]> git.ipfire.org Git - people/arne_f/kernel.git/blame - ipc/sem.c
arm64: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
[people/arne_f/kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
d12e1e50 102 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4 190
239521f3 191void __init sem_init(void)
1da177e4 192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
8001c858 228 * merge_queues - merge single semop queues into global queue
f269f40a
MS
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
502b83be
MS
255/*
256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257 * are only control barriers.
258 * The code must pair with spin_unlock(&sem->lock) or
259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260 *
261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262 */
263#define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
264
5e9d5275
MS
265/*
266 * Wait until all currently ongoing simple ops have completed.
267 * Caller must own sem_perm.lock.
268 * New simple ops cannot start, because simple ops first check
269 * that sem_perm.lock is free.
6d07b68c 270 * that a) sem_perm.lock is free and b) complex_count is 0.
5e9d5275
MS
271 */
272static void sem_wait_array(struct sem_array *sma)
273{
274 int i;
275 struct sem *sem;
276
6d07b68c
MS
277 if (sma->complex_count) {
278 /* The thread that increased sma->complex_count waited on
279 * all sem->lock locks. Thus we don't need to wait again.
280 */
281 return;
282 }
283
5e9d5275
MS
284 for (i = 0; i < sma->sem_nsems; i++) {
285 sem = sma->sem_base + i;
286 spin_unlock_wait(&sem->lock);
287 }
502b83be 288 ipc_smp_acquire__after_spin_is_unlocked();
5e9d5275
MS
289}
290
6062a8dc
RR
291/*
292 * If the request contains only one semaphore operation, and there are
293 * no complex transactions pending, lock only the semaphore involved.
294 * Otherwise, lock the entire semaphore array, since we either have
295 * multiple semaphores in our own semops, or we need to look at
296 * semaphores from other pending complex operations.
6062a8dc
RR
297 */
298static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299 int nsops)
300{
5e9d5275 301 struct sem *sem;
6062a8dc 302
5e9d5275
MS
303 if (nsops != 1) {
304 /* Complex operation - acquire a full lock */
305 ipc_lock_object(&sma->sem_perm);
6062a8dc 306
5e9d5275
MS
307 /* And wait until all simple ops that are processed
308 * right now have dropped their locks.
6062a8dc 309 */
5e9d5275
MS
310 sem_wait_array(sma);
311 return -1;
312 }
313
314 /*
315 * Only one semaphore affected - try to optimize locking.
316 * The rules are:
317 * - optimized locking is possible if no complex operation
318 * is either enqueued or processed right now.
319 * - The test for enqueued complex ops is simple:
320 * sma->complex_count != 0
321 * - Testing for complex ops that are processed right now is
322 * a bit more difficult. Complex ops acquire the full lock
323 * and first wait that the running simple ops have completed.
324 * (see above)
325 * Thus: If we own a simple lock and the global lock is free
326 * and complex_count is now 0, then it will stay 0 and
327 * thus just locking sem->lock is sufficient.
328 */
329 sem = sma->sem_base + sops->sem_num;
6062a8dc 330
5e9d5275 331 if (sma->complex_count == 0) {
6062a8dc 332 /*
5e9d5275
MS
333 * It appears that no complex operation is around.
334 * Acquire the per-semaphore lock.
6062a8dc 335 */
5e9d5275
MS
336 spin_lock(&sem->lock);
337
338 /* Then check that the global lock is free */
339 if (!spin_is_locked(&sma->sem_perm.lock)) {
502b83be
MS
340 /*
341 * We need a memory barrier with acquire semantics,
342 * otherwise we can race with another thread that does:
343 * complex_count++;
344 * spin_unlock(sem_perm.lock);
345 */
346 ipc_smp_acquire__after_spin_is_unlocked();
5e9d5275
MS
347
348 /* Now repeat the test of complex_count:
349 * It can't change anymore until we drop sem->lock.
350 * Thus: if is now 0, then it will stay 0.
351 */
352 if (sma->complex_count == 0) {
353 /* fast path successful! */
354 return sops->sem_num;
355 }
6062a8dc 356 }
5e9d5275
MS
357 spin_unlock(&sem->lock);
358 }
359
360 /* slow path: acquire the full lock */
361 ipc_lock_object(&sma->sem_perm);
6062a8dc 362
5e9d5275
MS
363 if (sma->complex_count == 0) {
364 /* False alarm:
365 * There is no complex operation, thus we can switch
366 * back to the fast path.
367 */
368 spin_lock(&sem->lock);
369 ipc_unlock_object(&sma->sem_perm);
370 return sops->sem_num;
6062a8dc 371 } else {
5e9d5275
MS
372 /* Not a false alarm, thus complete the sequence for a
373 * full lock.
6062a8dc 374 */
5e9d5275
MS
375 sem_wait_array(sma);
376 return -1;
6062a8dc 377 }
6062a8dc
RR
378}
379
380static inline void sem_unlock(struct sem_array *sma, int locknum)
381{
382 if (locknum == -1) {
f269f40a 383 unmerge_queues(sma);
cf9d5d78 384 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
385 } else {
386 struct sem *sem = sma->sem_base + locknum;
387 spin_unlock(&sem->lock);
388 }
6062a8dc
RR
389}
390
3e148c79 391/*
d9a605e4 392 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 393 * is not held.
321310ce
LT
394 *
395 * The caller holds the RCU read lock.
3e148c79 396 */
6062a8dc
RR
397static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
398 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 399{
c460b662
RR
400 struct kern_ipc_perm *ipcp;
401 struct sem_array *sma;
03f02c76 402
c460b662 403 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
404 if (IS_ERR(ipcp))
405 return ERR_CAST(ipcp);
b1ed88b4 406
6062a8dc
RR
407 sma = container_of(ipcp, struct sem_array, sem_perm);
408 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
409
410 /* ipc_rmid() may have already freed the ID while sem_lock
411 * was spinning: verify that the structure is still valid
412 */
72a8ff2f 413 if (ipc_valid_object(ipcp))
c460b662
RR
414 return container_of(ipcp, struct sem_array, sem_perm);
415
6062a8dc 416 sem_unlock(sma, *locknum);
321310ce 417 return ERR_PTR(-EINVAL);
023a5355
ND
418}
419
16df3674
DB
420static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
421{
422 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
423
424 if (IS_ERR(ipcp))
425 return ERR_CAST(ipcp);
426
427 return container_of(ipcp, struct sem_array, sem_perm);
428}
429
16df3674
DB
430static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
431 int id)
432{
433 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
434
435 if (IS_ERR(ipcp))
436 return ERR_CAST(ipcp);
b1ed88b4 437
03f02c76 438 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
439}
440
6ff37972
PP
441static inline void sem_lock_and_putref(struct sem_array *sma)
442{
6062a8dc 443 sem_lock(sma, NULL, -1);
cf0483ab 444 ipc_rcu_putref(sma, sem_rcu_free);
6ff37972
PP
445}
446
7ca7e564
ND
447static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
448{
449 ipc_rmid(&sem_ids(ns), &s->sem_perm);
450}
451
1da177e4
LT
452/*
453 * Lockless wakeup algorithm:
454 * Without the check/retry algorithm a lockless wakeup is possible:
455 * - queue.status is initialized to -EINTR before blocking.
456 * - wakeup is performed by
1a82e9e1 457 * * unlinking the queue entry from the pending list
1da177e4
LT
458 * * setting queue.status to IN_WAKEUP
459 * This is the notification for the blocked thread that a
460 * result value is imminent.
461 * * call wake_up_process
462 * * set queue.status to the final value.
463 * - the previously blocked thread checks queue.status:
239521f3
MS
464 * * if it's IN_WAKEUP, then it must wait until the value changes
465 * * if it's not -EINTR, then the operation was completed by
466 * update_queue. semtimedop can return queue.status without
467 * performing any operation on the sem array.
468 * * otherwise it must acquire the spinlock and check what's up.
1da177e4
LT
469 *
470 * The two-stage algorithm is necessary to protect against the following
471 * races:
472 * - if queue.status is set after wake_up_process, then the woken up idle
473 * thread could race forward and try (and fail) to acquire sma->lock
474 * before update_queue had a chance to set queue.status
475 * - if queue.status is written before wake_up_process and if the
476 * blocked process is woken up by a signal between writing
477 * queue.status and the wake_up_process, then the woken up
478 * process could return from semtimedop and die by calling
479 * sys_exit before wake_up_process is called. Then wake_up_process
480 * will oops, because the task structure is already invalid.
