]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - include/linux/skbuff.h
bpf: move tmp variable into ax register in interpreter
[thirdparty/kernel/stable.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
1da177e4 246
5f79e0f9 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
248struct nf_conntrack {
249 atomic_t use;
1da177e4 250};
5f79e0f9 251#endif
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
53869ceb 255 refcount_t use;
3eaf4025
FW
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
7fb48c5b 260 } orig_proto:8;
72b1e5e4
FW
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
411ffb4f 264 __u16 frag_max_size;
bf1ac5ca 265 struct net_device *physindev;
63cdbc06
FW
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
7fb48c5b 269 union {
72b1e5e4 270 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
72b1e5e4
FW
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
72b31f72 279 };
1da177e4
LT
280};
281#endif
282
1da177e4
LT
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
9d4dde52
IC
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
a715dea3 300 */
9d4dde52 301#if (65536/PAGE_SIZE + 1) < 16
eec00954 302#define MAX_SKB_FRAGS 16UL
a715dea3 303#else
9d4dde52 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 305#endif
5f74f82e 306extern int sysctl_max_skb_frags;
1da177e4 307
3953c46c
MRL
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
1da177e4
LT
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
a8605c60
IC
316 struct {
317 struct page *p;
318 } page;
cb4dfe56 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
320 __u32 page_offset;
321 __u32 size;
cb4dfe56
ED
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
1da177e4
LT
326};
327
9e903e08
ED
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
c613c209
WB
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
ac45f602
PO
384#define HAVE_HW_TIME_STAMP
385
386/**
d3a21be8 387 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
ac45f602
PO
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 392 * skb->tstamp.
ac45f602
PO
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
ac45f602
PO
402};
403
2244d07b
OH
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
e7fd2885 409 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
a6686f2f 415 /* device driver supports TX zero-copy buffers */
62b1a8ab 416 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
417
418 /* generate wifi status information (where possible) */
62b1a8ab 419 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
430};
431
52267790 432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 434 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
a6686f2f
SM
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
a6686f2f
SM
444 */
445struct ubuf_info {
e19d6763 446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
c1d1b437 459 refcount_t refcnt;
a91dbff5
WB
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
ac45f602
PO
465};
466
52267790
WB
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
470struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
52267790
WB
472
473static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474{
c1d1b437 475 refcount_inc(&uarg->refcnt);
52267790
WB
476}
477
478void sock_zerocopy_put(struct ubuf_info *uarg);
479void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
1da177e4
LT
487/* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490struct skb_shared_info {
7f564528 491 unsigned short _unused;
9f42f126
IC
492 unsigned char nr_frags;
493 __u8 tx_flags;
7967168c
HX
494 unsigned short gso_size;
495 /* Warning: this field is not always filled in (UFO)! */
496 unsigned short gso_segs;
1da177e4 497 struct sk_buff *frag_list;
ac45f602 498 struct skb_shared_hwtstamps hwtstamps;
7f564528 499 unsigned int gso_type;
09c2d251 500 u32 tskey;
9f42f126 501 __be32 ip6_frag_id;
ec7d2f2c
ED
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
69e3c75f
JB
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
a6686f2f 511
fed66381
ED
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
514};
515
516/* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
1da177e4
LT
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527#define SKB_DATAREF_SHIFT 16
528#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
d179cd12
DM
530
531enum {
c8753d55
VS
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
535};
536
7967168c
HX
537enum {
538 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
539
540 /* This indicates the skb is from an untrusted source. */
d9d30adf 541 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
542
543 /* This indicates the tcp segment has CWR set. */
d9d30adf 544 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 545
d9d30adf 546 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 547
d9d30adf 548 SKB_GSO_TCPV6 = 1 << 4,
68c33163 549
d9d30adf 550 SKB_GSO_FCOE = 1 << 5,
73136267 551
d9d30adf 552 SKB_GSO_GRE = 1 << 6,
0d89d203 553
d9d30adf 554 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 555
d9d30adf 556 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 557
d9d30adf 558 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 559
d9d30adf 560 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 561
d9d30adf 562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 563
d9d30adf 564 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 565
d9d30adf 566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 567
d9d30adf 568 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 569
d9d30adf 570 SKB_GSO_ESP = 1 << 15,
60335608
WB
571
572 SKB_GSO_UDP = 1 << 16,
7967168c
HX
573};
574
2e07fa9c
ACM
575#if BITS_PER_LONG > 32
576#define NET_SKBUFF_DATA_USES_OFFSET 1
577#endif
578
579#ifdef NET_SKBUFF_DATA_USES_OFFSET
580typedef unsigned int sk_buff_data_t;
581#else
582typedef unsigned char *sk_buff_data_t;
583#endif
584
1da177e4
LT
585/**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
363ec392 589 * @tstamp: Time we arrived/left
56b17425 590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 591 * @sk: Socket we are owned by
1da177e4 592 * @dev: Device we arrived on/are leaving by
d84e0bd7 593 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 594 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 595 * @sp: the security path, used for xfrm
1da177e4
LT
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
334a8132 599 * @hdr_len: writable header length of cloned skb
663ead3b
HX
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 603 * @priority: Packet queueing priority
60ff7467 604 * @ignore_df: allow local fragmentation
1da177e4 605 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 606 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
c83c2486 609 * @fclone: skbuff clone status
c83c2486 610 * @ipvs_property: skbuff is owned by ipvs
e7246e12 611 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
ba9dda3a 617 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
a9e419dc 620 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 621 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 622 * @skb_iif: ifindex of device we arrived on
1da177e4 623 * @tc_index: Traffic control index
61b905da 624 * @hash: the packet hash
d84e0bd7 625 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 626 * @xmit_more: More SKBs are pending for this queue
6403b54a 627 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
553a5672 628 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 629 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 630 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 631 * ports.
a3b18ddb 632 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
633 * @wifi_acked_valid: wifi_acked was set
634 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 635 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 636 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 637 * @dst_pending_confirm: need to confirm neighbour
06021292 638 * @napi_id: id of the NAPI struct this skb came from
984bc16c 639 * @secmark: security marking
d84e0bd7 640 * @mark: Generic packet mark
86a9bad3 641 * @vlan_proto: vlan encapsulation protocol
6aa895b0 642 * @vlan_tci: vlan tag control information
0d89d203 643 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
644 * @inner_transport_header: Inner transport layer header (encapsulation)
645 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 646 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
647 * @transport_header: Transport layer header
648 * @network_header: Network layer header
649 * @mac_header: Link layer header
650 * @tail: Tail pointer
651 * @end: End pointer
652 * @head: Head of buffer
653 * @data: Data head pointer
654 * @truesize: Buffer size
655 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
656 */
657
658struct sk_buff {
363ec392 659 union {
56b17425
ED
660 struct {
661 /* These two members must be first. */
662 struct sk_buff *next;
663 struct sk_buff *prev;
664
665 union {
6b921536
ED
666 struct net_device *dev;
667 /* Some protocols might use this space to store information,
668 * while device pointer would be NULL.
669 * UDP receive path is one user.
670 */
671 unsigned long dev_scratch;
56b17425
ED
672 };
673 };
6b921536
ED
674 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
675 struct list_head list;
363ec392 676 };
1da177e4 677
c84d9490 678 union {
6b921536 679 struct sock *sk;
48c2afc1 680 int ip_defrag_offset;
c84d9490 681 };
6b921536
ED
682
683 union {
684 ktime_t tstamp;
685 u64 skb_mstamp;
686 };
1da177e4
LT
687 /*
688 * This is the control buffer. It is free to use for every
689 * layer. Please put your private variables there. If you
690 * want to keep them across layers you have to do a skb_clone()
691 * first. This is owned by whoever has the skb queued ATM.
692 */
da3f5cf1 693 char cb[48] __aligned(8);
1da177e4 694
7fee226a 695 unsigned long _skb_refdst;
b1937227 696 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
697#ifdef CONFIG_XFRM
698 struct sec_path *sp;
b1937227
ED
699#endif
700#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 701 unsigned long _nfct;
b1937227 702#endif
85224844 703#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 704 struct nf_bridge_info *nf_bridge;
da3f5cf1 705#endif
1da177e4 706 unsigned int len,
334a8132
PM
707 data_len;
708 __u16 mac_len,
709 hdr_len;
b1937227
ED
710
711 /* Following fields are _not_ copied in __copy_skb_header()
712 * Note that queue_mapping is here mostly to fill a hole.
713 */
b1937227 714 __u16 queue_mapping;
36bbef52
DB
715
716/* if you move cloned around you also must adapt those constants */
717#ifdef __BIG_ENDIAN_BITFIELD
718#define CLONED_MASK (1 << 7)
719#else
720#define CLONED_MASK 1
721#endif
722#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
723
724 __u8 __cloned_offset[0];
b1937227 725 __u8 cloned:1,
6869c4d8 726 nohdr:1,
b84f4cc9 727 fclone:2,
a59322be 728 peeked:1,
b1937227 729 head_frag:1,
36bbef52 730 xmit_more:1,
6403b54a 731 pfmemalloc:1;
4031ae6e 732
b1937227
ED
733 /* fields enclosed in headers_start/headers_end are copied
734 * using a single memcpy() in __copy_skb_header()
735 */
ebcf34f3 736 /* private: */
b1937227 737 __u32 headers_start[0];
ebcf34f3 738 /* public: */
4031ae6e 739
233577a2
HFS
740/* if you move pkt_type around you also must adapt those constants */
741#ifdef __BIG_ENDIAN_BITFIELD
742#define PKT_TYPE_MAX (7 << 5)
743#else
744#define PKT_TYPE_MAX 7
1da177e4 745#endif
233577a2 746#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 747
233577a2 748 __u8 __pkt_type_offset[0];
b1937227 749 __u8 pkt_type:3;
b1937227 750 __u8 ignore_df:1;
b1937227
ED
751 __u8 nf_trace:1;
752 __u8 ip_summed:2;
3853b584 753 __u8 ooo_okay:1;
6403b54a 754
61b905da 755 __u8 l4_hash:1;
a3b18ddb 756 __u8 sw_hash:1;
6e3e939f
JB
757 __u8 wifi_acked_valid:1;
758 __u8 wifi_acked:1;
3bdc0eba 759 __u8 no_fcs:1;
77cffe23 760 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 761 __u8 encapsulation:1;
7e2b10c1 762 __u8 encap_hdr_csum:1;
5d0c2b95 763 __u8 csum_valid:1;
6403b54a 764
7e3cead5 765 __u8 csum_complete_sw:1;
b1937227 766 __u8 csum_level:2;
dba00306 767 __u8 csum_not_inet:1;
4ff06203 768 __u8 dst_pending_confirm:1;
b1937227
ED
769#ifdef CONFIG_IPV6_NDISC_NODETYPE
770 __u8 ndisc_nodetype:2;
771#endif
772 __u8 ipvs_property:1;
6403b54a 773
8bce6d7d 774 __u8 inner_protocol_type:1;
e585f236 775 __u8 remcsum_offload:1;
6bc506b4
IS
776#ifdef CONFIG_NET_SWITCHDEV
777 __u8 offload_fwd_mark:1;
778#endif
e7246e12
WB
779#ifdef CONFIG_NET_CLS_ACT
780 __u8 tc_skip_classify:1;
8dc07fdb 781 __u8 tc_at_ingress:1;
bc31c905
WB
782 __u8 tc_redirected:1;
783 __u8 tc_from_ingress:1;
e7246e12 784#endif
b1937227
ED
785
786#ifdef CONFIG_NET_SCHED
787 __u16 tc_index; /* traffic control index */
b1937227 788#endif
fe55f6d5 789
b1937227
ED
790 union {
791 __wsum csum;
792 struct {
793 __u16 csum_start;
794 __u16 csum_offset;
795 };
796 };
797 __u32 priority;
798 int skb_iif;
799 __u32 hash;
800 __be16 vlan_proto;
801 __u16 vlan_tci;
2bd82484
ED
802#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
803 union {
804 unsigned int napi_id;
805 unsigned int sender_cpu;
806 };
97fc2f08 807#endif
984bc16c 808#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 809 __u32 secmark;
0c4f691f 810#endif
0c4f691f 811
3b885787
NH
812 union {
813 __u32 mark;
16fad69c 814 __u32 reserved_tailroom;
3b885787 815 };
1da177e4 816
8bce6d7d
TH
817 union {
818 __be16 inner_protocol;
819 __u8 inner_ipproto;
820 };
821
1a37e412
SH
822 __u16 inner_transport_header;
823 __u16 inner_network_header;
824 __u16 inner_mac_header;
b1937227
ED
825
826 __be16 protocol;
1a37e412
SH
827 __u16 transport_header;
828 __u16 network_header;
829 __u16 mac_header;
b1937227 830
ebcf34f3 831 /* private: */
b1937227 832 __u32 headers_end[0];
ebcf34f3 833 /* public: */
b1937227 834
1da177e4 835 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 836 sk_buff_data_t tail;
4305b541 837 sk_buff_data_t end;
1da177e4 838 unsigned char *head,
4305b541 839 *data;
27a884dc 840 unsigned int truesize;
63354797 841 refcount_t users;
1da177e4
LT
842};
843
844#ifdef __KERNEL__
845/*
846 * Handling routines are only of interest to the kernel
847 */
848#include <linux/slab.h>
849
1da177e4 850
c93bdd0e
MG
851#define SKB_ALLOC_FCLONE 0x01
852#define SKB_ALLOC_RX 0x02
fd11a83d 853#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
854
855/* Returns true if the skb was allocated from PFMEMALLOC reserves */
856static inline bool skb_pfmemalloc(const struct sk_buff *skb)
857{
858 return unlikely(skb->pfmemalloc);
859}
860
7fee226a
ED
861/*
862 * skb might have a dst pointer attached, refcounted or not.
