]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - include/linux/mmzone.h
Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
e4dde56c 10#include <linux/list_nulls.h>
1da177e4 11#include <linux/wait.h>
e815af95 12#include <linux/bitops.h>
1da177e4
LT
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
bdc8cb98 17#include <linux/seqlock.h>
8357f869 18#include <linux/nodemask.h>
835c134e 19#include <linux/pageblock-flags.h>
bbeae5b0 20#include <linux/page-flags-layout.h>
60063497 21#include <linux/atomic.h>
b03641af
DW
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
dbbee9d5 24#include <linux/local_lock.h>
93ff66bf 25#include <asm/page.h>
1da177e4
LT
26
27/* Free memory management - zoned buddy allocator. */
0192445c 28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
23baf831 29#define MAX_ORDER 10
1da177e4 30#else
0192445c 31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
1da177e4 32#endif
23baf831 33#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
1da177e4 34
3f6dac0f
KS
35#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
5ad333eb
AW
37/*
38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39 * costly to service. That is between allocation orders which should
35fca53e 40 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
41 * will not.
42 */
43#define PAGE_ALLOC_COSTLY_ORDER 3
44
a6ffdc07 45enum migratetype {
47118af0 46 MIGRATE_UNMOVABLE,
47118af0 47 MIGRATE_MOVABLE,
016c13da 48 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
51#ifdef CONFIG_CMA
52 /*
53 * MIGRATE_CMA migration type is designed to mimic the way
54 * ZONE_MOVABLE works. Only movable pages can be allocated
55 * from MIGRATE_CMA pageblocks and page allocator never
56 * implicitly change migration type of MIGRATE_CMA pageblock.
57 *
58 * The way to use it is to change migratetype of a range of
59 * pageblocks to MIGRATE_CMA which can be done by
11ac3e87 60 * __free_pageblock_cma() function.
47118af0
MN
61 */
62 MIGRATE_CMA,
63#endif
194159fb 64#ifdef CONFIG_MEMORY_ISOLATION
47118af0 65 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 66#endif
47118af0
MN
67 MIGRATE_TYPES
68};
69
60f30350 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 71extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 72
47118af0
MN
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
76#else
77# define is_migrate_cma(migratetype) false
7c15d9bb 78# define is_migrate_cma_page(_page) false
47118af0 79#endif
b2a0ac88 80
b682debd
VB
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
1dd214b8
ZY
86/*
87 * Check whether a migratetype can be merged with another migratetype.
88 *
89 * It is only mergeable when it can fall back to other migratetypes for
90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91 */
92static inline bool migratetype_is_mergeable(int mt)
93{
94 return mt < MIGRATE_PCPTYPES;
95}
96
b2a0ac88 97#define for_each_migratetype_order(order, type) \
23baf831 98 for (order = 0; order <= MAX_ORDER; order++) \
b2a0ac88
MG
99 for (type = 0; type < MIGRATE_TYPES; type++)
100
467c996c
MG
101extern int page_group_by_mobility_disabled;
102
d38ac97f 103#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
e58469ba 104
dc4b0caf 105#define get_pageblock_migratetype(page) \
535b81e2 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
dc4b0caf 107
28fb54f6
VMO
108#define folio_migratetype(folio) \
109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
110 MIGRATETYPE_MASK)
1da177e4 111struct free_area {
b2a0ac88 112 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
113 unsigned long nr_free;
114};
115
116struct pglist_data;
117
3a321d2a
KW
118#ifdef CONFIG_NUMA
119enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
f19298b9 126 NR_VM_NUMA_EVENT_ITEMS
3a321d2a
KW
127};
128#else
f19298b9 129#define NR_VM_NUMA_EVENT_ITEMS 0
3a321d2a
KW
130#endif
131
2244b95a 132enum zone_stat_item {
51ed4491 133 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 134 NR_FREE_PAGES,
71c799f4
MK
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
5a1c84b4 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
c6a7f572 143 /* Second 128 byte cacheline */
d2c5e30c 144 NR_BOUNCE,
91537fee
MK
145#if IS_ENABLED(CONFIG_ZSMALLOC)
146 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 147#endif
d1ce749a 148 NR_FREE_CMA_PAGES,
dcdfdd40
KS
149#ifdef CONFIG_UNACCEPTED_MEMORY
150 NR_UNACCEPTED,
151#endif
2244b95a
CL
152 NR_VM_ZONE_STAT_ITEMS };
153
75ef7184 154enum node_stat_item {
599d0c95
MG
155 NR_LRU_BASE,
156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
157 NR_ACTIVE_ANON, /* " " " " " */
158 NR_INACTIVE_FILE, /* " " " " " */
159 NR_ACTIVE_FILE, /* " " " " " */
160 NR_UNEVICTABLE, /* " " " " " */
d42f3245
RG
161 NR_SLAB_RECLAIMABLE_B,
162 NR_SLAB_UNRECLAIMABLE_B,
599d0c95
MG
163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 165 WORKINGSET_NODES,
170b04b7
JK
166 WORKINGSET_REFAULT_BASE,
167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
168 WORKINGSET_REFAULT_FILE,
169 WORKINGSET_ACTIVATE_BASE,
170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
171 WORKINGSET_ACTIVATE_FILE,
172 WORKINGSET_RESTORE_BASE,
173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
174 WORKINGSET_RESTORE_FILE,
1e6b1085 175 WORKINGSET_NODERECLAIM,
4b9d0fab 176 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
178 only modified from process context */
11fb9989
MG
179 NR_FILE_PAGES,
180 NR_FILE_DIRTY,
181 NR_WRITEBACK,
182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
184 NR_SHMEM_THPS,
185 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
186 NR_FILE_THPS,
187 NR_FILE_PMDMAPPED,
11fb9989 188 NR_ANON_THPS,
c4a25635
MG
189 NR_VMSCAN_WRITE,
190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
191 NR_DIRTIED, /* page dirtyings since bootup */
192 NR_WRITTEN, /* page writings since bootup */
8cd7c588 193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
b29940c1 194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
1970dc6f
JH
195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
991e7673
SB
197 NR_KERNEL_STACK_KB, /* measured in KiB */
198#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
199 NR_KERNEL_SCS_KB, /* measured in KiB */
200#endif
f0c0c115 201 NR_PAGETABLE, /* used for pagetables */
ebc97a52 202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
b6038942
SB
203#ifdef CONFIG_SWAP
204 NR_SWAPCACHE,
e39bb6be
HY
205#endif
206#ifdef CONFIG_NUMA_BALANCING
207 PGPROMOTE_SUCCESS, /* promote successfully */
c6833e10 208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
b6038942 209#endif
75ef7184
MG
210 NR_VM_NODE_STAT_ITEMS
211};
212
69473e5d
MS
213/*
214 * Returns true if the item should be printed in THPs (/proc/vmstat
215 * currently prints number of anon, file and shmem THPs. But the item
216 * is charged in pages).
217 */
218static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
219{
220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
221 return false;
222
bf9ecead 223 return item == NR_ANON_THPS ||
57b2847d 224 item == NR_FILE_THPS ||
a1528e21 225 item == NR_SHMEM_THPS ||
380780e7
MS
226 item == NR_SHMEM_PMDMAPPED ||
227 item == NR_FILE_PMDMAPPED;
69473e5d
MS
228}
229
ea426c2a
RG
230/*
231 * Returns true if the value is measured in bytes (most vmstat values are
232 * measured in pages). This defines the API part, the internal representation
233 * might be different.
234 */
235static __always_inline bool vmstat_item_in_bytes(int idx)
236{
d42f3245
RG
237 /*
238 * Global and per-node slab counters track slab pages.
239 * It's expected that changes are multiples of PAGE_SIZE.
240 * Internally values are stored in pages.
241 *
242 * Per-memcg and per-lruvec counters track memory, consumed
243 * by individual slab objects. These counters are actually
244 * byte-precise.
245 */
246 return (idx == NR_SLAB_RECLAIMABLE_B ||
247 idx == NR_SLAB_UNRECLAIMABLE_B);
ea426c2a
RG
248}
249
4f98a2fe
RR
250/*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259#define LRU_BASE 0
260#define LRU_ACTIVE 1
261#define LRU_FILE 2
262
b69408e8 263enum lru_list {
4f98a2fe
RR
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 268 LRU_UNEVICTABLE,
894bc310
LS
269 NR_LRU_LISTS
270};
b69408e8 271
8cd7c588
MG
272enum vmscan_throttle_state {
273 VMSCAN_THROTTLE_WRITEBACK,
d818fca1 274 VMSCAN_THROTTLE_ISOLATED,
69392a40 275 VMSCAN_THROTTLE_NOPROGRESS,
1b4e3f26 276 VMSCAN_THROTTLE_CONGESTED,
8cd7c588
MG
277 NR_VMSCAN_THROTTLE,
278};
279
4111304d 280#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 281
4111304d 282#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 283
b91ac374 284static inline bool is_file_lru(enum lru_list lru)
4f98a2fe 285{
4111304d 286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
287}
288
b91ac374 289static inline bool is_active_lru(enum lru_list lru)
b69408e8 290{
4111304d 291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
292}
293
e9c2dbc8
YY
294#define WORKINGSET_ANON 0
295#define WORKINGSET_FILE 1
ed017373
YZ
296#define ANON_AND_FILE 2
297
1b05117d 298enum lruvec_flags {
1bc545bf
YA
299 /*
300 * An lruvec has many dirty pages backed by a congested BDI:
301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
302 * It can be cleared by cgroup reclaim or kswapd.