481 * (yes, this happened on s390 with sysv msg).
482 *
483 */
484#define IN_WAKEUP 1
485
f4566f04
ND
486/**
487 * newary - Create a new semaphore set
488 * @ns: namespace
489 * @params: ptr to the structure that contains key, semflg and nsems
490 *
d9a605e4 491 * Called with sem_ids.rwsem held (as a writer)
f4566f04 492 */
7748dbfa 493static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
494{
495 int id;
496 int retval;
497 struct sem_array *sma;
498 int size;
7748dbfa
ND
499 key_t key = params->key;
500 int nsems = params->u.nsems;
501 int semflg = params->flg;
b97e820f 502 int i;
1da177e4
LT
503
504 if (!nsems)
505 return -EINVAL;
e3893534 506 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
507 return -ENOSPC;
508
239521f3 509 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 510 sma = ipc_rcu_alloc(size);
3ab08fe2 511 if (!sma)
1da177e4 512 return -ENOMEM;
3ab08fe2 513
239521f3 514 memset(sma, 0, size);
1da177e4
LT
515
516 sma->sem_perm.mode = (semflg & S_IRWXUGO);
517 sma->sem_perm.key = key;
518
519 sma->sem_perm.security = NULL;
520 retval = security_sem_alloc(sma);
521 if (retval) {
53dad6d3 522 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
523 return retval;
524 }
525
e3893534 526 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 527 if (id < 0) {
53dad6d3 528 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 529 return id;
1da177e4 530 }
e3893534 531 ns->used_sems += nsems;
1da177e4
LT
532
533 sma->sem_base = (struct sem *) &sma[1];
b97e820f 534
6062a8dc 535 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
536 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
537 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
538 spin_lock_init(&sma->sem_base[i].lock);
539 }
b97e820f
MS
540
541 sma->complex_count = 0;
1a82e9e1
MS
542 INIT_LIST_HEAD(&sma->pending_alter);
543 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 544 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
545 sma->sem_nsems = nsems;
546 sma->sem_ctime = get_seconds();
6062a8dc 547 sem_unlock(sma, -1);
6d49dab8 548 rcu_read_unlock();
1da177e4 549
7ca7e564 550 return sma->sem_perm.id;
1da177e4
LT
551}
552
7748dbfa 553
f4566f04 554/*
d9a605e4 555 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 556 */
03f02c76 557static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 558{
03f02c76
ND
559 struct sem_array *sma;
560
561 sma = container_of(ipcp, struct sem_array, sem_perm);
562 return security_sem_associate(sma, semflg);
7748dbfa
ND
563}
564
f4566f04 565/*
d9a605e4 566 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 567 */
03f02c76
ND
568static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
569 struct ipc_params *params)
7748dbfa 570{
03f02c76
ND
571 struct sem_array *sma;
572
573 sma = container_of(ipcp, struct sem_array, sem_perm);
574 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
575 return -EINVAL;
576
577 return 0;
578}
579
d5460c99 580SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 581{
e3893534 582 struct ipc_namespace *ns;
7748dbfa
ND
583 struct ipc_ops sem_ops;
584 struct ipc_params sem_params;
e3893534
KK
585
586 ns = current->nsproxy->ipc_ns;
1da177e4 587
e3893534 588 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 589 return -EINVAL;
7ca7e564 590
7748dbfa
ND
591 sem_ops.getnew = newary;
592 sem_ops.associate = sem_security;
593 sem_ops.more_checks = sem_more_checks;
594
595 sem_params.key = key;
596 sem_params.flg = semflg;
597 sem_params.u.nsems = nsems;
1da177e4 598
7748dbfa 599 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
600}
601
78f5009c
PM
602/**
603 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3
MS
604 * @sma: semaphore array
605 * @sops: array with operations that should be checked
78f5009c 606 * @nsops: number of operations
758a6ba3
MS
607 * @un: undo array
608 * @pid: pid that did the change
609 *
610 * Returns 0 if the operation was possible.
611 * Returns 1 if the operation is impossible, the caller must sleep.
612 * Negative values are error codes.
1da177e4 613 */
758a6ba3 614static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
615 int nsops, struct sem_undo *un, int pid)
616{
617 int result, sem_op;
618 struct sembuf *sop;
239521f3 619 struct sem *curr;
1da177e4
LT
620
621 for (sop = sops; sop < sops + nsops; sop++) {
622 curr = sma->sem_base + sop->sem_num;
623 sem_op = sop->sem_op;
624 result = curr->semval;
78f5009c 625
1da177e4
LT
626 if (!sem_op && result)
627 goto would_block;
628
629 result += sem_op;
630 if (result < 0)
631 goto would_block;
632 if (result > SEMVMX)
633 goto out_of_range;
78f5009c 634
1da177e4
LT
635 if (sop->sem_flg & SEM_UNDO) {
636 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 637 /* Exceeding the undo range is an error. */
1da177e4
LT
638 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
639 goto out_of_range;
78f5009c 640 un->semadj[sop->sem_num] = undo;
1da177e4 641 }
78f5009c 642
1da177e4
LT
643 curr->semval = result;
644 }
645
646 sop--;
647 while (sop >= sops) {
648 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
649 sop--;
650 }
78f5009c 651
1da177e4
LT
652 return 0;
653
654out_of_range:
655 result = -ERANGE;
656 goto undo;
657
658would_block:
659 if (sop->sem_flg & IPC_NOWAIT)
660 result = -EAGAIN;
661 else
662 result = 1;
663
664undo:
665 sop--;
666 while (sop >= sops) {
78f5009c
PM
667 sem_op = sop->sem_op;
668 sma->sem_base[sop->sem_num].semval -= sem_op;
669 if (sop->sem_flg & SEM_UNDO)
670 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
671 sop--;
672 }
673
674 return result;
675}
676
0a2b9d4c
MS
677/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
678 * @q: queue entry that must be signaled
679 * @error: Error value for the signal
680 *
681 * Prepare the wake-up of the queue entry q.
d4212093 682 */
0a2b9d4c
MS
683static void wake_up_sem_queue_prepare(struct list_head *pt,
684 struct sem_queue *q, int error)
d4212093 685{
0a2b9d4c
MS
686 if (list_empty(pt)) {
687 /*
688 * Hold preempt off so that we don't get preempted and have the
689 * wakee busy-wait until we're scheduled back on.
690 */
691 preempt_disable();
692 }
d4212093 693 q->status = IN_WAKEUP;
0a2b9d4c
MS
694 q->pid = error;
695
9f1bc2c9 696 list_add_tail(&q->list, pt);
0a2b9d4c
MS
697}
698
699/**
8001c858 700 * wake_up_sem_queue_do - do the actual wake-up
0a2b9d4c
MS
701 * @pt: list of tasks to be woken up
702 *
703 * Do the actual wake-up.
704 * The function is called without any locks held, thus the semaphore array
705 * could be destroyed already and the tasks can disappear as soon as the
706 * status is set to the actual return code.
707 */
708static void wake_up_sem_queue_do(struct list_head *pt)
709{
710 struct sem_queue *q, *t;
711 int did_something;
712
713 did_something = !list_empty(pt);
9f1bc2c9 714 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
715 wake_up_process(q->sleeper);
716 /* q can disappear immediately after writing q->status. */
717 smp_wmb();
718 q->status = q->pid;
719 }
720 if (did_something)
721 preempt_enable();
d4212093
NP
722}
723
b97e820f
MS
724static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
725{
726 list_del(&q->list);
9f1bc2c9 727 if (q->nsops > 1)
b97e820f
MS
728 sma->complex_count--;
729}
730
fd5db422
MS
731/** check_restart(sma, q)
732 * @sma: semaphore array
733 * @q: the operation that just completed
734 *
735 * update_queue is O(N^2) when it restarts scanning the whole queue of
736 * waiting operations. Therefore this function checks if the restart is
737 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
738 * modified the array.
739 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
740 */
741static int check_restart(struct sem_array *sma, struct sem_queue *q)
742{
1a82e9e1
MS
743 /* pending complex alter operations are too difficult to analyse */
744 if (!list_empty(&sma->pending_alter))
fd5db422
MS
745 return 1;
746
747 /* we were a sleeping complex operation. Too difficult */
748 if (q->nsops > 1)
749 return 1;
750
1a82e9e1
MS
751 /* It is impossible that someone waits for the new value:
752 * - complex operations always restart.
