 struct memcg_shrinker_map __rcu *shrinker_map;
0a432dcb 121
33398cf2
MH
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *memcg; /* Back pointer, we cannot */
127 /* use container_of */
128};
129
33398cf2
MH
130struct mem_cgroup_threshold {
131 struct eventfd_ctx *eventfd;
132 unsigned long threshold;
133};
134
135/* For threshold */
136struct mem_cgroup_threshold_ary {
137 /* An array index points to threshold just below or equal to usage. */
138 int current_threshold;
139 /* Size of entries[] */
140 unsigned int size;
141 /* Array of thresholds */
307ed94c 142 struct mem_cgroup_threshold entries[];
33398cf2
MH
143};
144
145struct mem_cgroup_thresholds {
146 /* Primary thresholds array */
147 struct mem_cgroup_threshold_ary *primary;
148 /*
149 * Spare threshold array.
150 * This is needed to make mem_cgroup_unregister_event() "never fail".
151 * It must be able to store at least primary->size - 1 entries.
152 */
153 struct mem_cgroup_threshold_ary *spare;
154};
155
567e9ab2
JW
156enum memcg_kmem_state {
157 KMEM_NONE,
158 KMEM_ALLOCATED,
159 KMEM_ONLINE,
160};
161
e81bf979
AL
162#if defined(CONFIG_SMP)
163struct memcg_padding {
164 char x[0];
165} ____cacheline_internodealigned_in_smp;
166#define MEMCG_PADDING(name) struct memcg_padding name;
167#else
168#define MEMCG_PADDING(name)
169#endif
170
97b27821
TH
171/*
172 * Remember four most recent foreign writebacks with dirty pages in this
173 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
174 * one in a given round, we're likely to catch it later if it keeps
175 * foreign-dirtying, so a fairly low count should be enough.
176 *
177 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
178 */
179#define MEMCG_CGWB_FRN_CNT 4
180
181struct memcg_cgwb_frn {
182 u64 bdi_id; /* bdi->id of the foreign inode */
183 int memcg_id; /* memcg->css.id of foreign inode */
184 u64 at; /* jiffies_64 at the time of dirtying */
185 struct wb_completion done; /* tracks in-flight foreign writebacks */
186};
187
bf4f0599
RG
188/*
189 * Bucket for arbitrarily byte-sized objects charged to a memory
190 * cgroup. The bucket can be reparented in one piece when the cgroup
191 * is destroyed, without having to round up the individual references
192 * of all live memory objects in the wild.
193 */
194struct obj_cgroup {
195 struct percpu_ref refcnt;
196 struct mem_cgroup *memcg;
197 atomic_t nr_charged_bytes;
198 union {
199 struct list_head list;
200 struct rcu_head rcu;
201 };
202};
203
33398cf2
MH
204/*
205 * The memory controller data structure. The memory controller controls both
206 * page cache and RSS per cgroup. We would eventually like to provide
207 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
208 * to help the administrator determine what knobs to tune.
209 */
210struct mem_cgroup {
211 struct cgroup_subsys_state css;
212
73f576c0
JW
213 /* Private memcg ID. Used to ID objects that outlive the cgroup */
214 struct mem_cgroup_id id;
215
33398cf2
MH
216 /* Accounted resources */
217 struct page_counter memory;
37e84351 218 struct page_counter swap;
0db15298
JW
219
220 /* Legacy consumer-oriented counters */
33398cf2
MH
221 struct page_counter memsw;
222 struct page_counter kmem;
0db15298 223 struct page_counter tcpmem;
33398cf2 224
f7e1cb6e
JW
225 /* Range enforcement for interrupt charges */
226 struct work_struct high_work;
227
33398cf2
MH
228 unsigned long soft_limit;
229
230 /* vmpressure notifications */
231 struct vmpressure vmpressure;
232
33398cf2
MH
233 /*
234 * Should the accounting and control be hierarchical, per subtree?
235 */
236 bool use_hierarchy;
237
3d8b38eb
RG
238 /*
239 * Should the OOM killer kill all belonging tasks, had it kill one?
240 */
241 bool oom_group;
242
33398cf2
MH
243 /* protected by memcg_oom_lock */
244 bool oom_lock;
245 int under_oom;
246
247 int swappiness;
248 /* OOM-Killer disable */
249 int oom_kill_disable;
250
1e577f97 251 /* memory.events and memory.events.local */
472912a2 252 struct cgroup_file events_file;
1e577f97 253 struct cgroup_file events_local_file;
472912a2 254
f3a53a3a
TH
255 /* handle for "memory.swap.events" */
256 struct cgroup_file swap_events_file;
257
33398cf2
MH
258 /* protect arrays of thresholds */
259 struct mutex thresholds_lock;
260
261 /* thresholds for memory usage. RCU-protected */
262 struct mem_cgroup_thresholds thresholds;
263
264 /* thresholds for mem+swap usage. RCU-protected */
265 struct mem_cgroup_thresholds memsw_thresholds;
266
267 /* For oom notifier event fd */
268 struct list_head oom_notify;
269
270 /*
271 * Should we move charges of a task when a task is moved into this
272 * mem_cgroup ? And what type of charges should we move ?
273 */
274 unsigned long move_charge_at_immigrate;
e81bf979
AL
275 /* taken only while moving_account > 0 */
276 spinlock_t move_lock;
277 unsigned long move_lock_flags;
278
279 MEMCG_PADDING(_pad1_);
280
33398cf2
MH
281 /*
282 * set > 0 if pages under this cgroup are moving to other cgroup.