863 * _skb_refdst low order bit is set if refcount was _not_ taken
864 */
865#define SKB_DST_NOREF 1UL
866#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
867
a9e419dc 868#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
869/**
870 * skb_dst - returns skb dst_entry
871 * @skb: buffer
872 *
873 * Returns skb dst_entry, regardless of reference taken or not.
874 */
adf30907
ED
875static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
876{
7fee226a
ED
877 /* If refdst was not refcounted, check we still are in a
878 * rcu_read_lock section
879 */
880 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
881 !rcu_read_lock_held() &&
882 !rcu_read_lock_bh_held());
883 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
884}
885
7fee226a
ED
886/**
887 * skb_dst_set - sets skb dst
888 * @skb: buffer
889 * @dst: dst entry
890 *
891 * Sets skb dst, assuming a reference was taken on dst and should
892 * be released by skb_dst_drop()
893 */
adf30907
ED
894static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
895{
7fee226a
ED
896 skb->_skb_refdst = (unsigned long)dst;
897}
898
932bc4d7
JA
899/**
900 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
901 * @skb: buffer
902 * @dst: dst entry
903 *
904 * Sets skb dst, assuming a reference was not taken on dst.
905 * If dst entry is cached, we do not take reference and dst_release
906 * will be avoided by refdst_drop. If dst entry is not cached, we take
907 * reference, so that last dst_release can destroy the dst immediately.
908 */
909static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
910{
dbfc4fb7
HFS
911 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
912 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 913}
7fee226a
ED
914
915/**
25985edc 916 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
917 * @skb: buffer
918 */
919static inline bool skb_dst_is_noref(const struct sk_buff *skb)
920{
921 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
922}
923
511c3f92
ED
924static inline struct rtable *skb_rtable(const struct sk_buff *skb)
925{
adf30907 926 return (struct rtable *)skb_dst(skb);
511c3f92
ED
927}
928
8b10cab6
JHS
929/* For mangling skb->pkt_type from user space side from applications
930 * such as nft, tc, etc, we only allow a conservative subset of
931 * possible pkt_types to be set.
932*/
933static inline bool skb_pkt_type_ok(u32 ptype)
934{
935 return ptype <= PACKET_OTHERHOST;
936}
937
90b602f8
ML
938static inline unsigned int skb_napi_id(const struct sk_buff *skb)
939{
940#ifdef CONFIG_NET_RX_BUSY_POLL
941 return skb->napi_id;
942#else
943 return 0;
944#endif
945}
946
3889a803
PA
947/* decrement the reference count and return true if we can free the skb */
948static inline bool skb_unref(struct sk_buff *skb)
949{
950 if (unlikely(!skb))
951 return false;
63354797 952 if (likely(refcount_read(&skb->users) == 1))
3889a803 953 smp_rmb();
63354797 954 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
955 return false;
956
957 return true;
958}
959
0a463c78 960void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
961void kfree_skb(struct sk_buff *skb);
962void kfree_skb_list(struct sk_buff *segs);
963void skb_tx_error(struct sk_buff *skb);
964void consume_skb(struct sk_buff *skb);
ca2c1418 965void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 966void __kfree_skb(struct sk_buff *skb);
d7e8883c 967extern struct kmem_cache *skbuff_head_cache;
bad43ca8 968
7965bd4d
JP
969void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
970bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
971 bool *fragstolen, int *delta_truesize);
bad43ca8 972
7965bd4d
JP
973struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
974 int node);
2ea2f62c 975struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 976struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 977static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 978 gfp_t priority)
d179cd12 979{
564824b0 980 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
981}
982
2e4e4410
ED
983struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
984 unsigned long data_len,
985 int max_page_order,
986 int *errcode,
987 gfp_t gfp_mask);
988
d0bf4a9e
ED
989/* Layout of fast clones : [skb1][skb2][fclone_ref] */
990struct sk_buff_fclones {
991 struct sk_buff skb1;
992
993 struct sk_buff skb2;
994
2638595a 995 refcount_t fclone_ref;
d0bf4a9e
ED
996};
997
998/**
999 * skb_fclone_busy - check if fclone is busy
293de7de 1000 * @sk: socket
d0bf4a9e
ED
1001 * @skb: buffer
1002 *
bda13fed 1003 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1004 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1005 * so we also check that this didnt happen.
d0bf4a9e 1006 */
39bb5e62
ED
1007static inline bool skb_fclone_busy(const struct sock *sk,
1008 const struct sk_buff *skb)
d0bf4a9e
ED
1009{
1010 const struct sk_buff_fclones *fclones;
1011
1012 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1013
1014 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1015 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1016 fclones->skb2.sk == sk;
d0bf4a9e
ED
1017}
1018
d179cd12 1019static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1020 gfp_t priority)
d179cd12 1021{
c93bdd0e 1022 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1023}
1024
7965bd4d
JP
1025struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1026int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1027struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1028struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1029struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1030 gfp_t gfp_mask, bool fclone);
1031static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1032 gfp_t gfp_mask)
1033{
1034 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1035}
7965bd4d
JP
1036
1037int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1038struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1039 unsigned int headroom);
1040struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1041 int newtailroom, gfp_t priority);
48a1df65
JD
1042int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1043 int offset, int len);
1044int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1045 int offset, int len);
7965bd4d 1046int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1047int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1048
1049/**
1050 * skb_pad - zero pad the tail of an skb
1051 * @skb: buffer to pad
1052 * @pad: space to pad
1053 *
1054 * Ensure that a buffer is followed by a padding area that is zero
1055 * filled. Used by network drivers which may DMA or transfer data
1056 * beyond the buffer end onto the wire.
1057 *
1058 * May return error in out of memory cases. The skb is freed on error.
1059 */
1060static inline int skb_pad(struct sk_buff *skb, int pad)
1061{
1062 return __skb_pad(skb, pad, true);
1063}
ead2ceb0 1064#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1065
7965bd4d
JP
1066int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1067 int getfrag(void *from, char *to, int offset,
1068 int len, int odd, struct sk_buff *skb),
1069 void *from, int length);
e89e9cf5 1070
be12a1fe
HFS
1071int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1072 int offset, size_t size);
1073
d94d9fee 1074struct skb_seq_state {
677e90ed
TG
1075 __u32 lower_offset;
1076 __u32 upper_offset;
1077 __u32 frag_idx;
1078 __u32 stepped_offset;
1079 struct sk_buff *root_skb;
1080 struct sk_buff *cur_skb;
1081 __u8 *frag_data;
1082};
1083
7965bd4d
JP
1084void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1085 unsigned int to, struct skb_seq_state *st);
1086unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1087 struct skb_seq_state *st);
1088void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1089
7965bd4d 1090unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1091 unsigned int to, struct ts_config *config);
3fc7e8a6 1092
09323cc4
TH
1093/*
1094 * Packet hash types specify the type of hash in skb_set_hash.
1095 *
1096 * Hash types refer to the protocol layer addresses which are used to
1097 * construct a packet's hash. The hashes are used to differentiate or identify
1098 * flows of the protocol layer for the hash type. Hash types are either
1099 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1100 *
1101 * Properties of hashes:
1102 *
1103 * 1) Two packets in different flows have different hash values
1104 * 2) Two packets in the same flow should have the same hash value
1105 *
1106 * A hash at a higher layer is considered to be more specific. A driver should
1107 * set the most specific hash possible.
1108 *
1109 * A driver cannot indicate a more specific hash than the layer at which a hash
1110 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1111 *
1112 * A driver may indicate a hash level which is less specific than the
1113 * actual layer the hash was computed on. For instance, a hash computed
1114 * at L4 may be considered an L3 hash. This should only be done if the
1115 * driver can't unambiguously determine that the HW computed the hash at
1116 * the higher layer. Note that the "should" in the second property above
1117 * permits this.
1118 */
1119enum pkt_hash_types {
1120 PKT_HASH_TYPE_NONE, /* Undefined type */
1121 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1122 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1123 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1124};
1125
bcc83839 1126static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1127{
bcc83839 1128 skb->hash = 0;
a3b18ddb 1129 skb->sw_hash = 0;
bcc83839
TH
1130 skb->l4_hash = 0;
1131}
1132
1133static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1134{
1135 if (!skb->l4_hash)
1136 skb_clear_hash(skb);
1137}
1138
1139static inline void
1140__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1141{
1142 skb->l4_hash = is_l4;
1143 skb->sw_hash = is_sw;
61b905da 1144 skb->hash = hash;
09323cc4
TH
1145}
1146
bcc83839
TH
1147static inline void
1148skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1149{
1150 /* Used by drivers to set hash from HW */
1151 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1152}
1153
1154static inline void
1155__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1156{
1157 __skb_set_hash(skb, hash, true, is_l4);
1158}
1159
e5276937 1160void __skb_get_hash(struct sk_buff *skb);
b917783c 1161u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1162u32 skb_get_poff(const struct sk_buff *skb);
1163u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1164 const struct flow_keys *keys, int hlen);
1165__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1166 void *data, int hlen_proto);
1167
1168static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1169 int thoff, u8 ip_proto)
1170{
1171 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1172}
1173
1174void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1175 const struct flow_dissector_key *key,
1176 unsigned int key_count);
1177
1178bool __skb_flow_dissect(const struct sk_buff *skb,
1179 struct flow_dissector *flow_dissector,
1180 void *target_container,
cd79a238
TH
1181 void *data, __be16 proto, int nhoff, int hlen,
1182 unsigned int flags);
e5276937
TH
1183
1184static inline bool skb_flow_dissect(const struct sk_buff *skb,
1185 struct flow_dissector *flow_dissector,
cd79a238 1186 void *target_container, unsigned int flags)
e5276937
TH
1187{
1188 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1189 NULL, 0, 0, 0, flags);
e5276937
TH
1190}
1191
1192static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1193 struct flow_keys *flow,
1194 unsigned int flags)
e5276937
TH
1195{
1196 memset(flow, 0, sizeof(*flow));
1197 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1198 NULL, 0, 0, 0, flags);
e5276937
TH
1199}
1200
1201static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1202 void *data, __be16 proto,
cd79a238
TH
1203 int nhoff, int hlen,
1204 unsigned int flags)
e5276937
TH
1205{
1206 memset(flow, 0, sizeof(*flow));
1207 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1208 data, proto, nhoff, hlen, flags);
e5276937
TH
1209}
1210
3958afa1 1211static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1212{
a3b18ddb 1213 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1214 __skb_get_hash(skb);
bfb564e7 1215
61b905da 1216 return skb->hash;
bfb564e7
KK
1217}
1218
20a17bf6 1219static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1220{
c6cc1ca7
TH
1221 if (!skb->l4_hash && !skb->sw_hash) {
1222 struct flow_keys keys;
de4c1f8b 1223 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1224
de4c1f8b 1225 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1226 }
f70ea018
TH
1227
1228 return skb->hash;
1229}
1230
50fb7992
TH
1231__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1232
57bdf7f4
TH
1233static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1234{
61b905da 1235 return skb->hash;
57bdf7f4
TH
1236}
1237
3df7a74e
TH
1238static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1239{
61b905da 1240 to->hash = from->hash;
a3b18ddb 1241 to->sw_hash = from->sw_hash;
61b905da 1242 to->l4_hash = from->l4_hash;
3df7a74e
TH
1243};
1244
4305b541
ACM
1245#ifdef NET_SKBUFF_DATA_USES_OFFSET
1246static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1247{
1248 return skb->head + skb->end;
1249}
ec47ea82
AD
1250
1251static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1252{
1253 return skb->end;
1254}
4305b541
ACM
1255#else
1256static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1257{
1258 return skb->end;
1259}
ec47ea82
AD
1260
1261static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1262{
1263 return skb->end - skb->head;
1264}
4305b541
ACM
1265#endif
1266
1da177e4 1267/* Internal */
4305b541 1268#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1269
ac45f602
PO
1270static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1271{
1272 return &skb_shinfo(skb)->hwtstamps;
1273}
1274
52267790
WB
1275static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1276{
1277 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1278
1279 return is_zcopy ? skb_uarg(skb) : NULL;
1280}
1281
1282static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1283{
1284 if (skb && uarg && !skb_zcopy(skb)) {
1285 sock_zerocopy_get(uarg);
1286 skb_shinfo(skb)->destructor_arg = uarg;
1287 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1288 }
1289}
1290
67f6fba7
WB
1291static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1292{
1293 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1294 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1295}
1296
1297static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1298{
1299 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1300}
1301
1302static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1303{
1304 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1305}
1306
52267790
WB
1307/* Release a reference on a zerocopy structure */
1308static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1309{
1310 struct ubuf_info *uarg = skb_zcopy(skb);
1311
1312 if (uarg) {
0a4a060b
WB
1313 if (uarg->callback == sock_zerocopy_callback) {
1314 uarg->zerocopy = uarg->zerocopy && zerocopy;
1315 sock_zerocopy_put(uarg);
67f6fba7 1316 } else if (!skb_zcopy_is_nouarg(skb)) {
0a4a060b
WB
1317 uarg->callback(uarg, zerocopy);
1318 }
1319
52267790
WB
1320 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1321 }
1322}
1323
1324/* Abort a zerocopy operation and revert zckey on error in send syscall */
1325static inline void skb_zcopy_abort(struct sk_buff *skb)
1326{
1327 struct ubuf_info *uarg = skb_zcopy(skb);
1328
1329 if (uarg) {
1330 sock_zerocopy_put_abort(uarg);
1331 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1332 }
1333}
1334
1da177e4
LT
1335/**
1336 * skb_queue_empty - check if a queue is empty
1337 * @list: queue head
1338 *
1339 * Returns true if the queue is empty, false otherwise.
