]> git.ipfire.org Git - thirdparty/linux.git/blame - include/net/tcp.h
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / include / net / tcp.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
02c30a84 11 * Authors: Ross Biro
1da177e4 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
1da177e4
LT
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
1da177e4
LT
17#define FASTRETRANS_DEBUG 1
18
1da177e4
LT
19#include <linux/list.h>
20#include <linux/tcp.h>
187f1882 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
fb286bb2 25#include <linux/skbuff.h>
c6aefafb 26#include <linux/cryptohash.h>
435cf559 27#include <linux/kref.h>
740b0f18 28#include <linux/ktime.h>
3f421baa
ACM
29
30#include <net/inet_connection_sock.h>
295ff7ed 31#include <net/inet_timewait_sock.h>
77d8bf9c 32#include <net/inet_hashtables.h>
1da177e4 33#include <net/checksum.h>
2e6599cb 34#include <net/request_sock.h>
40a1227e 35#include <net/sock_reuseport.h>
1da177e4
LT
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
c752f073 39#include <net/tcp_states.h>
bdf1ee5d 40#include <net/inet_ecn.h>
0c266898 41#include <net/dst.h>
85712484 42#include <net/mptcp.h>
c752f073 43
1da177e4 44#include <linux/seq_file.h>
180d8cd9 45#include <linux/memcontrol.h>
40304b2a 46#include <linux/bpf-cgroup.h>
438ac880 47#include <linux/siphash.h>
40304b2a 48
6e04e021 49extern struct inet_hashinfo tcp_hashinfo;
1da177e4 50
dd24c001 51extern struct percpu_counter tcp_orphan_count;
5c9f3023 52void tcp_time_wait(struct sock *sk, int state, int timeo);
1da177e4 53
9bacd256 54#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
33ad798c 55#define MAX_TCP_OPTION_SPACE 40
3b4929f6
ED
56#define TCP_MIN_SND_MSS 48
57#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
1da177e4 58
105970f6 59/*
1da177e4 60 * Never offer a window over 32767 without using window scaling. Some
105970f6 61 * poor stacks do signed 16bit maths!
1da177e4
LT
62 */
63#define MAX_TCP_WINDOW 32767U
64
65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66#define TCP_MIN_MSS 88U
67
1555e6fd 68/* The initial MTU to use for probing */
dcd8fb85 69#define TCP_BASE_MSS 1024
5d424d5a 70
05cbc0db
FD
71/* probing interval, default to 10 minutes as per RFC4821 */
72#define TCP_PROBE_INTERVAL 600
73
6b58e0a5
FD
74/* Specify interval when tcp mtu probing will stop */
75#define TCP_PROBE_THRESHOLD 8
76
1da177e4
LT
77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
78#define TCP_FASTRETRANS_THRESH 3
79
1da177e4
LT
80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
81#define TCP_MAX_QUICKACKS 16U
82
589c49cb
GF
83/* Maximal number of window scale according to RFC1323 */
84#define TCP_MAX_WSCALE 14U
85
1da177e4
LT
86/* urg_data states */
87#define TCP_URG_VALID 0x0100
88#define TCP_URG_NOTYET 0x0200
89#define TCP_URG_READ 0x0400
90
91#define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98#define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
6c9ff979
AB
105#define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
1da177e4 113
6c9ff979
AB
114#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
1da177e4 120
1da177e4
LT
121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129
130#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
131#if HZ >= 100
132#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
133#define TCP_ATO_MIN ((unsigned)(HZ/25))
134#else
135#define TCP_DELACK_MIN 4U
136#define TCP_ATO_MIN 4U
137#endif
138#define TCP_RTO_MAX ((unsigned)(120*HZ))
139#define TCP_RTO_MIN ((unsigned)(HZ/5))
bb4d991a 140#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
fd4f2cea 141#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
9ad7c049
JC
142#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
143 * used as a fallback RTO for the
144 * initial data transmission if no
145 * valid RTT sample has been acquired,
146 * most likely due to retrans in 3WHS.
147 */
1da177e4
LT
148
149#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 * for local resources.
151 */
1da177e4
LT
152#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
153#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
154#define TCP_KEEPALIVE_INTVL (75*HZ)
155
156#define MAX_TCP_KEEPIDLE 32767
157#define MAX_TCP_KEEPINTVL 32767
158#define MAX_TCP_KEEPCNT 127
159#define MAX_TCP_SYNCNT 127
160
161#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
1da177e4
LT
162
163#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
164#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
165 * after this time. It should be equal
166 * (or greater than) TCP_TIMEWAIT_LEN
167 * to provide reliability equal to one
168 * provided by timewait state.
169 */
170#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
171 * timestamps. It must be less than
172 * minimal timewait lifetime.
173 */
1da177e4
LT
174/*
175 * TCP option
176 */
105970f6 177
1da177e4
LT
178#define TCPOPT_NOP 1 /* Padding */
179#define TCPOPT_EOL 0 /* End of options */
180#define TCPOPT_MSS 2 /* Segment size negotiating */
181#define TCPOPT_WINDOW 3 /* Window scaling */
182#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
183#define TCPOPT_SACK 5 /* SACK Block */
184#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
cfb6eeb4 185#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
c74a39c8 186#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
7f9b838b 187#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
2100c8d2
YC
188#define TCPOPT_EXP 254 /* Experimental */
189/* Magic number to be after the option value for sharing TCP
190 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
191 */
192#define TCPOPT_FASTOPEN_MAGIC 0xF989
60e2a778 193#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
1da177e4
LT
194
195/*
196 * TCP option lengths
197 */
198
199#define TCPOLEN_MSS 4
200#define TCPOLEN_WINDOW 3
201#define TCPOLEN_SACK_PERM 2
202#define TCPOLEN_TIMESTAMP 10
cfb6eeb4 203#define TCPOLEN_MD5SIG 18
7f9b838b 204#define TCPOLEN_FASTOPEN_BASE 2
2100c8d2 205#define TCPOLEN_EXP_FASTOPEN_BASE 4
60e2a778 206#define TCPOLEN_EXP_SMC_BASE 6
1da177e4
LT
207
208/* But this is what stacks really send out. */
209#define TCPOLEN_TSTAMP_ALIGNED 12
210#define TCPOLEN_WSCALE_ALIGNED 4
211#define TCPOLEN_SACKPERM_ALIGNED 4
212#define TCPOLEN_SACK_BASE 2
213#define TCPOLEN_SACK_BASE_ALIGNED 4
214#define TCPOLEN_SACK_PERBLOCK 8
cfb6eeb4 215#define TCPOLEN_MD5SIG_ALIGNED 20
33ad798c 216#define TCPOLEN_MSS_ALIGNED 4
60e2a778 217#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
1da177e4 218
1da177e4
LT
219/* Flags in tp->nonagle */
220#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
221#define TCP_NAGLE_CORK 2 /* Socket is corked */
caa20d9a 222#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
1da177e4 223
36e31b0a
AP
224/* TCP thin-stream limits */
225#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
226
21603fc4 227/* TCP initial congestion window as per rfc6928 */
442b9635
DM
228#define TCP_INIT_CWND 10
229
cf60af03
YC
230/* Bit Flags for sysctl_tcp_fastopen */
231#define TFO_CLIENT_ENABLE 1
10467163 232#define TFO_SERVER_ENABLE 2
67da22d2 233#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
cf60af03 234
10467163
JC
235/* Accept SYN data w/o any cookie option */
236#define TFO_SERVER_COOKIE_NOT_REQD 0x200
237
238/* Force enable TFO on all listeners, i.e., not requiring the
cebc5cba 239 * TCP_FASTOPEN socket option.
10467163
JC
240 */
241#define TFO_SERVER_WO_SOCKOPT1 0x400
10467163 242
295ff7ed 243
1da177e4 244/* sysctl variables for tcp */
1da177e4 245extern int sysctl_tcp_max_orphans;
a4fe34bf 246extern long sysctl_tcp_mem[3];
e20223f1 247
a0370b3f 248#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
1f255691 249#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
20b654df 250#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
a0370b3f 251
8d987e5c 252extern atomic_long_t tcp_memory_allocated;
1748376b 253extern struct percpu_counter tcp_sockets_allocated;
06044751 254extern unsigned long tcp_memory_pressure;
1da177e4 255
b8da51eb
ED
256/* optimized version of sk_under_memory_pressure() for TCP sockets */
257static inline bool tcp_under_memory_pressure(const struct sock *sk)
258{
baac50bb
JW
259 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
260 mem_cgroup_under_socket_pressure(sk->sk_memcg))
e805605c 261 return true;
b8da51eb 262
1f142c17 263 return READ_ONCE(tcp_memory_pressure);
b8da51eb 264}
1da177e4
LT
265/*
266 * The next routines deal with comparing 32 bit unsigned ints
267 * and worry about wraparound (automatic with unsigned arithmetic).