283 */
284 atomic_t moving_account;
33398cf2 285 struct task_struct *move_lock_task;
a983b5eb 286
815744d7
JW
287 /* Legacy local VM stats and events */
288 struct memcg_vmstats_percpu __percpu *vmstats_local;
289
290 /* Subtree VM stats and events (batched updates) */
871789d4 291 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
e81bf979
AL
292
293 MEMCG_PADDING(_pad2_);
294
871789d4
CD
295 atomic_long_t vmstats[MEMCG_NR_STAT];
296 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
42a30035 297
815744d7 298 /* memory.events */
42a30035 299 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
1e577f97 300 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
33398cf2 301
d886f4e4
JW
302 unsigned long socket_pressure;
303
304 /* Legacy tcp memory accounting */
0db15298
JW
305 bool tcpmem_active;
306 int tcpmem_pressure;
d886f4e4 307
84c07d11 308#ifdef CONFIG_MEMCG_KMEM
33398cf2
MH
309 /* Index in the kmem_cache->memcg_params.memcg_caches array */
310 int kmemcg_id;
567e9ab2 311 enum memcg_kmem_state kmem_state;
bf4f0599
RG
312 struct obj_cgroup __rcu *objcg;
313 struct list_head objcg_list; /* list of inherited objcgs */
33398cf2
MH
314#endif
315
33398cf2
MH
316#ifdef CONFIG_CGROUP_WRITEBACK
317 struct list_head cgwb_list;
318 struct wb_domain cgwb_domain;
97b27821 319 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
33398cf2
MH
320#endif
321
322 /* List of events which userspace want to receive */
323 struct list_head event_list;
324 spinlock_t event_list_lock;
325
87eaceb3
YS
326#ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 struct deferred_split deferred_split_queue;
328#endif
329
33398cf2
MH
330 struct mem_cgroup_per_node *nodeinfo[0];
331 /* WARNING: nodeinfo must be the last member here */
332};
7d828602 333
a983b5eb
JW
334/*
335 * size of first charge trial. "32" comes from vmscan.c's magic value.
336 * TODO: maybe necessary to use big numbers in big irons.
337 */
338#define MEMCG_CHARGE_BATCH 32U
339
7d828602 340extern struct mem_cgroup *root_mem_cgroup;
56161634 341
dfd2f10c
KT
342static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
343{
344 return (memcg == root_mem_cgroup);
345}
346
23047a96
JW
347static inline bool mem_cgroup_disabled(void)
348{
349 return !cgroup_subsys_enabled(memory_cgrp_subsys);
350}
351
22f7496f
YS
352static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
353 struct mem_cgroup *memcg,
1bc63fb1 354 bool in_low_reclaim)
9783aa99 355{
1bc63fb1
CD
356 if (mem_cgroup_disabled())
357 return 0;
358
22f7496f
YS
359 /*
360 * There is no reclaim protection applied to a targeted reclaim.
361 * We are special casing this specific case here because
362 * mem_cgroup_protected calculation is not robust enough to keep
363 * the protection invariant for calculated effective values for
364 * parallel reclaimers with different reclaim target. This is
365 * especially a problem for tail memcgs (as they have pages on LRU)
366 * which would want to have effective values 0 for targeted reclaim
367 * but a different value for external reclaim.
368 *
369 * Example
370 * Let's have global and A's reclaim in parallel:
371 * |
372 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
373 * |\
374 * | C (low = 1G, usage = 2.5G)
375 * B (low = 1G, usage = 0.5G)
376 *
377 * For the global reclaim
378 * A.elow = A.low
379 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
380 * C.elow = min(C.usage, C.low)
381 *
382 * With the effective values resetting we have A reclaim
383 * A.elow = 0
384 * B.elow = B.low
385 * C.elow = C.low
386 *
387 * If the global reclaim races with A's reclaim then
388 * B.elow = C.elow = 0 because children_low_usage > A.elow)
389 * is possible and reclaiming B would be violating the protection.
390 *
391 */
392 if (root == memcg)
393 return 0;
394
1bc63fb1
CD
395 if (in_low_reclaim)
396 return READ_ONCE(memcg->memory.emin);
9783aa99 397
1bc63fb1
CD
398 return max(READ_ONCE(memcg->memory.emin),
399 READ_ONCE(memcg->memory.elow));
9783aa99
CD
400}
401
45c7f7e1
CD
402void mem_cgroup_calculate_protection(struct mem_cgroup *root,
403 struct mem_cgroup *memcg);
404
405static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
406{
407 /*
408 * The root memcg doesn't account charges, and doesn't support
409 * protection.
410 */
411 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
412
413}
414
415static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
416{
417 if (!mem_cgroup_supports_protection(memcg))
418 return false;
419
420 return READ_ONCE(memcg->memory.elow) >=
421 page_counter_read(&memcg->memory);
422}
423
424static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
425{
426 if (!mem_cgroup_supports_protection(memcg))
427 return false;
428
429 return READ_ONCE(memcg->memory.emin) >=
430 page_counter_read(&memcg->memory);
431}
241994ed 432
d9eb1ea2 433int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
3fea5a49 434
0a31bc97 435void mem_cgroup_uncharge(struct page *page);
747db954 436void mem_cgroup_uncharge_list(struct list_head *page_list);
569b846d 437
6a93ca8f 438void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
569b846d 439
ef8f2327
MG
440static struct mem_cgroup_per_node *
441mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
55779ec7 442{
ef8f2327 443 return memcg->nodeinfo[nid];
55779ec7
JW
444}
445
446/**
867e5e1d 447 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
55779ec7
JW
448 * @memcg: memcg of the wanted lruvec
449 *
867e5e1d
JW
450 * Returns the lru list vector holding pages for a given @memcg &
451 * @node combination. This can be the node lruvec, if the memory
452 * controller is disabled.
55779ec7 453 */
867e5e1d
JW
454static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
455 struct pglist_data *pgdat)
55779ec7 456{
ef8f2327 457 struct mem_cgroup_per_node *mz;
55779ec7
JW
458 struct lruvec *lruvec;
459
460 if (mem_cgroup_disabled()) {
867e5e1d 461 lruvec = &pgdat->__lruvec;
55779ec7
JW
462 goto out;
463 }
464
1b05117d
JW
465 if (!memcg)
466 memcg = root_mem_cgroup;
467
ef8f2327 468 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
55779ec7
JW
469 lruvec = &mz->lruvec;
470out:
471 /*
472 * Since a node can be onlined after the mem_cgroup was created,
599d0c95 473 * we have to be prepared to initialize lruvec->pgdat here;
55779ec7
JW
474 * and if offlined then reonlined, we need to reinitialize it.