303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
304 * It can only be cleared by kswapd.
305 *
306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
307 * reclaim, but not vice versa. This only applies to the root cgroup.
308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
310 * by kswapd).
311 */
312 LRUVEC_CGROUP_CONGESTED,
313 LRUVEC_NODE_CONGESTED,
1b05117d
JW
314};
315
ec1c86b2
YZ
316#endif /* !__GENERATING_BOUNDS_H */
317
318/*
319 * Evictable pages are divided into multiple generations. The youngest and the
320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
323 * corresponding generation. The gen counter in folio->flags stores gen+1 while
6df1b221 324 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
ec1c86b2
YZ
325 *
326 * A page is added to the youngest generation on faulting. The aging needs to
327 * check the accessed bit at least twice before handing this page over to the
328 * eviction. The first check takes care of the accessed bit set on the initial
329 * fault; the second check makes sure this page hasn't been used since then.
330 * This process, AKA second chance, requires a minimum of two generations,
331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
333 * rest of generations, if they exist, are considered inactive. See
334 * lru_gen_is_active().
335 *
6df1b221
YZ
336 * PG_active is always cleared while a page is on one of lrugen->folios[] so
337 * that the aging needs not to worry about it. And it's set again when a page
ec1c86b2
YZ
338 * considered active is isolated for non-reclaiming purposes, e.g., migration.
339 * See lru_gen_add_folio() and lru_gen_del_folio().
340 *
341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
342 * number of categories of the active/inactive LRU when keeping track of
343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
344 * in folio->flags.
345 */
346#define MIN_NR_GENS 2U
347#define MAX_NR_GENS 4U
348
ac35a490
YZ
349/*
350 * Each generation is divided into multiple tiers. A page accessed N times
351 * through file descriptors is in tier order_base_2(N). A page in the first tier
352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
353 * tables or read ahead. A page in any other tier (N>1) is marked by
354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
355 * supported without using additional bits in folio->flags.
356 *
357 * In contrast to moving across generations which requires the LRU lock, moving
358 * across tiers only involves atomic operations on folio->flags and therefore
359 * has a negligible cost in the buffered access path. In the eviction path,
360 * comparisons of refaulted/(evicted+protected) from the first tier and the
361 * rest infer whether pages accessed multiple times through file descriptors
362 * are statistically hot and thus worth protecting.
363 *
364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
365 * number of categories of the active/inactive LRU when keeping track of
366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
367 * folio->flags.
368 */
369#define MAX_NR_TIERS 4U
370
ec1c86b2
YZ
371#ifndef __GENERATING_BOUNDS_H
372
373struct lruvec;
018ee47f 374struct page_vma_mapped_walk;
ec1c86b2
YZ
375
376#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
377#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
378
379#ifdef CONFIG_LRU_GEN
380
381enum {
382 LRU_GEN_ANON,
383 LRU_GEN_FILE,
384};
385
354ed597
YZ
386enum {
387 LRU_GEN_CORE,
388 LRU_GEN_MM_WALK,
389 LRU_GEN_NONLEAF_YOUNG,
390 NR_LRU_GEN_CAPS
391};
392
ac35a490
YZ
393#define MIN_LRU_BATCH BITS_PER_LONG
394#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
395
396/* whether to keep historical stats from evicted generations */
397#ifdef CONFIG_LRU_GEN_STATS
398#define NR_HIST_GENS MAX_NR_GENS
399#else
400#define NR_HIST_GENS 1U
401#endif
402
ec1c86b2
YZ
403/*
404 * The youngest generation number is stored in max_seq for both anon and file
405 * types as they are aged on an equal footing. The oldest generation numbers are
406 * stored in min_seq[] separately for anon and file types as clean file pages
407 * can be evicted regardless of swap constraints.
408 *
409 * Normally anon and file min_seq are in sync. But if swapping is constrained,
410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
411 * min_seq behind.
412 *
413 * The number of pages in each generation is eventually consistent and therefore
bd74fdae 414 * can be transiently negative when reset_batch_size() is pending.
ec1c86b2 415 */
391655fe 416struct lru_gen_folio {
ec1c86b2
YZ
417 /* the aging increments the youngest generation number */
418 unsigned long max_seq;
419 /* the eviction increments the oldest generation numbers */
420 unsigned long min_seq[ANON_AND_FILE];
1332a809
YZ
421 /* the birth time of each generation in jiffies */
422 unsigned long timestamps[MAX_NR_GENS];
ec1c86b2 423 /* the multi-gen LRU lists, lazily sorted on eviction */
6df1b221 424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ec1c86b2
YZ
425 /* the multi-gen LRU sizes, eventually consistent */
426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
ac35a490
YZ
427 /* the exponential moving average of refaulted */
428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
429 /* the exponential moving average of evicted+protected */
430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
431 /* the first tier doesn't need protection, hence the minus one */
432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
433 /* can be modified without holding the LRU lock */
434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
354ed597
YZ
436 /* whether the multi-gen LRU is enabled */
437 bool enabled;
e4dde56c
YZ
438#ifdef CONFIG_MEMCG
439 /* the memcg generation this lru_gen_folio belongs to */
440 u8 gen;
441 /* the list segment this lru_gen_folio belongs to */
442 u8 seg;
443 /* per-node lru_gen_folio list for global reclaim */
444 struct hlist_nulls_node list;
445#endif
ec1c86b2
YZ
446};
447
bd74fdae
YZ
448enum {
449 MM_LEAF_TOTAL, /* total leaf entries */
450 MM_LEAF_OLD, /* old leaf entries */
451 MM_LEAF_YOUNG, /* young leaf entries */
452 MM_NONLEAF_TOTAL, /* total non-leaf entries */
453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
455 NR_MM_STATS
456};
457
458/* double-buffering Bloom filters */
459#define NR_BLOOM_FILTERS 2
460
461struct lru_gen_mm_state {
462 /* set to max_seq after each iteration */
463 unsigned long seq;
7f63cf2d 464 /* where the current iteration continues after */
bd74fdae 465 struct list_head *head;
7f63cf2d 466 /* where the last iteration ended before */
bd74fdae 467 struct list_head *tail;
bd74fdae
YZ
468 /* Bloom filters flip after each iteration */
469 unsigned long *filters[NR_BLOOM_FILTERS];
470 /* the mm stats for debugging */
471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
bd74fdae
YZ
472};
473
474struct lru_gen_mm_walk {
475 /* the lruvec under reclaim */
476 struct lruvec *lruvec;
391655fe 477 /* unstable max_seq from lru_gen_folio */
bd74fdae
YZ
478 unsigned long max_seq;
479 /* the next address within an mm to scan */
480 unsigned long next_addr;
481 /* to batch promoted pages */
482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 /* to batch the mm stats */
484 int mm_stats[NR_MM_STATS];
485 /* total batched items */
486 int batched;
487 bool can_swap;
488 bool force_scan;
489};
490
ec1c86b2 491void lru_gen_init_lruvec(struct lruvec *lruvec);
018ee47f 492void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
ec1c86b2
YZ
493
494#ifdef CONFIG_MEMCG
e4dde56c
YZ
495
496/*
497 * For each node, memcgs are divided into two generations: the old and the
498 * young. For each generation, memcgs are randomly sharded into multiple bins
499 * to improve scalability. For each bin, the hlist_nulls is virtually divided
500 * into three segments: the head, the tail and the default.
501 *
502 * An onlining memcg is added to the tail of a random bin in the old generation.
503 * The eviction starts at the head of a random bin in the old generation. The
504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505 * the old generation, is incremented when all its bins become empty.
506 *
507 * There are four operations:
8aa42061 508 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
e4dde56c 509 * current generation (old or young) and updates its "seg" to "head";
8aa42061 510 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
e4dde56c 511 * current generation (old or young) and updates its "seg" to "tail";
8aa42061 512 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
e4dde56c 513 * generation, updates its "gen" to "old" and resets its "seg" to "default";
8aa42061 514 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
e4dde56c
YZ
515 * young generation, updates its "gen" to "young" and resets its "seg" to
516 * "default".
517 *
518 * The events that trigger the above operations are:
519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
8aa42061 520 * 2. The first attempt to reclaim a memcg below low, which triggers
e4dde56c 521 * MEMCG_LRU_TAIL;
4376807b
YZ
522 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
523 * threshold, which triggers MEMCG_LRU_TAIL;
524 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
525 * threshold, which triggers MEMCG_LRU_YOUNG;
8aa42061 526 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
e4dde56c 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
8aa42061 528 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
e4dde56c 529 *
8aa42061
YZ
530 * Notes:
531 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
532 * of their max_seq counters ensures the eventual fairness to all eligible
533 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
534 * 2. There are only two valid generations: old (seq) and young (seq+1).