753 * - wait-for-zero are handled seperately.
754 * - q is a previously sleeping simple operation that
755 * altered the array. It must be a decrement, because
756 * simple increments never sleep.
757 * - If there are older (higher priority) decrements
758 * in the queue, then they have observed the original
759 * semval value and couldn't proceed. The operation
760 * decremented to value - thus they won't proceed either.
761 */
762 return 0;
763}
fd5db422 764
1a82e9e1 765/**
8001c858 766 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
767 * @sma: semaphore array.
768 * @semnum: semaphore that was modified.
769 * @pt: list head for the tasks that must be woken up.
770 *
771 * wake_const_ops must be called after a semaphore in a semaphore array
772 * was set to 0. If complex const operations are pending, wake_const_ops must
773 * be called with semnum = -1, as well as with the number of each modified
774 * semaphore.
775 * The tasks that must be woken up are added to @pt. The return code
776 * is stored in q->pid.
777 * The function returns 1 if at least one operation was completed successfully.
778 */
779static int wake_const_ops(struct sem_array *sma, int semnum,
780 struct list_head *pt)
781{
782 struct sem_queue *q;
783 struct list_head *walk;
784 struct list_head *pending_list;
785 int semop_completed = 0;
786
787 if (semnum == -1)
788 pending_list = &sma->pending_const;
789 else
790 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 791
1a82e9e1
MS
792 walk = pending_list->next;
793 while (walk != pending_list) {
794 int error;
795
796 q = container_of(walk, struct sem_queue, list);
797 walk = walk->next;
798
758a6ba3
MS
799 error = perform_atomic_semop(sma, q->sops, q->nsops,
800 q->undo, q->pid);
1a82e9e1
MS
801
802 if (error <= 0) {
803 /* operation completed, remove from queue & wakeup */
804
805 unlink_queue(sma, q);
806
807 wake_up_sem_queue_prepare(pt, q, error);
808 if (error == 0)
809 semop_completed = 1;
810 }
811 }
812 return semop_completed;
813}
814
815/**
8001c858 816 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
817 * @sma: semaphore array
818 * @sops: operations that were performed
819 * @nsops: number of operations
820 * @pt: list head of the tasks that must be woken up.
821 *
8001c858
DB
822 * Checks all required queue for wait-for-zero operations, based
823 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
824 * The function returns 1 if at least one operation was completed successfully.
825 */
826static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
827 int nsops, struct list_head *pt)
828{
829 int i;
830 int semop_completed = 0;
831 int got_zero = 0;
832
833 /* first: the per-semaphore queues, if known */
834 if (sops) {
835 for (i = 0; i < nsops; i++) {
836 int num = sops[i].sem_num;
837
838 if (sma->sem_base[num].semval == 0) {
839 got_zero = 1;
840 semop_completed |= wake_const_ops(sma, num, pt);
841 }
842 }
843 } else {
844 /*
845 * No sops means modified semaphores not known.
846 * Assume all were changed.
fd5db422 847 */
1a82e9e1
MS
848 for (i = 0; i < sma->sem_nsems; i++) {
849 if (sma->sem_base[i].semval == 0) {
850 got_zero = 1;
851 semop_completed |= wake_const_ops(sma, i, pt);
852 }
853 }
fd5db422
MS
854 }
855 /*
1a82e9e1
MS
856 * If one of the modified semaphores got 0,
857 * then check the global queue, too.
fd5db422 858 */
1a82e9e1
MS
859 if (got_zero)
860 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 861
1a82e9e1 862 return semop_completed;
fd5db422
MS
863}
864
636c6be8
MS
865
866/**
8001c858 867 * update_queue - look for tasks that can be completed.
636c6be8
MS
868 * @sma: semaphore array.
869 * @semnum: semaphore that was modified.
0a2b9d4c 870 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
871 *
872 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
873 * was modified. If multiple semaphores were modified, update_queue must
874 * be called with semnum = -1, as well as with the number of each modified
875 * semaphore.
0a2b9d4c
MS
876 * The tasks that must be woken up are added to @pt. The return code
877 * is stored in q->pid.
1a82e9e1
MS
878 * The function internally checks if const operations can now succeed.
879 *
0a2b9d4c 880 * The function return 1 if at least one semop was completed successfully.
1da177e4 881 */
0a2b9d4c 882static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 883{
636c6be8
MS
884 struct sem_queue *q;
885 struct list_head *walk;
886 struct list_head *pending_list;
0a2b9d4c 887 int semop_completed = 0;
636c6be8 888
9f1bc2c9 889 if (semnum == -1)
1a82e9e1 890 pending_list = &sma->pending_alter;
9f1bc2c9 891 else
1a82e9e1 892 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
893
894again:
636c6be8
MS
895 walk = pending_list->next;
896 while (walk != pending_list) {
fd5db422 897 int error, restart;
636c6be8 898
9f1bc2c9 899 q = container_of(walk, struct sem_queue, list);
636c6be8 900 walk = walk->next;
1da177e4 901
d987f8b2
MS
902 /* If we are scanning the single sop, per-semaphore list of
903 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 904 * necessary to scan further: simple increments
d987f8b2
MS
905 * that affect only one entry succeed immediately and cannot
906 * be in the per semaphore pending queue, and decrements
907 * cannot be successful if the value is already 0.
908 */
1a82e9e1 909 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
910 break;
911
758a6ba3 912 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
913 q->undo, q->pid);
914
915 /* Does q->sleeper still need to sleep? */
9cad200c
NP
916 if (error > 0)
917 continue;
918
b97e820f 919 unlink_queue(sma, q);
9cad200c 920
0a2b9d4c 921 if (error) {
fd5db422 922 restart = 0;
0a2b9d4c
MS
923 } else {
924 semop_completed = 1;
1a82e9e1 925 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 926 restart = check_restart(sma, q);
0a2b9d4c 927 }
fd5db422 928
0a2b9d4c 929 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 930 if (restart)
9cad200c 931 goto again;
1da177e4 932 }
0a2b9d4c 933 return semop_completed;
1da177e4
LT
934}
935
0e8c6656 936/**
8001c858 937 * set_semotime - set sem_otime
0e8c6656
MS
938 * @sma: semaphore array
939 * @sops: operations that modified the array, may be NULL
940 *
941 * sem_otime is replicated to avoid cache line trashing.
942 * This function sets one instance to the current time.
943 */
944static void set_semotime(struct sem_array *sma, struct sembuf *sops)
945{
946 if (sops == NULL) {
947 sma->sem_base[0].sem_otime = get_seconds();
948 } else {
949 sma->sem_base[sops[0].sem_num].sem_otime =
950 get_seconds();
951 }
952}
953
0a2b9d4c 954/**
8001c858 955 * do_smart_update - optimized update_queue
fd5db422
MS
956 * @sma: semaphore array
957 * @sops: operations that were performed
958 * @nsops: number of operations
0a2b9d4c
MS
959 * @otime: force setting otime
960 * @pt: list head of the tasks that must be woken up.
fd5db422 961 *
1a82e9e1
MS
962 * do_smart_update() does the required calls to update_queue and wakeup_zero,
963 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
964 * Note that the function does not do the actual wake-up: the caller is
965 * responsible for calling wake_up_sem_queue_do(@pt).
966 * It is safe to perform this call after dropping all locks.
fd5db422 967 */
0a2b9d4c
MS
968static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
969 int otime, struct list_head *pt)
fd5db422
MS
970{
971 int i;
972
1a82e9e1
MS
973 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
974
f269f40a
MS
975 if (!list_empty(&sma->pending_alter)) {
976 /* semaphore array uses the global queue - just process it. */
977 otime |= update_queue(sma, -1, pt);
978 } else {
979 if (!sops) {
980 /*
981 * No sops, thus the modified semaphores are not
982 * known. Check all.
983 */
984 for (i = 0; i < sma->sem_nsems; i++)
985 otime |= update_queue(sma, i, pt);
986 } else {
987 /*
988 * Check the semaphores that were increased:
989 * - No complex ops, thus all sleeping ops are
990 * decrease.