475 */
ef8f2327
MG
476 if (unlikely(lruvec->pgdat != pgdat))
477 lruvec->pgdat = pgdat;
55779ec7
JW
478 return lruvec;
479}
480
599d0c95 481struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
c9b0ed51 482
64219994 483struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
e993d905 484
d46eb14b
SB
485struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
486
f745c6f5
SB
487struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
488
33398cf2
MH
489static inline
490struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
491 return css ? container_of(css, struct mem_cgroup, css) : NULL;
492}
493
bf4f0599
RG
494static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
495{
496 return percpu_ref_tryget(&objcg->refcnt);
497}
498
499static inline void obj_cgroup_get(struct obj_cgroup *objcg)
500{
501 percpu_ref_get(&objcg->refcnt);
502}
503
504static inline void obj_cgroup_put(struct obj_cgroup *objcg)
505{
506 percpu_ref_put(&objcg->refcnt);
507}
508
509/*
510 * After the initialization objcg->memcg is always pointing at
511 * a valid memcg, but can be atomically swapped to the parent memcg.
512 *
513 * The caller must ensure that the returned memcg won't be released:
514 * e.g. acquire the rcu_read_lock or css_set_lock.
515 */
516static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
517{
518 return READ_ONCE(objcg->memcg);
519}
520
dc0b5864
RG
521static inline void mem_cgroup_put(struct mem_cgroup *memcg)
522{
d46eb14b
SB
523 if (memcg)
524 css_put(&memcg->css);
dc0b5864
RG
525}
526
8e8ae645
JW
527#define mem_cgroup_from_counter(counter, member) \
528 container_of(counter, struct mem_cgroup, member)
529
33398cf2
MH
530struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
531 struct mem_cgroup *,
532 struct mem_cgroup_reclaim_cookie *);
533void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
7c5f64f8
VD
534int mem_cgroup_scan_tasks(struct mem_cgroup *,
535 int (*)(struct task_struct *, void *), void *);
33398cf2 536
23047a96
JW
537static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
538{
539 if (mem_cgroup_disabled())
540 return 0;
541
73f576c0 542 return memcg->id.id;
23047a96 543}
73f576c0 544struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
23047a96 545
aa9694bb
CD
546static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
547{
548 return mem_cgroup_from_css(seq_css(m));
549}
550
2262185c
RG
551static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
552{
553 struct mem_cgroup_per_node *mz;
554
555 if (mem_cgroup_disabled())
556 return NULL;
557
558 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
559 return mz->memcg;
560}
561
8e8ae645
JW
562/**
563 * parent_mem_cgroup - find the accounting parent of a memcg
564 * @memcg: memcg whose parent to find
565 *
566 * Returns the parent memcg, or NULL if this is the root or the memory
567 * controller is in legacy no-hierarchy mode.
568 */
569static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
570{
571 if (!memcg->memory.parent)
572 return NULL;
573 return mem_cgroup_from_counter(memcg->memory.parent, memory);
574}
575
33398cf2
MH
576static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
577 struct mem_cgroup *root)
578{
579 if (root == memcg)
580 return true;
581 if (!root->use_hierarchy)
582 return false;
583 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
584}
e1aab161 585
2314b42d
JW
586static inline bool mm_match_cgroup(struct mm_struct *mm,
587 struct mem_cgroup *memcg)
2e4d4091 588{
587af308 589 struct mem_cgroup *task_memcg;
413918bb 590 bool match = false;
c3ac9a8a 591
2e4d4091 592 rcu_read_lock();
587af308 593 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413918bb 594 if (task_memcg)
2314b42d 595 match = mem_cgroup_is_descendant(task_memcg, memcg);
2e4d4091 596 rcu_read_unlock();
c3ac9a8a 597 return match;
2e4d4091 598}
8a9f3ccd 599
64219994 600struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
2fc04524 601ino_t page_cgroup_ino(struct page *page);
d324236b 602
eb01aaab
VD
603static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
604{
605 if (mem_cgroup_disabled())
606 return true;
607 return !!(memcg->css.flags & CSS_ONLINE);
608}
609
58ae83db
KH
610/*
611 * For memory reclaim.
612 */
889976db 613int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
33398cf2
MH
614
615void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 616 int zid, int nr_pages);
33398cf2 617
b4536f0c
MH
618static inline
619unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
620 enum lru_list lru, int zone_idx)
621{
622 struct mem_cgroup_per_node *mz;
623
624 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
625 return mz->lru_zone_size[zone_idx][lru];
33398cf2
MH
626}
627
b23afb93
TH
628void mem_cgroup_handle_over_high(void);
629
bbec2e15 630unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
7c5f64f8 631
9783aa99
CD
632unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
633
f0c867d9 634void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
64219994 635 struct task_struct *p);
58ae83db 636
f0c867d9 637void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
638
29ef680a 639static inline void mem_cgroup_enter_user_fault(void)
519e5247 640{
29ef680a
MH
641 WARN_ON(current->in_user_fault);
642 current->in_user_fault = 1;
519e5247
JW
643}
644
29ef680a 645static inline void mem_cgroup_exit_user_fault(void)
519e5247 646{
29ef680a
MH
647 WARN_ON(!current->in_user_fault);
648 current->in_user_fault = 0;
519e5247
JW
649}
650
3812c8c8
JW
651static inline bool task_in_memcg_oom(struct task_struct *p)
652{
626ebc41 653 return p->memcg_in_oom;
3812c8c8
JW
654}
655
49426420 656bool mem_cgroup_oom_synchronize(bool wait);
3d8b38eb
RG
657struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
658 struct mem_cgroup *oom_domain);
659void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
3812c8c8 660
c255a458 661#ifdef CONFIG_MEMCG_SWAP
eccb52e7 662extern bool cgroup_memory_noswap;
c077719b 663#endif
f8d66542 664
739f79fc
JW
665struct mem_cgroup *lock_page_memcg(struct page *page);
666void __unlock_page_memcg(struct mem_cgroup *memcg);
62cccb8c 667void unlock_page_memcg(struct page *page);
d7365e78 668
42a30035
JW
669/*
670 * idx can be of type enum memcg_stat_item or node_stat_item.