1340 */
1341static inline int skb_queue_empty(const struct sk_buff_head *list)
1342{
fd44b93c 1343 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1344}
1345
fc7ebb21
DM
1346/**
1347 * skb_queue_is_last - check if skb is the last entry in the queue
1348 * @list: queue head
1349 * @skb: buffer
1350 *
1351 * Returns true if @skb is the last buffer on the list.
1352 */
1353static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1354 const struct sk_buff *skb)
1355{
fd44b93c 1356 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1357}
1358
832d11c5
IJ
1359/**
1360 * skb_queue_is_first - check if skb is the first entry in the queue
1361 * @list: queue head
1362 * @skb: buffer
1363 *
1364 * Returns true if @skb is the first buffer on the list.
1365 */
1366static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1367 const struct sk_buff *skb)
1368{
fd44b93c 1369 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1370}
1371
249c8b42
DM
1372/**
1373 * skb_queue_next - return the next packet in the queue
1374 * @list: queue head
1375 * @skb: current buffer
1376 *
1377 * Return the next packet in @list after @skb. It is only valid to
1378 * call this if skb_queue_is_last() evaluates to false.
1379 */
1380static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1381 const struct sk_buff *skb)
1382{
1383 /* This BUG_ON may seem severe, but if we just return then we
1384 * are going to dereference garbage.
1385 */
1386 BUG_ON(skb_queue_is_last(list, skb));
1387 return skb->next;
1388}
1389
832d11c5
IJ
1390/**
1391 * skb_queue_prev - return the prev packet in the queue
1392 * @list: queue head
1393 * @skb: current buffer
1394 *
1395 * Return the prev packet in @list before @skb. It is only valid to
1396 * call this if skb_queue_is_first() evaluates to false.
1397 */
1398static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1399 const struct sk_buff *skb)
1400{
1401 /* This BUG_ON may seem severe, but if we just return then we
1402 * are going to dereference garbage.
1403 */
1404 BUG_ON(skb_queue_is_first(list, skb));
1405 return skb->prev;
1406}
1407
1da177e4
LT
1408/**
1409 * skb_get - reference buffer
1410 * @skb: buffer to reference
1411 *
1412 * Makes another reference to a socket buffer and returns a pointer
1413 * to the buffer.
1414 */
1415static inline struct sk_buff *skb_get(struct sk_buff *skb)
1416{
63354797 1417 refcount_inc(&skb->users);
1da177e4
LT
1418 return skb;
1419}
1420
1421/*
1422 * If users == 1, we are the only owner and are can avoid redundant
1423 * atomic change.
1424 */
1425
1da177e4
LT
1426/**
1427 * skb_cloned - is the buffer a clone
1428 * @skb: buffer to check
1429 *
1430 * Returns true if the buffer was generated with skb_clone() and is
1431 * one of multiple shared copies of the buffer. Cloned buffers are
1432 * shared data so must not be written to under normal circumstances.
1433 */
1434static inline int skb_cloned(const struct sk_buff *skb)
1435{
1436 return skb->cloned &&
1437 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1438}
1439
14bbd6a5
PS
1440static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1441{
d0164adc 1442 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1443
1444 if (skb_cloned(skb))
1445 return pskb_expand_head(skb, 0, 0, pri);
1446
1447 return 0;
1448}
1449
1da177e4
LT
1450/**
1451 * skb_header_cloned - is the header a clone
1452 * @skb: buffer to check
1453 *
1454 * Returns true if modifying the header part of the buffer requires
1455 * the data to be copied.
1456 */
1457static inline int skb_header_cloned(const struct sk_buff *skb)
1458{
1459 int dataref;
1460
1461 if (!skb->cloned)
1462 return 0;
1463
1464 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1465 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1466 return dataref != 1;
1467}
1468
9580bf2e
ED
1469static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1470{
1471 might_sleep_if(gfpflags_allow_blocking(pri));
1472
1473 if (skb_header_cloned(skb))
1474 return pskb_expand_head(skb, 0, 0, pri);
1475
1476 return 0;
1477}
1478
1da177e4
LT
1479/**
1480 * skb_header_release - release reference to header
1481 * @skb: buffer to operate on
1482 *
1483 * Drop a reference to the header part of the buffer. This is done
1484 * by acquiring a payload reference. You must not read from the header
1485 * part of skb->data after this.
f4a775d1 1486 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1487 */
1488static inline void skb_header_release(struct sk_buff *skb)
1489{
1490 BUG_ON(skb->nohdr);
1491 skb->nohdr = 1;
1492 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1493}
1494
f4a775d1
ED
1495/**
1496 * __skb_header_release - release reference to header
1497 * @skb: buffer to operate on
1498 *
1499 * Variant of skb_header_release() assuming skb is private to caller.
1500 * We can avoid one atomic operation.
1501 */
1502static inline void __skb_header_release(struct sk_buff *skb)
1503{
1504 skb->nohdr = 1;
1505 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1506}
1507
1508
1da177e4
LT
1509/**
1510 * skb_shared - is the buffer shared
1511 * @skb: buffer to check
1512 *
1513 * Returns true if more than one person has a reference to this
1514 * buffer.
1515 */
1516static inline int skb_shared(const struct sk_buff *skb)
1517{
63354797 1518 return refcount_read(&skb->users) != 1;
1da177e4
LT
1519}
1520
1521/**
1522 * skb_share_check - check if buffer is shared and if so clone it
1523 * @skb: buffer to check
1524 * @pri: priority for memory allocation
1525 *
1526 * If the buffer is shared the buffer is cloned and the old copy
1527 * drops a reference. A new clone with a single reference is returned.
1528 * If the buffer is not shared the original buffer is returned. When
1529 * being called from interrupt status or with spinlocks held pri must
1530 * be GFP_ATOMIC.
1531 *
1532 * NULL is returned on a memory allocation failure.
1533 */
47061bc4 1534static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1535{
d0164adc 1536 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1537 if (skb_shared(skb)) {
1538 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1539
1540 if (likely(nskb))
1541 consume_skb(skb);
1542 else
1543 kfree_skb(skb);
1da177e4
LT
1544 skb = nskb;
1545 }
1546 return skb;
1547}
1548
1549/*
1550 * Copy shared buffers into a new sk_buff. We effectively do COW on
1551 * packets to handle cases where we have a local reader and forward
1552 * and a couple of other messy ones. The normal one is tcpdumping
1553 * a packet thats being forwarded.
1554 */
1555
1556/**
1557 * skb_unshare - make a copy of a shared buffer
1558 * @skb: buffer to check
1559 * @pri: priority for memory allocation
1560 *
1561 * If the socket buffer is a clone then this function creates a new
1562 * copy of the data, drops a reference count on the old copy and returns
1563 * the new copy with the reference count at 1. If the buffer is not a clone
1564 * the original buffer is returned. When called with a spinlock held or
1565 * from interrupt state @pri must be %GFP_ATOMIC
1566 *
1567 * %NULL is returned on a memory allocation failure.
1568 */
e2bf521d 1569static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1570 gfp_t pri)
1da177e4 1571{
d0164adc 1572 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1573 if (skb_cloned(skb)) {
1574 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1575
1576 /* Free our shared copy */
1577 if (likely(nskb))
1578 consume_skb(skb);
1579 else
1580 kfree_skb(skb);
1da177e4
LT
1581 skb = nskb;
1582 }
1583 return skb;
1584}
1585
1586/**
1a5778aa 1587 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1588 * @list_: list to peek at
1589 *
1590 * Peek an &sk_buff. Unlike most other operations you _MUST_
1591 * be careful with this one. A peek leaves the buffer on the
1592 * list and someone else may run off with it. You must hold
1593 * the appropriate locks or have a private queue to do this.
1594 *
1595 * Returns %NULL for an empty list or a pointer to the head element.
1596 * The reference count is not incremented and the reference is therefore
1597 * volatile. Use with caution.
1598 */
05bdd2f1 1599static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1600{
18d07000
ED
1601 struct sk_buff *skb = list_->next;
1602
1603 if (skb == (struct sk_buff *)list_)
1604 skb = NULL;
1605 return skb;
1da177e4
LT
1606}
1607
da5ef6e5
PE
1608/**
1609 * skb_peek_next - peek skb following the given one from a queue
1610 * @skb: skb to start from
1611 * @list_: list to peek at
1612 *
1613 * Returns %NULL when the end of the list is met or a pointer to the
1614 * next element. The reference count is not incremented and the
1615 * reference is therefore volatile. Use with caution.
1616 */
1617static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1618 const struct sk_buff_head *list_)
1619{
1620 struct sk_buff *next = skb->next;
18d07000 1621
da5ef6e5
PE
1622 if (next == (struct sk_buff *)list_)
1623 next = NULL;
1624 return next;
1625}
1626
1da177e4 1627/**
1a5778aa 1628 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1629 * @list_: list to peek at
1630 *
1631 * Peek an &sk_buff. Unlike most other operations you _MUST_
1632 * be careful with this one. A peek leaves the buffer on the
1633 * list and someone else may run off with it. You must hold
1634 * the appropriate locks or have a private queue to do this.
1635 *
1636 * Returns %NULL for an empty list or a pointer to the tail element.
1637 * The reference count is not incremented and the reference is therefore
1638 * volatile. Use with caution.
1639 */
05bdd2f1 1640static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1641{
18d07000
ED
1642 struct sk_buff *skb = list_->prev;
1643
1644 if (skb == (struct sk_buff *)list_)
1645 skb = NULL;
1646 return skb;
1647
1da177e4
LT
1648}
1649
1650/**
1651 * skb_queue_len - get queue length
1652 * @list_: list to measure
1653 *
1654 * Return the length of an &sk_buff queue.
1655 */
1656static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1657{
1658 return list_->qlen;
1659}
1660
67fed459
DM
1661/**
1662 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1663 * @list: queue to initialize
1664 *
1665 * This initializes only the list and queue length aspects of
1666 * an sk_buff_head object. This allows to initialize the list
1667 * aspects of an sk_buff_head without reinitializing things like
1668 * the spinlock. It can also be used for on-stack sk_buff_head
1669 * objects where the spinlock is known to not be used.
1670 */
1671static inline void __skb_queue_head_init(struct sk_buff_head *list)
1672{
1673 list->prev = list->next = (struct sk_buff *)list;
1674 list->qlen = 0;
1675}
1676
76f10ad0
AV
1677/*
1678 * This function creates a split out lock class for each invocation;
1679 * this is needed for now since a whole lot of users of the skb-queue
1680 * infrastructure in drivers have different locking usage (in hardirq)
1681 * than the networking core (in softirq only). In the long run either the
1682 * network layer or drivers should need annotation to consolidate the
1683 * main types of usage into 3 classes.
1684 */
1da177e4
LT
1685static inline void skb_queue_head_init(struct sk_buff_head *list)
1686{
1687 spin_lock_init(&list->lock);
67fed459 1688 __skb_queue_head_init(list);
1da177e4
LT
1689}
1690
c2ecba71
PE
1691static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1692 struct lock_class_key *class)
1693{
1694 skb_queue_head_init(list);
1695 lockdep_set_class(&list->lock, class);
1696}
1697
1da177e4 1698/*
bf299275 1699 * Insert an sk_buff on a list.
1da177e4
LT
1700 *
1701 * The "__skb_xxxx()" functions are the non-atomic ones that
1702 * can only be called with interrupts disabled.
1703 */
7965bd4d
JP
1704void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1705 struct sk_buff_head *list);
bf299275
GR
1706static inline void __skb_insert(struct sk_buff *newsk,
1707 struct sk_buff *prev, struct sk_buff *next,
1708 struct sk_buff_head *list)
1709{
1710 newsk->next = next;
1711 newsk->prev = prev;
1712 next->prev = prev->next = newsk;
1713 list->qlen++;
1714}
1da177e4 1715
67fed459
DM
1716static inline void __skb_queue_splice(const struct sk_buff_head *list,
1717 struct sk_buff *prev,
1718 struct sk_buff *next)
1719{
1720 struct sk_buff *first = list->next;
1721 struct sk_buff *last = list->prev;
1722
1723 first->prev = prev;
1724 prev->next = first;
1725
1726 last->next = next;
1727 next->prev = last;
1728}
1729
1730/**
1731 * skb_queue_splice - join two skb lists, this is designed for stacks
1732 * @list: the new list to add
1733 * @head: the place to add it in the first list
1734 */
1735static inline void skb_queue_splice(const struct sk_buff_head *list,
1736 struct sk_buff_head *head)
1737{
1738 if (!skb_queue_empty(list)) {
1739 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1740 head->qlen += list->qlen;
67fed459
DM
1741 }
1742}
1743
1744/**
d9619496 1745 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1746 * @list: the new list to add
1747 * @head: the place to add it in the first list
1748 *
1749 * The list at @list is reinitialised
1750 */
1751static inline void skb_queue_splice_init(struct sk_buff_head *list,
1752 struct sk_buff_head *head)
1753{
1754 if (!skb_queue_empty(list)) {
1755 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1756 head->qlen += list->qlen;
67fed459
DM
1757 __skb_queue_head_init(list);
1758 }
1759}
1760
1761/**
1762 * skb_queue_splice_tail - join two skb lists, each list being a queue
1763 * @list: the new list to add
1764 * @head: the place to add it in the first list
1765 */
1766static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1767 struct sk_buff_head *head)
1768{
1769 if (!skb_queue_empty(list)) {
1770 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1771 head->qlen += list->qlen;
67fed459
DM
1772 }
1773}
1774
1775/**
d9619496 1776 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1777 * @list: the new list to add
1778 * @head: the place to add it in the first list
1779 *
1780 * Each of the lists is a queue.