991 * - if we decreased the value, then any sleeping
992 * semaphore ops wont be able to run: If the
993 * previous value was too small, then the new
994 * value will be too small, too.
995 */
996 for (i = 0; i < nsops; i++) {
997 if (sops[i].sem_op > 0) {
998 otime |= update_queue(sma,
999 sops[i].sem_num, pt);
1000 }
ab465df9 1001 }
9f1bc2c9 1002 }
fd5db422 1003 }
0e8c6656
MS
1004 if (otime)
1005 set_semotime(sma, sops);
fd5db422
MS
1006}
1007
1da177e4
LT
1008/* The following counts are associated to each semaphore:
1009 * semncnt number of tasks waiting on semval being nonzero
1010 * semzcnt number of tasks waiting on semval being zero
1011 * This model assumes that a task waits on exactly one semaphore.
1012 * Since semaphore operations are to be performed atomically, tasks actually
1013 * wait on a whole sequence of semaphores simultaneously.
1014 * The counts we return here are a rough approximation, but still
1015 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1016 */
239521f3 1017static int count_semncnt(struct sem_array *sma, ushort semnum)
1da177e4
LT
1018{
1019 int semncnt;
239521f3 1020 struct sem_queue *q;
1da177e4
LT
1021
1022 semncnt = 0;
1a82e9e1 1023 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
239521f3 1024 struct sembuf *sops = q->sops;
de2657f9
RR
1025 BUG_ON(sops->sem_num != semnum);
1026 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1027 semncnt++;
1028 }
1029
1a82e9e1 1030 list_for_each_entry(q, &sma->pending_alter, list) {
239521f3 1031 struct sembuf *sops = q->sops;
1da177e4
LT
1032 int nsops = q->nsops;
1033 int i;
1034 for (i = 0; i < nsops; i++)
1035 if (sops[i].sem_num == semnum
1036 && (sops[i].sem_op < 0)
1037 && !(sops[i].sem_flg & IPC_NOWAIT))
1038 semncnt++;
1039 }
1040 return semncnt;
1041}
a1193f8e 1042
239521f3 1043static int count_semzcnt(struct sem_array *sma, ushort semnum)
1da177e4
LT
1044{
1045 int semzcnt;
239521f3 1046 struct sem_queue *q;
1da177e4
LT
1047
1048 semzcnt = 0;
1a82e9e1 1049 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
239521f3 1050 struct sembuf *sops = q->sops;
ebc2e5e6
RR
1051 BUG_ON(sops->sem_num != semnum);
1052 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1053 semzcnt++;
1054 }
1055
1a82e9e1 1056 list_for_each_entry(q, &sma->pending_const, list) {
239521f3 1057 struct sembuf *sops = q->sops;
1da177e4
LT
1058 int nsops = q->nsops;
1059 int i;
1060 for (i = 0; i < nsops; i++)
1061 if (sops[i].sem_num == semnum
1062 && (sops[i].sem_op == 0)
1063 && !(sops[i].sem_flg & IPC_NOWAIT))
1064 semzcnt++;
1065 }
1066 return semzcnt;
1067}
1068
d9a605e4
DB
1069/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1070 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1071 * remains locked on exit.
1da177e4 1072 */
01b8b07a 1073static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1074{
380af1b3
MS
1075 struct sem_undo *un, *tu;
1076 struct sem_queue *q, *tq;
01b8b07a 1077 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1078 struct list_head tasks;
9f1bc2c9 1079 int i;
1da177e4 1080
380af1b3 1081 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1082 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1083 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1084 list_del(&un->list_id);
1085 spin_lock(&un->ulp->lock);
1da177e4 1086 un->semid = -1;
380af1b3
MS
1087 list_del_rcu(&un->list_proc);
1088 spin_unlock(&un->ulp->lock);
693a8b6e 1089 kfree_rcu(un, rcu);
380af1b3 1090 }
1da177e4
LT
1091
1092 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1093 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1094 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1095 unlink_queue(sma, q);
1096 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1097 }
1098
1099 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1100 unlink_queue(sma, q);
0a2b9d4c 1101 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1102 }
9f1bc2c9
RR
1103 for (i = 0; i < sma->sem_nsems; i++) {
1104 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1105 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1106 unlink_queue(sma, q);
1107 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1108 }
1109 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1110 unlink_queue(sma, q);
1111 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1112 }
1113 }
1da177e4 1114
7ca7e564
ND
1115 /* Remove the semaphore set from the IDR */
1116 sem_rmid(ns, sma);
6062a8dc 1117 sem_unlock(sma, -1);
6d49dab8 1118 rcu_read_unlock();
1da177e4 1119
0a2b9d4c 1120 wake_up_sem_queue_do(&tasks);
e3893534 1121 ns->used_sems -= sma->sem_nsems;
53dad6d3 1122 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1123}
1124
1125static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1126{
239521f3 1127 switch (version) {
1da177e4
LT
1128 case IPC_64:
1129 return copy_to_user(buf, in, sizeof(*in));
1130 case IPC_OLD:
1131 {
1132 struct semid_ds out;
1133
982f7c2b
DR
1134 memset(&out, 0, sizeof(out));
1135
1da177e4
LT
1136 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1137
1138 out.sem_otime = in->sem_otime;
1139 out.sem_ctime = in->sem_ctime;
1140 out.sem_nsems = in->sem_nsems;
1141
1142 return copy_to_user(buf, &out, sizeof(out));
1143 }
1144 default:
1145 return -EINVAL;
1146 }
1147}
1148
d12e1e50
MS
1149static time_t get_semotime(struct sem_array *sma)
1150{
1151 int i;
1152 time_t res;
1153
1154 res = sma->sem_base[0].sem_otime;
1155 for (i = 1; i < sma->sem_nsems; i++) {
1156 time_t to = sma->sem_base[i].sem_otime;
1157
1158 if (to > res)
1159 res = to;
1160 }
1161 return res;
1162}
1163
4b9fcb0e 1164static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1165 int cmd, int version, void __user *p)
1da177e4 1166{
e5cc9c7b 1167 int err;
1da177e4
LT
1168 struct sem_array *sma;
1169
239521f3 1170 switch (cmd) {
1da177e4
LT
1171 case IPC_INFO:
1172 case SEM_INFO:
1173 {
1174 struct seminfo seminfo;
1175 int max_id;
1176
1177 err = security_sem_semctl(NULL, cmd);
1178 if (err)
1179 return err;
1180
239521f3 1181 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1182 seminfo.semmni = ns->sc_semmni;
1183 seminfo.semmns = ns->sc_semmns;
1184 seminfo.semmsl = ns->sc_semmsl;
1185 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1186 seminfo.semvmx = SEMVMX;
1187 seminfo.semmnu = SEMMNU;
1188 seminfo.semmap = SEMMAP;
1189 seminfo.semume = SEMUME;
d9a605e4 1190 down_read(&sem_ids(ns).rwsem);
1da177e4 1191 if (cmd == SEM_INFO) {
e3893534
KK
1192 seminfo.semusz = sem_ids(ns).in_use;
1193 seminfo.semaem = ns->used_sems;
1da177e4
LT
1194 } else {
1195 seminfo.semusz = SEMUSZ;
1196 seminfo.semaem = SEMAEM;
1197 }
7ca7e564 1198 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1199 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1200 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1201 return -EFAULT;
239521f3 1202 return (max_id < 0) ? 0 : max_id;
1da177e4 1203 }
4b9fcb0e 1204 case IPC_STAT:
1da177e4
LT
1205 case SEM_STAT:
1206 {
1207 struct semid64_ds tbuf;
16df3674
DB
1208 int id = 0;
1209
1210 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1211
941b0304 1212 rcu_read_lock();
4b9fcb0e 1213 if (cmd == SEM_STAT) {
16df3674
DB
1214 sma = sem_obtain_object(ns, semid);
1215 if (IS_ERR(sma)) {
1216 err = PTR_ERR(sma);
1217 goto out_unlock;
1218 }
4b9fcb0e
PP
1219 id = sma->sem_perm.id;
1220 } else {
16df3674
DB
1221 sma = sem_obtain_object_check(ns, semid);
1222 if (IS_ERR(sma)) {
1223 err = PTR_ERR(sma);
1224 goto out_unlock;
1225 }
4b9fcb0e 1226 }
1da177e4
LT
1227
1228 err = -EACCES;
b0e77598 1229 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1230 goto out_unlock;
1231
1232 err = security_sem_semctl(sma, cmd);
1233 if (err)
1234 goto out_unlock;
1235
1da177e4 1236 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1237 tbuf.sem_otime = get_semotime(sma);
1238 tbuf.sem_ctime = sma->sem_ctime;