671 * Keep in sync with memcg_exact_page_state().
672 */
673static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
674{
675 long x = atomic_long_read(&memcg->vmstats[idx]);
676#ifdef CONFIG_SMP
677 if (x < 0)
678 x = 0;
679#endif
680 return x;
681}
682
0b3d6e6f
GT
683/*
684 * idx can be of type enum memcg_stat_item or node_stat_item.
685 * Keep in sync with memcg_exact_page_state().
686 */
205b20cc
JW
687static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
688 int idx)
2a2e4885 689{
815744d7
JW
690 long x = 0;
691 int cpu;
692
693 for_each_possible_cpu(cpu)
694 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
a983b5eb
JW
695#ifdef CONFIG_SMP
696 if (x < 0)
697 x = 0;
698#endif
699 return x;
2a2e4885
JW
700}
701
db9adbcb 702void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
2a2e4885 703
04fecbf5 704/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 705static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 706 int idx, int val)
2a2e4885 707{
c3cc3911
JW
708 unsigned long flags;
709
710 local_irq_save(flags);
a983b5eb 711 __mod_memcg_state(memcg, idx, val);
c3cc3911 712 local_irq_restore(flags);
2a2e4885
JW
713}
714
33398cf2 715/**
ccda7f43 716 * mod_memcg_page_state - update page state statistics
62cccb8c 717 * @page: the page
33398cf2
MH
718 * @idx: page state item to account
719 * @val: number of pages (positive or negative)
720 *
fdf1cdb9
JW
721 * The @page must be locked or the caller must use lock_page_memcg()
722 * to prevent double accounting when the page is concurrently being
723 * moved to another memcg:
81f8c3a4 724 *
fdf1cdb9 725 * lock_page(page) or lock_page_memcg(page)
81f8c3a4 726 * if (TestClearPageState(page))
ccda7f43 727 * mod_memcg_page_state(page, state, -1);
fdf1cdb9 728 * unlock_page(page) or unlock_page_memcg(page)
2a2e4885
JW
729 *
730 * Kernel pages are an exception to this, since they'll never move.
33398cf2 731 */
00f3ca2c 732static inline void __mod_memcg_page_state(struct page *page,
04fecbf5 733 int idx, int val)
00f3ca2c
JW
734{
735 if (page->mem_cgroup)
736 __mod_memcg_state(page->mem_cgroup, idx, val);
737}
738
ccda7f43 739static inline void mod_memcg_page_state(struct page *page,
04fecbf5 740 int idx, int val)
33398cf2 741{
62cccb8c 742 if (page->mem_cgroup)
ccda7f43 743 mod_memcg_state(page->mem_cgroup, idx, val);
33398cf2
MH
744}
745
42a30035
JW
746static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
747 enum node_stat_item idx)
748{
749 struct mem_cgroup_per_node *pn;
750 long x;
751
752 if (mem_cgroup_disabled())
753 return node_page_state(lruvec_pgdat(lruvec), idx);
754
755 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
756 x = atomic_long_read(&pn->lruvec_stat[idx]);
757#ifdef CONFIG_SMP
758 if (x < 0)
759 x = 0;
760#endif
761 return x;
762}
763
205b20cc
JW
764static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
765 enum node_stat_item idx)
2a7106f2 766{
00f3ca2c 767 struct mem_cgroup_per_node *pn;
815744d7
JW
768 long x = 0;
769 int cpu;
00f3ca2c
JW
770
771 if (mem_cgroup_disabled())
772 return node_page_state(lruvec_pgdat(lruvec), idx);
773
774 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
815744d7
JW
775 for_each_possible_cpu(cpu)
776 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
a983b5eb
JW
777#ifdef CONFIG_SMP
778 if (x < 0)
779 x = 0;
780#endif
781 return x;
2a7106f2
GT
782}
783
eedc4e5a
RG
784void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
785 int val);
db9adbcb
JW
786void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
787 int val);
ec9f0238 788void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
991e7673 789
8380ce47 790void mod_memcg_obj_state(void *p, int idx, int val);
00f3ca2c 791
991e7673
SB
792static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
793 int val)
794{
795 unsigned long flags;
796
797 local_irq_save(flags);
798 __mod_lruvec_slab_state(p, idx, val);
799 local_irq_restore(flags);
800}
801
eedc4e5a
RG
802static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
803 enum node_stat_item idx, int val)
804{
805 unsigned long flags;
806
807 local_irq_save(flags);
808 __mod_memcg_lruvec_state(lruvec, idx, val);
809 local_irq_restore(flags);
810}
811
00f3ca2c
JW
812static inline void mod_lruvec_state(struct lruvec *lruvec,
813 enum node_stat_item idx, int val)
814{
c3cc3911
JW
815 unsigned long flags;
816
817 local_irq_save(flags);
28454265 818 __mod_lruvec_state(lruvec, idx, val);
c3cc3911 819 local_irq_restore(flags);
00f3ca2c
JW
820}
821
822static inline void __mod_lruvec_page_state(struct page *page,
823 enum node_stat_item idx, int val)
824{
9da7b521 825 struct page *head = compound_head(page); /* rmap on tail pages */
28454265
JW
826 pg_data_t *pgdat = page_pgdat(page);
827 struct lruvec *lruvec;
00f3ca2c 828
28454265 829 /* Untracked pages have no memcg, no lruvec. Update only the node */
9da7b521 830 if (!head->mem_cgroup) {
28454265 831 __mod_node_page_state(pgdat, idx, val);
00f3ca2c 832 return;
28454265
JW
833 }
834
9da7b521 835 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
28454265 836 __mod_lruvec_state(lruvec, idx, val);
00f3ca2c
JW
837}
838
839static inline void mod_lruvec_page_state(struct page *page,
840 enum node_stat_item idx, int val)
841{
c3cc3911
JW
842 unsigned long flags;
843
844 local_irq_save(flags);
28454265 845 __mod_lruvec_page_state(page, idx, val);
c3cc3911 846 local_irq_restore(flags);
2a7106f2
GT
847}
848
ef8f2327 849unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
850 gfp_t gfp_mask,