1781 * The list at @list is reinitialised
1782 */
1783static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1784 struct sk_buff_head *head)
1785{
1786 if (!skb_queue_empty(list)) {
1787 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1788 head->qlen += list->qlen;
67fed459
DM
1789 __skb_queue_head_init(list);
1790 }
1791}
1792
1da177e4 1793/**
300ce174 1794 * __skb_queue_after - queue a buffer at the list head
1da177e4 1795 * @list: list to use
300ce174 1796 * @prev: place after this buffer
1da177e4
LT
1797 * @newsk: buffer to queue
1798 *
300ce174 1799 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1800 * and you must therefore hold required locks before calling it.
1801 *
1802 * A buffer cannot be placed on two lists at the same time.
1803 */
300ce174
SH
1804static inline void __skb_queue_after(struct sk_buff_head *list,
1805 struct sk_buff *prev,
1806 struct sk_buff *newsk)
1da177e4 1807{
bf299275 1808 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1809}
1810
7965bd4d
JP
1811void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1812 struct sk_buff_head *list);
7de6c033 1813
f5572855
GR
1814static inline void __skb_queue_before(struct sk_buff_head *list,
1815 struct sk_buff *next,
1816 struct sk_buff *newsk)
1817{
1818 __skb_insert(newsk, next->prev, next, list);
1819}
1820
300ce174
SH
1821/**
1822 * __skb_queue_head - queue a buffer at the list head
1823 * @list: list to use
1824 * @newsk: buffer to queue
1825 *
1826 * Queue a buffer at the start of a list. This function takes no locks
1827 * and you must therefore hold required locks before calling it.
1828 *
1829 * A buffer cannot be placed on two lists at the same time.
1830 */
7965bd4d 1831void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1832static inline void __skb_queue_head(struct sk_buff_head *list,
1833 struct sk_buff *newsk)
1834{
1835 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1836}
1837
1da177e4
LT
1838/**
1839 * __skb_queue_tail - queue a buffer at the list tail
1840 * @list: list to use
1841 * @newsk: buffer to queue
1842 *
1843 * Queue a buffer at the end of a list. This function takes no locks
1844 * and you must therefore hold required locks before calling it.
1845 *
1846 * A buffer cannot be placed on two lists at the same time.
1847 */
7965bd4d 1848void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1849static inline void __skb_queue_tail(struct sk_buff_head *list,
1850 struct sk_buff *newsk)
1851{
f5572855 1852 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1853}
1854
1da177e4
LT
1855/*
1856 * remove sk_buff from list. _Must_ be called atomically, and with
1857 * the list known..
1858 */
7965bd4d 1859void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1860static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1861{
1862 struct sk_buff *next, *prev;
1863
1864 list->qlen--;
1865 next = skb->next;
1866 prev = skb->prev;
1867 skb->next = skb->prev = NULL;
1da177e4
LT
1868 next->prev = prev;
1869 prev->next = next;
1870}
1871
f525c06d
GR
1872/**
1873 * __skb_dequeue - remove from the head of the queue
1874 * @list: list to dequeue from
1875 *
1876 * Remove the head of the list. This function does not take any locks
1877 * so must be used with appropriate locks held only. The head item is
1878 * returned or %NULL if the list is empty.
1879 */
7965bd4d 1880struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1881static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1882{
1883 struct sk_buff *skb = skb_peek(list);
1884 if (skb)
1885 __skb_unlink(skb, list);
1886 return skb;
1887}
1da177e4
LT
1888
1889/**
1890 * __skb_dequeue_tail - remove from the tail of the queue
1891 * @list: list to dequeue from
1892 *
1893 * Remove the tail of the list. This function does not take any locks
1894 * so must be used with appropriate locks held only. The tail item is
1895 * returned or %NULL if the list is empty.
1896 */
7965bd4d 1897struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1898static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1899{
1900 struct sk_buff *skb = skb_peek_tail(list);
1901 if (skb)
1902 __skb_unlink(skb, list);
1903 return skb;
1904}
1905
1906
bdcc0924 1907static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1908{
1909 return skb->data_len;
1910}
1911
1912static inline unsigned int skb_headlen(const struct sk_buff *skb)
1913{
1914 return skb->len - skb->data_len;
1915}
1916
3ece7826 1917static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1918{
c72d8cda 1919 unsigned int i, len = 0;
1da177e4 1920
c72d8cda 1921 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1922 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1923 return len;
1924}
1925
1926static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1927{
1928 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1929}
1930
131ea667
IC
1931/**
1932 * __skb_fill_page_desc - initialise a paged fragment in an skb
1933 * @skb: buffer containing fragment to be initialised
1934 * @i: paged fragment index to initialise
1935 * @page: the page to use for this fragment
1936 * @off: the offset to the data with @page
1937 * @size: the length of the data
1938 *
1939 * Initialises the @i'th fragment of @skb to point to &size bytes at
1940 * offset @off within @page.
1941 *
1942 * Does not take any additional reference on the fragment.
1943 */
1944static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1945 struct page *page, int off, int size)
1da177e4
LT
1946{
1947 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1948
c48a11c7 1949 /*
2f064f34
MH
1950 * Propagate page pfmemalloc to the skb if we can. The problem is
1951 * that not all callers have unique ownership of the page but rely
1952 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1953 */
a8605c60 1954 frag->page.p = page;
1da177e4 1955 frag->page_offset = off;
9e903e08 1956 skb_frag_size_set(frag, size);
cca7af38
PE
1957
1958 page = compound_head(page);
2f064f34 1959 if (page_is_pfmemalloc(page))
cca7af38 1960 skb->pfmemalloc = true;
131ea667
IC
1961}
1962
1963/**
1964 * skb_fill_page_desc - initialise a paged fragment in an skb
1965 * @skb: buffer containing fragment to be initialised
1966 * @i: paged fragment index to initialise
1967 * @page: the page to use for this fragment
1968 * @off: the offset to the data with @page
1969 * @size: the length of the data
1970 *
1971 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1972 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1973 * addition updates @skb such that @i is the last fragment.
1974 *
1975 * Does not take any additional reference on the fragment.
1976 */
1977static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1978 struct page *page, int off, int size)
1979{
1980 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1981 skb_shinfo(skb)->nr_frags = i + 1;
1982}
1983
7965bd4d
JP
1984void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1985 int size, unsigned int truesize);
654bed16 1986
f8e617e1
JW
1987void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1988 unsigned int truesize);
1989
1da177e4 1990#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1991#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1992#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1993
27a884dc
ACM
1994#ifdef NET_SKBUFF_DATA_USES_OFFSET
1995static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1996{
1997 return skb->head + skb->tail;
1998}
1999
2000static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2001{
2002 skb->tail = skb->data - skb->head;
2003}
2004
2005static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2006{
2007 skb_reset_tail_pointer(skb);
2008 skb->tail += offset;
2009}
7cc46190 2010
27a884dc
ACM
2011#else /* NET_SKBUFF_DATA_USES_OFFSET */
2012static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2013{
2014 return skb->tail;
2015}
2016
2017static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2018{
2019 skb->tail = skb->data;
2020}
2021
2022static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2023{
2024 skb->tail = skb->data + offset;
2025}
4305b541 2026
27a884dc
ACM
2027#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2028
1da177e4
LT
2029/*
2030 * Add data to an sk_buff
2031 */
4df864c1
JB
2032void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2033void *skb_put(struct sk_buff *skb, unsigned int len);
2034static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2035{
4df864c1 2036 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2037 SKB_LINEAR_ASSERT(skb);
2038 skb->tail += len;
2039 skb->len += len;
2040 return tmp;
2041}
2042
de77b966 2043static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2044{
2045 void *tmp = __skb_put(skb, len);
2046
2047 memset(tmp, 0, len);
2048 return tmp;
2049}
2050
2051static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2052 unsigned int len)
2053{
2054 void *tmp = __skb_put(skb, len);
2055
2056 memcpy(tmp, data, len);
2057 return tmp;
2058}
2059
2060static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2061{
2062 *(u8 *)__skb_put(skb, 1) = val;
2063}
2064
83ad357d 2065static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2066{
83ad357d 2067 void *tmp = skb_put(skb, len);
e45a79da
JB
2068
2069 memset(tmp, 0, len);
2070
2071 return tmp;
2072}
2073
59ae1d12
JB
2074static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2075 unsigned int len)
2076{
2077 void *tmp = skb_put(skb, len);
2078
2079 memcpy(tmp, data, len);
2080
2081 return tmp;
2082}
2083
634fef61
JB
2084static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2085{
2086 *(u8 *)skb_put(skb, 1) = val;
2087}
2088
d58ff351
JB
2089void *skb_push(struct sk_buff *skb, unsigned int len);
2090static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2091{
2092 skb->data -= len;
2093 skb->len += len;
2094 return skb->data;
2095}
2096
af72868b
JB
2097void *skb_pull(struct sk_buff *skb, unsigned int len);
2098static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2099{
2100 skb->len -= len;
2101 BUG_ON(skb->len < skb->data_len);
2102 return skb->data += len;
2103}
2104
af72868b 2105static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2106{
2107 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2108}
2109
af72868b 2110void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2111
af72868b 2112static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2113{
2114 if (len > skb_headlen(skb) &&
987c402a 2115 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2116 return NULL;
2117 skb->len -= len;
2118 return skb->data += len;
2119}
2120
af72868b 2121static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2122{
2123 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2124}
2125
2126static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2127{
2128 if (likely(len <= skb_headlen(skb)))
2129 return 1;
2130 if (unlikely(len > skb->len))
2131 return 0;
987c402a 2132 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2133}
2134
c8c8b127
ED
2135void skb_condense(struct sk_buff *skb);
2136
1da177e4
LT
2137/**
2138 * skb_headroom - bytes at buffer head
2139 * @skb: buffer to check
2140 *
2141 * Return the number of bytes of free space at the head of an &sk_buff.
2142 */
c2636b4d 2143static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2144{
2145 return skb->data - skb->head;
2146}
2147
2148/**
2149 * skb_tailroom - bytes at buffer end
2150 * @skb: buffer to check
2151 *
2152 * Return the number of bytes of free space at the tail of an sk_buff
2153 */
2154static inline int skb_tailroom(const struct sk_buff *skb)
2155{
4305b541 2156 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2157}
2158
a21d4572
ED
2159/**
2160 * skb_availroom - bytes at buffer end
2161 * @skb: buffer to check
2162 *
2163 * Return the number of bytes of free space at the tail of an sk_buff
2164 * allocated by sk_stream_alloc()
2165 */
2166static inline int skb_availroom(const struct sk_buff *skb)
2167{
16fad69c
ED
2168 if (skb_is_nonlinear(skb))
2169 return 0;
2170
2171 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2172}
2173
1da177e4
LT
2174/**
2175 * skb_reserve - adjust headroom
2176 * @skb: buffer to alter
2177 * @len: bytes to move
2178 *
2179 * Increase the headroom of an empty &sk_buff by reducing the tail
2180 * room. This is only allowed for an empty buffer.
2181 */
8243126c 2182static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2183{
2184 skb->data += len;
2185 skb->tail += len;
2186}
2187
1837b2e2
BP
2188/**
2189 * skb_tailroom_reserve - adjust reserved_tailroom
2190 * @skb: buffer to alter
2191 * @mtu: maximum amount of headlen permitted
2192 * @needed_tailroom: minimum amount of reserved_tailroom
2193 *
2194 * Set reserved_tailroom so that headlen can be as large as possible but
2195 * not larger than mtu and tailroom cannot be smaller than
2196 * needed_tailroom.
2197 * The required headroom should already have been reserved before using
2198 * this function.