268 */
269
a2a385d6 270static inline bool before(__u32 seq1, __u32 seq2)
1da177e4 271{
0d630cc0 272 return (__s32)(seq1-seq2) < 0;
1da177e4 273}
9a036b9c 274#define after(seq2, seq1) before(seq1, seq2)
1da177e4
LT
275
276/* is s2<=s1<=s3 ? */
a2a385d6 277static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
1da177e4
LT
278{
279 return seq3 - seq2 >= seq1 - seq2;
280}
281
efcdbf24
AS
282static inline bool tcp_out_of_memory(struct sock *sk)
283{
284 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
285 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
286 return true;
287 return false;
288}
289
a6c5ea4c
ED
290void sk_forced_mem_schedule(struct sock *sk, int size);
291
ad1af0fe 292static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
e4fd5da3 293{
ad1af0fe
DM
294 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
295 int orphans = percpu_counter_read_positive(ocp);
296
297 if (orphans << shift > sysctl_tcp_max_orphans) {
298 orphans = percpu_counter_sum_positive(ocp);
299 if (orphans << shift > sysctl_tcp_max_orphans)
300 return true;
301 }
ad1af0fe 302 return false;
e4fd5da3 303}
1da177e4 304
5c9f3023 305bool tcp_check_oom(struct sock *sk, int shift);
efcdbf24 306
a0f82f64 307
1da177e4
LT
308extern struct proto tcp_prot;
309
57ef42d5 310#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
13415e46 311#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
57ef42d5 312#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
aa2ea058 313#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
1da177e4 314
5c9f3023
JP
315void tcp_tasklet_init(void);
316
32bbd879 317int tcp_v4_err(struct sk_buff *skb, u32);
5c9f3023
JP
318
319void tcp_shutdown(struct sock *sk, int how);
320
7487449c 321int tcp_v4_early_demux(struct sk_buff *skb);
5c9f3023
JP
322int tcp_v4_rcv(struct sk_buff *skb);
323
324int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
1b784140 325int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
306b13eb 326int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
5c9f3023
JP
327int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
328 int flags);
306b13eb
TH
329int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
330 size_t size, int flags);
e3b5616a
DW
331ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
35b2c321
MM
333int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
335 int size_goal);
5c9f3023
JP
336void tcp_release_cb(struct sock *sk);
337void tcp_wfree(struct sk_buff *skb);
338void tcp_write_timer_handler(struct sock *sk);
339void tcp_delack_timer_handler(struct sock *sk);
340int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
72ab4a86 341int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
3d97d88e 342void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
5c9f3023 343void tcp_rcv_space_adjust(struct sock *sk);
5c9f3023
JP
344int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345void tcp_twsk_destructor(struct sock *sk);
346ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 struct pipe_inode_info *pipe, size_t len,
348 unsigned int flags);
9c55e01c 349
a0496ef2 350void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
463c84b9
ACM
351static inline void tcp_dec_quickack_mode(struct sock *sk,
352 const unsigned int pkts)
1da177e4 353{
463c84b9 354 struct inet_connection_sock *icsk = inet_csk(sk);
fc6415bc 355
463c84b9
ACM
356 if (icsk->icsk_ack.quick) {
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
fc6415bc 359 /* Leaving quickack mode we deflate ATO. */
463c84b9 360 icsk->icsk_ack.ato = TCP_ATO_MIN;
fc6415bc 361 } else
463c84b9 362 icsk->icsk_ack.quick -= pkts;
1da177e4
LT
363 }
364}
365
bdf1ee5d
IJ
366#define TCP_ECN_OK 1
367#define TCP_ECN_QUEUE_CWR 2
368#define TCP_ECN_DEMAND_CWR 4
7a269ffa 369#define TCP_ECN_SEEN 8
bdf1ee5d 370
fd2c3ef7 371enum tcp_tw_status {
1da177e4
LT
372 TCP_TW_SUCCESS = 0,
373 TCP_TW_RST = 1,
374 TCP_TW_ACK = 2,
375 TCP_TW_SYN = 3
376};
377
378
5c9f3023
JP
379enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 struct sk_buff *skb,
381 const struct tcphdr *th);
382struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
e0f9759f
ED
383 struct request_sock *req, bool fastopen,
384 bool *lost_race);
5c9f3023
JP
385int tcp_child_process(struct sock *parent, struct sock *child,
386 struct sk_buff *skb);
5ae344c9 387void tcp_enter_loss(struct sock *sk);
57dde7f7 388void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
5c9f3023
JP
389void tcp_clear_retrans(struct tcp_sock *tp);
390void tcp_update_metrics(struct sock *sk);
391void tcp_init_metrics(struct sock *sk);
392void tcp_metrics_init(void);
d82bae12 393bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
5c9f3023
JP
394void tcp_close(struct sock *sk, long timeout);
395void tcp_init_sock(struct sock *sk);
27204aaa 396void tcp_init_transfer(struct sock *sk, int bpf_op);
a11e1d43
LT
397__poll_t tcp_poll(struct file *file, struct socket *sock,
398 struct poll_table_struct *wait);
5c9f3023
JP
399int tcp_getsockopt(struct sock *sk, int level, int optname,
400 char __user *optval, int __user *optlen);
401int tcp_setsockopt(struct sock *sk, int level, int optname,
402 char __user *optval, unsigned int optlen);
403int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
53d3176b 404 char __user *optval, int __user *optlen);
5c9f3023 405int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
53d3176b 406 char __user *optval, unsigned int optlen);
5c9f3023 407void tcp_set_keepalive(struct sock *sk, int val);
42cb80a2 408void tcp_syn_ack_timeout(const struct request_sock *req);
1b784140
YX
409int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
410 int flags, int *addr_len);
d1361840 411int tcp_set_rcvlowat(struct sock *sk, int val);
03f45c88 412void tcp_data_ready(struct sock *sk);
340a6f3d 413#ifdef CONFIG_MMU
93ab6cc6
ED
414int tcp_mmap(struct file *file, struct socket *sock,
415 struct vm_area_struct *vma);
340a6f3d 416#endif
eed29f17 417void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
5c9f3023
JP
418 struct tcp_options_received *opt_rx,
419 int estab, struct tcp_fastopen_cookie *foc);
420const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
7d5d5525 421
9349d600
PP
422/*
423 * BPF SKB-less helpers
424 */
425u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
426 struct tcphdr *th, u32 *cookie);
427u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
428 struct tcphdr *th, u32 *cookie);
429u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
430 const struct tcp_request_sock_ops *af_ops,
431 struct sock *sk, struct tcphdr *th);
1da177e4
LT
432/*
433 * TCP v4 functions exported for the inet6 API
434 */
435
5c9f3023 436void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
4fab9071 437void tcp_v4_mtu_reduced(struct sock *sk);
9cf74903 438void tcp_req_err(struct sock *sk, u32 seq, bool abort);
5c9f3023 439int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
c28c6f04 440struct sock *tcp_create_openreq_child(const struct sock *sk,
5c9f3023
JP
441 struct request_sock *req,
442 struct sk_buff *skb);
81164413 443void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
0c27171e 444struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
5c9f3023 445 struct request_sock *req,
5e0724d0
ED
446 struct dst_entry *dst,
447 struct request_sock *req_unhash,
448 bool *own_req);
5c9f3023
JP
449int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
450int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
451int tcp_connect(struct sock *sk);
b3d05147
ED
452enum tcp_synack_type {
453 TCP_SYNACK_NORMAL,
454 TCP_SYNACK_FASTOPEN,
455 TCP_SYNACK_COOKIE,
456};
5d062de7 457struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
5c9f3023 458 struct request_sock *req,
ca6fb065 459 struct tcp_fastopen_cookie *foc,
b3d05147 460 enum tcp_synack_type synack_type);
5c9f3023 461int tcp_disconnect(struct sock *sk, int flags);
1da177e4 462
370816ae 463void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
292e8d8c 464int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
63d02d15 465void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
1da177e4 466
1da177e4 467/* From syncookies.c */
b80c0e78
ED
468struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
469 struct request_sock *req,
84b114b9 470 struct dst_entry *dst, u32 tsoff);
5c9f3023
JP
471int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
472 u32 cookie);
461b74c3 473struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
e05c82d3 474#ifdef CONFIG_SYN_COOKIES
8c27bd75 475
63262315 476/* Syncookies use a monotonic timer which increments every 60 seconds.
8c27bd75
FW
477 * This counter is used both as a hash input and partially encoded into
478 * the cookie value. A cookie is only validated further if the delta
479 * between the current counter value and the encoded one is less than this,
63262315 480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
8c27bd75
FW
481 * the counter advances immediately after a cookie is generated).
482 */
264ea103
ED
483#define MAX_SYNCOOKIE_AGE 2
484#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
485#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
486
487/* syncookies: remember time of last synqueue overflow
488 * But do not dirty this field too often (once per second is enough)
3f684b4b 489 * It is racy as we do not hold a lock, but race is very minor.
264ea103 490 */
3f684b4b 491static inline void tcp_synq_overflow(const struct sock *sk)
264ea103 492{
40a1227e 493 unsigned int last_overflow;
cca9bab1 494 unsigned int now = jiffies;
264ea103 495
40a1227e
MKL
496 if (sk->sk_reuseport) {
497 struct sock_reuseport *reuse;
498
499 reuse = rcu_dereference(sk->sk_reuseport_cb);
500 if (likely(reuse)) {
501 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
04d26e7b
GN
502 if (!time_between32(now, last_overflow,
503 last_overflow + HZ))
40a1227e
MKL
504 WRITE_ONCE(reuse->synq_overflow_ts, now);
505 return;
506 }
507 }
508
721c8daf 509 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
04d26e7b 510 if (!time_between32(now, last_overflow, last_overflow + HZ))
721c8daf 511 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
264ea103
ED
512}
513
514/* syncookies: no recent synqueue overflow on this listening socket? */
515static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
516{
40a1227e 517 unsigned int last_overflow;
cca9bab1 518 unsigned int now = jiffies;
264ea103 519
40a1227e
MKL
520 if (sk->sk_reuseport) {
521 struct sock_reuseport *reuse;
522
523 reuse = rcu_dereference(sk->sk_reuseport_cb);
524 if (likely(reuse)) {
525 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
cb44a08f
GN
526 return !time_between32(now, last_overflow - HZ,
527 last_overflow +
528 TCP_SYNCOOKIE_VALID);
40a1227e
MKL
529 }
530 }
531
721c8daf 532 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
cb44a08f
GN
533
534 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
535 * then we're under synflood. However, we have to use
536 * 'last_overflow - HZ' as lower bound. That's because a concurrent
537 * tcp_synq_overflow() could update .ts_recent_stamp after we read
538 * jiffies but before we store .ts_recent_stamp into last_overflow,
539 * which could lead to rejecting a valid syncookie.