851 unsigned long *total_scanned);
a63d83f4 852
db9adbcb
JW
853void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
854 unsigned long count);
c9019e9b 855
2262185c 856static inline void count_memcg_events(struct mem_cgroup *memcg,
e27be240
JW
857 enum vm_event_item idx,
858 unsigned long count)
2262185c 859{
c3cc3911
JW
860 unsigned long flags;
861
862 local_irq_save(flags);
a983b5eb 863 __count_memcg_events(memcg, idx, count);
c3cc3911 864 local_irq_restore(flags);
2262185c
RG
865}
866
867static inline void count_memcg_page_event(struct page *page,
e27be240 868 enum vm_event_item idx)
2262185c
RG
869{
870 if (page->mem_cgroup)
871 count_memcg_events(page->mem_cgroup, idx, 1);
872}
873
874static inline void count_memcg_event_mm(struct mm_struct *mm,
875 enum vm_event_item idx)
68ae564b 876{
33398cf2
MH
877 struct mem_cgroup *memcg;
878
68ae564b
DR
879 if (mem_cgroup_disabled())
880 return;
33398cf2
MH
881
882 rcu_read_lock();
883 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
fe6bdfc8 884 if (likely(memcg))
c9019e9b 885 count_memcg_events(memcg, idx, 1);
33398cf2 886 rcu_read_unlock();
68ae564b 887}
c9019e9b 888
e27be240
JW
889static inline void memcg_memory_event(struct mem_cgroup *memcg,
890 enum memcg_memory_event event)
c9019e9b 891{
1e577f97
SB
892 atomic_long_inc(&memcg->memory_events_local[event]);
893 cgroup_file_notify(&memcg->events_local_file);
894
9852ae3f
CD
895 do {
896 atomic_long_inc(&memcg->memory_events[event]);
897 cgroup_file_notify(&memcg->events_file);
898
04fd61a4
YS
899 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
900 break;
9852ae3f
CD
901 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
902 break;
903 } while ((memcg = parent_mem_cgroup(memcg)) &&
904 !mem_cgroup_is_root(memcg));
c9019e9b
JW
905}
906
fe6bdfc8
RG
907static inline void memcg_memory_event_mm(struct mm_struct *mm,
908 enum memcg_memory_event event)
909{
910 struct mem_cgroup *memcg;
911
912 if (mem_cgroup_disabled())
913 return;
914
915 rcu_read_lock();
916 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
917 if (likely(memcg))
918 memcg_memory_event(memcg, event);
919 rcu_read_unlock();
920}
921
ca3e0214 922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e94c8a9c 923void mem_cgroup_split_huge_fixup(struct page *head);
ca3e0214
KH
924#endif
925
c255a458 926#else /* CONFIG_MEMCG */
23047a96
JW
927
928#define MEM_CGROUP_ID_SHIFT 0
929#define MEM_CGROUP_ID_MAX 0
930
7a81b88c
KH
931struct mem_cgroup;
932
dfd2f10c
KT
933static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
934{
935 return true;
936}
937
23047a96
JW
938static inline bool mem_cgroup_disabled(void)
939{
940 return true;
941}
942
e27be240
JW
943static inline void memcg_memory_event(struct mem_cgroup *memcg,
944 enum memcg_memory_event event)
241994ed
JW
945{
946}
947
fe6bdfc8
RG
948static inline void memcg_memory_event_mm(struct mm_struct *mm,
949 enum memcg_memory_event event)
950{
951}
952
22f7496f
YS
953static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
954 struct mem_cgroup *memcg,
1bc63fb1 955 bool in_low_reclaim)
9783aa99 956{
1bc63fb1 957 return 0;
9783aa99
CD
958}
959
45c7f7e1
CD
960static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
961 struct mem_cgroup *memcg)
962{
963}
964
965static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
966{
967 return false;
968}
969
970static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
241994ed 971{
45c7f7e1 972 return false;
241994ed
JW
973}
974
3fea5a49 975static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
d9eb1ea2 976 gfp_t gfp_mask)
3fea5a49
JW
977{
978 return 0;
979}
980
0a31bc97 981static inline void mem_cgroup_uncharge(struct page *page)
569b846d
KH
982{
983}
984
747db954 985static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
8a9f3ccd
BS
986{
987}
988
6a93ca8f 989static inline void mem_cgroup_migrate(struct page *old, struct page *new)
69029cd5
KH
990{
991}
992
867e5e1d
JW
993static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
994 struct pglist_data *pgdat)
08e552c6 995{
867e5e1d 996 return &pgdat->__lruvec;
08e552c6
KH
997}
998
fa9add64 999static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
599d0c95 1000 struct pglist_data *pgdat)
66e1707b 1001{
867e5e1d 1002 return &pgdat->__lruvec;
66e1707b
BS
1003}
1004
b910718a
JW
1005static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1006{
1007 return NULL;
1008}
1009
587af308 1010static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 1011 struct mem_cgroup *memcg)
bed7161a 1012{
587af308 1013 return true;
bed7161a
BS
1014}
1015
d46eb14b
SB
1016static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1017{
1018 return NULL;
1019}
1020
f745c6f5
SB
1021static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1022{
1023 return NULL;
1024}
1025
dc0b5864
RG
1026static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1027{
1028}
1029
5660048c
JW
1030static inline struct mem_cgroup *
1031mem_cgroup_iter(struct mem_cgroup *root,
1032 struct mem_cgroup *prev,
1033 struct mem_cgroup_reclaim_cookie *reclaim)
1034{
1035 return NULL;
1036}
1037
1038static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1039 struct mem_cgroup *prev)
1040{
1041}
1042
7c5f64f8
VD
1043static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1044 int (*fn)(struct task_struct *, void *), void *arg)
1045{
1046 return 0;
1047}
1048
23047a96 1049static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
f8d66542 1050{
23047a96
JW
1051 return 0;
1052}