1239 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1240 rcu_read_unlock();
e1fd1f49 1241 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1242 return -EFAULT;
1243 return id;
1244 }
1245 default:
1246 return -EINVAL;
1247 }
1da177e4 1248out_unlock:
16df3674 1249 rcu_read_unlock();
1da177e4
LT
1250 return err;
1251}
1252
e1fd1f49
AV
1253static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1254 unsigned long arg)
1255{
1256 struct sem_undo *un;
1257 struct sem_array *sma;
239521f3 1258 struct sem *curr;
e1fd1f49 1259 int err;
e1fd1f49
AV
1260 struct list_head tasks;
1261 int val;
1262#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1263 /* big-endian 64bit */
1264 val = arg >> 32;
1265#else
1266 /* 32bit or little-endian 64bit */
1267 val = arg;
1268#endif
1269
6062a8dc
RR
1270 if (val > SEMVMX || val < 0)
1271 return -ERANGE;
e1fd1f49
AV
1272
1273 INIT_LIST_HEAD(&tasks);
e1fd1f49 1274
6062a8dc
RR
1275 rcu_read_lock();
1276 sma = sem_obtain_object_check(ns, semid);
1277 if (IS_ERR(sma)) {
1278 rcu_read_unlock();
1279 return PTR_ERR(sma);
1280 }
1281
1282 if (semnum < 0 || semnum >= sma->sem_nsems) {
1283 rcu_read_unlock();
1284 return -EINVAL;
1285 }
1286
1287
1288 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1289 rcu_read_unlock();
1290 return -EACCES;
1291 }
e1fd1f49
AV
1292
1293 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1294 if (err) {
1295 rcu_read_unlock();
1296 return -EACCES;
1297 }
e1fd1f49 1298
6062a8dc 1299 sem_lock(sma, NULL, -1);
e1fd1f49 1300
0f3d2b01 1301 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1302 sem_unlock(sma, -1);
1303 rcu_read_unlock();
1304 return -EIDRM;
1305 }
1306
e1fd1f49
AV
1307 curr = &sma->sem_base[semnum];
1308
cf9d5d78 1309 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1310 list_for_each_entry(un, &sma->list_id, list_id)
1311 un->semadj[semnum] = 0;
1312
1313 curr->semval = val;
1314 curr->sempid = task_tgid_vnr(current);
1315 sma->sem_ctime = get_seconds();
1316 /* maybe some queued-up processes were waiting for this */
1317 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1318 sem_unlock(sma, -1);
6d49dab8 1319 rcu_read_unlock();
e1fd1f49 1320 wake_up_sem_queue_do(&tasks);
6062a8dc 1321 return 0;
e1fd1f49
AV
1322}
1323
e3893534 1324static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1325 int cmd, void __user *p)
1da177e4
LT
1326{
1327 struct sem_array *sma;
239521f3 1328 struct sem *curr;
16df3674 1329 int err, nsems;
1da177e4 1330 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1331 ushort *sem_io = fast_sem_io;
0a2b9d4c 1332 struct list_head tasks;
1da177e4 1333
16df3674
DB
1334 INIT_LIST_HEAD(&tasks);
1335
1336 rcu_read_lock();
1337 sma = sem_obtain_object_check(ns, semid);
1338 if (IS_ERR(sma)) {
1339 rcu_read_unlock();
023a5355 1340 return PTR_ERR(sma);
16df3674 1341 }
1da177e4
LT
1342
1343 nsems = sma->sem_nsems;
1344
1da177e4 1345 err = -EACCES;
c728b9c8
LT
1346 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1347 goto out_rcu_wakeup;
1da177e4
LT
1348
1349 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1350 if (err)
1351 goto out_rcu_wakeup;
1da177e4
LT
1352
1353 err = -EACCES;
1354 switch (cmd) {
1355 case GETALL:
1356 {
e1fd1f49 1357 ushort __user *array = p;
1da177e4
LT
1358 int i;
1359
ce857229 1360 sem_lock(sma, NULL, -1);
0f3d2b01 1361 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1362 err = -EIDRM;
1363 goto out_unlock;
1364 }
239521f3 1365 if (nsems > SEMMSL_FAST) {
ce857229 1366 if (!ipc_rcu_getref(sma)) {
ce857229 1367 err = -EIDRM;
6e224f94 1368 goto out_unlock;
ce857229
AV
1369 }
1370 sem_unlock(sma, -1);
6d49dab8 1371 rcu_read_unlock();
1da177e4 1372 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1373 if (sem_io == NULL) {
cf0483ab 1374 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1375 return -ENOMEM;
1376 }
1377
4091fd94 1378 rcu_read_lock();
6ff37972 1379 sem_lock_and_putref(sma);
0f3d2b01 1380 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1381 err = -EIDRM;
6e224f94 1382 goto out_unlock;
1da177e4 1383 }
ce857229 1384 }
1da177e4
LT
1385 for (i = 0; i < sma->sem_nsems; i++)
1386 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1387 sem_unlock(sma, -1);
6d49dab8 1388 rcu_read_unlock();
1da177e4 1389 err = 0;
239521f3 1390 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1391 err = -EFAULT;
1392 goto out_free;
1393 }
1394 case SETALL:
1395 {
1396 int i;
1397 struct sem_undo *un;
1398
6062a8dc 1399 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1400 err = -EIDRM;
1401 goto out_rcu_wakeup;
6062a8dc 1402 }
16df3674 1403 rcu_read_unlock();
1da177e4 1404
239521f3 1405 if (nsems > SEMMSL_FAST) {
1da177e4 1406 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1407 if (sem_io == NULL) {
cf0483ab 1408 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1409 return -ENOMEM;
1410 }
1411 }
1412
239521f3 1413 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
cf0483ab 1414 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1415 err = -EFAULT;
1416 goto out_free;
1417 }
1418
1419 for (i = 0; i < nsems; i++) {
1420 if (sem_io[i] > SEMVMX) {
cf0483ab 1421 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1422 err = -ERANGE;
1423 goto out_free;
1424 }
1425 }
4091fd94 1426 rcu_read_lock();
6ff37972 1427 sem_lock_and_putref(sma);
0f3d2b01 1428 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1429 err = -EIDRM;
6e224f94 1430 goto out_unlock;
1da177e4
LT
1431 }
1432
1433 for (i = 0; i < nsems; i++)
1434 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1435
cf9d5d78 1436 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1437 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1438 for (i = 0; i < nsems; i++)
1439 un->semadj[i] = 0;
4daa28f6 1440 }
1da177e4
LT
1441 sma->sem_ctime = get_seconds();
1442 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1443 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1444 err = 0;
1445 goto out_unlock;
1446 }
e1fd1f49 1447 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1448 }
1449 err = -EINVAL;
c728b9c8
LT
1450 if (semnum < 0 || semnum >= nsems)
1451 goto out_rcu_wakeup;
1da177e4 1452
6062a8dc 1453 sem_lock(sma, NULL, -1);
0f3d2b01 1454 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1455 err = -EIDRM;
1456 goto out_unlock;
1457 }
1da177e4
LT
1458 curr = &sma->sem_base[semnum];
1459
1460 switch (cmd) {
1461 case GETVAL:
1462 err = curr->semval;
1463 goto out_unlock;
1464 case GETPID:
1465 err = curr->sempid;
1466 goto out_unlock;
1467 case GETNCNT:
239521f3 1468 err = count_semncnt(sma, semnum);
1da177e4
LT
1469 goto out_unlock;
1470 case GETZCNT:
239521f3 1471 err = count_semzcnt(sma, semnum);
1da177e4 1472 goto out_unlock;
1da177e4 1473 }
16df3674 1474
1da177e4 1475out_unlock:
6062a8dc 1476 sem_unlock(sma, -1);
c728b9c8 1477out_rcu_wakeup:
6d49dab8 1478 rcu_read_unlock();
0a2b9d4c 1479 wake_up_sem_queue_do(&tasks);
1da177e4 1480out_free:
239521f3 1481 if (sem_io != fast_sem_io)
1da177e4
LT
1482 ipc_free(sem_io, sizeof(ushort)*nsems);
1483 return err;
1484}
1485
016d7132
PP
1486static inline unsigned long
1487copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1488{
239521f3 1489 switch (version) {
1da177e4 1490 case IPC_64:
016d7132 1491 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1492 return -EFAULT;
1da177e4 1493 return 0;
1da177e4
LT
1494 case IPC_OLD:
1495 {
1496 struct semid_ds tbuf_old;
1497
239521f3 1498 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1499 return -EFAULT;
1500
016d7132
PP
1501 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1502 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1503 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1504
1505 return 0;
1506 }
1507 default:
1508 return -EINVAL;
1509 }
1510}
1511
522bb2a2 1512/*
d9a605e4 1513 * This function handles some semctl commands which require the rwsem
522bb2a2 1514 * to be held in write mode.