2199 */
2200static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2201 unsigned int needed_tailroom)
2202{
2203 SKB_LINEAR_ASSERT(skb);
2204 if (mtu < skb_tailroom(skb) - needed_tailroom)
2205 /* use at most mtu */
2206 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2207 else
2208 /* use up to all available space */
2209 skb->reserved_tailroom = needed_tailroom;
2210}
2211
8bce6d7d
TH
2212#define ENCAP_TYPE_ETHER 0
2213#define ENCAP_TYPE_IPPROTO 1
2214
2215static inline void skb_set_inner_protocol(struct sk_buff *skb,
2216 __be16 protocol)
2217{
2218 skb->inner_protocol = protocol;
2219 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2220}
2221
2222static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2223 __u8 ipproto)
2224{
2225 skb->inner_ipproto = ipproto;
2226 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2227}
2228
6a674e9c
JG
2229static inline void skb_reset_inner_headers(struct sk_buff *skb)
2230{
aefbd2b3 2231 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2232 skb->inner_network_header = skb->network_header;
2233 skb->inner_transport_header = skb->transport_header;
2234}
2235
0b5c9db1
JP
2236static inline void skb_reset_mac_len(struct sk_buff *skb)
2237{
2238 skb->mac_len = skb->network_header - skb->mac_header;
2239}
2240
6a674e9c
JG
2241static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2242 *skb)
2243{
2244 return skb->head + skb->inner_transport_header;
2245}
2246
55dc5a9f
TH
2247static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2248{
2249 return skb_inner_transport_header(skb) - skb->data;
2250}
2251
6a674e9c
JG
2252static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2253{
2254 skb->inner_transport_header = skb->data - skb->head;
2255}
2256
2257static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2258 const int offset)
2259{
2260 skb_reset_inner_transport_header(skb);
2261 skb->inner_transport_header += offset;
2262}
2263
2264static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2265{
2266 return skb->head + skb->inner_network_header;
2267}
2268
2269static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2270{
2271 skb->inner_network_header = skb->data - skb->head;
2272}
2273
2274static inline void skb_set_inner_network_header(struct sk_buff *skb,
2275 const int offset)
2276{
2277 skb_reset_inner_network_header(skb);
2278 skb->inner_network_header += offset;
2279}
2280
aefbd2b3
PS
2281static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2282{
2283 return skb->head + skb->inner_mac_header;
2284}
2285
2286static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2287{
2288 skb->inner_mac_header = skb->data - skb->head;
2289}
2290
2291static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2292 const int offset)
2293{
2294 skb_reset_inner_mac_header(skb);
2295 skb->inner_mac_header += offset;
2296}
fda55eca
ED
2297static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2298{
35d04610 2299 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2300}
2301
9c70220b
ACM
2302static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2303{
2e07fa9c 2304 return skb->head + skb->transport_header;
9c70220b
ACM
2305}
2306
badff6d0
ACM
2307static inline void skb_reset_transport_header(struct sk_buff *skb)
2308{
2e07fa9c 2309 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2310}
2311
967b05f6
ACM
2312static inline void skb_set_transport_header(struct sk_buff *skb,
2313 const int offset)
2314{
2e07fa9c
ACM
2315 skb_reset_transport_header(skb);
2316 skb->transport_header += offset;
ea2ae17d
ACM
2317}
2318
d56f90a7
ACM
2319static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2320{
2e07fa9c 2321 return skb->head + skb->network_header;
d56f90a7
ACM
2322}
2323
c1d2bbe1
ACM
2324static inline void skb_reset_network_header(struct sk_buff *skb)
2325{
2e07fa9c 2326 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2327}
2328
c14d2450
ACM
2329static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2330{
2e07fa9c
ACM
2331 skb_reset_network_header(skb);
2332 skb->network_header += offset;
c14d2450
ACM
2333}
2334
2e07fa9c 2335static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2336{
2e07fa9c 2337 return skb->head + skb->mac_header;
bbe735e4
ACM
2338}
2339
ea6da4fd
AV
2340static inline int skb_mac_offset(const struct sk_buff *skb)
2341{
2342 return skb_mac_header(skb) - skb->data;
2343}
2344
0daf4349
DB
2345static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2346{
2347 return skb->network_header - skb->mac_header;
2348}
2349
2e07fa9c 2350static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2351{
35d04610 2352 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2353}
2354
2355static inline void skb_reset_mac_header(struct sk_buff *skb)
2356{
2357 skb->mac_header = skb->data - skb->head;
2358}
2359
2360static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2361{
2362 skb_reset_mac_header(skb);
2363 skb->mac_header += offset;
2364}
2365
0e3da5bb
TT
2366static inline void skb_pop_mac_header(struct sk_buff *skb)
2367{
2368 skb->mac_header = skb->network_header;
2369}
2370
fbbdb8f0
YX
2371static inline void skb_probe_transport_header(struct sk_buff *skb,
2372 const int offset_hint)
2373{
2374 struct flow_keys keys;
2375
2376 if (skb_transport_header_was_set(skb))
2377 return;
cd79a238 2378 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2379 skb_set_transport_header(skb, keys.control.thoff);
dac7d443 2380 else if (offset_hint >= 0)
fbbdb8f0
YX
2381 skb_set_transport_header(skb, offset_hint);
2382}
2383
03606895
ED
2384static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2385{
2386 if (skb_mac_header_was_set(skb)) {
2387 const unsigned char *old_mac = skb_mac_header(skb);
2388
2389 skb_set_mac_header(skb, -skb->mac_len);
2390 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2391 }
2392}
2393
04fb451e
MM
2394static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2395{
2396 return skb->csum_start - skb_headroom(skb);
2397}
2398
08b64fcc
AD
2399static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2400{
2401 return skb->head + skb->csum_start;
2402}
2403
2e07fa9c
ACM
2404static inline int skb_transport_offset(const struct sk_buff *skb)
2405{
2406 return skb_transport_header(skb) - skb->data;
2407}
2408
2409static inline u32 skb_network_header_len(const struct sk_buff *skb)
2410{
2411 return skb->transport_header - skb->network_header;
2412}
2413
6a674e9c
JG
2414static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2415{
2416 return skb->inner_transport_header - skb->inner_network_header;
2417}
2418
2e07fa9c
ACM
2419static inline int skb_network_offset(const struct sk_buff *skb)
2420{
2421 return skb_network_header(skb) - skb->data;
2422}
48d49d0c 2423
6a674e9c
JG
2424static inline int skb_inner_network_offset(const struct sk_buff *skb)
2425{
2426 return skb_inner_network_header(skb) - skb->data;
2427}
2428
f9599ce1
CG
2429static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2430{
2431 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2432}
2433
1da177e4
LT
2434/*
2435 * CPUs often take a performance hit when accessing unaligned memory
2436 * locations. The actual performance hit varies, it can be small if the
2437 * hardware handles it or large if we have to take an exception and fix it
2438 * in software.
2439 *
2440 * Since an ethernet header is 14 bytes network drivers often end up with
2441 * the IP header at an unaligned offset. The IP header can be aligned by
2442 * shifting the start of the packet by 2 bytes. Drivers should do this
2443 * with:
2444 *
8660c124 2445 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2446 *
2447 * The downside to this alignment of the IP header is that the DMA is now
2448 * unaligned. On some architectures the cost of an unaligned DMA is high
2449 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2450 *
1da177e4
LT
2451 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2452 * to be overridden.
2453 */
2454#ifndef NET_IP_ALIGN
2455#define NET_IP_ALIGN 2
2456#endif
2457
025be81e
AB
2458/*
2459 * The networking layer reserves some headroom in skb data (via
2460 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2461 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2462 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2463 *
2464 * Unfortunately this headroom changes the DMA alignment of the resulting
2465 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2466 * on some architectures. An architecture can override this value,
2467 * perhaps setting it to a cacheline in size (since that will maintain
2468 * cacheline alignment of the DMA). It must be a power of 2.
2469 *
d6301d3d 2470 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2471 * headroom, you should not reduce this.
5933dd2f
ED
2472 *
2473 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2474 * to reduce average number of cache lines per packet.
2475 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2476 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2477 */
2478#ifndef NET_SKB_PAD
5933dd2f 2479#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2480#endif
2481
7965bd4d 2482int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2483
5293efe6 2484static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2485{
c4264f27 2486 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2487 WARN_ON(1);
2488 return;
2489 }
27a884dc
ACM
2490 skb->len = len;
2491 skb_set_tail_pointer(skb, len);
1da177e4
LT
2492}
2493
5293efe6
DB
2494static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2495{
2496 __skb_set_length(skb, len);
2497}
2498
7965bd4d 2499void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2500
2501static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2502{
3cc0e873
HX
2503 if (skb->data_len)
2504 return ___pskb_trim(skb, len);
2505 __skb_trim(skb, len);
2506 return 0;
1da177e4
LT
2507}
2508
2509static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2510{
2511 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2512}
2513
e9fa4f7b
HX
2514/**
2515 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2516 * @skb: buffer to alter
2517 * @len: new length
2518 *
2519 * This is identical to pskb_trim except that the caller knows that
2520 * the skb is not cloned so we should never get an error due to out-
2521 * of-memory.
2522 */
2523static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2524{
2525 int err = pskb_trim(skb, len);
2526 BUG_ON(err);
2527}
2528
5293efe6
DB
2529static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2530{
2531 unsigned int diff = len - skb->len;
2532
2533 if (skb_tailroom(skb) < diff) {
2534 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2535 GFP_ATOMIC);
2536 if (ret)
2537 return ret;
2538 }
2539 __skb_set_length(skb, len);
2540 return 0;
2541}
2542
1da177e4
LT
2543/**
2544 * skb_orphan - orphan a buffer
2545 * @skb: buffer to orphan
2546 *
2547 * If a buffer currently has an owner then we call the owner's
2548 * destructor function and make the @skb unowned. The buffer continues
2549 * to exist but is no longer charged to its former owner.
2550 */
2551static inline void skb_orphan(struct sk_buff *skb)
2552{
c34a7612 2553 if (skb->destructor) {
1da177e4 2554 skb->destructor(skb);
c34a7612
ED
2555 skb->destructor = NULL;
2556 skb->sk = NULL;
376c7311
ED
2557 } else {
2558 BUG_ON(skb->sk);
c34a7612 2559 }
1da177e4
LT
2560}
2561
a353e0ce
MT
2562/**
2563 * skb_orphan_frags - orphan the frags contained in a buffer
2564 * @skb: buffer to orphan frags from
2565 * @gfp_mask: allocation mask for replacement pages
2566 *
2567 * For each frag in the SKB which needs a destructor (i.e. has an
2568 * owner) create a copy of that frag and release the original
2569 * page by calling the destructor.
2570 */
2571static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2572{
1f8b977a
WB
2573 if (likely(!skb_zcopy(skb)))
2574 return 0;
2575 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2576 return 0;
2577 return skb_copy_ubufs(skb, gfp_mask);
2578}
2579
2580/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2581static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2582{
2583 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2584 return 0;
2585 return skb_copy_ubufs(skb, gfp_mask);
2586}
2587
1da177e4
LT
2588/**
2589 * __skb_queue_purge - empty a list
2590 * @list: list to empty
2591 *
2592 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2593 * the list and one reference dropped. This function does not take the
2594 * list lock and the caller must hold the relevant locks to use it.
2595 */
7965bd4d 2596void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2597static inline void __skb_queue_purge(struct sk_buff_head *list)
2598{
2599 struct sk_buff *skb;
2600 while ((skb = __skb_dequeue(list)) != NULL)
2601 kfree_skb(skb);
2602}
2603
3bde783e 2604unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2605
7965bd4d 2606void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2607
7965bd4d
JP
2608struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2609 gfp_t gfp_mask);
8af27456
CH
2610
2611/**
2612 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2613 * @dev: network device to receive on
2614 * @length: length to allocate
2615 *
2616 * Allocate a new &sk_buff and assign it a usage count of one. The
2617 * buffer has unspecified headroom built in. Users should allocate
2618 * the headroom they think they need without accounting for the
2619 * built in space. The built in space is used for optimisations.
2620 *
2621 * %NULL is returned if there is no free memory. Although this function
2622 * allocates memory it can be called from an interrupt.
2623 */
2624static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2625 unsigned int length)
8af27456
CH
2626{
2627 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2628}
2629
6f532612
ED
2630/* legacy helper around __netdev_alloc_skb() */
2631static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2632 gfp_t gfp_mask)
2633{
2634 return __netdev_alloc_skb(NULL, length, gfp_mask);
2635}
2636
2637/* legacy helper around netdev_alloc_skb() */
2638static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2639{
2640 return netdev_alloc_skb(NULL, length);
2641}
2642
2643
4915a0de
ED
2644static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2645 unsigned int length, gfp_t gfp)
61321bbd 2646{
4915a0de 2647 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2648
2649 if (NET_IP_ALIGN && skb)
2650 skb_reserve(skb, NET_IP_ALIGN);
2651 return skb;
2652}
2653
4915a0de
ED
2654static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2655 unsigned int length)
2656{
2657 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2658}
2659
181edb2b
AD
2660static inline void skb_free_frag(void *addr)
2661{
8c2dd3e4 2662 page_frag_free(addr);
181edb2b
AD
2663}
2664
ffde7328 2665void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2666struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2667 unsigned int length, gfp_t gfp_mask);
2668static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2669 unsigned int length)
2670{
2671 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2672}
795bb1c0
JDB
2673void napi_consume_skb(struct sk_buff *skb, int budget);
2674
2675void __kfree_skb_flush(void);
15fad714 2676void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2677
71dfda58
AD
2678/**
2679 * __dev_alloc_pages - allocate page for network Rx
2680 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2681 * @order: size of the allocation
2682 *
2683 * Allocate a new page.
2684 *
2685 * %NULL is returned if there is no free memory.
2686*/
2687static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2688 unsigned int order)
2689{
2690 /* This piece of code contains several assumptions.
2691 * 1. This is for device Rx, therefor a cold page is preferred.
2692 * 2. The expectation is the user wants a compound page.
2693 * 3. If requesting a order 0 page it will not be compound
2694 * due to the check to see if order has a value in prep_new_page
2695 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2696 * code in gfp_to_alloc_flags that should be enforcing this.
2697 */
2698 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2699
2700 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2701}
2702
2703static inline struct page *dev_alloc_pages(unsigned int order)
2704{
95829b3a 2705 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2706}
2707
2708/**
2709 * __dev_alloc_page - allocate a page for network Rx
2710 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2711 *
2712 * Allocate a new page.
2713 *
2714 * %NULL is returned if there is no free memory.
2715 */
2716static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2717{
2718 return __dev_alloc_pages(gfp_mask, 0);
2719}
2720
2721static inline struct page *dev_alloc_page(void)
2722{
95829b3a 2723 return dev_alloc_pages(0);
71dfda58
AD
2724}
2725
0614002b
MG
2726/**
2727 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2728 * @page: The page that was allocated from skb_alloc_page
2729 * @skb: The skb that may need pfmemalloc set
2730 */
2731static inline void skb_propagate_pfmemalloc(struct page *page,
2732 struct sk_buff *skb)
2733{
2f064f34 2734 if (page_is_pfmemalloc(page))
0614002b
MG
2735 skb->pfmemalloc = true;
2736}
2737
131ea667 2738/**
e227867f 2739 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2740 * @frag: the paged fragment
2741 *
2742 * Returns the &struct page associated with @frag.