1053
1054static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1055{
1056 WARN_ON_ONCE(id);
1057 /* XXX: This should always return root_mem_cgroup */
1058 return NULL;
f8d66542 1059}
a636b327 1060
aa9694bb
CD
1061static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1062{
1063 return NULL;
1064}
1065
2262185c
RG
1066static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1067{
1068 return NULL;
1069}
1070
eb01aaab 1071static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
14797e23 1072{
13308ca9 1073 return true;
14797e23
KM
1074}
1075
b4536f0c
MH
1076static inline
1077unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1078 enum lru_list lru, int zone_idx)
1079{
1080 return 0;
1081}
a3d8e054 1082
bbec2e15 1083static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
7c5f64f8
VD
1084{
1085 return 0;
1086}
1087
9783aa99
CD
1088static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1089{
1090 return 0;
1091}
1092
e222432b 1093static inline void
f0c867d9 1094mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1095{
1096}
1097
1098static inline void
1099mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
e222432b
BS
1100{
1101}
1102
739f79fc
JW
1103static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1104{
1105 return NULL;
1106}
1107
1108static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5
KH
1109{
1110}
1111
62cccb8c 1112static inline void unlock_page_memcg(struct page *page)
89c06bd5
KH
1113{
1114}
1115
b23afb93
TH
1116static inline void mem_cgroup_handle_over_high(void)
1117{
1118}
1119
29ef680a 1120static inline void mem_cgroup_enter_user_fault(void)
519e5247
JW
1121{
1122}
1123
29ef680a 1124static inline void mem_cgroup_exit_user_fault(void)
519e5247
JW
1125{
1126}
1127
3812c8c8
JW
1128static inline bool task_in_memcg_oom(struct task_struct *p)
1129{
1130 return false;
1131}
1132
49426420 1133static inline bool mem_cgroup_oom_synchronize(bool wait)
3812c8c8
JW
1134{
1135 return false;
1136}
1137
3d8b38eb
RG
1138static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1139 struct task_struct *victim, struct mem_cgroup *oom_domain)
1140{
1141 return NULL;
1142}
1143
1144static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1145{
1146}
1147
42a30035
JW
1148static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1149{
1150 return 0;
1151}
1152
205b20cc
JW
1153static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1154 int idx)
2a2e4885
JW
1155{
1156 return 0;
1157}
1158
00f3ca2c 1159static inline void __mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1160 int idx,
00f3ca2c 1161 int nr)
2a2e4885
JW
1162{
1163}
1164
00f3ca2c 1165static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1166 int idx,
00f3ca2c 1167 int nr)
2a2e4885
JW
1168{
1169}
1170
00f3ca2c 1171static inline void __mod_memcg_page_state(struct page *page,
04fecbf5 1172 int idx,
00f3ca2c 1173 int nr)
2a2e4885
JW
1174{
1175}
1176
ccda7f43 1177static inline void mod_memcg_page_state(struct page *page,
04fecbf5 1178 int idx,
ccda7f43 1179 int nr)
553af430
JW
1180{
1181}
1182
42a30035
JW
1183static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1184 enum node_stat_item idx)
1185{
1186 return node_page_state(lruvec_pgdat(lruvec), idx);
1187}
1188
205b20cc
JW
1189static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1190 enum node_stat_item idx)
2a7106f2 1191{
00f3ca2c 1192 return node_page_state(lruvec_pgdat(lruvec), idx);
2a7106f2
GT
1193}
1194
eedc4e5a
RG
1195static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1196 enum node_stat_item idx, int val)
1197{
1198}
1199
00f3ca2c
JW
1200static inline void __mod_lruvec_state(struct lruvec *lruvec,
1201 enum node_stat_item idx, int val)
d69b042f 1202{
00f3ca2c
JW
1203 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1204}
1205
1206static inline void mod_lruvec_state(struct lruvec *lruvec,
1207 enum node_stat_item idx, int val)
1208{
1209 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1210}
1211
1212static inline void __mod_lruvec_page_state(struct page *page,
1213 enum node_stat_item idx, int val)
1214{
1215 __mod_node_page_state(page_pgdat(page), idx, val);
1216}
1217
1218static inline void mod_lruvec_page_state(struct page *page,
1219 enum node_stat_item idx, int val)
1220{
1221 mod_node_page_state(page_pgdat(page), idx, val);
d69b042f
BS
1222}
1223
ec9f0238
RG
1224static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1225 int val)
1226{
1227 struct page *page = virt_to_head_page(p);
1228
1229 __mod_node_page_state(page_pgdat(page), idx, val);
1230}
1231
991e7673
SB
1232static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1233 int val)
1234{
1235 struct page *page = virt_to_head_page(p);
1236
1237 mod_node_page_state(page_pgdat(page), idx, val);
1238}
1239
8380ce47
RG
1240static inline void mod_memcg_obj_state(void *p, int idx, int val)
1241{
1242}
1243
4e416953 1244static inline
ef8f2327 1245unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
1246 gfp_t gfp_mask,
1247 unsigned long *total_scanned)
4e416953 1248{
0608f43d 1249 return 0;
4e416953
BS
1250}
1251
e94c8a9c 1252static inline void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
1253{
1254}
1255
2262185c
RG
1256static inline void count_memcg_events(struct mem_cgroup *memcg,
1257 enum vm_event_item idx,
1258 unsigned long count)
1259{
1260}
1261
9851ac13
KT
1262static inline void __count_memcg_events(struct mem_cgroup *memcg,
1263 enum vm_event_item idx,
1264 unsigned long count)
1265{
1266}
1267