540 */
541 return !time_between32(now, last_overflow - HZ,
542 last_overflow + TCP_SYNCOOKIE_VALID);
264ea103 543}
8c27bd75
FW
544
545static inline u32 tcp_cookie_time(void)
546{
63262315
ED
547 u64 val = get_jiffies_64();
548
264ea103 549 do_div(val, TCP_SYNCOOKIE_PERIOD);
63262315 550 return val;
8c27bd75
FW
551}
552
5c9f3023
JP
553u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
554 u16 *mssp);
3f684b4b 555__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
200ecef6 556u64 cookie_init_timestamp(struct request_sock *req, u64 now);
f9301034
ED
557bool cookie_timestamp_decode(const struct net *net,
558 struct tcp_options_received *opt);
f1673381 559bool cookie_ecn_ok(const struct tcp_options_received *opt,
f7b3bec6 560 const struct net *net, const struct dst_entry *dst);
4dfc2817 561
c6aefafb 562/* From net/ipv6/syncookies.c */
5c9f3023
JP
563int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
564 u32 cookie);
565struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
f1673381 566
5c9f3023
JP
567u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
568 const struct tcphdr *th, u16 *mssp);
3f684b4b 569__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
e05c82d3 570#endif
1da177e4
LT
571/* tcp_output.c */
572
5c9f3023
JP
573void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
574 int nonagle);
10d3be56
ED
575int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
576int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
5c9f3023
JP
577void tcp_retransmit_timer(struct sock *sk);
578void tcp_xmit_retransmit_queue(struct sock *);
579void tcp_simple_retransmit(struct sock *);
57dde7f7 580void tcp_enter_recovery(struct sock *sk, bool ece_ack);
5c9f3023 581int tcp_trim_head(struct sock *, struct sk_buff *, u32);
75c119af
ED
582enum tcp_queue {
583 TCP_FRAG_IN_WRITE_QUEUE,
584 TCP_FRAG_IN_RTX_QUEUE,
585};
586int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
587 struct sk_buff *skb, u32 len,
588 unsigned int mss_now, gfp_t gfp);
5c9f3023
JP
589
590void tcp_send_probe0(struct sock *);
591void tcp_send_partial(struct sock *);
e520af48 592int tcp_write_wakeup(struct sock *, int mib);
5c9f3023
JP
593void tcp_send_fin(struct sock *sk);
594void tcp_send_active_reset(struct sock *sk, gfp_t priority);
595int tcp_send_synack(struct sock *);
5c9f3023 596void tcp_push_one(struct sock *, unsigned int mss_now);
27cde44a 597void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
5c9f3023
JP
598void tcp_send_ack(struct sock *sk);
599void tcp_send_delayed_ack(struct sock *sk);
600void tcp_send_loss_probe(struct sock *sk);
ed66dfaf 601bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
cfea5a68
MKL
602void tcp_skb_collapse_tstamp(struct sk_buff *skb,
603 const struct sk_buff *next_skb);
1da177e4 604
a762a980 605/* tcp_input.c */
5c9f3023 606void tcp_rearm_rto(struct sock *sk);
0f1c28ae 607void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
5c9f3023 608void tcp_reset(struct sock *sk);
4f41b1c5 609void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
e3e17b77 610void tcp_fin(struct sock *sk);
a762a980 611
1da177e4 612/* tcp_timer.c */
5c9f3023 613void tcp_init_xmit_timers(struct sock *);
463c84b9
ACM
614static inline void tcp_clear_xmit_timers(struct sock *sk)
615{
73a6bab5 616 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
cf0dd203 617 __sock_put(sk);
73a6bab5 618
5d9f4262
ED
619 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
620 __sock_put(sk);
621
463c84b9
ACM
622 inet_csk_clear_xmit_timers(sk);
623}
1da177e4 624
5c9f3023
JP
625unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
626unsigned int tcp_current_mss(struct sock *sk);
0c54b85f
IJ
627
628/* Bound MSS / TSO packet size with the half of the window */
629static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
630{
01f83d69
AK
631 int cutoff;
632
633 /* When peer uses tiny windows, there is no use in packetizing
634 * to sub-MSS pieces for the sake of SWS or making sure there
635 * are enough packets in the pipe for fast recovery.
636 *
637 * On the other hand, for extremely large MSS devices, handling
638 * smaller than MSS windows in this way does make sense.
639 */
2631b79f 640 if (tp->max_window > TCP_MSS_DEFAULT)
01f83d69
AK
641 cutoff = (tp->max_window >> 1);
642 else
643 cutoff = tp->max_window;
644
645 if (cutoff && pktsize > cutoff)
646 return max_t(int, cutoff, 68U - tp->tcp_header_len);
0c54b85f
IJ
647 else
648 return pktsize;
649}
1da177e4 650
17b085ea 651/* tcp.c */
0df48c26 652void tcp_get_info(struct sock *, struct tcp_info *);
1da177e4
LT
653
654/* Read 'sendfile()'-style from a TCP socket */
5c9f3023
JP
655int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
656 sk_read_actor_t recv_actor);
1da177e4 657
5c9f3023 658void tcp_initialize_rcv_mss(struct sock *sk);
1da177e4 659
5c9f3023
JP
660int tcp_mtu_to_mss(struct sock *sk, int pmtu);
661int tcp_mss_to_mtu(struct sock *sk, int mss);
662void tcp_mtup_init(struct sock *sk);
663void tcp_init_buffer_space(struct sock *sk);
5d424d5a 664
f1ecd5d9
DL
665static inline void tcp_bound_rto(const struct sock *sk)
666{
667 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669}
670
671static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672{
740b0f18 673 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
f1ecd5d9
DL
674}
675
31770e34
FW
676static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677{
678 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
679 ntohl(TCP_FLAG_ACK) |
680 snd_wnd);
681}
682
683static inline void tcp_fast_path_on(struct tcp_sock *tp)
684{
685 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
686}
687
688static inline void tcp_fast_path_check(struct sock *sk)
689{
690 struct tcp_sock *tp = tcp_sk(sk);
691
692 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
693 tp->rcv_wnd &&
694 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
695 !tp->urg_data)
696 tcp_fast_path_on(tp);
697}
698
0c266898
SS
699/* Compute the actual rto_min value */
700static inline u32 tcp_rto_min(struct sock *sk)
701{
cf533ea5 702 const struct dst_entry *dst = __sk_dst_get(sk);
0c266898
SS
703 u32 rto_min = TCP_RTO_MIN;
704
705 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
706 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
707 return rto_min;
708}
709
740b0f18
ED
710static inline u32 tcp_rto_min_us(struct sock *sk)
711{
712 return jiffies_to_usecs(tcp_rto_min(sk));
713}
714
81164413
DB
715static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
716{
717 return dst_metric_locked(dst, RTAX_CC_ALGO);
718}
719
f6722583
YC
720/* Minimum RTT in usec. ~0 means not available. */
721static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
722{
64033892 723 return minmax_get(&tp->rtt_min);
f6722583
YC
724}
725
1da177e4
LT
726/* Compute the actual receive window we are currently advertising.
727 * Rcv_nxt can be after the window if our peer push more data
728 * than the offered window.
729 */
40efc6fa 730static inline u32 tcp_receive_window(const struct tcp_sock *tp)
1da177e4
LT
731{
732 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
733
734 if (win < 0)
735 win = 0;
736 return (u32) win;
737}
738
739/* Choose a new window, without checks for shrinking, and without
740 * scaling applied to the result. The caller does these things
741 * if necessary. This is a "raw" window selection.
742 */
5c9f3023 743u32 __tcp_select_window(struct sock *sk);
1da177e4 744
ee995283
PE
745void tcp_send_window_probe(struct sock *sk);
746
ec66eda8
ED
747/* TCP uses 32bit jiffies to save some space.
748 * Note that this is different from tcp_time_stamp, which
749 * historically has been the same until linux-4.13.
750 */
751#define tcp_jiffies32 ((u32)jiffies)
752
9a568de4
ED
753/*
754 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
755 * It is no longer tied to jiffies, but to 1 ms clock.
756 * Note: double check if you want to use tcp_jiffies32 instead of this.
757 */
758#define TCP_TS_HZ 1000
759
760static inline u64 tcp_clock_ns(void)
761{
fb420d5d 762 return ktime_get_ns();
9a568de4
ED
763}
764
765static inline u64 tcp_clock_us(void)
766{
767 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
768}
769
770/* This should only be used in contexts where tp->tcp_mstamp is up to date */
771static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
772{
773 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
774}
775
200ecef6
ED
776/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
777static inline u32 tcp_ns_to_ts(u64 ns)
778{
779 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
780}
781
9a568de4
ED
782/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
783static inline u32 tcp_time_stamp_raw(void)
784{
200ecef6 785 return tcp_ns_to_ts(tcp_clock_ns());
9a568de4
ED
786}
787
9799ccb0 788void tcp_mstamp_refresh(struct tcp_sock *tp);
9a568de4
ED
789
790static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
791{
792 return max_t(s64, t1 - t0, 0);
793}
1da177e4 794
7faee5c0
ED
795static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
796{
200ecef6 797 return tcp_ns_to_ts(skb->skb_mstamp_ns);
7faee5c0
ED
798}
799
2fd66ffb
ED
800/* provide the departure time in us unit */
801static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
802{
d3edd06e 803 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
2fd66ffb
ED
804}
805
7faee5c0 806
a3433f35
CG
807#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
808
809#define TCPHDR_FIN 0x01
810#define TCPHDR_SYN 0x02
811#define TCPHDR_RST 0x04
812#define TCPHDR_PSH 0x08
813#define TCPHDR_ACK 0x10
814#define TCPHDR_URG 0x20
815#define TCPHDR_ECE 0x40
816#define TCPHDR_CWR 0x80
817
49213555
DB
818#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
819
caa20d9a 820/* This is what the send packet queuing engine uses to pass
f86586fa
ED
821 * TCP per-packet control information to the transmission code.
822 * We also store the host-order sequence numbers in here too.
823 * This is 44 bytes if IPV6 is enabled.