d9a605e4 1515 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1516 */
21a4826a 1517static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1518 int cmd, int version, void __user *p)
1da177e4
LT
1519{
1520 struct sem_array *sma;
1521 int err;
016d7132 1522 struct semid64_ds semid64;
1da177e4
LT
1523 struct kern_ipc_perm *ipcp;
1524
239521f3 1525 if (cmd == IPC_SET) {
e1fd1f49 1526 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1527 return -EFAULT;
1da177e4 1528 }
073115d6 1529
d9a605e4 1530 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1531 rcu_read_lock();
1532
16df3674
DB
1533 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1534 &semid64.sem_perm, 0);
7b4cc5d8
DB
1535 if (IS_ERR(ipcp)) {
1536 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1537 goto out_unlock1;
1538 }
073115d6 1539
a5f75e7f 1540 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1541
1542 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1543 if (err)
1544 goto out_unlock1;
1da177e4 1545
7b4cc5d8 1546 switch (cmd) {
1da177e4 1547 case IPC_RMID:
6062a8dc 1548 sem_lock(sma, NULL, -1);
7b4cc5d8 1549 /* freeary unlocks the ipc object and rcu */
01b8b07a 1550 freeary(ns, ipcp);
522bb2a2 1551 goto out_up;
1da177e4 1552 case IPC_SET:
6062a8dc 1553 sem_lock(sma, NULL, -1);
1efdb69b
EB
1554 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1555 if (err)
7b4cc5d8 1556 goto out_unlock0;
1da177e4 1557 sma->sem_ctime = get_seconds();
1da177e4
LT
1558 break;
1559 default:
1da177e4 1560 err = -EINVAL;
7b4cc5d8 1561 goto out_unlock1;
1da177e4 1562 }
1da177e4 1563
7b4cc5d8 1564out_unlock0:
6062a8dc 1565 sem_unlock(sma, -1);
7b4cc5d8 1566out_unlock1:
6d49dab8 1567 rcu_read_unlock();
522bb2a2 1568out_up:
d9a605e4 1569 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1570 return err;
1571}
1572
e1fd1f49 1573SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1574{
1da177e4 1575 int version;
e3893534 1576 struct ipc_namespace *ns;
e1fd1f49 1577 void __user *p = (void __user *)arg;
1da177e4
LT
1578
1579 if (semid < 0)
1580 return -EINVAL;
1581
1582 version = ipc_parse_version(&cmd);
e3893534 1583 ns = current->nsproxy->ipc_ns;
1da177e4 1584
239521f3 1585 switch (cmd) {
1da177e4
LT
1586 case IPC_INFO:
1587 case SEM_INFO:
4b9fcb0e 1588 case IPC_STAT:
1da177e4 1589 case SEM_STAT:
e1fd1f49 1590 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1591 case GETALL:
1592 case GETVAL:
1593 case GETPID:
1594 case GETNCNT:
1595 case GETZCNT:
1da177e4 1596 case SETALL:
e1fd1f49
AV
1597 return semctl_main(ns, semid, semnum, cmd, p);
1598 case SETVAL:
1599 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1600 case IPC_RMID:
1601 case IPC_SET:
e1fd1f49 1602 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1603 default:
1604 return -EINVAL;
1605 }
1606}
1607
1da177e4
LT
1608/* If the task doesn't already have a undo_list, then allocate one
1609 * here. We guarantee there is only one thread using this undo list,
1610 * and current is THE ONE
1611 *
1612 * If this allocation and assignment succeeds, but later
1613 * portions of this code fail, there is no need to free the sem_undo_list.
1614 * Just let it stay associated with the task, and it'll be freed later
1615 * at exit time.
1616 *
1617 * This can block, so callers must hold no locks.
1618 */
1619static inline int get_undo_list(struct sem_undo_list **undo_listp)
1620{
1621 struct sem_undo_list *undo_list;
1da177e4
LT
1622
1623 undo_list = current->sysvsem.undo_list;
1624 if (!undo_list) {
2453a306 1625 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1626 if (undo_list == NULL)
1627 return -ENOMEM;
00a5dfdb 1628 spin_lock_init(&undo_list->lock);
1da177e4 1629 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1630 INIT_LIST_HEAD(&undo_list->list_proc);
1631
1da177e4
LT
1632 current->sysvsem.undo_list = undo_list;
1633 }
1634 *undo_listp = undo_list;
1635 return 0;
1636}
1637
bf17bb71 1638static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1639{
bf17bb71 1640 struct sem_undo *un;
4daa28f6 1641
bf17bb71
NP
1642 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1643 if (un->semid == semid)
1644 return un;
1da177e4 1645 }
4daa28f6 1646 return NULL;
1da177e4
LT
1647}
1648
bf17bb71
NP
1649static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1650{
1651 struct sem_undo *un;
1652
239521f3 1653 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1654
1655 un = __lookup_undo(ulp, semid);
1656 if (un) {
1657 list_del_rcu(&un->list_proc);
1658 list_add_rcu(&un->list_proc, &ulp->list_proc);
1659 }
1660 return un;
1661}
1662
4daa28f6 1663/**
8001c858 1664 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1665 * @ns: namespace
1666 * @semid: semaphore array id
1667 *
1668 * The function looks up (and if not present creates) the undo structure.
1669 * The size of the undo structure depends on the size of the semaphore
1670 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1671 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1672 * performs a rcu_read_lock().
4daa28f6
MS
1673 */
1674static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1675{
1676 struct sem_array *sma;
1677 struct sem_undo_list *ulp;
1678 struct sem_undo *un, *new;
6062a8dc 1679 int nsems, error;
1da177e4
LT
1680
1681 error = get_undo_list(&ulp);
1682 if (error)
1683 return ERR_PTR(error);
1684
380af1b3 1685 rcu_read_lock();
c530c6ac 1686 spin_lock(&ulp->lock);
1da177e4 1687 un = lookup_undo(ulp, semid);
c530c6ac 1688 spin_unlock(&ulp->lock);
239521f3 1689 if (likely(un != NULL))
1da177e4
LT
1690 goto out;
1691
1692 /* no undo structure around - allocate one. */
4daa28f6 1693 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1694 sma = sem_obtain_object_check(ns, semid);
1695 if (IS_ERR(sma)) {
1696 rcu_read_unlock();
4de85cd6 1697 return ERR_CAST(sma);
16df3674 1698 }
023a5355 1699
1da177e4 1700 nsems = sma->sem_nsems;
6062a8dc
RR
1701 if (!ipc_rcu_getref(sma)) {
1702 rcu_read_unlock();
1703 un = ERR_PTR(-EIDRM);
1704 goto out;
1705 }
16df3674 1706 rcu_read_unlock();
1da177e4 1707
4daa28f6 1708 /* step 2: allocate new undo structure */
4668edc3 1709 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1710 if (!new) {
cf0483ab 1711 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1712 return ERR_PTR(-ENOMEM);
1713 }
1da177e4 1714
380af1b3 1715 /* step 3: Acquire the lock on semaphore array */
4091fd94 1716 rcu_read_lock();
6ff37972 1717 sem_lock_and_putref(sma);
0f3d2b01 1718 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1719 sem_unlock(sma, -1);
6d49dab8 1720 rcu_read_unlock();
1da177e4
LT
1721 kfree(new);
1722 un = ERR_PTR(-EIDRM);
1723 goto out;
1724 }
380af1b3
MS
1725 spin_lock(&ulp->lock);
1726
1727 /*
1728 * step 4: check for races: did someone else allocate the undo struct?