535 * MEMCG_NR_GENS is set to three so that when reading the generation counter
536 * locklessly, a stale value (seq-1) does not wraparound to young.
e4dde56c 537 */
8aa42061 538#define MEMCG_NR_GENS 3
e4dde56c
YZ
539#define MEMCG_NR_BINS 8
540
541struct lru_gen_memcg {
542 /* the per-node memcg generation counter */
543 unsigned long seq;
544 /* each memcg has one lru_gen_folio per node */
545 unsigned long nr_memcgs[MEMCG_NR_GENS];
546 /* per-node lru_gen_folio list for global reclaim */
547 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
548 /* protects the above */
549 spinlock_t lock;
550};
551
552void lru_gen_init_pgdat(struct pglist_data *pgdat);
553
ec1c86b2
YZ
554void lru_gen_init_memcg(struct mem_cgroup *memcg);
555void lru_gen_exit_memcg(struct mem_cgroup *memcg);
e4dde56c
YZ
556void lru_gen_online_memcg(struct mem_cgroup *memcg);
557void lru_gen_offline_memcg(struct mem_cgroup *memcg);
558void lru_gen_release_memcg(struct mem_cgroup *memcg);
5c7e7a0d 559void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
e4dde56c
YZ
560
561#else /* !CONFIG_MEMCG */
562
563#define MEMCG_NR_GENS 1
564
565struct lru_gen_memcg {
566};
567
568static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
569{
570}
571
572#endif /* CONFIG_MEMCG */
ec1c86b2
YZ
573
574#else /* !CONFIG_LRU_GEN */
575
e4dde56c
YZ
576static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
577{
578}
579
ec1c86b2
YZ
580static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
581{
582}
583
018ee47f
YZ
584static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
585{
586}
587
ec1c86b2 588#ifdef CONFIG_MEMCG
e4dde56c 589
ec1c86b2
YZ
590static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
591{
592}
593
594static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
595{
596}
e4dde56c
YZ
597
598static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
599{
600}
601
602static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
603{
604}
605
606static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
607{
608}
609
5c7e7a0d 610static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
e4dde56c
YZ
611{
612}
613
614#endif /* CONFIG_MEMCG */
ec1c86b2
YZ
615
616#endif /* CONFIG_LRU_GEN */
617
6290df54 618struct lruvec {
23047a96 619 struct list_head lists[NR_LRU_LISTS];
6168d0da
AS
620 /* per lruvec lru_lock for memcg */
621 spinlock_t lru_lock;
1431d4d1
JW
622 /*
623 * These track the cost of reclaiming one LRU - file or anon -
624 * over the other. As the observed cost of reclaiming one LRU
625 * increases, the reclaim scan balance tips toward the other.
626 */
627 unsigned long anon_cost;
628 unsigned long file_cost;
31d8fcac
JW
629 /* Non-resident age, driven by LRU movement */
630 atomic_long_t nonresident_age;
ed017373
YZ
631 /* Refaults at the time of last reclaim cycle */
632 unsigned long refaults[ANON_AND_FILE];
1b05117d
JW
633 /* Various lruvec state flags (enum lruvec_flags) */
634 unsigned long flags;
ec1c86b2
YZ
635#ifdef CONFIG_LRU_GEN
636 /* evictable pages divided into generations */
391655fe 637 struct lru_gen_folio lrugen;
bd74fdae
YZ
638 /* to concurrently iterate lru_gen_mm_list */
639 struct lru_gen_mm_state mm_state;
ec1c86b2 640#endif
c255a458 641#ifdef CONFIG_MEMCG
599d0c95 642 struct pglist_data *pgdat;
7f5e86c2 643#endif
6290df54
JW
644};
645
c8244935 646/* Isolate for asynchronous migration */
f3fd4a61 647#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
648/* Isolate unevictable pages */
649#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
650
651/* LRU Isolation modes. */
9efeccac 652typedef unsigned __bitwise isolate_mode_t;
4356f21d 653
41858966
MG
654enum zone_watermarks {
655 WMARK_MIN,
656 WMARK_LOW,
657 WMARK_HIGH,
c574bbe9 658 WMARK_PROMO,
41858966
MG
659 NR_WMARK
660};
661
44042b44 662/*
5d0a661d
MG
663 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
664 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
665 * it should not contribute to serious fragmentation causing THP allocation
666 * failures.
44042b44
MG
667 */
668#ifdef CONFIG_TRANSPARENT_HUGEPAGE
669#define NR_PCP_THP 1
670#else
671#define NR_PCP_THP 0
672#endif
5d0a661d
MG
673#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
674#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
44042b44 675
1c30844d
MG
676#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
677#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
678#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
679#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 680
ca71fe1a
HY
681/*
682 * Flags used in pcp->flags field.
683 *
684 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
685 * previous page freeing. To avoid to drain PCP for an accident
686 * high-order page freeing.
362d37a1
HY
687 *
688 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
689 * draining PCP for consecutive high-order pages freeing without
690 * allocation if data cache slice of CPU is large enough. To reduce
691 * zone lock contention and keep cache-hot pages reusing.
ca71fe1a
HY
692 */
693#define PCPF_PREV_FREE_HIGH_ORDER BIT(0)
362d37a1 694#define PCPF_FREE_HIGH_BATCH BIT(1)
ca71fe1a 695
1da177e4 696struct per_cpu_pages {
4b23a68f 697 spinlock_t lock; /* Protects lists field */
1da177e4 698 int count; /* number of pages in the list */
1da177e4 699 int high; /* high watermark, emptying needed */
90b41691
HY
700 int high_min; /* min high watermark */
701 int high_max; /* max high watermark */
1da177e4 702 int batch; /* chunk size for buddy add/remove */
ca71fe1a 703 u8 flags; /* protected by pcp->lock */
c0a24239 704 u8 alloc_factor; /* batch scaling factor during allocate */
28f836b6 705#ifdef CONFIG_NUMA
c0a24239 706 u8 expire; /* When 0, remote pagesets are drained */
28f836b6 707#endif
6ccdcb6d 708 short free_count; /* consecutive free count */
5f8dcc21
MG
709
710 /* Lists of pages, one per migrate type stored on the pcp-lists */
44042b44 711 struct list_head lists[NR_PCP_LISTS];
5d0a661d 712} ____cacheline_aligned_in_smp;
1da177e4 713
28f836b6 714struct per_cpu_zonestat {
2244b95a
CL
715#ifdef CONFIG_SMP
716 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
28f836b6
MG
717 s8 stat_threshold;
718#endif
719#ifdef CONFIG_NUMA
f19298b9
MG
720 /*
721 * Low priority inaccurate counters that are only folded
722 * on demand. Use a large type to avoid the overhead of
723 * folding during refresh_cpu_vm_stats.
724 */
725 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
2244b95a 726#endif
99dcc3e5 727};
e7c8d5c9 728
75ef7184
MG
729struct per_cpu_nodestat {
730 s8 stat_threshold;
731 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
732};
733
97965478
CL
734#endif /* !__GENERATING_BOUNDS.H */
735
2f1b6248
CL
736enum zone_type {
737 /*
734f9246
NSJ
738 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
739 * to DMA to all of the addressable memory (ZONE_NORMAL).
740 * On architectures where this area covers the whole 32 bit address
741 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
742 * DMA addressing constraints. This distinction is important as a 32bit
743 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
744 * platforms may need both zones as they support peripherals with
745 * different DMA addressing limitations.
2f1b6248 746 */
734f9246 747#ifdef CONFIG_ZONE_DMA
2f1b6248 748 ZONE_DMA,
4b51d669 749#endif
fb0e7942 750#ifdef CONFIG_ZONE_DMA32
2f1b6248 751 ZONE_DMA32,
fb0e7942 752#endif
2f1b6248
CL
753 /*
754 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
755 * performed on pages in ZONE_NORMAL if the DMA devices support
756 * transfers to all addressable memory.
757 */
758 ZONE_NORMAL,
e53ef38d 759#ifdef CONFIG_HIGHMEM
2f1b6248
CL
760 /*
761 * A memory area that is only addressable by the kernel through
762 * mapping portions into its own address space. This is for example
763 * used by i386 to allow the kernel to address the memory beyond
764 * 900MB. The kernel will set up special mappings (page
765 * table entries on i386) for each page that the kernel needs to
766 * access.
767 */
768 ZONE_HIGHMEM,
e53ef38d 769#endif
9181a980
DH
770 /*
771 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
772 * movable pages with few exceptional cases described below. Main use
773 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
774 * likely to succeed, and to locally limit unmovable allocations - e.g.,
775 * to increase the number of THP/huge pages. Notable special cases are:
776 *
777 * 1. Pinned pages: (long-term) pinning of movable pages might
d1e153fe
PT
778 * essentially turn such pages unmovable. Therefore, we do not allow
779 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
780 * faulted, they come from the right zone right away. However, it is
781 * still possible that address space already has pages in
782 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
783 * touches that memory before pinning). In such case we migrate them
784 * to a different zone. When migration fails - pinning fails.
