]> git.ipfire.org Git - people/ms/linux.git/blame - include/linux/pagemap.h
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[people/ms/linux.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
7c0f6ba6 12#include <linux/uaccess.h>
1da177e4 13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
9c5d760b 19 * Bits in mapping->flags.
1da177e4 20 */
9a896c9a 21enum mapping_flags {
9c5d760b
MH
22 AS_EIO = 0, /* IO error on async write */
23 AS_ENOSPC = 1, /* ENOSPC on async write */
24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
26 AS_EXITING = 4, /* final truncate in progress */
371a096e 27 /* writeback related tags are not used */
9c5d760b 28 AS_NO_WRITEBACK_TAGS = 5,
9a896c9a 29};
1da177e4 30
3e9f45bd
GC
31static inline void mapping_set_error(struct address_space *mapping, int error)
32{
2185e69f 33 if (unlikely(error)) {
3e9f45bd
GC
34 if (error == -ENOSPC)
35 set_bit(AS_ENOSPC, &mapping->flags);
36 else
37 set_bit(AS_EIO, &mapping->flags);
38 }
39}
40
ba9ddf49
LS
41static inline void mapping_set_unevictable(struct address_space *mapping)
42{
43 set_bit(AS_UNEVICTABLE, &mapping->flags);
44}
45
89e004ea
LS
46static inline void mapping_clear_unevictable(struct address_space *mapping)
47{
48 clear_bit(AS_UNEVICTABLE, &mapping->flags);
49}
50
ba9ddf49
LS
51static inline int mapping_unevictable(struct address_space *mapping)
52{
088e5465 53 if (mapping)
89e004ea
LS
54 return test_bit(AS_UNEVICTABLE, &mapping->flags);
55 return !!mapping;
ba9ddf49 56}
ba9ddf49 57
91b0abe3
JW
58static inline void mapping_set_exiting(struct address_space *mapping)
59{
60 set_bit(AS_EXITING, &mapping->flags);
61}
62
63static inline int mapping_exiting(struct address_space *mapping)
64{
65 return test_bit(AS_EXITING, &mapping->flags);
66}
67
371a096e
HY
68static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
69{
70 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
71}
72
73static inline int mapping_use_writeback_tags(struct address_space *mapping)
74{
75 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
76}
77
dd0fc66f 78static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 79{
9c5d760b 80 return mapping->gfp_mask;
1da177e4
LT
81}
82
c62d2555
MH
83/* Restricts the given gfp_mask to what the mapping allows. */
84static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
85 gfp_t gfp_mask)
86{
87 return mapping_gfp_mask(mapping) & gfp_mask;
88}
89
1da177e4
LT
90/*
91 * This is non-atomic. Only to be used before the mapping is activated.
92 * Probably needs a barrier...
93 */
260b2367 94static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 95{
9c5d760b 96 m->gfp_mask = mask;
1da177e4
LT
97}
98
b745bc85 99void release_pages(struct page **pages, int nr, bool cold);
1da177e4 100
e286781d
NP
101/*
102 * speculatively take a reference to a page.
0139aa7b
JK
103 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
104 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
105 *
106 * This function must be called inside the same rcu_read_lock() section as has
107 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 108 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
109 *
110 * Unless an RCU grace period has passed, the count of all pages coming out
111 * of the allocator must be considered unstable. page_count may return higher
112 * than expected, and put_page must be able to do the right thing when the
113 * page has been finished with, no matter what it is subsequently allocated
114 * for (because put_page is what is used here to drop an invalid speculative
115 * reference).
116 *
117 * This is the interesting part of the lockless pagecache (and lockless
118 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
119 * has the following pattern:
120 * 1. find page in radix tree
121 * 2. conditionally increment refcount
122 * 3. check the page is still in pagecache (if no, goto 1)
123 *
0139aa7b 124 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
e286781d
NP
125 * following (with tree_lock held for write):
126 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
127 * B. remove page from pagecache
128 * C. free the page
129 *
130 * There are 2 critical interleavings that matter:
131 * - 2 runs before A: in this case, A sees elevated refcount and bails out
132 * - A runs before 2: in this case, 2 sees zero refcount and retries;
133 * subsequently, B will complete and 1 will find no page, causing the
134 * lookup to return NULL.