2743 */
2744static inline struct page *skb_frag_page(const skb_frag_t *frag)
2745{
a8605c60 2746 return frag->page.p;
131ea667
IC
2747}
2748
2749/**
2750 * __skb_frag_ref - take an addition reference on a paged fragment.
2751 * @frag: the paged fragment
2752 *
2753 * Takes an additional reference on the paged fragment @frag.
2754 */
2755static inline void __skb_frag_ref(skb_frag_t *frag)
2756{
2757 get_page(skb_frag_page(frag));
2758}
2759
2760/**
2761 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2762 * @skb: the buffer
2763 * @f: the fragment offset.
2764 *
2765 * Takes an additional reference on the @f'th paged fragment of @skb.
2766 */
2767static inline void skb_frag_ref(struct sk_buff *skb, int f)
2768{
2769 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2770}
2771
2772/**
2773 * __skb_frag_unref - release a reference on a paged fragment.
2774 * @frag: the paged fragment
2775 *
2776 * Releases a reference on the paged fragment @frag.
2777 */
2778static inline void __skb_frag_unref(skb_frag_t *frag)
2779{
2780 put_page(skb_frag_page(frag));
2781}
2782
2783/**
2784 * skb_frag_unref - release a reference on a paged fragment of an skb.
2785 * @skb: the buffer
2786 * @f: the fragment offset
2787 *
2788 * Releases a reference on the @f'th paged fragment of @skb.
2789 */
2790static inline void skb_frag_unref(struct sk_buff *skb, int f)
2791{
2792 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2793}
2794
2795/**
2796 * skb_frag_address - gets the address of the data contained in a paged fragment
2797 * @frag: the paged fragment buffer
2798 *
2799 * Returns the address of the data within @frag. The page must already
2800 * be mapped.
2801 */
2802static inline void *skb_frag_address(const skb_frag_t *frag)
2803{
2804 return page_address(skb_frag_page(frag)) + frag->page_offset;
2805}
2806
2807/**
2808 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2809 * @frag: the paged fragment buffer
2810 *
2811 * Returns the address of the data within @frag. Checks that the page
2812 * is mapped and returns %NULL otherwise.
2813 */
2814static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2815{
2816 void *ptr = page_address(skb_frag_page(frag));
2817 if (unlikely(!ptr))
2818 return NULL;
2819
2820 return ptr + frag->page_offset;
2821}
2822
2823/**
2824 * __skb_frag_set_page - sets the page contained in a paged fragment
2825 * @frag: the paged fragment
2826 * @page: the page to set
2827 *
2828 * Sets the fragment @frag to contain @page.
2829 */
2830static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2831{
a8605c60 2832 frag->page.p = page;
131ea667
IC
2833}
2834
2835/**
2836 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2837 * @skb: the buffer
2838 * @f: the fragment offset
2839 * @page: the page to set
2840 *
2841 * Sets the @f'th fragment of @skb to contain @page.
2842 */
2843static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2844 struct page *page)
2845{
2846 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2847}
2848
400dfd3a
ED
2849bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2850
131ea667
IC
2851/**
2852 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2853 * @dev: the device to map the fragment to
131ea667
IC
2854 * @frag: the paged fragment to map
2855 * @offset: the offset within the fragment (starting at the
2856 * fragment's own offset)
2857 * @size: the number of bytes to map
771b00a8 2858 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2859 *
2860 * Maps the page associated with @frag to @device.
2861 */
2862static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2863 const skb_frag_t *frag,
2864 size_t offset, size_t size,
2865 enum dma_data_direction dir)
2866{
2867 return dma_map_page(dev, skb_frag_page(frag),
2868 frag->page_offset + offset, size, dir);
2869}
2870
117632e6
ED
2871static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2872 gfp_t gfp_mask)
2873{
2874 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2875}
2876
bad93e9d
OP
2877
2878static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2879 gfp_t gfp_mask)
2880{
2881 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2882}
2883
2884
334a8132
PM
2885/**
2886 * skb_clone_writable - is the header of a clone writable
2887 * @skb: buffer to check
2888 * @len: length up to which to write
2889 *
2890 * Returns true if modifying the header part of the cloned buffer
2891 * does not requires the data to be copied.
2892 */
05bdd2f1 2893static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2894{
2895 return !skb_header_cloned(skb) &&
2896 skb_headroom(skb) + len <= skb->hdr_len;
2897}
2898
3697649f
DB
2899static inline int skb_try_make_writable(struct sk_buff *skb,
2900 unsigned int write_len)
2901{
2902 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2903 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904}
2905
d9cc2048
HX
2906static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2907 int cloned)
2908{
2909 int delta = 0;
2910
d9cc2048
HX
2911 if (headroom > skb_headroom(skb))
2912 delta = headroom - skb_headroom(skb);
2913
2914 if (delta || cloned)
2915 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2916 GFP_ATOMIC);
2917 return 0;
2918}
2919
1da177e4
LT
2920/**
2921 * skb_cow - copy header of skb when it is required
2922 * @skb: buffer to cow
2923 * @headroom: needed headroom
2924 *
2925 * If the skb passed lacks sufficient headroom or its data part
2926 * is shared, data is reallocated. If reallocation fails, an error
2927 * is returned and original skb is not changed.
2928 *
2929 * The result is skb with writable area skb->head...skb->tail
2930 * and at least @headroom of space at head.
2931 */
2932static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2933{
d9cc2048
HX
2934 return __skb_cow(skb, headroom, skb_cloned(skb));
2935}
1da177e4 2936
d9cc2048
HX
2937/**
2938 * skb_cow_head - skb_cow but only making the head writable
2939 * @skb: buffer to cow
2940 * @headroom: needed headroom
2941 *
2942 * This function is identical to skb_cow except that we replace the
2943 * skb_cloned check by skb_header_cloned. It should be used when
2944 * you only need to push on some header and do not need to modify
2945 * the data.
2946 */
2947static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2948{
2949 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2950}
2951
2952/**
2953 * skb_padto - pad an skbuff up to a minimal size
2954 * @skb: buffer to pad
2955 * @len: minimal length
2956 *
2957 * Pads up a buffer to ensure the trailing bytes exist and are
2958 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2959 * is untouched. Otherwise it is extended. Returns zero on
2960 * success. The skb is freed on error.
1da177e4 2961 */
5b057c6b 2962static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2963{
2964 unsigned int size = skb->len;
2965 if (likely(size >= len))
5b057c6b 2966 return 0;
987c402a 2967 return skb_pad(skb, len - size);
1da177e4
LT
2968}
2969
9c0c1124
AD
2970/**
2971 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2972 * @skb: buffer to pad
2973 * @len: minimal length
cd0a137a 2974 * @free_on_error: free buffer on error
9c0c1124
AD
2975 *
2976 * Pads up a buffer to ensure the trailing bytes exist and are
2977 * blanked. If the buffer already contains sufficient data it
2978 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2979 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2980 */
cd0a137a
FF
2981static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2982 bool free_on_error)
9c0c1124
AD
2983{
2984 unsigned int size = skb->len;
2985
2986 if (unlikely(size < len)) {
2987 len -= size;
cd0a137a 2988 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2989 return -ENOMEM;
2990 __skb_put(skb, len);
2991 }
2992 return 0;
2993}
2994
cd0a137a
FF
2995/**
2996 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2997 * @skb: buffer to pad
2998 * @len: minimal length
2999 *
3000 * Pads up a buffer to ensure the trailing bytes exist and are
3001 * blanked. If the buffer already contains sufficient data it
3002 * is untouched. Otherwise it is extended. Returns zero on
3003 * success. The skb is freed on error.
3004 */
3005static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3006{
3007 return __skb_put_padto(skb, len, true);
3008}
3009
1da177e4 3010static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3011 struct iov_iter *from, int copy)
1da177e4
LT
3012{
3013 const int off = skb->len;
3014
3015 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3016 __wsum csum = 0;
15e6cb46
AV
3017 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3018 &csum, from)) {
1da177e4
LT
3019 skb->csum = csum_block_add(skb->csum, csum, off);
3020 return 0;
3021 }
15e6cb46 3022 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3023 return 0;
3024
3025 __skb_trim(skb, off);
3026 return -EFAULT;
3027}
3028
38ba0a65
ED
3029static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3030 const struct page *page, int off)
1da177e4 3031{
1f8b977a
WB
3032 if (skb_zcopy(skb))
3033 return false;
1da177e4 3034 if (i) {
9e903e08 3035 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3036
ea2ab693 3037 return page == skb_frag_page(frag) &&
9e903e08 3038 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3039 }
38ba0a65 3040 return false;
1da177e4
LT
3041}
3042
364c6bad
HX
3043static inline int __skb_linearize(struct sk_buff *skb)
3044{
3045 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3046}
3047
1da177e4
LT
3048/**
3049 * skb_linearize - convert paged skb to linear one
3050 * @skb: buffer to linarize
1da177e4
LT
3051 *
3052 * If there is no free memory -ENOMEM is returned, otherwise zero
3053 * is returned and the old skb data released.
3054 */
364c6bad
HX
3055static inline int skb_linearize(struct sk_buff *skb)
3056{
3057 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3058}
3059
cef401de
ED
3060/**
3061 * skb_has_shared_frag - can any frag be overwritten
3062 * @skb: buffer to test
3063 *
3064 * Return true if the skb has at least one frag that might be modified
3065 * by an external entity (as in vmsplice()/sendfile())
3066 */
3067static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3068{
c9af6db4
PS
3069 return skb_is_nonlinear(skb) &&
3070 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3071}
3072
364c6bad
HX
3073/**
3074 * skb_linearize_cow - make sure skb is linear and writable
3075 * @skb: buffer to process
3076 *
3077 * If there is no free memory -ENOMEM is returned, otherwise zero
3078 * is returned and the old skb data released.
3079 */
3080static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3081{
364c6bad
HX
3082 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3083 __skb_linearize(skb) : 0;
1da177e4
LT
3084}
3085
479ffccc
DB
3086static __always_inline void
3087__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3088 unsigned int off)
3089{
3090 if (skb->ip_summed == CHECKSUM_COMPLETE)
3091 skb->csum = csum_block_sub(skb->csum,
3092 csum_partial(start, len, 0), off);
3093 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3094 skb_checksum_start_offset(skb) < 0)
3095 skb->ip_summed = CHECKSUM_NONE;
3096}
3097
1da177e4
LT
3098/**
3099 * skb_postpull_rcsum - update checksum for received skb after pull
3100 * @skb: buffer to update
3101 * @start: start of data before pull
3102 * @len: length of data pulled
3103 *
3104 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3105 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3106 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3107 */
1da177e4 3108static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3109 const void *start, unsigned int len)
1da177e4 3110{
479ffccc 3111 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3112}
3113
479ffccc
DB
3114static __always_inline void
3115__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3116 unsigned int off)
3117{
3118 if (skb->ip_summed == CHECKSUM_COMPLETE)
3119 skb->csum = csum_block_add(skb->csum,
3120 csum_partial(start, len, 0), off);
3121}
cbb042f9 3122
479ffccc
DB
3123/**
3124 * skb_postpush_rcsum - update checksum for received skb after push
3125 * @skb: buffer to update
3126 * @start: start of data after push
3127 * @len: length of data pushed
3128 *
3129 * After doing a push on a received packet, you need to call this to
3130 * update the CHECKSUM_COMPLETE checksum.
3131 */
f8ffad69
DB
3132static inline void skb_postpush_rcsum(struct sk_buff *skb,
3133 const void *start, unsigned int len)
3134{
479ffccc 3135 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3136}
3137
af72868b 3138void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3139
82a31b92
WC
3140/**
3141 * skb_push_rcsum - push skb and update receive checksum
3142 * @skb: buffer to update
3143 * @len: length of data pulled
3144 *
3145 * This function performs an skb_push on the packet and updates
3146 * the CHECKSUM_COMPLETE checksum. It should be used on
3147 * receive path processing instead of skb_push unless you know
3148 * that the checksum difference is zero (e.g., a valid IP header)
3149 * or you are setting ip_summed to CHECKSUM_NONE.
3150 */
d58ff351 3151static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3152{
3153 skb_push(skb, len);
3154 skb_postpush_rcsum(skb, skb->data, len);
3155 return skb->data;
3156}
3157
6bf32cda 3158int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3159/**
3160 * pskb_trim_rcsum - trim received skb and update checksum
3161 * @skb: buffer to trim
3162 * @len: new length
3163 *
3164 * This is exactly the same as pskb_trim except that it ensures the
3165 * checksum of received packets are still valid after the operation.
66a011d1 3166 * It can change skb pointers.
