]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - include/linux/sched.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
a3b6714e 24#include <linux/resource.h>
9745512c 25#include <linux/latencytop.h>
5eca1c10
IM
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/mm_types_task.h>
29#include <linux/task_io_accounting.h>
a3b6714e 30
5eca1c10 31/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 32struct audit_context;
c7af7877 33struct backing_dev_info;
bddd87c7 34struct bio_list;
73c10101 35struct blk_plug;
c7af7877 36struct cfs_rq;
c7af7877
IM
37struct fs_struct;
38struct futex_pi_state;
39struct io_context;
40struct mempolicy;
89076bc3 41struct nameidata;
c7af7877
IM
42struct nsproxy;
43struct perf_event_context;
44struct pid_namespace;
45struct pipe_inode_info;
46struct rcu_node;
47struct reclaim_state;
48struct robust_list_head;
49struct sched_attr;
50struct sched_param;
43ae34cb 51struct seq_file;
c7af7877
IM
52struct sighand_struct;
53struct signal_struct;
54struct task_delay_info;
4cf86d77 55struct task_group;
1da177e4 56
4a8342d2
LT
57/*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
5eca1c10
IM
67
68/* Used in tsk->state: */
92c4bc9f
PZ
69#define TASK_RUNNING 0x0000
70#define TASK_INTERRUPTIBLE 0x0001
71#define TASK_UNINTERRUPTIBLE 0x0002
72#define __TASK_STOPPED 0x0004
73#define __TASK_TRACED 0x0008
5eca1c10 74/* Used in tsk->exit_state: */
92c4bc9f
PZ
75#define EXIT_DEAD 0x0010
76#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
77#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78/* Used in tsk->state again: */
8ef9925b
PZ
79#define TASK_PARKED 0x0040
80#define TASK_DEAD 0x0080
81#define TASK_WAKEKILL 0x0100
82#define TASK_WAKING 0x0200
92c4bc9f
PZ
83#define TASK_NOLOAD 0x0400
84#define TASK_NEW 0x0800
85#define TASK_STATE_MAX 0x1000
5eca1c10 86
5eca1c10
IM
87/* Convenience macros for the sake of set_current_state: */
88#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94/* Convenience macros for the sake of wake_up(): */
95#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98/* get_task_state(): */
99#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
5eca1c10
IM
103
104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
1da177e4 113
8eb23b9f
PZ
114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
8eb23b9f
PZ
116#define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121#define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
a2250238 124 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
125 } while (0)
126
127#else
498d0c57
AM
128/*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
a2250238 133 * for (;;) {
498d0c57 134 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 157 *
a2250238 158 * This is obviously fine, since they both store the exact same value.
498d0c57 159 *
a2250238 160 * Also see the comments of try_to_wake_up().
498d0c57 161 */
5eca1c10
IM
162#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
8eb23b9f
PZ
164#endif
165
5eca1c10
IM
166/* Task command name length: */
167#define TASK_COMM_LEN 16
1da177e4 168
5eca1c10 169extern cpumask_var_t cpu_isolated_map;
3fa0818b 170
1da177e4
LT
171extern void scheduler_tick(void);
172
5eca1c10
IM
173#define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175extern long schedule_timeout(long timeout);
176extern long schedule_timeout_interruptible(long timeout);
177extern long schedule_timeout_killable(long timeout);
178extern long schedule_timeout_uninterruptible(long timeout);
179extern long schedule_timeout_idle(long timeout);
1da177e4 180asmlinkage void schedule(void);
c5491ea7 181extern void schedule_preempt_disabled(void);
1da177e4 182
10ab5643
TH
183extern int __must_check io_schedule_prepare(void);
184extern void io_schedule_finish(int token);
9cff8ade 185extern long io_schedule_timeout(long timeout);
10ab5643 186extern void io_schedule(void);
9cff8ade 187
d37f761d 188/**
0ba42a59 189 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
9d7fb042 192 * @lock: protects the above two fields
d37f761d 193 *
9d7fb042
PZ
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
d37f761d 196 */
9d7fb042
PZ
197struct prev_cputime {
198#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
9d7fb042 202#endif
d37f761d
FW
203};
204
f06febc9
FM
205/**
206 * struct task_cputime - collected CPU time counts
5613fda9
FW
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 210 *
9d7fb042
PZ
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
f06febc9
FM
214 */
215struct task_cputime {
5eca1c10
IM
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
f06febc9 219};
9d7fb042 220
5eca1c10
IM
221/* Alternate field names when used on cache expirations: */
222#define virt_exp utime
223#define prof_exp stime
224#define sched_exp sum_exec_runtime
f06febc9 225
bac5b6b6
FW
226enum vtime_state {
227 /* Task is sleeping or running in a CPU with VTIME inactive: */
228 VTIME_INACTIVE = 0,
229 /* Task runs in userspace in a CPU with VTIME active: */
230 VTIME_USER,
231 /* Task runs in kernelspace in a CPU with VTIME active: */
232 VTIME_SYS,
233};
234
235struct vtime {
236 seqcount_t seqcount;
237 unsigned long long starttime;
238 enum vtime_state state;
2a42eb95
WL
239 u64 utime;
240 u64 stime;
241 u64 gtime;
bac5b6b6
FW
242};
243
1da177e4 244struct sched_info {
7f5f8e8d 245#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
246 /* Cumulative counters: */
247
248 /* # of times we have run on this CPU: */
249 unsigned long pcount;
250
251 /* Time spent waiting on a runqueue: */
252 unsigned long long run_delay;
253
254 /* Timestamps: */
255
256 /* When did we last run on a CPU? */
257 unsigned long long last_arrival;
258
259 /* When were we last queued to run? */
260 unsigned long long last_queued;
1da177e4 261
f6db8347 262#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 263};
1da177e4 264
6ecdd749
YD
265/*
266 * Integer metrics need fixed point arithmetic, e.g., sched/fair
267 * has a few: load, load_avg, util_avg, freq, and capacity.
268 *
269 * We define a basic fixed point arithmetic range, and then formalize
270 * all these metrics based on that basic range.
271 */
5eca1c10
IM
272# define SCHED_FIXEDPOINT_SHIFT 10
273# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 274
20b8a59f 275struct load_weight {
5eca1c10
IM
276 unsigned long weight;
277 u32 inv_weight;
20b8a59f
IM
278};
279
9d89c257 280/*
7b595334
YD
281 * The load_avg/util_avg accumulates an infinite geometric series
282 * (see __update_load_avg() in kernel/sched/fair.c).
283 *
284 * [load_avg definition]
285 *
286 * load_avg = runnable% * scale_load_down(load)
287 *
288 * where runnable% is the time ratio that a sched_entity is runnable.