824 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1da177e4
LT
825 */
826struct tcp_skb_cb {
1da177e4
LT
827 __u32 seq; /* Starting sequence number */
828 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
cd7d8498
ED
829 union {
830 /* Note : tcp_tw_isn is used in input path only
831 * (isn chosen by tcp_timewait_state_process())
832 *
f69ad292
ED
833 * tcp_gso_segs/size are used in write queue only,
834 * cf tcp_skb_pcount()/tcp_skb_mss()
cd7d8498
ED
835 */
836 __u32 tcp_tw_isn;
f69ad292
ED
837 struct {
838 u16 tcp_gso_segs;
839 u16 tcp_gso_size;
840 };
cd7d8498 841 };
4de075e0 842 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
f4f9f6e7 843
713bafea 844 __u8 sacked; /* State flags for SACK. */
1da177e4
LT
845#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
846#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
847#define TCPCB_LOST 0x04 /* SKB is lost */
848#define TCPCB_TAGBITS 0x07 /* All tag bits */
d3edd06e 849#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
1da177e4 850#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
9d186cac
AV
851#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
852 TCPCB_REPAIRED)
1da177e4 853
f4f9f6e7 854 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
6b084928 855 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
c134ecb8 856 eor:1, /* Is skb MSG_EOR marked? */
98aaa913
MM
857 has_rxtstamp:1, /* SKB has a RX timestamp */
858 unused:5;
1da177e4 859 __u32 ack_seq; /* Sequence number ACK'd */
971f10ec 860 union {
b75803d5 861 struct {
b9f64820 862 /* There is space for up to 24 bytes */
d7722e85
SHY
863 __u32 in_flight:30,/* Bytes in flight at transmit */
864 is_app_limited:1, /* cwnd not fully used? */
865 unused:1;
b9f64820
YC
866 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
867 __u32 delivered;
868 /* start of send pipeline phase */
9a568de4 869 u64 first_tx_mstamp;
b9f64820 870 /* when we reached the "delivered" count */
9a568de4 871 u64 delivered_mstamp;
b75803d5
LB
872 } tx; /* only used for outgoing skbs */
873 union {
874 struct inet_skb_parm h4;
971f10ec 875#if IS_ENABLED(CONFIG_IPV6)
b75803d5 876 struct inet6_skb_parm h6;
971f10ec 877#endif
b75803d5 878 } header; /* For incoming skbs */
34f79502 879 struct {
34f79502 880 __u32 flags;
e5cd3abc 881 struct sock *sk_redir;
8108a775 882 void *data_end;
34f79502 883 } bpf;
b75803d5 884 };
1da177e4
LT
885};
886
887#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
888
0ea488ff
JF
889static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
890{
891 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
892}
870c3151 893
604326b4
DB
894static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
895{
896 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
897}
898
899static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
900{
901 return TCP_SKB_CB(skb)->bpf.sk_redir;
902}
903
904static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
905{
906 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
907}
908
815afe17 909#if IS_ENABLED(CONFIG_IPV6)
870c3151
ED
910/* This is the variant of inet6_iif() that must be used by TCP,
911 * as TCP moves IP6CB into a different location in skb->cb[]
912 */
913static inline int tcp_v6_iif(const struct sk_buff *skb)
24b711ed
DA
914{
915 return TCP_SKB_CB(skb)->header.h6.iif;
916}
917
918static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
870c3151 919{
a04a480d 920 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
74b20582
DA
921
922 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
870c3151 923}
4297a0ef
DA
924
925/* TCP_SKB_CB reference means this can not be used from early demux */
926static inline int tcp_v6_sdif(const struct sk_buff *skb)
927{
928#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
930 return TCP_SKB_CB(skb)->header.h6.iif;
931#endif
932 return 0;
933}
815afe17 934#endif
870c3151 935
a04a480d
DA
936static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
937{
938#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
b4d1605a 940 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
a04a480d
DA
941 return true;
942#endif
943 return false;
944}
945
3fa6f616
DA
946/* TCP_SKB_CB reference means this can not be used from early demux */
947static inline int tcp_v4_sdif(struct sk_buff *skb)
948{
949#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
950 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
951 return TCP_SKB_CB(skb)->header.h4.iif;
952#endif
953 return 0;
954}
955
1da177e4
LT
956/* Due to TSO, an SKB can be composed of multiple actual
957 * packets. To keep these tracked properly, we use this.
bd14b1b2 958 */
1da177e4 959static inline int tcp_skb_pcount(const struct sk_buff *skb)
bd14b1b2 960{
cd7d8498
ED
961 return TCP_SKB_CB(skb)->tcp_gso_segs;
962}
bd14b1b2 963
cd7d8498
ED
964static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
965{
966 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
bd14b1b2
ED
967}
968
cd7d8498 969static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1da177e4 970{
cd7d8498 971 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1da177e4
LT
972}
973
f69ad292 974/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1da177e4
LT
975static inline int tcp_skb_mss(const struct sk_buff *skb)
976{
f69ad292 977 return TCP_SKB_CB(skb)->tcp_gso_size;
1da177e4
LT
978}
979
c134ecb8
MKL
980static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
981{
982 return likely(!TCP_SKB_CB(skb)->eor);
983}
984
85712484
MM
985static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
986 const struct sk_buff *from)
987{
988 return likely(tcp_skb_can_collapse_to(to) &&
989 mptcp_skb_can_collapse(to, from));
990}
991
317a76f9
SH
992/* Events passed to congestion control interface */
993enum tcp_ca_event {
994 CA_EVENT_TX_START, /* first transmit when no packets in flight */
995 CA_EVENT_CWND_RESTART, /* congestion window restart */
996 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
317a76f9 997 CA_EVENT_LOSS, /* loss timeout */
9890092e
FW
998 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
999 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
7354c8c3
FW
1000};
1001
9890092e 1002/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
7354c8c3 1003enum tcp_ca_ack_event_flags {
c1d2b4c3
FW
1004 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1005 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1006 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
317a76f9
SH
1007};
1008
1009/*
1010 * Interface for adding new TCP congestion control handlers
1011 */
1012#define TCP_CA_NAME_MAX 16
3ff825b2
SH
1013#define TCP_CA_MAX 128
1014#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1015
c5c6a8ab
DB
1016#define TCP_CA_UNSPEC 0
1017
30e502a3 1018/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
164891aa 1019#define TCP_CONG_NON_RESTRICTED 0x1
30e502a3
DB
1020/* Requires ECN/ECT set on all packets */
1021#define TCP_CONG_NEEDS_ECN 0x2
0baf26b0 1022#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
164891aa 1023
64f40ff5
ED
1024union tcp_cc_info;
1025
756ee172
LB
1026struct ack_sample {
1027 u32 pkts_acked;
1028 s32 rtt_us;
6f094b9e 1029 u32 in_flight;
756ee172
LB
1030};
1031
b9f64820
YC
1032/* A rate sample measures the number of (original/retransmitted) data
1033 * packets delivered "delivered" over an interval of time "interval_us".
1034 * The tcp_rate.c code fills in the rate sample, and congestion
1035 * control modules that define a cong_control function to run at the end
1036 * of ACK processing can optionally chose to consult this sample when
1037 * setting cwnd and pacing rate.
1038 * A sample is invalid if "delivered" or "interval_us" is negative.
1039 */
1040struct rate_sample {
9a568de4 1041 u64 prior_mstamp; /* starting timestamp for interval */
b9f64820
YC
1042 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1043 s32 delivered; /* number of packets delivered over interval */
1044 long interval_us; /* time for tp->delivered to incr "delivered" */
4929c942
DR
1045 u32 snd_interval_us; /* snd interval for delivered packets */
1046 u32 rcv_interval_us; /* rcv interval for delivered packets */
b9f64820
YC
1047 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1048 int losses; /* number of packets marked lost upon ACK */
1049 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1050 u32 prior_in_flight; /* in flight before this ACK */
d7722e85 1051 bool is_app_limited; /* is sample from packet with bubble in pipe? */
b9f64820 1052 bool is_retrans; /* is sample from retransmission? */
e4286603 1053 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
b9f64820
YC
1054};
1055
317a76f9
SH
1056struct tcp_congestion_ops {
1057 struct list_head list;
c5c6a8ab
DB
1058 u32 key;
1059 u32 flags;
317a76f9
SH
1060
1061 /* initialize private data (optional) */
6687e988 1062 void (*init)(struct sock *sk);
317a76f9 1063 /* cleanup private data (optional) */
6687e988 1064 void (*release)(struct sock *sk);
317a76f9
SH
1065
1066 /* return slow start threshold (required) */
6687e988 1067 u32 (*ssthresh)(struct sock *sk);
317a76f9 1068 /* do new cwnd calculation (required) */
24901551 1069 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
317a76f9 1070 /* call before changing ca_state (optional) */
6687e988 1071 void (*set_state)(struct sock *sk, u8 new_state);
317a76f9 1072 /* call when cwnd event occurs (optional) */
6687e988 1073 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
7354c8c3
FW
1074 /* call when ack arrives (optional) */
1075 void (*in_ack_event)(struct sock *sk, u32 flags);
1e0ce2a1 1076 /* new value of cwnd after loss (required) */
6687e988 1077 u32 (*undo_cwnd)(struct sock *sk);
317a76f9 1078 /* hook for packet ack accounting (optional) */
756ee172 1079 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
dcb8c9b4
ED
1080 /* override sysctl_tcp_min_tso_segs */
1081 u32 (*min_tso_segs)(struct sock *sk);
77bfc174
YC
1082 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1083 u32 (*sndbuf_expand)(struct sock *sk);
c0402760
YC
1084 /* call when packets are delivered to update cwnd and pacing rate,
1085 * after all the ca_state processing. (optional)
1086 */
1087 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
73c1f4a0 1088 /* get info for inet_diag (optional) */
64f40ff5
ED
1089 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1090 union tcp_cc_info *info);
317a76f9
SH
1091
1092 char name[TCP_CA_NAME_MAX];
1093 struct module *owner;
1094};
1095
5c9f3023
JP
1096int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1097void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
317a76f9 1098
55d8694f 1099void tcp_assign_congestion_control(struct sock *sk);
5c9f3023
JP
1100void tcp_init_congestion_control(struct sock *sk);
1101void tcp_cleanup_congestion_control(struct sock *sk);
6670e152
SH
1102int tcp_set_default_congestion_control(struct net *net, const char *name);
1103void tcp_get_default_congestion_control(struct net *net, char *name);
5c9f3023
JP
1104void tcp_get_available_congestion_control(char *buf, size_t len);
1105void tcp_get_allowed_congestion_control(char *buf, size_t len);
1106int tcp_set_allowed_congestion_control(char *allowed);
8d650cde
ED
1107int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1108 bool reinit, bool cap_net_admin);
e73ebb08
NC
1109u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1110void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
317a76f9 1111
5c9f3023 1112u32 tcp_reno_ssthresh(struct sock *sk);
e9799183 1113u32 tcp_reno_undo_cwnd(struct sock *sk);
24901551 1114void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
a8acfbac 1115extern struct tcp_congestion_ops tcp_reno;
317a76f9 1116
0baf26b0 1117struct tcp_congestion_ops *tcp_ca_find(const char *name);
c5c6a8ab 1118struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
6670e152 1119u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
ea697639 1120#ifdef CONFIG_INET
c5c6a8ab 1121char *tcp_ca_get_name_by_key(u32 key, char *buffer);
ea697639
DB
1122#else
1123static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1124{
1125 return NULL;
1126}
1127#endif
c5c6a8ab 1128
30e502a3
DB
1129static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1130{
1131 const struct inet_connection_sock *icsk = inet_csk(sk);
1132
1133 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1134}
1135
6687e988 1136static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
317a76f9 1137{
6687e988
ACM
1138 struct inet_connection_sock *icsk = inet_csk(sk);
1139
1140 if (icsk->icsk_ca_ops->set_state)
1141 icsk->icsk_ca_ops->set_state(sk, ca_state);
1142 icsk->icsk_ca_state = ca_state;
317a76f9
SH
1143}
1144
6687e988 1145static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
317a76f9 1146{
6687e988
ACM
1147 const struct inet_connection_sock *icsk = inet_csk(sk);
1148
1149 if (icsk->icsk_ca_ops->cwnd_event)
1150 icsk->icsk_ca_ops->cwnd_event(sk, event);
317a76f9
SH
1151}
1152
b9f64820
YC
1153/* From tcp_rate.c */
1154void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1155void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1156 struct rate_sample *rs);
1157void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
d4761754 1158 bool is_sack_reneg, struct rate_sample *rs);
d7722e85 1159void tcp_rate_check_app_limited(struct sock *sk);
b9f64820 1160
e60402d0
IJ
1161/* These functions determine how the current flow behaves in respect of SACK
1162 * handling. SACK is negotiated with the peer, and therefore it can vary
1163 * between different flows.