135 *
136 * It is possible that between 1 and 2, the page is removed then the exact same
137 * page is inserted into the same position in pagecache. That's OK: the
138 * old find_get_page using tree_lock could equally have run before or after
139 * such a re-insertion, depending on order that locks are granted.
140 *
141 * Lookups racing against pagecache insertion isn't a big problem: either 1
142 * will find the page or it will not. Likewise, the old find_get_page could run
143 * either before the insertion or afterwards, depending on timing.
144 */
145static inline int page_cache_get_speculative(struct page *page)
146{
147 VM_BUG_ON(in_interrupt());
148
8375ad98 149#ifdef CONFIG_TINY_RCU
bdd4e85d 150# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
151 VM_BUG_ON(!in_atomic());
152# endif
153 /*
154 * Preempt must be disabled here - we rely on rcu_read_lock doing
155 * this for us.
156 *
157 * Pagecache won't be truncated from interrupt context, so if we have
158 * found a page in the radix tree here, we have pinned its refcount by
159 * disabling preempt, and hence no need for the "speculative get" that
160 * SMP requires.
161 */
309381fe 162 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 163 page_ref_inc(page);
e286781d
NP
164
165#else
166 if (unlikely(!get_page_unless_zero(page))) {
167 /*
168 * Either the page has been freed, or will be freed.
169 * In either case, retry here and the caller should
170 * do the right thing (see comments above).
171 */
172 return 0;
173 }
174#endif
309381fe 175 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
176
177 return 1;
178}
179
ce0ad7f0
NP
180/*
181 * Same as above, but add instead of inc (could just be merged)
182 */
183static inline int page_cache_add_speculative(struct page *page, int count)
184{
185 VM_BUG_ON(in_interrupt());
186
b560d8ad 187#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 188# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
189 VM_BUG_ON(!in_atomic());
190# endif
309381fe 191 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 192 page_ref_add(page, count);
ce0ad7f0
NP
193
194#else
fe896d18 195 if (unlikely(!page_ref_add_unless(page, count, 0)))
ce0ad7f0
NP
196 return 0;
197#endif
309381fe 198 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
199
200 return 1;
201}
202
44110fe3 203#ifdef CONFIG_NUMA
2ae88149 204extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 205#else
2ae88149
NP
206static inline struct page *__page_cache_alloc(gfp_t gfp)
207{
208 return alloc_pages(gfp, 0);
209}
210#endif
211
1da177e4
LT
212static inline struct page *page_cache_alloc(struct address_space *x)
213{
2ae88149 214 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
215}
216
217static inline struct page *page_cache_alloc_cold(struct address_space *x)
218{
2ae88149 219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
220}
221
8a5c743e 222static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 223{
8a5c743e
MH
224 return mapping_gfp_mask(x) |
225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
226}
227
1da177e4
LT
228typedef int filler_t(void *, struct page *);
229
e7b563bb
JW
230pgoff_t page_cache_next_hole(struct address_space *mapping,
231 pgoff_t index, unsigned long max_scan);
232pgoff_t page_cache_prev_hole(struct address_space *mapping,
233 pgoff_t index, unsigned long max_scan);
234
2457aec6
MG
235#define FGP_ACCESSED 0x00000001
236#define FGP_LOCK 0x00000002
237#define FGP_CREAT 0x00000004
238#define FGP_WRITE 0x00000008
239#define FGP_NOFS 0x00000010
240#define FGP_NOWAIT 0x00000020
241
242struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 243 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
244
245/**
246 * find_get_page - find and get a page reference
247 * @mapping: the address_space to search
248 * @offset: the page index
249 *
250 * Looks up the page cache slot at @mapping & @offset. If there is a
251 * page cache page, it is returned with an increased refcount.
252 *
253 * Otherwise, %NULL is returned.