2262185c 1268static inline void count_memcg_page_event(struct page *page,
04fecbf5 1269 int idx)
2262185c
RG
1270{
1271}
1272
456f998e 1273static inline
2262185c 1274void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
456f998e
YH
1275{
1276}
c255a458 1277#endif /* CONFIG_MEMCG */
78fb7466 1278
04fecbf5 1279/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1280static inline void __inc_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1281 int idx)
00f3ca2c
JW
1282{
1283 __mod_memcg_state(memcg, idx, 1);
1284}
1285
04fecbf5 1286/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1287static inline void __dec_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1288 int idx)
00f3ca2c
JW
1289{
1290 __mod_memcg_state(memcg, idx, -1);
1291}
1292
04fecbf5 1293/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1294static inline void __inc_memcg_page_state(struct page *page,
04fecbf5 1295 int idx)
00f3ca2c
JW
1296{
1297 __mod_memcg_page_state(page, idx, 1);
1298}
1299
04fecbf5 1300/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1301static inline void __dec_memcg_page_state(struct page *page,
04fecbf5 1302 int idx)
00f3ca2c
JW
1303{
1304 __mod_memcg_page_state(page, idx, -1);
1305}
1306
1307static inline void __inc_lruvec_state(struct lruvec *lruvec,
1308 enum node_stat_item idx)
1309{
1310 __mod_lruvec_state(lruvec, idx, 1);
1311}
1312
1313static inline void __dec_lruvec_state(struct lruvec *lruvec,
1314 enum node_stat_item idx)
1315{
1316 __mod_lruvec_state(lruvec, idx, -1);
1317}
1318
1319static inline void __inc_lruvec_page_state(struct page *page,
1320 enum node_stat_item idx)
1321{
1322 __mod_lruvec_page_state(page, idx, 1);
1323}
1324
1325static inline void __dec_lruvec_page_state(struct page *page,
1326 enum node_stat_item idx)
1327{
1328 __mod_lruvec_page_state(page, idx, -1);
1329}
1330
ec9f0238
RG
1331static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1332{
1333 __mod_lruvec_slab_state(p, idx, 1);
1334}
1335
1336static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1337{
1338 __mod_lruvec_slab_state(p, idx, -1);
1339}
1340
04fecbf5 1341/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1342static inline void inc_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1343 int idx)
00f3ca2c
JW
1344{
1345 mod_memcg_state(memcg, idx, 1);
1346}
1347
04fecbf5 1348/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1349static inline void dec_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1350 int idx)
00f3ca2c
JW
1351{
1352 mod_memcg_state(memcg, idx, -1);
1353}
1354
04fecbf5 1355/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1356static inline void inc_memcg_page_state(struct page *page,
04fecbf5 1357 int idx)
00f3ca2c
JW
1358{
1359 mod_memcg_page_state(page, idx, 1);
1360}
1361
04fecbf5 1362/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1363static inline void dec_memcg_page_state(struct page *page,
04fecbf5 1364 int idx)
00f3ca2c
JW
1365{
1366 mod_memcg_page_state(page, idx, -1);
1367}
1368
1369static inline void inc_lruvec_state(struct lruvec *lruvec,
1370 enum node_stat_item idx)
1371{
1372 mod_lruvec_state(lruvec, idx, 1);
1373}
1374
1375static inline void dec_lruvec_state(struct lruvec *lruvec,
1376 enum node_stat_item idx)
1377{
1378 mod_lruvec_state(lruvec, idx, -1);
1379}
1380
1381static inline void inc_lruvec_page_state(struct page *page,
1382 enum node_stat_item idx)
1383{
1384 mod_lruvec_page_state(page, idx, 1);
1385}
1386
1387static inline void dec_lruvec_page_state(struct page *page,
1388 enum node_stat_item idx)
1389{
1390 mod_lruvec_page_state(page, idx, -1);
1391}
1392
7cf111bc
JW
1393static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1394{
1395 struct mem_cgroup *memcg;
1396
1397 memcg = lruvec_memcg(lruvec);
1398 if (!memcg)
1399 return NULL;
1400 memcg = parent_mem_cgroup(memcg);
1401 if (!memcg)
1402 return NULL;
1403 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1404}
1405
52ebea74 1406#ifdef CONFIG_CGROUP_WRITEBACK
841710aa 1407
841710aa 1408struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
c5edf9cd
TH
1409void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1410 unsigned long *pheadroom, unsigned long *pdirty,
1411 unsigned long *pwriteback);
841710aa 1412
97b27821
TH
1413void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1414 struct bdi_writeback *wb);
1415
1416static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1417 struct bdi_writeback *wb)
1418{
08d1d0e6
BH
1419 if (mem_cgroup_disabled())
1420 return;
1421
97b27821
TH
1422 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1423 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1424}
1425
1426void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1427
841710aa
TH
1428#else /* CONFIG_CGROUP_WRITEBACK */
1429
1430static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1431{
1432 return NULL;
1433}
1434
c2aa723a 1435static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
c5edf9cd
TH
1436 unsigned long *pfilepages,
1437 unsigned long *pheadroom,
c2aa723a
TH
1438 unsigned long *pdirty,
1439 unsigned long *pwriteback)
1440{
1441}
1442
97b27821
TH
1443static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1444 struct bdi_writeback *wb)
1445{
1446}
1447
1448static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1449{
1450}
1451
841710aa 1452#endif /* CONFIG_CGROUP_WRITEBACK */
52ebea74 1453
e1aab161 1454struct sock;
baac50bb
JW
1455bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1456void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