9181a980
DH
785 * 2. memblock allocations: kernelcore/movablecore setups might create
786 * situations where ZONE_MOVABLE contains unmovable allocations
787 * after boot. Memory offlining and allocations fail early.
788 * 3. Memory holes: kernelcore/movablecore setups might create very rare
789 * situations where ZONE_MOVABLE contains memory holes after boot,
790 * for example, if we have sections that are only partially
791 * populated. Memory offlining and allocations fail early.
792 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
793 * memory offlining, such pages cannot be allocated.
794 * 5. Unmovable PG_offline pages: in paravirtualized environments,
795 * hotplugged memory blocks might only partially be managed by the
796 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
797 * parts not manged by the buddy are unmovable PG_offline pages. In
798 * some cases (virtio-mem), such pages can be skipped during
799 * memory offlining, however, cannot be moved/allocated. These
800 * techniques might use alloc_contig_range() to hide previously
801 * exposed pages from the buddy again (e.g., to implement some sort
802 * of memory unplug in virtio-mem).
9afaf30f
PT
803 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
804 * situations where ZERO_PAGE(0) which is allocated differently
805 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
806 * cannot be migrated.
a08a2ae3
OS
807 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
808 * memory to the MOVABLE zone, the vmemmap pages are also placed in
809 * such zone. Such pages cannot be really moved around as they are
810 * self-stored in the range, but they are treated as movable when
811 * the range they describe is about to be offlined.
9181a980
DH
812 *
813 * In general, no unmovable allocations that degrade memory offlining
814 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
815 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
816 * if has_unmovable_pages() states that there are no unmovable pages,
817 * there can be false negatives).
818 */
2a1e274a 819 ZONE_MOVABLE,
033fbae9
DW
820#ifdef CONFIG_ZONE_DEVICE
821 ZONE_DEVICE,
822#endif
97965478 823 __MAX_NR_ZONES
033fbae9 824
2f1b6248 825};
1da177e4 826
97965478
CL
827#ifndef __GENERATING_BOUNDS_H
828
ed017373
YZ
829#define ASYNC_AND_SYNC 2
830
1da177e4 831struct zone {
3484b2de 832 /* Read-mostly fields */
41858966
MG
833
834 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 835 unsigned long _watermark[NR_WMARK];
1c30844d 836 unsigned long watermark_boost;
41858966 837
0aaa29a5
MG
838 unsigned long nr_reserved_highatomic;
839
1da177e4 840 /*
89903327
AM
841 * We don't know if the memory that we're going to allocate will be
842 * freeable or/and it will be released eventually, so to avoid totally
843 * wasting several GB of ram we must reserve some of the lower zone
844 * memory (otherwise we risk to run OOM on the lower zones despite
845 * there being tons of freeable ram on the higher zones). This array is
846 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
847 * changes.
1da177e4 848 */
3484b2de 849 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 850
e7c8d5c9 851#ifdef CONFIG_NUMA
d5f541ed 852 int node;
3484b2de 853#endif
3484b2de 854 struct pglist_data *zone_pgdat;
28f836b6
MG
855 struct per_cpu_pages __percpu *per_cpu_pageset;
856 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
952eaf81
VB
857 /*
858 * the high and batch values are copied to individual pagesets for
859 * faster access
860 */
90b41691
HY
861 int pageset_high_min;
862 int pageset_high_max;
952eaf81 863 int pageset_batch;
3484b2de 864
835c134e
MG
865#ifndef CONFIG_SPARSEMEM
866 /*
d9c23400 867 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
868 * In SPARSEMEM, this map is stored in struct mem_section
869 */
870 unsigned long *pageblock_flags;
871#endif /* CONFIG_SPARSEMEM */
872
1da177e4
LT
873 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
874 unsigned long zone_start_pfn;
875
bdc8cb98 876 /*
9feedc9d
JL
877 * spanned_pages is the total pages spanned by the zone, including
878 * holes, which is calculated as:
879 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 880 *
9feedc9d
JL
881 * present_pages is physical pages existing within the zone, which
882 * is calculated as:
8761e31c 883 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d 884 *
4b097002
DH
885 * present_early_pages is present pages existing within the zone
886 * located on memory available since early boot, excluding hotplugged
887 * memory.
888 *
9feedc9d
JL
889 * managed_pages is present pages managed by the buddy system, which
890 * is calculated as (reserved_pages includes pages allocated by the
891 * bootmem allocator):
892 * managed_pages = present_pages - reserved_pages;
893 *
3c381db1
DH
894 * cma pages is present pages that are assigned for CMA use
895 * (MIGRATE_CMA).
896 *
9feedc9d
JL
897 * So present_pages may be used by memory hotplug or memory power
898 * management logic to figure out unmanaged pages by checking
899 * (present_pages - managed_pages). And managed_pages should be used
900 * by page allocator and vm scanner to calculate all kinds of watermarks
901 * and thresholds.
902 *
903 * Locking rules:
904 *
905 * zone_start_pfn and spanned_pages are protected by span_seqlock.
906 * It is a seqlock because it has to be read outside of zone->lock,
907 * and it is done in the main allocator path. But, it is written
908 * quite infrequently.
909 *
910 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
911 * frequently read in proximity to zone->lock. It's good to
912 * give them a chance of being in the same cacheline.
9feedc9d 913 *
c3d5f5f0 914 * Write access to present_pages at runtime should be protected by
e8da368a
YZL
915 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
916 * present_pages should use get_online_mems() to get a stable value.
bdc8cb98 917 */
9705bea5 918 atomic_long_t managed_pages;
9feedc9d
JL
919 unsigned long spanned_pages;
920 unsigned long present_pages;
4b097002
DH
921#if defined(CONFIG_MEMORY_HOTPLUG)
922 unsigned long present_early_pages;
923#endif
3c381db1
DH
924#ifdef CONFIG_CMA
925 unsigned long cma_pages;
926#endif
3484b2de
MG
927
928 const char *name;
1da177e4 929
ad53f92e
JK
930#ifdef CONFIG_MEMORY_ISOLATION
931 /*
932 * Number of isolated pageblock. It is used to solve incorrect
933 * freepage counting problem due to racy retrieving migratetype
934 * of pageblock. Protected by zone->lock.
935 */
936 unsigned long nr_isolate_pageblock;
937#endif
938
3484b2de
MG
939#ifdef CONFIG_MEMORY_HOTPLUG
940 /* see spanned/present_pages for more description */
941 seqlock_t span_seqlock;
942#endif
943
9dcb8b68 944 int initialized;
3484b2de 945
0f661148 946 /* Write-intensive fields used from the page allocator */
e6ad640b 947 CACHELINE_PADDING(_pad1_);
0f661148 948
3484b2de 949 /* free areas of different sizes */
23baf831 950 struct free_area free_area[MAX_ORDER + 1];
3484b2de 951
dcdfdd40
KS
952#ifdef CONFIG_UNACCEPTED_MEMORY
953 /* Pages to be accepted. All pages on the list are MAX_ORDER */
954 struct list_head unaccepted_pages;
955#endif
956
3484b2de
MG
957 /* zone flags, see below */
958 unsigned long flags;
959
0f661148 960 /* Primarily protects free_area */
a368ab67
MG
961 spinlock_t lock;
962
0f661148 963 /* Write-intensive fields used by compaction and vmstats. */
e6ad640b 964 CACHELINE_PADDING(_pad2_);
3484b2de 965
3484b2de
MG
966 /*
967 * When free pages are below this point, additional steps are taken
968 * when reading the number of free pages to avoid per-cpu counter
969 * drift allowing watermarks to be breached
970 */
971 unsigned long percpu_drift_mark;
972
973#if defined CONFIG_COMPACTION || defined CONFIG_CMA
974 /* pfn where compaction free scanner should start */
975 unsigned long compact_cached_free_pfn;
ed017373
YZ
976 /* pfn where compaction migration scanner should start */
977 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
e332f741
MG
978 unsigned long compact_init_migrate_pfn;
979 unsigned long compact_init_free_pfn;
3484b2de
MG
980#endif
981
982#ifdef CONFIG_COMPACTION
983 /*
984 * On compaction failure, 1<<compact_defer_shift compactions
985 * are skipped before trying again. The number attempted since
986 * last failure is tracked with compact_considered.
860b3272 987 * compact_order_failed is the minimum compaction failed order.