7ce5a27f
DM
3167 */
3168
3169static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3170{
3171 if (likely(len >= skb->len))
3172 return 0;
6bf32cda 3173 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3174}
3175
5293efe6
DB
3176static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3177{
3178 if (skb->ip_summed == CHECKSUM_COMPLETE)
3179 skb->ip_summed = CHECKSUM_NONE;
3180 __skb_trim(skb, len);
3181 return 0;
3182}
3183
3184static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3185{
3186 if (skb->ip_summed == CHECKSUM_COMPLETE)
3187 skb->ip_summed = CHECKSUM_NONE;
3188 return __skb_grow(skb, len);
3189}
3190
f3a5ba63
ED
3191#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3192
37c7cc80
ED
3193#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3194#define skb_rb_first(root) rb_to_skb(rb_first(root))
3195#define skb_rb_last(root) rb_to_skb(rb_last(root))
3196#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3197#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3198
1da177e4
LT
3199#define skb_queue_walk(queue, skb) \
3200 for (skb = (queue)->next; \
a1e4891f 3201 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3202 skb = skb->next)
3203
46f8914e
JC
3204#define skb_queue_walk_safe(queue, skb, tmp) \
3205 for (skb = (queue)->next, tmp = skb->next; \
3206 skb != (struct sk_buff *)(queue); \
3207 skb = tmp, tmp = skb->next)
3208
1164f52a 3209#define skb_queue_walk_from(queue, skb) \
a1e4891f 3210 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3211 skb = skb->next)
3212
37c7cc80
ED
3213#define skb_rbtree_walk(skb, root) \
3214 for (skb = skb_rb_first(root); skb != NULL; \
3215 skb = skb_rb_next(skb))
3216
3217#define skb_rbtree_walk_from(skb) \
3218 for (; skb != NULL; \
3219 skb = skb_rb_next(skb))
3220
3221#define skb_rbtree_walk_from_safe(skb, tmp) \
3222 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3223 skb = tmp)
3224
1164f52a
DM
3225#define skb_queue_walk_from_safe(queue, skb, tmp) \
3226 for (tmp = skb->next; \
3227 skb != (struct sk_buff *)(queue); \
3228 skb = tmp, tmp = skb->next)
3229
300ce174
SH
3230#define skb_queue_reverse_walk(queue, skb) \
3231 for (skb = (queue)->prev; \
a1e4891f 3232 skb != (struct sk_buff *)(queue); \
300ce174
SH
3233 skb = skb->prev)
3234
686a2955
DM
3235#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3236 for (skb = (queue)->prev, tmp = skb->prev; \
3237 skb != (struct sk_buff *)(queue); \
3238 skb = tmp, tmp = skb->prev)
3239
3240#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3241 for (tmp = skb->prev; \
3242 skb != (struct sk_buff *)(queue); \
3243 skb = tmp, tmp = skb->prev)
1da177e4 3244
21dc3301 3245static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3246{
3247 return skb_shinfo(skb)->frag_list != NULL;
3248}
3249
3250static inline void skb_frag_list_init(struct sk_buff *skb)
3251{
3252 skb_shinfo(skb)->frag_list = NULL;
3253}
3254
ee039871
DM
3255#define skb_walk_frags(skb, iter) \
3256 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3257
ea3793ee
RW
3258
3259int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3260 const struct sk_buff *skb);
65101aec
PA
3261struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3262 struct sk_buff_head *queue,
3263 unsigned int flags,
3264 void (*destructor)(struct sock *sk,
3265 struct sk_buff *skb),
3266 int *peeked, int *off, int *err,
3267 struct sk_buff **last);
ea3793ee 3268struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3269 void (*destructor)(struct sock *sk,
3270 struct sk_buff *skb),
ea3793ee
RW
3271 int *peeked, int *off, int *err,
3272 struct sk_buff **last);
7965bd4d 3273struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3274 void (*destructor)(struct sock *sk,
3275 struct sk_buff *skb),
7965bd4d
JP
3276 int *peeked, int *off, int *err);
3277struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3278 int *err);
3279unsigned int datagram_poll(struct file *file, struct socket *sock,
3280 struct poll_table_struct *wait);
c0371da6
AV
3281int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3282 struct iov_iter *to, int size);
51f3d02b
DM
3283static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3284 struct msghdr *msg, int size)
3285{
e5a4b0bb 3286 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3287}
e5a4b0bb
AV
3288int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3289 struct msghdr *msg);
3a654f97
AV
3290int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3291 struct iov_iter *from, int len);
3a654f97 3292int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3293void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3294void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3295static inline void skb_free_datagram_locked(struct sock *sk,
3296 struct sk_buff *skb)
3297{
3298 __skb_free_datagram_locked(sk, skb, 0);
3299}
7965bd4d 3300int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3301int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3302int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3303__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3304 int len, __wsum csum);
a60e3cc7 3305int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3306 struct pipe_inode_info *pipe, unsigned int len,
25869262 3307 unsigned int flags);
20bf50de
TH
3308int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3309 int len);
3310int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3311void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3312unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3313int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3314 int len, int hlen);
7965bd4d
JP
3315void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3316int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3317void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3318unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3319bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
785644d6 3320bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3321struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3322struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3323int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3324int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3325int skb_vlan_pop(struct sk_buff *skb);
3326int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3327struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3328 gfp_t gfp);
20380731 3329
6ce8e9ce
AV
3330static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3331{
3073f070 3332 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3333}
3334
7eab8d9e
AV
3335static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3336{
e5a4b0bb 3337 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3338}
3339
2817a336
DB
3340struct skb_checksum_ops {
3341 __wsum (*update)(const void *mem, int len, __wsum wsum);
3342 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3343};
3344
9617813d
DC
3345extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3346
2817a336
DB
3347__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3348 __wsum csum, const struct skb_checksum_ops *ops);
3349__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3350 __wsum csum);
3351
1e98a0f0
ED
3352static inline void * __must_check
3353__skb_header_pointer(const struct sk_buff *skb, int offset,
3354 int len, void *data, int hlen, void *buffer)
1da177e4 3355{
55820ee2 3356 if (hlen - offset >= len)
690e36e7 3357 return data + offset;
1da177e4 3358
690e36e7
DM
3359 if (!skb ||
3360 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3361 return NULL;
3362
3363 return buffer;
3364}
3365
1e98a0f0
ED
3366static inline void * __must_check
3367skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3368{
3369 return __skb_header_pointer(skb, offset, len, skb->data,
3370 skb_headlen(skb), buffer);
3371}
3372
4262e5cc
DB
3373/**
3374 * skb_needs_linearize - check if we need to linearize a given skb
3375 * depending on the given device features.
3376 * @skb: socket buffer to check
3377 * @features: net device features
3378 *
3379 * Returns true if either:
3380 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3381 * 2. skb is fragmented and the device does not support SG.
3382 */
3383static inline bool skb_needs_linearize(struct sk_buff *skb,
3384 netdev_features_t features)
3385{
3386 return skb_is_nonlinear(skb) &&
3387 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3388 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3389}
3390
d626f62b
ACM
3391static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3392 void *to,
3393 const unsigned int len)
3394{
3395 memcpy(to, skb->data, len);
3396}
3397
3398static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3399 const int offset, void *to,
3400 const unsigned int len)
3401{
3402 memcpy(to, skb->data + offset, len);
3403}
3404
27d7ff46
ACM
3405static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3406 const void *from,
3407 const unsigned int len)
3408{
3409 memcpy(skb->data, from, len);
3410}
3411
3412static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3413 const int offset,
3414 const void *from,
3415 const unsigned int len)
3416{
3417 memcpy(skb->data + offset, from, len);
3418}
3419
7965bd4d 3420void skb_init(void);
1da177e4 3421
ac45f602
PO
3422static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3423{
3424 return skb->tstamp;
3425}
3426
a61bbcf2
PM
3427/**
3428 * skb_get_timestamp - get timestamp from a skb
3429 * @skb: skb to get stamp from
3430 * @stamp: pointer to struct timeval to store stamp in
3431 *
3432 * Timestamps are stored in the skb as offsets to a base timestamp.
3433 * This function converts the offset back to a struct timeval and stores
3434 * it in stamp.
3435 */
ac45f602
PO
3436static inline void skb_get_timestamp(const struct sk_buff *skb,
3437 struct timeval *stamp)
a61bbcf2 3438{
b7aa0bf7 3439 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3440}
3441
ac45f602
PO
3442static inline void skb_get_timestampns(const struct sk_buff *skb,
3443 struct timespec *stamp)
3444{
3445 *stamp = ktime_to_timespec(skb->tstamp);
3446}
3447
b7aa0bf7 3448static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3449{
b7aa0bf7 3450 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3451}
3452
164891aa
SH
3453static inline ktime_t net_timedelta(ktime_t t)
3454{
3455 return ktime_sub(ktime_get_real(), t);
3456}
3457
b9ce204f
IJ
3458static inline ktime_t net_invalid_timestamp(void)
3459{
8b0e1953 3460 return 0;
b9ce204f 3461}
a61bbcf2 3462
62bccb8c
AD
3463struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3464
c1f19b51
RC
3465#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3466
7965bd4d
JP
3467void skb_clone_tx_timestamp(struct sk_buff *skb);
3468bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3469
3470#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3471
3472static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3473{
3474}
3475
3476static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3477{
3478 return false;
3479}
3480
3481#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3482
3483/**
3484 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3485 *
da92b194
RC
3486 * PHY drivers may accept clones of transmitted packets for
3487 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3488 * must call this function to return the skb back to the stack with a
3489 * timestamp.
da92b194 3490 *
c1f19b51 3491 * @skb: clone of the the original outgoing packet
7a76a021 3492 * @hwtstamps: hardware time stamps
c1f19b51
RC
3493 *
3494 */
3495void skb_complete_tx_timestamp(struct sk_buff *skb,
3496 struct skb_shared_hwtstamps *hwtstamps);
3497
e7fd2885
WB
3498void __skb_tstamp_tx(struct sk_buff *orig_skb,
3499 struct skb_shared_hwtstamps *hwtstamps,
3500 struct sock *sk, int tstype);
3501
ac45f602
PO
3502/**
3503 * skb_tstamp_tx - queue clone of skb with send time stamps
3504 * @orig_skb: the original outgoing packet
3505 * @hwtstamps: hardware time stamps, may be NULL if not available
3506 *
3507 * If the skb has a socket associated, then this function clones the
3508 * skb (thus sharing the actual data and optional structures), stores
3509 * the optional hardware time stamping information (if non NULL) or
3510 * generates a software time stamp (otherwise), then queues the clone
3511 * to the error queue of the socket. Errors are silently ignored.
3512 */
7965bd4d
JP
3513void skb_tstamp_tx(struct sk_buff *orig_skb,
3514 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3515
4507a715
RC
3516/**
3517 * skb_tx_timestamp() - Driver hook for transmit timestamping
3518 *
3519 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3520 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3521 *
73409f3b
DM
3522 * Specifically, one should make absolutely sure that this function is
3523 * called before TX completion of this packet can trigger. Otherwise
3524 * the packet could potentially already be freed.
3525 *
4507a715
RC
3526 * @skb: A socket buffer.
3527 */
3528static inline void skb_tx_timestamp(struct sk_buff *skb)
3529{
c1f19b51 3530 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3531 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3532 skb_tstamp_tx(skb, NULL);
4507a715
RC
3533}
3534
6e3e939f
JB
3535/**
3536 * skb_complete_wifi_ack - deliver skb with wifi status
3537 *
3538 * @skb: the original outgoing packet
3539 * @acked: ack status
3540 *
3541 */
3542void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3543
7965bd4d
JP
3544__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3545__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3546
60476372
HX
3547static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3548{
6edec0e6
TH
3549 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3550 skb->csum_valid ||
3551 (skb->ip_summed == CHECKSUM_PARTIAL &&
3552 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3553}
3554
fb286bb2
HX
3555/**
3556 * skb_checksum_complete - Calculate checksum of an entire packet
3557 * @skb: packet to process
3558 *
3559 * This function calculates the checksum over the entire packet plus
3560 * the value of skb->csum. The latter can be used to supply the
3561 * checksum of a pseudo header as used by TCP/UDP. It returns the
3562 * checksum.
3563 *
3564 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3565 * this function can be used to verify that checksum on received
3566 * packets. In that case the function should return zero if the
3567 * checksum is correct. In particular, this function will return zero
3568 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3569 * hardware has already verified the correctness of the checksum.
3570 */
4381ca3c 3571static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3572{
60476372
HX
3573 return skb_csum_unnecessary(skb) ?
3574 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3575}
3576
77cffe23
TH
3577static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3578{
3579 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3580 if (skb->csum_level == 0)
3581 skb->ip_summed = CHECKSUM_NONE;
3582 else
3583 skb->csum_level--;
3584 }
3585}
3586
3587static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3588{
3589 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3590 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3591 skb->csum_level++;
3592 } else if (skb->ip_summed == CHECKSUM_NONE) {
3593 skb->ip_summed = CHECKSUM_UNNECESSARY;
3594 skb->csum_level = 0;
3595 }
3596}
3597
76ba0aae
TH
3598/* Check if we need to perform checksum complete validation.
3599 *
3600 * Returns true if checksum complete is needed, false otherwise
3601 * (either checksum is unnecessary or zero checksum is allowed).
3602 */
3603static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3604 bool zero_okay,
3605 __sum16 check)
3606{
5d0c2b95
TH
3607 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3608 skb->csum_valid = 1;
77cffe23 3609 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3610 return false;
3611 }
3612
3613 return true;
3614}
3615
3616/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3617 * in checksum_init.
3618 */
3619#define CHECKSUM_BREAK 76
3620
4e18b9ad
TH
3621/* Unset checksum-complete
3622 *
3623 * Unset checksum complete can be done when packet is being modified
3624 * (uncompressed for instance) and checksum-complete value is
3625 * invalidated.
3626 */
3627static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3628{
3629 if (skb->ip_summed == CHECKSUM_COMPLETE)
3630 skb->ip_summed = CHECKSUM_NONE;
3631}
3632
76ba0aae
TH
3633/* Validate (init) checksum based on checksum complete.