254 */
255static inline struct page *find_get_page(struct address_space *mapping,
256 pgoff_t offset)
257{
45f87de5 258 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
259}
260
261static inline struct page *find_get_page_flags(struct address_space *mapping,
262 pgoff_t offset, int fgp_flags)
263{
45f87de5 264 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
265}
266
267/**
268 * find_lock_page - locate, pin and lock a pagecache page
269 * pagecache_get_page - find and get a page reference
270 * @mapping: the address_space to search
271 * @offset: the page index
272 *
273 * Looks up the page cache slot at @mapping & @offset. If there is a
274 * page cache page, it is returned locked and with an increased
275 * refcount.
276 *
277 * Otherwise, %NULL is returned.
278 *
279 * find_lock_page() may sleep.
280 */
281static inline struct page *find_lock_page(struct address_space *mapping,
282 pgoff_t offset)
283{
45f87de5 284 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
285}
286
287/**
288 * find_or_create_page - locate or add a pagecache page
289 * @mapping: the page's address_space
290 * @index: the page's index into the mapping
291 * @gfp_mask: page allocation mode
292 *
293 * Looks up the page cache slot at @mapping & @offset. If there is a
294 * page cache page, it is returned locked and with an increased
295 * refcount.
296 *
297 * If the page is not present, a new page is allocated using @gfp_mask
298 * and added to the page cache and the VM's LRU list. The page is
299 * returned locked and with an increased refcount.
300 *
301 * On memory exhaustion, %NULL is returned.
302 *
303 * find_or_create_page() may sleep, even if @gfp_flags specifies an
304 * atomic allocation!
305 */
306static inline struct page *find_or_create_page(struct address_space *mapping,
307 pgoff_t offset, gfp_t gfp_mask)
308{
309 return pagecache_get_page(mapping, offset,
310 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 311 gfp_mask);
2457aec6
MG
312}
313
314/**
315 * grab_cache_page_nowait - returns locked page at given index in given cache
316 * @mapping: target address_space
317 * @index: the page index
318 *
319 * Same as grab_cache_page(), but do not wait if the page is unavailable.
320 * This is intended for speculative data generators, where the data can
321 * be regenerated if the page couldn't be grabbed. This routine should
322 * be safe to call while holding the lock for another page.
323 *
324 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
325 * and deadlock against the caller's locked page.
326 */
327static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
328 pgoff_t index)
329{
330 return pagecache_get_page(mapping, index,
331 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 332 mapping_gfp_mask(mapping));
2457aec6
MG
333}
334
0cd6144a 335struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 336struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
337unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
338 unsigned int nr_entries, struct page **entries,
339 pgoff_t *indices);
1da177e4
LT
340unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
341 unsigned int nr_pages, struct page **pages);
ebf43500
JA
342unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
343 unsigned int nr_pages, struct page **pages);
1da177e4
LT
344unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
345 int tag, unsigned int nr_pages, struct page **pages);
7e7f7749
RZ
346unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
347 int tag, unsigned int nr_entries,
348 struct page **entries, pgoff_t *indices);
1da177e4 349
54566b2c
NP
350struct page *grab_cache_page_write_begin(struct address_space *mapping,
351 pgoff_t index, unsigned flags);
afddba49 352
1da177e4
LT
353/*
354 * Returns locked page at given index in given cache, creating it if needed.
355 */
57f6b96c
FW
356static inline struct page *grab_cache_page(struct address_space *mapping,
357 pgoff_t index)
1da177e4
LT
358{
359 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
360}
361
1da177e4 362extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 363 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
364extern struct page * read_cache_page_gfp(struct address_space *mapping,
365 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
366extern int read_cache_pages(struct address_space *mapping,
367 struct list_head *pages, filler_t *filler, void *data);
368
090d2b18 369static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 370 pgoff_t index, void *data)
090d2b18
PE
371{
372 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
373 return read_cache_page(mapping, index, filler, data);
374}
375
a0f7a756 376/*
5cbc198a
KS
377 * Get index of the page with in radix-tree
378 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
a0f7a756 379 */
5cbc198a 380static inline pgoff_t page_to_index(struct page *page)
a0f7a756 381{
e9b61f19
KS
382 pgoff_t pgoff;
383
e9b61f19 384 if (likely(!PageTransTail(page)))
09cbfeaf 385 return page->index;
e9b61f19
KS
386
387 /*
388 * We don't initialize ->index for tail pages: calculate based on
389 * head page
390 */
09cbfeaf 391 pgoff = compound_head(page)->index;
e9b61f19
KS
392 pgoff += page - compound_head(page);
393 return pgoff;
a0f7a756
NH
394}
395
5cbc198a
KS
396/*
397 * Get the offset in PAGE_SIZE.