3484b2de
MG
988 */
989 unsigned int compact_considered;
990 unsigned int compact_defer_shift;
991 int compact_order_failed;
992#endif
993
994#if defined CONFIG_COMPACTION || defined CONFIG_CMA
995 /* Set to true when the PG_migrate_skip bits should be cleared */
996 bool compact_blockskip_flush;
997#endif
998
7cf91a98
JK
999 bool contiguous;
1000
e6ad640b 1001 CACHELINE_PADDING(_pad3_);
3484b2de
MG
1002 /* Zone statistics */
1003 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
f19298b9 1004 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
22fc6ecc 1005} ____cacheline_internodealigned_in_smp;
1da177e4 1006
599d0c95 1007enum pgdat_flags {
599d0c95 1008 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
1009 * many dirty file pages at the tail
1010 * of the LRU.
1011 */
599d0c95 1012 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
1013 * many pages under writeback
1014 */
a5f5f91d 1015 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 1016};
e815af95 1017
73444bc4
MG
1018enum zone_flags {
1019 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1020 * Cleared when kswapd is woken.
1021 */
c49c2c47 1022 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
57c0419c 1023 ZONE_BELOW_HIGH, /* zone is below high watermark. */
73444bc4
MG
1024};
1025
9705bea5
AK
1026static inline unsigned long zone_managed_pages(struct zone *zone)
1027{
1028 return (unsigned long)atomic_long_read(&zone->managed_pages);
1029}
1030
3c381db1
DH
1031static inline unsigned long zone_cma_pages(struct zone *zone)
1032{
1033#ifdef CONFIG_CMA
1034 return zone->cma_pages;
1035#else
1036 return 0;
1037#endif
1038}
1039
f9228b20 1040static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
1041{
1042 return zone->zone_start_pfn + zone->spanned_pages;
1043}
1044
1045static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1046{
1047 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1048}
1049
2a6e3ebe
CS
1050static inline bool zone_is_initialized(struct zone *zone)
1051{
9dcb8b68 1052 return zone->initialized;
2a6e3ebe
CS
1053}
1054
1055static inline bool zone_is_empty(struct zone *zone)
1056{
1057 return zone->spanned_pages == 0;
1058}
1059
5bb88dc5
AS
1060#ifndef BUILD_VDSO32_64
1061/*
1062 * The zone field is never updated after free_area_init_core()
1063 * sets it, so none of the operations on it need to be atomic.
1064 */
1065
1066/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1067#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1068#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1069#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1070#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1071#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
ec1c86b2
YZ
1072#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1073#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
5bb88dc5
AS
1074
1075/*
1076 * Define the bit shifts to access each section. For non-existent
1077 * sections we define the shift as 0; that plus a 0 mask ensures
1078 * the compiler will optimise away reference to them.
1079 */
1080#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1081#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1082#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1083#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1084#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1085
1086/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1087#ifdef NODE_NOT_IN_PAGE_FLAGS
1088#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1089#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1090 SECTIONS_PGOFF : ZONES_PGOFF)
1091#else
1092#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1093#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1094 NODES_PGOFF : ZONES_PGOFF)
1095#endif
1096
1097#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1098
1099#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1100#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1101#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1102#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1103#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1104#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1105
1106static inline enum zone_type page_zonenum(const struct page *page)
1107{
1108 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1109 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1110}
1111
1112static inline enum zone_type folio_zonenum(const struct folio *folio)
1113{
1114 return page_zonenum(&folio->page);
1115}
1116
1117#ifdef CONFIG_ZONE_DEVICE
1118static inline bool is_zone_device_page(const struct page *page)
1119{
1120 return page_zonenum(page) == ZONE_DEVICE;
1121}
49580e69
LG
1122
1123/*
1124 * Consecutive zone device pages should not be merged into the same sgl
1125 * or bvec segment with other types of pages or if they belong to different
1126 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1127 * without scanning the entire segment. This helper returns true either if
1128 * both pages are not zone device pages or both pages are zone device pages
1129 * with the same pgmap.
1130 */
1131static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1132 const struct page *b)
1133{
1134 if (is_zone_device_page(a) != is_zone_device_page(b))
1135 return false;
1136 if (!is_zone_device_page(a))
1137 return true;
1138 return a->pgmap == b->pgmap;
1139}
1140
5bb88dc5
AS
1141extern void memmap_init_zone_device(struct zone *, unsigned long,
1142 unsigned long, struct dev_pagemap *);
1143#else
1144static inline bool is_zone_device_page(const struct page *page)
1145{
1146 return false;
1147}
49580e69
LG
1148static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1149 const struct page *b)
1150{
1151 return true;
1152}
5bb88dc5
AS
1153#endif
1154
1155static inline bool folio_is_zone_device(const struct folio *folio)
1156{
1157 return is_zone_device_page(&folio->page);
1158}
1159
1160static inline bool is_zone_movable_page(const struct page *page)
1161{
1162 return page_zonenum(page) == ZONE_MOVABLE;
1163}
708ff491
VMO
1164
1165static inline bool folio_is_zone_movable(const struct folio *folio)
1166{
1167 return folio_zonenum(folio) == ZONE_MOVABLE;
1168}
5bb88dc5
AS
1169#endif
1170
f1dd2cd1
MH
1171/*
1172 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1173 * intersection with the given zone
1174 */
1175static inline bool zone_intersects(struct zone *zone,
1176 unsigned long start_pfn, unsigned long nr_pages)
1177{
1178 if (zone_is_empty(zone))
1179 return false;
1180 if (start_pfn >= zone_end_pfn(zone) ||
1181 start_pfn + nr_pages <= zone->zone_start_pfn)
1182 return false;
1183
1184 return true;
1185}
1186
1da177e4
LT
1187/*
1188 * The "priority" of VM scanning is how much of the queues we will scan in one
1189 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1190 * queues ("queue_length >> 12") during an aging round.
1191 */
1192#define DEF_PRIORITY 12
1193
9276b1bc
PJ
1194/* Maximum number of zones on a zonelist */
1195#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1196
c00eb15a
YB
1197enum {
1198 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 1199#ifdef CONFIG_NUMA
c00eb15a
YB
1200 /*
1201 * The NUMA zonelists are doubled because we need zonelists that
1202 * restrict the allocations to a single node for __GFP_THISNODE.
1203 */
1204 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 1205#endif
c00eb15a
YB
1206 MAX_ZONELISTS
1207};
9276b1bc 1208
dd1a239f
MG
1209/*
1210 * This struct contains information about a zone in a zonelist. It is stored
1211 * here to avoid dereferences into large structures and lookups of tables
1212 */
1213struct zoneref {
1214 struct zone *zone; /* Pointer to actual zone */
1215 int zone_idx; /* zone_idx(zoneref->zone) */
1216};
1217
1da177e4
LT
1218/*
1219 * One allocation request operates on a zonelist. A zonelist
1220 * is a list of zones, the first one is the 'goal' of the
1221 * allocation, the other zones are fallback zones, in decreasing
1222 * priority.
1223 *
dd1a239f
MG
1224 * To speed the reading of the zonelist, the zonerefs contain the zone index
1225 * of the entry being read. Helper functions to access information given
1226 * a struct zoneref are
1227 *
1228 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1229 * zonelist_zone_idx() - Return the index of the zone for an entry
1230 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
1231 */
1232struct zonelist {
dd1a239f 1233 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
1234};
1235
bb1c50d3
MR
1236/*
1237 * The array of struct pages for flatmem.
1238 * It must be declared for SPARSEMEM as well because there are configurations
1239 * that rely on that.
1240 */
5b99cd0e 1241extern struct page *mem_map;
5b99cd0e 1242
364c1eeb
YS
1243#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1244struct deferred_split {
1245 spinlock_t split_queue_lock;
1246 struct list_head split_queue;
1247 unsigned long split_queue_len;
1248};
1249#endif
1250
44b8f8bf
JY
1251#ifdef CONFIG_MEMORY_FAILURE
1252/*
1253 * Per NUMA node memory failure handling statistics.
1254 */
1255struct memory_failure_stats {
1256 /*
1257 * Number of raw pages poisoned.
1258 * Cases not accounted: memory outside kernel control, offline page,
1259 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1260 * error events, and unpoison actions from hwpoison_unpoison.
1261 */
1262 unsigned long total;
1263 /*
1264 * Recovery results of poisoned raw pages handled by memory_failure,
1265 * in sync with mf_result.
1266 * total = ignored + failed + delayed + recovered.
1267 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1268 */
1269 unsigned long ignored;
1270 unsigned long failed;
1271 unsigned long delayed;
1272 unsigned long recovered;
1273};
1274#endif
1275
1da177e4 1276/*
1da177e4 1277 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
1278 * it's memory layout. On UMA machines there is a single pglist_data which
1279 * describes the whole memory.
1da177e4
LT
1280 *
1281 * Memory statistics and page replacement data structures are maintained on a
1282 * per-zone basis.
1283 */
1da177e4 1284typedef struct pglist_data {
496df3d3
BW
1285 /*
1286 * node_zones contains just the zones for THIS node. Not all of the
1287 * zones may be populated, but it is the full list. It is referenced by
1288 * this node's node_zonelists as well as other node's node_zonelists.
1289 */
1da177e4 1290 struct zone node_zones[MAX_NR_ZONES];
496df3d3
BW
1291
1292 /*
1293 * node_zonelists contains references to all zones in all nodes.