1164 *
1165 * tcp_is_sack - SACK enabled
1166 * tcp_is_reno - No SACK
e60402d0
IJ
1167 */
1168static inline int tcp_is_sack(const struct tcp_sock *tp)
1169{
ebeef4bc 1170 return likely(tp->rx_opt.sack_ok);
e60402d0
IJ
1171}
1172
a2a385d6 1173static inline bool tcp_is_reno(const struct tcp_sock *tp)
e60402d0
IJ
1174{
1175 return !tcp_is_sack(tp);
1176}
1177
83ae4088
IJ
1178static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1179{
1180 return tp->sacked_out + tp->lost_out;
1181}
1182
1da177e4
LT
1183/* This determines how many packets are "in the network" to the best
1184 * of our knowledge. In many cases it is conservative, but where
1185 * detailed information is available from the receiver (via SACK
1186 * blocks etc.) we can make more aggressive calculations.
1187 *
1188 * Use this for decisions involving congestion control, use just
1189 * tp->packets_out to determine if the send queue is empty or not.
1190 *
1191 * Read this equation as:
1192 *
1193 * "Packets sent once on transmission queue" MINUS
1194 * "Packets left network, but not honestly ACKed yet" PLUS
1195 * "Packets fast retransmitted"
1196 */
40efc6fa 1197static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1da177e4 1198{
83ae4088 1199 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1da177e4
LT
1200}
1201
0b6a05c1
IJ
1202#define TCP_INFINITE_SSTHRESH 0x7fffffff
1203
071d5080
YC
1204static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1205{
76174004 1206 return tp->snd_cwnd < tp->snd_ssthresh;
071d5080
YC
1207}
1208
0b6a05c1
IJ
1209static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1210{
1211 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1212}
1213
684bad11
YC
1214static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1215{
1216 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1217 (1 << inet_csk(sk)->icsk_ca_state);
1218}
1219
1da177e4 1220/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
684bad11 1221 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1da177e4
LT
1222 * ssthresh.
1223 */
6687e988 1224static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1da177e4 1225{
6687e988 1226 const struct tcp_sock *tp = tcp_sk(sk);
cf533ea5 1227
684bad11 1228 if (tcp_in_cwnd_reduction(sk))
1da177e4
LT
1229 return tp->snd_ssthresh;
1230 else
1231 return max(tp->snd_ssthresh,
1232 ((tp->snd_cwnd >> 1) +
1233 (tp->snd_cwnd >> 2)));
1234}
1235
b9c4595b
IJ
1236/* Use define here intentionally to get WARN_ON location shown at the caller */
1237#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1da177e4 1238
5ee2c941 1239void tcp_enter_cwr(struct sock *sk);
5c9f3023 1240__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1da177e4 1241
6b5a5c0d
NC
1242/* The maximum number of MSS of available cwnd for which TSO defers
1243 * sending if not using sysctl_tcp_tso_win_divisor.
1244 */
1245static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1246{
1247 return 3;
1248}
1249
90840def
IJ
1250/* Returns end sequence number of the receiver's advertised window */
1251static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1252{
1253 return tp->snd_una + tp->snd_wnd;
1254}
e114a710
ED
1255
1256/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1257 * flexible approach. The RFC suggests cwnd should not be raised unless
ca8a2263
NC
1258 * it was fully used previously. And that's exactly what we do in
1259 * congestion avoidance mode. But in slow start we allow cwnd to grow
1260 * as long as the application has used half the cwnd.
e114a710
ED
1261 * Example :
1262 * cwnd is 10 (IW10), but application sends 9 frames.
1263 * We allow cwnd to reach 18 when all frames are ACKed.
1264 * This check is safe because it's as aggressive as slow start which already
1265 * risks 100% overshoot. The advantage is that we discourage application to
1266 * either send more filler packets or data to artificially blow up the cwnd
1267 * usage, and allow application-limited process to probe bw more aggressively.
e114a710 1268 */
24901551 1269static inline bool tcp_is_cwnd_limited(const struct sock *sk)
e114a710
ED
1270{
1271 const struct tcp_sock *tp = tcp_sk(sk);
1272
ca8a2263 1273 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
071d5080 1274 if (tcp_in_slow_start(tp))
ca8a2263
NC
1275 return tp->snd_cwnd < 2 * tp->max_packets_out;
1276
1277 return tp->is_cwnd_limited;
e114a710 1278}
f4805ede 1279
cadefe5f
ED
1280/* BBR congestion control needs pacing.
1281 * Same remark for SO_MAX_PACING_RATE.
1282 * sch_fq packet scheduler is efficiently handling pacing,
1283 * but is not always installed/used.
1284 * Return true if TCP stack should pace packets itself.
1285 */
1286static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1287{
1288 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1289}
1290
3f80e08f
ED
1291/* Return in jiffies the delay before one skb is sent.
1292 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1293 */
1294static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1295 const struct sk_buff *skb)
1296{
1297 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1298
1299 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1300
1301 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1302}
1303
1304static inline void tcp_reset_xmit_timer(struct sock *sk,
1305 const int what,
1306 unsigned long when,
1307 const unsigned long max_when,
1308 const struct sk_buff *skb)
1309{
1310 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1311 max_when);
1312}
1313
21c8fe99 1314/* Something is really bad, we could not queue an additional packet,
3f80e08f 1315 * because qdisc is full or receiver sent a 0 window, or we are paced.
21c8fe99
ED
1316 * We do not want to add fuel to the fire, or abort too early,
1317 * so make sure the timer we arm now is at least 200ms in the future,
1318 * regardless of current icsk_rto value (as it could be ~2ms)
1319 */
1320static inline unsigned long tcp_probe0_base(const struct sock *sk)
1da177e4 1321{
21c8fe99
ED
1322 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1323}
9e412ba7 1324
21c8fe99
ED
1325/* Variant of inet_csk_rto_backoff() used for zero window probes */
1326static inline unsigned long tcp_probe0_when(const struct sock *sk,
1327 unsigned long max_when)
1328{
1329 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1330
1331 return (unsigned long)min_t(u64, when, max_when);
1332}
1333
1334static inline void tcp_check_probe_timer(struct sock *sk)
1335{
1336 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
3f80e08f
ED
1337 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1338 tcp_probe0_base(sk), TCP_RTO_MAX,
1339 NULL);
1da177e4
LT
1340}
1341
ee7537b6 1342static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1da177e4
LT
1343{
1344 tp->snd_wl1 = seq;
1345}
1346
ee7537b6 1347static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1da177e4
LT
1348{
1349 tp->snd_wl1 = seq;
1350}
1351
1da177e4
LT
1352/*
1353 * Calculate(/check) TCP checksum
1354 */
ba7808ea
FD
1355static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1356 __be32 daddr, __wsum base)
1da177e4 1357{
0b13c9bb 1358 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1da177e4
LT
1359}
1360
a2a385d6 1361static inline bool tcp_checksum_complete(struct sk_buff *skb)
1da177e4 1362{
60476372 1363 return !skb_csum_unnecessary(skb) &&
6ab6dfa6 1364 __skb_checksum_complete(skb);
1da177e4
LT
1365}
1366
c9c33212 1367bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
ac6e7800 1368int tcp_filter(struct sock *sk, struct sk_buff *skb);
5c9f3023 1369void tcp_set_state(struct sock *sk, int state);
5c9f3023 1370void tcp_done(struct sock *sk);
c1e64e29
LC
1371int tcp_abort(struct sock *sk, int err);
1372
40efc6fa 1373static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1da177e4
LT
1374{
1375 rx_opt->dsack = 0;
1da177e4
LT
1376 rx_opt->num_sacks = 0;
1377}
1378
6f021c62
ED
1379void tcp_cwnd_restart(struct sock *sk, s32 delta);
1380
1381static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1382{
1b1fc3fd 1383 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6f021c62
ED
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 s32 delta;
1386
b510f0d2 1387 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1b1fc3fd 1388 ca_ops->cong_control)
6f021c62 1389 return;
d635fbe2 1390 delta = tcp_jiffies32 - tp->lsndtime;
6f021c62
ED
1391 if (delta > inet_csk(sk)->icsk_rto)
1392 tcp_cwnd_restart(sk, delta);
1393}
85f16525 1394
1da177e4 1395/* Determine a window scaling and initial window to offer. */
ceef9ab6
ED
1396void tcp_select_initial_window(const struct sock *sk, int __space,
1397 __u32 mss, __u32 *rcv_wnd,
5c9f3023
JP
1398 __u32 *window_clamp, int wscale_ok,
1399 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1da177e4 1400
94f0893e 1401static inline int tcp_win_from_space(const struct sock *sk, int space)
1da177e4 1402{
94f0893e 1403 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
c4836742
GF
1404
1405 return tcp_adv_win_scale <= 0 ?
1406 (space>>(-tcp_adv_win_scale)) :
1407 space - (space>>tcp_adv_win_scale);
1da177e4
LT
1408}
1409
105970f6 1410/* Note: caller must be prepared to deal with negative returns */
1da177e4
LT
1411static inline int tcp_space(const struct sock *sk)
1412{
ebb3b78d 1413 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
70c26558 1414 READ_ONCE(sk->sk_backlog.len) -
1da177e4 1415 atomic_read(&sk->sk_rmem_alloc));
105970f6 1416}
1da177e4
LT
1417
1418static inline int tcp_full_space(const struct sock *sk)
1419{
ebb3b78d 1420 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1da177e4
LT
1421}
1422
24adbc16
ED
1423/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428static inline bool tcp_rmem_pressure(const struct sock *sk)
1429{
1430 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1431 int threshold = rcvbuf - (rcvbuf >> 3);
1432
1433 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1434}
1435
843f4a55 1436extern void tcp_openreq_init_rwin(struct request_sock *req,
b1964b5f
ED
1437 const struct sock *sk_listener,
1438 const struct dst_entry *dst);
843f4a55 1439
5c9f3023 1440void tcp_enter_memory_pressure(struct sock *sk);
06044751 1441void tcp_leave_memory_pressure(struct sock *sk);
1da177e4 1442
1da177e4
LT
1443static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1444{
b840d15d
NB
1445 struct net *net = sock_net((struct sock *)tp);
1446
1447 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1da177e4
LT
1448}
1449
1450static inline int keepalive_time_when(const struct tcp_sock *tp)
1451{
13b287e8
NB
1452 struct net *net = sock_net((struct sock *)tp);
1453
1454 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1da177e4
LT
1455}
1456
df19a626
ED
1457static inline int keepalive_probes(const struct tcp_sock *tp)
1458{
9bd6861b
NB
1459 struct net *net = sock_net((struct sock *)tp);
1460
1461 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
df19a626
ED
1462}
1463
6c37e5de
FL
1464static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1465{
1466 const struct inet_connection_sock *icsk = &tp->inet_conn;
1467
70eabf0e
ED
1468 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1469 tcp_jiffies32 - tp->rcv_tstamp);
6c37e5de
FL
1470}
1471
463c84b9 1472static inline int tcp_fin_time(const struct sock *sk)
1da177e4 1473{
1e579caa 1474 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
463c84b9 1475 const int rto = inet_csk(sk)->icsk_rto;
1da177e4 1476
463c84b9
ACM
1477 if (fin_timeout < (rto << 2) - (rto >> 1))
1478 fin_timeout = (rto << 2) - (rto >> 1);
1da177e4
LT
1479
1480 return fin_timeout;
1481}
1482
a2a385d6
ED
1483static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1484 int paws_win)
1da177e4 1485{
c887e6d2 1486 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
a2a385d6 1487 return true;
cca9bab1
AB
1488 if (unlikely(!time_before32(ktime_get_seconds(),
1489 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
a2a385d6 1490 return true;
bc2ce894
ED
1491 /*
1492 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1493 * then following tcp messages have valid values. Ignore 0 value,
1494 * or else 'negative' tsval might forbid us to accept their packets.