1729 */
1730 un = lookup_undo(ulp, semid);
1731 if (un) {
1732 kfree(new);
1733 goto success;
1734 }
4daa28f6
MS
1735 /* step 5: initialize & link new undo structure */
1736 new->semadj = (short *) &new[1];
380af1b3 1737 new->ulp = ulp;
4daa28f6
MS
1738 new->semid = semid;
1739 assert_spin_locked(&ulp->lock);
380af1b3 1740 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1741 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1742 list_add(&new->list_id, &sma->list_id);
380af1b3 1743 un = new;
4daa28f6 1744
380af1b3 1745success:
c530c6ac 1746 spin_unlock(&ulp->lock);
6062a8dc 1747 sem_unlock(sma, -1);
1da177e4
LT
1748out:
1749 return un;
1750}
1751
c61284e9
MS
1752
1753/**
8001c858 1754 * get_queue_result - retrieve the result code from sem_queue
c61284e9
MS
1755 * @q: Pointer to queue structure
1756 *
1757 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1758 * q->status, then we must loop until the value is replaced with the final
1759 * value: This may happen if a task is woken up by an unrelated event (e.g.
1760 * signal) and in parallel the task is woken up by another task because it got
1761 * the requested semaphores.
1762 *
1763 * The function can be called with or without holding the semaphore spinlock.
1764 */
1765static int get_queue_result(struct sem_queue *q)
1766{
1767 int error;
1768
1769 error = q->status;
1770 while (unlikely(error == IN_WAKEUP)) {
1771 cpu_relax();
1772 error = q->status;
1773 }
1774
1775 return error;
1776}
1777
d5460c99
HC
1778SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1779 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1780{
1781 int error = -EINVAL;
1782 struct sem_array *sma;
1783 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1784 struct sembuf *sops = fast_sops, *sop;
1da177e4 1785 struct sem_undo *un;
6062a8dc 1786 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1787 struct sem_queue queue;
1788 unsigned long jiffies_left = 0;
e3893534 1789 struct ipc_namespace *ns;
0a2b9d4c 1790 struct list_head tasks;
e3893534
KK
1791
1792 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1793
1794 if (nsops < 1 || semid < 0)
1795 return -EINVAL;
e3893534 1796 if (nsops > ns->sc_semopm)
1da177e4 1797 return -E2BIG;
239521f3
MS
1798 if (nsops > SEMOPM_FAST) {
1799 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1800 if (sops == NULL)
1da177e4
LT
1801 return -ENOMEM;
1802 }
239521f3
MS
1803 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1804 error = -EFAULT;
1da177e4
LT
1805 goto out_free;
1806 }
1807 if (timeout) {
1808 struct timespec _timeout;
1809 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1810 error = -EFAULT;
1811 goto out_free;
1812 }
1813 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1814 _timeout.tv_nsec >= 1000000000L) {
1815 error = -EINVAL;
1816 goto out_free;
1817 }
1818 jiffies_left = timespec_to_jiffies(&_timeout);
1819 }
1820 max = 0;
1821 for (sop = sops; sop < sops + nsops; sop++) {
1822 if (sop->sem_num >= max)
1823 max = sop->sem_num;
1824 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1825 undos = 1;
1826 if (sop->sem_op != 0)
1da177e4
LT
1827 alter = 1;
1828 }
1da177e4 1829
6062a8dc
RR
1830 INIT_LIST_HEAD(&tasks);
1831
1da177e4 1832 if (undos) {
6062a8dc 1833 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1834 un = find_alloc_undo(ns, semid);
1da177e4
LT
1835 if (IS_ERR(un)) {
1836 error = PTR_ERR(un);
1837 goto out_free;
1838 }
6062a8dc 1839 } else {
1da177e4 1840 un = NULL;
6062a8dc
RR
1841 rcu_read_lock();
1842 }
1da177e4 1843
16df3674 1844 sma = sem_obtain_object_check(ns, semid);
023a5355 1845 if (IS_ERR(sma)) {
6062a8dc 1846 rcu_read_unlock();
023a5355 1847 error = PTR_ERR(sma);
1da177e4 1848 goto out_free;
023a5355
ND
1849 }
1850
16df3674 1851 error = -EFBIG;
c728b9c8
LT
1852 if (max >= sma->sem_nsems)
1853 goto out_rcu_wakeup;
16df3674
DB
1854
1855 error = -EACCES;
c728b9c8
LT
1856 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1857 goto out_rcu_wakeup;
16df3674
DB
1858
1859 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1860 if (error)
1861 goto out_rcu_wakeup;
16df3674 1862
6e224f94
MS
1863 error = -EIDRM;
1864 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1865 /*
1866 * We eventually might perform the following check in a lockless
1867 * fashion, considering ipc_valid_object() locking constraints.
1868 * If nsops == 1 and there is no contention for sem_perm.lock, then
1869 * only a per-semaphore lock is held and it's OK to proceed with the
1870 * check below. More details on the fine grained locking scheme
1871 * entangled here and why it's RMID race safe on comments at sem_lock()
1872 */
1873 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1874 goto out_unlock_free;
1da177e4 1875 /*
4daa28f6 1876 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1877 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1878 * and now a new array with received the same id. Check and fail.
25985edc 1879 * This case can be detected checking un->semid. The existence of
380af1b3 1880 * "un" itself is guaranteed by rcu.
1da177e4 1881 */
6062a8dc
RR
1882 if (un && un->semid == -1)
1883 goto out_unlock_free;
4daa28f6 1884
758a6ba3
MS
1885 error = perform_atomic_semop(sma, sops, nsops, un,
1886 task_tgid_vnr(current));
0e8c6656
MS
1887 if (error == 0) {
1888 /* If the operation was successful, then do
1889 * the required updates.
1890 */
1891 if (alter)
0a2b9d4c 1892 do_smart_update(sma, sops, nsops, 1, &tasks);
0e8c6656
MS
1893 else
1894 set_semotime(sma, sops);
1da177e4 1895 }
0e8c6656
MS
1896 if (error <= 0)
1897 goto out_unlock_free;
1da177e4
LT
1898
1899 /* We need to sleep on this operation, so we put the current
1900 * task into the pending queue and go to sleep.
1901 */
1902
1da177e4
LT
1903 queue.sops = sops;
1904 queue.nsops = nsops;
1905 queue.undo = un;
b488893a 1906 queue.pid = task_tgid_vnr(current);
1da177e4 1907 queue.alter = alter;
1da177e4 1908
b97e820f
MS
1909 if (nsops == 1) {
1910 struct sem *curr;
1911 curr = &sma->sem_base[sops->sem_num];
1912
f269f40a
MS
1913 if (alter) {
1914 if (sma->complex_count) {
1915 list_add_tail(&queue.list,
1916 &sma->pending_alter);
1917 } else {
1918
1919 list_add_tail(&queue.list,
1920 &curr->pending_alter);
1921 }
1922 } else {
1a82e9e1 1923 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1924 }
b97e820f 1925 } else {
f269f40a
MS
1926 if (!sma->complex_count)
1927 merge_queues(sma);
1928
9f1bc2c9 1929 if (alter)
1a82e9e1 1930 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1931 else
1a82e9e1
MS
1932 list_add_tail(&queue.list, &sma->pending_const);
1933
b97e820f
MS
1934 sma->complex_count++;
1935 }
1936
1da177e4
LT
1937 queue.status = -EINTR;
1938 queue.sleeper = current;
0b0577f6
MS
1939
1940sleep_again:
1da177e4 1941 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1942 sem_unlock(sma, locknum);
6d49dab8 1943 rcu_read_unlock();
1da177e4
LT
1944
1945 if (timeout)
1946 jiffies_left = schedule_timeout(jiffies_left);
1947 else
1948 schedule();
1949
c61284e9 1950 error = get_queue_result(&queue);
1da177e4
LT
1951
1952 if (error != -EINTR) {
1953 /* fast path: update_queue already obtained all requested
c61284e9
MS
1954 * resources.
1955 * Perform a smp_mb(): User space could assume that semop()
1956 * is a memory barrier: Without the mb(), the cpu could
1957 * speculatively read in user space stale data that was
1958 * overwritten by the previous owner of the semaphore.