1294 * Generally the first zones will be references to this node's
1295 * node_zones.
1296 */
523b9458 1297 struct zonelist node_zonelists[MAX_ZONELISTS];
496df3d3
BW
1298
1299 int nr_zones; /* number of populated zones in this node */
43b02ba9 1300#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1da177e4 1301 struct page *node_mem_map;
eefa864b
JK
1302#ifdef CONFIG_PAGE_EXTENSION
1303 struct page_ext *node_page_ext;
1304#endif
d41dee36 1305#endif
3a2d7fa8 1306#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 1307 /*
fa004ab7
WY
1308 * Must be held any time you expect node_start_pfn,
1309 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
3d060856
PT
1310 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1311 * init.
208d54e5 1312 *
114d4b79 1313 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
1314 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1315 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 1316 *
72c3b51b 1317 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
1318 */
1319 spinlock_t node_size_lock;
1320#endif
1da177e4
LT
1321 unsigned long node_start_pfn;
1322 unsigned long node_present_pages; /* total number of physical pages */
1323 unsigned long node_spanned_pages; /* total size of physical page
1324 range, including holes */
1325 int node_id;
1da177e4 1326 wait_queue_head_t kswapd_wait;
5515061d 1327 wait_queue_head_t pfmemalloc_wait;
8cd7c588
MG
1328
1329 /* workqueues for throttling reclaim for different reasons. */
1330 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1331
1332 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1333 unsigned long nr_reclaim_start; /* nr pages written while throttled
1334 * when throttling started. */
b4a0215e
KW
1335#ifdef CONFIG_MEMORY_HOTPLUG
1336 struct mutex kswapd_lock;
1337#endif
1338 struct task_struct *kswapd; /* Protected by kswapd_lock */
38087d9b 1339 int kswapd_order;
97a225e6 1340 enum zone_type kswapd_highest_zoneidx;
38087d9b 1341
c73322d0
JW
1342 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1343
698b1b30
VB
1344#ifdef CONFIG_COMPACTION
1345 int kcompactd_max_order;
97a225e6 1346 enum zone_type kcompactd_highest_zoneidx;
698b1b30
VB
1347 wait_queue_head_t kcompactd_wait;
1348 struct task_struct *kcompactd;
65d759c8 1349 bool proactive_compact_trigger;
8177a420 1350#endif
281e3726
MG
1351 /*
1352 * This is a per-node reserve of pages that are not available
1353 * to userspace allocations.
1354 */
1355 unsigned long totalreserve_pages;
1356
a5f5f91d
MG
1357#ifdef CONFIG_NUMA
1358 /*
0a3c5772 1359 * node reclaim becomes active if more unmapped pages exist.
a5f5f91d
MG
1360 */
1361 unsigned long min_unmapped_pages;
1362 unsigned long min_slab_pages;
1363#endif /* CONFIG_NUMA */
1364
a52633d8 1365 /* Write-intensive fields used by page reclaim */
e6ad640b 1366 CACHELINE_PADDING(_pad1_);
3a80a7fa
MG
1367
1368#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1369 /*
1370 * If memory initialisation on large machines is deferred then this
1371 * is the first PFN that needs to be initialised.
1372 */
1373 unsigned long first_deferred_pfn;
1374#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
1375
1376#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 1377 struct deferred_split deferred_split_queue;
a3d0a918 1378#endif
75ef7184 1379
c6833e10
HY
1380#ifdef CONFIG_NUMA_BALANCING
1381 /* start time in ms of current promote rate limit period */
1382 unsigned int nbp_rl_start;
1383 /* number of promote candidate pages at start time of current rate limit period */
1384 unsigned long nbp_rl_nr_cand;
c959924b
HY
1385 /* promote threshold in ms */
1386 unsigned int nbp_threshold;
1387 /* start time in ms of current promote threshold adjustment period */
1388 unsigned int nbp_th_start;
1389 /*
c7cdf94e 1390 * number of promote candidate pages at start time of current promote
c959924b
HY
1391 * threshold adjustment period
1392 */
1393 unsigned long nbp_th_nr_cand;
c6833e10 1394#endif
599d0c95 1395 /* Fields commonly accessed by the page reclaim scanner */
867e5e1d
JW
1396
1397 /*
1398 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1399 *
1400 * Use mem_cgroup_lruvec() to look up lruvecs.
1401 */
1402 struct lruvec __lruvec;
599d0c95 1403
599d0c95
MG
1404 unsigned long flags;
1405
bd74fdae
YZ
1406#ifdef CONFIG_LRU_GEN
1407 /* kswap mm walk data */
9a52b2f3 1408 struct lru_gen_mm_walk mm_walk;
e4dde56c
YZ
1409 /* lru_gen_folio list */
1410 struct lru_gen_memcg memcg_lru;
bd74fdae
YZ
1411#endif
1412
e6ad640b 1413 CACHELINE_PADDING(_pad2_);
599d0c95 1414
75ef7184
MG
1415 /* Per-node vmstats */
1416 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1417 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
7766cf7a
AK
1418#ifdef CONFIG_NUMA
1419 struct memory_tier __rcu *memtier;
1420#endif
44b8f8bf
JY
1421#ifdef CONFIG_MEMORY_FAILURE
1422 struct memory_failure_stats mf_stats;
1423#endif
1da177e4
LT
1424} pg_data_t;
1425
1426#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1427#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1428
c6830c22 1429#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 1430#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 1431
da3649e1
CS
1432static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1433{
1434 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1435}
1436
208d54e5
DH
1437#include <linux/memory_hotplug.h>
1438
72675e13 1439void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40 1440void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
97a225e6 1441 enum zone_type highest_zoneidx);
86a294a8 1442bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 1443 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 1444 long free_pages);
7aeb09f9 1445bool zone_watermark_ok(struct zone *z, unsigned int order,
97a225e6 1446 unsigned long mark, int highest_zoneidx,
c603844b 1447 unsigned int alloc_flags);
7aeb09f9 1448bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 1449 unsigned long mark, int highest_zoneidx);
c1d0da83
LD
1450/*
1451 * Memory initialization context, use to differentiate memory added by
1452 * the platform statically or via memory hotplug interface.
1453 */
1454enum meminit_context {
1455 MEMINIT_EARLY,
1456 MEMINIT_HOTPLUG,
a2f3aa02 1457};
c1d0da83 1458
dc0bbf3b 1459extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 1460 unsigned long size);
718127cc 1461
bea8c150 1462extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 1463
599d0c95 1464static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 1465{
c255a458 1466#ifdef CONFIG_MEMCG
599d0c95 1467 return lruvec->pgdat;
7f5e86c2 1468#else
867e5e1d 1469 return container_of(lruvec, struct pglist_data, __lruvec);
7f5e86c2
KK
1470#endif
1471}
1472
7aac7898
LS
1473#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1474int local_memory_node(int node_id);
1475#else
1476static inline int local_memory_node(int node_id) { return node_id; };
1477#endif
1478
1da177e4
LT
1479/*
1480 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1481 */
1482#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1483
1f90a347
DW
1484#ifdef CONFIG_ZONE_DEVICE
1485static inline bool zone_is_zone_device(struct zone *zone)
1486{
1487 return zone_idx(zone) == ZONE_DEVICE;
1488}
1489#else
1490static inline bool zone_is_zone_device(struct zone *zone)
1491{
1492 return false;
1493}
1494#endif
1495
6aa303de
MG
1496/*
1497 * Returns true if a zone has pages managed by the buddy allocator.
1498 * All the reclaim decisions have to use this function rather than
1499 * populated_zone(). If the whole zone is reserved then we can easily
1500 * end up with populated_zone() && !managed_zone().