1495 */
1496 if (!rx_opt->ts_recent)
a2a385d6
ED
1497 return true;
1498 return false;
c887e6d2
IJ
1499}
1500
a2a385d6
ED
1501static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1502 int rst)
c887e6d2
IJ
1503{
1504 if (tcp_paws_check(rx_opt, 0))
a2a385d6 1505 return false;
1da177e4
LT
1506
1507 /* RST segments are not recommended to carry timestamp,
1508 and, if they do, it is recommended to ignore PAWS because
1509 "their cleanup function should take precedence over timestamps."
1510 Certainly, it is mistake. It is necessary to understand the reasons
1511 of this constraint to relax it: if peer reboots, clock may go
1512 out-of-sync and half-open connections will not be reset.
1513 Actually, the problem would be not existing if all
1514 the implementations followed draft about maintaining clock
1515 via reboots. Linux-2.2 DOES NOT!
1516
1517 However, we can relax time bounds for RST segments to MSL.
1518 */
cca9bab1
AB
1519 if (rst && !time_before32(ktime_get_seconds(),
1520 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
a2a385d6
ED
1521 return false;
1522 return true;
1da177e4
LT
1523}
1524
7970ddc8
ED
1525bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1526 int mib_idx, u32 *last_oow_ack_time);
032ee423 1527
a9c19329 1528static inline void tcp_mib_init(struct net *net)
1da177e4
LT
1529{
1530 /* See RFC 2012 */
6aef70a8
ED
1531 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1532 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1533 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1534 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1da177e4
LT
1535}
1536
5af4ec23 1537/* from STCP */
ef9da47c 1538static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
0800f170 1539{
6a438bbe 1540 tp->lost_skb_hint = NULL;
ef9da47c
IJ
1541}
1542
1543static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1544{
1545 tcp_clear_retrans_hints_partial(tp);
6a438bbe 1546 tp->retransmit_skb_hint = NULL;
b7689205
IJ
1547}
1548
a915da9b
ED
1549union tcp_md5_addr {
1550 struct in_addr a4;
1551#if IS_ENABLED(CONFIG_IPV6)
1552 struct in6_addr a6;
1553#endif
1554};
1555
cfb6eeb4
YH
1556/* - key database */
1557struct tcp_md5sig_key {
a915da9b 1558 struct hlist_node node;
cfb6eeb4 1559 u8 keylen;
a915da9b 1560 u8 family; /* AF_INET or AF_INET6 */
6797318e 1561 u8 prefixlen;
dea53bb8
DA
1562 union tcp_md5_addr addr;
1563 int l3index; /* set if key added with L3 scope */
a915da9b
ED
1564 u8 key[TCP_MD5SIG_MAXKEYLEN];
1565 struct rcu_head rcu;
cfb6eeb4
YH
1566};
1567
1568/* - sock block */
1569struct tcp_md5sig_info {
a915da9b 1570 struct hlist_head head;
a8afca03 1571 struct rcu_head rcu;
cfb6eeb4
YH
1572};
1573
1574/* - pseudo header */
1575struct tcp4_pseudohdr {
1576 __be32 saddr;
1577 __be32 daddr;
1578 __u8 pad;
1579 __u8 protocol;
1580 __be16 len;
1581};
1582
1583struct tcp6_pseudohdr {
1584 struct in6_addr saddr;
1585 struct in6_addr daddr;
1586 __be32 len;
1587 __be32 protocol; /* including padding */
1588};
1589
1590union tcp_md5sum_block {
1591 struct tcp4_pseudohdr ip4;
dfd56b8b 1592#if IS_ENABLED(CONFIG_IPV6)
cfb6eeb4
YH
1593 struct tcp6_pseudohdr ip6;
1594#endif
1595};
1596
1597/* - pool: digest algorithm, hash description and scratch buffer */
1598struct tcp_md5sig_pool {
cf80e0e4 1599 struct ahash_request *md5_req;
19689e38 1600 void *scratch;
cfb6eeb4
YH
1601};
1602
cfb6eeb4 1603/* - functions */
39f8e58e
ED
1604int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1605 const struct sock *sk, const struct sk_buff *skb);
5c9f3023 1606int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
dea53bb8
DA
1607 int family, u8 prefixlen, int l3index,
1608 const u8 *newkey, u8 newkeylen, gfp_t gfp);
5c9f3023 1609int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
dea53bb8 1610 int family, u8 prefixlen, int l3index);
b83e3deb 1611struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
fd3a154a 1612 const struct sock *addr_sk);
cfb6eeb4 1613
9501f972 1614#ifdef CONFIG_TCP_MD5SIG
6015c71e 1615#include <linux/jump_label.h>
921f9a0f 1616extern struct static_key_false tcp_md5_needed;
dea53bb8 1617struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
6015c71e
ED
1618 const union tcp_md5_addr *addr,
1619 int family);
1620static inline struct tcp_md5sig_key *
dea53bb8
DA
1621tcp_md5_do_lookup(const struct sock *sk, int l3index,
1622 const union tcp_md5_addr *addr, int family)
6015c71e 1623{
921f9a0f 1624 if (!static_branch_unlikely(&tcp_md5_needed))
6015c71e 1625 return NULL;
dea53bb8 1626 return __tcp_md5_do_lookup(sk, l3index, addr, family);
6015c71e
ED
1627}
1628
a915da9b 1629#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
9501f972 1630#else
dea53bb8
DA
1631static inline struct tcp_md5sig_key *
1632tcp_md5_do_lookup(const struct sock *sk, int l3index,
1633 const union tcp_md5_addr *addr, int family)
a915da9b
ED
1634{
1635 return NULL;
1636}
9501f972
YH
1637#define tcp_twsk_md5_key(twsk) NULL
1638#endif
1639
5c9f3023 1640bool tcp_alloc_md5sig_pool(void);
cfb6eeb4 1641
5c9f3023 1642struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
71cea17e
ED
1643static inline void tcp_put_md5sig_pool(void)
1644{
1645 local_bh_enable();
1646}
35790c04 1647
5c9f3023
JP
1648int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1649 unsigned int header_len);
1650int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1651 const struct tcp_md5sig_key *key);
cfb6eeb4 1652
10467163 1653/* From tcp_fastopen.c */
5c9f3023 1654void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
7268586b 1655 struct tcp_fastopen_cookie *cookie);
5c9f3023 1656void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2646c831
DL
1657 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1658 u16 try_exp);
783237e8
YC
1659struct tcp_fastopen_request {
1660 /* Fast Open cookie. Size 0 means a cookie request */
1661 struct tcp_fastopen_cookie cookie;
1662 struct msghdr *data; /* data in MSG_FASTOPEN */
f5ddcbbb
ED
1663 size_t size;
1664 int copied; /* queued in tcp_connect() */
f859a448 1665 struct ubuf_info *uarg;
783237e8 1666};
783237e8 1667void tcp_free_fastopen_req(struct tcp_sock *tp);
1fba70e5 1668void tcp_fastopen_destroy_cipher(struct sock *sk);
43713848 1669void tcp_fastopen_ctx_destroy(struct net *net);
1fba70e5 1670int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
438ac880 1671 void *primary_key, void *backup_key);
61d2bcae 1672void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
7c85af88
ED
1673struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1674 struct request_sock *req,
71c02379
CP
1675 struct tcp_fastopen_cookie *foc,
1676 const struct dst_entry *dst);
43713848 1677void tcp_fastopen_init_key_once(struct net *net);
065263f4
WW
1678bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1679 struct tcp_fastopen_cookie *cookie);
19f6d3f3 1680bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
438ac880 1681#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
9092a76d
JB
1682#define TCP_FASTOPEN_KEY_MAX 2
1683#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1684 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
10467163
JC
1685
1686/* Fastopen key context */
1687struct tcp_fastopen_context {
438ac880 1688 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
c681edae
AB
1689 int num;
1690 struct rcu_head rcu;
10467163
JC
1691};
1692
cf1ef3f0 1693extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
46c2fa39 1694void tcp_fastopen_active_disable(struct sock *sk);
cf1ef3f0
WW
1695bool tcp_fastopen_active_should_disable(struct sock *sk);
1696void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
7268586b 1697void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
cf1ef3f0 1698
9092a76d
JB
1699/* Caller needs to wrap with rcu_read_(un)lock() */
1700static inline
1701struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1702{
1703 struct tcp_fastopen_context *ctx;
1704
1705 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1706 if (!ctx)
1707 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1708 return ctx;
1709}
1710
1711static inline
1712bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1713 const struct tcp_fastopen_cookie *orig)
1714{
1715 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1716 orig->len == foc->len &&
1717 !memcmp(orig->val, foc->val, foc->len))
1718 return true;
1719 return false;
1720}
1721
1722static inline
1723int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1724{
c681edae 1725 return ctx->num;
9092a76d
JB
1726}
1727
05b055e8
FY
1728/* Latencies incurred by various limits for a sender. They are
1729 * chronograph-like stats that are mutually exclusive.