289 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 290 * blocked sched_entities.
7b595334
YD
291 *
292 * load_avg may also take frequency scaling into account:
293 *
294 * load_avg = runnable% * scale_load_down(load) * freq%
295 *
296 * where freq% is the CPU frequency normalized to the highest frequency.
297 *
298 * [util_avg definition]
299 *
300 * util_avg = running% * SCHED_CAPACITY_SCALE
301 *
302 * where running% is the time ratio that a sched_entity is running on
303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
304 * and blocked sched_entities.
305 *
306 * util_avg may also factor frequency scaling and CPU capacity scaling:
307 *
308 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
309 *
310 * where freq% is the same as above, and capacity% is the CPU capacity
311 * normalized to the greatest capacity (due to uarch differences, etc).
312 *
313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
314 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
315 * we therefore scale them to as large a range as necessary. This is for
316 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
317 *
318 * [Overflow issue]
319 *
320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
321 * with the highest load (=88761), always runnable on a single cfs_rq,
322 * and should not overflow as the number already hits PID_MAX_LIMIT.
323 *
324 * For all other cases (including 32-bit kernels), struct load_weight's
325 * weight will overflow first before we do, because:
326 *
327 * Max(load_avg) <= Max(load.weight)
328 *
329 * Then it is the load_weight's responsibility to consider overflow
330 * issues.
9d89c257 331 */
9d85f21c 332struct sched_avg {
5eca1c10
IM
333 u64 last_update_time;
334 u64 load_sum;
335 u32 util_sum;
336 u32 period_contrib;
337 unsigned long load_avg;
338 unsigned long util_avg;
9d85f21c
PT
339};
340
41acab88 341struct sched_statistics {
7f5f8e8d 342#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
343 u64 wait_start;
344 u64 wait_max;
345 u64 wait_count;
346 u64 wait_sum;
347 u64 iowait_count;
348 u64 iowait_sum;
349
350 u64 sleep_start;
351 u64 sleep_max;
352 s64 sum_sleep_runtime;
353
354 u64 block_start;
355 u64 block_max;
356 u64 exec_max;
357 u64 slice_max;
358
359 u64 nr_migrations_cold;
360 u64 nr_failed_migrations_affine;
361 u64 nr_failed_migrations_running;
362 u64 nr_failed_migrations_hot;
363 u64 nr_forced_migrations;
364
365 u64 nr_wakeups;
366 u64 nr_wakeups_sync;
367 u64 nr_wakeups_migrate;
368 u64 nr_wakeups_local;
369 u64 nr_wakeups_remote;
370 u64 nr_wakeups_affine;
371 u64 nr_wakeups_affine_attempts;
372 u64 nr_wakeups_passive;
373 u64 nr_wakeups_idle;
41acab88 374#endif
7f5f8e8d 375};
41acab88
LDM
376
377struct sched_entity {
5eca1c10
IM
378 /* For load-balancing: */
379 struct load_weight load;
380 struct rb_node run_node;
381 struct list_head group_node;
382 unsigned int on_rq;
41acab88 383
5eca1c10
IM
384 u64 exec_start;
385 u64 sum_exec_runtime;
386 u64 vruntime;
387 u64 prev_sum_exec_runtime;
41acab88 388
5eca1c10 389 u64 nr_migrations;
41acab88 390
5eca1c10 391 struct sched_statistics statistics;
94c18227 392
20b8a59f 393#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
394 int depth;
395 struct sched_entity *parent;
20b8a59f 396 /* rq on which this entity is (to be) queued: */
5eca1c10 397 struct cfs_rq *cfs_rq;
20b8a59f 398 /* rq "owned" by this entity/group: */
5eca1c10 399 struct cfs_rq *my_q;
20b8a59f 400#endif
8bd75c77 401
141965c7 402#ifdef CONFIG_SMP
5a107804
JO
403 /*
404 * Per entity load average tracking.
405 *
406 * Put into separate cache line so it does not
407 * collide with read-mostly values above.
408 */
5eca1c10 409 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 410#endif
20b8a59f 411};
70b97a7f 412
fa717060 413struct sched_rt_entity {
5eca1c10
IM
414 struct list_head run_list;
415 unsigned long timeout;
416 unsigned long watchdog_stamp;
417 unsigned int time_slice;
418 unsigned short on_rq;
419 unsigned short on_list;
420
421 struct sched_rt_entity *back;
052f1dc7 422#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 423 struct sched_rt_entity *parent;
6f505b16 424 /* rq on which this entity is (to be) queued: */
5eca1c10 425 struct rt_rq *rt_rq;
6f505b16 426 /* rq "owned" by this entity/group: */
5eca1c10 427 struct rt_rq *my_q;
6f505b16 428#endif
3859a271 429} __randomize_layout;
fa717060 430
aab03e05 431struct sched_dl_entity {
5eca1c10 432 struct rb_node rb_node;
aab03e05
DF
433
434 /*
435 * Original scheduling parameters. Copied here from sched_attr
4027d080 436 * during sched_setattr(), they will remain the same until
437 * the next sched_setattr().
aab03e05 438 */
5eca1c10
IM
439 u64 dl_runtime; /* Maximum runtime for each instance */
440 u64 dl_deadline; /* Relative deadline of each instance */
441 u64 dl_period; /* Separation of two instances (period) */
54d6d303 442 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 443 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
444
445 /*
446 * Actual scheduling parameters. Initialized with the values above,
447 * they are continously updated during task execution. Note that
448 * the remaining runtime could be < 0 in case we are in overrun.
449 */
5eca1c10
IM
450 s64 runtime; /* Remaining runtime for this instance */
451 u64 deadline; /* Absolute deadline for this instance */
452 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
453
454 /*
455 * Some bool flags:
456 *
457 * @dl_throttled tells if we exhausted the runtime. If so, the
458 * task has to wait for a replenishment to be performed at the
459 * next firing of dl_timer.
460 *
2d3d891d
DF
461 * @dl_boosted tells if we are boosted due to DI. If so we are
462 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
463 * exit the critical section);
464 *
5eca1c10 465 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 466 * all its available runtime during the last job.
209a0cbd
LA
467 *
468 * @dl_non_contending tells if the task is inactive while still
469 * contributing to the active utilization. In other words, it
470 * indicates if the inactive timer has been armed and its handler
471 * has not been executed yet. This flag is useful to avoid race
472 * conditions between the inactive timer handler and the wakeup
473 * code.
aab03e05 474 */
5eca1c10
IM
475 int dl_throttled;
476 int dl_boosted;
477 int dl_yielded;
209a0cbd 478 int dl_non_contending;
aab03e05
DF
479
480 /*
481 * Bandwidth enforcement timer. Each -deadline task has its
482 * own bandwidth to be enforced, thus we need one timer per task.