1501 */
1502static inline bool managed_zone(struct zone *zone)
1503{
9705bea5 1504 return zone_managed_pages(zone);
6aa303de
MG
1505}
1506
1507/* Returns true if a zone has memory */
1508static inline bool populated_zone(struct zone *zone)
f3fe6512 1509{
6aa303de 1510 return zone->present_pages;
f3fe6512
CK
1511}
1512
c1093b74
PT
1513#ifdef CONFIG_NUMA
1514static inline int zone_to_nid(struct zone *zone)
1515{
1516 return zone->node;
1517}
1518
1519static inline void zone_set_nid(struct zone *zone, int nid)
1520{
1521 zone->node = nid;
1522}
1523#else
1524static inline int zone_to_nid(struct zone *zone)
1525{
1526 return 0;
1527}
1528
1529static inline void zone_set_nid(struct zone *zone, int nid) {}
1530#endif
1531
2a1e274a
MG
1532extern int movable_zone;
1533
2f1b6248 1534static inline int is_highmem_idx(enum zone_type idx)
1da177e4 1535{
e53ef38d 1536#ifdef CONFIG_HIGHMEM
2a1e274a 1537 return (idx == ZONE_HIGHMEM ||
b19bd1c9 1538 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
e53ef38d
CL
1539#else
1540 return 0;
1541#endif
1da177e4
LT
1542}
1543
1da177e4 1544/**
b4a991ec 1545 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
1546 * highmem zone or not. This is an attempt to keep references
1547 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
198fba41
MR
1548 * @zone: pointer to struct zone variable
1549 * Return: 1 for a highmem zone, 0 otherwise
1da177e4
LT
1550 */
1551static inline int is_highmem(struct zone *zone)
1552{
29f9cb53 1553 return is_highmem_idx(zone_idx(zone));
bb077c3f
KW
1554}
1555
1556#ifdef CONFIG_ZONE_DMA
1557bool has_managed_dma(void);
e53ef38d 1558#else
bb077c3f
KW
1559static inline bool has_managed_dma(void)
1560{
1561 return false;
1da177e4 1562}
bb077c3f 1563#endif
1da177e4 1564
f0c0b2b8 1565
a9ee6cf5 1566#ifndef CONFIG_NUMA
1da177e4
LT
1567
1568extern struct pglist_data contig_page_data;
351de44f
MG
1569static inline struct pglist_data *NODE_DATA(int nid)
1570{
1571 return &contig_page_data;
1572}
1da177e4 1573
a9ee6cf5 1574#else /* CONFIG_NUMA */
1da177e4
LT
1575
1576#include <asm/mmzone.h>
1577
a9ee6cf5 1578#endif /* !CONFIG_NUMA */
348f8b6c 1579
95144c78
KH
1580extern struct pglist_data *first_online_pgdat(void);
1581extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1582extern struct zone *next_zone(struct zone *zone);
8357f869
KH
1583
1584/**
12d15f0d 1585 * for_each_online_pgdat - helper macro to iterate over all online nodes
198fba41 1586 * @pgdat: pointer to a pg_data_t variable
8357f869
KH
1587 */
1588#define for_each_online_pgdat(pgdat) \
1589 for (pgdat = first_online_pgdat(); \
1590 pgdat; \
1591 pgdat = next_online_pgdat(pgdat))
8357f869
KH
1592/**
1593 * for_each_zone - helper macro to iterate over all memory zones
198fba41 1594 * @zone: pointer to struct zone variable
8357f869
KH
1595 *
1596 * The user only needs to declare the zone variable, for_each_zone
1597 * fills it in.
1598 */
1599#define for_each_zone(zone) \
1600 for (zone = (first_online_pgdat())->node_zones; \
1601 zone; \
1602 zone = next_zone(zone))
1603
ee99c71c
KM
1604#define for_each_populated_zone(zone) \
1605 for (zone = (first_online_pgdat())->node_zones; \
1606 zone; \
1607 zone = next_zone(zone)) \
1608 if (!populated_zone(zone)) \
1609 ; /* do nothing */ \
1610 else
1611
dd1a239f
MG
1612static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1613{
1614 return zoneref->zone;
1615}
1616
1617static inline int zonelist_zone_idx(struct zoneref *zoneref)
1618{
1619 return zoneref->zone_idx;
1620}
1621
1622static inline int zonelist_node_idx(struct zoneref *zoneref)
1623{
c1093b74 1624 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1625}
1626
682a3385
MG
1627struct zoneref *__next_zones_zonelist(struct zoneref *z,
1628 enum zone_type highest_zoneidx,
1629 nodemask_t *nodes);
1630
19770b32
MG
1631/**
1632 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
198fba41
MR
1633 * @z: The cursor used as a starting point for the search
1634 * @highest_zoneidx: The zone index of the highest zone to return
1635 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1636 *
1637 * This function returns the next zone at or below a given zone index that is
1638 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1639 * search. The zoneref returned is a cursor that represents the current zone
1640 * being examined. It should be advanced by one before calling
1641 * next_zones_zonelist again.
198fba41
MR
1642 *
1643 * Return: the next zone at or below highest_zoneidx within the allowed
1644 * nodemask using a cursor within a zonelist as a starting point
19770b32 1645 */
682a3385 1646static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1647 enum zone_type highest_zoneidx,
682a3385
MG
1648 nodemask_t *nodes)
1649{
1650 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1651 return z;
1652 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1653}
dd1a239f 1654
19770b32
MG
1655/**
1656 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
198fba41
MR
1657 * @zonelist: The zonelist to search for a suitable zone
1658 * @highest_zoneidx: The zone index of the highest zone to return
1659 * @nodes: An optional nodemask to filter the zonelist with
19770b32
MG
1660 *
1661 * This function returns the first zone at or below a given zone index that is
1662 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1663 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1664 * one before calling.
ea57485a
VB
1665 *
1666 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1667 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1668 * update due to cpuset modification.
198fba41
MR
1669 *
1670 * Return: Zoneref pointer for the first suitable zone found
19770b32 1671 */
dd1a239f 1672static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1673 enum zone_type highest_zoneidx,
c33d6c06 1674 nodemask_t *nodes)
54a6eb5c 1675{
c33d6c06 1676 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1677 highest_zoneidx, nodes);
54a6eb5c
MG
1678}
1679
19770b32
MG
1680/**
1681 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
198fba41
MR
1682 * @zone: The current zone in the iterator
1683 * @z: The current pointer within zonelist->_zonerefs being iterated
1684 * @zlist: The zonelist being iterated
1685 * @highidx: The zone index of the highest zone to return
1686 * @nodemask: Nodemask allowed by the allocator
19770b32
MG
1687 *
1688 * This iterator iterates though all zones at or below a given zone index and
1689 * within a given nodemask
1690 */
1691#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1692 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1693 zone; \
05891fb0 1694 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1695 zone = zonelist_zone(z))
1696
30d8ec73 1697#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
c33d6c06
MG
1698 for (zone = z->zone; \
1699 zone; \
1700 z = next_zones_zonelist(++z, highidx, nodemask), \
1701 zone = zonelist_zone(z))
1702
54a6eb5c
MG
1703
1704/**
1705 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
198fba41
MR
1706 * @zone: The current zone in the iterator
1707 * @z: The current pointer within zonelist->zones being iterated
1708 * @zlist: The zonelist being iterated
1709 * @highidx: The zone index of the highest zone to return
54a6eb5c
MG
1710 *
1711 * This iterator iterates though all zones at or below a given zone index.
1712 */
1713#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1714 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1715
8ca1b5a4
FT
1716/* Whether the 'nodes' are all movable nodes */
1717static inline bool movable_only_nodes(nodemask_t *nodes)
1718{
1719 struct zonelist *zonelist;
1720 struct zoneref *z;
1721 int nid;
1722
1723 if (nodes_empty(*nodes))
1724 return false;
1725
1726 /*
1727 * We can chose arbitrary node from the nodemask to get a
1728 * zonelist as they are interlinked. We just need to find
1729 * at least one zone that can satisfy kernel allocations.
1730 */
1731 nid = first_node(*nodes);
1732 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1733 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1734 return (!z->zone) ? true : false;
1735}
1736
1737
d41dee36
AW
1738#ifdef CONFIG_SPARSEMEM
1739#include <asm/sparsemem.h>
1740#endif
1741
2bdaf115
AW
1742#ifdef CONFIG_FLATMEM
1743#define pfn_to_nid(pfn) (0)
1744#endif
1745
d41dee36
AW
1746#ifdef CONFIG_SPARSEMEM
1747
1748/*
d41dee36
AW
1749 * PA_SECTION_SHIFT physical address to/from section number
1750 * PFN_SECTION_SHIFT pfn to/from section number
1751 */
d41dee36
AW
1752#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1753#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1754
1755#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1756
1757#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1758#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1759
835c134e 1760#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1761 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1762
23baf831 1763#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
d41dee36
AW
1764#error Allocator MAX_ORDER exceeds SECTION_SIZE
1765#endif
1766
1dd2bfc8
YI
1767static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1768{
1769 return pfn >> PFN_SECTION_SHIFT;
1770}
1771static inline unsigned long section_nr_to_pfn(unsigned long sec)
1772{
1773 return sec << PFN_SECTION_SHIFT;
1774}
e3c40f37 1775
a539f353
DK
1776#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1777#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1778
f1eca35a 1779#define SUBSECTION_SHIFT 21
9ffc1d19 1780#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
f1eca35a
DW
1781
1782#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1783#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1784#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1785
1786#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1787#error Subsection size exceeds section size
1788#else
1789#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1790#endif
1791
a3619190
DW
1792#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1793#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1794
f1eca35a 1795struct mem_section_usage {
0a9f9f62 1796#ifdef CONFIG_SPARSEMEM_VMEMMAP
f1eca35a 1797 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
0a9f9f62 1798#endif
f1eca35a
DW
1799 /* See declaration of similar field in struct zone */
1800 unsigned long pageblock_flags[0];
1801};
1802
f46edbd1
DW
1803void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1804
d41dee36 1805struct page;
eefa864b 1806struct page_ext;
d41dee36 1807struct mem_section {
29751f69
AW
1808 /*
1809 * This is, logically, a pointer to an array of struct
1810 * pages. However, it is stored with some other magic.