398 * (TODO: hugepage should have ->index in PAGE_SIZE)
399 */
400static inline pgoff_t page_to_pgoff(struct page *page)
401{
402 if (unlikely(PageHeadHuge(page)))
403 return page->index << compound_order(page);
404
405 return page_to_index(page);
406}
407
1da177e4
LT
408/*
409 * Return byte-offset into filesystem object for page.
410 */
411static inline loff_t page_offset(struct page *page)
412{
09cbfeaf 413 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
414}
415
f981c595
MG
416static inline loff_t page_file_offset(struct page *page)
417{
8cd79788 418 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
419}
420
0fe6e20b
NH
421extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
422 unsigned long address);
423
1da177e4
LT
424static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
425 unsigned long address)
426{
0fe6e20b
NH
427 pgoff_t pgoff;
428 if (unlikely(is_vm_hugetlb_page(vma)))
429 return linear_hugepage_index(vma, address);
430 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 431 pgoff += vma->vm_pgoff;
09cbfeaf 432 return pgoff;
1da177e4
LT
433}
434
b3c97528
HH
435extern void __lock_page(struct page *page);
436extern int __lock_page_killable(struct page *page);
d065bd81
ML
437extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
438 unsigned int flags);
b3c97528 439extern void unlock_page(struct page *page);
1da177e4 440
529ae9aa
NP
441static inline int trylock_page(struct page *page)
442{
48c935ad 443 page = compound_head(page);
8413ac9d 444 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
445}
446
db37648c
NP
447/*
448 * lock_page may only be called if we have the page's inode pinned.
449 */
1da177e4
LT
450static inline void lock_page(struct page *page)
451{
452 might_sleep();
529ae9aa 453 if (!trylock_page(page))
1da177e4
LT
454 __lock_page(page);
455}
db37648c 456
2687a356
MW
457/*
458 * lock_page_killable is like lock_page but can be interrupted by fatal
459 * signals. It returns 0 if it locked the page and -EINTR if it was
460 * killed while waiting.
461 */
462static inline int lock_page_killable(struct page *page)
463{
464 might_sleep();
529ae9aa 465 if (!trylock_page(page))
2687a356
MW
466 return __lock_page_killable(page);
467 return 0;
468}
469
d065bd81
ML
470/*
471 * lock_page_or_retry - Lock the page, unless this would block and the
472 * caller indicated that it can handle a retry.
9a95f3cf
PC
473 *
474 * Return value and mmap_sem implications depend on flags; see
475 * __lock_page_or_retry().
d065bd81
ML
476 */
477static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
478 unsigned int flags)
479{
480 might_sleep();
481 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
482}
483
1da177e4 484/*
a4796e37
N
485 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
486 * and for filesystems which need to wait on PG_private.
1da177e4 487 */
b3c97528 488extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 489
f62e00cc 490extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
cbbce822
N
491extern int wait_on_page_bit_killable_timeout(struct page *page,
492 int bit_nr, unsigned long timeout);
f62e00cc
KM
493
494static inline int wait_on_page_locked_killable(struct page *page)
495{
48c935ad
KS
496 if (!PageLocked(page))
497 return 0;
498 return wait_on_page_bit_killable(compound_head(page), PG_locked);
f62e00cc
KM
499}
500
a4796e37
N
501extern wait_queue_head_t *page_waitqueue(struct page *page);
502static inline void wake_up_page(struct page *page, int bit)
503{
504 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
505}
506
1da177e4
LT
507/*
508 * Wait for a page to be unlocked.