483 */
5eca1c10 484 struct hrtimer dl_timer;
209a0cbd
LA
485
486 /*
487 * Inactive timer, responsible for decreasing the active utilization
488 * at the "0-lag time". When a -deadline task blocks, it contributes
489 * to GRUB's active utilization until the "0-lag time", hence a
490 * timer is needed to decrease the active utilization at the correct
491 * time.
492 */
493 struct hrtimer inactive_timer;
aab03e05 494};
8bd75c77 495
1d082fd0
PM
496union rcu_special {
497 struct {
5eca1c10
IM
498 u8 blocked;
499 u8 need_qs;
500 u8 exp_need_qs;
501
502 /* Otherwise the compiler can store garbage here: */
503 u8 pad;
8203d6d0
PM
504 } b; /* Bits. */
505 u32 s; /* Set of bits. */
1d082fd0 506};
86848966 507
8dc85d54
PZ
508enum perf_event_task_context {
509 perf_invalid_context = -1,
510 perf_hw_context = 0,
89a1e187 511 perf_sw_context,
8dc85d54
PZ
512 perf_nr_task_contexts,
513};
514
eb61baf6
IM
515struct wake_q_node {
516 struct wake_q_node *next;
517};
518
1da177e4 519struct task_struct {
c65eacbe
AL
520#ifdef CONFIG_THREAD_INFO_IN_TASK
521 /*
522 * For reasons of header soup (see current_thread_info()), this
523 * must be the first element of task_struct.
524 */
5eca1c10 525 struct thread_info thread_info;
c65eacbe 526#endif
5eca1c10
IM
527 /* -1 unrunnable, 0 runnable, >0 stopped: */
528 volatile long state;
29e48ce8
KC
529
530 /*
531 * This begins the randomizable portion of task_struct. Only
532 * scheduling-critical items should be added above here.
533 */
534 randomized_struct_fields_start
535
5eca1c10
IM
536 void *stack;
537 atomic_t usage;
538 /* Per task flags (PF_*), defined further below: */
539 unsigned int flags;
540 unsigned int ptrace;
1da177e4 541
2dd73a4f 542#ifdef CONFIG_SMP
5eca1c10
IM
543 struct llist_node wake_entry;
544 int on_cpu;
c65eacbe 545#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
546 /* Current CPU: */
547 unsigned int cpu;
c65eacbe 548#endif
5eca1c10
IM
549 unsigned int wakee_flips;
550 unsigned long wakee_flip_decay_ts;
551 struct task_struct *last_wakee;
ac66f547 552
5eca1c10 553 int wake_cpu;
2dd73a4f 554#endif
5eca1c10
IM
555 int on_rq;
556
557 int prio;
558 int static_prio;
559 int normal_prio;
560 unsigned int rt_priority;
50e645a8 561
5eca1c10
IM
562 const struct sched_class *sched_class;
563 struct sched_entity se;
564 struct sched_rt_entity rt;
8323f26c 565#ifdef CONFIG_CGROUP_SCHED
5eca1c10 566 struct task_group *sched_task_group;
8323f26c 567#endif
5eca1c10 568 struct sched_dl_entity dl;
1da177e4 569
e107be36 570#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
571 /* List of struct preempt_notifier: */
572 struct hlist_head preempt_notifiers;
e107be36
AK
573#endif
574
6c5c9341 575#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 576 unsigned int btrace_seq;
6c5c9341 577#endif
1da177e4 578
5eca1c10
IM
579 unsigned int policy;
580 int nr_cpus_allowed;
581 cpumask_t cpus_allowed;
1da177e4 582
a57eb940 583#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
584 int rcu_read_lock_nesting;
585 union rcu_special rcu_read_unlock_special;
586 struct list_head rcu_node_entry;
587 struct rcu_node *rcu_blocked_node;
28f6569a 588#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 589
8315f422 590#ifdef CONFIG_TASKS_RCU
5eca1c10 591 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
592 u8 rcu_tasks_holdout;
593 u8 rcu_tasks_idx;
5eca1c10 594 int rcu_tasks_idle_cpu;
ccdd29ff 595 struct list_head rcu_tasks_holdout_list;
8315f422 596#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 597
5eca1c10 598 struct sched_info sched_info;
1da177e4 599
5eca1c10 600 struct list_head tasks;
806c09a7 601#ifdef CONFIG_SMP
5eca1c10
IM
602 struct plist_node pushable_tasks;
603 struct rb_node pushable_dl_tasks;
806c09a7 604#endif
1da177e4 605
5eca1c10
IM
606 struct mm_struct *mm;
607 struct mm_struct *active_mm;
314ff785
IM
608
609 /* Per-thread vma caching: */
5eca1c10 610 struct vmacache vmacache;
314ff785 611
5eca1c10
IM
612#ifdef SPLIT_RSS_COUNTING
613 struct task_rss_stat rss_stat;
34e55232 614#endif
5eca1c10
IM
615 int exit_state;
616 int exit_code;
617 int exit_signal;
618 /* The signal sent when the parent dies: */
619 int pdeath_signal;
620 /* JOBCTL_*, siglock protected: */
621 unsigned long jobctl;
622
623 /* Used for emulating ABI behavior of previous Linux versions: */
624 unsigned int personality;
625
626 /* Scheduler bits, serialized by scheduler locks: */
627 unsigned sched_reset_on_fork:1;
628 unsigned sched_contributes_to_load:1;
629 unsigned sched_migrated:1;
630 unsigned sched_remote_wakeup:1;
631 /* Force alignment to the next boundary: */
632 unsigned :0;
633
634 /* Unserialized, strictly 'current' */
635
636 /* Bit to tell LSMs we're in execve(): */
637 unsigned in_execve:1;
638 unsigned in_iowait:1;
639#ifndef TIF_RESTORE_SIGMASK
640 unsigned restore_sigmask:1;
7e781418 641#endif
626ebc41 642#ifdef CONFIG_MEMCG
5eca1c10 643 unsigned memcg_may_oom:1;
127424c8 644#ifndef CONFIG_SLOB
5eca1c10 645 unsigned memcg_kmem_skip_account:1;
6f185c29 646#endif
127424c8 647#endif
ff303e66 648#ifdef CONFIG_COMPAT_BRK
5eca1c10 649 unsigned brk_randomized:1;
ff303e66 650#endif
77f88796
TH
651#ifdef CONFIG_CGROUPS
652 /* disallow userland-initiated cgroup migration */
653 unsigned no_cgroup_migration:1;
654#endif
6f185c29 655
5eca1c10 656 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 657
5eca1c10 658 struct restart_block restart_block;
f56141e3 659
5eca1c10
IM
660 pid_t pid;
661 pid_t tgid;
0a425405 662
1314562a 663#ifdef CONFIG_CC_STACKPROTECTOR
5eca1c10
IM
664 /* Canary value for the -fstack-protector GCC feature: */
665 unsigned long stack_canary;
1314562a 666#endif
4d1d61a6 667 /*
5eca1c10 668 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 669 * older sibling, respectively. (p->father can be replaced with
f470021a 670 * p->real_parent->pid)
1da177e4 671 */
5eca1c10
IM
672
673 /* Real parent process: */
674 struct task_struct __rcu *real_parent;
675
676 /* Recipient of SIGCHLD, wait4() reports: */
677 struct task_struct __rcu *parent;
678
1da177e4 679 /*
5eca1c10 680 * Children/sibling form the list of natural children:
1da177e4 681 */
5eca1c10
IM
682 struct list_head children;
683 struct list_head sibling;
684 struct task_struct *group_leader;
1da177e4 685
f470021a 686 /*
5eca1c10
IM
687 * 'ptraced' is the list of tasks this task is using ptrace() on.