1959 */
1960 smp_mb();
1961
1da177e4
LT
1962 goto out_free;
1963 }
1964
321310ce 1965 rcu_read_lock();
6062a8dc 1966 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1967
1968 /*
1969 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1970 */
1971 error = get_queue_result(&queue);
1972
1973 /*
1974 * Array removed? If yes, leave without sem_unlock().
1975 */
023a5355 1976 if (IS_ERR(sma)) {
321310ce 1977 rcu_read_unlock();
1da177e4
LT
1978 goto out_free;
1979 }
1980
c61284e9 1981
1da177e4 1982 /*
d694ad62
MS
1983 * If queue.status != -EINTR we are woken up by another process.
1984 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1985 */
3ab08fe2 1986 if (error != -EINTR)
1da177e4 1987 goto out_unlock_free;
1da177e4
LT
1988
1989 /*
1990 * If an interrupt occurred we have to clean up the queue
1991 */
1992 if (timeout && jiffies_left == 0)
1993 error = -EAGAIN;
0b0577f6
MS
1994
1995 /*
1996 * If the wakeup was spurious, just retry
1997 */
1998 if (error == -EINTR && !signal_pending(current))
1999 goto sleep_again;
2000
b97e820f 2001 unlink_queue(sma, &queue);
1da177e4
LT
2002
2003out_unlock_free:
6062a8dc 2004 sem_unlock(sma, locknum);
c728b9c8 2005out_rcu_wakeup:
6d49dab8 2006 rcu_read_unlock();
0a2b9d4c 2007 wake_up_sem_queue_do(&tasks);
1da177e4 2008out_free:
239521f3 2009 if (sops != fast_sops)
1da177e4
LT
2010 kfree(sops);
2011 return error;
2012}
2013
d5460c99
HC
2014SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2015 unsigned, nsops)
1da177e4
LT
2016{
2017 return sys_semtimedop(semid, tsops, nsops, NULL);
2018}
2019
2020/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2021 * parent and child tasks.
1da177e4
LT
2022 */
2023
2024int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2025{
2026 struct sem_undo_list *undo_list;
2027 int error;
2028
2029 if (clone_flags & CLONE_SYSVSEM) {
2030 error = get_undo_list(&undo_list);
2031 if (error)
2032 return error;
1da177e4
LT
2033 atomic_inc(&undo_list->refcnt);
2034 tsk->sysvsem.undo_list = undo_list;
2035 } else
2036 tsk->sysvsem.undo_list = NULL;
2037
2038 return 0;
2039}
2040
2041/*
2042 * add semadj values to semaphores, free undo structures.
2043 * undo structures are not freed when semaphore arrays are destroyed
2044 * so some of them may be out of date.
2045 * IMPLEMENTATION NOTE: There is some confusion over whether the
2046 * set of adjustments that needs to be done should be done in an atomic
2047 * manner or not. That is, if we are attempting to decrement the semval
2048 * should we queue up and wait until we can do so legally?
2049 * The original implementation attempted to do this (queue and wait).
2050 * The current implementation does not do so. The POSIX standard
2051 * and SVID should be consulted to determine what behavior is mandated.
2052 */
2053void exit_sem(struct task_struct *tsk)
2054{
4daa28f6 2055 struct sem_undo_list *ulp;
1da177e4 2056
4daa28f6
MS
2057 ulp = tsk->sysvsem.undo_list;
2058 if (!ulp)
1da177e4 2059 return;
9edff4ab 2060 tsk->sysvsem.undo_list = NULL;
1da177e4 2061
4daa28f6 2062 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2063 return;
2064
380af1b3 2065 for (;;) {
1da177e4 2066 struct sem_array *sma;
380af1b3 2067 struct sem_undo *un;
0a2b9d4c 2068 struct list_head tasks;
6062a8dc 2069 int semid, i;
4daa28f6 2070
380af1b3 2071 rcu_read_lock();
05725f7e
JP
2072 un = list_entry_rcu(ulp->list_proc.next,
2073 struct sem_undo, list_proc);
9ab6ec25
HK
2074 if (&un->list_proc == &ulp->list_proc) {
2075 /*
2076 * We must wait for freeary() before freeing this ulp,
2077 * in case we raced with last sem_undo. There is a small
2078 * possibility where we exit while freeary() didn't
2079 * finish unlocking sem_undo_list.
2080 */
2081 spin_unlock_wait(&ulp->lock);
2082 rcu_read_unlock();
2083 break;
2084 }
2085 spin_lock(&ulp->lock);
2086 semid = un->semid;
2087 spin_unlock(&ulp->lock);
4daa28f6 2088
9ab6ec25 2089 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2090 if (semid == -1) {
2091 rcu_read_unlock();
9ab6ec25 2092 continue;
6062a8dc 2093 }
1da177e4 2094
9ab6ec25 2095 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2096 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2097 if (IS_ERR(sma)) {
2098 rcu_read_unlock();
380af1b3 2099 continue;
6062a8dc 2100 }
1da177e4 2101
6062a8dc 2102 sem_lock(sma, NULL, -1);
6e224f94 2103 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2104 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2105 sem_unlock(sma, -1);
2106 rcu_read_unlock();
2107 continue;
2108 }
bf17bb71 2109 un = __lookup_undo(ulp, semid);
380af1b3
MS
2110 if (un == NULL) {
2111 /* exit_sem raced with IPC_RMID+semget() that created
2112 * exactly the same semid. Nothing to do.
2113 */
6062a8dc 2114 sem_unlock(sma, -1);
6d49dab8 2115 rcu_read_unlock();
380af1b3
MS
2116 continue;
2117 }
2118
2119 /* remove un from the linked lists */
cf9d5d78 2120 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2121 list_del(&un->list_id);
2122
380af1b3
MS
2123 spin_lock(&ulp->lock);
2124 list_del_rcu(&un->list_proc);
2125 spin_unlock(&ulp->lock);
2126
4daa28f6
MS
2127 /* perform adjustments registered in un */
2128 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2129 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2130 if (un->semadj[i]) {
2131 semaphore->semval += un->semadj[i];
1da177e4
LT
2132 /*
2133 * Range checks of the new semaphore value,
2134 * not defined by sus:
2135 * - Some unices ignore the undo entirely
2136 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2137 * - some cap the value (e.g. FreeBSD caps
2138 * at 0, but doesn't enforce SEMVMX)
2139 *
2140 * Linux caps the semaphore value, both at 0
2141 * and at SEMVMX.
2142 *
239521f3 2143 * Manfred <manfred@colorfullife.com>
1da177e4 2144 */
5f921ae9
IM
2145 if (semaphore->semval < 0)
2146 semaphore->semval = 0;
2147 if (semaphore->semval > SEMVMX)
2148 semaphore->semval = SEMVMX;
b488893a 2149 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2150 }
2151 }
1da177e4 2152 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2153 INIT_LIST_HEAD(&tasks);
2154 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2155 sem_unlock(sma, -1);
6d49dab8 2156 rcu_read_unlock();
0a2b9d4c 2157 wake_up_sem_queue_do(&tasks);
380af1b3 2158
693a8b6e 2159 kfree_rcu(un, rcu);
1da177e4 2160 }
4daa28f6 2161 kfree(ulp);
1da177e4
LT
2162}
2163
2164#ifdef CONFIG_PROC_FS
19b4946c 2165static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2166{
1efdb69b 2167 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2168 struct sem_array *sma = it;
d12e1e50
MS
2169 time_t sem_otime;
2170
d8c63376
MS
2171 /*
2172 * The proc interface isn't aware of sem_lock(), it calls
2173 * ipc_lock_object() directly (in sysvipc_find_ipc).
2174 * In order to stay compatible with sem_lock(), we must wait until
2175 * all simple semop() calls have left their critical regions.
2176 */
2177 sem_wait_array(sma);
2178
d12e1e50 2179 sem_otime = get_semotime(sma);
19b4946c
MW
2180
2181 return seq_printf(s,
b97e820f 2182 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2183 sma->sem_perm.key,
7ca7e564 2184 sma->sem_perm.id,
19b4946c
MW
2185 sma->sem_perm.mode,
2186 sma->sem_nsems,
1efdb69b
EB
2187 from_kuid_munged(user_ns, sma->sem_perm.uid),
2188 from_kgid_munged(user_ns, sma->sem_perm.gid),
2189 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2190 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2191 sem_otime,
19b4946c 2192 sma->sem_ctime);
1da177e4
LT
2193}
2194#endif