1811 * (see sparse.c::sparse_init_one_section())
1812 *
30c253e6
AW
1813 * Additionally during early boot we encode node id of
1814 * the location of the section here to guide allocation.
1815 * (see sparse.c::memory_present())
1816 *
29751f69
AW
1817 * Making it a UL at least makes someone do a cast
1818 * before using it wrong.
1819 */
1820 unsigned long section_mem_map;
5c0e3066 1821
f1eca35a 1822 struct mem_section_usage *usage;
eefa864b
JK
1823#ifdef CONFIG_PAGE_EXTENSION
1824 /*
0c9ad804 1825 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1826 * section. (see page_ext.h about this.)
1827 */
1828 struct page_ext *page_ext;
1829 unsigned long pad;
1830#endif
55878e88
CS
1831 /*
1832 * WARNING: mem_section must be a power-of-2 in size for the
1833 * calculation and use of SECTION_ROOT_MASK to make sense.
1834 */
d41dee36
AW
1835};
1836
3e347261
BP
1837#ifdef CONFIG_SPARSEMEM_EXTREME
1838#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1839#else
1840#define SECTIONS_PER_ROOT 1
1841#endif
802f192e 1842
3e347261 1843#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1844#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1845#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1846
3e347261 1847#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1848extern struct mem_section **mem_section;
802f192e 1849#else
3e347261
BP
1850extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1851#endif
d41dee36 1852
f1eca35a
DW
1853static inline unsigned long *section_to_usemap(struct mem_section *ms)
1854{
1855 return ms->usage->pageblock_flags;
1856}
1857
29751f69
AW
1858static inline struct mem_section *__nr_to_section(unsigned long nr)
1859{
a431dbbc
WL
1860 unsigned long root = SECTION_NR_TO_ROOT(nr);
1861
1862 if (unlikely(root >= NR_SECTION_ROOTS))
1863 return NULL;
1864
83e3c487 1865#ifdef CONFIG_SPARSEMEM_EXTREME
a431dbbc 1866 if (!mem_section || !mem_section[root])
83e3c487
KS
1867 return NULL;
1868#endif
a431dbbc 1869 return &mem_section[root][nr & SECTION_ROOT_MASK];
29751f69 1870}
f1eca35a 1871extern size_t mem_section_usage_size(void);
29751f69
AW
1872
1873/*
1874 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1875 * a little bit of information. The pointer is calculated
1876 * as mem_map - section_nr_to_pfn(pnum). The result is
1877 * aligned to the minimum alignment of the two values:
1878 * 1. All mem_map arrays are page-aligned.
1879 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1880 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1881 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1882 * worst combination is powerpc with 256k pages,
1883 * which results in PFN_SECTION_SHIFT equal 6.
ed7802dd
MS
1884 * To sum it up, at least 6 bits are available on all architectures.
1885 * However, we can exceed 6 bits on some other architectures except
1886 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1887 * with the worst case of 64K pages on arm64) if we make sure the
1888 * exceeded bit is not applicable to powerpc.
29751f69 1889 */
ed7802dd
MS
1890enum {
1891 SECTION_MARKED_PRESENT_BIT,
1892 SECTION_HAS_MEM_MAP_BIT,
1893 SECTION_IS_ONLINE_BIT,
1894 SECTION_IS_EARLY_BIT,
1895#ifdef CONFIG_ZONE_DEVICE
1896 SECTION_TAINT_ZONE_DEVICE_BIT,
1897#endif
1898 SECTION_MAP_LAST_BIT,
1899};
1900
1901#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1902#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1903#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1904#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1905#ifdef CONFIG_ZONE_DEVICE
1906#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1907#endif
1908#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1909#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
29751f69
AW
1910
1911static inline struct page *__section_mem_map_addr(struct mem_section *section)
1912{
1913 unsigned long map = section->section_mem_map;
1914 map &= SECTION_MAP_MASK;
1915 return (struct page *)map;
1916}
1917
540557b9 1918static inline int present_section(struct mem_section *section)
29751f69 1919{
802f192e 1920 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1921}
1922
540557b9
AW
1923static inline int present_section_nr(unsigned long nr)
1924{
1925 return present_section(__nr_to_section(nr));
1926}
1927
1928static inline int valid_section(struct mem_section *section)
29751f69 1929{
802f192e 1930 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1931}
1932
326e1b8f
DW
1933static inline int early_section(struct mem_section *section)
1934{
1935 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1936}
1937
29751f69
AW
1938static inline int valid_section_nr(unsigned long nr)
1939{
1940 return valid_section(__nr_to_section(nr));
1941}
1942
2d070eab
MH
1943static inline int online_section(struct mem_section *section)
1944{
1945 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1946}
1947
ed7802dd 1948#ifdef CONFIG_ZONE_DEVICE
1f90a347
DW
1949static inline int online_device_section(struct mem_section *section)
1950{
1951 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1952
1953 return section && ((section->section_mem_map & flags) == flags);
1954}
ed7802dd
MS
1955#else
1956static inline int online_device_section(struct mem_section *section)
1957{
1958 return 0;
1959}
1960#endif
1f90a347 1961
2d070eab
MH
1962static inline int online_section_nr(unsigned long nr)
1963{
1964 return online_section(__nr_to_section(nr));
1965}
1966
1967#ifdef CONFIG_MEMORY_HOTPLUG
1968void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2d070eab
MH
1969void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1970#endif
2d070eab 1971
d41dee36
AW
1972static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1973{
29751f69 1974 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1975}
1976
2491f0a2 1977extern unsigned long __highest_present_section_nr;
c4e1be9e 1978
f46edbd1
DW
1979static inline int subsection_map_index(unsigned long pfn)
1980{
1981 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1982}
1983
1984#ifdef CONFIG_SPARSEMEM_VMEMMAP
1985static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1986{
1987 int idx = subsection_map_index(pfn);
1988
1989 return test_bit(idx, ms->usage->subsection_map);
1990}
1991#else
1992static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1993{
1994 return 1;
1995}
1996#endif
1997
7b7bf499 1998#ifndef CONFIG_HAVE_ARCH_PFN_VALID
51c656ae
MR
1999/**
2000 * pfn_valid - check if there is a valid memory map entry for a PFN
2001 * @pfn: the page frame number to check
2002 *
2003 * Check if there is a valid memory map entry aka struct page for the @pfn.
2004 * Note, that availability of the memory map entry does not imply that
2005 * there is actual usable memory at that @pfn. The struct page may
2006 * represent a hole or an unusable page frame.
2007 *
2008 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2009 */
d41dee36
AW
2010static inline int pfn_valid(unsigned long pfn)
2011{
f46edbd1
DW
2012 struct mem_section *ms;
2013
16c9afc7
AK
2014 /*
2015 * Ensure the upper PAGE_SHIFT bits are clear in the
2016 * pfn. Else it might lead to false positives when
2017 * some of the upper bits are set, but the lower bits
2018 * match a valid pfn.
2019 */
2020 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2021 return 0;
2022
d41dee36
AW
2023 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2024 return 0;
f1dc0db2 2025 ms = __pfn_to_section(pfn);
f46edbd1
DW
2026 if (!valid_section(ms))
2027 return 0;
2028 /*
2029 * Traditionally early sections always returned pfn_valid() for
2030 * the entire section-sized span.
2031 */
2032 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 2033}
7b7bf499 2034#endif
d41dee36 2035
e03d1f78 2036static inline int pfn_in_present_section(unsigned long pfn)
540557b9
AW
2037{
2038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2039 return 0;
f1dc0db2 2040 return present_section(__pfn_to_section(pfn));
540557b9
AW
2041}
2042
4c605881
DH
2043static inline unsigned long next_present_section_nr(unsigned long section_nr)
2044{
2045 while (++section_nr <= __highest_present_section_nr) {
2046 if (present_section_nr(section_nr))
2047 return section_nr;
2048 }
2049
2050 return -1;
2051}
2052
d41dee36
AW
2053/*
2054 * These are _only_ used during initialisation, therefore they
2055 * can use __initdata ... They could have names to indicate
2056 * this restriction.
2057 */
2058#ifdef CONFIG_NUMA
161599ff
AW
2059#define pfn_to_nid(pfn) \
2060({ \
2061 unsigned long __pfn_to_nid_pfn = (pfn); \
2062 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2063})
2bdaf115
AW
2064#else
2065#define pfn_to_nid(pfn) (0)
d41dee36
AW
2066#endif
2067
d41dee36
AW
2068void sparse_init(void);
2069#else
2070#define sparse_init() do {} while (0)
28ae55c9 2071#define sparse_index_init(_sec, _nid) do {} while (0)
e03d1f78 2072#define pfn_in_present_section pfn_valid
f46edbd1 2073#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
2074#endif /* CONFIG_SPARSEMEM */
2075
97965478 2076#endif /* !__GENERATING_BOUNDS.H */
1da177e4 2077#endif /* !__ASSEMBLY__ */
1da177e4 2078#endif /* _LINUX_MMZONE_H */