688 *
f470021a 689 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 690 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 691 */
5eca1c10
IM
692 struct list_head ptraced;
693 struct list_head ptrace_entry;
f470021a 694
1da177e4 695 /* PID/PID hash table linkage. */
5eca1c10
IM
696 struct pid_link pids[PIDTYPE_MAX];
697 struct list_head thread_group;
698 struct list_head thread_node;
699
700 struct completion *vfork_done;
1da177e4 701
5eca1c10
IM
702 /* CLONE_CHILD_SETTID: */
703 int __user *set_child_tid;
1da177e4 704
5eca1c10
IM
705 /* CLONE_CHILD_CLEARTID: */
706 int __user *clear_child_tid;
707
708 u64 utime;
709 u64 stime;
40565b5a 710#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
711 u64 utimescaled;
712 u64 stimescaled;
40565b5a 713#endif
5eca1c10
IM
714 u64 gtime;
715 struct prev_cputime prev_cputime;
6a61671b 716#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 717 struct vtime vtime;
d99ca3b9 718#endif
d027d45d
FW
719
720#ifdef CONFIG_NO_HZ_FULL
5eca1c10 721 atomic_t tick_dep_mask;
d027d45d 722#endif
5eca1c10
IM
723 /* Context switch counts: */
724 unsigned long nvcsw;
725 unsigned long nivcsw;
726
727 /* Monotonic time in nsecs: */
728 u64 start_time;
729
730 /* Boot based time in nsecs: */
731 u64 real_start_time;
732
733 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
734 unsigned long min_flt;
735 unsigned long maj_flt;
1da177e4 736
b18b6a9c 737#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
738 struct task_cputime cputime_expires;
739 struct list_head cpu_timers[3];
b18b6a9c 740#endif
1da177e4 741
5eca1c10
IM
742 /* Process credentials: */
743
744 /* Tracer's credentials at attach: */
745 const struct cred __rcu *ptracer_cred;
746
747 /* Objective and real subjective task credentials (COW): */
748 const struct cred __rcu *real_cred;
749
750 /* Effective (overridable) subjective task credentials (COW): */
751 const struct cred __rcu *cred;
752
753 /*
754 * executable name, excluding path.
755 *
756 * - normally initialized setup_new_exec()
757 * - access it with [gs]et_task_comm()
758 * - lock it with task_lock()
759 */
760 char comm[TASK_COMM_LEN];
761
762 struct nameidata *nameidata;
763
3d5b6fcc 764#ifdef CONFIG_SYSVIPC
5eca1c10
IM
765 struct sysv_sem sysvsem;
766 struct sysv_shm sysvshm;
3d5b6fcc 767#endif
e162b39a 768#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 769 unsigned long last_switch_count;
82a1fcb9 770#endif
5eca1c10
IM
771 /* Filesystem information: */
772 struct fs_struct *fs;
773
774 /* Open file information: */
775 struct files_struct *files;
776
777 /* Namespaces: */
778 struct nsproxy *nsproxy;
779
780 /* Signal handlers: */
781 struct signal_struct *signal;
782 struct sighand_struct *sighand;
783 sigset_t blocked;
784 sigset_t real_blocked;
785 /* Restored if set_restore_sigmask() was used: */
786 sigset_t saved_sigmask;
787 struct sigpending pending;
788 unsigned long sas_ss_sp;
789 size_t sas_ss_size;
790 unsigned int sas_ss_flags;
791
792 struct callback_head *task_works;
793
794 struct audit_context *audit_context;
bfef93a5 795#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
796 kuid_t loginuid;
797 unsigned int sessionid;
bfef93a5 798#endif
5eca1c10
IM
799 struct seccomp seccomp;
800
801 /* Thread group tracking: */
802 u32 parent_exec_id;
803 u32 self_exec_id;
1da177e4 804
5eca1c10
IM
805 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
806 spinlock_t alloc_lock;
1da177e4 807
b29739f9 808 /* Protection of the PI data structures: */
5eca1c10 809 raw_spinlock_t pi_lock;
b29739f9 810
5eca1c10 811 struct wake_q_node wake_q;
76751049 812
23f78d4a 813#ifdef CONFIG_RT_MUTEXES
5eca1c10 814 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 815 struct rb_root_cached pi_waiters;
e96a7705
XP
816 /* Updated under owner's pi_lock and rq lock */
817 struct task_struct *pi_top_task;
5eca1c10
IM
818 /* Deadlock detection and priority inheritance handling: */
819 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
820#endif
821
408894ee 822#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
823 /* Mutex deadlock detection: */
824 struct mutex_waiter *blocked_on;
408894ee 825#endif
5eca1c10 826
de30a2b3 827#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
828 unsigned int irq_events;
829 unsigned long hardirq_enable_ip;
830 unsigned long hardirq_disable_ip;
831 unsigned int hardirq_enable_event;
832 unsigned int hardirq_disable_event;
833 int hardirqs_enabled;
834 int hardirq_context;
835 unsigned long softirq_disable_ip;
836 unsigned long softirq_enable_ip;
837 unsigned int softirq_disable_event;
838 unsigned int softirq_enable_event;
839 int softirqs_enabled;
840 int softirq_context;
de30a2b3 841#endif
5eca1c10 842
fbb9ce95 843#ifdef CONFIG_LOCKDEP
5eca1c10
IM
844# define MAX_LOCK_DEPTH 48UL
845 u64 curr_chain_key;
846 int lockdep_depth;
847 unsigned int lockdep_recursion;
848 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 849#endif
5eca1c10 850
b09be676
BP
851#ifdef CONFIG_LOCKDEP_CROSSRELEASE
852#define MAX_XHLOCKS_NR 64UL
853 struct hist_lock *xhlocks; /* Crossrelease history locks */
854 unsigned int xhlock_idx;
855 /* For restoring at history boundaries */
856 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
23f873d8
BP
857 unsigned int hist_id;
858 /* For overwrite check at each context exit */
859 unsigned int hist_id_save[XHLOCK_CTX_NR];
fbb9ce95 860#endif