1730 */
1731enum tcp_chrono {
1732 TCP_CHRONO_UNSPEC,
1733 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1734 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1735 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1736 __TCP_CHRONO_MAX,
1737};
1738
1739void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1740void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1741
e2080072
ED
1742/* This helper is needed, because skb->tcp_tsorted_anchor uses
1743 * the same memory storage than skb->destructor/_skb_refdst
1744 */
1745static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1746{
1747 skb->destructor = NULL;
1748 skb->_skb_refdst = 0UL;
1749}
1750
1751#define tcp_skb_tsorted_save(skb) { \
1752 unsigned long _save = skb->_skb_refdst; \
1753 skb->_skb_refdst = 0UL;
1754
1755#define tcp_skb_tsorted_restore(skb) \
1756 skb->_skb_refdst = _save; \
1757}
1758
ac3f09ba 1759void tcp_write_queue_purge(struct sock *sk);
fe067e8a 1760
75c119af
ED
1761static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1762{
1763 return skb_rb_first(&sk->tcp_rtx_queue);
1764}
1765
b617158d
ED
1766static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1767{
1768 return skb_rb_last(&sk->tcp_rtx_queue);
1769}
1770
cf533ea5 1771static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
fe067e8a 1772{
cd07a8ea 1773 return skb_peek(&sk->sk_write_queue);
fe067e8a
DM
1774}
1775
cf533ea5 1776static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
fe067e8a 1777{
cd07a8ea 1778 return skb_peek_tail(&sk->sk_write_queue);
fe067e8a
DM
1779}
1780
234b6860 1781#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
cd07a8ea 1782 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
234b6860 1783
cf533ea5 1784static inline struct sk_buff *tcp_send_head(const struct sock *sk)
fe067e8a 1785{
75c119af 1786 return skb_peek(&sk->sk_write_queue);
fe067e8a
DM
1787}
1788
cd07a8ea
DM
1789static inline bool tcp_skb_is_last(const struct sock *sk,
1790 const struct sk_buff *skb)
1791{
1792 return skb_queue_is_last(&sk->sk_write_queue, skb);
1793}
1794
ee2aabd3
ED
1795/**
1796 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1797 * @sk: socket
1798 *
1799 * Since the write queue can have a temporary empty skb in it,
1800 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1801 */
75c119af 1802static inline bool tcp_write_queue_empty(const struct sock *sk)
fe067e8a 1803{
ee2aabd3
ED
1804 const struct tcp_sock *tp = tcp_sk(sk);
1805
1806 return tp->write_seq == tp->snd_nxt;
75c119af
ED
1807}
1808
1809static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1810{
1811 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1812}
1813
1814static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1815{
1816 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
fe067e8a
DM
1817}
1818
fe067e8a
DM
1819static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1820{
a43e052b 1821 __skb_queue_tail(&sk->sk_write_queue, skb);
fe067e8a
DM
1822
1823 /* Queue it, remembering where we must start sending. */
50895b9d 1824 if (sk->sk_write_queue.next == skb)
0f87230d 1825 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
fe067e8a
DM
1826}
1827
43f59c89 1828/* Insert new before skb on the write queue of sk. */
fe067e8a
DM
1829static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1830 struct sk_buff *skb,
1831 struct sock *sk)
1832{
43f59c89 1833 __skb_queue_before(&sk->sk_write_queue, skb, new);
fe067e8a
DM
1834}
1835
1836static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1837{
4a269818 1838 tcp_skb_tsorted_anchor_cleanup(skb);
fe067e8a
DM
1839 __skb_unlink(skb, &sk->sk_write_queue);
1840}
1841
75c119af
ED
1842void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1843
1844static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
fe067e8a 1845{
75c119af
ED
1846 tcp_skb_tsorted_anchor_cleanup(skb);
1847 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1848}
1849
1850static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1851{
1852 list_del(&skb->tcp_tsorted_anchor);
1853 tcp_rtx_queue_unlink(skb, sk);
1854 sk_wmem_free_skb(sk, skb);
fe067e8a
DM
1855}
1856
12d50c46
KK
1857static inline void tcp_push_pending_frames(struct sock *sk)
1858{
1859 if (tcp_send_head(sk)) {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1863 }
1864}
1865
ecb97192
NC
1866/* Start sequence of the skb just after the highest skb with SACKed
1867 * bit, valid only if sacked_out > 0 or when the caller has ensured
1868 * validity by itself.
a47e5a98
IJ
1869 */
1870static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1871{
1872 if (!tp->sacked_out)
1873 return tp->snd_una;
6859d494
IJ
1874
1875 if (tp->highest_sack == NULL)
1876 return tp->snd_nxt;
1877
a47e5a98
IJ
1878 return TCP_SKB_CB(tp->highest_sack)->seq;
1879}
1880
6859d494
IJ
1881static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1882{
50895b9d 1883 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
6859d494
IJ
1884}
1885
1886static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1887{
1888 return tcp_sk(sk)->highest_sack;
1889}
1890
1891static inline void tcp_highest_sack_reset(struct sock *sk)
1892{
50895b9d 1893 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
6859d494
IJ
1894}
1895
2b7cda9c
ED
1896/* Called when old skb is about to be deleted and replaced by new skb */
1897static inline void tcp_highest_sack_replace(struct sock *sk,
6859d494
IJ
1898 struct sk_buff *old,
1899 struct sk_buff *new)
1900{
2b7cda9c 1901 if (old == tcp_highest_sack(sk))
6859d494
IJ
1902 tcp_sk(sk)->highest_sack = new;
1903}
1904
b1f0a0e9
FW
1905/* This helper checks if socket has IP_TRANSPARENT set */
1906static inline bool inet_sk_transparent(const struct sock *sk)
1907{
1908 switch (sk->sk_state) {
1909 case TCP_TIME_WAIT:
1910 return inet_twsk(sk)->tw_transparent;
1911 case TCP_NEW_SYN_RECV:
1912 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1913 }
1914 return inet_sk(sk)->transparent;
1915}
1916
5aa4b32f
AP
1917/* Determines whether this is a thin stream (which may suffer from
1918 * increased latency). Used to trigger latency-reducing mechanisms.
1919 */
a2a385d6 1920static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
5aa4b32f
AP
1921{
1922 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1923}
1924
1da177e4
LT
1925/* /proc */
1926enum tcp_seq_states {
1927 TCP_SEQ_STATE_LISTENING,
1da177e4 1928 TCP_SEQ_STATE_ESTABLISHED,
1da177e4
LT
1929};
1930
37d849bb
CH
1931void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1932void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1933void tcp_seq_stop(struct seq_file *seq, void *v);
73cb88ec 1934
1da177e4 1935struct tcp_seq_afinfo {
73cb88ec 1936 sa_family_t family;
1da177e4
LT
1937};
1938
1939struct tcp_iter_state {
a4146b1b 1940 struct seq_net_private p;
1da177e4
LT
1941 enum tcp_seq_states state;
1942 struct sock *syn_wait_sk;
a7cb5a49 1943 int bucket, offset, sbucket, num;
a8b690f9 1944 loff_t last_pos;
1da177e4
LT
1945};
1946
20380731 1947extern struct request_sock_ops tcp_request_sock_ops;
c6aefafb 1948extern struct request_sock_ops tcp6_request_sock_ops;
20380731 1949
5c9f3023 1950void tcp_v4_destroy_sock(struct sock *sk);
20380731 1951
28be6e07 1952struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
5c9f3023 1953 netdev_features_t features);
d4546c25 1954struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
5c9f3023 1955int tcp_gro_complete(struct sk_buff *skb);
28850dc7 1956
5c9f3023 1957void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
f4c50d99 1958
c9bee3b7
ED
1959static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1960{
4979f2d9
NB
1961 struct net *net = sock_net((struct sock *)tp);
1962 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
c9bee3b7
ED
1963}
1964
a74f0fa0
ED
1965/* @wake is one when sk_stream_write_space() calls us.
1966 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1967 * This mimics the strategy used in sock_def_write_space().
1968 */
1969static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
c9bee3b7
ED
1970{
1971 const struct tcp_sock *tp = tcp_sk(sk);
e0d694d6
ED
1972 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1973 READ_ONCE(tp->snd_nxt);
c9bee3b7 1974
a74f0fa0 1975 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
c9bee3b7
ED
1976}
1977
20380731 1978#ifdef CONFIG_PROC_FS
5c9f3023
JP
1979int tcp4_proc_init(void);
1980void tcp4_proc_exit(void);
20380731
ACM
1981#endif
1982
ea3bea3a 1983int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1fb6f159
OP
1984int tcp_conn_request(struct request_sock_ops *rsk_ops,
1985 const struct tcp_request_sock_ops *af_ops,
1986 struct sock *sk, struct sk_buff *skb);
5db92c99 1987
cfb6eeb4
YH
1988/* TCP af-specific functions */
1989struct tcp_sock_af_ops {
1990#ifdef CONFIG_TCP_MD5SIG
b83e3deb 1991 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
fd3a154a 1992 const struct sock *addr_sk);
39f8e58e
ED
1993 int (*calc_md5_hash)(char *location,
1994 const struct tcp_md5sig_key *md5,
1995 const struct sock *sk,
1996 const struct sk_buff *skb);
1997 int (*md5_parse)(struct sock *sk,
8917a777 1998 int optname,
39f8e58e
ED
1999 char __user *optval,
2000 int optlen);
cfb6eeb4
YH
2001#endif
2002};
2003
2004struct tcp_request_sock_ops {
2aec4a29 2005 u16 mss_clamp;
cfb6eeb4 2006#ifdef CONFIG_TCP_MD5SIG
b83e3deb 2007 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
fd3a154a 2008 const struct sock *addr_sk);
39f8e58e
ED
2009 int (*calc_md5_hash) (char *location,
2010 const struct tcp_md5sig_key *md5,
2011 const struct sock *sk,
2012 const struct sk_buff *skb);
cfb6eeb4 2013#endif
b40cf18e
ED
2014 void (*init_req)(struct request_sock *req,
2015 const struct sock *sk_listener,
16bea70a 2016 struct sk_buff *skb);
fb7b37a7 2017#ifdef CONFIG_SYN_COOKIES
3f684b4b 2018 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
fb7b37a7
OP
2019 __u16 *mss);
2020#endif
f964629e 2021 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
4396e461 2022 const struct request_sock *req);
84b114b9 2023 u32 (*init_seq)(const struct sk_buff *skb);
5d2ed052 2024 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
0f935dbe 2025 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
d6274bd8 2026 struct flowi *fl, struct request_sock *req,
dc6ef6be 2027 struct tcp_fastopen_cookie *foc,
b3d05147 2028 enum tcp_synack_type synack_type);
cfb6eeb4
YH
2029};
2030
35b2c321
MM
2031extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2032#if IS_ENABLED(CONFIG_IPV6)
2033extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2034#endif
2035
fb7b37a7
OP
2036#ifdef CONFIG_SYN_COOKIES
2037static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
3f684b4b 2038 const struct sock *sk, struct sk_buff *skb,
fb7b37a7
OP
2039 __u16 *mss)
2040{
3f684b4b 2041 tcp_synq_overflow(sk);
02a1d6e7 2042 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
3f684b4b 2043 return ops->cookie_init_seq(skb, mss);
fb7b37a7
OP
2044}
2045#else
2046static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
3f684b4b 2047 const struct sock *sk, struct sk_buff *skb,
fb7b37a7
OP
2048 __u16 *mss)
2049{
2050 return 0;
2051}
2052#endif
2053
5c9f3023 2054int tcpv4_offload_init(void);
28850dc7 2055
5c9f3023
JP
2056void tcp_v4_init(void);
2057void tcp_init(void);
20380731 2058
659a8ad5 2059/* tcp_recovery.c */
d716bfdb 2060void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
6ac06ecd 2061void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
b8fef65a
YC
2062extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2063 u32 reo_wnd);
128eda86 2064extern void tcp_rack_mark_lost(struct sock *sk);
1d0833df 2065extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
9a568de4 2066 u64 xmit_time);
57dde7f7 2067extern void tcp_rack_reo_timeout(struct sock *sk);
1f255691 2068extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
659a8ad5 2069
e1a10ef7
NC
2070/* At how many usecs into the future should the RTO fire? */
2071static inline s64 tcp_rto_delta_us(const struct sock *sk)
2072{
75c119af 2073 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
e1a10ef7 2074 u32 rto = inet_csk(sk)->icsk_rto;
2fd66ffb 2075 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
e1a10ef7
NC
2076
2077 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2078}
2079
e25f866f
CW
2080/*
2081 * Save and compile IPv4 options, return a pointer to it
2082 */
91ed1e66
PA
2083static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2084 struct sk_buff *skb)
e25f866f
CW
2085{
2086 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2087 struct ip_options_rcu *dopt = NULL;
2088
461b74c3 2089 if (opt->optlen) {
e25f866f
CW
2090 int opt_size = sizeof(*dopt) + opt->optlen;
2091
2092 dopt = kmalloc(opt_size, GFP_ATOMIC);
91ed1e66 2093 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
e25f866f
CW
2094 kfree(dopt);
2095 dopt = NULL;
2096 }
2097 }
2098 return dopt;
2099}
2100
98781965
ED
2101/* locally generated TCP pure ACKs have skb->truesize == 2
2102 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2103 * This is much faster than dissecting the packet to find out.