3634 *
3635 * Return values:
3636 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3637 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3638 * checksum is stored in skb->csum for use in __skb_checksum_complete
3639 * non-zero: value of invalid checksum
3640 *
3641 */
3642static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3643 bool complete,
3644 __wsum psum)
3645{
3646 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3647 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3648 skb->csum_valid = 1;
76ba0aae
TH
3649 return 0;
3650 }
3651 }
3652
3653 skb->csum = psum;
3654
5d0c2b95
TH
3655 if (complete || skb->len <= CHECKSUM_BREAK) {
3656 __sum16 csum;
3657
3658 csum = __skb_checksum_complete(skb);
3659 skb->csum_valid = !csum;
3660 return csum;
3661 }
76ba0aae
TH
3662
3663 return 0;
3664}
3665
3666static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3667{
3668 return 0;
3669}
3670
3671/* Perform checksum validate (init). Note that this is a macro since we only
3672 * want to calculate the pseudo header which is an input function if necessary.
3673 * First we try to validate without any computation (checksum unnecessary) and
3674 * then calculate based on checksum complete calling the function to compute
3675 * pseudo header.
3676 *
3677 * Return values:
3678 * 0: checksum is validated or try to in skb_checksum_complete
3679 * non-zero: value of invalid checksum
3680 */
3681#define __skb_checksum_validate(skb, proto, complete, \
3682 zero_okay, check, compute_pseudo) \
3683({ \
3684 __sum16 __ret = 0; \
5d0c2b95 3685 skb->csum_valid = 0; \
76ba0aae
TH
3686 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3687 __ret = __skb_checksum_validate_complete(skb, \
3688 complete, compute_pseudo(skb, proto)); \
3689 __ret; \
3690})
3691
3692#define skb_checksum_init(skb, proto, compute_pseudo) \
3693 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3694
3695#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3696 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3697
3698#define skb_checksum_validate(skb, proto, compute_pseudo) \
3699 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3700
3701#define skb_checksum_validate_zero_check(skb, proto, check, \
3702 compute_pseudo) \
096a4cfa 3703 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3704
3705#define skb_checksum_simple_validate(skb) \
3706 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3707
d96535a1
TH
3708static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3709{
219f1d79 3710 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3711}
3712
3713static inline void __skb_checksum_convert(struct sk_buff *skb,
3714 __sum16 check, __wsum pseudo)
3715{
3716 skb->csum = ~pseudo;
3717 skb->ip_summed = CHECKSUM_COMPLETE;
3718}
3719
3720#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3721do { \
3722 if (__skb_checksum_convert_check(skb)) \
3723 __skb_checksum_convert(skb, check, \
3724 compute_pseudo(skb, proto)); \
3725} while (0)
3726
15e2396d
TH
3727static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3728 u16 start, u16 offset)
3729{
3730 skb->ip_summed = CHECKSUM_PARTIAL;
3731 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3732 skb->csum_offset = offset - start;
3733}
3734
dcdc8994
TH
3735/* Update skbuf and packet to reflect the remote checksum offload operation.
3736 * When called, ptr indicates the starting point for skb->csum when
3737 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3738 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3739 */
3740static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3741 int start, int offset, bool nopartial)
dcdc8994
TH
3742{
3743 __wsum delta;
3744
15e2396d
TH
3745 if (!nopartial) {
3746 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3747 return;
3748 }
3749
dcdc8994
TH
3750 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3751 __skb_checksum_complete(skb);
3752 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3753 }
3754
3755 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3756
3757 /* Adjust skb->csum since we changed the packet */
3758 skb->csum = csum_add(skb->csum, delta);
3759}
3760
cb9c6836
FW
3761static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3762{
3763#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3764 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3765#else
3766 return NULL;
3767#endif
3768}
3769
5f79e0f9 3770#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3771void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3772static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3773{
3774 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3775 nf_conntrack_destroy(nfct);
1da177e4
LT
3776}
3777static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3778{
3779 if (nfct)
3780 atomic_inc(&nfct->use);
3781}
2fc72c7b 3782#endif
34666d46 3783#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3784static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3785{
53869ceb 3786 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3787 kfree(nf_bridge);
3788}
3789static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3790{
3791 if (nf_bridge)
53869ceb 3792 refcount_inc(&nf_bridge->use);
1da177e4
LT
3793}
3794#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3795static inline void nf_reset(struct sk_buff *skb)
3796{
5f79e0f9 3797#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3798 nf_conntrack_put(skb_nfct(skb));
3799 skb->_nfct = 0;
2fc72c7b 3800#endif
34666d46 3801#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3802 nf_bridge_put(skb->nf_bridge);
3803 skb->nf_bridge = NULL;
3804#endif
3805}
3806
124dff01
PM
3807static inline void nf_reset_trace(struct sk_buff *skb)
3808{
478b360a 3809#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3810 skb->nf_trace = 0;
3811#endif
a193a4ab
PM
3812}
3813
2b5ec1a5
YY
3814static inline void ipvs_reset(struct sk_buff *skb)
3815{
3816#if IS_ENABLED(CONFIG_IP_VS)
3817 skb->ipvs_property = 0;
3818#endif
3819}
3820
edda553c 3821/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3822static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3823 bool copy)
edda553c 3824{
5f79e0f9 3825#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3826 dst->_nfct = src->_nfct;
3827 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3828#endif
34666d46 3829#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3830 dst->nf_bridge = src->nf_bridge;
3831 nf_bridge_get(src->nf_bridge);
3832#endif
478b360a 3833#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3834 if (copy)
3835 dst->nf_trace = src->nf_trace;
478b360a 3836#endif
edda553c
YK
3837}
3838
e7ac05f3
YK
3839static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3840{
e7ac05f3 3841#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3842 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3843#endif
34666d46 3844#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3845 nf_bridge_put(dst->nf_bridge);
3846#endif
b1937227 3847 __nf_copy(dst, src, true);
e7ac05f3
YK
3848}
3849
984bc16c
JM
3850#ifdef CONFIG_NETWORK_SECMARK
3851static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3852{
3853 to->secmark = from->secmark;
3854}
3855
3856static inline void skb_init_secmark(struct sk_buff *skb)
3857{
3858 skb->secmark = 0;
3859}
3860#else
3861static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3862{ }
3863
3864static inline void skb_init_secmark(struct sk_buff *skb)
3865{ }
3866#endif
3867
574f7194
EB
3868static inline bool skb_irq_freeable(const struct sk_buff *skb)
3869{
3870 return !skb->destructor &&
3871#if IS_ENABLED(CONFIG_XFRM)
3872 !skb->sp &&
3873#endif
cb9c6836 3874 !skb_nfct(skb) &&
574f7194
EB
3875 !skb->_skb_refdst &&
3876 !skb_has_frag_list(skb);
3877}
3878
f25f4e44
PWJ
3879static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3880{
f25f4e44 3881 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3882}
3883
9247744e 3884static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3885{
4e3ab47a 3886 return skb->queue_mapping;
4e3ab47a
PE
3887}
3888
f25f4e44
PWJ
3889static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3890{
f25f4e44 3891 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3892}
3893
d5a9e24a
DM
3894static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3895{
3896 skb->queue_mapping = rx_queue + 1;
3897}
3898
9247744e 3899static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3900{
3901 return skb->queue_mapping - 1;
3902}
3903
9247744e 3904static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3905{
a02cec21 3906 return skb->queue_mapping != 0;
d5a9e24a
DM
3907}
3908
4ff06203
JA
3909static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3910{
3911 skb->dst_pending_confirm = val;
3912}
3913
3914static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3915{
3916 return skb->dst_pending_confirm != 0;
3917}
3918
def8b4fa
AD
3919static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3920{
0b3d8e08 3921#ifdef CONFIG_XFRM
def8b4fa 3922 return skb->sp;
def8b4fa 3923#else
def8b4fa 3924 return NULL;
def8b4fa 3925#endif
0b3d8e08 3926}
def8b4fa 3927
68c33163
PS
3928/* Keeps track of mac header offset relative to skb->head.
3929 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3930 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3931 * tunnel skb it points to outer mac header.
3932 * Keeps track of level of encapsulation of network headers.
3933 */
68c33163 3934struct skb_gso_cb {
802ab55a
AD
3935 union {
3936 int mac_offset;
3937 int data_offset;
3938 };
3347c960 3939 int encap_level;
76443456 3940 __wsum csum;
7e2b10c1 3941 __u16 csum_start;
68c33163 3942};
9207f9d4
KK
3943#define SKB_SGO_CB_OFFSET 32
3944#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3945
3946static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3947{
3948 return (skb_mac_header(inner_skb) - inner_skb->head) -
3949 SKB_GSO_CB(inner_skb)->mac_offset;
3950}
3951
1e2bd517
PS
3952static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3953{
3954 int new_headroom, headroom;
3955 int ret;
3956
3957 headroom = skb_headroom(skb);
3958 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3959 if (ret)
3960 return ret;
3961
3962 new_headroom = skb_headroom(skb);
3963 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3964 return 0;
3965}
3966
08b64fcc
AD
3967static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3968{
3969 /* Do not update partial checksums if remote checksum is enabled. */
3970 if (skb->remcsum_offload)
3971 return;
3972
3973 SKB_GSO_CB(skb)->csum = res;
3974 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3975}
3976
7e2b10c1
TH
3977/* Compute the checksum for a gso segment. First compute the checksum value
3978 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3979 * then add in skb->csum (checksum from csum_start to end of packet).
3980 * skb->csum and csum_start are then updated to reflect the checksum of the
3981 * resultant packet starting from the transport header-- the resultant checksum
3982 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3983 * header.
3984 */
3985static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3986{
76443456
AD
3987 unsigned char *csum_start = skb_transport_header(skb);
3988 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3989 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3990
76443456
AD
3991 SKB_GSO_CB(skb)->csum = res;
3992 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3993
76443456 3994 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3995}
3996
bdcc0924 3997static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3998{
3999 return skb_shinfo(skb)->gso_size;
4000}
4001
36a8f39e 4002/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4003static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4004{
4005 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4006}
4007
5293efe6
DB
4008static inline void skb_gso_reset(struct sk_buff *skb)
4009{
4010 skb_shinfo(skb)->gso_size = 0;
4011 skb_shinfo(skb)->gso_segs = 0;
4012 skb_shinfo(skb)->gso_type = 0;
4013}
4014
7965bd4d 4015void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4016
4017static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4018{
4019 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4020 * wanted then gso_type will be set. */
05bdd2f1
ED
4021 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4022
b78462eb
AD
4023 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4024 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4025 __skb_warn_lro_forwarding(skb);
4026 return true;
4027 }
4028 return false;
4029}
4030
35fc92a9
HX
4031static inline void skb_forward_csum(struct sk_buff *skb)
4032{
4033 /* Unfortunately we don't support this one. Any brave souls? */
4034 if (skb->ip_summed == CHECKSUM_COMPLETE)
4035 skb->ip_summed = CHECKSUM_NONE;
4036}
4037
bc8acf2c
ED
4038/**
4039 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4040 * @skb: skb to check
4041 *
4042 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4043 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4044 * use this helper, to document places where we make this assertion.
4045 */
05bdd2f1 4046static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4047{
4048#ifdef DEBUG
4049 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4050#endif
4051}
4052
f35d9d8a 4053bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4054
ed1f50c3 4055int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4056struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4057 unsigned int transport_len,
4058 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4059
3a7c1ee4
AD
4060/**
4061 * skb_head_is_locked - Determine if the skb->head is locked down
4062 * @skb: skb to check
4063 *
4064 * The head on skbs build around a head frag can be removed if they are
4065 * not cloned. This function returns true if the skb head is locked down
4066 * due to either being allocated via kmalloc, or by being a clone with
4067 * multiple references to the head.
4068 */
4069static inline bool skb_head_is_locked(const struct sk_buff *skb)
4070{
4071 return !skb->head_frag || skb_cloned(skb);
4072}
fe6cc55f
FW
4073
4074/**
4075 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4076 *
4077 * @skb: GSO skb
4078 *
4079 * skb_gso_network_seglen is used to determine the real size of the
4080 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4081 *
4082 * The MAC/L2 header is not accounted for.
4083 */
4084static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4085{
4086 unsigned int hdr_len = skb_transport_header(skb) -
4087 skb_network_header(skb);
4088 return hdr_len + skb_gso_transport_seglen(skb);
4089}
ee122c79 4090
785644d6
DA
4091/**
4092 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4093 *
4094 * @skb: GSO skb
4095 *
4096 * skb_gso_mac_seglen is used to determine the real size of the
4097 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4098 * headers (TCP/UDP).
4099 */
4100static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4101{
4102 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4103 return hdr_len + skb_gso_transport_seglen(skb);
4104}
4105
179bc67f
EC
4106/* Local Checksum Offload.
4107 * Compute outer checksum based on the assumption that the
4108 * inner checksum will be offloaded later.
e8ae7b00
EC
4109 * See Documentation/networking/checksum-offloads.txt for
4110 * explanation of how this works.
179bc67f
EC
4111 * Fill in outer checksum adjustment (e.g. with sum of outer
4112 * pseudo-header) before calling.
4113 * Also ensure that inner checksum is in linear data area.
4114 */
4115static inline __wsum lco_csum(struct sk_buff *skb)
4116{
9e74a6da
AD
4117 unsigned char *csum_start = skb_checksum_start(skb);
4118 unsigned char *l4_hdr = skb_transport_header(skb);
4119 __wsum partial;
179bc67f
EC
4120
4121 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4122 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4123 skb->csum_offset));
4124
179bc67f 4125 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4126 * adjustment filled in by caller) and return result.
179bc67f 4127 */
9e74a6da 4128 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4129}
4130
1da177e4
LT
4131#endif /* __KERNEL__ */
4132#endif /* _LINUX_SKBUFF_H */