5eca1c10 861
c6d30853 862#ifdef CONFIG_UBSAN
5eca1c10 863 unsigned int in_ubsan;
c6d30853 864#endif
408894ee 865
5eca1c10
IM
866 /* Journalling filesystem info: */
867 void *journal_info;
1da177e4 868
5eca1c10
IM
869 /* Stacked block device info: */
870 struct bio_list *bio_list;
d89d8796 871
73c10101 872#ifdef CONFIG_BLOCK
5eca1c10
IM
873 /* Stack plugging: */
874 struct blk_plug *plug;
73c10101
JA
875#endif
876
5eca1c10
IM
877 /* VM state: */
878 struct reclaim_state *reclaim_state;
879
880 struct backing_dev_info *backing_dev_info;
1da177e4 881
5eca1c10 882 struct io_context *io_context;
1da177e4 883
5eca1c10
IM
884 /* Ptrace state: */
885 unsigned long ptrace_message;
886 siginfo_t *last_siginfo;
1da177e4 887
5eca1c10
IM
888 struct task_io_accounting ioac;
889#ifdef CONFIG_TASK_XACCT
890 /* Accumulated RSS usage: */
891 u64 acct_rss_mem1;
892 /* Accumulated virtual memory usage: */
893 u64 acct_vm_mem1;
894 /* stime + utime since last update: */
895 u64 acct_timexpd;
1da177e4
LT
896#endif
897#ifdef CONFIG_CPUSETS
5eca1c10
IM
898 /* Protected by ->alloc_lock: */
899 nodemask_t mems_allowed;
900 /* Seqence number to catch updates: */
901 seqcount_t mems_allowed_seq;
902 int cpuset_mem_spread_rotor;
903 int cpuset_slab_spread_rotor;
1da177e4 904#endif
ddbcc7e8 905#ifdef CONFIG_CGROUPS
5eca1c10
IM
906 /* Control Group info protected by css_set_lock: */
907 struct css_set __rcu *cgroups;
908 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
909 struct list_head cg_list;
ddbcc7e8 910#endif
f01d7d51 911#ifdef CONFIG_INTEL_RDT
0734ded1 912 u32 closid;
d6aaba61 913 u32 rmid;
e02737d5 914#endif
42b2dd0a 915#ifdef CONFIG_FUTEX
5eca1c10 916 struct robust_list_head __user *robust_list;
34f192c6
IM
917#ifdef CONFIG_COMPAT
918 struct compat_robust_list_head __user *compat_robust_list;
919#endif
5eca1c10
IM
920 struct list_head pi_state_list;
921 struct futex_pi_state *pi_state_cache;
c7aceaba 922#endif
cdd6c482 923#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
924 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
925 struct mutex perf_event_mutex;
926 struct list_head perf_event_list;
a63eaf34 927#endif
8f47b187 928#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 929 unsigned long preempt_disable_ip;
8f47b187 930#endif
c7aceaba 931#ifdef CONFIG_NUMA
5eca1c10
IM
932 /* Protected by alloc_lock: */
933 struct mempolicy *mempolicy;
45816682 934 short il_prev;
5eca1c10 935 short pref_node_fork;
42b2dd0a 936#endif
cbee9f88 937#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
938 int numa_scan_seq;
939 unsigned int numa_scan_period;
940 unsigned int numa_scan_period_max;
941 int numa_preferred_nid;
942 unsigned long numa_migrate_retry;
943 /* Migration stamp: */
944 u64 node_stamp;
945 u64 last_task_numa_placement;
946 u64 last_sum_exec_runtime;
947 struct callback_head numa_work;
948
949 struct list_head numa_entry;
950 struct numa_group *numa_group;
8c8a743c 951
745d6147 952 /*
44dba3d5
IM
953 * numa_faults is an array split into four regions:
954 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
955 * in this precise order.
956 *
957 * faults_memory: Exponential decaying average of faults on a per-node
958 * basis. Scheduling placement decisions are made based on these
959 * counts. The values remain static for the duration of a PTE scan.
960 * faults_cpu: Track the nodes the process was running on when a NUMA
961 * hinting fault was incurred.
962 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
963 * during the current scan window. When the scan completes, the counts
964 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 965 */
5eca1c10
IM
966 unsigned long *numa_faults;
967 unsigned long total_numa_faults;
745d6147 968
04bb2f94
RR
969 /*
970 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
971 * scan window were remote/local or failed to migrate. The task scan
972 * period is adapted based on the locality of the faults with different
973 * weights depending on whether they were shared or private faults
04bb2f94 974 */
5eca1c10 975 unsigned long numa_faults_locality[3];
04bb2f94 976
5eca1c10 977 unsigned long numa_pages_migrated;
cbee9f88
PZ
978#endif /* CONFIG_NUMA_BALANCING */
979
5eca1c10 980 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 981
5eca1c10 982 struct rcu_head rcu;
b92ce558 983
5eca1c10
IM
984 /* Cache last used pipe for splice(): */
985 struct pipe_inode_info *splice_pipe;
5640f768 986
5eca1c10 987 struct page_frag task_frag;
5640f768 988
47913d4e
IM
989#ifdef CONFIG_TASK_DELAY_ACCT
990 struct task_delay_info *delays;
f4f154fd 991#endif
47913d4e 992
f4f154fd 993#ifdef CONFIG_FAULT_INJECTION
5eca1c10 994 int make_it_fail;
9049f2f6 995 unsigned int fail_nth;
ca74e92b 996#endif
9d823e8f 997 /*
5eca1c10
IM
998 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
999 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1000 */
5eca1c10
IM
1001 int nr_dirtied;
1002 int nr_dirtied_pause;
1003 /* Start of a write-and-pause period: */
1004 unsigned long dirty_paused_when;
9d823e8f 1005
9745512c 1006#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1007 int latency_record_count;
1008 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1009#endif
6976675d 1010 /*
5eca1c10 1011 * Time slack values; these are used to round up poll() and
6976675d
AV
1012 * select() etc timeout values. These are in nanoseconds.