2104 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2105 */
2106static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2107{
2108 return skb->truesize == 2;
2109}
2110
2111static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2112{
2113 skb->truesize = 2;
2114}
2115
473bd239
TH
2116static inline int tcp_inq(struct sock *sk)
2117{
2118 struct tcp_sock *tp = tcp_sk(sk);
2119 int answ;
2120
2121 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2122 answ = 0;
2123 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2124 !tp->urg_data ||
2125 before(tp->urg_seq, tp->copied_seq) ||
2126 !before(tp->urg_seq, tp->rcv_nxt)) {
2127
2128 answ = tp->rcv_nxt - tp->copied_seq;
2129
2130 /* Subtract 1, if FIN was received */
2131 if (answ && sock_flag(sk, SOCK_DONE))
2132 answ--;
2133 } else {
2134 answ = tp->urg_seq - tp->copied_seq;
2135 }
2136
2137 return answ;
2138}
2139
32035585
TH
2140int tcp_peek_len(struct socket *sock);
2141
a44d6eac
MKL
2142static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2143{
2144 u16 segs_in;
2145
2146 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2147 tp->segs_in += segs_in;
2148 if (skb->len > tcp_hdrlen(skb))
2149 tp->data_segs_in += segs_in;
2150}
2151
9caad864
ED
2152/*
2153 * TCP listen path runs lockless.
2154 * We forced "struct sock" to be const qualified to make sure
2155 * we don't modify one of its field by mistake.
2156 * Here, we increment sk_drops which is an atomic_t, so we can safely
2157 * make sock writable again.
2158 */
2159static inline void tcp_listendrop(const struct sock *sk)
2160{
2161 atomic_inc(&((struct sock *)sk)->sk_drops);
02a1d6e7 2162 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
9caad864
ED
2163}
2164
218af599
ED
2165enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2166
734942cc
DW
2167/*
2168 * Interface for adding Upper Level Protocols over TCP
2169 */
2170
2171#define TCP_ULP_NAME_MAX 16
2172#define TCP_ULP_MAX 128
2173#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2174
2175struct tcp_ulp_ops {
2176 struct list_head list;
2177
2178 /* initialize ulp */
2179 int (*init)(struct sock *sk);
95fa1454 2180 /* update ulp */
33bfe20d
JF
2181 void (*update)(struct sock *sk, struct proto *p,
2182 void (*write_space)(struct sock *sk));
734942cc
DW
2183 /* cleanup ulp */
2184 void (*release)(struct sock *sk);
61723b39
DC
2185 /* diagnostic */
2186 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2187 size_t (*get_info_size)(const struct sock *sk);
13230593
MM
2188 /* clone ulp */
2189 void (*clone)(const struct request_sock *req, struct sock *newsk,
2190 const gfp_t priority);
734942cc
DW
2191
2192 char name[TCP_ULP_NAME_MAX];
2193 struct module *owner;
2194};
2195int tcp_register_ulp(struct tcp_ulp_ops *type);
2196void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2197int tcp_set_ulp(struct sock *sk, const char *name);
2198void tcp_get_available_ulp(char *buf, size_t len);
2199void tcp_cleanup_ulp(struct sock *sk);
33bfe20d
JF
2200void tcp_update_ulp(struct sock *sk, struct proto *p,
2201 void (*write_space)(struct sock *sk));
734942cc 2202
037b0b86
DB
2203#define MODULE_ALIAS_TCP_ULP(name) \
2204 __MODULE_INFO(alias, alias_userspace, name); \
2205 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2206
604326b4
DB
2207struct sk_msg;
2208struct sk_psock;
2209
f747632b
LB
2210#ifdef CONFIG_BPF_STREAM_PARSER
2211struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2212void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2213#else
2214static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2215{
2216}
2217#endif /* CONFIG_BPF_STREAM_PARSER */
2218
5da00404 2219#ifdef CONFIG_NET_SOCK_MSG
604326b4
DB
2220int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2221 int flags);
604326b4 2222int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
02c558b2 2223 struct msghdr *msg, int len, int flags);
5da00404 2224#endif /* CONFIG_NET_SOCK_MSG */
604326b4 2225
40304b2a
LB
2226/* Call BPF_SOCK_OPS program that returns an int. If the return value
2227 * is < 0, then the BPF op failed (for example if the loaded BPF
2228 * program does not support the chosen operation or there is no BPF
2229 * program loaded).
2230 */
2231#ifdef CONFIG_BPF
de525be2 2232static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
40304b2a
LB
2233{
2234 struct bpf_sock_ops_kern sock_ops;
2235 int ret;
2236
b73042b8 2237 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
f19397a5
LB
2238 if (sk_fullsock(sk)) {
2239 sock_ops.is_fullsock = 1;
40304b2a 2240 sock_owned_by_me(sk);
f19397a5 2241 }
40304b2a 2242
40304b2a
LB
2243 sock_ops.sk = sk;
2244 sock_ops.op = op;
de525be2
LB
2245 if (nargs > 0)
2246 memcpy(sock_ops.args, args, nargs * sizeof(*args));
40304b2a
LB
2247
2248 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2249 if (ret == 0)
2250 ret = sock_ops.reply;
2251 else
2252 ret = -1;
2253 return ret;
2254}
de525be2
LB
2255
2256static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2257{
2258 u32 args[2] = {arg1, arg2};
2259
2260 return tcp_call_bpf(sk, op, 2, args);
2261}
2262
2263static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2264 u32 arg3)
2265{
2266 u32 args[3] = {arg1, arg2, arg3};
2267
2268 return tcp_call_bpf(sk, op, 3, args);
2269}
2270
40304b2a 2271#else
de525be2 2272static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
40304b2a
LB
2273{
2274 return -EPERM;
2275}
de525be2
LB
2276
2277static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2278{
2279 return -EPERM;
2280}
2281
2282static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2283 u32 arg3)
2284{
2285 return -EPERM;
2286}
2287
40304b2a
LB
2288#endif
2289
8550f328
LB
2290static inline u32 tcp_timeout_init(struct sock *sk)
2291{
2292 int timeout;
2293
de525be2 2294 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
8550f328
LB
2295
2296 if (timeout <= 0)
2297 timeout = TCP_TIMEOUT_INIT;
2298 return timeout;
2299}
2300
13d3b1eb
LB
2301static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2302{
2303 int rwnd;
2304
de525be2 2305 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
13d3b1eb
LB
2306
2307 if (rwnd < 0)
2308 rwnd = 0;
2309 return rwnd;
2310}
91b5b21c
LB
2311
2312static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2313{
de525be2 2314 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
91b5b21c 2315}
60e2a778 2316
23729ff2
SF
2317static inline void tcp_bpf_rtt(struct sock *sk)
2318{
bef8e263 2319 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
23729ff2
SF
2320 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2321}
2322
60e2a778
UB
2323#if IS_ENABLED(CONFIG_SMC)
2324extern struct static_key_false tcp_have_smc;
2325#endif
6dac1523
IL
2326
2327#if IS_ENABLED(CONFIG_TLS_DEVICE)
2328void clean_acked_data_enable(struct inet_connection_sock *icsk,
2329 void (*cad)(struct sock *sk, u32 ack_seq));
2330void clean_acked_data_disable(struct inet_connection_sock *icsk);
494bc1d2 2331void clean_acked_data_flush(void);
6dac1523
IL
2332#endif
2333
a842fe14
ED
2334DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2335static inline void tcp_add_tx_delay(struct sk_buff *skb,
2336 const struct tcp_sock *tp)
2337{
2338 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2339 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2340}
2341
d6fb396c
ED
2342/* Compute Earliest Departure Time for some control packets
2343 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2344 */
2345static inline u64 tcp_transmit_time(const struct sock *sk)
a842fe14
ED
2346{
2347 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2348 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2349 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2350
d6fb396c 2351 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
a842fe14 2352 }
d6fb396c 2353 return 0;
a842fe14
ED
2354}
2355
1da177e4 2356#endif /* _TCP_H */