d886f4e4 1457#ifdef CONFIG_MEMCG
ef12947c
JW
1458extern struct static_key_false memcg_sockets_enabled_key;
1459#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
2d758073
JW
1460void mem_cgroup_sk_alloc(struct sock *sk);
1461void mem_cgroup_sk_free(struct sock *sk);
baac50bb 1462static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c 1463{
0db15298 1464 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
8e8ae645 1465 return true;
8e8ae645
JW
1466 do {
1467 if (time_before(jiffies, memcg->socket_pressure))
1468 return true;
1469 } while ((memcg = parent_mem_cgroup(memcg)));
1470 return false;
e805605c 1471}
0a432dcb
YS
1472
1473extern int memcg_expand_shrinker_maps(int new_id);
1474
1475extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1476 int nid, int shrinker_id);
e805605c 1477#else
80e95fe0 1478#define mem_cgroup_sockets_enabled 0
2d758073
JW
1479static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1480static inline void mem_cgroup_sk_free(struct sock *sk) { };
baac50bb 1481static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c
JW
1482{
1483 return false;
1484}
0a432dcb
YS
1485
1486static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1487 int nid, int shrinker_id)
1488{
1489}
e805605c 1490#endif
7ae1e1d0 1491
9b6f7e16 1492#ifdef CONFIG_MEMCG_KMEM
4b13f64d
RG
1493int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1494 unsigned int nr_pages);
1495void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
f4b00eab
RG
1496int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1497void __memcg_kmem_uncharge_page(struct page *page, int order);
45264778 1498
bf4f0599
RG
1499struct obj_cgroup *get_obj_cgroup_from_current(void);
1500
1501int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1502void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1503
ef12947c 1504extern struct static_key_false memcg_kmem_enabled_key;
749c5415 1505
dbcf73e2 1506extern int memcg_nr_cache_ids;
64219994
MH
1507void memcg_get_cache_ids(void);
1508void memcg_put_cache_ids(void);
ebe945c2
GC
1509
1510/*
1511 * Helper macro to loop through all memcg-specific caches. Callers must still
1512 * check if the cache is valid (it is either valid or NULL).
1513 * the slab_mutex must be held when looping through those caches
1514 */
749c5415 1515#define for_each_memcg_cache_index(_idx) \
dbcf73e2 1516 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
749c5415 1517
7ae1e1d0
GC
1518static inline bool memcg_kmem_enabled(void)
1519{
eda330e5 1520 return static_branch_likely(&memcg_kmem_enabled_key);
7ae1e1d0
GC
1521}
1522
0f876e4d
RG
1523static inline bool memcg_kmem_bypass(void)
1524{
1525 if (in_interrupt())
1526 return true;
1527
1528 /* Allow remote memcg charging in kthread contexts. */
1529 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
1530 !current->active_memcg)
1531 return true;
1532 return false;
1533}
1534
f4b00eab
RG
1535static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1536 int order)
60cd4bcd
SB
1537{
1538 if (memcg_kmem_enabled())
f4b00eab 1539 return __memcg_kmem_charge_page(page, gfp, order);
60cd4bcd
SB
1540 return 0;
1541}
1542
f4b00eab 1543static inline void memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1544{
1545 if (memcg_kmem_enabled())
f4b00eab 1546 __memcg_kmem_uncharge_page(page, order);
60cd4bcd
SB
1547}
1548
4b13f64d
RG
1549static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1550 unsigned int nr_pages)
60cd4bcd
SB
1551{
1552 if (memcg_kmem_enabled())
4b13f64d 1553 return __memcg_kmem_charge(memcg, gfp, nr_pages);
60cd4bcd
SB
1554 return 0;
1555}
49a18eae 1556
4b13f64d
RG
1557static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1558 unsigned int nr_pages)
49a18eae
RG
1559{
1560 if (memcg_kmem_enabled())
4b13f64d 1561 __memcg_kmem_uncharge(memcg, nr_pages);
49a18eae
RG
1562}
1563
33398cf2 1564/*
9f706d68 1565 * helper for accessing a memcg's index. It will be used as an index in the
33398cf2
MH
1566 * child cache array in kmem_cache, and also to derive its name. This function
1567 * will return -1 when this is not a kmem-limited memcg.
1568 */
1569static inline int memcg_cache_id(struct mem_cgroup *memcg)
1570{
1571 return memcg ? memcg->kmemcg_id : -1;
1572}
5722d094 1573
8380ce47
RG
1574struct mem_cgroup *mem_cgroup_from_obj(void *p);
1575
7ae1e1d0 1576#else
9b6f7e16 1577
f4b00eab
RG
1578static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1579 int order)
9b6f7e16
RG
1580{
1581 return 0;
1582}
1583
f4b00eab 1584static inline void memcg_kmem_uncharge_page(struct page *page, int order)
9b6f7e16
RG
1585{
1586}
1587
f4b00eab
RG
1588static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1589 int order)
60cd4bcd
SB
1590{
1591 return 0;
1592}
1593
f4b00eab 1594static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1595{
1596}
1597
749c5415
GC
1598#define for_each_memcg_cache_index(_idx) \
1599 for (; NULL; )
1600
b9ce5ef4
GC
1601static inline bool memcg_kmem_enabled(void)
1602{
1603 return false;
1604}
1605
2633d7a0
GC
1606static inline int memcg_cache_id(struct mem_cgroup *memcg)
1607{
1608 return -1;
1609}
1610
05257a1a
VD
1611static inline void memcg_get_cache_ids(void)
1612{
1613}
1614
1615static inline void memcg_put_cache_ids(void)
1616{
1617}
1618
8380ce47
RG
1619static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1620{
1621 return NULL;
1622}
1623
84c07d11 1624#endif /* CONFIG_MEMCG_KMEM */
127424c8 1625
8cdea7c0 1626#endif /* _LINUX_MEMCONTROL_H */