1013 */
5eca1c10
IM
1014 u64 timer_slack_ns;
1015 u64 default_timer_slack_ns;
f8d570a4 1016
0b24becc 1017#ifdef CONFIG_KASAN
5eca1c10 1018 unsigned int kasan_depth;
0b24becc 1019#endif
5eca1c10 1020
fb52607a 1021#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1022 /* Index of current stored address in ret_stack: */
1023 int curr_ret_stack;
1024
1025 /* Stack of return addresses for return function tracing: */
1026 struct ftrace_ret_stack *ret_stack;
1027
1028 /* Timestamp for last schedule: */
1029 unsigned long long ftrace_timestamp;
1030
f201ae23
FW
1031 /*
1032 * Number of functions that haven't been traced
5eca1c10 1033 * because of depth overrun:
f201ae23 1034 */
5eca1c10
IM
1035 atomic_t trace_overrun;
1036
1037 /* Pause tracing: */
1038 atomic_t tracing_graph_pause;
f201ae23 1039#endif
5eca1c10 1040
ea4e2bc4 1041#ifdef CONFIG_TRACING
5eca1c10
IM
1042 /* State flags for use by tracers: */
1043 unsigned long trace;
1044
1045 /* Bitmask and counter of trace recursion: */
1046 unsigned long trace_recursion;
261842b7 1047#endif /* CONFIG_TRACING */
5eca1c10 1048
5c9a8750 1049#ifdef CONFIG_KCOV
5eca1c10
IM
1050 /* Coverage collection mode enabled for this task (0 if disabled): */
1051 enum kcov_mode kcov_mode;
1052
1053 /* Size of the kcov_area: */
1054 unsigned int kcov_size;
1055
1056 /* Buffer for coverage collection: */
1057 void *kcov_area;
1058
1059 /* KCOV descriptor wired with this task or NULL: */
1060 struct kcov *kcov;
5c9a8750 1061#endif
5eca1c10 1062
6f185c29 1063#ifdef CONFIG_MEMCG
5eca1c10
IM
1064 struct mem_cgroup *memcg_in_oom;
1065 gfp_t memcg_oom_gfp_mask;
1066 int memcg_oom_order;
b23afb93 1067
5eca1c10
IM
1068 /* Number of pages to reclaim on returning to userland: */
1069 unsigned int memcg_nr_pages_over_high;
569b846d 1070#endif
5eca1c10 1071
0326f5a9 1072#ifdef CONFIG_UPROBES
5eca1c10 1073 struct uprobe_task *utask;
0326f5a9 1074#endif
cafe5635 1075#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1076 unsigned int sequential_io;
1077 unsigned int sequential_io_avg;
cafe5635 1078#endif
8eb23b9f 1079#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1080 unsigned long task_state_change;
8eb23b9f 1081#endif
5eca1c10 1082 int pagefault_disabled;
03049269 1083#ifdef CONFIG_MMU
5eca1c10 1084 struct task_struct *oom_reaper_list;
03049269 1085#endif
ba14a194 1086#ifdef CONFIG_VMAP_STACK
5eca1c10 1087 struct vm_struct *stack_vm_area;
ba14a194 1088#endif
68f24b08 1089#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1090 /* A live task holds one reference: */
1091 atomic_t stack_refcount;
d83a7cb3
JP
1092#endif
1093#ifdef CONFIG_LIVEPATCH
1094 int patch_state;
0302e28d 1095#endif
e4e55b47
TH
1096#ifdef CONFIG_SECURITY
1097 /* Used by LSM modules for access restriction: */
1098 void *security;
68f24b08 1099#endif
29e48ce8
KC
1100
1101 /*
1102 * New fields for task_struct should be added above here, so that
1103 * they are included in the randomized portion of task_struct.
1104 */
1105 randomized_struct_fields_end
1106
5eca1c10
IM
1107 /* CPU-specific state of this task: */
1108 struct thread_struct thread;
1109
1110 /*
1111 * WARNING: on x86, 'thread_struct' contains a variable-sized
1112 * structure. It *MUST* be at the end of 'task_struct'.
1113 *
1114 * Do not put anything below here!
1115 */
1da177e4
LT
1116};
1117
e868171a 1118static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1119{
1120 return task->pids[PIDTYPE_PID].pid;
1121}
1122
e868171a 1123static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1124{
1125 return task->group_leader->pids[PIDTYPE_PID].pid;
1126}
1127
6dda81f4 1128/*
5eca1c10 1129 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1130 * the result of task_pgrp/task_session even if task == current,
1131 * we can race with another thread doing sys_setsid/sys_setpgid.
1132 */
e868171a 1133static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1134{
1135 return task->group_leader->pids[PIDTYPE_PGID].pid;
1136}
1137
e868171a 1138static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1139{
1140 return task->group_leader->pids[PIDTYPE_SID].pid;
1141}
1142
7af57294
PE
1143/*
1144 * the helpers to get the task's different pids as they are seen
1145 * from various namespaces
1146 *
1147 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1148 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1149 * current.
7af57294
PE
1150 * task_xid_nr_ns() : id seen from the ns specified;
1151 *
7af57294
PE
1152 * see also pid_nr() etc in include/linux/pid.h
1153 */
5eca1c10 1154pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1155
e868171a 1156static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1157{
1158 return tsk->pid;
1159}
1160
5eca1c10 1161static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1162{
1163 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1164}
7af57294
PE
1165
1166static inline pid_t task_pid_vnr(struct task_struct *tsk)
1167{
52ee2dfd 1168 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1169}
1170
1171
e868171a 1172static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1173{
1174 return tsk->tgid;
1175}
1176
5eca1c10
IM
1177/**
1178 * pid_alive - check that a task structure is not stale
1179 * @p: Task structure to be checked.
1180 *
1181 * Test if a process is not yet dead (at most zombie state)
1182 * If pid_alive fails, then pointers within the task structure
1183 * can be stale and must not be dereferenced.
1184 *
1185 * Return: 1 if the process is alive. 0 otherwise.