509 *
510 * This must be called with the caller "holding" the page,
511 * ie with increased "page->count" so that the page won't
512 * go away during the wait..
513 */
514static inline void wait_on_page_locked(struct page *page)
515{
516 if (PageLocked(page))
48c935ad 517 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
518}
519
520/*
521 * Wait for a page to complete writeback
522 */
523static inline void wait_on_page_writeback(struct page *page)
524{
525 if (PageWriteback(page))
526 wait_on_page_bit(page, PG_writeback);
527}
528
529extern void end_page_writeback(struct page *page);
1d1d1a76 530void wait_for_stable_page(struct page *page);
1da177e4 531
c11f0c0b 532void page_endio(struct page *page, bool is_write, int err);
57d99845 533
385e1ca5
DH
534/*
535 * Add an arbitrary waiter to a page's wait queue
536 */
537extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
538
1da177e4 539/*
4bce9f6e 540 * Fault everything in given userspace address range in.
1da177e4
LT
541 */
542static inline int fault_in_pages_writeable(char __user *uaddr, int size)
f56f821f 543{
9923777d 544 char __user *end = uaddr + size - 1;
f56f821f
DV
545
546 if (unlikely(size == 0))
e23d4159 547 return 0;
f56f821f 548
e23d4159
AV
549 if (unlikely(uaddr > end))
550 return -EFAULT;
f56f821f
DV
551 /*
552 * Writing zeroes into userspace here is OK, because we know that if
553 * the zero gets there, we'll be overwriting it.
554 */
e23d4159
AV
555 do {
556 if (unlikely(__put_user(0, uaddr) != 0))
557 return -EFAULT;
f56f821f 558 uaddr += PAGE_SIZE;
e23d4159 559 } while (uaddr <= end);
f56f821f
DV
560
561 /* Check whether the range spilled into the next page. */
562 if (((unsigned long)uaddr & PAGE_MASK) ==
563 ((unsigned long)end & PAGE_MASK))
e23d4159 564 return __put_user(0, end);
f56f821f 565
e23d4159 566 return 0;
f56f821f
DV
567}
568
4bce9f6e 569static inline int fault_in_pages_readable(const char __user *uaddr, int size)
f56f821f
DV
570{
571 volatile char c;
f56f821f
DV
572 const char __user *end = uaddr + size - 1;
573
574 if (unlikely(size == 0))
e23d4159 575 return 0;
f56f821f 576
e23d4159
AV
577 if (unlikely(uaddr > end))
578 return -EFAULT;
579
580 do {
581 if (unlikely(__get_user(c, uaddr) != 0))
582 return -EFAULT;
f56f821f 583 uaddr += PAGE_SIZE;
e23d4159 584 } while (uaddr <= end);
f56f821f
DV
585
586 /* Check whether the range spilled into the next page. */
587 if (((unsigned long)uaddr & PAGE_MASK) ==
588 ((unsigned long)end & PAGE_MASK)) {
e23d4159 589 return __get_user(c, end);
f56f821f
DV
590 }
591
90b75db6 592 (void)c;
e23d4159 593 return 0;
f56f821f
DV
594}
595
529ae9aa
NP
596int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
597 pgoff_t index, gfp_t gfp_mask);
598int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
599 pgoff_t index, gfp_t gfp_mask);
97cecb5a 600extern void delete_from_page_cache(struct page *page);
62cccb8c 601extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 602int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
603
604/*
605 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 606 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
607 */
608static inline int add_to_page_cache(struct page *page,
609 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
610{
611 int error;
612
48c935ad 613 __SetPageLocked(page);
529ae9aa
NP
614 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
615 if (unlikely(error))
48c935ad 616 __ClearPageLocked(page);
529ae9aa
NP
617 return error;
618}
619
b57c2cb9
FF
620static inline unsigned long dir_pages(struct inode *inode)
621{
09cbfeaf
KS
622 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
623 PAGE_SHIFT;
b57c2cb9
FF
624}
625
1da177e4 626#endif /* _LINUX_PAGEMAP_H */