1186 */
1187static inline int pid_alive(const struct task_struct *p)
1188{
1189 return p->pids[PIDTYPE_PID].pid != NULL;
1190}
7af57294 1191
5eca1c10 1192static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1193{
52ee2dfd 1194 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1195}
1196
7af57294
PE
1197static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1198{
52ee2dfd 1199 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1200}
1201
1202
5eca1c10 1203static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1204{
52ee2dfd 1205 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1206}
1207
7af57294
PE
1208static inline pid_t task_session_vnr(struct task_struct *tsk)
1209{
52ee2dfd 1210 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1211}
1212
dd1c1f2f
ON
1213static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1214{
1215 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1216}
1217
1218static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1219{
1220 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1221}
1222
1223static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1224{
1225 pid_t pid = 0;
1226
1227 rcu_read_lock();
1228 if (pid_alive(tsk))
1229 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1230 rcu_read_unlock();
1231
1232 return pid;
1233}
1234
1235static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1236{
1237 return task_ppid_nr_ns(tsk, &init_pid_ns);
1238}
1239
5eca1c10 1240/* Obsolete, do not use: */
1b0f7ffd
ON
1241static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1242{
1243 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1244}
7af57294 1245
06eb6184
PZ
1246#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1247#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1248
1593baab 1249static inline unsigned int __get_task_state(struct task_struct *tsk)
20435d84 1250{
1593baab
PZ
1251 unsigned int tsk_state = READ_ONCE(tsk->state);
1252 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1253
06eb6184
PZ
1254 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1255
06eb6184
PZ
1256 if (tsk_state == TASK_IDLE)
1257 state = TASK_REPORT_IDLE;
1258
1593baab
PZ
1259 return fls(state);
1260}
1261
1262static inline char __task_state_to_char(unsigned int state)
1263{
8ef9925b 1264 static const char state_char[] = "RSDTtXZPI";
1593baab 1265
06eb6184 1266 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1267
1593baab
PZ
1268 return state_char[state];
1269}
1270
1271static inline char task_state_to_char(struct task_struct *tsk)
1272{
1273 return __task_state_to_char(__get_task_state(tsk));
20435d84
XX
1274}
1275
f400e198 1276/**
570f5241
SS
1277 * is_global_init - check if a task structure is init. Since init
1278 * is free to have sub-threads we need to check tgid.
3260259f
HK
1279 * @tsk: Task structure to be checked.
1280 *
1281 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1282 *
1283 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1284 */
e868171a 1285static inline int is_global_init(struct task_struct *tsk)
b461cc03 1286{
570f5241 1287 return task_tgid_nr(tsk) == 1;
b461cc03 1288}
b460cbc5 1289
9ec52099
CLG
1290extern struct pid *cad_pid;
1291
1da177e4
LT
1292/*
1293 * Per process flags
1294 */
5eca1c10
IM
1295#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1296#define PF_EXITING 0x00000004 /* Getting shut down */
1297#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1298#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1299#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1300#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1301#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1302#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1303#define PF_DUMPCORE 0x00000200 /* Dumped core */
1304#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1305#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1306#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1307#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1308#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1309#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1310#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1311#define PF_KSWAPD 0x00020000 /* I am kswapd */
1312#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1313#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1314#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1315#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1316#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1317#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1318#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1319#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1320#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1321#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1322#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1323
1324/*
1325 * Only the _current_ task can read/write to tsk->flags, but other
1326 * tasks can access tsk->flags in readonly mode for example
1327 * with tsk_used_math (like during threaded core dumping).
1328 * There is however an exception to this rule during ptrace
1329 * or during fork: the ptracer task is allowed to write to the
1330 * child->flags of its traced child (same goes for fork, the parent
1331 * can write to the child->flags), because we're guaranteed the
1332 * child is not running and in turn not changing child->flags
1333 * at the same time the parent does it.
1334 */
5eca1c10
IM
1335#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1336#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1337#define clear_used_math() clear_stopped_child_used_math(current)
1338#define set_used_math() set_stopped_child_used_math(current)
1339
1da177e4
LT
1340#define conditional_stopped_child_used_math(condition, child) \
1341 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1342
1343#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1344
1da177e4
LT
1345#define copy_to_stopped_child_used_math(child) \
1346 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1347
1da177e4 1348/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1349#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1350#define used_math() tsk_used_math(current)
1da177e4 1351
62ec05dd
TG
1352static inline bool is_percpu_thread(void)
1353{
1354#ifdef CONFIG_SMP
1355 return (current->flags & PF_NO_SETAFFINITY) &&
1356 (current->nr_cpus_allowed == 1);
1357#else
1358 return true;
1359#endif
1360}
1361
1d4457f9 1362/* Per-process atomic flags. */
5eca1c10
IM
1363#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1364#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1365#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2ad654bc 1366
1d4457f9 1367
e0e5070b
ZL
1368#define TASK_PFA_TEST(name, func) \
1369 static inline bool task_##func(struct task_struct *p) \
1370 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1371
e0e5070b
ZL
1372#define TASK_PFA_SET(name, func) \
1373 static inline void task_set_##func(struct task_struct *p) \
1374 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1375
e0e5070b
ZL
1376#define TASK_PFA_CLEAR(name, func) \
1377 static inline void task_clear_##func(struct task_struct *p) \
1378 { clear_bit(PFA_##name, &p->atomic_flags); }
1379
1380TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1381TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1382
2ad654bc
ZL
1383TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1384TASK_PFA_SET(SPREAD_PAGE, spread_page)
1385TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1386
1387TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1388TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1389TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1390
5eca1c10 1391static inline void
717a94b5 1392current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1393{
717a94b5
N
1394 current->flags &= ~flags;
1395 current->flags |= orig_flags & flags;
907aed48
MG
1396}
1397
5eca1c10
IM
1398extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1399extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1400#ifdef CONFIG_SMP
5eca1c10
IM
1401extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1402extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1403#else
5eca1c10 1404static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1405{
1406}
5eca1c10 1407static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1408{
96f874e2 1409 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1410 return -EINVAL;
1411 return 0;
1412}
1413#endif
e0ad9556 1414
6d0d2878
CB
1415#ifndef cpu_relax_yield
1416#define cpu_relax_yield() cpu_relax()
1417#endif
1418
fa93384f 1419extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1420extern void set_user_nice(struct task_struct *p, long nice);
1421extern int task_prio(const struct task_struct *p);
5eca1c10 1422
d0ea0268
DY
1423/**
1424 * task_nice - return the nice value of a given task.
1425 * @p: the task in question.
1426 *
1427 * Return: The nice value [ -20 ... 0 ... 19 ].
1428 */
1429static inline int task_nice(const struct task_struct *p)
1430{
1431 return PRIO_TO_NICE((p)->static_prio);
1432}
5eca1c10 1433
36c8b586
IM
1434extern int can_nice(const struct task_struct *p, const int nice);
1435extern int task_curr(const struct task_struct *p);
1da177e4 1436extern int idle_cpu(int cpu);
5eca1c10
IM
1437extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1438extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1439extern int sched_setattr(struct task_struct *, const struct sched_attr *);
36c8b586 1440extern struct task_struct *idle_task(int cpu);
5eca1c10 1441
c4f30608
PM
1442/**
1443 * is_idle_task - is the specified task an idle task?
fa757281 1444 * @p: the task in question.
e69f6186
YB
1445 *
1446 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1447 */
7061ca3b 1448static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1449{
c1de45ca 1450 return !!(p->flags & PF_IDLE);
c4f30608 1451}
5eca1c10 1452
36c8b586 1453extern struct task_struct *curr_task(int cpu);
a458ae2e 1454extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1455
1456void yield(void);
1457
1da177e4 1458union thread_union {
c65eacbe 1459#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1460 struct thread_info thread_info;
c65eacbe 1461#endif
1da177e4
LT
1462 unsigned long stack[THREAD_SIZE/sizeof(long)];
1463};
1464
f3ac6067
IM
1465#ifdef CONFIG_THREAD_INFO_IN_TASK
1466static inline struct thread_info *task_thread_info(struct task_struct *task)
1467{
1468 return &task->thread_info;
1469}
1470#elif !defined(__HAVE_THREAD_FUNCTIONS)
1471# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1472#endif
1473
198fe21b
PE
1474/*
1475 * find a task by one of its numerical ids
1476 *
198fe21b
PE
1477 * find_task_by_pid_ns():
1478 * finds a task by its pid in the specified namespace
228ebcbe
PE
1479 * find_task_by_vpid():
1480 * finds a task by its virtual pid
198fe21b 1481 *
e49859e7 1482 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1483 */
1484
228ebcbe 1485extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1486extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1487
b3c97528
HH
1488extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1489extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1490extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1491
1da177e4 1492#ifdef CONFIG_SMP
5eca1c10 1493extern void kick_process(struct task_struct *tsk);
1da177e4 1494#else
5eca1c10 1495static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1496#endif
1da177e4 1497
82b89778 1498extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1499
82b89778
AH
1500static inline void set_task_comm(struct task_struct *tsk, const char *from)
1501{
1502 __set_task_comm(tsk, from, false);
1503}
5eca1c10 1504
59714d65 1505extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
1506
1507#ifdef CONFIG_SMP
317f3941 1508void scheduler_ipi(void);
85ba2d86 1509extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1510#else
184748cc 1511static inline void scheduler_ipi(void) { }
5eca1c10 1512static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1513{
1514 return 1;
1515}
1da177e4
LT
1516#endif
1517
5eca1c10
IM
1518/*
1519 * Set thread flags in other task's structures.
1520 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1521 */
1522static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1523{
a1261f54 1524 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1525}
1526
1527static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1528{
a1261f54 1529 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1530}
1531
1532static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1533{
a1261f54 1534 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1535}
1536
1537static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1538{
a1261f54 1539 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1540}
1541
1542static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1543{
a1261f54 1544 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1545}
1546
1547static inline void set_tsk_need_resched(struct task_struct *tsk)
1548{
1549 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1550}
1551
1552static inline void clear_tsk_need_resched(struct task_struct *tsk)
1553{
1554 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1555}
1556
8ae121ac
GH
1557static inline int test_tsk_need_resched(struct task_struct *tsk)
1558{
1559 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1560}
1561
1da177e4
LT
1562/*
1563 * cond_resched() and cond_resched_lock(): latency reduction via
1564 * explicit rescheduling in places that are safe. The return
1565 * value indicates whether a reschedule was done in fact.
1566 * cond_resched_lock() will drop the spinlock before scheduling,
1567 * cond_resched_softirq() will enable bhs before scheduling.
1568 */
35a773a0 1569#ifndef CONFIG_PREEMPT
c3921ab7 1570extern int _cond_resched(void);
35a773a0
PZ
1571#else
1572static inline int _cond_resched(void) { return 0; }
1573#endif
6f80bd98 1574
613afbf8 1575#define cond_resched() ({ \
3427445a 1576 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1577 _cond_resched(); \
1578})
6f80bd98 1579
613afbf8
FW
1580extern int __cond_resched_lock(spinlock_t *lock);
1581
1582#define cond_resched_lock(lock) ({ \
3427445a 1583 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1584 __cond_resched_lock(lock); \
1585})
1586
1587extern int __cond_resched_softirq(void);
1588
75e1056f 1589#define cond_resched_softirq() ({ \
3427445a 1590 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 1591 __cond_resched_softirq(); \
613afbf8 1592})
1da177e4 1593
f6f3c437
SH
1594static inline void cond_resched_rcu(void)
1595{
1596#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1597 rcu_read_unlock();
1598 cond_resched();
1599 rcu_read_lock();
1600#endif
1601}
1602
1da177e4
LT
1603/*
1604 * Does a critical section need to be broken due to another
95c354fe
NP
1605 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1606 * but a general need for low latency)
1da177e4 1607 */
95c354fe 1608static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1609{
95c354fe
NP
1610#ifdef CONFIG_PREEMPT
1611 return spin_is_contended(lock);
1612#else
1da177e4 1613 return 0;
95c354fe 1614#endif
1da177e4
LT
1615}
1616
75f93fed
PZ
1617static __always_inline bool need_resched(void)
1618{
1619 return unlikely(tif_need_resched());
1620}
1621
1da177e4
LT
1622/*
1623 * Wrappers for p->thread_info->cpu access. No-op on UP.
1624 */
1625#ifdef CONFIG_SMP
1626
1627static inline unsigned int task_cpu(const struct task_struct *p)
1628{
c65eacbe
AL
1629#ifdef CONFIG_THREAD_INFO_IN_TASK
1630 return p->cpu;
1631#else
a1261f54 1632 return task_thread_info(p)->cpu;
c65eacbe 1633#endif
1da177e4
LT
1634}
1635
c65cc870 1636extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1637
1638#else
1639
1640static inline unsigned int task_cpu(const struct task_struct *p)
1641{
1642 return 0;
1643}
1644
1645static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1646{
1647}
1648
1649#endif /* CONFIG_SMP */
1650
d9345c65
PX
1651/*
1652 * In order to reduce various lock holder preemption latencies provide an
1653 * interface to see if a vCPU is currently running or not.
1654 *
1655 * This allows us to terminate optimistic spin loops and block, analogous to
1656 * the native optimistic spin heuristic of testing if the lock owner task is
1657 * running or not.
1658 */
1659#ifndef vcpu_is_preempted
1660# define vcpu_is_preempted(cpu) false
1661#endif
1662
96f874e2
RR
1663extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1664extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1665
82455257
DH
1666#ifndef TASK_SIZE_OF
1667#define TASK_SIZE_OF(tsk) TASK_SIZE
1668#endif
1669
1da177e4 1670#endif